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Abstract 

Nanofibers have been widely used in many engineering applications, including air filtration, 

energy storage, and biomedical engineering. Their performances largely depend on the 

morphology of nanofibers. The key morphological parameters include fiber diameter, pore 

size, porosity, and thickness homogeneity, which are often manually determined at this 

moment.  

There is a need of automated tools for fast determination of nanofiber fiber diameters, pore 

size, porosity, and surface/thickness homogeneity. Researchers have developed automated 

tools to determine nanofiber diameters, primarily using MATLAB. However, none of the tools 

reported earlier can automatically process multiple images, which is essential to the accuracy 

of results. Regarding porosity, the most accurate approach to pore size determination is 

Brunauer-Emmett-Teller (BET) surface area analysis. This experimental approach is precise 

but time-consuming, costly, and destructive. Alternatively, the image processing method may 

offer a quick estimation of the porosity of the nanofiber mat.  

In addition, many researchers consider the surface homogeneity with even fiber diameters 

as good a homogeneity. However, the diameters shown in a SEM image only indicate the local 

homogeneity with a minimal dimension bounding the SEM image. Alternatively, the thickness 

of the entire nanofiber sample is a more reliable criterion. However, experimental 

determination of the thickness throughout the entire nanofiber mat is challenging because of 

its fragility and thinness. If the thickness of only a few places is measured, the local unevenness 

may be overlooked during the sampling.  

The main objective of this research is therefore to develop a set of automated tools for the 

characterization of diameter, inter-fiber and intra-fiber pores, porosity, and thickness 

homogeneity of nanofiber mats. Among them, three different approaches are used to determine 

the nanofiber diameter. 

Specifically, the following tools are developed to achieve the preceding goals. First, multi-

image processing tools are developed to determine the diameters of nanofiber mats using 
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MATLAB and machine learning based on UNet and residual neural network. Second, serval 

image processing tools using different image segmentation methods are proposed to determine 

the area of inter-fiber pores, intra-fiber pores, and the porosity. The most accurate one is 

identified by comparing their performances with experimental data. Finally, a characterization 

tool is proposed to quantitatively compare the nanofiber homogeneity by analyzing the light 

transmittance. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Nanofibers have been developed for many engineering applications, for example, air filtration 

(Givehchi et al. 2016, 2018; Ahne et al. 2018; Homaeigohar & Elbahri, 2014), energy storage 

(Chen et al., 2014; Li et al. 2022; Li et al. 2020, 2019), drug delivery (Cui et al., 2018), and 

tissue engineering (Agarwal et al., 2008; Rijal et al., 2018). Nanofiber morphology can largely 

influence the properties and performances of the devices using nanofibers (Barhoum et al., 

2019). A slight change in nanofiber morphology can significantly impact the macroscopic 

material properties. The critical morphological parameters include fiber diameter, pore size, 

porosity, and homogeneity. 

Many potential applications in different areas require a high porosity material, for example, 

cancer cell enrichment (Zhang et al. 2021), sensing materials (Zhang et al., 2010), and catalyst 

(Patel et al., 2007). In tissue engineering, nanofibers are used as artificial scaffolds, which act 

as structural support and the environment for cell proliferating and tissue forming. The pore 

size on nanofiber surface greatly affects cell anchoring, proliferation, and migration. As 

another example, a smaller pore size on nanofiber can offer better cellular adhesion 

(Kulpreechanan et al., 2013). However, when the pore size is smaller than the cell, the over-

dense nanofiber mat prevents the cells from migrating into the under layer of the scaffold, 

hindering the forming of proper tissue. Therefore, it is essential to characterize both porosity 

and pore size of nanofibers. 

Finally, fiber surface homogeneity also plays a vital role in the performance of nanofiber-

based devices. Two examples are battery separator (Li et al. 2019) and air filtration. When a 

nanofiber mat is used for air filtration, homogeneous surfaces can prevent local piercing of the 

mat and the resultant particle penetration (Zhang et al., 2010; Kim et al., 2020). As another 

example, enhanced homogeneity of a nanofiber mat can improve the uniformity of electrical 
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conductivity, which is an essential feature for electrical usage (Kabir & Demirocak, 2017). 

Therefore, the characterization of nanofiber homogeneity is important. 

1.1.1 Nanofiber diameter determination  

Among all the characteristics of nanofibers, diameter is the most important because it 

dramatically affects related device performance. For example, when nanofibers are used for 

air filtration (Givehchi et al. 2021), fiber diameters close to the mean free path of air molecules 

may result in slip flow (Givehchi et al. 2014). The slip flow effect can greatly reduce the 

pressure drop trough the nanofibrous filter, which means energy consumption (Zhao et al., 

2016a). In addition, smaller nanofiber diameters result in thinner mats with a larger volume to 

surface ratio. These factors, in turn, affect the mechanical properties, electrical conductivity, 

bioactivity of the nanofibers (Barhoum et al., 2019; Neal et al., 2009). In short, the diameter 

is the most crucial parameter of a nanofiber. 

Despite the great importance of nanofiber diameter determination, the tools to measure the 

diameters of nanofibers are limited. To the best of my knowledge, image processing is the only 

feasible way to determine nanofiber diameters. The images for nanofiber characterization are 

often taken using a scanning electron microscope (SEM). Then, the nanofiber diameters can 

be determined by manually measuring the number of pixels between the fiber boundaries and 

converting the number into length based on the scale (Givehchi  et al., 2016). This manual 

approach is time-consuming and often subjective. Thus, an automated approach for nanofiber 

diameter determination is needed. 

Other researchers have developed some automated tools to determine nanofiber diameters, 

primarily using the MATLAB software. The SEM images are usually first binarized and then 

skeletonized to find its fiber centerline in those approaches. Finally, the nanofiber diameter is 

determined by double the distance between fiber centerline and fiber boundary. In this 

approach, it is noticed that most methods reported earlier, such as DiameterJ and SIMpoly, are 

subjective (Hotaling et al., 2015a; Murphy et al., 2020). In addition, the results depend on the 

image magnification as reported by Givehchi et al. (2016). Furthermore, none of the tools 

reported earlier can automatically process multi-images. Therefore, there is a lack of tools that 

can combine the results from multi-images with improved accuracy of diameter determination.  
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MATLAB scripts can help determine the nanofiber diameters by processing of multiple 

SEM images. However, MATLAB is a commercial software package that is costly and bulky, 

taking up many computer resources. Many built-in functions packaged in MATLAB are 

unneeded. Additionally, its capability in image processing is limited and highly dependent on 

functions provided in its toolbox.  

Compared to MATLAB, an open-source script is more budget-friendly, occupies fewer 

computing resources, and offers a greater flexibility to the end users. The source codes can be 

further customized and changed for different applications. Thus, this thesis tackles the 

preceding challenges by developing a Python-based open-source image processing script (see 

Sections 3.3 and 3.4). The Python script can be run on a free platform, such as Jupyter 

Notebook, using few computer resources. 

In addition, existing image segmentation methods cannot accurately differentiate nanofiber 

from the background in the presence of rough surfaces. Comparison between the results 

obtained manually and automatedly shows that there is still room for improvement in accuracy 

(see Section 3.2). Thus, machine learning is used for image segmentation to improve the 

accuracy of the results and to extend the scope of application. Two different machine learning 

approaches are used separately to develop automated tools for nanofiber diameter 

determination (see Sections 3.3 and 3.4). 

1.1.2 Determination of nanofiber porosity and pore size  

Porosity and pore size are two essential characteristics of nanofibers and nanofibrous mats. 

The porosity of a nanofiber mat indicates its surface-to-volume ratio. Total porosity ca be 

measured by mercury intrusion, liquid adsorption, or gas adsorption. These experimental 

approaches are deemed accurate but time-consuming, costly, and destructive. Alternatively, 

the image processing method may offer a fast estimation of porosity. Using the image 

processing method, a preliminary result can be obtained in a few seconds. 

The most accurate experimental approach to pore size determination is Brunauer-Emmett-

Teller (BET) surface area analysis (Naderi, 2015). The basic idea is to measure the gas 

absorption and adsorption amount at different relative pressure. Standard BET is carried out 
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using nitrogen under 1 atm pressure at 77 K, which is the boiling point of nitrogen. The total 

surface area and pore volume can be calculated from the nitrogen intake. With an assumption 

that all pores are uniform cylindrical pores in solid material, a theoretical value of pore size 

can be calculated. With the model of cylindrical pores, the total pore volume is  

𝑉𝑉(𝑏𝑏𝑏𝑏𝑏𝑏) = 𝜋𝜋𝑑𝑑2𝑙𝑙 (1-1) 

where d is the mean pore size, and l is the total length of the pores. The BET surface area is 

𝑆𝑆(𝑏𝑏𝑏𝑏𝑏𝑏) = 𝜋𝜋𝑑𝑑𝑙𝑙 (1-2) 

The length, l, can be eliminated from the two equations, and the average diameter, d, can 

thus be calculated. However, the pores in nanofiber mats are caused from the fiber cross 

structures, and it is erratic to regard them as solid and uniform cylinders. Thus, the BET 

analysis method can only offer a theoretical equivalent pore size. Furthermore, it provides 

neither real pore sizes nor pore size distributions. For nanofibers, this method is mainly used 

to determine the specific surface areas or porosities instead of pore sizes (Evora et al., 2010; 

Ji & Zhang, 2009; Nazari et al., 2018). 

Alternatively, image processing may be more feasible and accurate for pore size 

determination. The pores sizes can be manually measured from the image, but again the 

manual method is time-consuming and subjective, and the number of sampling points is 

limited. Thus, a reliable automated tool for the determination of nanofiber diameter and pore 

size is needed. Accordingly, Section 3.2 of this thesis reports a MATLAB tool that can 

automatically calculate the sizes of inter-fiber and intra-fiber pores. The procedure involves 

image segmentation, edge detection, and pixels calculation.  

1.1.3 Determination of nanofiber surface homogeneity 

The surface homogeneity can be considered as the homogeneity across the thickness, or 

thickness uniformity, throughout a nanofiber mat. Many earlier studies have reported the 

effects of surface homogeneity on the performances of nanofiber mats. For example, Arshad 

et al. (2011) indicate that a great homogeneity can help eliminate structural weakness and 

increase the tensile strength of the nanofibers. Kim et al. (2020) also point out the negative 
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effects of inhomogeneity on air filtration. The overly dense area causes a great air resistance, 

which increases the pressure drop cross the filter. At the thin part, however, local piercing 

occurs and decreases the filtration efficiency (Kim et al., 2020). In short, fiber inhomogeneity 

plays a negative role in both pressure drop and filtration efficiency. 

Though the negative impact that inhomogeneity can cause has been realized, earlier studies 

have overlooked the impact of this morphological parameter on nanofibers. Many researchers 

equate the surface homogeneity with diameter distribution and regard a concentrated diameter 

distribution as acceptable homogeneity(Zheng et al., 2020). However, the reported 

homogeneity depends on the observation window, i.e., size scale. The nanofiber diameters 

observed in a SEM image can only be used to indicate the homogeneity at the minimal 

dimension of the SEM image. A nanofiber appearing uniform in the SEM image may be 

otherwise. Alternatively, the thickness of a nanofiber mat is deemed a reliable criterion for 

thickness homogeneity. However, measuring the thickness throughout the entire fiber mat is 

impractical. On the other hand, if the thickness of only a few places is measured, the local 

unevenness may be overlooked because of limited sampling. 

The preceding points may be the reasons that most previous research only qualitatively 

analyze surface homogeneity. To tackle this challenge, this thesis work reports a simple 

method to determine surface heterogeneity using images taken with an optical microscope. 

The hypothesis is as follows. For the same sample under the same optical microscope, the light 

transmittance is low through the spot where the nanofiber is thick, resulting in low brightness, 

and vice versa. Thus, a quantitative evaluation of homogeneity can be determined for 

comparison by analyzing the difference in brightness variation of the same microscopic image. 

This principle has not been tested for its feasibility in the field of nanofibers, although it has 

been used in the paper industry (Chhabra, 2003) to determine the evenness of paper thickness. 

1.2 Research Objectives 

The overall objective of this research is to develop a set of automated tools for the 

characterization of the diameter, size of inter-fiber and intra-fiber pores, porosity, and surface 

homogeneity of nanofibers and nanofiber mats. Among them, three different approaches are 
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used to determine the nanofiber diameters. Specifically, the following tasks were completed 

to achieve the goal: 

1. Multi-image processing using MATLAB to determine the diameters of nanofibers  

2. Machine learning, specifically the U-shape neural network, for image segmentation to 

determine nanofiber diameters. 

3. Diameter determination using the residual neural network. 

4. Serval image processing tools using different image segmentation methods to 

determine the area of inter-fiber pores, intra-fiber pores and the porosity.  

5. Quantitative comparison of nanofiber surface homogeneity using optical microscopic 

images. 

1.3 Thesis Organization 

This thesis is structured as follows. Chapter 1 briefly introduces the background and objectives 

of the study. Chapter 2 presents a state-of-the-art literature review on related works and 

background knowledge required for this thesis research project. Chapter 3 introduces different 

approaches for nanofiber diameter determination. Chapter 4 introduces the methods for 

automated measurement of inter-fiber pores, intra-fiber pores, porosity, and surface 

homogeneity. Finally, Chapter 5 summarizes the conclusions drawn from this work and 

recommendations to the future research. 

1.4 Highlight of Contributions 

To the best of my knowledge, this thesis is the first to report an image processing tool that can 

process multi-images for nanofiber diameter determination. In addition, it is the first attempt 

to apply deep learning neural network to nanofiber diameter determination. It is also the first 

to apply UNet, a biomedical image segmentation method, to the nanofiber diameter 

determination. 

Regarding the pore size and porosity, this thesis project implements some representative 

approaches in the previous research and analyzed their results. The thesis also compares the 

advantages and limits of the earlier approaches. 
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Last, this thesis is the first to innovatively use a simple image processing method to analyze 

the thickness homogeneity of nanofiber mats. This method has not been reported for 

nanofibers, regardless of its applications in the paper industry.  
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CHAPTER 2. LITERATURE REVIEW 

2.1 Electrospinning and Nanofiber 

Fibers with diameters in the nanometer range are often called nanofibers. Nanofibers can be 

produced from various materials with different morphologies and hence have different 

properties and applications. The methods for fabricating nanofiber materials include 

electrospinning, air-jet spinning, centrifugal spinning, template synthesis, phase inversion, and 

spinneret-based tunable engineered parameters (STEP) techniques (Stojanovska et al., 2016). 

Among all these methods, electrospinning is regarded as the most promising fabrication 

method for sub-100 nm fibers due to its simplicity and effectiveness. The main advantages of 

electrospinning include its ability to fabricate fibers from various polymers, its ability to 

produce fibers with diameters below 100 nm, ease of setup for the device, and ease of 

functionalization for various purposes (Givehchi et al. 2016).  

Figure 2-1 shows a schematic of a typical lab-scale electrospinning device, which includes 

a high voltage power supply, a spinneret (e.g., a syringe), and a grounded collector. It produces 

nanofibers by applying a high-voltage supply to polymer solutions. The feedstock, normally a 

polymer solution, is stored behind the spinneret. When the polymer solution is pushed out of 

the spinneret at a constant rate, forming a droplet at the spinneret tip, a high voltage is applied 

to that droplet. The high voltage applies an electrostatic repulsion force on the droplet, 

stretching it and deforming its shape. When the high voltage reaches a critical value, the 

electrostatic repulsion force becomes strong enough to overcome the surface tension of the 

droplet. As a result, the polymer solution jets out, forming a straight generatrix of a cone; this 

cone is often referred to as Taylor cone (Taylor, 1969). After the solution jet out, it travels 

through the air, with randomly whipping, and lands on the grounded metal collector. The 

solvent evaporates at the jetting and whipping stages, and the polymer precipitates on the 

collector, forming solid nanofibers (Givehchi et al.; 2016; Li et al. 2021). 
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Figure 2-1. Schematic of a typical electrospinning setup in a laboratory setting 

 

Humans began to use electrospinning to make nanofibers as early as 1995 (Doshi & 

Reneker, 1995). In the following two decades, the efforts to study the principle of 

electrospinning and improve the electrospinning process have never stopped. However, 

fabricating nanofiber with well-defined morphology at a high yield is still a significant 

challenge to this day. 

2.1.1 Nanofiber and its emerging applications 

Nanofibers have been extensively studied in the past two decades. This section introduces 

three application areas where nanofibers are most frequently used: energy, environment, and 

health care. 

Nanofibers are widely used electrode and separator materials in the energy fields, such as 

solar cells (Pierini et al., 2017), fuel cells (Skupov et al., 2017), electrochemical hydrogen 

production (Sebastián et al., 2010), and batteries (Chen et al., 2013; Miao et al., 2013). The 

high porosity and flexibility of nanofiber structures enable them to outperform other materials 

in energy applications (Yu et al., 2016; Iqbal et al., 2017). 
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Nanofibers are also used for air filtration in the environmental field. Research has proven 

that filters made by nanofibers have lower pressure drops and higher filtration efficiencies 

compared to conventional air filters. The sizeable surface-area-to-volume ratio and large 

porosity of nanofibers enable them to absorb more contaminants (Yoon et al., 2008; Givehchi 

et al., 2016). 

Nanofibers can also be used as drug delivery media and wound dressings in the biomedical 

field. When nanofibers are used as drug delivery media, their tortuous and inner-connected 

structures offer a great potential for controlled drug delivery (Sebe et al., 2015). The high 

surface area to volume ratio of nanofibers also help increase the contact area of drugs with the 

vivo environment, and therefore expedite the dissolution of water-soluble drugs (Nagy et al., 

2012). Therapeutic agents can be either loaded in the posttreatment process of nanofibers 

(Kataria et al., 2014) or added in a polymer solution before electrospinning (Xu et al., 2009). 

Electrospun nanofibers overlapping scaffolds are similar to extracellular matrix in terms of 

structure, giving them an advantage as wound dressings. The structure of nanofiber naturally 

mimics the extracellular matrix of the human body. Compared to traditional wound dressings, 

nanofibers are more favorable to body tissue and have better cell attachment and proliferation, 

thus lowering the possibility of scar tissue formation (Choi et al., 2008). 

Nanofibers can also be used for circulating tumour cell analysis for the early diagnosis of 

cancer, evaluating cancer progression and assessing treatment efficacy (Zhang et al., 2021). 

For example, electrospun nanofibers may be a simple and efficient way to create a 

nanoroughened surface. The extracellular matrix can be well mimicked by nanofibers for cell 

adhesion and culture. 

2.1.2 Morphology characterization of nanofibers 

The morphology of nanofibers plays a vital role in the physical and chemical properties of the 

nanofibers (Moon et al., 2011; Givehchi et al., 2016; Barhoum et al., 2019). Accurate control 

of the nanofiber morphology has often been the objectives of nanofiber studies. For example, 

Huang et al. (2011) controlled the diameters and porosities of nanofibers by adjusting 

environmental humidity during electrospinning.  There are also many other studies examining 
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the impact of other factors on nanofiber morphology. The factors include polymer molecular 

weight (Eda & Shivkumar, 2007; Koski et al., 2004; Mckee et al., 2006; Zhao et al., 2005), 

solution concentration (Amiraliyan et al., 2009; Eda & Shivkumar, 2007), solvent’s volatility 

(Veleirinho et al., 2008), electrospinning voltage(Dhanalakshmi et al., 2015), solvent flow rate 

(Yuan et al., 2004) and needle-to-collector distance (Yuan et al., 2004). 

In this context, accurate and effective characterization is particularly important. The 

characterization of morphology not only can offer information about the fiber’s properties, but 

also can offer guidance for fabrication protocol optimization and future fabrication (Khajavi 

& Abbasipour, 2017). However, the current morphology characterization techniques are still 

in their infancy, and many improvements can be made to them. 

2.2 Diameter Determination 

2.2.1 Existing image processing algorithms 

Currently, the nanofiber diameters can only be accurately determined by image processing. 

Scanning electron microscope (SEM) is frequently used for the characterization of nanofiber 

morphology. The number of pixels between the fiber boundaries in a SEM image is measured 

and converted to length according to the scale of the SEM image. However, this manual 

measurement is time-consuming and the number of samples is limited. 

Alternatively, Tomba et al. (2010) developed a multivariate image analysis (MIA) system 

for the determination of nanofiber diameters. The MIA can extract essential information from 

a SEM image and reduce the date size and data dimensionality. Multiway principal component 

analysis (MPCA) is also performed on the SEM image. The MPCA linearly combines the 

original variables with principal components to help identify the greatest variability in data. 

However, it is noticed that the MPCA method has many shortcomings. For example, it cannot 

effectively separate fibers from each other in the overlapped areas, resulting in deviation. For 

the best denoising effect, this method also assumes that all fibers are straight, which can be a 

significant disadvantage for bent nanofibers. Finally, the thin fibers in low-resolution images 

are likely to be overlooked because of repeated denoising operations. 
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To tackle the preceding challenge of overlapping fibers, Shin et al. (2008) reproted another 

method for automatically measuring nanofiber diameters. Their method consists of the 

following three main steps:  

1. fiber boundary detection 

2. fiber individualization  

3. distance transformation  

The fiber individualization is at the core of this approach. In this step, fiber boundaries are 

detected using the Canny edge detection, in which an edge point is defined as the point where 

strength has a local maximum in the direction of the gradient. The most significant advantage 

of the Canny edge detection is its accuracy and effectiveness in separating overlapped fibers 

in SEM images. On the other hand, the most significant disadvantage of Canny edge detection 

is that it cannot be used on highly oriented nanofibers. When dealing with high-oriented fibers, 

this method can easily outline the fiber boundaries, but has difficulty distinguishing the fiber 

sides and the background. 

Thus, Murphy et al. (2020) proposed an alternative method for automatically measuring 

nanofiber diameter. This method consists of the following three main steps:  

1. morphologically reconstructing  

2. image skeletonization  

3. fiber diameter calculation  

The morphologically reconstructing step first binarizes the image using the Otsu method (Otsu, 

1979). Then, the centerline of the fiber is determined and reduced into 1 pixel. Finally, the 

diameter is calculated by doubling the distance between the fiber boundary and fiber 

centerline. 

Babashakoori et al. (2019) improved the algorithm for nanofiber diameter determination. 

They used the Hough transform (Gonzalez et al., 2002) to extract the features of the image, 

generating skeletonization of the SEM image. The most significant advantage of the Hough 

transform is its tolerance for discontinued features and image noises. After the skeletonization, 

the Gabor filtering bank (Field 1987) is used to further improve the accuracy of measurement. 

Alternatively, Dehghan et al. (2016) used the Fuzzy Clustering Method (FCM) to determine 

the nanofiber diameters. The SEM image is segmented into a binary image by FCM method. 
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The optimal cluster value is determined by trying out different clustering numbers ranging 

from one to six. The optimal clustering value is the value that results in the most similarity 

between the binary image and the original image. Finally, the image similarity is calculated 

using the structural similarity index method. 

Among all the studies mentioned above, image binarization is a major point of difference. 

The algorithm for the image binarization can be divided into two categories: global threshold 

and local threshold. The global threshold chooses a single threshold value, and all values 

smaller than the threshold value are regarded as 0, corresponding to pure black. All values 

greater than the threshold value are regard as 255, corresponding to pure white. Covnersely, 

local threshold is the method in which multi-threshold value is used at a different spot on the 

image. It is a necessary means for images with uneven luminance. 

The global and local thresholds are not totally opposite. Many global threshold-based 

methods can also be applied locally. To locally apply a global threshold algorithm, the image 

needs to be first divided into many sub-images. Then the global threshold algorithm is applied 

to each sub-image, and the result is obtained by stitching together all sub-images. That is why 

some algorithms can be applied either locally or globally. 

With the recent advances in algorithms, the third categories appear. They include the 

clustering algorithm, such as K-means and FCM (Dehghan et al., 2016). Dehghan et al. (2016) 

explained the approach of using the fuzzy clustering method (FCM) to measure the diameter 

of polyblend fibers. 

2.2.2 Current image processing platforms for nanofiber characterization 

Existing image processing platforms for nanofiber characterization can be divided into 

commercial software and open-source platforms. MATLAB is the most widely used 

commercial software, which has been used by many researchers such as Shin’s group(Ho Shin 

et al., 2008), Tan’s group (Ahne et al. 2018; Givehchi, 2016, 2018, 2021; Li et al. 2020; 2021), 

MIA(Tomba et al., 2010), and SIMpoly (Murphy et al., 2020). The most used open-source 

software is ImageJ (Ferreira and Rasband, 2012) and its plug-in DiameterJ (Hotaling et al., 
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2015). Both commercial software and open-source software have their own advantages and 

disadvantages. Table 2-1 compares their advantages and disadvantages. 

Table 2-1. Comparison of different image processing platforms 

Platform Pro Con 
MATLAB 
 

• Well-maintained environment 
• Good training materials and 

tech help 

• Expensive 
• Commercial software has its own 

restriction 
• Take up a lot of computer resources 

Open-source 
software 

 

• Free 
• Software takes up little space 

in computer 

• Steep learning curve 
• DiameterJ’s author stopped 

maintenance and update 
 

2.2.3 Machine learning approach for image segmentation 

The determination of nanofiber diameters consists of the following three steps:  

1. image segmentation 

2. skeletonization 

3. distance measurement 

The image segmentation step can be done by machine learning. There are three main categories 

for image segmentation in the machine learning field:  

1) semantic segmentation 

2) instance segmentation 

3) panoptic segmentation  

The semantic segmentation is the most basic type of segmentation that identifies different 

objects in an image. The objects can be a person, book, flower, car, etc. Typical algorithms for 

the semantic segmentation include UNet (Ronneberger et al., 2015), DeepLab (Chen et al., 

2014, 2018), and FCN (Long et al., 2014). 

An instance segmentation combines target detection and semantic segmentation. The 

instance segmentation first identifies the bounding box of the instance by target detection. 

Then it performs the semantic segmentation in the detection box, and each segmentation result 

is output as a different instance. The instances of each semantic category are often be regarded 
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as an extension of the semantic segmentation. For example, if the semantic segmentation 

method identifies a flock of birds in an image, then the instance segmentation further eases the 

object detection by identifying individual birds in the flock. Frequently used algorithms for 

instance segmentation include Mask R-CNN (He et al., 2017), YOLCAT (Bolya et al., 2019), 

and Gated-SCNN(Takikawa et al., 2019). 

The panoptic segmentation is an emerging method compared to the other two methods 

(Kirillov et al., 2018). First proposed by Kirillov et al. (2018), this algorithm combines the 

semantic and instance segmentations and generates a coherent scene segmentation.  

In this thesis project, semantic segmentation is sufficient in the context of nanofiber 

morphology analysis because there is only one object category (i.e., fiber) throughout this 

thesis project. Locating the classified items is unneeded. In addition, all fibers are equally 

analyzed for characterization and distinguishing the fibers is unnecessary. For these two 

reasons, the semantic segmentation is enough for this project. 

The algorithms of semantic segmentation reported earlier include UNet (Ronneberger et al., 

2015), Deeplab (Chen et al., 2018), and FCN (Long et al., 2014). Among all these algorithms, 

UNet is one of the earliest segmentation algorithms that has been repeatedly studied and 

implemented. Thus, the principles and implementation paths of UNet are relatively clear, and 

useful information are easily available in the literature. In addition, UNet is well known for its 

low requirement of training data and short training time, which can significantly reduce the 

time for preparing the database and reduce the requirements for computer hardware. For 

example, Ronneberger et al. (2015) obtained a high accuracy of 0.9203 using the PhC-U373 

dataset, which contains only 35 partially annotated images for training. Furthermore, in the 

ISBI 2015 Challenge1, the UNet model outperformed all other models with an accuracy of 

0.7756 on DIC-HeLa dataset, while the second-best algorithm can only achieve an accuracy 

of 46% (Ronneberger et al., 2015). 

Therefore, the UNet model is used in this project, and it is further explained as follows. The 

UNet model was first proposed by Ronneberger et al (2015) for biomedical image 

 
1 https://biomedicalimaging.org/2015/program/isbi-challenges/ 
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segmentation. Its name comes from a U-shaped neural network structure of this model. This 

model contains a contracting path to capture image features and a symmetric expanding path 

for precise localization. There are four conventional steps in the contracting path, and each 

step contains two 3x3 convolutions layers and a max-pooling. The expanding path has a 

relatively symmetric structure. It also contains four steps, in each of which an up-convolution 

is performed, followed by two convolution layers. This model has 23 layers in total. 

2.2.4 Determination of nanofiber diameters by image recognition 

Some researchers have been trying to combine machine learning with nanofiber 

characterization. Most of them are for defect detection and distinguishing the homogenous and 

nonhomogeneous nanomaterials. For example, Matson et al. (2019) proposed a machine 

learning approach to distinguish between the transmission electron microscopy images of 

carbon nanotubes and carbon nanofibers. A dataset of 5000 images was built for model training. 

The neural network structures they used are ResNet50 and VGG16. They came up with a new 

structure by combining the VGG16 with hyper-column representation and testing the accuracy 

of this structure. Regarding the classification accuracy, ResNet50 has the highest accuracy on 

identifying carbon nanofibers and clusters; VGG16 with hyper-columns has the highest 

accuracy on carbon nanofiber matrix, and VGG16 has the highest accuracy on non-carbon 

nanotubes. Overall, VGG16 with hyper-columns has the highest total accuracy. 

Leracitano et al. (2021) proposed an automated classification system based on hybrid 

unsupervised and supervised machine learning for electrospun nanofibers. His study aims to 

distinguish between the homogenous and non-homogenous nanofibers, which are interpreted 

as two different categories. This study builds and implements a network that combines the 

autoencoder and multilayer perceptron. They used 160 SEM images for the dataset buildup. 

This model achieved an accuracy of over 90% and outperformed other similar algorithms such 

as support vector machine and linear discriminant analysis. 

Napoletano et al. (2018) proposed an approach for nanofiber defect detection using CNN. 

This study uses ResNet18 for feature extraction and defect detection. The accuracy is over 

90%, outperforming a comparative algorithm by about 5%. 
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Others attempted to use machine learning figure out the relationship between the fabrication 

parameters and nanofiber characteristics. For example, Oflza et al. (2021) used the extreme 

gradient boosting model to predict the diesel oil sorption capacities of nanofibers and 

determine the optimal conditions. 

To my best knowledge, however, no research has been conducted to determine the nanofiber 

diameter using machine learning. The machine learning approach may allow complete 

abandoning of complex image processing steps in former non-machine learning approaches. 

It determines the diameters of nanofibers in SEM images in one single step. This thesis project 

uses the ResNet for machine learning, which is elaborated as follows.  

ResNet stands for deep residual neural network. This network is well known for its unique 

skip connection, which is illustrated using Figure 2-2. The skipping connection behaves like 

an identity mapping in the structure and ensures that the result does not worsen as the network 

layer increases. These skip connection structures can effectively prevent the gradient vanishing 

problem and enable extremely deep neural network (He et al., 2015). From the perspective of 

gradient calculation, the skip connection brings additions to the gradient calculation. Thus, the 

gradient is composed of multiplications, preventing the vanish of the gradient. 

 

Figure 2-2. The structure of ResNet (He et al., 2015) 

 
Table 2-2 explains the neural network structure of ResNet50. This structure can be divided 

into five stages as listed in the first column, and each stage may contain multiple layers of the 

network. A point worth emphasizing is the bottleneck structure used in the ResNet50. A 1×1 

convolutional layer is applied before and after each 3×3 convolutional layer in the block. These 

1×1 convolutional layers are used to reduce the number of channels and therefore reduce the 

parameter that needs to be trained in the 3×3 convolution. Another 1×1 convention layer is 
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placed after the 3×3 convolution to restore the channel number, and the consequent output 

have the same dimension as the input does. By reducing the number of training parameters, 

this structure can significantly reduce the computation time and hardware requirements for 

training. When visualizing the network structure, the 1×1 convolutional layer is smaller than 

other features, extracting convolutional layers placed near it and giving the neural network a 

bottleneck shape. That is why this is called the bottleneck structure. 

 
Table 2-2. The Structure of ResNet50 

Layer name ResNet50 

conv1 7×7, 64, stride 2 

conv2_x 3×3 max pool, stride 2 

�
1 × 1, 64
3 × 3, 64
1 × 1, 256

� × 3 

conv3_x 
�
1 × 1, 128
3 × 3, 128
1 × 1, 512

� × 3 

conv4_x 
�
1 × 1, 256
3 × 3, 256
1 × 1, 1024

� × 3 

conv5_x 
�
1 × 1, 512
3 × 3, 512
1 × 1, 2048

� × 3 

Output layer Average pool, 1000-d fc, Softmax 

 
Transfer learning, as the name indicates, is the process of transferring knowledge from one 

task that has already been learned to another (Torrey and Shavlik, 2010). In the transfer 

learning, a base network is first trained on a base dataset and then repurposing, or transferring, 

the learned features to a second task. The features that are general enough to be suitable for 

both tasks rather than task-specific will tend to work in this method. When training the model 

for the second task, the pre-trained model can vastly reduce the calculation amount and time. 
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Transfer learning becomes quite necessary for a structure like ResNet50, which has 3.8×109 

parameters. 

In this thesis work, the dataset used for model pre-training is the ImageNet dataset 

(Russakovsky et al., 2015). The ImageNet dataset is a massive dataset for image classification. 

This dataset contains millions of images belonging to thousands of different categories. It was 

originally used for an image classification competition called ImageNet Challenge. After that, 

as the scale of the competition continued to expand, the sample of the database became more 

and more complete. The ImageNet has gradually become a common benchmark in the field of 

image classification. 

2.3 Nanofiber Porosity and Determination 

2.3.1 Existing approach for porosity determination 

The porosity of a nanofiber mat can be determined experimentally or by image processing. 

The technologies used in experimental studies includes mercury intrusion porosimetry, liquid 

extrusion porosimetry, and capillary flow porometry. Alternatively, the porosity can be 

determined by image processing. In most earlier studies, the characterization by micrographs 

is mainly used as a preliminary characterization technique, but there are still a few attempts to 

determine the porosity by image processing.  

The mercury intrusion porosimetry is a conventional technique for porosity determination. 

In this method, pressure is applied to a mercury column, and the mercury is pressurized into a 

sample. With the increasing pressure, mercury intrudes the pores in the sample. The total pore 

volume of the sample can be obtained from the volume of mercury that intruded into the 

sample. Note that both inter-fiber pores and intra-fiber pores are characterized during the 

measurement. An equivalent pore size can also be calculated by the Washburn equation, which 

relates the applied pressure to pore size using the physical properties of the non-wetting liquid. 

However, this technique is destructive because up to 60,000 psi can be applied to the sample. 

The high pressure applied also brings the possibility of the sample structure being distorted 

(Širc et al., 2012). 
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The liquid extrusion porosimetry is developed from the mercury intrusion porosimetry. The 

main difference between liquid extrusion porosimetry and mercury intrusion porosimetry is 

the type of liquid used for testing -- The non-wetting liquid mercury is changed into wetting 

liquid, and a much lower pressure is required for liquid extrusion porosimetry. Regardelss of 

the simial the measurement principles, there is a particular gap between the results obtained 

from the two techniques. The liquid extrusion porosimetry is likely to underestimate the 

sample’s pore volume and pore size because of a low pressure used, and it normally gives a 

result smaller than that by mercury intrusion porosimetry. 

The capillary flow porometry is a technique evolved from the liquid extrusion porosimetry, 

and their principles are similar. In this technique, the sample is first saturated with a liquid. 

Then, inert gas is used to displace liquid from the saturated sample. The air pressure at which 

liquid is pushed out and the gas can flow through is called the bubble point. With the obtained 

air pressure, the porosity and pore size of the nanofiber can be calculated using the Young-

Laplace equation (Barhoum et al., 2019). 

Regarding image processing, the nanofiber image used for analysis is a SEM image. A SEM 

image is a grayscale image, which only has different shades of black and white. In the SEM 

image, there are 256 gray scales, numerically represented by integrals from 0 to 255, with 0 

and 255 representing pure black and pure white, respectively. A fiber in the SEM image 

normally has a bright color, and the background has a much dark color.  

Many earlier studies on determining nanofiber porosity by image processing follow these 

steps: First, the SEM image is segmented into a binary image, which is purely black and white. 

Then, all black and white pixels are regarded as background and fiber, respectively. Finally, 

the number ratio of the black pixels to total pixels is calculated and considered as porosity. 

The difference between different studies is mainly in the first step, image segmentation, using 

various algorithms. The most reasonable method for image segmentation still to be determined. 

Ghasemi-Mobarakeh et al. (2007) calculated the porosity of a nanofiber mat from the 

corresponding SEM image. In their method, the global threshold is used for image 

segmentation. All pixels with grayscale smaller and larger than the threshold are considered 

background and fiber pixels, respectively. Three different values are used in their research as 
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global thresholds: the average grayscale, average grayscale plus standard deviation, and 

average grayscale minus standard deviation. They believe that segmenting the image using 

average grayscale plus standard deviation as a global threshold gives the porosity at the upper 

layer of the nanofiber. Using average as global threshold can obtain the middle layer’s porosity 

of nanofiber. Using average minus standard deviation as a global threshold can obtain the 

porosity of nanofiber in the lower layers. 

Wang et al. (2020) also used the global threshold method for image segmentation for 

porosity determination. The global threshold they chose for image segmentation is 85% 

average grayscale. By comparing the porosity result calculated from the image processing and 

mercury intrusion methods, they found that the values of these two results satisfy a particular 

relationship. The ratio of the two is the second Feigenbaum constant. 

Other researchers, such as Sun et al. (2007) and Wang et al. (2018), determine the threshold 

for image segmentation by human observation and subjective judgment. Sun et al. (2007) state 

that the brightness and condition of different SEM images vary, and no algorithm is robust 

enough to segment all images automatically. In addition, their porosity result obtained from 

image processing is larger than measurement.  

The deviation between experimental and image processing results prevails in the literature, 

regardless of the approach. For example, Tomba et al. (2010) used multivariate image analysis 

(MIA) to analyze the SEM images of nanofibers. They examined pore relative open area 

(ROA), defined as the ratio between the pore open area and the total area. Dierickx (1999) also 

reported that there should be a linear relationship between the ROA and the porosity. However, 

they did not mention whether this claim matched their results.  

Others used a similar procedure for image processing, and the results were regarded as fiber 

compactness (Ganjkhanlou et al., 2014). This calculation is reasonable to some extent. 

However, packing density is more commonly used to measure the compactness of nanofibers. 

There are generally two methods for packing density determination. Liang et al. (2019) used 

the polymer density and nanofiber mass to calculate the packing density, using Eq. (2-1. 

Another is a method called the impregnation method (IM) (Charvet et al., 2018).  
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𝛼𝛼 =
𝑊𝑊
𝜌𝜌𝑓𝑓𝑍𝑍

 (2-1) 

where α is the nanofiber packing density, W is the basis weight of the nanofiber mat, ρf is the 

density of nanomaterial, and Z is the nanofiber film thickness.  

The thickness of a nanofiber mat can be measured using the laser trigonometry method 

(LTM) (Charvet et al., 2018). The LTM determines the fiber thickness by measuring the 

displacement of the same laser between two different images (Ribeyre et al., 2017). 

Impregnation is another method to determine packing density. In this method, the nanofiber 

is first embedded in an epoxy matrix. Then, the SEM image of the nanofiber cross-section is 

taken. Finally, the SEM image is binarized, and the ratio of black and white pixels is plotted 

along with the fiber thickness. This profile extracts the thickness and the mean packing density 

(Bourrous et al., 2014). This thesis project adopts the same basic principles of the impregnation 

method (IM) for image processing. However, the IM combines experimentation with image 

processing. Compared to the total image processing method, the IM can obtain more rigorous 

results and the steps are more complicated.  

2.3.2 Limitations of the existing porosity determination by image processing 

Although using image processing for nanofiber porosity sounds plausible, this approach has 

some fundamental challenges. No matter how thin the nanofiber is, it is a three-dimensional 

(3D) structure. All attempts to analyze three-dimensional space with two-dimensional (2D) 

images have limitations and are based on the ideal assumptions that 2D porosity is equal to 3D 

porosity. 

Admittedly, an experimental approach is still the most accurate method for porosity 

determination. The experimentally measured porosity combines the void in both inter-fiber 

space and intra-fiber space, while the image processing approach overlooked the influence of 

intra-fiber pores. On the other hand, the image processing approach offers a fast and low-cost 

estimation, which can be used on solid and smooth nanofibers. 
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2.4 Nanofiber Surface Pore Size Determination 

2.4.1 Surface intra-fiber pores 

The pore sizes in nanofibers are crucial to some applications. For example, when nanofibers 

are used in the lithium-ion battery as the separator, numerous small pores in the fibers can 

enhance channels for lithium-ion, accelerating the mobility of lithium-ions. Therefore, 

nanofibers with small pores enhances the performance of a battery (Zhang et al., 2014). 

Another example is using the nanofiber for air filtration. The sizes of the nanofibers in an air 

filter affects the filtration effectiveness because the pore sizes influence the way particles travel 

through the fibers. Furthermore, nanosized pores can promote the slip effect when air flows 

through and reduce the air resistance. By optimizing the pore sizes, the pressure drop through 

an air filter can be vastly reduced (Zhao et al., 2016). 

The methods for characterization of pores in nanofiber can be generally divided into two 

categories, experimental and image processing methods. The experimental method for 

measuring nanofiber pore sizes is basically the same as measuring porosity. Techniques such 

as BET, mercury intrusion porosimetry, and liquid extrusion porosimetry can also be used for 

pore size determination. However, they can only provide theoretical pore sizes with 

simplifications besides time-consuming and tedious operations. Alternatively, image 

processing may offer a fast, and possibly accurate, estimation. 

Despite many limitations in experimental measurement of nanofiber diameter, they remain 

the most frequently used for their wide acceptance and validity. Nonetheless, the image 

processing method is more frequently used to determine the pore size in some fields such as 

mud cake deposition (Rabbani & Salehi, 2017). A mud cake is a layer of solid particles left 

behind after mud passes through porous rocks during drilling. A schematic for mud cake is 

shown in Figure 2-3. Similarly, it is called dust cake in air filtration using baghouses in power 

plants (Tan, 2014).  
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Figure 2-3. Schematic for mud cake  

 

Rabbani et al. (2017) determined the porosity of a mud cake by image processing. They 

first used the Otsu multi-level threshold on the image, followed by a series of noise reducing 

and contrast adjustments. Then the watershed algorithm is used to divide the overlapped pore 

boundaries on the image. After that, each pore is separated and labelled, the pore size is 

calculated as the radius of the equivalent circles with the same area, and the equivalent area of 

the pore is determined. Then, the porosity is calculated by dividing the total area of all the 

pores over the total area of the mud cake. The algorithm in this paper indicates that a 3D 

porosity can be estimated using the 2D planar porosity of the mud cake. Admittedly, this may 

introduce some errors, but it is the considered the best technology possible. Similar image 

processing approach was also used for analyzing the pore opening size on nonwoven 

geotextiles (Aydilek et al., 2002). 

2.4.2 Existing image processing approach 

Several image processing approaches have been reported in the literature for nanofiber pore 

size determination. Most of these approaches start with binarization to convert the grayscale 

images into black and white only. Then the pore sizes are determined by the pixels, which are 

converted into nanometers, and the resulting sizes are presented in terms of area-based 

Mud Cake 

Porous Rock 
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equivalent diameters. Area-based equivalent diameter is also a common practice in aerosol 

technologies (Tan, 2014).  

The final equivalent diameters of the pores depend on the method for binarization, which 

differentiates the existing image-processing approaches. The most sketchy and straightforward 

binarization method binarizes the image using a global threshold. Regarding software to 

process the images, ImageJ is widely used. For example, Yanilmaz et al. (2014) reported the 

pore sizes using ImageJ, which allows manual adjustment of the threshold for binarization. 

Therefore, the threshold is a subjective variable in this type of image-processing. Consequently, 

the results are subjective and deviations may be introduced in this step. 

Ziabari et al. (2008) proposed another image processing approach to pore sizes of 

electrospun nanofibers. They used the Otsu local threshold for image segmentation. The Otsu 

approach, with reasonable theoretical justification, reduces the interference of uneven 

brightness of the image. 

Tomba et al. (2010) proposed a more complicated approach for pore size determination. 

They added a series of de-nosing steps to pre-process the images and used a multivariate image 

analysis (MIA) system for image binarization. 

2.4.3 Limitation of the pore size determination 

Despite the values of image processing for the determination of nanofiber pore sizes, it also 

has some fundamental challenges. First, it is still a 2D approach. Regardless of thickness of a 

nanofiber mat, it is essentially a 3D structure. Thus, using 2D images to represent 3D structures 

inevitably introduces deviations and reduces the accuracy of the results. The reasons behind 

the inaccuracy are different when image-processing is used for inter-fiber and intra-fiber pores. 

For inter-fiber pores, the limitation mainly comes from the stacking of nanofibers. For intra-

fiber pores, the limitation mainly comes from the curve surface of nanofiber and the angle of 

the camera. 
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2.5 Surface Homogeneity 

2.5.1 Existing methods of determining surface homogeneity 

Surface homogeneity can be considered as thickness uniformity, which is an essential 

characteristics of nanofiber mats. The thickness uniformity can greatly influence the properties 

and performance of a nanofiber mat, depending on the application.  

The surface homogeneity can be measured by a micrometer screw gauge, visualized by 

cross-section imaging, and quantified with light transmittance. Many engineering applications 

prefer nanofibers with greater strength, which often means a greater thickness. If the nanofiber 

thickness reaches the order of millimeters, its thickness can be measured by a micrometer 

screw gauge. Measurements taken at different points on a nanofiber mat can be used to 

estimate the average thickness of the nanofiber mat as well as the surface homogeneity using. 

Using the micrometer screw gauge is a simple method, but it can only provide a rough 

estimation. In addition, the pressure applied on nanofiber during measurement may cause 

structural distortion and damage to nanofiber mat at the thinnest (or weakest) spots.  

Alternatively, the cross-section imaging can be used for nanofiber surface homogeneity 

determination. Both SEM and transmission electron microscope (TEM) can generate cross-

sectional images of nanofiber mats. The cross-sectional images can not only show the inner 

structures of nanofiber mats, but also enables the determination of the thickness along the 

cross-section. This approach offers much more comprehensive information than single-point 

measurement because the images visualize the variation of thickness along the cross-section. 

However, there is a possibility that the selected cross-section does not accurately reflect the 

nanofiber homogeneity, and biases due to sampling still exists. 

The light transmittance provides more information on the nanofiber surface homogeneity 

because it is applicable to the entire nanofiber mat. Examining the surface homogeneity 

through light transmittance is a common method in the paper industry. Chhabra (2003) 

proposed a similar method to measure the uniformity of nonwoven fibers. This method focuses 

on the spatial variation of nonwoven fiber uniformity by comparing the grayscale differences 

in the image. The parameter calculated for uniformity description is the variance-to-mean ratio 
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of the grayscale. Chhabra (2003) referred to this parameter as a standardized index of 

dispersion. In addition, the variance-to-mean ratio on the downward direction and sideward 

direction are calculated separately and compared to offer more information about the 

nonwoven fiber. 

However, very few attempts have been made to implement this technology for nanofiber 

mats. Nonetheless, Ryu et al. (2020) developed a real-time nanofiber thickness measuring 

system using light transmittance for uniform-thickness electrospun nanofiber mats. They 

added bar LEDs, a light diffuser panel, and a CCD camera to a conventional electrospinning 

device for real time thickness measurement. The light emitted from the LED lamp successively 

passes through the light diffuser panel and electrospun nanofiber. The CCD camera placed 

behind the electrospun nanofiber captures the light transmitted. The light intensity of pixels in 

the CCD camera image is measured and converted to thickness following the Beer-Lambert 

law, Eq. (2-2. 

𝑇𝑇 = 𝑒𝑒−𝑎𝑎𝑏𝑏 (2-2) 

where T is the light transmittance, a is the extinction coefficient, and t is the thickness of the 

nanofiber mat. Practically speaking, the calculated nanofiber thickness homogeneity can be 

used to guide the collector position to ensure uniform nanofiber mats are produced.  

The advantage of this design is that its real-time measurement of fiber thickness during 

electrospinning and that the measurement is non-invasive. However, this approach requires 

expensive equipment, precise assembly, and professional operation. It also assumes that each 

measurement of the nanofiber surface homogeneous is accurate, which may not be the case in 

reality (Ryu et al., 2020). 

Alternatively, some researchers quantify the uniformity as web mass variation (Bresee & 

Daniluk, 1997) and the web mass variation is regarded to correlate with grayscale variation. 

The coefficient of variation is used as a measure of web uniformity. 
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CHAPTER 3. DETERMINATION OF NANOFIBER SIZES USING 
MACHINE LEARNING AND MATLAB 

3.1 Multi-Image diameter determination tool 

This thesis reports an automated multi-image processing tool developed for the 

characterization of nanofibers by processing scanning electron microscopy (SEM) images. 

The basic procedure is inspired by the works of Shin et al. (2008), Givehchi (2016), Givehchi 

et al., 2016), etc. This thesis work contributes to the field by two improvements, one is the 

ability to simultaneously process multiple images, and another is the optimized denoising 

procedure. This tool was developed using MATLAB, and the code is in Appendix A. 

The first improvement is to increase the number of images that can be processed at the same 

time. This feature allows end users to simultaneously process multiple SEM images with 

different magnifications and to combine the results for accurate presentation. Our research 

group has realized that the accuracy of calculated nanofiber diameters depends on the 

magnification of the SEM image used for image processing. Normally, the SEM image with a 

higher magnification gives a smaller mean diameter with a smaller standard deviation, and 

vice versa (Raheleh, 2016). Thus, more statistically reliable data can be obtained by combining 

the results from the images with different magnifications. After all, combining the results of 

different images still offers a larger sample area and more sampling points, leading to a more 

accurate result, even if the SEM images of the sample are obtained under the same 

magnification. 

The second improvement is to optimize the denoising step. The earlier works only use linear 

filtering, that is, the median filter on the original SEM image for denoising. Compared to linear 

filtering, adaptive filtering is more selective and can preserve edges and high-frequency parts 

better (Chen et al. 2006). A Wiener filter is applied adaptively to the image to achieve a better 

result. 
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An example of SEM original image is shown in Figure 3-1. In my approach, the image 

processing follows this procedure shown in Figure 3-2. It consists of the following ten steps, 

which are explained one by one after Figure 3-2.  

1. Read scale and crop 

2. Linear filtering and adaptive filtering for denoising 

3. Histogram equalization 

4. Opening and closing 

5. Binarization 

6. Main de-nosing 

7. Edge detection 

8. Dilation and thinning 

9. Skeletonization 

10. Distance transformation 

 

 

Figure 3-1. An original SEM image 
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(a) Read scale and crop (b) Median filter (c) Histogram equalization 

(d) Opening and closing  
 

(e) Binarization (f) Main de-nosing 

(g) Edge detection (h) Dilation and thinning (i) Skeletonization 

Figure 3-2. The image processing procedure for diameter determination 

 

1) Read scale and crop 

The bottom par to the original SEM image (e.g. Figure 3-1) contains the date, user, 

institution, setting, scale, and so on. After importing the original image, MATLAB 

automatically creates a coordinate system with the upper left corner of the image as the origin. 

The scale is located near coordinate in the image. First, the scale part of the image is cropped 

into a small sub-image with 90 pixels wide and 30 pixels high. After that, a label matrix that 

contains labels for the 4-connected objects in the sub-image is returned. Since the sub-image 

is a binary image with only one object, the scale can be distinguished from the background. 

Then, the coordinates of the pixels that make up the scale are obtained. The difference between 
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max X coordinate and min X coordinate is calculated, and the result is the number of pixels 

the scale occupies in the image. By doing so, the pixel grid length of the scale is read. The 

length represented by the scale bar in reality will be manually entered in nanometers. Finally, 

the image is cropped into an image with dimension 1024×680 pixels to remove the title bar 

from the original image.  

Figure 3-2a is acquired after all these steps. 

2) Linear filtering and adaptive filtering for denoising 

Linear filtering and adaptive filtering are performed for initial noise reduction. The linear 

filtering performed is a median filter, and the adaptive filtering performed is a Wiener filter. 

The main idea of a median filter is to replace a pixel with the median value of its adjacent 

pixels. The Wiener filter minimizes the mean square error among the pixel intensities.  

Figure 3-2b is obtained after this step. 

3) Histogram equalization 

Histogram equalization is performed to increase the contrast in the images. A histogram is 

the graphical representation of the grayscale intensity distribution of pixels in grayscale 

images. By performing histogram equalization, the intensity peak is spread out, and objects in 

the image become more prominent.  

Figure 3-2c is acquired after this step. 

4) Opening and closing 

Opening and closing are performed for further noise reduction. Opening and closing are 

basic operations used for denoising and smoothing contours. An opening contains an erosion 

operation followed by a dilation operation, while the closing is the process in which dilation 

operation happens first and erosion happens afterwards.  

Figure 3-2d is obtained after the opening and closing. 

5) Binarization 

Binarization is performed to segment the fiber from the background. Image binarization is 

the process of converting a grayscale image into a binary image. This process greatly reduces 

the information contained in the image from 256 shades of gray to 2 shades, black and white. 

The result depends on the binarization algorithm. 
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In this thesis work, preliminary trials were conducted to test some common binarization 

algorithms for binarization. The results show that the diameter results actually is insensitive to 

binarization algorithm. Thus, commonly used binarization methods such as the Otsu method 

can be used in this step. In this thesis study, the Sauvola local threshold method is used for 

consistency because our research group has been using this approach (e.g., Givehchi, 2016; 

Givehchi et al., 2016). The Sauvola local threshold allows retrieval of information from a 4 by 

4 pixel grid, which is used to determine a localized value for the binarization. 

The sample binarization result is shown in Figure 3-2e. 

6) Main de-nosing 

With the binary image, a series of operations are performed for future denoising. In 

addition to the opening and closing that have already been performed, the 'majority' and 'clean' 

operations built in MATLAB are also performed. After the 'majority' and 'clean' operations, 

all graphics on the image with an area less than 3×3 pixels are eliminated.  

Then the image color is inverted to get Figure 3-2f. 

7) Edge detection 

The Canny edge detection is used to detect the fiber boundaries. The Canny edge detector 

was developed by John F. Canny in 1986 and it detects edges in images using a multi-stage 

algorithm (Sahir, 2019). The Canny edge detection uses the intensity gradients of pixels to 

determine the boundaries of objects. In simple terms, it regards the vertical direction of the 

direction in which the pixel intensity gradient changed the most as the edge.  

Figure 3-2g is obtained after this step. 

8) Dilation and thinning 

The Dilation operation is used to seal the small openings on the detected edges 

(MathWorks, 2022a). The Dilation operation give an output in which the output pixel is the 

maximum value of all pixels in the neighborhood. Then, the thinning operation is performed 

to reduce the thickness of the boundary. This step helps fix the edge profile and avoids 

inaccurate thickening.  

Figure 3-2h is obtained after this step. 

9) Skeletonization 

In the image processing field, the skeleton of an object can be considered as a one-pixel 
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thin version of the original shape, which is equidistant to the original boundaries (Aslan et al., 

2008). After the skeletonization, the resulting skeletons of nanofibers are located right in the 

middle of the fiber with the equal distance to both boundaries. Therefore, the skeleton of the 

fiber can be considered as the centerline of the fiber. With the identified centerlines, the 

pruning operation is then performed to delete sporadic branches at the ends of the skeletons.  

Figure 3-2i is obtained after this step. 

10) Distance transformation 

Three commonly used distance measurement algorithms for image processing are the city 

block distance transformation, the chessboard distance transformation, and the Euclidean 

distance transformation (MathWorks, 2022b). They are briefly introduced as follows.  

The city block distance transformation calculates the length of the path between the pixels 

according to the four-connected neighborhood. The path only moves horizontally and 

vertically, and one pixel is the smallest unit of distance. Pixels whose edges touch are one unit 

apart; pixels diagonally touching are two units apart. Equation (3-1) can be used to calculate 

the city block distance (MathWorks, 2022c). 

𝐷𝐷𝐶𝐶𝐶𝐶 = (|𝑥𝑥1 − 𝑥𝑥2| + |𝑦𝑦1 − 𝑦𝑦2|) (3-1) 

where DCB is the distance between two pixels calculated by the city block algorithm; (x1, y1) 

defines the location of pixel 1 and (x2, y2) defines the location of pixel 2. 

The chessboard distance transformation calculates the distance between the pixels based on 

the eight-connected neighborhood, which means that the path can move horizontally, vertically, 

and diagonally. One pixel is the smallest unit of distance. The pixels that edge or corner touch 

are one unit apart. Equation (3-2) can be used calculate the chessboard distance (MathWorks, 

2022c). 

𝐷𝐷𝐶𝐶ℎ = 𝑀𝑀𝑀𝑀𝑥𝑥(|𝑥𝑥1 − 𝑥𝑥2|, |𝑦𝑦1 − 𝑦𝑦2|) (3-2) 

where 𝐷𝐷𝐶𝐶ℎ is the distance between two pixels calculated by the chessboard algorithm. 

The Euclidean distance transformation calculates the length of the straight line between two 

pixels, which means the path can go across the pixels, and the smallest length unit can be 

smaller than one pixel. Equation (3-3) is for calculating the Euclidean distance. 
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𝐷𝐷𝐸𝐸𝐸𝐸 = �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2 (3-3) 

where 𝐷𝐷𝐸𝐸𝐸𝐸 is the distance between two pixels calculated by the Euclidean algorithm.  

 

Among all the preceding methods, the Euclidean distance transformation is the most 

accurate one (Wang, 2002), and therefore it is chosen for this thesis research project.  

 

3.2 Diameter determination using machine learning for image segmentation 

3.2.1 UNet model 

The UNet model is used for the segmentation of the SEM images, followed by central line 

determination and distance transformation for diameter determination. The UNet model has 

received great attention since it was first reported by Ronneberger et al. (2015). The related 

literature has been cited tens of thousands of times to date. This model was initially designed 

for image segmentation in the biomedical field, but follow-up studies have extended its 

applicability.  

The network architecture of UNet is illustrated in Figure 3-3 (source: Ronneberger et al., 

2015) The most notable feature of this network is its U-shape structure. The left side of the U 

shape is a contracting path consisting of a series of convolutional layers. The right side is an 

expansive path consisting of a series of up-convolutional layers. There are also four 

concatenations between the contacting path and the expansive path. 



 

35 

 

 

Figure 3-3. The structure of U-net. 

 

The contracting path is composed of a series of typical convolutional networks. This path 

contains four convolutional steps. Each step contains two convolution layers and a max 

pooling layer. In each step, a 3x3 convolutions kernel is first applied twice, each followed by 

a rectified linear activation function (ReLU). This convolutional operation is unpadded and 

results in the loss of boundary pixels. After two convolutional layers, a 2x2 max pooling 

operation with stride two is applied to the feature map. The number of feature channels is 

doubled after each down sampling step. 

As for the expansive path, each up-sampling step of the feature map is followed by a 2x2 

up-convolution layer that halves the number of feature channels. ReLU is used as activation 

function. A SoftMax layer is placed after all neural network layers. 

In the original UNet model reported by Ronneberger et al. (2015), border pixels may be lost 

during each convolution. Therefore, it is necessary to crop the image into the desired size 
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before the concatenation operation. There are 23 layers in this network. The loss function used 

is the cross-entropy function. Apart from the network structure, overlap-tile strategy (Tsang, 

2018) is also used in this model for a better performance. When predict a pixel in the image, 

the surrounding pixels are also considered to provide environmental information for enhanced 

accuracy. For this reason, padding is done by preprocessing to expand the original image size. 

In this thesis project, the implementation of the UNet model is not exactly the same as 

originally reported by Ronneberger et al. (2015). Unlike medical image segmentation, the 

images segmented in this project are post-processed to determine the diameter of the nanofiber. 

The result of diameter is highly related to the number of pixels in the image. A smaller overall 

size of the image results in a smaller diameter too, deviating from the fact. 

To minimize the deviation mentioned in the preceding paragraph, padding is added to each 

convolutional step in this thesis work. Therefore, the pixels lost during the convolution will be 

complemented by zeros, and the size of the image remain unchanged during the convolution 

operation. The size of the output image then equals that the input image. Batch normalization 

(Ioffe & Szegedy, 2015) is added between the convolution operation and the ReLU activation 

function (Agarap, 2019). 

I implement the UNet code on the SEM images of nanofibers collected in our research 

group to segment the nanofibers from the background. I changed the padding method of the 

original model, but I did not make any major change to the original neural network structure. 

See also Section 5.2.1 for recommended future works.  

3.2.2 Procedure for implementation of UNet model 

The implementation of machine learning comprises of three steps: build the database, run the 

model, and tune the hyperparameter. They are introduced one by one as follows.  

1) Dataset build-up 

The nanofiber samples were prepared in our research lab by other graduate students 

studying electrospun nanofibers for energy and clean air applications. Data presented in this 

thesis project include those from the same research group (e.g., Ahne et al., 2018; Li et al., 
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2019, 2020, 2021; Givehchi et al., 2016, 2018, 2021). All electrospun nanofiber samples are 

polymer-based, including PAN and PVP.  

The SEM images are prepared as follows. After removing the title bar (i.e., the word 

description under the main image), the size of SEM images becomes 600×1000 or so. The 

original SEM images come in different sizes because they were taken at different times using 

different equipment, but all images are cropped into 512×512 pixels. During cropping, the best 

effort has been made to ensure as many non-repeating positions as the image size allows. I 

wrote a Python script to quickly batch process images (see Appendix B for the Python code).  

 Segmentation masks are generated from MATLAB using the same binarization and edge 

detection algorithm in the diameter determination part (see Section 3.1), specifically the 

Sauvola local threshold and the Canny edge detection method. In addition, the resultant 

segmentation mask is manually corrected using Photoshop to ensure that the results obtained 

by machine learning exceed those by MATLAB. The procedure is depicted in Figure 3-4. 

Figure 3-4 (a) is an example of SEM image after cropping, and Figure 3-4 (b) is the 

segmentation mask generated using a MATLAB script that I wrote. Figure 3-4 (c) is a 

composite image made in Photoshop. The opacity of the MATLAB segmentation mask is 

adjusted to 50% and overlapped with the original SEM image to show the deviation between 

them and the imperfection of this segmentation result. Figure 3-4 (d) is the manually corrected 

segmentation mask with the changes highlighted. 
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(a) The SEM image 

 

(b) The MATLAB segmentation mask 

 

(c) Comparison of the SEM image and the 

segmentation mask 

 

(d) The manually corrected segmentation 

mask with correction highlighted 

Figure 3-4. Procedure for mask correction using Photoshop 
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During the segmentation mask generation, mask generated by MATLAB may have a minor 

displacement compared to the original image. Again, the mask was generated by combining 

the Sauvola local threshold method and The Canny edge detection. During the Sauvola local 

thresholding, the image information was retrieved from the upper left corner of the image by 

4×4 pixel grids. The pixels at the very upper left edge do not have enough neighbors for the 

algorithm to calculate the threshold value, and they are ignored during the thresholding 

process, resulting in a shift of 4 pixels in both left and upward direction within the 

segmentation mask. There is an additional step in the image processing to line up the image 

and the segmentation mask for further training. 

As illustrated in Figure 3-5, the segmentation mask was 4 pixels downward and 4 pixels 

right compared to the original image. Thus, a Python script (see Appendix C) is used to quickly 

batch process the images by cropping the displacement boundary quickly. 

 

 

(a) The SEM image 

 

(b) The MATLAB segmentation result 
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(c) Highlight of the segmentation mask 

displacement 

 

(d) The segmentation mask with 

displacement corrected 

Figure 3-5. Displacement of MATLAB generated mask 

 

2) Implementation of UNet model 

Appendix C shows the code for the UNet model. The code for the implementation of UNet 

is from https://github.com/zhixuhao/unet. In the first few attempts to implement the UNet 

model, I noticed that the model failed to generate a meaningful result. Regardless of the 

hyperparameter, the model did not output reasonable masks but fully black images.  

To solve the problem, I made a series of efforts for trouble-shooting. The first step of 

troubleshooting was to identify problem -- the neural network code, the hyperparameter setting, 

or the dataset. To do so, I ran the UNet model using the code for a biomedical image dataset 

provided by Ronneberger et al. (2015) for training. When using that biomedical dataset, 

nontrivial segmentation results could be generated. However, with the same code and same 

setting of hyperparameter, the UNet model still output fully black images. Therefore, the 

problem was identified as in my dataset.  
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Then, I attempted to increase the size of my dataset. My original dataset contained only 50 

images, and I increased the number to 100. However, this increment did not improve the result. 

Considering the dataset used by Ronneberger et al. (2015) has only 41 images, I do not believe 

that the amount of data is the problem. 

Opting out the possibility of failure caused by the amount of data, I think the failure may 

be caused by the low variance of my images. The segmentation masks used for model training 

are basically black images with a very thin white line. Even if the picture gives a pure black 

image as the result, the accuracy can be as high as 90%. Therefore, I wrote a Python script (see 

Appendix F) to thicken the fiber in the image. Segmentation mask images with fibers from 

one pixel to five pixels wide were generated and used for the model training.  

The images with thick fiber boundaries are shown in Figure 3-6. Figure 3-6 (a) (b) and (c) 

are images of fiber with 1-pixel wide, 3-pixel wide, and 5-pixel wide, respectively. However 

I still could not get a non-trivial result, even if the edge of the fiber increased to five pixels 

thick. 

 

(a) Image with 1-pixel fiber  

 

(b) Image with 3-pixel fiber  

 

(c) Image with 5-pixel fiber 

Figure 3-6． The segmentation mask image with different fiber thickness 

Another attempt I made was to invert the image color (see Figure 3-7), changing the image 

from pure black to pure white. However, the output were still pure black images. With this, it 

is safe to conclude that the layout of the image is not the problem.  
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(a) Inverted color image with 1-pixel fiber 

 

(b) Inverted color image with 3-pixel fiber 

Figure 3-7. The segmentation mask image with inverted color 

 

After excluding all the preceding possible sources of problem, I believe that the problem 

lies in the format and properties of the images used as training dataset. The original images 

obtained from the experimental equipment are in tag image file format (.tif format). Then, 

converted them into PNG format with 8-bits bit depth using Photoshop. A bit depth of eight 

bits allows 256 different intensities (shades of gray) to be recorded. After this attempt, I finally 

got non-trivial results from the model. 

3) Optimization of the hyperparameter 

The learning rate, batch size, and epoch were tuned and optimized by trial and error. The 

loss function used for training is binary cross-entropy. The range of learning rate is from 1E-

3 to 1E-5 as a best practice in the field. The range of batch size varies from 2 to 10. The epoch 

varies from 5 to 50 epochs. The effects of the hyperparameter are shown in Figure 3-8.  

Figure 3-8 shows the effects of epoch on the accuracy and loss of the testing set. The 

greater the epoch number, the less the loss of the model, which indicates a smaller variance 

between the calculated and generated mask. However, the accuracy did not increase further, 

rather it decreased when the epoch number reached 25. This result shows that 25 epochs are 
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already sufficient for the model training. Otherwise, problems such as overfitting may occur 

when the epoch number increases further. 

 

 

Figure 3-8. The accuracy and loss under different epochs 

 

4) Diameter determination 

The algorithm for diameter determination is the same as that explained in Section 3.1, using 

the skeletonization of image. The Python library used are skimage and quanfima for the image 

processing. Details are available in Appendix D. 

Figure 3-9 shows the generated boundary result of the nanofiber SEM images. The 

overlapping picture (Figure 3-9c) shows a promising result for the fiber segmentation. When 

used for diameter determination, precision and integrity are two most essential criteria for 
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image segmentation. Precision means the generated image boundary should be located 

precisely at the place where the fiber boundary appears. The dislocation of fiber boundary will 

lead to deviation in diameter. Integrity means that both sides of the fiber need to appear in the 

image segmentation mask. The fibers in the background, which do not appear on the 

segmentation mask, do not introduce deviation to the diameter result. Therefore, the 

segmentation result does not need to outline every single fiber on the image. However, the 

algorithm for diameter calculation may misrecognize fiber with only one side boundary and 

bring deviation into the result. Therefore, the segmentation is regarded as satisfactory only 

when both criteria are satisfied. 

   

a) b) c) 

Figure 3-9. a) original SEM image; b) The generated boundary of nanofiber; c) a and b 

overlap for comparison 

 

One misjudgment problem is noticed during the diameter determination as illustrated in 

Figure 3-10. As seen from the skeleton of the image in Figure 3-10a, the centerlines are drawn 

between not only the fibers, but also some gaps, and the misjudged fibers are highlighted in 

Figure 3-10b. This means that some gaps between fibers are also recognized as the nanofiber 

boundary, and the distance between gaps is calculated as the fiber diameter. The algorithm 

itself causes this error and it is considered challenging for the program to distinguish between 

the gap and the fiber. However, this is not a big concern because the gap usually leads to a 
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ridiculous large number, which is hundreds of times larger than the average fiber diameter. 

This obvious outlier can be easily identified and excluded. 

 

(a) Skeletonization result of the image 

 

(b) Skeletonization with misjudgment 

highlighted in yellow 

Figure 3-10. Skeletonization result of the image 

 

3.3 Diameter Determination Using Residual Neural Network 

3.3.1 Dataset of real SEM data 

Using machine learning to solve practical problems normally requires sufficiently large 

volume of historical data, which is also a key challenge. This challenge was also encountered 

when I was constructing the SEM image dataset for this thesis work. SEM is often a shared 

costly equipment in a university environment, and it an appointment is needed to use the 

instrument. In addition, it is time-consuming and requires professional skills to operate.  

The proportion of usable images is also very small among the collected data. Example of 

unqualified images are shown in Figure 3-11. There are many reasons why pictures are 

unusable. For example, the fiber mat is either too thick or too thin, the camera is not always in 

focus, and the image may be too bright or too dark. In addition, not all projects aim to produce 

smooth fibers with good surface homogeneity. Some researchers (e.g., Zhang et al. 2021) need 
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porous fibers or fibers with rough surfaces for specific purposes. However, only pictures of 

smooth, solid, and surface homogeneity nanofibers are selected for the dataset to be built.  

 

(a) Too bright image 

 

(b) Too dark image 

 

(c) Out of focus image 

 

(d) Image with uneven fibers 

Figure 3-11. Examples of unqualified SEM images 

 

The preceding factors limit the size of our SEM image dataset, although many have been 

collected over the last ten years.  After careful selection, 172 images useable images are chosen 

to build the SEM image dataset for this thesis work.  

All selected images are cut into squares with a size of 341x341 pixels. These images were 

created by different group members over many years, and the settings of the equipment are 
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also different. Figure 3-12 shows two SEM images taken in 2014 and 2020. Therefore, the size 

of the SEM original data is also slightly different.  

(a) The SEM image taken in 2014 (b) The SEM image taken in 2020 

Figure 3-12. Two SEM images take at different year with different size 

 

Although the sizes of these images vary, six square images with a size of 341x341 pixels 

can be cropped out of each of the original SEM image, which is referred to as sub-images. As 

a result, 1032 sub-images were cropped out of the 172 original SEM images. However, not all 

the sub-images can be used for dataset buildup. Some sub-images, for example, contain very 

few fibers or no fibers at all. Examples of unqualified sub-images are shown in Figure 3-13. 

These types of sub-images do not have enough information for diameter determination, and 

they are excluded from the dataset.  
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(a) Sub-image with no fibers 
 

(b) Blurry sub-image 

 

(c) Sub-image partial fibers 

 

(d) Sub-image with two fibers only 

Figure 3-13. Examples of unqualified sub-images 

 

 After the screening the 1032 sub-images, 912 of them are considered valid or the dataset. 

Figure 3-14 illustrates an example a qualified sub-image. This sub-image has enough fibers in 

the image, and the image is clear; most of the fibers in the image have both sides of the border 

in the field of view simultaneously. These features ensure sufficient information for diameter 

determination. 
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Figure 3-14. An example of qualified sub-image for ResNet training dataset 

 

When using machine learning for classification tasks like this, each image is assigned to 

one class, and the class number is called a label in machine learning. The label is regarded as 

ground truth and used to judge whether the result is good enough. In this thesis project, the 

labels of images are the mode of nanofiber diameter in terms of pixels. The diameter result 

label is created using an autonomous MATLAB script for fiber diameter determination using 

the same algorithm as the one described in Section 3.1; the MATLAB code is in Appendix A. 

The resultant diameter distribution from a SEM sub-image normally follows the normal 

distribution. For this dataset buildup, the mode number of the diameter distribution is chosen 

to be the label used in the result. This procedure is to simplify the label from a distribution 

function to an integer, reducing the difficulty of implement the Resnet model. 

After getting the label of the image, which is an integer, the diameter results are also 

validated by manually measuring the fiber diameter in ImageJ. Figure 3-15 shows the sample 

image used for the validation. The result generated by the MATLAB script is 17 pixels. After 

manually measuring the same sub-image in ImageJ, it is found out that this picture does have 

multiple fibers with a diameter equivalent to 17 pixels. Therefore, the method is deemed 

plausible. The locations where the fiber has 17-pixel diameters are marked using the think 

white lines in Figure 3-15. 
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Figure 3-15. The input image with manual measured location highlighted in the picture 

 

Nanofiber diameters in the dataset range from 1 to 76 pixels. Correspondingly, all images 

are separated into a total of 76 classes. As the best practice, 80% of the images are divided into 

the training set, 10% of the images belong to the testing set, and the rest (10%) of the images 

belong to the validation set. The image has been scrambled multiple times during the dataset 

buildup and has never been deliberately arranged or distinct by categories. The division of the 

training set and testing set is done by a Python script (see Appendix E) automatically. 

Therefore, the distribution of image categories in the training set and testing set is deemed 

random. 

3.3.2 Build dataset of synthetic image data 

Synthetic images are the images generated by a computer using certain algorithm. As 

explained in Section 3.3.1, the number of valid SEM images are limited, which his much less 

than the amount required for training ResNet -- According to previous studies (Shahinfar et 

al., 2020) report that the data for ResNet training is usually on the order of thousands to tens 

of thousands. When real SEM data are limited, a synthetic dataset can be built up for the model 

training. Therefore, synthetic data were generated for this thesis project using a Python script 
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(see Appendix E) running on the Jupyter notebook platform because my dataset of real SEM 

images is less than 1000.  

After examining the morphology of the real SEM images, I divided my synthetic images 

into two categories, random and aligned fibers, to best mimic the layout of real SEM images. 

In the random-fiber images, all lines are in random orientation. The sizes of all generated 

images are 341x341 pixels square. The compositions of the images are basically gray lines on 

a black background. The grayscale of each line is an independent random number between 

150 and 250. The location and orientation of each line are random. The width of the line is 

also random, between 1 and 20 pixels. 

Figure 3-16a shows an example of random fiber image. This synthetic image is designed 

to mimic the real SEM data like the one shown in Figure 3-16b. Despite inevitable differences 

between these two images, my best effort is made to make them have features in common such 

as dark background and bright fiber lines. 

  

(a) (b) 

Figure 3-16. (a) An example of random synthetic image; (b) An example of real SEM image 

with randomly oriented nanofiber 
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For the synthetic dataset, the label was generated following the same criteria described in 

Section 3.4.3.1 below, using the mode of nanofiber diameter as the image label. The mode of 

nanofiber diameter is expressed in terms of pixels, which is an integer. Unlike real SEM data, 

the synthetic image data are designed and generated by my will and the label is known before 

the images are generated. Since the label is the mode of fiber diameter distribution, the 

synthetic images were designed to have one most frequently occurring line width for each 

image. Considering the size of the picture, 341×341 pixels, the number of lines is set to 16 for 

a reasonable layout. This number is obtained after many trials and error. With the number of 

16, the number of lines is just sufficient to cause the lines heavily overlapping each other but 

provide enough information. 

In this dataset, every image contains 16 lines in total, 11 of them have the same width, and 

the rest 5 have different random widths. The number of pixels of the mode of the line width is 

the label of the image. An example of generated image is shown in Figure 3-17, where all 16 

lines are marked. This image belongs to the class whose label is 4, whereas the mode of line 

width in this image is 4 pixels. In the image, lines 1 to 11 have the same width, 4 pixels, and 

lines 12 to 16 have other different widths. 

 

Figure 3-17. An example of Class 4 synthetic image data 
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In a synthetic aligned-fiber image, all lines are aligned in two orientations at an angle of 90 

degrees. These images are designed to mimic aligned nanofibers. Figure 3-18 compares the 

synthetic aligned-fiber and real SEM images. The synthetic images are also square images, 

each with 341x341 pixels. The compositions of the images are also gray lines on a black 

background. The grayscale of each line is an independent random number between 150 and 

250. (Note: 0 for black and 255 for white) The orientation and distance between each line are 

randomized, which means each fiber forms an angle with the edge of the image. In addition, 

the distances between fibers are randomized too. However, the thickness of all lines in the 

same synthetic image is the same. The thickness of fibers varies from 1 to 20 pixels for all this 

type of images used in this thesis work. 

 

  
(a) (b) 

Figure 3-18. (a) an example of category two synthetic image data; (b) an example of real 

SEM image data of aligned nanofiber 

These synthetic images with aligned lines are generated following these steps: 

1. Various lines perpendicular and parallel to the bottom are generated on an image 

with a slightly larger size of 380x380 pixels.  

2. This image with is rotated at a random angle between -5 to 5 degrees to ensure that 

the fiber do not always align to the edge of image. 
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3. It is cropped into a size of 341x341 pixels to match other images. 

The preceding two categories of images, the images with randomly oriented and the aligned 

fibers, have the same image sizes, colors of fiber lines, and the ranges of fiber widths. There 

are 20 classes in each category of images, corresponding to the line diameters of 1 to 20 pixels, 

which are written as 0 to 19 in the code. There are 50 images in each class, resulting in 10,000 

images for both categories. A total of 20,000 images were generated for this data set, where 

16,000 images belong to the training set, 2,000 images belong to the testing set, and 2,000 

images belong to the validation set. In the training, testing, and validation sets, each class in 

each category has the same number of images. 

3.3.3 ResNet model and structure highlight 

The ResNet structure is constructed under the TensorFlow 2  framework using the Keras 

library3. TensorFlow is an end-to-end open-source platform for machine learning. Transfer 

learning is implemented in this thesis project. The structure of ResNet and the implementation 

of the transfer learning for the two datasets mentioned in Sections 3.3.1 and 3.3.2, which are 

basically the same.  

The ResNet model is pre-trained using the ImageNet dataset. The convolutional weights of 

the ResNet50 pre-trained model act as a feature extractor in the model. These convolution 

weights of the pre-trained model are frozen, which means they are not updated during the 

training. The last fully connected layer of the pre-trained ResNet50 model is replaced by 

customized predicting layers.  

After pre-training the ResNet50 structure, the ResNet50 was implemented. The 

implementation and the top structure of this model is inspired by the example in Pattanayak’s 

book 'Intelligent Projects Using Python, Chapter 2 Transfer Learning' (Pattanayak, 2019). I 

added a global average pooling layer and a drop-out layer to the structure, followed by a fully 

connected layer. The average pooling layer and drop-out layer are used to reduce the amount 

of calculation and improve computing performance. For the drop-out layer, the drop out ratio 

 
2 https://www.tensorflow.org/, accessed March 25, 2022 
3 https://keras.io/, accessed March 25, 2022 

https://www.tensorflow.org/
https://keras.io/
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is set at 0.5, which is a commonly used default value. The fully connected layer is used to 

modify the dimension of the output, converting the calculation result from a matrix to an 

integer.  

3.3.4 Hyperparameter and computer setup  

The computer is setup as follows. The computer is a personal laptop with a CPU of AMD 

Ryzen 9 5980HS with Radeon Graphics and a GPU of NIVIDIA GeForce RTX 3080. The 

calculation times are automatically recorded by the computer. 

Table 3-1 summarizes the hyperparameter setup for the model trained with synthetic dataset. 

The max number of training epoch is 50. The training is set with an early stopping guide: 

patience equals 3, which means that the calculation will stop if the accuracy does not improve 

in 3 epochs, regardless of epochs. 

The loss function used is the categorical cross-entropy. Cross entropy means the difference 

between actual and predicted probability distributions for each class. This loss function is 

specifically designed for multi-class classification tasks, is regarded as the default loss function 

for this type of problems, and assumes that only one class is correct among all classes. The 

loss function is calculated using Eq. (3-4 (Zhang and Sabuncu, 2018). In practice, the 

categorical cross-entropy, as a commonly used function, is stored in the Keras library and can 

be called directly. 

𝑳𝑳 = −�(𝒚𝒚𝒊𝒊𝐥𝐥𝐥𝐥𝐥𝐥𝒚𝒚𝒊𝒊� )
𝒏𝒏

𝒊𝒊=𝟏𝟏

 
(3-4) 

where L is the loss function, 𝑦𝑦𝑖𝑖 is the i-th scalar value of the model output, 𝑦𝑦𝚤𝚤�  is the target 

value and n is the number of scalar values in the model output. 

 

Table 3-1. The hyperparameter setup for the model trained with synthetic dataset  

Hyperparameter Specification Remarks 
Learning Rate 0.001 

 

Epochs Max epoch = 64 Early stopping: Patience = 3 
Batch Size 128 
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Loss Function Categorical cross entropy 
 

Metrics 'accuracy' 
 

Output Layer Activation 
Function 

SoftMax function Number of classes = 20 

Normalization Input and labels normalized 
between 0 to 1 

From range of (0,255) to (0,1) 

Trian-Test-Split Train=80%, Train=10%, 
Val= 10% 

Train = 16000, Test = 2000, 
Val = 2000 

 

Table 3-2 summarizes the hyperparameter setup for the model trained with real SEM image 

dataset trained. The main setup is almost the same as the model trained with hyperparameter 

of synthetic dataset, expect for the number of classes, number of images and batch size. These 

three differences are all due to the features of real SEM images. For real SEM images, the 

larger number of classes is due to the wider range of nanofiber diameters in images. The 

number of real images is smaller than synthetic images, and therefore the batch size is also 

reduced to make sure the parameters in model get enough updates. 

 

Table 3-2. The hyperparameter setup for the model trained with real SEM image dataset  

Hyperparameter Specification Remarks 
Learning rate 0.001 

 

Epoch Max epoch = 64 Early stopping: Patience = 3 
Batch size 16 

 

Loss function Categorical cross entropy 
 

Metrics 'accuracy' 
 

Output layer 
activation function 

SoftMax function Number of classes = 76 

Normalization Input and labels normalized 
between 0 to 1 

From range of (0,255) to (0,1) 

Trian-Test-Split Train=80%, Train=10%, Val= 
10% 

Train = 730, Test = 91, Val = 
91 
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3.4 Results and Discussion for Diameter Determination 

3.4.1 MATLAB approach results 

Figure 3-19 shows the SEM images of same nanofiber sample at different magnifications, and  

Figure 3-20 shows the corresponding diameter distributions obtained using the multi-image 

automated diameter determination tool introduced in Section 3.1. Givehchi et al. (2016) also 

reported that the diameter determination depends on SEM magnification.  

 
(a)The SEM image of nanofiber at 20K 

magnification 

 
(b) The SEM image of nanofiber at 5K 

magnification 

Figure 3-19. SEM images of one nanofiber sample at two different magnifications  

 

Considering the dependence of diameter distribution on the SEM magnification, results 

from images at different magnifications should be combined for more statistically reliable data. 

For the combined result, the average diameter and standard deviation are closer to the low-

magnification image result. This is likely because the low-magnification images contain a 

larger area of sample, and therefore its results are closer to the fact. The mean diameter 

obtained from the image with a lower magnification is smaller. It is likely because the high 

magnification means a zoom-in on the sample, and thus characterizes the finer fibers that are 

ignored in the low-magnification scenario. Therefore, combination of the results from different 

magnifications is deemed more comprehensive and accurate in diameter determination.  
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Figure 3-20.  Diameter distributions from two images at different magnifications  

 

3.4.2 UNet approach result 

Figure 3-21 compares the diameter distributions obtained using MATLAB, manual 

measurement, UNet approach and the corresponding SEM image used. The manual 

measurement is regarded as the benchmark for accuracy evaluation. The manual measurement 

is from the doctoral thesis of Givehchi (2016), who also uses the manual measurement as a 

benchmark. The same benchmark is used herein to compare the UNet method with the 

MATLAB method. Figure 3-21b shows that that the UNet method is closer to the manual 

measurement than MATLAB does. However, their difference is not distinctive. Further in-

depth analyses are as follows. 
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(a) (b) 

Figure 3-21. (a) The subject SEM image; (b) The results measured using MATLAB, UNet, 

and manual counting 

 

First, the difference between manual measurement and UNet result may be induced by the 

difference in area of examination. For example, Figure 3-22 shows the original SEM image 

(Figure 3-22a) for manual measurement and the  image for the UNet method highlighted in 

yellow (Figure 3-22b). Figure 3-22 (a) shows the image with manually measured points 

marked - the short white lines crossing the fibers in this figure mark the random locations for 

manual measurement. Note that all fibers in the original SEM image are counted when using 

the MATLAB method. The size of the complete SEM image is 1024×681 pixels, which can 

be measured twice in a lateral direction using UNet because when using UNet for image 

segmentation, the input image size is fixed at 512×512 pixels. This means that the UNet 

method cannot measure the entire area of the SEM image.  
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a) b) 

Figure 3-22. a) The SEM image with the manually measure location marked; b) Image with 

the UNet method measuring area highlighted in yellow 

 

To exclude the interference of different examination area, I compared the results using the 

same area, which is the one for UNet. Figure 3-23 compares the results obtained using the 

same size of SEM image, and the corresponding mean diameters and standard deviations from 

all methods are shown in Table 3-3. According to the table, compared to the MATLAB method, 

mean diameter from UNet method has a smaller deviation with the manual result. It means the 

UNet method has a better accuracy compared to the MATLAB method. Overall, the UNet 

model is deemed reliable. The distributions of UNet data points are very close to the manual 

measured data points and the overall trend is also the same.  
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(a) Original SEM sample 1 

 

(b) The diameter distribution of Sample 1 

 

(c) Orignial SEM sample 2 

 

(d) The diameter distribution of Sample 2 

Figure 3-23 The comparison of diameter distribution curve from different methods 

 

Table 3-3 The mean and standard deviation of diameter results 
Sample Manual  MATLAB UNet  

Mean 
(nm) 

Stdev* 
(nm) 

Mean 
(nm) 

Stdev 
(nm) 

Mean’s deviation 
with manual (%) 

Mean 
(nm) 

Stdev 
(nm) 

Mean’s deviation 
with manual (%) 

#1 178.61 43.98 166.75 80.19 6.64 177.80 71.96 0.50 
#2 177.07 54.50 156.02 72.72 11.89 156.77 58.02 11.46 

*Stdev stands for standard deviation. 
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3.4.3 Result from ResNet approach  

3.4.3.1 Result from real SEM image dataset 

Figure 3-24 compares the accuracy and loss of the ResNet50 model results from the SEM 

dataset, of nearly 1000 images. The final training accuracy is 0.315, and the final training loss 

is 2.470, which are not ideal. Normally, an accuracy of 0.7 or more can be considered as 

satisfactory for multi-classification task. The current accuracy 0.315 in Figure 3-24 is much 

less than this threshold. The inaccuracy may result from the insufficient sample size and 

uneven distribution of data samples in the SEM database. They are elaborated as follows. 

 

 
(a) 

 
(b) 

Figure 3-24. (a) The epoch accuracy plot for model trained on real SEM images; (b)The 

epoch loss plot 

 

First, the number of samples in the database is less than that normally required for deep 

learning training. It is a best practice in machine learning that the more data the better. For 

example, Shahinfar et al. (2020) analyzed the effects of image number on machine learning 

result. They reported that the more images, the better the training result, ideally in the range 

of ten to one thousand images per category. Even when transfer learning is used to reduce the 

number of images needed, the number of images in each category should still be on the order 
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of 100. However, there are only about ten images for each category in this thesis project 

because there are only 912 images in this dataset for 76 classes in this thesis project.  

Another challenge is the uneven distribution of data. Ideally, there should be the same 

amount of data in each category when using machine learning for multi-classification tasks. 

Figure 3-25 shows the uneven distribution of data in the categories. The category with most 

images, diameter at six pixels, has 135 pictures, which is ten times the average value. On the 

other hand, there are 35 categories with less than 10 images. Moreover, the data points of 

diameter value are not continuously. For example, the frequency of diameter at 19, 58, 59 

pixels are zero. The uneven data distribution adds more difficulty to this task and reduce the 

accuracy of results. This should be part of the future work.  

 

 
Figure 3-25. The data distribution of the real SEM dataset 

 

Data augmentation is the most common solution to insufficient in machine learning. Data 

augmentation refers to adding slightly modified copies of existing data to increase the total 

amount of data. Common data augmentation methods include geometric transformation, 

flipping, cropping, rotation, and random erasing (Shorten & Khoshgoftaar, 2019). However, 

methods like geometric transformation are not applicable to fiber diameter determination 
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because it changes the shape of the items in the images. Nonetheless, data augmentation cannot 

solve the problem of uneven and discontinuous data distribution.  

Alternatively, a synthetic dataset is generated for the modeling training to solve both 

problems. Details of results can be found in the next section. The training performed on 

synthetic data can also be regarded as a trail to verify the feasibility of this method.  

3.4.3.2 Results using synthetic image dataset 

Figure 3-26 shows the accuracy and loss vs. epoch of synthetic dataset. The continuous black 

line represents training set accuracy and loss, and the scattered dots present the validation set 

accuracy and loss. The result shows that the final training accuracy is 0.7747. The training loss 

is 0.3241. The validation accuracy is 0. 7832. The validation loss is 0.3241. Empirically 

speaking, an accuracy over 0.7 can be regarded as good enough for a multi-classification task. 

The validation accuracy is not lower than the training accuracy which means that the 

hyperparameters in the model are optimized well and the model converges properly.  

  

a) b) 

Figure 3-26. (a) The epoch accuracy plot; (b) The epoch loss plot 

 

Figure 3-27 shows the batch accuracy and loss. The batch accuracy is the accuracy change 

after each batch and it. The batch accuracy shows the same accuracy and loss result. The shape 

of the accuracy and loss plot confirm that the model does convergence at the end of training. 
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a) 

 

b) 

Figure 3-27. (a) The batch accuracy (b) The batch loss plot 

 

When apply machine learning to the nanofiber field, the previous studies used it on 

distinguish different kind of fiber (Ieracitano et al., 2021; Matson et al., 2019; Napoletano et 

al., 2018). Napoletani et al (2018) used CNN to distinguish anomaly in nanofiber, and their 

binary classification accuracy reached 97%. Ieracitano et al (2021), proposed a classification 

system that combined unsupervised and supervised machine learning to distinguish different 

fibers. They classified nanofibers into two categories, homogenous and non-homogenous 
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nanofiber. Their classification accuracy was as high as 92.5%. Matson et al (2019) used three 

different neural networks, i.e., pre-trained ResNet50, VGG16, and a modified VGG16, to 

distinguish five categories of nanofibers, including nanocarbon tube (CNT), nanocarbon fiber, 

and nanocarbon cluster. The three neutral networks gave similar accuracies between 60% and 

85% for each category.  

In this thesis study, the accuracy retrieved from the validation result is 78%, which falls in 

the range of 60-85% reported earlier, despite the larger size of categories. Conversely, 

Napoletani et al. (2018) and Ieracitano et al. (2021) only required the model to distinguish 

between two categories; Matson et al. (2019) required their model to distinguish between 5 

categories. In this thesis project, however, the model aims to distinguish between 20 categories, 

which greatly increase the difficulty and reduce the accuracy. 

In addition, the images in this thesis work have more subtle difference between different 

categories than those in earlier studies (Napoletani et al., 2018; Ieracitano et al. 2021; Matson 

et al. 2019). To illustrate, Table 3-4 compares the images in different categories of different 

studies. Unlike the images in other studies, which show different shapes in different categories, 

all images in this thesis work contain lines with similar colors and shapes and the only 

difference is their widths. The similar shape gives them similar morphological features and 

making it more challenging to distinguish between them. 

 
Table 3-4 Comparison of images in different categories of different studies 

 

Research Categories of images 
Napoletani 
et al. 
(2018) 

 
(a) without anomalies 

 
(b) with anomalies 
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Ieracitano 
et al. 
(2021) 

 
(a) Non-defective fiber 

 
(b)Defective fiber 

  

Matson et 
al. (2019) 

 
(a) CNT Cluster 

 
(b) CNT Fiber 

 
(c) CNT Matrix 

 
(d) CNT Matrix-Surface 

 
(e) Non-CNT 

   

 
(a) Category 1, 1-pixel 
width line 

 
(b) Category 2, 1-pixel 
width line 

 
(c) Category 1, 2-pixel 
width line 

 
(d) Category 2, 2-pixel 
width line 

 
 

3.5 Summary 

In summary, this thesis study points out an application of machine learning for nanofiber 

characterization; its feasibility is verified. In the future, work can be done to further optimize 

the neural network structure and further increase the accuracy. It would be also useful to 

reconstruct a dataset using real SEM images and try to achieve a high accuracy using this 

model on real SEM images. 
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CHAPTER 4. CHARACTERIZATION OF PORES AND SURFACE 
HOMOGENEITY BY IMAGE PROCESSING  

4.1 Surface inter-fiber pores determination 

4.1.1 The Methodology  

An automated image processing tool is developed using MATLAB to characterize the surface 

inter-fiber pores of nanofibers, and the code is in Appendix J. Figure 4-1 shows the image 

processing procedure. It consists of the following four steps, which are going to be explained 

one by one.  

a) read scale and crop 

b) binarization 

c) denoising 

d) size measurement and visualization 

 

(a) Read scale and crop 

 

(b) Binarization 
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(c) Denoising 

 

(d) Size measurement and visualization 

Figure 4-1. The image processing procedure for inter-fiber pore size determination 

 

a) Read scale and crop 

This step removes the information bar at the bottom of the image. The scale of the 

image is also cropped out, and its length is measured. 

b) Binarization 

Convert the image into grayscale one, if necessary. Then, binarization by thresholding 

to convert the image into a black-and-white binary image. Three thresholding methods 

are tested herein for image binarization: global Otsu, locally Otsu and manually-input 

threshold. 

The first edition of the script is written using the global Otsu threshold method, the 

most frequently used method in relevant research. After the script is done, it is noticed 

that the picture's brightness varies, and the morphology of the nanofibers is also 

different. With only one criterion, the binary image does not always look reasonable. 

Therefore, another version of the script with a manually input threshold is attempted. 

The manual option gives the initiative to the operator, and the appropriate values are 

determined by subjective judgment. The thresholding value determines how deep we 

want to consider the fiber as one layer. A large thresholding value means only fiber on 

the very surface is considered, resulting in large pore sizes. A smaller thresholding 
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value means fiber at a certain depth on the surface is considered as one layer, resulting 

in relatively smaller pore sizes. 

After the second edition, the binarization operation always results in some fibers with 

a fading edge. The fading edge comes from uneven brightness in the image. Even for 

one fiber, there are light and dark sides of the fiber, and the fading edge will result in a 

significant deviation in pore size determination. Therefore, attempts are made to use 

Otsu threshold methods locally. 

Local Otsu method is used in the third edition. The binarization result looks more 

reasonable and accurate after this improvement. 

c) Denoising 

After the binarization, a series of denoising operations is performed. “Majority” and 

“clean” operations are performed to eliminate the dots on the image that are less than 

3×3 pixels. A median filter and histogram equalization are performed for denoising and 

increasing image contrast. “Opening” and “closing” operations are also performed for 

further reduce the noise. 

d) Pore size measurement 

After the denoising, the boundaries of pore are identified and labelled. The area size 

inside each separated boundary is measured using the “regionprops” function in 

MATLAB. The number of pixels in the region is measured and returned. The pore size 

is the equivalent diameter of a circle of equal area. 

4.1.2 Results of surface inter-fiber pores determination 

Figure 4-2 shows the SEM image of a nanofiber mat and the determined pore size distributions 

with and without denoising operation. The result in Figure 4-2 (b) is obtained a preliminary 

edition script without denoising. The script for this example is the same as the one in Appendix 

J, except for the denoising step introduced in c) of Section 4.1.1 is excluded. The pore size 

distribution is extremely right-skewed, with a peak close to 0 on the left end. Such a high peak 

is unlikely to reflect the true characteristics, and likely it results from noises on the image. 
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(a) Sample 
 

(b) Pore size distribution 
without denoising 

 
(c) Pore size distribution with 

denoising 

Figure 4-2. The pore size distribution with and without denoising operation 

 

To improve the accuracy of measurement, serval denoising operations were added in the 

script (see Section 4.1.1 and Appendix J). Figure 4-2c shows the pore size distribution with 

denoising applied. It appears to be a lognormal distribution with a coefficient of determination, 

𝑅𝑅2, of 0.9653. Usually, correlation with an 𝑅𝑅2 whose value higher than 0.8 can be regarded as 

statistically significant. 

Log-normal distribution is typical in many engineering fields, including aerosol particle 

size distribution. However, we cannot verify the accuracy of the preceding results, regardless 

of denoising or not. The reason is that a 3D nanofiber mat with a high porosity may appear 

otherwise in 2D because of the misleading perception, especially for thick nanofiber mats. 

Nonetheless, this automated tool for pore size distribution may find usefulness for thin 

nanofiber mat. The thinner the better, ideally the most accurate for a single-layer nanofiber 

mat because all fibers in the sample can be captured by the SEM images.  

To verify the preceding hypothesis, a single-layer nanofiber mat is tested, and related results 

are shown in Figure 4-3. The pore size determination result is shown in Error! Reference 

source not found.. The pore size distribution also appears to be lognormal with a 𝑅𝑅2 value of 

0.8689, which means it is statistically significant.  
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(a) Single-layer nanofiber mat (b) Pore size distribution with denoising 

Figure 4-3. A single-layer nanofiber mat and its pore size distribution 

 

4.1.3 Effects of binarization on pore size distribution measurement  

Another factor of concern is the brightness of the background. A dark background of image 

generated may influence the effectiveness of binarization, which depends on the method of 

binarization. This thesis work compares 1) Otsu global binarization, 2) Otsu local binarization, 

and 3) the adaptive binarization function built in MATLAB. The adaptive binarization is 

performed by using the MATLAB built function “adaptthresh”. This function calculates the 

locally adaptive threshold value based on the Gaussian weighted mean intensity (first-order 

statistics) in the neighborhood of each pixel. 

Figure 4-4 compares the image segmentation results and pore sizes counted using these 

three methods for the original SEM image shown in Figure 4-3. Comparing the first row of 

images after binarization (Figure 4-4a-c) with the original SEM image in Figure 4-3 shows 

that global Otsu binarization introduces the largest errors. However, the resultant segmentation 

images local Otsu method and adaptive method are comparable with minor artifacts appear at  

different spots. While it is safe to conclude that the measurement using global Otsu 

binarization is inaccurate, we cannot tell which one of local Otsu and adaptive methods is more 

reliable. Nonetheless, a comparison between the x-axes in Figure 4-4e and f shows that the 
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equivalent pore diameters obtained using local Otsu are slightly larger than those using 

adaptive binarization.  

 
(a) global Otsu binarization 

 
(b) local Otsu binarization 

 
c) adpactive binarizaiton 

   
d) using global Otsu 

binarization 
e) using local Otsu 

binarization 
f) using adaptive 

binarization Method 

Figure 4-4. The image segmentation result from different binarization methods and resultant 

pore size distributions 

 

Despite the differences in results, one cannot draw an affirmative conclusion that adaptive 

binarization is better than local Otsu binarization, or vice versa. The reason is that the ground 

truth, manual measurement, is impractical. Note that the pore sizes presented of this section 

are centered on the area-equivalent pore sizes, which can only be determined by image 

processing. The current experimental method such as BET can only generate a hypothesis pore 

size with many simplifications. Finally, we can further compare the mean value and standard 

deviations of the three size distributions. Table 4-1 shows the mean pore sizes and standard 

deviations of the lognormal fitting curves.  
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Table 4-1 The expected value and standard deviation of pore size result from different 

binarization method 

Binarization Method Mean Standard Deviation 

Global Otsu (Figure 4-4d) 1.383 0.87 

Locally Otsu (Figure 4-4e) 1.653 0.962 

Adaptive (Figure 4-4f) 1.199 0.794 

 

 

Despite lack of ground of validation, the preceding knowledge is still useful for quality 

inspection or comparison of the quality of the nanofiber mats. For example, it can be used to 

check the maximum hole size of the fiber. However, in most engineering application, a pore 

size distribution is less important than the information of the largest pores, where unwanted 

leakage and penetration of working fluids start. For example, when nanofiber mats are used as 

lithium-ion battery separators, the battery separators are designed to separate battery's anode 

and cathode, preventing short circuit and allow ion transport at the same time. To achieve this 

goal, the maximum pore size of Li-ion battery separators usually is carefully controlled to 

below 1 μm (Wang et al., 2016). In general, the separators must have pores smaller than the 

particle size of the electrode components. The average pore size of a battery separator is 

normally in the range of 0.03 μm to 0.1 μm. As another example, when nanofiber mats are 

used for air filtration, the maximum pore size may also determine the smallest particle size 

that can be captured. Therefore, in the field of air filtration, maximum pore size is an important 

indicator.   

4.2 Surface intra-fiber pores determination 

4.2.1 Methodology for Surface intra-fiber pores determination 

Figure 4-5 shows a sample nanofiber with intra-fiber pores. This sample nanofiber was 

obtained by electrospinning of cellulose acetate solution using acetone and DCM as a solvent. 

Nanofiber with intra-pores can also be characterized with the method introduced in Section 
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4.1, which gives the equivalent circle diameter of the same area. In many cases, however, the 

pores on nanofiber are of regular, often oval, shape. Thus, the small side of the oval is taken 

as the size of size of the pore (see Figure 4-5b) for the ease of manual measurement. This is 

considered as the best technology available for irregular pores between nanofibers. 

 
 

a b 

Figure 4-5. a) SEM image of nanofibers with intra-fiber pores; b) a model pore (the small 

side stands for the size of the pore) 

 

Figure 4-6 illustrates the procedure for the determination of surface intra-fiber pores in this 

thesis work. This procedure is inspired by the diameter determination procedure in Section 3.1, 

using the same Canny edge detection for image segmentation. Conversely, there are two main 

differences. First, the pore size determination procedure in this current section uses only Canny 

edge detection for boundary determination. In contrary, the diameter determination procedure 

in Section 3.1 uses both the Canny edge detection and image thresholding method for image 

segmentation. Another difference is the requirement of image size. The pore size 

determination procedure requires manual pre-crop of the area full of pores. The cropped 

images may be different in shape and size. Therefore, the script does not require on the image 

size to maintain its adaptability. However, the script for diameter measurement imports the 

image size to obtain certain information from the image. Thus, only image with fix size can 

be used as input; otherwise, the parameters in the script must be revised accordingly.  
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(a) Cropping and resizing 

 
(b) Median filtering 

 
(c) Histogram equalization 

 
(d) Opening and closing 

 
(e) Canny edge detection 

 
 

 
(f) Dilation and thinning 

 
(g) Skeletonization and distance 

transformation 

Figure 4-6. The image processing procedure for intra-fiber pores size determination 
 

The pore size determination procedure in Figure 4-6 consists of the following seven steps, 

which are explained one by one. 

a) Cropping and resizing  

An original SEM image usually contains multiple fibers with intra-fiber pores. The 

algorithm cannot distinguish the boundaries between the fibers and the boundaries 

between intra-pores and outer fibers. Therefore, it is necessary to identify and manually 

crop out the image part that contains only one or part of a porous fiber like the one shown 

in Figure 4-6a. 

b) Median filtering 
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Median filtering changes each pixel value with the median of its neighbors by scanning 

the image pixel by pixel. It denoises the image and the resultant image is shown in Figure 

4-6b. However, Figure 4-6a and b appear to be almost the same. The reason is that the 

image contains no fiber-less background like a SEM image for fiber mat does. Therefore, 

the benefit of this step is marginal. As a result, the end user can choose to omit this step. 

c) Histogram equalization 

Histogram equalization increases the image contrast to distinguish the boundary between 

pores in the fiber. The resultant image is shown in Figure 4-6c. 

d) Opening and closing 

An “opening and closing” operation is performed for image denoising again. The 

resultant image is shown in Figure 4-6d. Similarly, Figure 4-6c and d appear to be 

identical. Again, the reason is that the image is filled with a fiber without fibreless 

background. Therefore, the benefit of this step is marginal too. As a result, the end user 

can choose to omit this step. 

e) Canny edge detection 

The boundaries of the pores are identified using the canny edge detection method, and 

the resultant image becomes Figure 4-6e. 

f) Dilation and thinning 

This the same as Step 8 on page 29 introduced in Section 3.1. The resultant image 

becomes Figure 4-6f. 

g) Skeletonization and distance transformation 

They are the same as Steps 9 and 10 introduced in Section 3.1. The image is skeletonized 

to find the centerline of the pores, and the distance between the centerline to the boundary 

is measured using Euclidean transformation. The resultant image becomes Figure 4-6g. 

4.2.2 Results of surface intra-fiber pores determination 

1) Preliminary trial with 100-sample manual measurement 

Figure 4-7 compares the pore size distributions obtained by automated image processing and 

those and manually. The black lines are for the results obtained by automated image processing 
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using MATLAB, and the red lines are for the results obtained by manual measurement using 

ImageJ. Regarding the manual measurements, more than 100 sample pores are randomly taken 

from each sample. To ensure randomness of sampling, the subject image is first divided into 

100 equal areas with equal lengths and widths. Then, a random location is sampled in each 

area.  In this project, the manually measured result are regarded as ground truth. Finally, the x 

axis is size of pore (in nm) about 10 and the y axis is the corresponding diameter’s frequency. 

 

(a) Sample 1 

 
(b) 

 

(c) Sample 2 

 
(d) 
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(e) Sample 3 

 
(f) 

 

(g) Sample 4 

 
(h) 

Figure 4-7. The original SEM images of four porous nanofiber samples and their 

corresponding pore size distributions obtained by image processing 

 

The curves in Figure 4-7 show that the MATLAB and manual measurements provide 

similar results. However, there are also differences. The manual measurements generally have 

a greater standard deviation than the MATLAB based image processing result. Meanwhile, 

the pore size distributions generated by image processing usually have higher peaks than the 

manual measurements do. In addition, the distribution curves of manually measurements 

appear to be  smoother than those obtained using image processing. 
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To quantify the preceding differences, the mean and standard deviation of diameter are 

calculated and summarized in Table 4-2. The deviation between the MATLAB and manual 

measurements of are calculated using Eq. (4-1. 

𝑑𝑑 =
|𝜇𝜇𝑀𝑀𝑎𝑎𝑀𝑀𝐸𝐸𝑎𝑎𝑀𝑀 − 𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶|

𝜇𝜇𝑀𝑀𝑎𝑎𝑀𝑀𝐸𝐸𝑎𝑎𝑀𝑀
 

(4-1) 

where d is the deviation of results, 𝜇𝜇𝑀𝑀𝑎𝑎𝑀𝑀𝐸𝐸𝑎𝑎𝑀𝑀 is the mean value of the distribution obtained 

manually, and 𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶 is the mean value of the distribution obtained by image processing 

using MATLAB. 

 

Table 4-2. Comparison of pore size distributions result from image processing and manual 

measurements 

Sample# MATLAB Method Manual Method 100 sample Deviation (Eq. (4-1) 
Mean (nm) Stdev (nm) Mean (nm) Stdev (nm) Of mean Of Stdev 

1 43.41 4.42 59.18 20.26 0.27 0.78 
2 36.17 10.74 42.54 24.31 0.15 0.56 
3 34.83 8.54 39.82 11.33 0.13 0.25 
4 26.66 4.42 22.54 9.60 0.18 0.54 

 

Table 4-2 shows that the deviation between the mean values of manual and automated 

measurements varies from 0.13-0.27. The great deviation result from the small pore sizes: a 

difference of few nanometers may lead to a significant deviation. The deviations of the results 

from the two different methods vary widely mainly because the magnification and size of 

nanofibers in images. The smaller size makes it much harder to distinguish the edge of the 

pore and brings more difficulties for the manual measurement.  

This preliminary test reveals a problem: the accuracy and reliability of the image 

processing methods is not validated by the manual measurement because of the limited (i.e. 

100) manual sampling points. Considering the sample size, the manual measurement cannot 

be used as the ground truth, unless all pores are manually measured. This leads to the next 

section.  

2) Comparison of full manual measurement and image processing results.  
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To improve the reliability of manual measurement, the pore sizes were manually measured 

again by counting all pores in the images, which is referred to as Manual Full Sampling. The 

sizes of all pores in the nanofiber samples are measured, and the full sampling is expected to 

eliminate the basis of insufficient number of sampling points. Figure 4-8 shows the results of 

full sampling manual measurements. 

 

 
(a) Sample 1 

 
(b) Sample 1 pore size distributions  

 
(c) Sample 2 

  
(d) Sample 2 pore size distributions 
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(e) Sample 3 

  
(f) Sample 3 pore size distributions  

 
(g) Sample 4 

 
(h) Sample 4 pore size distributions 

Figure 4-8. The comparison of full sampling manual measurements, 100-sample manual 
measurement, and MATLAB results 

 

Figure 4-8 also shows lognormal distributions. To quantitative describe the pore diameter 

distribution, the coefficient of determination, 𝑹𝑹𝟐𝟐, is calculated and shown in Table 4-3. The 

𝑹𝑹𝟐𝟐for the data obtained using MATLAB (i.e., image processing) varies from 0.9134 to 0.9626. 

The 𝑹𝑹𝟐𝟐  for manual measurements varies from 0.8513 to 0.9906. Correlation with an 𝑹𝑹𝟐𝟐 

greater than 0.8 can be regarded as statistically significant. Therefore, the 𝑹𝑹𝟐𝟐 values verified 

that the distribution of nanofiber pore size are lognormally distributed. In addition, the 

measurement with full manual sampling has a higher 𝑹𝑹𝟐𝟐 that those using 100 samples. It is 

likely because the full sampling manual results take more data points and form a smoother 

distribution curve, giving a more comprehensive presentation of the data. 
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Table 4-3 The coefficient of determination for diameter frequency’s fitting curve 

Sample # R2 
MATLAB Manual 100 sample Manual full sample 

1 0.9134 0.8628 0.9906 
2 0.9626 0.7951 0.9371 
3 0.9202 0.8513 0.9826 
4 0.9397 0.9517 0.9686 

 

To quantify the accuracy of the measurements, the mean diameter and standard deviation 

from each method is calculated and summarized in Table 4-4. The deviation between the mean 

values of full manual and automated measurements varies from 0.07 to 0.16, which are much 

lower than the values of 0.13-0.27 in Table 4-2. The reduced deviations indicate an improved 

accuracy and reliability in terms of mean pore sizes of the automated measurements.  

Figure 4-9 shows a parity plot comparing the mean fiber diameters given by MATLAB 

and two manual methods for the four samples. The results demonstrate that the manual and 

automated methods agree well in terms of mean pore size. Comparing the two manual methods 

shows that the full sample result has a linear coefficient of 1.0592, which is closer to 1 than 

that the 100-sample manual result, 1.19. It also confirms that the MATLAB result is closer to 

the full sampling result. 
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Figure 4-9. Correlation between the mean fiber diameters for automated and manual 

methods 

 

On the other hand, the standard deviations of two methods still vary significantly, indicting 

the shape of the curves do not agree with each other. This disagreement in the curve shapes is 

obvious in Figure 4-8. The distribution curve of manual method result has a relatively smooth 

curve, and the distribution curve of the MATLAB method has a much steeper curve. This 

problem deserves attention it the future works. 

 

Table 4-4 The comparison of mean and standard deviations from different methods 

Sample# MATLAB Method Manual Method Full sample Deviation (Eq. (4-1) 
Mean (nm) Std (nm) Mean (nm) Std (nm) Of Mean Of Std 

1 43.41 4.42 46.57 13.04 0.07 0.66 
2 36.17 10.74 40.48 30.52 0.11 0.65 
3 34.83 8.54 37.88 19.83 0.08 0.57 
4 26.66 4.42 23.04 5.87 0.16 0.25 
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Admittedly, this automated method for intra-fiber pore size characterization does have 

limitations. In addition the inaccuracy mentioned in the preceding paragraphs, it does not 

calculate the area of the intra-fiber pores and only gives a diameter number. The result would 

be accurate or at least have a reference value when the shape of the pores is circle, oval or in 

a slender narrow shape. For circular and oval pores, the result is its diameter or the short 

diameter. For slender narrow pores, the number is the distance between narrow sides. However, 

for very irregular hole shapes, the result will have a large deviation. This is mainly due to the 

algorithm itself. 

4.3 Porosity Determination 

4.3.1 Methodology for porosity determination 

The procedure of nanofiber porosity determination consists of three steps:  

1) image cropping 

2) image binarization 

3) ratio calculation.  

As shown in Figure 4-10, the original SEM image in Figure 4-10a is first cropped to remove 

the title bar, resulting in Figure 4-10b. Binarization converts the original grayscale SEM image 

into a binary image that only has two colors, black and white. In grayscale images, all colors 

can be regarded as different shades of gray and are represented by a number in the range 0 to 

255 (under 8-bit format) in computer. During the binarization process, a threshold value is 

chosen. All values smaller than the threshold value are regarded as 0, pure black, and all values 

larger than the threshold value are regarded as 255, pure white. Then, a grayscale image is 

converted into a binary image. During the binarization, a key step is to determine an 

appropriate threshold value to separate the fiber from the background. The final step is to 

calculate the porosity using the equation below. With a properly defined binarization threshold, 

the estimated porosity should be close to the experimental result. 

𝑃𝑃 =
𝑁𝑁𝑤𝑤ℎ
𝑁𝑁𝑏𝑏𝑡𝑡𝑏𝑏

= 1 −  
𝑁𝑁𝑏𝑏𝑀𝑀𝑏𝑏
𝑁𝑁𝑏𝑏𝑡𝑡𝑏𝑏

 (4-2) 
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where P is the porosity, 𝑁𝑁𝑤𝑤ℎ is the number of white pixels in the image after binarization, 𝑁𝑁𝑏𝑏𝑀𝑀𝑏𝑏 

is the number of black pixels in the image after binarization, and 𝑁𝑁𝑏𝑏𝑡𝑡𝑏𝑏 is the number of total 

pixels in the image. 

 
(a) Original image 

 
(b) Cropped image 

 
(c) Binarized image 

Figure 4-10. The image processing procedure for porosity determination 

 

Section 2.3.1 lists three case studies on this topic that follow similar steps. Those three case 

studies use three different criteria for the threshold value chosen. In this study, all thresholding 

chosen criteria mentioned in the three previous studies are performed. Results obtained with 

different thresholding values are compared to the experimental result, which served as a 

ground truth here. The three studies in Section 2.3.1 and the thresholding chosen criteria they 

use are explained as follows. 

1) 85% average grayscale 

Wang et al. (2020) used 85% average grayscale as the image thresholding value. The 

thresholding value can be expressed in Eq. (4-3: 

𝑇𝑇1  = 85%�̅�𝑔 (4-3) 

where 𝑇𝑇1 means threshold value, �̅�𝑔 is the average grayscale value. 

2) Average grayscale and average grayscale ± standard deviation 

Ghasemi-Mobarakeh et al. (2007) used three thresholding values for porosity 

determination, the average grayscale, average grayscale plus standard deviation, and 

average grayscale minus standard deviation. 

𝑇𝑇1 = 85%�̅�𝑔 (4-4) 
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𝑇𝑇2  = 85%�̅�𝑔 + 𝑔𝑔𝑠𝑠𝑏𝑏𝑠𝑠 (4-5) 

𝑇𝑇3  = 85%�̅�𝑔 − 𝑔𝑔𝑠𝑠𝑏𝑏𝑠𝑠 (4-6) 

where 𝑔𝑔𝑠𝑠𝑏𝑏𝑠𝑠 is the standard deviation of grayscale. 

 

3) Globally Otsu method 

Sun et al. (2007) used the Otsu method for the threshold value determination. Otsu method is 

a common method used in image processing and computer vision that uses the intra-class 

intensity variance to separate pixels. In the process of binarization, the image pixels are 

separated into two classes, the foreground and background. The Otsu method would find out 

the threshold value at which the intra-class intensity variance is minimized, or equivalently, 

inter-class variance is maximized. The sum of variances of the two classes can be calculated 

using the equation below: 

𝜎𝜎𝜔𝜔2(𝑡𝑡) =  𝜔𝜔0(𝑡𝑡)𝜎𝜎02(𝑡𝑡) + 𝜔𝜔1(𝑡𝑡)𝜎𝜎12(𝑡𝑡) (4-7) 

where 𝜔𝜔0(𝑡𝑡) and 𝜔𝜔1(𝑡𝑡) are the probability a pixel is classified in class 0 and class 1 when 

the threshold value is t, 𝜎𝜎02(𝑡𝑡) and 𝜎𝜎12(𝑡𝑡) are the inter-class variance of two classes. The Otsu 

method will return the t value at which 𝜎𝜎𝜔𝜔2(𝑡𝑡) is minimized. 

The threshold value needs to be determined first before the porosity can be calculated. 

Twelve SEM images are selected in different batches and different magnification levels for a 

more comprehensive examination. The description of their naming scheme is available in 

Table 4-4. The first digit in the naming number represents which sample the image comes 

from. Images with the same first number but a different last number in the name mean these 

pictures are from the same sample but at different magnification. Same batch of sample means 

these samples are fabricated at the same time under the same experimental conditions and used 

as parallel samples. 
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Figure 4-11 procedure for porosity determination 

 

Table 4-5 Descriptions for selected SEM images 

Sample # Description SEM Image 

SEM 101 Nanofiber 
Mat A, 

Sample 1, at 
magnification 

1.00 kx 
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SEM 102 Nanofiber 
Mat A, 

Sample 1, at 
magnification 

2.50 kx 

 
SEM 103 Nanofiber 

Mat A, 
Sample 1, at 

magnification 
7.50 kx 

 
SEM 202 Nanofiber 

Mat A, 
Sample 1, at 

magnification 
1.00 kx 
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SEM 206 Nanofiber 
Mat A, 

Sample 1, at 
magnification 

2.50 kx 

 
SEM 208 Nanofiber 

Mat A, 
Sample 1, at 

magnification 
10.00 kx 

 
SEM 302 Nanofiber 

Mat B, 
Sample 1, at 

magnification 
1.00 kx 
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SEM 304 Nanofiber 
Mat B, 

Sample 1, at 
magnification 

2.50 kx 

 
SEM 307 Nanofiber 

Mat B, 
Sample 1, at 

magnification 
7.50 kx 

 
SEM 401 Nanofiber 

Mat B, 
Sample 1, at 

magnification 
7.50 kx 
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SEM 406 Nanofiber 
Mat B, 

Sample 1, at 
magnification 

2.50 kx 

 
SEM 408 Nanofiber 

Mat B, 
Sample 1, at 

magnification 
1.00 kx 

 

 

To start with, SEM 101 is used as an example to show the difference between the threshold 

value from different algorithms. The determined threshold values are presented below in Table 

4-5. The thresholding value obtained varies from 72.097 to 121.436. The difference in numbers 

is huge, and it can be easily predicted that choosing different threshold values will result in 

different porosity results. The result is presented and discussed in the next section. 

Table 4-6. The threshold value SEM 101 

Sample 101 Threshold Value 

Average grayscale 121.436 

85% grayscale 103.221 

Otsu 117.450 
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Standard deviation of grayscale 49.340 

Average plus deviation 72.097 

Average minus deviation 170.776 

4.3.2 Result of porosity determination 

The porosity determination results of different samples using different methods are shown in 

Table 4-7. The experimental porosities in Table 4-7 are obtained using n-butanol uptake test. 

The main idea of the uptake test is to measure the mass of the n-butanol that the nanofiber can 

absorb and convert the absorbed n-butanol mass into volume. The n-butanol volume is also 

the pore volume in the nanofiber. Then the porosity is obtained by dividing the pore volume 

by the nanofiber volume. In the uptake test, the porosity can be calculated using the following 

equation: 

𝑃𝑃(%) =
𝑊𝑊𝑤𝑤 −𝑊𝑊𝑠𝑠

𝑝𝑝𝑏𝑏𝑉𝑉
 (4-8) 

where P is the fiber porosity, 𝑊𝑊𝑤𝑤 is the weight of wet fibers, 𝑊𝑊𝑠𝑠 is the weight of dry fibers, 𝑝𝑝𝑏𝑏 

is the density of n-butanol, and V is the geometric volume of the fiber.  

The experimental porosity is regarded as the ground truth in this study. By examining Table 

4-7, the following conclusions can be drawn. Firstly, results in Table 4-7 show that the image 

magnification has little influence on the porosity result. For example, SEM 101, 102, 103 are 

from on single sample and the difference between their porosity result is no more than 2%, as 

long as the same thresholding criteria is used. This phenomenon was also observed in other 

samples. When the same thresholding criteria is used, no matter which threshold criteria is 

using, images from the same fiber sample always generate relatively consistent results despite 

the magnification difference.  

For different threshold criteria, as expected, a larger threshold value would result in a higher 

porosity. In Table 4-6, the threshold value of descending in order of average grayscale, Otsu 

method and 85% grayscale. Correspondingly, the porosity obtained using these three methods 

also decreasing in this order. Among all threshold criteria mentioned above, mean grayscale 

plus deviation has the largest value and result in the highest porosity. For example, for sample2, 
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from image SEM 202, 206 and 208, the mean grayscale plus deviation method has an average 

of 81.81, as of the rest methods are providing results under 50. 

Under the same method, the output porosity for one sample is very consistent, but it can be 

far from accurate compared to the experimental result. The image processing results 

retrieved from 85% mean grayscale method, Otsu method and mean minus deviation method 

are all smaller than the experimental results. For SEM 302, 304 and 307, the 85% mean 

grayscale reported an average of 43.44, while the Otsu method reported an average of 51.38. 

On the other hand, the mean minus deviation reported an average of 20.84 and the mean plus 

deviation reported an average of 80.46. Among all four porosity values, the mean plus 

deviation has an answer that falls inside the uncertainty range of 79.3±7.1 which is the 

experimental result. Thus, a conclusion can be made, using mean plus deviation as threshold 

can obtain the result that has the closest values to the experimental results. 

Table 4-7. The result of porosity using different binarization method and experimental value 

Mat # Sample # Sample # Experimental 

Porosity 

85% Mean 

greyscale 

porosity (%) 

Ostu 

porosity 

(%) 

Mean minus 

deviation 

porosity (%) 

Mean plus 

deviation 

porosity 

(%) 

A A1 SEM 

x1000 

  36.61 45.43 19.36 82.12 

SEM 

x2500 

  35.38 44.77 19.47 82.49 

SEM 

x7500 

  37.81 45.12 20.63 81.85 

SEM 

x1000 

  36.27 44.12 19.54 81.59 

SEM 

x2500 

  36.11 42.36 20.87 81.66 

SEM 

x7500 

  36.26 45.19 20.34 82.19 

A2 Porosity 84.95         
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A3 Porosity 79.15         

A4 Porosity 93.05         

B B1 SEM 

x1000 

  42.37 52.07 20.46 81.36 

SEM 

x2500 

  43.46 50.51 21.33 79.24 

SEM 

x7500 

  43.49 51.55 20.72 80.79 

SEM 

x1000 

  38.74 57.5 21.84 80.93 

SEM 

x2500 

  39.11 58.06 20.36 80.37 

SEM 

x7500 

  38.89 56.2 20.52 81.48 

B2 Porosity 86.23         

B3 Porosity 79.62         

B4 Porosity 71.96         

 

Table 4-8 shows each sample's average image processing porosity when mean plus 

deviation is used as threshold and the deviation between the experimental and image 

processing results. It is noticed that the deviation varies from 1.47 % to 4.54 %. Considering 

that the image processing method is only a simple and preliminary method, this deviation can 

be considered acceptable. 

 

Table 4-8. The deviation between image processing result and experimental result 

Sample Average grayscale plus deviation 
Porosity (%) 

Experimental 
(%) 

Deviation (%) 

101, 102, 103 82.15 85.7±7 4.14 

201, 202, 203 81.81 4.54 

301, 302, 303 80.46 79.3±7.1 1.47 



 

96 

 

401, 402, 403 80.93 2.05 

 

As it mentioned above, serval studies have tried this image processing method for porosity 

determination. Most of the studies only discuss the trends in results and only one of them, the 

research made by Wang et al., made a quantitative statement on the result. 

Wang et al. (2020) state that the ratio between experimental and image processing results 

is the second Feigenbaum constant when using 85% grayscale as the threshold criteria. The 

second Feigenbaum constant is a term in in mathematics. This constant expresses the ratios in 

a bifurcation diagram for a non-linear map (Briggs 1991). The second Feigenbaum constant α 

has a value of around 2.5029. Though I doubt how does a constant in bifurcation theory related 

to the image analysis of nanofibers, I still calculated the ratio between image processing 

porosity and experimental porosity in Wang et al.’s way using data from our research group. I 

did so since it is the only quantitative statement I found in similar research. 

 The experimental porosity, image processing porosity and the ratio of the porosity results 

obtained by the two methods is shown in Table 4-9.  From Table 4-9, it can be seen that the 

ratio between two results varies from 1.82 to 2.37. Deviation between the ratio and second 

Feigenbaum constant α varies from 3.22% to 27.15%. With a deviation as high as 27.15%, I 

highly doubt whether the relationship between the second Feigenbaum constant α and 

nanofiber porosity result exists.  

 

Table 4-9． The result of porosity and the ratio between image processing porosity and 

experimental porosity 

Sample 85% Mean 
Grayscale (%) 

Experimental 
Porosity (%) Ratio Deviation 

(%) 
Second Feigenbaum 

constant α 

101 36.61 

85.7±7 

2.34 6.47 

2.5029 
102 35.38 2.42 3.22 

103 37.81 2.27 9.44 

202 36.27 2.36 5.60 
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206 36.11 2.37 5.18 

208 36.26 2.36 5.57 

302 42.37 

79.3±7.1 

1.87 25.22 

304 43.46 1.82 27.10 

307 43.49 1.82 27.15 

401 38.74 2.05 18.22 

406 39.11 2.03 18.99 

408 38.89 2.04 18.53 

 

Although Wang et al.’s statement does not apply on my data, their study does bring new 

insight on data analyze. It is noticed that for different images taken on the same sample, the 

ratios between the image processing result and experimental result are close in value. For 

example, the standard deviation is 0.01 for samples 101, 102 and 103. Even under the worst 

case from sample 302, 304 and 307, they have a standard deviation of 0.028, which is still 

considered relatively small. 

However, this constant ratio has little practical value for nanofiber characterization because 

the ratios for all fiber samples are different. We cannot know the ratio unless we measure 

porosity experimentally in advance. Therefore, taking the 85% mean of grayscale as the 

threshold value and trying to find a fixed ratio between the experimental result and image 

processing result will not take us anywhere. 

4.4 Surface homogeneity determination 

This study uses the optical microscope (SW380B, swift, Canada) images of nanofibers for 

surface homogeneity determination. An example of nanofibers with different homogeneity is 

shown in Figure 4-12. All three images are polypyrrole nanofiber made under the same 

experimental conditions but on different sample collectors. In this case, the texture of the 

different collectors may have an effect on the surface homogeneity of nanofibers. All images 

were shot at 400x magnification. Since the model of the optical microscope used does not have 

the function of connecting to the monitor, images were taken by pressing the camera on the 

microscope’s ocular lens. The equipment used for taking pictures is iPhone12. 
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 In the optical microscope images, nanofibers with more surface homogeneity will produce 

images with a more uniform color. On the contrary, nanofibers with less surface homogeneity 

will produce images with more significant color variance. Therefore, the variance of color is 

used to describe the surface homogeneity of nanofiber. 

   

(a) (b) (c) 

Figure 4-12 The optical microscope pictures of nanofiber with different homogeneity 

 

The parameter used to describe image color variance is the coefficient of variation (CV). 

CV is also known as relative standard deviation. The CV is a standardized measure of 

dispersion of a probability distribution, and it is defined as the ratio of the standard deviation 

to the mean. See Eq. (4-9.  

𝐶𝐶𝑣𝑣 =
𝜎𝜎
𝜇𝜇

 (4-9) 

where 𝐶𝐶𝑣𝑣 is the CV, σ is the standard deviation and μ is the mean value of grayscale. In this 

thesis project, the CV is calculated using the equation above. The corresponding MATLAB 

code is attached in Appendix M.  

For the three samples in Figure 4-12, their standard deviation of grayscale, average and 

variation of coefficient of grayscale calculated using MATLAB are listed in Table 4-10. The 

average grayscale represents the overall color of images and the standard deviation represent 

the difference in image color. The increasing standard deviation indicates the decreasing 

surface homogeneity. 
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In this study, the varication of coefficient of grayscale is used as indicator instead of 

standard deviation to reduce the influence of image contrast. During the process of taking 

optical microscope images, the usage of optical microscope and camera can introduce 

inconsistency in different images’ contrast. When optical microscope focusing on sample, the 

process of aligning the focal length will change the amount of light coming into the lens and 

result in changes in image brightness and contrast. While taking pictures with the camera, the 

camera automatically focuses and adjusts the light coming in the lens. The brightness of the 

camera's focus point will affect the contrast and brightness of the picture. 

If the influence of image contrast is not considered, it would be less reasonable to compare 

the results between different images. Therefore, the variation of coefficient of grayscale is 

used as the indicator for nanofiber surface homogeneity. Again, the CV of the three samples 

in Figure 4-12 is shown in the third column of Table 4-10. Among the three images in Figure 

4-12, Figure 4-12 (a) is the one with the least homogeneity which has the smallest value of 

CV, 1.08, and Figure 4-12 (c) is the one with the most homogeneity which has the largest value 

of CV, 10.09. 

 

Table 4-10 The calculated homogeneity results of different nanofiber sample 

Sample # Standard Deviation of 
Grayscale 

Average Grayscale Coefficient of variation 
of Grayscale 

a 1462.73 144.96 10.09 

b 597.17 173.86 3.43 

c 222.04 205.39 1.08 

 

This surface homogeneity determination approach could be very useful when used for 

parallel comparisons for the same batch of samples or comparison of different positions of the 

same sample. The difference of homogeneity between different samples may be very slight 

and not as apparent as the ones in Figure 4-12. Under that scenario, this tool would be very 

useful for easily distinguishing and comparing samples’ homogeneity. 
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However, I currently cannot give a specific number as a criterion for this indicator, the CV. 

It is really hard to justify under which CV value the fiber can be considered as homogeneous 

and above which CV value the fiber can be considered as inhomogeneous. The homogeneity 

of sample cannot be quantified by a single CV value. Even for the concept of homogeneous 

itself, it is a relative concept and conclusions need to be drawn in the comparison.  

At this stage, this tool can only offer information about nanofiber’s surface homogeneity. 

Future work can be done to combine this tool with other nanofiber images and offer more 

information. If this tool can be used with a microscope that can accurately control the 

incoming light; it might be possible to calculate the thickness of nanofiber throughout the 

whole fiber mat.  
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The following conclusions can be drawn from this thesis work. They are mentioned at the 

end of sections in the thesis and compiled here for the ease of reading.  

5.1.1 Diameter determination 

This thesis presents three approaches to fiber diameter measurement, the MATLAB approach, 

the UNet approach, and the ResNet approach. The results obtained using the MATLAB 

approach was verified by manually measurement. In this part, the influence of image 

magnification was verified and considered during the diameter determination procedure. Two 

images at different magnification can be processed at the same time and their results are 

combined as the result, which is deemed more accurate. 

For the UNet approach, a machine learning model UNet is used for diameter determination, 

and the results by the UNet approach was more accurate than those obtained by the MATALB 

approach. The UNet approach was also implemented using Python, which can be run on a free 

platform instead of commercial software like MATLAB. This change reduces the of operation. 

For the ResNet approach, the feasibility of determining nanofiber diameter using this model 

was verified. The acceptable result was obtained from synthetic data. 

5.1.2 Characterization of pores and surface homogeneity 

This thesis presents two tools for the characterization of pores in a nanofiber mat, one for inter-

fiber pores and the other for the intra-fiber pores. The sizes of inter-fiber pores are expressed 

as the equivalent area diameter. The equivalent area diameters largely depended on the 

binarization method. This approach can be useful for examining the largest pores on a fiber 

mat. 
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The intra-fiber pores are characterized by the short sides of oval pores. The result was 

verified by to manually measurement. The mean diameters obtained from the automated tool 

were close to the manual measurement diameter, but the standard deviations had large 

deviations between them. 

The tool for porosity measurement was validated using experiments. The measured porosity 

by image processing depended on the thresholding value. Using average greyscale plus 

standard deviation as thresholding value resulted in the most accurate porosity result. 

Last, this thesis presents a simple method for surface homogeneity determination is present 

by image processing. This method is deemed simple and quick for comparing different 

homogeneities of the nanofiber mats. 

5.2 Recommendations to Future works 

Despite the contributions of this thesis work to the field of nanofiber, limitations exist as 

presented in the thesis. The following research is recommended to further improve the 

accuracy and reliability of the tools. 

5.2.1 UNet model 

As mentioned at the end of Section 3.2.1, I implement the UNet code on the SEM images of 

nanofibers collected in our research group to segment the nanofibers from the background. I 

changed the padding method of the original model, but I did not make any major change to the 

original neural network structure.  

In the future, some changes can be made to the original model structure to improve the 

accuracy of the results. For example, the structure can be changed by adding attention 

mechanisms such as channel attention(Q. Wang et al., 2019), pixel attention(H. Zhao et al., 

2020), convolutional block attention module(Woo et al., 2018), and bottleneck attention 

module(Park et al., 2018). Using different optimization methods and loss functions such as 

weighted cross-entropy(Phan et al., 2020), dice loss(Milletari et al., 2016), and focal loss(Lin 

et al., 2017) may also help improve the results. Furthermore, using different feature extraction 

methods such as Resnet backbone (He et al., 2015) , VGG16 backbone (Simonyan & 
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Zisserman, 2014), and DenseNet (Huang et al., 2016) can also bring improvement to the result 

(Zhang et al., 2021). 

5.2.2 ResNet50 model  

As mentioned at the end of Chapter 3, this thesis study points out an application of machine 

learning for nanofiber characterization; its feasibility is verified. In the future, work can be 

done to further optimize the neural network structure and further increase the accuracy. It 

would be also useful to reconstruct a dataset using real SEM images and try to achieve a high 

accuracy using this model on real SEM images.  

As explained in Section 3.4.3, the current ResNet50 model has a low accuracy due to 

insufficient sample size and uneven distribution of data samples in the SEM database. This 

part of work deserves further investigation. For the problems existing in the real SEM database 

mentioned in Section 3.4.3.1, I come up with the following three-step solution: 

The first step and most important step is to collect more data. Considering the problem of 

uneven data distribution, extra attention is required to collecting more data that is different 

from the existing data which means different nanofiber diameters in this case.  

The second step is to narrow down the diameter range of the training data. For classification 

tasks, it is generally accepted that the more categories, the greater the difficulty. Reducing the 

diameter range can reduce the number of categories that need to be classified and thus reduce 

the difficulty of classification. In the case of decreasing difficulty, a higher accuracy can be 

more easily achieved under the same model.  When the category number is reduced, the 

amount of data required is also reduced which also reduced the workload. 

The third step is to perform data augmentation. By performing data augmentation, the 

amount of data can be largely increased. Only when the sample size is large enough that the 

accuracy of the machine learning can be ensured. 
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5.2.3 Automated intra-fiber pore size distribution 

As indicated at the end of Section 4.2.2, the automatic intra-fiber pore size distribution is 

different from the full manual measurement, which is the ground truth. Further improvement 

is needed in this part of work. 
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Appendix A MATLAB code for fiber diameter determination 
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Appendix B Python Code for image cropping 
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Appendix C Python Code for correct the displacement of segmented image 
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Appendix D UNet Code 

The code of UNet model and code for UNet training is from 
https://github.com/zhixuhao/unet.  
 

D1. Code of UNet model 

 

https://github.com/zhixuhao/unet


 

134 

 

 

 



 

135 

 

D2. Code for UNet training 
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Appendix E The Python code for SEM image dataset build up 

This MATLAB code will automatically run the diameter determination code on all images in 
the folder it is located. 
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Appendix F ResNet Code 

F1. Synthetic image generation 
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F2 Training set generation 

 
F3 Training the model 
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F4 Verify the Result 
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Appendix G MATLAB Code for thicken the fiber in image 
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Appendix H Diameter determination Python code 
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Appendix I Python Code for synthetic data generation 
## Generate training set  
import os 
import time 
import cv2 as cv 
import numpy as np 
 
# image height 
IMAGE_HEIGHT = 341 
# image width 
IMAGE_WIDTH = 341 
# background height 
LARGE_IMAGE_HEIGHT = 380 
# background width 
LARGE_IMAGE_WIDTH = 380 
# minimum line pixel number 
MIN_PIXEL = 1 
# maximum line pixel number 
MAX_PIXEL = 20 
# Image number for each line width 
PIXEL_IMAGE_NUMBER = 500 
# line path 
LINE_PATH = './line' 
# rectangle path 
RECTANGLE_PATH = './rectangle' 
# 12 common line (0-11) 
COMMON_LINE = 11 
# 5 random line (12-16) 
RANDOM_LINE = 16 
# pixel color minimum grayscale 
COLOR_PIXEL_START = 150 
# pixle color maximum grayscale 
COLOR_PIXEL_END = 255 
 
# return random location 
def get_position(min_number=0, max_number=255): 
    # obtain random number between [min_number,max_number) 
    return np.random.randint(min_number, max_number + 1) 
# top and bottom random rectangle 
def top_to_bottom(image, pixes, index): 
    # obtain random grayscale 
    color = get_position(COLOR_PIXEL_START, COLOR_PIXEL_END) 
    # obtain random length 
    if index >= COMMON_LINE: 
        # random rectangle width 
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        random_pixel = get_position(MIN_PIXEL, MAX_PIXEL) 
        # obtain random location 
        position = get_position(0, LARGE_IMAGE_WEIGHT - random_pixel) 
    else: 
        # default location 
        position = get_position(0, LARGE_IMAGE_WEIGHT - pixes) 
    # draw rectangle 

cv.rectangle(image, (position, 0), (position + pixes, LARGE_IMAGE_HEIGHT), (color, 
color), thickness=-1) 

 
# left and right random rectangle 
def left_to_right(image, pixels, index): 
    # obtain a random color 
    color = get_position(COLOR_PIXEL_START, COLOR_PIXEL_END) 
    # obtain random length 
    if index >= COMMON_LINE: 
        # random width 
        random_pixel = get_position(MIN_PIXEL, MAX_PIXEL) 
        # random location 
        position = get_position(0, LARGE_IMAGE_HEIGHT - random_pixel) 
    else: 
        # default location 
        position = get_position(0, LARGE_IMAGE_HEIGHT - pixels) 
    # draw rectangle 

cv.rectangle(image, (0, position), (LARGE_IMAGE_WEIGHT, position + pixels), (color, 
color), thickness=-1) 

 
# generate rectangle images 
def generate_rectangle_image(pixes): 
    # loop for generation 
    for pixel_number in range(PIXEL_IMAGE_NUMBER): 
        # generate black background 
        image = np.zeros((LARGE_IMAGE_WEIGHT, LARGE_IMAGE_HEIGHT), 'uint8') 
        # generate sequence numbers 
        index = np.arange(1, 31) 
        # shuffle the index 
        np.random.shuffle(index) 
        odd_index = 0 
        even_index = 0 
        # traverse index 
        for i in index: 
            if i % 2 == 0: 
                even_index += 1 
                top_to_bottom(image, pixes, even_index) 
            else: 
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                odd_index += 1 
                left_to_right(image, pixes, odd_index) 
        # get an angle for the lines 
        angle = get_position(-5, 5) 
        # get rotated matrix 
        M = cv.getRotationMatrix2D((LARGE_IMAGE_WEIGHT // 2, 
LARGE_IMAGE_WEIGHT // 2), angle, 1) 
        # Affine transformation 
        image = cv.warpAffine(image, M, (LARGE_IMAGE_WEIGHT, 
LARGE_IMAGE_HEIGHT)) 
        #get the center part of the image 
        image = image[20:20 + IMAGE_WIDTH, 20:20 + IMAGE_HEIGHT] 
        # save the image 
        cv.imwrite(os.path.join(RECTANGLE_PATH, '%d_%d.jpg' % (pixes, pixel_number)), 
image) 
 
# generate straight line image 
def generate_line_image(pixels): 
    for pixel_number in range(PIXEL_IMAGE_NUMBER): 
        # generate full black background 
        image = np.zeros((IMAGE_HEIGHT, IMAGE_WIDTH), 'uint8') 
        # Generate common lines 
        for i in range(COMMON_LINE): 
            x_start = get_position(pixels, IMAGE_WIDTH - pixels) 
            x_end = get_position(pixels, IMAGE_WIDTH - pixels) 
            y_start = get_position(pixels, IMAGE_WIDTH - pixels) 
            y_end = get_position(pixels, IMAGE_WIDTH - pixels) 
            # get random color 
            color = get_position(COLOR_PIXEL_START, COLOR_PIXEL_END) 
            #draw straight line 
            cv.line(image, (x_start, y_start), (x_end, y_end), (color, color), thickness=pixels, 
lineType=cv.LINE_AA) 
        # generate random width images 
        for i in range(COMMON_LINE, RANDOM_LINE): 
            # obtain random width for straight line 
            random_pixels = get_position(MIN_PIXEL, MAX_PIXEL) 
            # obtain random location of straight line 
            x_start = get_position(random_pixels, IMAGE_WIDTH - random_pixels) 
            x_end = get_position(random_pixels, IMAGE_WIDTH - random_pixels) 
            y_start = get_position(random_pixels, IMAGE_WIDTH - random_pixels) 
            y_end = get_position(random_pixels, IMAGE_WIDTH - random_pixels) 
            #obtain random grayscale 
            color = get_position(COLOR_PIXEL_START, COLOR_PIXEL_END) 
            #draw straight line 
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            cv.line(image, (x_start, y_start), (x_end, y_end), (color, color), 
thickness=random_pixels, 
                    lineType=cv.LINE_AA) 
        cv.imwrite(os.path.join(LINE_PATH, '%d_%d.jpg' % (pixels, pixel_number)), image) 
 
# main function 
def main(): 
    start = time.time() 
    #generate image 
    for i in range(MIN_PIXEL, MAX_PIXEL + 1): 
        print('Currently generating:', i) 
        # generate line 
        generate_line_image(i) 
        # generate rectangle image 
        generate_rectangle_image(i) 

print('Image generation complete, calculation time:', time.time() - start) 
 

if __name__ == '__main__': 
    main() 
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Appendix J MATLAB code for the determination of surface inter-fiber pores 
 
 
% Pore size analysis from given samples 
% Erqian Gao 
 
close all 
clear all 
% input your sample within the same working directory 
Input_img = imread(‘sample 1-01.tif’); 
Sample = imcrop(Input_img, [0 0 1024 691]); 
 
figure; 
imshow(Sample) 
 
Sample = medfilt2(Sample); 
Sample = imadjust(Sample); 
Sample = histeq(Sample); 
SE = strel(‘square’, 2); 
Sample = imclose(Sample, SE); 
Sample = imopen(Sample, SE); 
 
figure; 
imshow(Sample) 
 
scale = imcrop(Input_img, [320 719 94 23]); 
[scale, noOfRegions1] = bwlabel(scale, 4); 
measurements = regionprops(scale, ‘Area’, ‘PixelList’); 
area = cat(1, measurements.Area); 
[m1, index] = max(area); 
ruler = ismember(scale, index); 
coordinates = measurements.PixelList; 
x1 = coordinates(:,1); 
pixelDistance = range(x1) – 2; 
fprintf(‘The pixel length of the scale ruler is: %.2f pixels.\n’, pixelDistance) 
scalevalue = input(‘Enter the scale (μm): ‘); 
scale = pixelDistance/scalevalue; 
micrometreperpixel = scalevalue / pixelDistance; 
 
h = histogram(Sample); 
[inputsizex,inputsizey] = size(Sample); 
size_full = inputsizex * inputsizey; 
% check if you image is correct / the one you want 
% comment out if thats the correct one 
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%figure; imshow(Sample) 
 
% set up the threshold  
% the image is read in uint8 which means it ranges from 0 to 256 
% anything above the pick up threshold will be consider as a valid fiber 
 
% using Otsu’s method 
% you can determine the bin size 
% bin_size = 16; 
% [counts,x] = imhist(Sample, bin_size); 
% T = otsuthresh(counts); 
% stem(x,counts); 
% fprintf(‘The threshold is %f \n’,T*256); 
% Density_map = imbinarize(Sample,T); 
 
T = adaptthresh(Sample,0.8,’ForegroundPolarity’,’bright’,’Statistic’,’gaussian’); 
Density_map = imbinarize(Sample,T); 
 
% Density_map = imbinarize(Sample, ‘adaptive’); 
Density_map_revert = imcomplement(Density_map); 
figure; 
imshow(Density_map_revert) 
 
SE = strel(‘disk’, 2); 
Density_map_revert= imclose(Density_map_revert, SE); 
figure; 
imshow(Density_map_revert) 
 
Density_map_revert = imopen(Density_map_revert, SE); 
figure; 
imshow(Density_map_revert) 
 
Density_map_revert = bwmorph(Density_map_revert, ‘majority’); 
figure; 
imshow(Density_map_revert) 
 
Density_map_revert = bwmorph(Density_map_revert, ‘clean’); 
figure; 
imshow(Density_map_revert) 
 
[B,L,N,A] = bwboundaries(Density_map_revert,’noholes’); 
 
imshow(Density_map_revert); hold on; 
colors=[‘b’ ‘g’ ‘r’ ‘c’ ‘m’ ‘y’]; 
for k=1:length(B), 
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  boundary = B{k}; 
  cidx = mod(k,length(colors))+1; 
  plot(boundary(:,2), boundary(:,1),… 
       colors(cidx),’LineWidth’,2); 
 
  %randomize text position for better visibility 
  %rndRow = ceil(length(boundary)/(mod(rand*k,7)+1)); 
  %col = boundary(rndRow,2); row = boundary(rndRow,1); 
  %h = text(col+1, row-1, num2str(L(row,col))); 
  %set(h,’Color’,colors(cidx),’FontSize’,14,’FontWeight’,’bold’); 
End 

 
Total_hole_area = sum(sum(Density_map_revert)); 
Density_percentage = sum(Density_map, ‘all’) / size_full; 
average_hole_area = Total_hole_area * micrometreperpixel * micrometreperpixel / N; 
fprintf(‘The solidity is %f.\n’,Density_percentage); 
 
Area_chart = zeros(length(B), 3); 
current_cell = 0; 
while current_cell < length(B) 

current_x = B{current_cell + 1,1}(:,1); 
current_y = B{current_cell + 1,1}(:,2); 
current_cell_area = polyarea(current_x,current_y)* micrometreperpixel * 

micrometreperpixel; 
current_cell_area_pixel = polyarea(current_x,current_y); 
estimate_hole_diameter = 2 * sqrt(current_cell_area / pi); 
Area_chart(current_cell + 1, 1) = current_cell + 1; 
Area_chart(current_cell + 1, 2) = current_cell_area_pixel; 
Area_chart(current_cell + 1, 3) = current_cell_area; 
Area_chart(current_cell + 1, 4) = estimate_hole_diameter; 
current_cell = current_cell + 1; 

end 
 
average_cavity_diameter = mean(Area_chart(:,3)); 
fprintf(‘The average cavity diameter is %f (μm).\n’,average_cavity_diameter); 
fprintf(‘The average cavity area is %f (μm^2).\n’,average_hole_area); 
 
figure 
h_cavity_diameter = histogram(Area_chart(:,4)); 
xlabel(‘Cavity Diameter in μm’) 
ylabel(‘Count’) 
title(‘Histogram for Cavity Diameters’); 
h_cavity_diameter.NumBins = 100; 
figure 
h_cavity_area = histogram(Area_chart(:,3)); 
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xlabel(‘Cavity Area in μm^2’) 
ylabel(‘Count’) 
title(‘Histogram for Cavity Areas’); 
h_cavity_area.NumBins = 100; 
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Appendix K MATLAB code for the determination of intra-fiber pores 
 
%% Pore size determination on any given input photos 
%% The result would be in unit of pixels 
close all 
clear all 
 
% input specification 
file = ['image1pore.tif']; 
I = imread(file); 
 
% we are not using the scale this time 
% the Canny Sensitivity 
cannySensitivity = input(['\nEnter the Canny Border Detection sensitivity (0-0.999). \nThe 
lower the number, the easier matlab detects a region as an edge\n'... 
    +'-If set less than 0.2 then a blurring filter will be done on the image (for high res)\n'... 
    +'-If set above, no blurring is required (for low res)\nChoose 0.2 for high res images, and 
0.21-0.3 for low res images: ']); 
 
isBlur = false; 
if cannySensitivity <= 0.2 
    isBlur = true; 
end 
 
%% image preprocessing 
 
% step one: display the original image 
 
figure; 
imshow(I) 
 
% step two: Initial noise reduction for the grayscale image 
I = medfilt2(I); 
 
figure; 
imshow(I) 
 
% step three: Even out the contrast profile 
I = imadjust(I); 
I = histeq(I); 
 
figure; 
imshow(I) 
 
% step four: Noise Reduction 



 

155 

 

SE = strel('square', 2); 
I = imclose(I, SE); 
I = imopen(I, SE); 
 
figure; 
imshow(I) 
i = I; 
 
% step six: MAIN Noise Reduction 
SE = strel('disk', 2); 
I = imclose(I, SE); 
I = imopen(I, SE); 
I = bwmorph(I, 'majority'); 
I = bwmorph(I, 'clean'); 
 
BWreduced = I; 
 
 
%BW2 = bwmorph(I, 'skel', Inf); 
%skeleton = bwmorph(BW2, 'spur'); 
 
% Reverse colors of the binary image 
I = imcomplement(I); 
 
% step seven. Store the edge profile of the image and combine with the binary image into N 
if isBlur 
    
    i = gaussianFilter(i, 8); 
     
end  
 
i = edge(i, 'canny', cannySensitivity); 
 
% step eight: Perfect the boundaries by first dilating (to seal openings) and thinning 
% to reduce the edges to their more accurate thickness 
SE = strel('disk', 1); 
i = imdilate(i, SE); 
i = bwmorph(i, 'thin', Inf); 
 
N = I | i; 
 
figure; 
imshow(N) 
 
% step nine: Noise reduction. 'clean' gets rid of single pixel outliers 
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SE = strel('disk', 2); 
N = imclose(N, SE); 
N = bwmorph(N, 'clean'); 
N = imcomplement(N); 
N = bwmorph(N, 'clean'); 
N = imcomplement(N); 
 
withEdge = N; 
 
figure; 
imshow(withEdge) 
 
% 10. Diameter Measurement 
dist = bwdist(N, 'euclidean'); 
dist = dist*2; 
% 7. Create a skeleton image and use pruning to delete sporadic branches 
skeleton = imregionalmax(dist, 4); 
D = dist(find( skeleton == 1 )); 
 
 
% Display image with blue skeleton 
% convert to rgb first 
rgb = repmat(N, [1 1 3]); 
rgb = cat(3, N, N, N); 
rgb = repmat(double(N)./255,[1 1 3]); 
 
finalImage = N | skeleton; 
 
figure; 
imshow(finalImage) 
 
 
m = max(D); 
% 11a. Create the histogram from the measured distance data (radius x 2). 
% Find the ranges necessary for plotting 
range = 0:1:m-mod(m, 20)+20; 
noOfRanges = length(range) -1; 
frequency = zeros(1,noOfRanges); 
 
% Store the diameters in the ranges 
for i = 1:noOfRanges 
 
    frequency(i)=length(find( D > range(i) & D < range(i+1) )); 
     
end 
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%11.b Angle distribution 
[magnitude, direction] = imgradient(dist); 
angle = skeleton .* direction; 
% Find the negative values and convert to the corresponding positive value 
% (just add 180 degrees) 
negIndices = find(angle < 0); 
if ~isempty(negIndices) 
    angle(negIndices) = angle(negIndices) + 180; 
end 
 
% imgradient gets the angle towards the edge, but we need the angle along 
% the fiber, so just add 90 degrees 
angle = angle + 90; 
fixIndices = find(angle > 180); 
if ~isempty(fixIndices) 
    angle(fixIndices) = angle(fixIndices) + 180; 
end 
 
fprintf('\n\nThe average fiber orientation is %.2f degrees\n\n', mean(mean(angle))) 
 
nelements = sum(frequency); 
% Convert the frequency into a percentage 
frequency = frequency ./ nelements * 100; 
%frequency 
%range 
 
%% 
% 12. Plot the data 
 
figure('Position', [20 20 1200 760]), bar(range(2:end)-10 , frequency, 1) 
endlimit = floor(range(end)/20)*20; 
if mod(range(end), 20) > 0 
    endlimit = endlimit + 20; 
end 
 
set(gca, 'XTick', [0:60:endlimit]) 
 
xlabel('Diameter [pixel]') 
ylabel('Frequency [%]') 
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Appendix L MATLAB code for the determination of fiber porosity 
 
% input your sample within the same working directory 
Sample = imread('NF1.tif'); 
 
% for image that is not grayscale 
Sample = Sample(:, :, 1); 
 
h = histogram(Sample); 
[inputsizex,inputsizey] = size(Sample); 
size_full = inputsizex * inputsizey; 
% check if you image is correct / the one you want 
% comment out if thats the correct one 
 
figure; imshow(Sample) 
 
% set up the threshold  
% the image is read in uint8 which means it ranges from 0 to 256 
% anything above the pick up threshold will be consider as a valid fiber 
% Serval thresholding method is provided below. Comment out the one you do not want to 
use. 
 
% 1. using manually input threshold value 

pick_up_threshold = 85; 
Density_map = imbinarize(Sample,pick_up_threshold/256); 

% Density_map = Sample > pick_up_threshold; 
Density_map_revert = imcomplement(Density_map); 

 
% 2. using 85% average greyscale 
meanGL = mean(Sample(:)); 
pick_up_threshold = 0.85*meanGL; 
 
% 3. using Otsu's method: 
% the bin size can be changed 
bin_size = 256; 
[counts,x] = imhist(Sample, bin_size); 
T = otsuthresh(counts); 
stem(x,counts); 
fprintf('The threshold is %f \n',T*256); 
 
Density_map = imbinarize(Sample,T); 
Density_map_revert = imcomplement(Density_map); 
 
% Check the density map 
figure; imagesc(Density_map(:,:,1)) 
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Solidity = sum(Density_map, 'all') / size_full; 
fprintf('The solidity is %f \n',Solidity); 
fprintf('The porosity is %f', 1-Solidity); 
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Appendix M MATLAB code for the determination of Surface homogeneity 
 
close all 
clear all 
 
i=imread('2_adjust.jpg');  
i=rgb2gray(i);  
i=double(i);  
%sq1=var(i,0,1);  
%sq2=var(i,0,2); 
avg=mean2(i); 
[m,n]=size(i); 
s=0; 
for x=1:m 
    for y=1:n 
    s=s+(i(x,y)-avg)^2;  
    end 
end 
a1=var(i(:)); % Use the var function to calculate sd 
a2=s/(m*n-1); % definition of sd 
a3=(std2(i))^2; % use std2 function to get sd 
cv = a1 / avg; 
 
fprintf('The standard deviation is: %f.\n', a1); 
fprintf('The average is: %f.\n', avg); 
fprintf('The cv is: %f.\n', cv); 
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Appendix N Manual for Operation of the Automated Tools 
1.Porosity Calculation 
1.1 Manually Thresholding Method 
Put the SEM image in the same folder with the script 

 
Open Porosity_manual file in the folder 

 
Change the highlighted line to the name of the SEM image file (In this example the file name 
is sample_1_01) 
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Set up the threshold manually, the threshold value should be between 0~255 

 
Run the file (hit the run button or press F5) 
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Wait couple of minutes and get the results 
Three figures will appear 
Figure 1) 
The histogram of greyscale value of every pixel in the image 

 
Figure 2) 
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The original picture 

 
Figure 3) 
The thresholding result of the picture 

 
The porosity number will appear in the command window 



 

165 

 

 
1.2 85% Average Grey Scale Thresholding Method 
Put the SEM image in the same folder with the script 

 
Open Porosity_meanGL file in the folder 

 
Change the highlighted line to the name of the SEM image file (In this example the file name 
is sample_1_01) 
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Run the file (hit the run button or press F5) 

 
Wait couple of minutes and get the results 
Three figures will appear 
Figure 1) 
The histogram of greyscale value of every pixel in the image 
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Figure 2) 
The original picture 

 
Figure 3) 
The thresholding result of the picture 
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The porosity number will appear in the command window 

Put the SEM image in the same folder with the script 

 
Open Porosity_Ostu file in the folder 
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Change the highlighted line to the name of the SEM image file (In this example the file name 
is sample_1_01) 

 
Set up the bin size manually, the value should be between 16~ 256 and it will influence the 
binary result. More bins will result in a finer area division and usually a decrease in porosity. 



 

170 

 

 
Run the file (hit the run button or press F5) 

 
Wait couple of minutes and get the results 
Three figures will appear 
Figure 1) 
The histogram of greyscale value of every pixel in the image 
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Figure 2) 
The original picture 

 
Figure 3) 
The thresholding result of the picture 
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The porosity number will appear in the command window 

 
1.4  FAQ 
Do not to forget to cut the information bar before image processing 
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Image with information bar, cannot be used for this image processing 

 
Image without information bar, can be used for this image processing  
Sometimes the picture will be regarded as a color image instead of a grayscale image and 
result in error 
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When problems arise, the size of the ‘Sample’ file in the Workspace will be m*n*4 
The last number 4 means R, G, B and transparency. It means the image is regarded as a color 
image. 
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When that happens, enable the highlighted line and the problem will be solved. 

 
2. Inter-fiber Pore Diameter Calculation 
2.1 Inter-fiber Pore size analysis manual 
Put the SEM image in the same folder with the script 

 
Open Pore_size_analysis_manual file in the folder 
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Change the highlighted line to the name of the SEM image file (In this example the file name 
is sample_1_01) 

 
Set up the threshold manually, the threshold value should be between 0~255 

 
Run the file (hit the run button or press F5) 
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Enter the scale ruler in the command box (unit can be changed to nm if necessary) and press 
enter 

 
Wait couple of minutes and get the results 
Three figures will appear 
Figure 1) 
The figure of pore division 
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Figure 2) 
The histogram of Pore diameter 
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Figure 3) 
The histogram of Pore area 
 
The result value will appear in the command window 

 
The raw data located in the Area chart 
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Double click area chart, an excel with four columns will appears. The first column is the pore 
number, the second column is the pixel number, the third column is the pore area, the forth 
column is the pore diameter. This data file can be exported for post-processing. 
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Enable this part will make figure 1 pores has corresponding number on it 
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This procedure applies on all inter-fiber pores determination script 
 
3. Surface intra-fiber pore diameter determination 
 
Resize the image, only keep the porous fiber part. 

 
a) Original SEM image 
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b) Resized image  
Put the SEM image in the same folder with the script 

 
Open Pore_size_pixel file in the folder 
Change the highlighted line to the name of the SEM image file (In this example the file name 
is sample_1_01) 

 
Run the file 

 
Enter the Canny Border Detection sensitivity. The value 0.25 is used in this example. 
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Get the result 

 
The Diameter data can be found in a file named ‘D’ in the workspace. 
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4. Diameter determination tool 
Put the SEM image in the same folder with the script 
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Open dual_file_test file in the SEM Analysis folder: 

 
Change the highlighted line to the name of the SEM image file (In this example the file name 
is ‘1-04.tif’, ‘1-05.tif’). 

 
Run the file: 
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Enter the scale of the first images in the command window. 

 
Enter the Canny Border Detection sensitivity (0-0.999) for the first file 

 
Repeat the procedure for the second image 

 
Wait a few seconds and obtain the result. 
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The Diameter data for image 1 can be found in a file named ‘D1’ in the workspace. 
‘D2’ for image2 and ‘DCombined’ for combined diameter. 
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 5. Surface homogeneity determination 
Put the SEM image in the same folder with the script 

 
Open Uniformity file in the folder: 
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Change the highlighted line to the name of the image file name 

 
Run the script 

 
Obtained the result 
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6. UNet 

1) Libraries needed 
Tensorflow 
Keras greater than 1.0 
According to the original coder this code should be compatible with Python 
versions 2.7-3.5. 

2) Run main.py to train the model 
With proper hyperparameter, the accuracy can reach 90% within 10 epochs. 

3) Files 
Main.py is the main script. 
Data.py is the data augmentation script. 
Model.py is the construction of UNet model. 
unet_fiber.hdf5 is the trained model. 
Put the training data into the ‘Data’ folder. 
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7. Resnet 

1) Libraries needed 
Tensorflow 
Keras greater than 1.0 
OpenCV 
Numpy 
Time Module 
The code is written with Python versions 3.7. 

2) Run train.py to train the model 
3) Files 

Generate_image.py is the script for image generation 
Generate_train_test.py is the script for dataset division. 
Predice.py is the script for verify the result. 
Train.py is the script for model training. 
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