
Hardware Implementation of
Fixed-Point Decoder for Low-Density

Lattice Codes

by

Rachna Srivastava

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

c© Rachna Srivastava 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Dr. Matthieu Arzel
Professor, Mathematical & Electrical Engineering,
IMT-Atlantique Bretagne

Supervisor(s): Dr. Vincent C. Gaudet
Professor, Dept. of Electrical & Computer Engineering,
University of Waterloo

Dr. Patrick Mitran
Professor, Dept. of Electrical & Computer Engineering,
University of Waterloo

Internal Members: Dr. Amir Keyvan Khandani
Professor, Dept. of Electrical & Computer Engineering,
University of Waterloo

Dr. Mark Aagaard
Associate Professor, Dept. of Electrical & Computer Engineering,
University of Waterloo

Internal-External Member: Dr. William Melek
Professor, Dept. of Mechanical & Mechatronics Engineering,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Low-density lattice codes (LDLCs) are a special class of lattice codes that can be
decoded efficiently using iterative decoding and approach the capacity of the additive
white Gaussian noise (AWGN) channel. The construction and intended applications are
substantially different from that of more familiar error-correcting codes such as low-density
parity check (LDPC) codes, Polar, and Turbo codes. Lattice codes in general have shown
great theoretical promise to mitigate interference, possibly leading to significantly higher
rates between users in multi-user networks. Research on LDLCs has concentrated on
demonstrating the theoretically achievable performance limits of LDLCs, and until now
there has been no reported hardware implementation, mainly due to the complexity of
message-passing for LDLC decoding.

This thesis contributes to the hardware implementation of the LDLC decoding. We
present several fixed-point decoder implementations covering different parts of the archi-
tectural design space, on a field-programmable gate array (FPGA) device.

We first present the FPGA implementation of a fixed-point arithmetic LDLC decoder
where the Gaussian mixture messages that are exchanged during the iterative decoding pro-
cess are approximated to a single Gaussian. A detailed quantization study is performed
to find the minimum number of bits required for the fixed-point decoder implementation
to attain a frame-error-rate (FER) performance similar to floating-point. Efficient numer-
ical methods are used to approximate the non-linear functions required in the decoder.
A two-node serial LDLC decoder is implemented on an Intel Arria 10 FPGA as a hard-
ware proof-of-concept attaining a throughput of 440 Ksymbols/sec at high signal-to-noise
ratio (SNR). This throughput is obtained at clock frequency of 125 MHz and for a block
length of 1000. By exploiting the inherent parallelism of iterative decoding, several parallel
message processing blocks are then used to improve the throughput by a factor of 13×.
Finally, we propose a pipelined architecture where the decoder achieves a throughput of
10.5 Msymbols/sec, that is, ∼ 24× improvement over the serial decoder.

Then, we implement a multi-Gaussian decoder where the Gaussian mixture messages
exchanged during the decoding process have two components. We develop efficient tech-
niques to reduce the decoder complexity for hardware implementation, e.g., selecting the
strongest component from the Gaussian mixture as the final decision in iterative decod-
ing, and a simplified method for coefficient computation during the product operation at
the variable nodes. With a thorough quantization analysis and applying methods devised
to approximate the non-linear functions, we design the multi-Gaussian decoders in fixed-
point arithmetic. We first implemented a serial architecture with a single check node and

iv

a single variable node. Then, a partially parallel architecture with a single check node
and a variable node message processing block with two-stage pipelining is implemented to
achieve an effective parallelism of 5 variable nodes. The pipelined architecture achieves an
improvement of ∼ 0.75 dB in decoding performance over the single Gaussian decoder of
degree 3 with an overall design throughput of 550 Ksymbols/sec.

In the final part of the thesis, we further explore the design space and develop complex
LDLC decoder designs for higher degrees. We characterize the decoding performance
of these decoders and present the design throughputs for different architectures on the
target FPGA. Based on these results, we provide insights that will help users to select
the most suitable LDLC decoder for a particular application. However this is attained
with additional hardware cost and reduced design throughput. A single-Gaussian decoder
of degree 7 achieved an FER improvement of 0.75 dB over a single-Gaussian decoder of
degree 3 with a throughput of 3.03 Msymbols/sec. The multi-Gaussian Gaussian decoder
of degree 7 (with two components in the Gaussian mixture) attains 1.75 dB improvement
in FER over the multi-Gaussian decoder of degree 3, and its overall design throughput is
∼ 84 Ksymbols/sec. From a broader perspective, the LDLC decoders with higher degrees
and larger mixture messages provide a significant improvement in decoding performance.
For ultra-reliable applications, a multi-Gaussian decoder of degree 7 is most suitable while
for a very high throughput requirement single-Gaussian decoder of degree 3 is the best
choice.

We also characterize the performance of multi-Gaussian decoders where the Gaussian
mixture messages contain more than two components. Based on the results, the multi-
Gaussian decoder with mixture messages that contain 5 components gain approximately
∼ 0.1 − 0.2 dB (for degree 3 and 7) and ∼ 0.3 dB (for degree 5) over multi-Gaussian
decoder where mixture messages have only two components.

v

Acknowledgements

I would like to take this opportunity to thank the people who are very important in
my journey to complete this research work and thesis.

Foremost, I must thank my supervisors Professor Gaudet and Professor Mitran for their
continuous support and guidance in my Ph.D. study and research. Their smart inputs,
excellent guidance and constant encouragement helped me immensely during my research
and writing of the thesis. I have learned so much from working with them and I truly believe
these learnings will help me to succeed in my future endeavours. Their expert technical
supervision is truly motivating for any student. I highly recommend Prof. Gaudet and
Prof. Mitran as supervisors.

I would like to thank my all the committee members, Professor Khandani, Professor
Melek, Professor Aagaard for their valuable inputs during my comprehensive exam and
thereafter, for taking the time to read my thesis and attend my defense. A special thanks
to Prof. Aagaard, for finding time to discuss the data flow and architectural optimizations
for the decoder hardware. These insightful discussions were very important to improve the
decoder architecture in order to achieve higher design throughput. Furthermore, I would
like to express my gratitude to Prof. Matthieu Arzel for accepting to serve as the external
examiner for my thesis defense. I must thank all the fellow students who contributed
to my learning and a joyful graduate experience, including Meysam Shahrbaf, Subhajit,
Ahmed Wagdy, Hai and Kazem. I am also thankful to the ECE computer support staff,
and administrative staff at the University of Waterloo. In particular, I am grateful to Phil
Regier for all of his help with CAD tool support. I would like to thank the Natural Sciences
and Engineering Research Council of Canada (NSERC) for the funding provided for this
research and CMC Microsystems for providing the essential CAD tools.

I would like to thank my family members; my parents, parents-in-law, brothers and
sisters for their unceasing support and encouragement. Finally, I would like to thank you
my husband, Prateek and my son, Daksh who have experienced several ups and downs
with me for last several years. Without their tremendous understanding and constant
motivation, it would be impossible for me to complete my PhD journey.

vi

Dedication

To

my PAPA,

my husband, Prateek

& my son, Daksh.

Table of Contents

List of Figures xii

List of Tables xxi

1 Introduction 1

1.1 Motivation and Contributions . 2

1.2 Thesis Outline . 3

2 Literature Survey 5

2.1 Channel Capacity and Channel Codes . 5

2.1.1 Codes for Binary Channels . 5

2.1.2 Codes for Additive White Gaussian Noise Channels 6

2.2 LDLC and Related Codes . 6

2.2.1 Block Codes . 6

2.2.2 Low-Density Parity-Check Codes 9

2.2.3 Low-Density Lattice Codes . 12

2.3 Parameters for LDLC Code Design . 15

2.3.1 Constraint Matrix . 15

2.3.2 Distance from Channel Capacity 17

2.3.3 Generating Sequence . 17

2.4 LDLC Decoding for the Additive White Gaussian Noise Channel 18

viii

2.5 LDLC Decoders in the Literature . 24

2.5.1 Sampled PDF LDLC decoder . 25

2.5.2 Parametric LDLC decoders . 25

2.6 Summary . 34

3 Single-Gaussian LDLC Decoder Implementation 36

3.1 Selection of an LDLC Decoder for Hardware Implementation 36

3.2 Iterative Decoding for the single-Gaussian LDLC decoder 40

3.2.1 Initialization . 40

3.2.2 Basic Iteration: Check Node Message 41

3.2.3 Basic Iteration: Variable Node Message 42

3.2.4 Final Decision . 45

3.3 Frame Error Rate to Measure the Decoder Performance 45

3.4 Optimizations to Reduce the Decoder Complexity 46

3.4.1 Fixed-Point Arithmetic for Hardware Implementation 46

3.4.2 Minimum Variance . 47

3.4.3 Variances Measured with Respect to the Channel Variance 48

3.4.4 Optimizations for the Coefficient Computation at the Variable nodes 48

3.4.5 Number of Decoding Iterations . 50

3.5 Fixed-Point Quantization Study . 50

3.5.1 Approximation of Non-Linear Functions 50

3.5.2 Optimal Word Length and Newton-Raphson (NR) Iterations for Fixed-
point decoder . 54

3.6 LDLC Decoder FPGA Implementation . 57

3.7 Summary . 65

ix

4 Multi-Gaussian LDLC Decoder 72

4.1 Selection of an Appropriate Decoder for the Hardware Implementation . . 73

4.2 Iterative Decoding for Multi-Gaussian LDLC Decoder (M = 2) 73

4.2.1 Initialization . 73

4.2.2 Basic Iteration: Check Node Message 74

4.2.3 Basic Iteration: Variable Node Message 76

4.2.4 Final Decision . 77

4.3 Frame Error Rate to Measure the Decoder Performance 78

4.4 Optimizations to Reduce the Decoder Complexity 80

4.4.1 Fixed-point Arithmetic for Hardware Implementation 80

4.4.2 Number of Decoding Iterations . 81

4.4.3 Final Decision in Iterative Decoding Algorithm 82

4.4.4 Minimum Variance . 83

4.4.5 Variance Measured with Respect to the Channel Variance 84

4.4.6 Optimizations in the Coefficient Computation at the Variable Nodes 84

4.5 Fixed Point Quantization Study . 85

4.5.1 Approximation of Non-Linear Functions 85

4.5.2 Optimal word length and Newton-Raphson (NR) iterations for fixed-
point decoder . 87

4.6 LDLC Decoder FPGA Implementation . 87

4.7 Comparison of Single-Gaussian and Multi-Gaussian LDLC Decoder (M = 2) 93

4.8 Summary . 94

5 Pushing the Design Limits 102

5.1 Single-Gaussian Decoders . 103

5.1.1 Single-Gaussian Decoder, d = 5 . 103

5.1.2 Single-Gaussian Decoder, d = 7 . 105

5.2 Performance and Throughput Comparison of Single-Gaussian Decoders . . 107

x

5.3 Multi-Gaussian Decoders . 108

5.3.1 Multi-Gaussian Decoder, d = 5 and M = 2 108

5.3.2 Multi-Gaussian Decoder, d = 7 and M = 2 110

5.3.3 Multi-Gaussian Decoder, d = 3 and M = 5 111

5.3.4 Multi-Gaussian Decoder, d = 5 and M = 5 111

5.3.5 Multi-Gaussian Decoder, d = 7 and M = 5 112

5.4 Performance and Throughput Comparisons 112

5.4.1 Single-Gaussian vs. Multi-Gaussian Decoders 112

5.5 Summary . 113

6 Concluding Remarks 135

6.1 Summary of Contributions and Conclusions 135

6.2 Directions for Future Work . 137

References 139

APPENDICES 147

A Derivation of the Squared Distance Equation 148

B Newton Raphson Approximation for a Reciprocal Function 151

C Example Exponential Approximation in Fixed Point Representation 152

xi

List of Figures

2.1 Schematic of a general communication channel 7

2.2 Bipartite graph representation of the example (4,8) LDPC parity-check matrix. 11

2.3 Graphical illustration of an example 2-dimensional lattice with basis vectors
g
1

and g
2
. 14

2.4 Initialization - a variable node sends the received channel PDF to all the
connected check nodes. 20

2.5 Check node operation - the outgoing message on the edge with weight h3
is computed with all the incoming messages, except the one on edge with
weight h3. 22

2.6 Variable node operation - the outgoing message on the edge with weight h3 is
computed with channel message and all the incoming check node messages,
except the one on edge with weight h3. 23

2.7 Final decision in Iterative decoding. 24

2.8 Symbol error rate versus distance from capacity, −10 log 102πe2 (in dB) of
the sampled PDF LDLC decoder for block length, n = 100, d = 5 and
n = 1000, d = 7 with 200 decoding iterations simulated by Sommer et al. . 26

2.9 Symbol error rate vs. distance from capacity, −10 log10 2πeσ2 (in dB) for
the parametric LDLC decoder using Gaussian mixture reduction method
based on greedy algorithm with n = 1000, d = 7 and number of decoding
iterations = 200. 32

2.10 Symbol error rate vs. the distance from capacity, −10 log10 2πeσ2, (in dB)
using Gaussian mixture reduction method based on merging Gaussians in a
range for n = 1000, d = 7 with number of decoding iterations = 200. 34

xii

3.1 Comparison of symbol error rate vs. distance from capacity, −10 log10 2πeσ2

(in dB) between the sampled PDF decoder for block length, n = 1000, d = 7
and a parametric decoder for n = 1000, number of components (M) = 10
and d = 6. 38

3.2 Comparison of performance between the sampled PDF and parametric LDLC
decoders for block length 100 and 1000. 39

3.3 Initialization in iterative decoding - a variable node sends the message re-
ceived from the channel to all connected check nodes. 41

3.4 Illustration of all the incoming messages, and the outgoing message along
the edge with weight h3 at a check node. The outgoing message on the edge
with weight h3 is obtained by convolving all the incoming messages except
the one on this edge. 42

3.5 Illustration of all the incoming messages and the outgoing message along the
edge with weight h3 at a variable node, xk. Here the outgoing message on
the edge with weight h3 is obtained by multiplying all the incoming messages
except the one on this edge. 43

3.6 Final decision at variable node xk - channel message and all the incoming
check node messages are multiplied (without omitting any). 44

3.7 Comparison of symbol error rate between single-Gaussian LDLC decoder
and parametric decoder, M = 1 for n = 100 and d=3. The corresponding
frame error rate for the single-Gaussian LDLC decoder is also shown. . . . 47

3.8 Frame error rate of the single-Gaussian LDLC decoder for n = 1000 and
d = 3. 48

3.9 Frame error rate of the single-Gaussian decoder with different minVar values
for n = 1000 and d = 3. 49

3.10 Performance of the single-Gaussian decoder for different number of decoding
iterations at distance from capacity of 3.5 dB and 5 dB for n = 1000 and
d = 3. 51

3.11 Flow-chart to demonstrate the division function approximation in fixed-
point arithmetic using Newton-Raphson (NR) method, used at the variable
nodes. 52

3.12 Diagram to show the relationship between a and I0, I1 and I2 as used in the
approximation of the exponential function in fixed-point arithmetic at the
variable nodes. 55

xiii

3.13 FER for different numbers of fractional bits and Newton-Raphson iterations
for n = 1000, d = 3 where −10 log10 2πeσ2 is distance from the theoretical
noise limit. 56

3.14 Frame error rate for different numbers of integer bits and two Newton-
Raphson iterations with n = 1000, d = 3. 56

3.15 Effect of removing small coefficients from Gaussian mixture in floating point
LDLC decoder at −10 log10 2πeσ2 = 4 dB, n = 1000 and d = 3. 57

3.16 The design and verification flow. 58

3.17 Block diagram of a two-node serial single-Gaussian LDLC decoder with a
single check node and a single variable node (architecture A). 60

3.18 Block diagram for the mean computation of the outgoing messages at the
check node. The mean is computed by first multiplying each incoming mes-
sage with its respective edge weight (except the one on the outgoing edge),
summing the results and further dividing the result of the summation by
the outgoing edge weight and a sign flip. 61

3.19 Block diagram for the variance computation of the outgoing check node
messages. 62

3.20 Timing diagram of the check node message processing block in architecture
A , B and C. 63

3.21 High-level architecture of a variable node unit (VNU) in single-Gaussian de-
coder with d = 3. At a variable node, xk, the incoming check node messages
are periodically extended, FW` and BW` for ` = 1, 2 . . . , d are computed
in FWBW computation block and finally the outgoing variable node messages,
(ml, Vl) for ` = 1, 2 . . . , d and estimate for transmitted codeword, ŵk is ob-
tained in VOut computation block. 64

3.22 Timing diagram of the variable node message processing block in architec-
ture A. 65

3.23 Top-level block diagram of the LDLC decoder with one check node and 20
parallel variable node units (architecture B). 66

3.24 Timing diagram of the variable node message processing block in architec-
ture B. 67

3.25 High-level diagram of the variable node message processing block used in ar-
chitecture C, that consists of 5 VNUCluster blocks. The two stage pipelining
used in VNUCluster blocks is shown specifically for VNUCluster0. 68

xiv

3.26 Timing diagram of VNUCluster block used in variable node message pro-
cessing block of architecture C. The waveforms are shown particularly for
VNUCluster0 block. 69

3.27 Top-level architecture for the LDLC decoder with a single check node and
with two-stage pipelining to achieve an effective parallelism equivalent to 50
variable nodes (architecture C). 70

3.28 Throughput comparison of different decoder architectures for n = 1000 and
clock frequency of 125 MHz. 71

4.1 A variable node, xk sends the message received from the channel to all
connected check nodes. 74

4.2 Illustration of all the incoming and the outgoing messages at a check node
in multi-Gaussian decoder with M = 2 and d = 3. 74

4.3 All the incoming and outgoing messages at a variable node in multi-Gaussian
decoder with M = 2 and d = 3. 75

4.4 For final decision, the channel message and all the incoming messages to a
variable node, xk, are multiplied. 75

4.5 Frame error rate and symbol error rate performance of a multi-Gaussian
LDLC decoder (M = 2) for block length n = 1000 and d = 7. 78

4.6 Frame error rate and symbol error rate performance of a multi-Gaussian
LDLC decoder (M = 2) for block length n = 1000, d = 3, and 200 decoding
iterations. 79

4.7 Frame error rate of the multi-Gaussian decoder (floating-point with no ap-
proximations) versus number of decoding iterations for n = 1000 and d = 3
at distance from capacity of 2 dB ad 4 dB. 80

4.8 Frame error rate of a multi-Gaussian decoder (floating-point with no ap-
proximations) for n = 1000 and d = 3 with 200 and 30 decoding iterations. 81

4.9 Frame error rate of a multi-Gaussian decoder using a method for final deci-
sion (in iterative decoding) where the mean of the strongest component in
the Gaussian mixture is considered as the estimated codeword symbol, ŵk,
for n = 1000, d = 3 and 30 decoding iterations. 82

4.10 Frame error rate of a multi-Gaussian decoder (floating-point) with different
minimum variance, minVar values for n = 1000 and d = 3. 83

xv

4.11 Frame error rate of a multi-Gaussian decoder (floating-point) for n = 1000
and d = 3 when 1

2π
√

(Ṽ1+Ṽ2)
component in the coefficient computation, i.e.,

(3.6) is approximated to a constant. 84

4.12 Diagram to show the relationship between a and I0, I1 and I2, as used in
the approximation of the exponential function in fixed-point arithmetic at
the variable nodes in the multi-Gaussian decoder. 87

4.13 FER for different numbers of fractional bits and two NR iterations for n =
1000 and d = 3 where −10 log10 2πeσ2 is distance from the theoretical noise
limit. 88

4.14 FER performance of the multi-Gaussian decoder with different numbers of
integer bits and two NR iterations for n = 1000 and d = 3. 89

4.15 Block diagram of a two-node serial multi-Gaussian LDLC decoder with one
single check node unit, CNU and one single variable node unit, VNU (archi-
tecture D). 90

4.16 High-level architecture of a check node unit (CNU) in the multi-Gaussian
decoder of degree 3. 91

4.17 Timing diagram of the check node message processing block in both archi-
tectures D and E of the multi-Gaussian decoder. 92

4.18 High-level architecture of a variable node unit (VNU) in multi-Gaussian de-
coder of degree 3. 93

4.19 Timing diagram of the variable node message processing block in architec-
ture D of the multi-Gaussian decoder. 94

4.20 Throughput of the multi-Gaussian decoder (degree 3) with a single check
node and a single variable node. 95

4.21 Block diagram of a partially parallel multi-Gaussian LDLC decoder with one
single check node and variable node message processing block with pipelining
to achieve an effective parallelism equivalent to 5 variable nodes (architecture
E). 97

4.22 Block diagram of two-stage pipelining used in the variable node message
processing block (architecture E) of the multi-Gaussian decoder 98

4.23 Timing diagram of the variable node message processing block in architec-
ture E of the multi-Gaussian decoder. 99

xvi

4.24 Throughput comparison of architectures D and E (of the multi-Gaussian
LDLC decoder) for block length 1000 and degree 3. 100

4.25 FER comparison of the single-Gaussian and multi-Gaussian fixed-point LDLC
decoder (M = 2) implementations for block length of 1000 and degree 3. . 101

5.1 Performance of the floating-point single-Gaussian decoder for different num-
ber of decoding iterations at distance from capacity of 3.5 dB and 5 dB,
n = 1000 and d = 5. 104

5.2 Frame error rate comparison between the floating-point decoder (without
approximations) and the fixed-point single-Gaussian decoder for different
numbers of fractional bits and two NR iterations with n = 1000 and d = 5. 105

5.3 Frame error rate of single-Gaussian decoder for different numbers of integer
bits and two NR iterations with n = 1000, d = 5 (floating-point decoder
performance is without any approximation). 106

5.4 Top-level architecture for single-Gaussian LDLC decoder of degree 5, with a
single check node and two-stage pipelining to achieve an effective parallelism
equivalent to 20 variable nodes. 107

5.5 Timing diagram for the check node message processing block in single-
Gaussian decoder of degree 5. 108

5.6 Timing diagram for the variable node message processing block in single-
Gaussian decoder of degree 5. The waveforms are shown specifically for
VNUCluster0 block. 114

5.7 Throughput of the single-Gaussian decoder of degree 5 for block length 1000.115

5.8 Performance of the single-Gaussian decoder (floating-point) versus number
of decoding iterations at distance from capacity of 3.5 dB and 5 dB for
n = 1000 and d = 7. 115

5.9 FER comparison of floating-point (without approximations) and fixed-point
single-Gaussian decoder for different Wf and two NR iterations with n =
1000 and d = 7. 116

5.10 FER of single-Gaussian decoder for different Wi and two NR iterations with
n = 1000, d = 7 (floating-point decoder is without any approximation). . 116

5.11 Top-level architecture for the fixed-point single-Gaussian LDLC decoder of
degree 7, with a single check node and two-stage pipelining to achieve an
effective parallelism equivalent to 20 variable nodes. 117

xvii

5.12 Timing diagram for the check node message processing block in single-
Gaussian decoder of degree 7. 117

5.13 Timing diagram for the variable node message processing block in single-
Gaussian decoder of degree 7. The waveforms are shown specifically for
VNUCluster0 block. 118

5.14 Throughput of fixed-point single-Gaussian decoder with n = 1000 and d = 7.119

5.15 FER and throughput comparison for the fixed-point single-Gaussian de-
coders of degree 3, 5 and 7 with block length 1000. 119

5.16 FER of the floating-point multi-Gaussian decoder at distance from capacity
of 2.5 dB and 4 dB for different numbers of decoding iterations with n = 1000
and d = 5. 120

5.17 FER of the floating-point (without approximations) and fixed-point multi-
Gaussian decoder for different Wf and two NR iterations with n = 1000 and
d = 5. 120

5.18 FER performance of the multi-Gaussian decoder with different Wi and two
NR iterations for n = 1000 and d = 5 (floating-point decoder performance
is without any approximation). 121

5.19 Top-level architecture of the fixed-point multi-Gaussian LDLC decoder (de-
gree, 5) with a single check node and with two-stage pipelining to achieve
an effective parallelism equivalent to 2 variable nodes. 121

5.20 Timing diagram of the check node message processing block in multi-Gaussian
decoder (degree 5). 122

5.21 Timing diagram of the variable node message processing block for multi-
Gaussian decoder (degree 5). 123

5.22 Throughput of the fixed-point multi-Gaussian decoder (M=2) with degree
5 and block length 1000. 124

5.23 Performance of floating-point multi-Gaussian decoder (d=7, n=1000, M=2)
for different number of decoding iterations at distance from capacity of 2.5
dB and 4 dB. 124

5.24 FER of the floating-point (without approximations) and the fixed-point
multi-Gaussian decoder for different Wf and two NR iterations for d = 7
and n = 1000. 125

xviii

5.25 FER of the multi-Gaussian decoder for different Wi and two NR iterations
with degree 7 and n = 1000 (floating-point decoder is without approximation).125

5.26 Block diagram of a two-node serial fixed-point multi-Gaussian LDLC de-
coder of degree 7 (one single check node and one single variable node). . . 126

5.27 Timing diagram of the check node message processing block in multi-Gaussian
decoder of degree 7. 127

5.28 Timing diagram of the variable node message processing block for multi-
Gaussian decoder of degree 7. 127

5.29 Throughput of the fixed-point multi-Gaussian decoder of degree 7 for block
length 1000. 128

5.30 Performance of the multi-Gaussian decoder for different number of decoding
iterations at distance from capacity of 2.5 dB and 4 dB with M = 5, d = 3
and n = 1000. 128

5.31 FER of the floating-point (without approximations) and the fixed-point
multi-Gaussian decoder (M=5) for different Wf and two NR iterations with
d = 3 and n = 1000. 129

5.32 FER of multi-Gaussian decoder (M=5) for different Wi and two NR itera-
tions with d = 3, n = 1000 (floating-point performance is without approxi-
mations). 129

5.33 Performance of the multi-Gaussian decoder for different number of decoding
iterations at distance from capacity of 2.5 dB and 4 dB with M = 5, d = 5
and n = 1000. 130

5.34 FER of the floating-point (without approximations) and fixed-point multi-
Gaussian decoder (M=5) for different Wf and two NR iterations for n =
1000, d = 5. 130

5.35 FER of the multi-Gaussian decoder (M=5) for different Wi and two NR
iterations with n = 1000 and d = 5 (floating-point performance is without
approximation). 131

5.36 Performance of the multi-Gaussian decoder for different number of decoding
iterations at distance from capacity of 2.5 dB and 4 dB with M = 5, d = 7
and n = 1000. 131

5.37 FER of the floating-point (without approximations) and the fixed-point
multi-Gaussian decoder (M=5) for different Wf and two NR iterations for
d = 7, n = 1000. 132

xix

5.38 FER of the multi-Gaussian decoder (M=5) for different Wi and two NR
iterations with d = 7, n = 1000 (floating-point performance is without
approximation). 132

5.39 FER and throughput comparison of the fixed-point multi-Gaussian decoders
with degree 3 , 5 and 7 for block length 1000 and M=2. 133

5.40 FER of the multi-Gaussian decoder with larger Gaussian mixtures exchanged
in iterative decoding (i.e., M = 5) for degree 3, 5 , 7 and n = 1000. 133

5.41 Comparison of the frame error rate and throughput of the fixed-point single-
Gaussian and multi-Gaussian decoders for block length 1000. 134

xx

List of Tables

3.1 Performance and computational complexity of various parametric LDLC
decoders with respect to the sampled PDF decoder for different block lengths. 40

3.2 Resource requirements of the variable node message processing block in ar-
chitecture A, B and C. 63

3.3 Throughput (clock cycles/message) of the variable node message processing
block in the architectures A, B and C. 67

3.4 Resource usage of different architectures for single-Gaussian decoder 70

4.1 Resource usage of the LDLC decoder, check node and variable node pro-
cessing blocks in architecture D. 96

4.2 Resource usage of the decoder, check node and variable node processing
blocks in architecture E. 96

5.1 Resource usage of single-Gaussian decoder (M = 1), d = 5. 109

5.2 Resource usage of single-Gaussian decoder (M = 1), d = 7. 109

5.3 Resource usage of multi-Gaussian decoder, d = 5 and M = 2. 110

5.4 Resource usage of multi-Gaussian decoder, d = 7 and M = 2. 111

5.5 Performance and Throughput Comparison of LDLC Decoders. 113

C.1 Look up table for exp(−I12P1/2) . 154

xxi

Chapter 1

Introduction

Over the past decade, there has been significant growth in the number of connected devices.
Industry analysis suggests that the number of wireless devices is expected to grow to 29.3
billion by 2023, i.e., an increase of more than a 40% compared to 2020 [1, 2].

Widespread network connectivity, with the expectation of reliability and security, poses
new challenges for the wireless industry. The increasing demand to support an even larger
number of mobile wireless devices with limited bandwidth resources pushes the need for
multi-user networks. In these networks, when multiple users transmit and receive data
over a shared frequency band simultaneously, multi-user signal interference is observed.
Due to this interference as well as channel noise, the transmitted data is often not received
correctly. Therefore, to transmit data reliably researchers strive to find new error correcting
codes (ECCs) with efficient decoding techniques [3–5].

Low-density parity check (LDPC) codes have attained tremendous popularity as the
most powerful and practical class of codes implemented in modern wireless networks. The
success of LDPC codes can be largely attributed to their capacity approaching performance
and relatively low implementation complexity.

While LDPC codes are a class of linear codes over binary (and other finite) alphabets,
there is another class of linear codes over the real numbers analogous to LDPC codes,
termed low-density lattice codes (LDLCs). LDLCs are continuous-alphabet codes intro-
duced by Sommer et al. [6]. These codes have gained attention as many recent coding
techniques using lattices have shown to be effective in mitigating multi-user channel inter-
ference.

The sparse (low-density) H-matrix that is used for the code construction also renders

1

iterative decoding (also called message-passing) an efficient decoding method [7,8] similar
to LDPC codes.

However, the primary focus of LDLC research so far has been to demonstrate the theo-
retically achievable performance limits of LDLCs [7,9–25]. Not much work has been done
towards the hardware implementation of LDLC decoding. This is mainly because in it-
erative decoding of LDLCs, the messages that are passed are continuous functions (e.g.,
Gaussian mixtures for the AWGN channel). In the literature, to demonstrate the theo-
retical performance of LDLCs, the continuous functions are either sampled and quantized
or represented as Gaussian mixtures using parameter lists. However, even with all these
reduction strategies, LDLC decoding is challenging to implement in hardware.

1.1 Motivation and Contributions

As practical hardware is key to leverage the proven capabilities of LDLCs, the high-level
aim of this thesis is to contribute towards the hardware implementation of LDLC decoding.

More specifically, in this thesis, we present several fixed-point decoder implementations
covering different parts of the architectural design space on a field-programmable gate array
(FPGA) device. First we describe the fundamental problems encountered on the way to
achieving a practical decoder hardware implementation along with a detailed study of the
approaches to address those complexities. Then, we demonstrate a proof-of-concept single-
Gaussian LDLC decoder on an Intel FPGA. Equipped with the knowledge obtained from
single-Gaussian LDLC decoder implementations, we extend the work and achieve a hard-
ware implementation for a multi-Gaussian LDLC decoder. Multi-Gaussian LDLC decoding
poses significantly higher design challenges; nonetheless, improved decoding performance is
achieved although at a cost of reduced throughput. The multi-Gaussian decoder achieves
a performance close to that of [7], where the continuous messages are sampled in 1024
discrete data-points.

The contributions of this thesis are as follows:

In Chapter 3, we study the design and hardware implementation details of a fixed-
point single-Gaussian LDLC decoder of degree 3. In this iterative decoder, the exchanged
messages are single Gaussians; the Gaussian-mixture messages generated during the inter-
mediate steps in the iterative decoding are reduced to a single Gaussian using a moment-
matching method in each decoding iteration [12].

We also perform a comprehensive quantization analysis to find the minimum word
length for fixed-point arithmetic representation of the values in the iterative decoding.

2

Efficient numerical methods are devised to approximate the required non-linear functions,
i.e., division and exponentiation, and subsequently characterize their effect on decoder
performance.

We then evaluate different hardware architectures and design trade-offs for the single-
Gaussian LDLC decoder. A serial architecture with a single check node and a single
variable node is implemented as a baseline architecture to provide a proof-of-concept im-
plementation for LDLC decoding in FPGA. To exploit the parallelism of iterative decoding,
a decoder architecture with a single check node and 20 variable nodes is included. In order
to maximize the re-use of the FPGA resources and enhance the throughput, an LDLC
decoder with a single check node and with pipelining to achieve an effective parallelism
equivalent to 50 variable nodes is also implemented. Altogether, we can achieve peak
decoding at the rate of 10.5 Msymbols/sec on a single Arria 10 FPGA.

In Chapter 4, we study the hardware implementation details of a multi-Gaussian LDLC
decoder of degree 3 on the target FPGA. Here the messages exchanged in the decoder are
the parametric representation of the Gaussian mixtures instead of a single Gaussian [9,11].

Potential Gaussian mixture reduction methods are compared in terms of computational
complexity versus frame error rate (FER) performance, and a suitable method is chosen
to reduce a Gaussian mixture to a smaller mixture with a fixed number of components
in each decoding iteration. Possible design optimizations to reduce the decoder design
complexity in fixed-point arithmetic, and the resulting effect on the decoding performance,
are investigated.

A study of possible decoder architectures on target FPGA device is presented along
with resource requirements and design throughput details. We further compare single-
Gaussian and multi-Gaussian decoders of degree 3 for decoding performance and design
throughput on a target FPGA.

In Chapter 5, we push the design limits for the LDLC decoders even further. We
implement single-Gaussian and multi-Gaussian LDLC decoders on FPGA devices for a
broader range of design parameters, e.g., degrees 5 and 7, and with larger Gaussian mix-
ture messages that contain more than two components. The results obtained from these
implementations play a vital role to determine an appropriate LDLC decoder for a certain
application.

1.2 Thesis Outline

The rest of this thesis is organized as follows.

3

Chapter 2 provides the basic definitions of lattice codes along with the constraints and
properties of low-density lattice codes. The basic iterative decoding algorithm for LDLCs,
where the messages exchanged in decoding are continuous functions, is included. It also
presents a summary of the LDLC decoders published in the literature and compares their
empirical performance.

Chapter 3 presents the implementation details for a single-Gaussian LDLC decoder
of degree 3 on a target FPGA device. A study of the optimization techniques to reduce
decoder complexity, a detailed quantization analysis of the fixed-point arithmetic, and
efficient techniques to implement the required non-linear functions are described.

Chapter 4 presents the hardware implementation details for a multi-Gaussian LDLC
decoder with degree 3. Chapter 4 also provides a detailed comparison of the single-Gaussian
and the multi-Gaussian decoder with degree 3 and block length of 1000.

In Chapter 5, we push the design space boundaries on the target FPGA and present
the single-Gaussian and multi-Gaussian decoder implementations for degrees 5 and 7 and
also present multi-Gaussian decoders where the Gaussian mixture messages comprise more
than two components.

Finally, Chapter 6 summarizes the contributions of this thesis and outlines the design
aspects that were not explored in the thesis but that would constitute a valuable extension
as future work.

4

Chapter 2

Literature Survey

2.1 Channel Capacity and Channel Codes

Shannon’s channel capacity theorem [26] shows that provided the rate of transmission is
less than a particular rate called channel capacity it is possible, in principle to transmit
information with arbitrarily small probability of error.

Codes that allow data transmission at the rates near channel capacity and with low
probability of error are often referred to as ‘near Shannon-limit codes’ or (sometimes inac-
curately as) ‘capacity achieving codes’.

2.1.1 Codes for Binary Channels

While Shannon’s capacity theorem showed that long random codebooks can achieve the
capacity of binary (e.g., binary symmetric) and finite alphabet channels, thereafter, it was
discovered that capacity could also be achieved using structured linear codes, where each
codeword is a linear combination of a set of basis vectors.

Among the class of linear binary codes, turbo codes [27] and low-density parity-check
codes are codes which allow efficient iterative decoding [28–31]. Specifically, turbo codes
and LDPC codes are regarded as near Shannon-limit error-correcting-codes with practical
decoding algorithms. Turbo codes use concatenated convolutional encoders and inter-
leavers, whereas LDPC codes are block codes that use a sparse parity-check matrix for

5

encoding. The sparse nature of the parity-check matrix in LDPC codes provides the flexi-
bility to perform decoding operations in parallel; this is very advantageous for a high-speed
and efficient hardware implementation of a decoder.

2.1.2 Codes for Additive White Gaussian Noise Channels

Shannon showed that for the additive white Gaussian noise (AWGN) channel, continuous
alphabet codes with random codebooks where each code letter is drawn i.i.d. according
to a Gaussian-distribution can approach the capacity of the channel [32]. In the class of
codes for the AWGN channel, lattice codes are structured codes that are the Euclidean
space analogue of linear block codes and have gained much attention lately as they can
also, in principle, achieve AWGN channel capacity [33, 34] and many coding techniques
using lattices are shown to be effective in mitigating multi-user channel interference [4,35].
For example, among lattice based decoding strategies, compute-and-forward first recovers
enough linear combinations of the received message and then extracts the intended message
[3, 5, 36–48]. Lattice codes are well suited for this purpose because their linear structure
matches the additivity of the channels, where the sum of two codewords superimposed
additively lies in the lattice.

Low-density lattice codes (LDLCs) studied in this thesis are a class of the lattice codes.

2.2 LDLC and Related Codes

2.2.1 Block Codes

Low-density lattice codes are closely related to linear block codes over finite fields. Hence
it is worth revisiting the structure and properties of block codes.

In a block code, C, over a finite field F of size q = |F| , an information sequence is
segmented into message blocks of fixed length; each message block, denoted by m, consists
of k information symbols over F (typically |F| = 2). The encoder generates a block of n
coded symbols, denoted by x, based on the k information symbols. This code with n-tuple
codeword and k information symbols is called an (n, k) block code [49–51] over F. The rate
R of a block code is given as

R =
k

n
. (2.1)

6

T
ra

n
sm

it
te

r

Channel

R
eceiv

erE
n
co

d
er

(m
o
d
u
la

ti
o
n
)

D
eco

d
er

(d
em

o
d
u
latio

n
)

Noise

Transmitted message Codeword Received message Decoded message

Figure 2.1: Schematic of a general communication channel

There are qn distinct sequences of length n over F and from this, qk codewords are
selected to form the code. For a block code to be useful, the qk codewords must be
distinct. Therefore, there should be a one-to-one correspondence between a message m
and its codeword x. A block code is linear over a finite-field F if the set of codewords is a
linear subspace of dimension k of the space Fn.

Encoding and Decoding (Generator Matrix and Parity-check Matrix)

For every linear block code k-linearly independent vectors, g
1
, g

2
, . . . , g

k
can be identified

such that all the codewords can be obtained by a linear combination of these vectors. These
vectors, g

1
, g

2
, . . . , g

k
are called basis vectors. For every linear code, there exists a k-by-n

generator matrix, G, such that,

x = m ·G, (2.2)

where x = {x1, x2, . . . , xn}, m = {m1,m2, . . . ,mk} and G is represented as,

G =

g
1

g
2
...
g
k

 =

g11 g12 · · · g1n
g21 g22 · · · g2n
...
gk1 gk2 · · · gkn

 .

A parity-check matrix, H, of a (n, k) linear block code is a full-rank (n−k)-by-n matrix
satisfying,

7

H ·GT = 0. (2.3)

As a consequence of (2.3),

x ·HT = 0. (2.4)

This condition is also known as parity-check equation.

Using elementary row operations and column permutations, any generator matrix can
be converted to a generator matrix for an equivalent code that is in systematic form, in
which the left side of the matrix is the identity matrix, i.e.,

G = [Ik|P], (2.5)

where Ik is the k × k identity matrix and P is a (k)× (n− k) parity matrix. Similarly, a
systematic form for a parity-check matrix can be obtained, which has an identity matrix
at the right side, i.e.,

H = [−P T |In−k]. (2.6)

Fig. 2.1 illustrates the basic communication channel model, where the encoder generates
a codeword x corresponding to message m. While codeword x is transmitted over the
channel, noise z is added to it and the noisy message y = x + z is received. The received
message y is decoded at the receiver’s end and an estimate m̂ of the message m is obtained.

Minimum Distance

For block codes, the Hamming distance (or simply distance), d(x1, x2) between two code-
words x1 and x2 is the number of positions where x1 and x2 have different symbols, e.g.,
for x1=011001101110 and x2=011001010001, d(x1, x2) = 6.

The minimum distance, dmin, for block code C, is defined as the smallest distance
between any pair of codewords in the code. For a given block code C, dmin is then

dmin = min{d(x1, x2) : x1, x2 ∈ C, x1 6= x2}. (2.7)

8

Modulation

Codewords in finite fields cannot be directly transmitted over continuous-time channels.
Instead, the codewords are transmitted over the channel using digital modulation, where
one or more properties of a periodic waveform, called the carrier signal, is modulated
depending upon the symbols to be transmitted. Traditionally, in binary-phase-shift-keying
(BPSK), only one sinusoid is taken as a basis function for modulation. Modulation is
achieved by varying the phase of the basis function depending on the codeword bits (‘0’
or ‘1’) [52]. Eqns. (2.8) and (2.9) outline the BPSK modulation technique, where S0(t) is
transmitted when the bit is ‘0’ and S1(t) is transmitted when bit is ‘1’.

S0(t) = Acos(ωt), (2.8)

S1(t) = Acos(ωt+ π). (2.9)

This modulation is very robust but unsuitable for high data-rate applications as it trans-
mits only one symbol at a time. To overcome this disadvantage, higher-level modulation
schemes are used such as 8-PSK, 16-QAM, etc. These modulation schemes can trans-
mit several binary symbols per modulated symbol, each represented by different states of
magnitude and phase of the carrier.

Encoding and modulation need not be treated as separate processes; these two can be
integrated together by matching the encoding technique to the modulation scheme. The
two step process whereby the information bits are converted first into a coded bit stream
and then into a modulated signal is then replaced by a single process which converts the
data stream directly into a suitable signal for transmission over the channel [53].

2.2.2 Low-Density Parity-Check Codes

Low-density lattice codes are motivated by the design simplicity of LDPC block codes.
Therefore, the basic concepts of the LDPC code design and decoding methodology are
first reviewed.

The term low-density in low-density parity check codes refers to the characteristic that
the parity-check matrix (H) used for the LDPC code design contains only a few ‘1’s in
comparison to ‘0’s (i.e., “the density of ‘1’s is low”). LDPC codes are arguably one of
the best error correction codes in existence at present. Their main advantage is that they
provide a performance which is very close to capacity and use decoding algorithms with
complexity linear to the code size. Moreover, they are well suited for implementations that
can make extensive use of parallelism.

9

LDPCs were first introduced by Gallager in his PhD thesis in the 1960s [28]. Due to the
high computational effort (for the time) required for encoder and decoder implementation,
LDPC codes were mostly ignored until rediscovered in the mid 1990s by Neal and Mackay
[29,30].

To understand LDPC code design and structure, let’s assume that an LDPC code is
constructed using a parity-check matrix, H, of size (m,n) where m is number of rows and
n is the number of columns in the matrix. The number of ‘1’s in each row and column are
referred as the row and column weights, wtr and, wtc respectively. An example of an (4,8)
LDPC parity-check matrix, with wtr = 4 and wtc = 2 is given below:

H =

0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

 .

In [54] Tanner introduced an effective graphical representation for LDPC codes. These
graphs, known as Tanner graphs, are effective as they not only provide a complete repre-
sentation of the code, but they also help to understand the decoding algorithm. Tanner
graphs are bipartite graphs, which means that the nodes of the graph are separated into
two distinct sets (or types) and edges can only connect nodes of two different types. The
two types of nodes in a Tanner graph are called variable nodes and check nodes. Each row
of the H matrix represents a check node and each column represents a variable node. An
edge in a Tanner graph is a connection between a variable node and a check node so the
number of edges in the Tanner graph and the number of ones in the H matrix are equal.
The ith check node is connected to the jth variable node if the element hij of H is a 1.

A series of interconnected nodes with same origin and termination, given no other nodes
repeat, is called a cycle. The length of the cycle is given by the number of edges in it and
the girth of a graph is defined to be the size of the smallest cycle. Figure 2.2 shows a
graphical representation of the example (4,8) LDPC H-matrix described above. This H
matrix contains a 4-cycle loop highlighted in the bipartite graph using dotted lines.

LDPC Encoding

LDPC codes are linear block codes. If the message is m and the generator matrix is G,
then the codeword is given as:

x = m ·G. (2.10)

10

Figure 2.2: Bipartite graph representation of the example (4,8) LDPC parity-check matrix.

In order to obtain G from the H matrix, the H matrix is first converted into systematic
form by applying proper elementary operations as shown in (2.6). Based on the systematic
form of the H matrix, the generator matrix is obtained as

G = [Ik|P T]. (2.11)

LDPC Decoding

LDPC decoding is performed through an iterative decoding algorithm based on the Tan-
ner graph. LDPC decoding algorithms are termed as message-passing iterative decoding
algorithms which perform local calculations at check (variable) nodes and pass those local
results via messages to variable (check) nodes [29, 30, 55–63]. Based on the information
exchanged between the check node and variable nodes, LDPC decoding can be classified
into two types:

• Hard-decision decoding

• Soft-decision decoding

11

Hard-Decision Decoding: In hard-decision decoding the messages passed in decoding
iterations are binary bits and the decoding decision is based on this binary information.
The bit flipping algorithm of [29] is an example of hard decision decoding.

In the bit flipping algorithm, a check node finds the bit in error by checking the parity
of the data stream received from all the variable nodes connected to it; the parity may be
even or odd. If the number of 1’s received at check nodes satisfies the required parity, then
it sends the same data back to variable nodes connected to it; otherwise it flips the bit
(from variable nodes) which is involved in the largest number of unsatisfied parity checks
and re-sends it to the variable node. A variable node utilizes the incoming check node
messages to decide if the bit at its position is a ‘0’ or a ‘1’ by majority rule. The variable
node then sends this hard-decision to its connected check nodes.

The decoding process is terminated whenever a valid code word has been found, i.e.,
all the parity check equations are satisfied.

Soft-Decision Decoding: Soft-decision decoding is based on the idea of belief propa-
gation. In this scheme, the decoder makes an inference for each bit of the transmitted
vector by calculating the marginal distribution of each bit, conditional on the received vec-
tor. The sum-product algorithm (SPA) is a soft-decision message passing algorithm which
is similar to the bit-flipping algorithm [30]. The main difference between the SPA and
bit-flipping algorithm is that in the SPA, check node and variable node messages are con-
ditional probabilities instead of binary bits. These conditional probabilities are expressed
as log-likelihood ratios of bits where the log-likelihood ratio is defined as,

log likelihood ratio (LLR) = log
(xi = ‘0’ yi
xi = ‘1’ yi

)
. (2.12)

2.2.3 Low-Density Lattice Codes

Low-density lattice codes (LDLCs) were first introduced by Sommer et al. [6]. As opposed
to LDPCs or algebraic codes which are defined over a finite field, lattice codes are defined
over real numbers. LDLCs belong to the class of lattice codes.

Lattice Codes

Lattice codes are regarded as the Euclidean space analogue of linear block codes. In a
lattice code, an integer-valued information sequence is converted to a point in Euclidean

12

space.

Definition 1. (Lattice)

An n-dimensional lattice, Λ ⊂ Rn, is defined as all the integer linear combinations of
n given linearly independent basis vectors, g

1
, . . . , g

n
∈ Rn. Taking the basis vectors as the

columns of the generator matrix G, (i.e., G = (g
1
, . . . , g

n
)), the lattice Λ is given by

Λ = {x ∈ Rn : x = Gb, b ∈ Zn}. (2.13)

Figure 2.3 shows the graphical illustration of an example 2-dimensional lattice with
basis vectors g

1
and g

2
.

Definition 2. (Voronoi Region)

The Voronoi region of a lattice point x ∈ Rn is the subset of Rn which is closer to x than
to any other lattice point. It is generally represented as ν. For any lattice Λ(G), all the
Voronoi regions have the same volume, denoted as V(Λ), which is equal to the determinant
of the generator matrix, G, i.e.,

V (Λ) = |det(G)|. (2.14)

Low-density lattice codes (LDLCs) are lattice codes which have some specific constraints
on the matrix H = G−1.

Though most of the published papers on LDLCs have termed the inverse of the gen-
erator matrix as ‘parity-check matrix’, in this thesis it is called ‘constraint matrix’. This
naming convention is more reasonable as the elements of the inverse of the LDLC generator
matrix are real numbers.

Low-Density Lattice Codes (LDLCs)

Definition 3. (LDLC) A low-density lattice code is an n-dimensional lattice code defined
by a non-singular generator matrix that satisfies the condition that the constraint matrix,
H = G−1, is sparse.

13

Figure 2.3: Graphical illustration of an example 2-dimensional lattice with basis vectors
g
1

and g
2
.

Similar to the LDPC codes, the constraint matrix H is the core of an LDLC design as
it fully describes the code. For a given n-by-n constraint matrix H, the row degree ri of
the ith row is the number of non-zero elements in that row. Similarly the column degree ci
is the number of non-zero elements in the ith column of H.

Definition 4. (Regular LDLC)

An n-dimensional LDLC is said to be regular if all the row degrees and column degrees
of the constraint matrix are equal to a common degree d.

Definition 5. (Latin-Square or Magic Square LDLC)

An n-dimensional regular LDLC with degree d is called a Latin-Square or Magic-Square
LDLC if every row and every column of H has the same d non-zero values h̄1 ≥ h̄2 ≥ . . . ≥
h̄d > 0 except for possible sign flips. The sequence of non-zero values h̄1, h̄2, . . . , h̄d in
descending order is referred as the generating sequence of a particular LDLC.

14

An example of a constraint matrix of degree 3 is shown below [7]:

H = G−1 =

0 −0.8 0 −0.5 1 0
0.8 0 0 1 0 −0.5
0 0.5 1 0 0.8 0
0 0 −0.5 −0.8 0 1
1 0 0 0 0.5 0.8

0.5 −1 −0.8 0 0 0

. (2.15)

The generating sequence for this example is 1, 0.8, 0.5.

In [7], Sommer et al. used a regular Latin-square H matrix for LDLC code design
and published the decoder performance results for various block lengths. For ease of
comparison, it is preferred to keep the volume of the Voronoi region normalized to unity.
So for the designed LDLCs, the determinant of the generator matrix is 1, i.e.,

|det(G)| = 1. (2.16)

The constraint matrix H determines the bipartite graph for the LDLCs and thus has
a significant influence on decoding procedure. The next section describes the H matrix
generation algorithm and other important parameters related to LDLC decoding.

2.3 Parameters for LDLC Code Design

2.3.1 Constraint Matrix

Similar to LDPC codes, a bipartite graph with few if any short cycles is preferred in order
to achieve faster decoding convergence and better error correction capability. Sommer [7]
proposed an efficient algorithm to create the H matrix for LDLCs which ensures that this
matrix does not contain any 2-cycles (i.e., two parallel edges which originate from same
variable and check nodes) or 4-cycles (i.e., two variable nodes that are both connected to the
same pair of check nodes). Therefore, an LDLC matrix generated using this algorithm [7]
contains no 2-cycles or 4-cycles and the girth of the bipartite graph is at least 6.

Algorithm 1 provides the pseudo code for the H matrix generation [7]. Here the (i, j)
element of matrix P is denoted by Pi,j and the kth column of a matrix P is denoted by
P:,k.

15

Algorithm 1: Pseudo Code for H-matrix Generation [7]
##Initialization
Choose d random permutations on {1, 2, · · ·n}.
Arrange the permutations in an d× n matrix, P such that each row holds a permutation.
c = 1; # column index
cyclefree columns = 0; # number of consecutive columns without cycles

cycle removal:
while cyclefree columns < n do

changed permutation = 0;
if exists i 6= j such that Pi,c = Pj,c then

a 2-cycle was found in column c
changed permutation = i;

else
if exists c0 6= c such that P:,c and P:,c0 have two or more common elements then

a 4-cycle was found at column c
changed permutation = line of P for which the first common element appears in

column c;

if changed permutation 6= 0 then
a permutation should be modified to remove cycle
choose a random integer 1 ≤ i ≤ n;
swap locations c and i in
permutation changed permutation;
cyclefree columns = 0;

else
no cycle was found in column c
cyclefree columns = cyclefree columns + 1

increase column index
c = c + 1;
if c > n then

c = 1;

Finally, build H from the permutations
Initialize H as an n× n zero matrix;
for i = 1 : n do

for j = 1 : d do
HPj,i,i = h̄j · random sign;

16

The algorithm inputs are block length n, degree d and generating sequence, h̄1 ≥ h̄2 ≥
. . . ≥ h̄d > 0 and the output is a constraint matrix, H.

The constraint matrix H generated in Algorithm 1 is further normalized by n
√
|det(H)|

to yield |detG| = |detH| = 1.

2.3.2 Distance from Channel Capacity

Sommer et al. applied Poltyrev’s [64] definition of capacity for the lattice codes in context
of low-density lattice codes.

Poltyrev [64] showed that for the AWGN channel without restrictions (with no power
limit), code rate is a meaningless measure since it can be increased without limit. He
suggested instead a generic definition of capacity for lattice codes with no power restriction.
According to this, capacity for lattice codes is defined as the maximal possible codeword
density that can be recovered reliably at the receiver. This generalized capacity implied
that there exists a lattice G of high enough dimension n that enables transmission with
arbitrarily small error probability, if and only if the channel noise variance satisfies

σ2 < n

»
|det(G)|2/2πe,

where e = 2.71828... is Euler’s number (also known as the natural constant).

Since for the designed LDLCs [7], |det(G)| = 1 and the AWGN channel is without power
restrictions, it is possible to quantify distance from capacity or the maximal performance
limit as the distance of the noise variance σ2 from 1/2πe, i.e., by −10 log10(2πeσ

2) in dB.
All decoder performance curves in [7] have been drawn between symbol error rate (SER)
and the distance from capacity, −10 log10(2πeσ

2), in dB.

2.3.3 Generating Sequence

Section 2.3.1 described the algorithm to construct an LDLC constraint matrix for a gener-
ating sequence. Sommer et al. proposed two approaches for choosing the non-zero elements
of the generating sequence.

In the first approach, the generating sequence is given by the reciprocals of the smallest
d prime numbers 1

2
, 1
3
, 1
5
, 1
7
, 1
11
, 1
13
· · · . In order to achieve fast decoding convergence it is

important that when the Gaussian mixture messages are multiplied at the variable node
(see Section 2.4), the correct peaks should align and all other peaks should be attenuated

17

in amplitude. Choosing the generating sequence to be reciprocals of the smallest d prime
numbers is helpful to attain faster convergence in LDLC decoding [7].

Simulation results show that increasing d beyond 7 gives negligible improvement in the
decoder performance. However, performance does improve by adding some ‘dither’ to the
sequence, so the generating sequence in [7] is given as, 1

2.31
, 1
3.17

, 1
5.11

, 1
7.33

, 1
11.71

, 1
13.11

1
17.55

.

In the second approach, the generating sequence is, 1, ε, ε · · · ε where ε = 1√
d

and < 1 .

For example, for d = 7 the generating sequence is 1, 1√
7
, 1√

7
, 1√

7
, 1√

7
, 1√

7
, 1√

7
as used in [10],

[12].

2.4 LDLC Decoding for the Additive White Gaussian

Noise Channel

For LDLCs, the lattice codeword, x = G ·b is transmitted over the additive white Gaussian
noise (AWGN) channel where the generator matrix is obtained as G , H−1.

The receiver observes a noisy codeword, y, according to

y = x+ z, (2.17)

where z represents a vector of independent and identically distributed (i.i.d.) Gaussian
noise samples with common variance, σ2.

The sparse nature of the constraint matrix used for code design makes LDLC decoding
similar to the LDPC decoding described in Subsection 2.2.2. In the literature, one of the
preferred methods for LDLC decoding is iterative message passing over the bipartite graph.
During the iterative decoding process, in each decoding iteration, the variable nodes send
messages to the check nodes along the edges of the bipartite graph and vice-versa.

Iterative Decoding Algorithm The iterative decoding algorithm proposed by Sommer
et al. in [7] estimates the probability density function (PDF) of the codeword x based on
the received vector y. Moreover, for simplicity, it is advantageous to estimate the marginal
PDF of each of the symbols of the codeword (lattice point), conditioned on the whole
received vector y, i.e., fxk | y(xk | y) which is estimated using iterative decoding.

Since every variable node decodes the marginal PDF of one of the symbols in the
transmitted lattice point, there is a one-to-one correspondence between variable nodes and
symbols of the lattice point. Further, in this thesis, we choose to represent the variable
nodes with the same notation as symbols of the lattice point, i.e., xk.

18

Initialization

At the start of the decoding process, each variable node xk sends a message f
(0)
k (t), for a

continuous-time variable t, received from the AWGN channel along all the edges connected
to it. The continuous function f

(0)
k (t) is given as

f
(0)
k (t) =

1√
2πσ2

e−
(yk−t)

2

2σ2 . (2.18)

As shown in Figure 2.4, for the example matrix in (2.15), variable node x2 sends message

f
(0)
2 (t) to all the connected check nodes, where f

(0)
2 (t) is given by

f
(0)
2 (t) =

1√
2πσ2

e−
(y2−t)

2

2σ2 . (2.19)

Basic Iteration: Check node message

Similar to LDPC codes, each check node in an LDLC represents an appropriate constraint
that corresponds to

d∑

l=1

hlxkl = i, (2.20)

where d is the degree of the constraint matrix H and xkl, l = 1, 2, . . . , d are the variable
nodes connected to a check node with edge weights of hl, where hl is one of the h̄’s with
a possible sign flip. In general, i can take any value in Z, but the value of i is restricted
within a certain limit, i.e., i ∈ L ⊂ Z where L is a subset of integers. This is helpful
in decoding as the components with means far from the channel message have almost
zero mixing coefficients after the computations at the variable node, and therefore can be
ignored.

In (2.20) one can solve for xkj to obtain:

xkj =

i−
l=d∑
l=1
l 6=j

hlxkl

hj
. (2.21)

19

Figure 2.4: Initialization - a variable node sends the received channel PDF to all the
connected check nodes.

To compute the outgoing message from check node ck along edge hj, we first need to
compute the PDF of xkj in (2.21) when i = 0. To compute this PDF, two important
properties of the PDFs of random variables are used.

Lemma 1. (PDF of Sum of Independent Random Variables) Let A and B be two inde-
pendent random variables and fA(t) and fB(t) their respective PDFs. The PDF of the sum
(A+B) is

f(A+B)(t) = fA(t) ∗ fB(t). (2.22)

Lemma 2. (PDF of a Scaled Random Variable) If A and B are two random variables,
such that B = rA+ s where r 6= 0, the PDF of B is

fB(t) =
1

|r|fA
(x− s

r

)
. (2.23)

In the special case that s = 0 in Lemma 2,

frA(t) =
1

|r|fA
(x
r

)
. (2.24)

Now assume fl(t), l = 1, 2, . . . , d are the PDFs received at the check node along the

edges with weights, hl, l = 1, 2, . . . , d. Then using Definitions 1 and 2, the PDF of
l=d∑
l=1
l 6=j

hlxkl,

denoted by p̃j(t), can be computed as,

20

p̃j(t) =
1

|h1|
f1

(t

h1

)
∗ · · · ∗ 1

|hj−1|
fj−1

(t

hj−1

)
∗ 1

|hj+1|
fj+1

(t

hj+1

)
∗ · · · ∗ 1

|hd|
fd

(t

hd

)
.

(2.25)

The constant in (2.25) can be ignored as it would be normalized later and thus p̃j(t)
can be rewritten as

p̃j(t) = f1

(t

h1

)
∗ · · · ∗ fj−1

(t

hj−1

)
∗ fj+1

(t

hj+1

)
∗ · · · ∗ fd

(t

hd

)
. (2.26)

Using Definition 2, the PDF of −∑d
l=1

hlxkl
hj

denoted by pj(t), is computed as

pj(t) = p̃j(−hjt). (2.27)

The term i
hj

in (2.21) creates the periodic shift/extension of the check node message

xkj for different values of i. Message pj(t) in (2.27) is periodically extended with a period
of 1
|hj | and after the periodic extension the final outgoing check node message, Qj(t), can

be written as,

Qj(t) =
∞∑

i=−∞

pj

(
t− i

|hj|
)
. (2.28)

Figure 2.5 shows the outgoing check node message, Q3(t), along the edge with weight
h3 computed as,

p̃3(t) = f1

(t

h1

)
∗ f2

(t

h2

)
, (2.29)

p3(t) = p̃(−h3t), (2.30)

Q3(t) =
∞∑

i=−∞

p3

(
t− i

|h3|
)
. (2.31)

21

Figure 2.5: Check node operation - the outgoing message on the edge with weight h3 is
computed with all the incoming messages, except the one on edge with weight h3.

Basic Iteration: Variable node message

Each variable node computes a local estimate of codeword symbol xk based on all the
incoming check node messages to that node. Since the code symbols are assumed i.i.d.,
the outgoing variable node message along an edge is the product of the channel PDF and
all incoming check node messages except the one coming along that edge.

Assume that a given variable node xk is connected to the check nodes ck1, ck2, . . . , ckd,
where d is the degree of H. If Ql(t), l = 1, 2, . . . , d is the incoming message from check
node ckl connected with edge with weight hl (one of the h̄’s with a possible sign flip) to
this variable node in the previous half-iteration, the outgoing variable node message to the
check node ckj is calculated in following steps:

• Product step: the channel PDF and all the incoming messages to the variable node,
except Qj(t) (the incoming message along the edge with weight hj) are first multi-
plied, i.e.,

f̃j(t) = e−
(yk−t)

2

2σ2

d∏

l=1
l 6=j

Ql(t). (2.32)

• Normalization step: as the product computed in (2.32) is not a PDF, it is further

22

Figure 2.6: Variable node operation - the outgoing message on the edge with weight h3 is
computed with channel message and all the incoming check node messages, except the one
on edge with weight h3.

normalized according to

fj(t) =
f̃j(t)∫∞

−∞ f̃j(t)dt
. (2.33)

Fig. 2.6 shows the outgoing variable node message from x2 along the edge with weight h3
computed according to (2.34) and (2.35) below for the example matrix (2.15):

f̃3(t) = e−
(y2−t)

2

2σ2 Q1(t)Q2(t), (2.34)

f3(t) =
f̃3(t)∫∞

−∞ f̃3(t)dt
. (2.35)

Here Q1(t) and Q2(t) are the incoming check node messages along the edge with weights
h1 and h2 respectively.

Final decision

After reaching the desired number of decoding iterations, the final PDF of an estimated
codeword symbol, ŵk, is calculated by multiplying the channel PDF and all the incoming

23

Figure 2.7: Final decision in Iterative decoding.

check node messages to the variable node without omitting any, i.e.,

f̃ finalk (t) = e−
(yk−t)

2

2σ2

d∏

l=1

Ql(t). (2.36)

The decoded codeword symbol, ŵk, is obtained at the variable node as,

ŵk = argmax
t

f̃ finalk (t). (2.37)

Fig. 2.7 shows all the incoming messages at the variable node x2 for the example matrix
(2.15). The final decoded codeword symbol ŵ2 in this case is computed according to:

f̃ final2 (t) = e−
(y2−t)

2

2σ2 Q1(t)Q2(t)Q3(t), (2.38)

ŵ2 = argmax
t

f̃ final2 (t). (2.39)

2.5 LDLC Decoders in the Literature

From a theoretical point of view, the iterative decoding Algorithm 2.4, in principle, shows
good decoding performance. Nevertheless, its implementation is not practical either in
software or hardware. This is primarily due to the fact that when the channel is AWGN,
although the initial message received from the channel is a single-Gaussian PDF, the opera-
tions at the check and variable nodes generate Gaussian mixture messages. Further, as the

24

decoding iterations progress, the number of components in the Gaussian mixtures grows
exponentially and the implementation eventually has extremely large storage requirements
and computational cost.

In prior works, two approaches are primarily applied to reduce the decoder complexity.
In the first approach, the continuous functions are approximated by sampling and quanti-
zation [7], and these samples are exchanged. In the second approach, the Gaussian mixture
messages are represented by Gaussian parametric lists [9,10,12], and reduced as necessary
to keep the number of mixture components small.

2.5.1 Sampled PDF LDLC decoder

In the sampled approach [7], the PDFs of the continuous codeword (continuous functions)
are sampled with a resolution of 1

64
and quantized in discrete-levels. The sampling range

is a finite symmetric region of length 4 around the noisy channel message.

It is the sampled and quantized values that are passed iteratively between the check
and variable nodes. Due to the sampling and quantization resolution this approach has
a large storage requirement and significant computational complexity. Fig. 2.8 shows the
symbol error rate versus distance from capacity, −10 log 10(2πe2), for the sampled PDF
LDLC decoder [7].

2.5.2 Parametric LDLC decoders

In [9, 11], an alternate approach is used where Gaussian mixtures, represented as a list of
parameters, (i.e., means, variances and weights/coefficients) are passed between the nodes
during message passing.

A Gaussian mixture propagated during the iterative decoding is denoted by

GM(t) =
N∑

k=1

ck√
2πVk

e
− (t−mk)

2

2Vk . (2.40)

Here N is the number of Gaussian components in the mixture, mk, Vk and ck ≥ 0 are the
mean, variance and mixing coefficient/weight of the kth component. A Gaussian mixture
can then be efficiently represented by a set of triples {(m1,V1, c1), . . . , (mN , VN , cN)}. If
the coefficients sum to 1, i.e.,

∑N
k=1 ck = 1, then the Gaussian mixture is normalized.

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−10 log10 2πσ
2 (in dB)

10−5

10−4

10−3

10−2

10−1
S
ym

b
ol

E
rr
or

R
at
e

n=100

n=1000

Figure 2.8: Symbol error rate versus distance from capacity, −10 log 102πe2 (in dB) of the
sampled PDF LDLC decoder for block length, n = 100, d = 5 and n = 1000, d = 7 with
200 decoding iterations simulated by Sommer et al.

In parametric decoders, the continuous functions generated in the iterative decoding
are Gaussian mixtures represented by a set of triples. Along with the efficient message
representation, Gaussian mixture reduction algorithms are used to reduce the size of the
messages after each decoding iteration. These techniques reduce the message size and
computational complexity of the decoder significantly.

The following section describes the iterative decoding algorithm and the Gaussian mix-
ture reductions techniques applied in the parametric decoders.

Iterative Decoding Algorithm for Parametric Decoders

Initialization At the start of the decoding process, variable node xk sends the received
channel message, represented by a triple (m0, V0, 1), to all the connected check nodes where
m0 is yk and V0 is channel variance, σ2.

26

Basic Iteration: Check Node Message In the parametric iterative decoding, the
incoming variable node messages (Gaussian mixtures) are triples of means, variances and
weights of Gaussian components and the outgoing message is computed by convolution of
the Gaussian mixtures.

Convolution of Gaussian Mixtures: Suppose that two Gaussian mixtures f(t) and g(t)
are:

f(t) =
F∑

i=1

c1i√
2πV1i

e
− (t−m1i)

2

2V1i . (2.41)

g(t) =
G∑

i=1

c2i√
2πV2i

e
− (t−m2i)

2

2V2i . (2.42)

The result of f(t)∗g(t) is then also a mixture, h(t) which consists of F×G components:

h(t) = f(t) ∗ g(t) =
F∑

i=1

c1i√
2πV1i

e
− (t−m1i)

2

2V1i ∗
G∑

j=1

c2j√
2πV2j

e
−

(t−m2j)
2

2V2j , (2.43)

=
F∑

i=1

G∑

j=1

c1i√
2πV1i

c2j√
2πV2j

e
− (t−m1i)

2

2V1i ∗ e−
(t−m2j)

2

2V2j . (2.44)

As shown in (2.44), the convolution of two Gaussian mixtures is calculated by con-
volving each possible pair of Gaussians between the two mixtures. This simplifies the
convolution of Gaussian mixtures to convolutions of pairs of Gaussians.

The convolution of two Gaussian mixture components is again a Gaussian. If two
Gaussian components with triples (m1, V1, c1) and (m2, V2, c2) are convolved, the resultant
Gaussian is represented by the triple (mr, Vr, cr) where,

mr = m1 +m2, (2.45)

Vr = V1 + V2, (2.46)

cr = c1c2. (2.47)

The periodic extension step (2.28) is performed on the Gaussian mixture h(t) computed
in (2.44).

27

Basic Iteration: Variable Node Message As mentioned in Section 2.4, in the para-
metric iterative decoding at each variable node, xk, the channel message (yk, σ

2, 1) and
the incoming check node messages (represented by set of triples of means, variances and
weights) are multiplied. In order to understand the operations at the variable node let’s
look into the multiplication of two Gaussian mixtures in detail.

Product of Gaussian Mixtures: Given two Gaussian mixtures f(t) and g(t) given by:

f(t) =
F∑

i=1

c1i√
2πV1i

e
− (t−m1i)

2

2V1i (2.48)

g(t) =
G∑

i=1

c2i√
2πV2i

e
− (t−m2i)

2

2V2i , (2.49)

the result of the product f(t)g(t) is then

f(t)g(t) =
F∑

i=1

c1i√
2πV1i

e
− (t−m1i)

2

2V1i

G∑

j=1

c2j√
2πV2j

e
−

(t−m2j)
2

2V2j , (2.50)

=
F∑

i=1

G∑

j=1

c1i√
2πV1i

c2j√
2πV2j

e
− (t−m1i)

2

2V1i e
−

(t−m2j)
2

2V2j . (2.51)

As shown in (2.51), the product of two Gaussian mixtures is calculated by multiplying
each possible pair of components between the two mixtures. This simplifies the product of
Gaussian mixtures to the product of pairs of Gaussians.

The product of two Gaussians is a scaled Gaussian. If two Gaussians with triples
(m1, V1, c1) and (m2, V2, c2) are multiplied and the resultant Gaussian is denoted by the
triple (mm, Vm, cm), then:

Vm =
V1V2
V1 + V2

, (2.52)

mm = Vm

(m1

V 1
+
m2

V2

)
, (2.53)

cm =
c1c2√

2π(V1 + V2)
e
−(m1−m2)

2

2(V1+V2) . (2.54)

28

Final Decision Similar to Section 2.4, in this step of the parametric iterative decoding,
at every variable node the channel message and all the incoming check node messages
(without omitting any) are multiplied together. Using the resultant triples, a quantized
function for fxk(xk | y) is calculated. The peak value of this quantized function is the
estimated codeword symbol ŵk.

Gaussian Mixture Reduction (GMR)

As discussed in Section 2.5.2, after the operations at the check and variable nodes during
the iterative decoding process, Gaussian mixture messages are generated. The number of
components in the Gaussian mixtures grows exponentially as a function of the number
of decoding iterations. In order to achieve a feasible decoder with a limited storage and
computational load, it is important to limit the number of components in the Gaussian
mixtures by reducing the mixtures.

Although there are several Gaussian mixture reduction techniques [65], in this thesis
we describe two Gaussian mixture reduction methods which have been used in parametric
LDLC decoders [9–12]:

• Gaussian mixture reduction using greedy algorithm,

• Gaussian mixture reduction by merging Gaussians in a range.

Gaussian Mixture Reduction Using Greedy Algorithm:

This Gaussian mixture reduction method uses a greedy algorithm approach to reduce
a Gaussian mixture to a mixture with fewer components.

It is based on the idea of minimizing the squared distance (SD) between two distribu-
tions p(t) and q(t); here p(t) is original Gaussian mixture and q(t) is a reduced mixture,
which is an approximation of p(t) with a fewer components. The squared distance between
two distributions p(t) and q(t) is given as

SD(p(t), q(t)) =

∫ ∞

−∞
(p(t)− q(t))2dt. (2.55)

To obtain the reduced mixture, first the penalty (squared distance) for merging each
possible pair of components in the mixture and replacing the pair with a single-Gaussian is
computed. Whichever pair has the lowest penalty is substituted by a single Gaussian in the

29

mixture. The components of the Gaussian mixture are merged in this greedy fashion until
the desired number of components in the reduced Gaussian mixture are reached [10,12].

Assume p(t) is a normalized Gaussian mixture with two components denoted by triples
{(m1, V1, c1), (m2, V2, c2)}, i.e., c1 + c2 = 1 . The single Gaussian approximation, q(t),
for these two components is represented by a triple (mMM, VMM, cMM) that minimizes
the squared distance between p(t) and q(t). In the special case of Gaussian mixtures, the
squared distance between p(t) and q(t) is called Gaussian quadratic loss (GQL).

As shown in [66] the optimal parameters of the triple can be obtained using the moment
matching method, i.e., moment matching minimizes the squared distance between the
mixture with 2 components and the reduced single-Gaussian. After moment matching, the
parameters of the reduced Gaussian are:

mMM =
2∑

k=1

ckmk, (2.56)

VMM =
2∑

k=1

(ckVk + ck(mk −mMM)2), (2.57)

cMM = c1 + c2. (2.58)

The penalty for merging the two Gaussian components to a single Gaussian using
moment matching is given by

SD(p(t), q(t)) =
1

2
√
πV

+
c21

2
√
πV1

+
c22

2
√
πV2
− 2c1√

2π(V + V1)
e
− (m−m1)

2

2(V+V1)

− 2c2√
2π(V + V2)

e
− (m−m2)

2

2(V+V2) +
2c1c2√

2π(V1 + V2)
e
− (m1−m2)

2

2(V1+V2) .

(2.59)

The derivation of (2.59) is provided in the Appendix A.

The steps for the greedy GMR algorithm are as follows.

The input to the Gaussian mixture reduction algorithm is a Gaussian mixture of N
components, InputMix, defined as

InputMix = (t1, t2, . . . , tN), (2.60)

where tl = (ml, Vl, cl) is the lth component of the Gaussian mixture, InputMix.

30

Algorithm 2: Pseudo Code for GMR using greedy algorithm

while |InputMix| > M do
• Calculate GQL for each pair of components in InputMix and determine the pair

(ti, tj) with the smallest GQL

(ti, tj) = argmin
ti,tj∈InputMix,i 6=j

GQL(ti, tj)

• Group these two components (ti, tj) into a single component t′ according to second
moment matching.

• Add this triple t′ to InputMix and erase ti, tj from InputMix.

The algorithm output is a reduced Gaussian mixture with M components, ReducedMix,
given as

ReducedMix = (t1, t2, . . . , tM). (2.61)

Algorithm 2 provides the pseudo code for this Gaussian mixture reduction method. At
the end of the while loop, input mixture InputMix is reduced to mixture ReducedMix that
contains M Gaussian components.

Parametric decoders in [10–12] have reduced the Gaussian mixture message to a smaller
mixture with fewer components using this Gaussian mixture reduction method. The per-
formance of the decoder, where the reduced mixture contains two components, is close to
the sampled PDF decoder [7] as shown in Fig. 2.9.

Gaussian Mixture Reduction by Merging Gaussians in a Range:

This Gaussian mixture reduction method uses LDLC propagation properties in order
to group Gaussian components in the mixture efficiently. This method has two steps.

First, the strongest component in the mixture is identified, where the strength of a
component is defined by the weight to standard deviation ratio. For any component in a
Gaussian mixture, denoted by a triple (mi, Vi, ci), the weight to standard deviation ratio
computed as

weight to standard deviation ratio =
ci√
Vi
. (2.62)

31

0.6 0.8 1.0 1.2 1.4

−10 log10 2πσ
2 (in dB)

10−5

10−4

10−3

10−2

10−1

S
ym

b
ol

E
rr
or

R
at
e

Sampled PDF decoder (n=1000) [7]

Parametric decoder (n=1000, M=2) [12]

Figure 2.9: Symbol error rate vs. distance from capacity, −10 log10 2πeσ2 (in dB) for
the parametric LDLC decoder using Gaussian mixture reduction method based on greedy
algorithm with n = 1000, d = 7 and number of decoding iterations = 200.

Further, the mixture components that are within a certain range of the strongest Gaus-
sian in the mixture are found. These components are reduced according to some rule which
provides a good approximation of the original mixture. Usually a single Gaussian is ob-
tained through moment matching.

Approximation using Moment Matching: If the strongest Gaussian and other compo-
nents which are within a range from the strongest Gaussian, are denoted by the mixture:

GMR(t) =
L∑

k=1

ck√
2πVk

e
− (t−mk)

2

2Vk , (2.63)

the single Gaussian which provides a good approximation of GMR(t) is the second moment
matched Gaussian, i.e., the Gaussian with same mean and variance [67]. The mean, vari-
ance and weight of this single Gaussian is denoted as mMM, VMM and cMM respectively.

32

To get this single Gaussian, mixture GMR(t) is first normalized asflGMR(t) =
L∑

k=1

bk√
2πVk

e
− (t−mk)

2

2Vk , (2.64)

where bk = ck∑L
l=1 ck

. The parameters mMM, VMM and cMM are then calculated as,

mMM =
L∑

k=1

bkmk (2.65)

VMM =
L∑

k=1

(bkVk + bk(mk −mMM)2) (2.66)

cMM =
L∑

k=1

ck. (2.67)

The steps of GMR using moment matching are as follows.

The input Gaussian mixture consists of N components and is denoted by InputMix.
Mixture InputMix can be entirely described by a set of triples as,

InputMix = {(m1, V1, c1), (m2, V2, c2) · · · (mN , VN , cN)}. (2.68)

The output is a reduced Gaussian mixture denoted by ReducedMix, that would contain
M components and is represented by a list of triples as

ReducedMix = {(m1, V1, c1), (m2, V2, c2), · · · , (mM , VM , cM)}. (2.69)

Algorithm 3 then provides the pseudo code for this Gaussian mixture reduction method.

In [9] the Gaussian mixture messages in iterative decoding are reduced to a smaller mix-
ture using the range based algorithm. The decoder performance is simulated for different
block lengths of up to n = 106 and code degree of d = 7, for a different number of compo-
nents in the reduced mixture. Experimental results have shown that the decoder attains
essentially the same performance as the sampled PDF decoder [7]. This algorithm shows
better storage requirements and relatively lower computational complexity compared to
the sampled PDF decoder. Fig. 2.10 compares this decoder performance for M = 6 and
M = 2 to the sampled PDF LDLC decoder for block length of 1000 and degree, 7.

There are other efficient Gaussian mixture reduction techniques available in literature,
e.g., [68]. The technique in [68] applies to the Gaussian mixtures with two mixture com-
ponents only while the work in this thesis explores a larger design space.

33

0.6 0.8 1.0 1.2 1.4

−10 log10 2πσ
2 (in dB)

10−5

10−4

10−3

10−2

10−1
S
ym

b
ol

E
rr
or

R
at
e

Sampled PDF decoder (n=1000) [7]

Parametric decoder (n=1000, M=2) [9]

Parametric decoder (n=1000, M=6) [9]

Figure 2.10: Symbol error rate vs. the distance from capacity, −10 log10 2πeσ2, (in dB)
using Gaussian mixture reduction method based on merging Gaussians in a range for
n = 1000, d = 7 with number of decoding iterations = 200.

2.6 Summary

This chapter we first described the basic definitions and properties of LDLCs and then an
iterative decoding algorithm where the exchanged messages were continuous functions was
presented. We also provided an overview of the LDLC decoders available in the literature,
primarily categorized as sampled PDF LDLC decoder and parametric LDLC decoders. We
detailed the two GMR techniques used in the parametric LDLC decoders, i.e. GMR using
greedy algorithm and GMR by merging Gaussians in a range.

The background knowledge and the survey of available literature enables us to pick an
appropriate LDLC decoder for the hardware implementation. Further, in the thesis we
present a fixed-point implementation of the LDLC decoding on an Intel FPGA.

34

Algorithm 3: Pseudo Code for GMR by Merging Gaussians in a Range

while (|InputMix| > 0 or |ReducedMix| < M) do
• Find the component k in InputMix that has maximum weight to standard deviation

ratio,

kmax = argmax
k

ck√
Vk
.

• Define a range of length 2A around mkmax , the mean of the component that has the
maximum weight to standard deviation ratio,

range = [mkmax − A,mkmax + A].

• Find the components in mixture that fall in this range,

S = {(ck,mk, Vk) | |(mk −mkmax)| < A}.

• Calculate the single Gaussian (mMM, VMM, cMM) for S according to the (2.65),
(2.66) and (2.67).

• Add the single Gaussian calculated in step 5 to the reduced mixture, ReducedMix,

ReducedMix = ReducedMix ∪ (mMM, VMM, cMM)

• Erase the components S from InputMix, i.e.,

InputMix = InputMix− S.

35

Chapter 3

Single-Gaussian LDLC Decoder
Implementation

In Chapter 2, we discussed an iterative decoding algorithm for low-density lattice codes,
where the messages exchanged between check nodes and variable nodes are continuous func-
tions (probability density functions). We also discussed a parametric decoding approach,
where messages are represented as lists of Gaussian parameters, i.e., means, variances and
coefficients. Then, Gaussian mixture reduction algorithms used in parametric decoders
were introduced.

In order to achieve successful proof-of-concept hardware for LDLC decoding, it is im-
portant to select an appropriate decoder architecture, whose impact on resource usage
must be well understood.

3.1 Selection of an LDLC Decoder for Hardware Im-

plementation

We begin our search for a suitable hardware architecture by comparing several decoding
algorithms in terms of computational complexity and performance.

In the sampled PDF LDLC decoder presented in [7], PDFs are sampled and discretely
quantized; the decoder shows the best reported performance for an LDLC decoder, but its
cost is high, especially in terms of data storage. We consider this decoder the baseline for
the comparison of LDLC decoding performance, as it performs sampling of the continuous

36

message functions, i.e., a close approximation of the real message. Parametric LDLC
decoders described in Subsection 2.5.2 reduce the complexity of the sampled decoder and
offer a less costly implementation with reduced storage requirements.

A parametric LDLC decoder proposed by Kurkoski et al. [11] approximates the PDF
of each message by a Gaussian mixture with M = 100 and M = 10 and for a block
length of up to 10,000. The decoder uses a Gaussian mixture reduction method based
on a greedy algorithm, described in Subsection 2.5.2. Simulation results show that the
performance loss for this decoder is no greater than 0.2 dB compared to a sampled PDF
LDLC decoder. Figure 3.1 shows a performance comparison for the sampled PDF and
the parametric LDLC decoder with number of components in the reduced mixture set to
M = 10.

Though the cost of the parametric LDLC decoder proposed in [11] is still high, it
can be argued that a parametric implementation of an LDLC decoder is more feasible,
as its performance is comparable to the sampled PDF decoder but with reduced storage
requirements.

We now present a review of other parametric approaches in the literature.

Performance: The decoder in [9] performs Gaussian mixture reduction by merging
Gaussian components within a specified range, and achieves an SER comparable to the
sampled PDF decoder of [7] for M = 6, d = 7 and block length up to 100,000. For M =
2, it shows no degradation for block length of 100 and d = 5; however it suffers a slight
degradation that varies between 0.1 and 0.2 dB for block lengths of 1000 and greater with
d = 7.

In [12], a decoder based on Gaussian mixture reduction using a greedy algorithm is
presented. For this decoder, when M = 2, the performance losses are no more than 0.1 dB
for block lengths of n = 1000 and n = 10, 000 with degree d = 7, while for n = 100 (and
d = 3), this may increase to 0.3 dB at low SNR. Further, M = 1, i.e, when the messages
exchanged between the check nodes and variable nodes are reduced to a single Gaussian,
led to a reduced memory requirement for the decoder but at a significant performance loss.
For n = 100 and d = 3, the performance loss is approximately 1 dB, as compared to the
sampled PDF decoder.

Complexity: The complexity of the Gaussian mixture reduction (GMR) method that
merges Gaussian components within a specified range depends on sorting mixture compo-
nents in the order of their strengths, i.e., the amplitude to standard deviation ratio, finding

37

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

−10 log10 2πσ
2 (in dB)

10−6

10−5

10−4

10−3

10−2

10−1
S
ym

b
ol

E
rr
or

R
at
e

Sampled PDF decoder (n=1000) [7]

Parametric decoder (n=1000,M=10,Greedy Algorithm based GMR) [11]

Figure 3.1: Comparison of symbol error rate vs. distance from capacity, −10 log10 2πeσ2

(in dB) between the sampled PDF decoder for block length, n = 1000, d = 7 and a
parametric decoder for n = 1000, number of components (M) = 10 and d = 6.

the Gaussian components that are within a certain range of the strongest component, and
grouping them together into a single Gaussian, as discussed in Section 2.5.2. The compu-
tational complexity of this operation is proportional to the number of Gaussian mixture
mergers performed during the approximation, i.e., ≤M2.

As described in Subsection 2.5.2, the complexity of the GMR method based on a greedy
algorithm lies in going over the complete Gaussian mixture and finding the pair of compo-
nents with least GQL. The computational complexity of this method is O(M4), where M
is the number of Gaussian components in the reduced mixture. This can be explained as
follows: the operations performed at the check and variable nodes during iterative decod-
ing (convolution and multiplication, respectively) create an output of M2 components for
a message size of M components. If there is a Gaussian mixture with k components, we
calculate the GQL between each pair of k components. Thus, the complexity of operation
is O(k2), so when k = M2, the overall complexity is proportional to M4.

38

0 1 2 3 4 5 6

−10 log10 2πσ
2 (in dB)

10−5

10−4

10−3

10−2

10−1
S
ym

b
ol

E
rr
or

R
at
e

Sampled PDF decoder (n=100,d=5) [7]

Sampled PDF decoder (n=1000,d=7) [7]

Parametric decoder (n=100,M=1,d=3) [12]

Parametric decoder (n=1000,M=2,d=7) [12]

Parametric decoder (n=1000,M=2,d=7) [9]

Parametric decoder (n=1000,M=6,d=7) [9]

Figure 3.2: Comparison of performance between the sampled PDF and parametric LDLC
decoders for block length 100 and 1000.

Fig. 3.2 depicts the performance of the sampled PDF decoder [7] and parametric de-
coders [9], [12] for different block lengths. Table 3.1 compares the complexity and perfor-
mance of various parametric LDLC decoders with respect to the sampled PDF decoder [7].

Since the focus of this thesis is to achieve a successful hardware implementation of an
LDLC decoder within the limited resources of a target FPGA, we choose the parametric
LDLC decoder with M = 1 for the first baseline hardware implementation. For clarity,
this implementation is referred to as single-Gaussian LDLC decoder in this thesis.

The next section describes the iterative decoding algorithm for the single-Gaussian
LDLC decoder.

39

Table 3.1: Performance and computational complexity of various parametric LDLC de-
coders with respect to the sampled PDF decoder for different block lengths.

Decoder Reference n d M # of GM Merges Performance

I) [9] 1000 7 6 ≤M2 Identical

II) [9] 1000 7 2 ≤M2 0̃.1 - 0.2 dB (loss)

III) [12] 1000 7 2 O(M4) 0̃.1 dB (loss)

IV) [12] 100 3 1 O(M4) 1̃.0 dB (loss)

3.2 Iterative Decoding for the single-Gaussian LDLC

decoder

For the single-Gaussian LDLC decoder implemented in this thesis, the messages are reduced
to a single-Gaussian and only the mean and variance are exchanged. A single Gaussian is
a special case of a Gaussian mixture defined by (2.40) when N = 1, and can therefore be
represented by the triple (m,V, c). If the single Gaussian is normalized, i.e., c = 1, then
this can be reduced to the mean-variance tuple (m,V).

During the periodic extension step described in Subsection 2.4, the single-Gaussian
LDLC decoder generates Gaussian mixtures; however, these mixtures are reduced to a sin-
gle normalized Gaussian before message passing. Thus, mean-variance pairs are exchanged
as messages between check nodes and variable nodes. The decoding algorithm follows a
flooding schedule where all the variable nodes, and subsequently all the check nodes, pass
new messages to the connected nodes in each iteration [69].

The basic steps of the iterative decoding algorithm for a single-Gaussian decoder are
presented below.

3.2.1 Initialization

At the start of the decoding process, each variable node xk, receives a single-Gaussian
message from the AWGN channel given by (m0, V0), i.e., (yk, σ

2) where yk is the mean and
σ2 is the variance of the received single Gaussian channel message. This initial message is
sent along all the edges connected to this variable node as shown in Fig. 3.3 (for degree 3).

40

Figure 3.3: Initialization in iterative decoding - a variable node sends the message received
from the channel to all connected check nodes.

3.2.2 Basic Iteration: Check Node Message

Each check node has d input messages coming along the edges connected to it with weights
hp, p = 1, . . . , d where hp is one of the h̄’s with a possible sign flip as shown in Fig. 3.4
for degree 3. The incoming messages are single Gaussians given by (m`, V`), where ` =
1, 2 . . . , d. The mean of the outgoing check node message along the edge with weight hp is
obtained by first multiplying for ` 6= p, the mean of the `th message with h`

hp
, then summing

the results over ` 6= p and a sign flip. The variance of the outgoing check node message
along the edge with weight hp is obtained by first multiplying for ` 6= p, the variance of

the `th message with
h2`
h2p

, then summing the results over ` 6= p. This outgoing message is

the single-Gaussian (mp, Vp) given by

mp = −
∑

` 6=p

h`m`

hp
, (3.1)

Vp =
∑

`6=p

h2`V`
h2p

. (3.2)

41

Figure 3.4: Illustration of all the incoming messages, and the outgoing message along the
edge with weight h3 at a check node. The outgoing message on the edge with weight h3 is
obtained by convolving all the incoming messages except the one on this edge.

3.2.3 Basic Iteration: Variable Node Message

Each variable node receives d single-Gaussian messages along the edges that can be denoted
by (m`, V`) for ` = 1, 2 . . . , d. Fig. 3.5 shows the incoming messages at a variable node xk,
in a single-Gaussian decoder of degree 3.

There are two primary steps performed at the variable nodes: a 1) periodic extension
step and a 2) product step.

1) The periodic extension step generates periodic Gaussian mixtures from the incoming
messages. In [7], this step is performed as a part of check node operations and the variable
node receives the periodically extended Gaussian mixtures. However, in the single Gaussian
decoder, the periodic extension step occurs at the variable nodes and check nodes always
send single-Gaussian messages to the variable nodes [12]. This significantly reduces the
storage requirements for the check node messages.

In the periodic extension step, the mean of the incoming check node message along an
edge with weight hl is first periodically extended as below,

m`(i) = m` +
i

h`
, (3.3)

where i denotes the ith extension. In principle, the variable i in (3.3) can take any integer
value, but in practice the range is restricted within a certain limit, i.e. i ∈ L ⊂ Z to reduce

42

Figure 3.5: Illustration of all the incoming messages and the outgoing message along the
edge with weight h3 at a variable node, xk. Here the outgoing message on the edge with
weight h3 is obtained by multiplying all the incoming messages except the one on this edge.

the complexity of the decoder.

2) The outgoing variable node message along the edge with weight hp is computed by
taking the product of the channel message, denoted by (m0, V0), and all of the Gaussian
mixtures obtained after the periodic extension step, except the mixture associated on that
edge. The product result is then further reduced to a single-Gaussian using the second
moment-matching-method [65].

The product of two Gaussian mixtures is calculated by the pair-wise multiplication of
each possible pair of components between the two mixtures, as discussed in Subsection
2.5.2. If two Gaussian components with triples (m̃1, Ṽ1, c̃1) and (m̃2, Ṽ2, c̃2) are multiplied,
the resultant Gaussian is given by the triple (mF , VF , cF) calculated as,

VF =
Ṽ1Ṽ2

Ṽ1 + Ṽ2
, (3.4)

mF = VF

(m̃1

Ṽ 1
+
m̃2

Ṽ2

)
, (3.5)

cF =
c̃1c̃2»

2π(Ṽ1 + Ṽ2)
e
−(m̃1−m̃2)

2

2(Ṽ1+Ṽ2) . (3.6)

The product step at the variable node generates a Gaussian mixture that must be
reduced to a single Gaussian before it can be sent along an outgoing edge of the node. The

43

Figure 3.6: Final decision at variable node xk - channel message and all the incoming check
node messages are multiplied (without omitting any).

single Gaussian approximation for the Gaussian mixture is computed using the second-
moment-matching method described in Subsection 2.5.2.

For a Gaussian mixture message denoted by triples of mean, variance and mixing co-
efficients, i.e., by {(m1,V1, c1), . . . , (mN , VN , cN)}, the second-moment-matched single
Gaussian, (mMM, VMM) is obtained by first normalizing the mixture according to rk =
ck/(

∑N
k=1 ck), and then parameters mMM and VMM are calculated as

mMM =
N∑

k=1

rkmk, (3.7)

VMM =
N∑

k=1

(rkVk + rk(mk −mMM)2). (3.8)

In order to compute the variable node message efficiently, a forward-backward recursive
algorithm is used [11].

Let’s denote the periodically extended messages with MPeriodic` where ` = 1, 2 . . . , d
and the Gaussian mixture reduction to a single Gaussian (including the normalization
step) by GMR. The pseudo code for this forward-backward recursion algorithm is given in

44

Algorithm 4. The algorithm is initialized with the channel message. Here “·” denotes
product of Gaussian mixtures.

Once the forward-backward messages, FW` and BW` for ` = 1, 2 . . . , d are computed,
the outgoing variable node messages, i.e., (m`, V`) for ` = 1, 2 . . . , d are obtained as

(m`, V`) = FW` ·BW`. (3.9)

3.2.4 Final Decision

After every iteration, to get b̂, i.e., an estimate the integer vector b, the channel message
and all incoming check node messages, shown in Fig. 3.6 are multiplied at each variable
node.

However, b̂ is not estimated directly. To get b̂, first an estimate ŵk of the transmitted
codeword element xk for k = 1, 2 . . . , n is computed as FW2 ·BW1. The variable, ŵk is the
mean of the single Gaussian obtained after the multiplication and moment matching step.
Then b̂, is estimated as

b̂ = bH · ŵe, (3.10)

where be denotes coordinate-wise integer rounding [70]. The decoded integer vector, b̂, is
computed after every decoding iteration and the iterative decoding process is terminated
as soon as an output is equal to the encoder input. This is to speed up the simulations
with the assumption that further iterations would not diverge from the correct decision.
In practice, a cyclic redundancy check could be used to validate that the decoder output
is correct and terminate decoding early.

Early stopping reduces the average number of iterations required for decoding and is
commonly used in iterative decoding [19,29–31,54,71–74].

3.3 Frame Error Rate to Measure the Decoder Per-

formance

In the literature, the LDLC decoder performance is measured by the symbol error rate.
However, frame error rate (FER) provides a more effective way to measure the decoder
performance, as even a single erroneous symbol in an entire frame counts as a frame error.

45

Algorithm 4: Forward-backward recursive algorithm

initialization
FW1 = (m0, 2V0)
BWd = (m0, 2V0)
main loop
for j = 1 to d− 1 do

FW(j+1) = GMR(FWj · MPeriodicj)
BW(d−j) = GMR(BW(d−j+1) · MPeriodic(d−j+1))

end

For example, a frame of 10,000 bits is in error even if only one of the symbols is wrong, and
if every such frame had exactly one incorrect symbol, then the FER would be 100% while
the SER would be 10−4. Usually, erroneous frames are discarded and a re-transmission is
requested.

Therefore, in this thesis we measure the decoder performance by the frame error rate,
and the included performance graphs are for frame error rate versus distance from capacity.
As the simulation results in [12] only reports SER, to validate the performance of our
reference single-Gaussian LDLC decoder, in Fig. 3.7 we show the SER of [12] as well as
the SER and FER of our single-Gaussian decoder for block length of 100 and degree 3.

Fig. 3.8 shows the frame error rate of a single-Gaussian decoder for block length of
1000 and degree 3. The simulated results presented are for random lattice codewords in
the integer range b ∈ Ln, where L = {-2, -1, 0, 1, 2} and generating sequence {1, 1√

3
, 1√

3
}.

3.4 Optimizations to Reduce the Decoder Complexity

3.4.1 Fixed-Point Arithmetic for Hardware Implementation

The LDLC decoder performance presented so far is for floating-point arithmetic. However,
in the design space of this thesis we do not need floating-point precision and the decoder
can be implemented on a fixed-point device (shown further in thesis). However, a key
aspect of fixed-point arithmetic is to determine the range and precision requirements of
the design.

In a fixed-point representation, every number has a fixed word length of W bits that
consists of Wi integer bits, Wf fractional bits and a sign bit. In this thesis, our fixed-point

46

1 2 3 4 5

−10 log10 2πσ
2 (in dB)

10−5

10−4

10−3

10−2

10−1

100
D
ec
od
er

P
er
fo
rm

an
ce

Parametric decoder(M=1) - symbol error rate [12]

Single-Gaussian decoder - symbol error rate

Single-Gaussian decoder - frame error rate

Figure 3.7: Comparison of symbol error rate between single-Gaussian LDLC decoder and
parametric decoder, M = 1 for n = 100 and d=3. The corresponding frame error rate for
the single-Gaussian LDLC decoder is also shown.

representation is denoted by QWi.Wf , e.g., Q10.8, where 10 bits represent the integer range
and 8 bits are for the fractional precision, and one sign bit (19 bits total).

3.4.2 Minimum Variance

For improved numerical stability at the variable nodes, the smallest allowable variance is
limited to a certain minimum value denoted by minvar. In the literature minvar is 0.03σ2 [9];
however, based on our simulations, minvar can be increased to 0.1σ2 without any loss in
decoder performance as shown in Fig. 3.9. Here σ is the standard deviation of the Gaussian
channel noise. In this thesis, any variance less than 0.1σ2 is increased back to 0.1σ2.

47

1 2 3 4 5

−10 log10 2πσ
2 (in dB)

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

Single-Gaussian decoder, n=1000

Figure 3.8: Frame error rate of the single-Gaussian LDLC decoder for n = 1000 and d = 3.

3.4.3 Variances Measured with Respect to the Channel Variance

All variances in this implementation are measured relative to the channel variance, e.g., for
V = 2 in the implementation the actual variance is 2σ2. This is an important optimization
to limit the fractional bits required for the fixed-point decoder and to achieve a lower power
consumption and overall smaller cost of hardware implementation.

3.4.4 Optimizations for the Coefficient Computation at the Vari-
able nodes

The computation of FWj·MPeriodicj in Algorithm 4 computes the product of a single
Gaussian (FWj) with a Gaussian mixture (MPeriodicj). The single Gaussian is normal-
ized. Thus, it has a single component of weight ‘1’. The Gaussian mixture is obtained by
periodically extending a normalized single Gaussian. Thus all the weights of the mixture
are equal and are also ‘1’. In addition, all the variances of the mixture are equal to that

48

1 2 3 4 5

−10 log10 2πσ
2 (in dB)

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

Single-Gaussian decoder, minVar = 0.03σ2

Single-Gaussian decoder, minVar = 0.1σ2

Single-Gaussian decoder, minVar = 0.2σ2

Figure 3.9: Frame error rate of the single-Gaussian decoder with different minVar values
for n = 1000 and d = 3.

of the single Gaussian that was periodically extended and hence, are all equal. Therefore,
the term c̃1c̃2√

2π(Ṽ1+Ṽ2)
in (3.6), which must be computed for each component in the product

FWj·MPeriodicj, is the same.

Since the components in the product are explicitly normalized in the Gaussian mixture
reduction step that follows the computation of the product, to reduce complexity, for the
computation of the product FWj·MPeriodicj, the weights in (3.6) are instead replaced
with

cF = e
−(m̃1−m̃2)

2

2(Ṽ1+Ṽ2) . (3.11)

Similarly, the weights in (3.6) are also replaced with (3.11) for the computation of the
product BW(d−j+1) · MPeriodic(d−j+1). To further improve the hardware efficiency, the
exponent calculation in (3.11), is performed as,

cF = e
−(m̃1−m̃2)

2

(Ṽ1+Ṽ2) , (3.12)

49

and the factor of 1
2

in the exponent of (3.11) is accommodated in the exponentiation
function approximation described further in the chapter in Subsection 3.5.1.

For numerical stability, the coefficients computed during the product step at the variable
nodes are scaled such that the largest exponential term in the mixture is ‘1’.

3.4.5 Number of Decoding Iterations

In [7, 9, 10, 12], the reported performance results for the LDLC decoders are with 200
decoding iterations. However, in order to obtain reasonable decoding latency and to limit
the power consumption, fewer decoding iterations are preferred and determining a suitable
number of decoding iterations is important for a feasible hardware implementation.

Fig. 3.10 shows the decoder performance versus the number of decoding iterations at a
distance from capacity of 3.5 dB as well as 5 dB. As the graph suggests, with 20 decoding
iterations, the decoder can achieve comparable performance to 200 decoding iterations,
but in significantly less run time. Also, as described in Section 3.2, the decoding process is
terminated early (in less than 20 iterations) as soon as an output is equal to the encoder
input.

3.5 Fixed-Point Quantization Study

3.5.1 Approximation of Non-Linear Functions

The fixed-point implementation has two non-trivial non-linear functions: division and
exponentiation.

Approximation of division function using Newton-Raphson method

A straightforward method to approximate division in fixed-point is integer long division.
However, integer long division computation, i.e., Qdiv(u, a) = (u� Wf)/a can be expen-
sive in terms of time and hardware.

The division function has been approximated in the literature using Newton-Raphson
methods as well as other techniques, e.g. polynomial approximation, that are simpler than
integer long division [75,76].

50

0 25 50 75 100 125 150 175 200
Number of decoding iterations

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

3.5 dB

5 dB

Figure 3.10: Performance of the single-Gaussian decoder for different number of decoding
iterations at distance from capacity of 3.5 dB and 5 dB for n = 1000 and d = 3.

Using the Newton-Raphson (NR) method, the division function Qdiv can be imple-
mented as

Qdiv(u, a) = Qmul(u, NR reciprocal(a)), (3.13)

where NR reciprocal(a) is the reciprocal of a calculated using the NR approach (shown in
Appendix B), which is then multiplied with u using the fixed-point multiplication function,
Qmul.

For the Newton-Raphson method, convergence to the correct solution depends critically
on a reasonable initial guess. In a fixed-point decoder, this initial guess is obtained using a
look-up table (LUT). To reduce the look-up table size and minimize approximation errors,
we do not approximate the reciprocal of a, but instead, the fixed-point number a is written
as q×(s ·2P) where P is an integer, q is ±1 and s is a non-negative fixed-point number with
1 ≤ s < 2. The reciprocal of s is then calculated using NR reciprocal. This reciprocal
is multiplied with u, scaled back by 2−P and further multiplied with q to get the value of

51

u/a.

In this method, the reciprocal of s is always in the range 0.5 < 1/s ≤ 1, which can be
represented precisely enough with a small number of fractional bits.

The division function is thus implemented in the fixed-point LDLC decoder as,

Qdiv(u, a) = q × (Qmul(u, NR reciprocal(s))� P). (3.14)

 Find and

Initial guess for NR approx. of

 = sign()

 MUL

 MUL

 index

= 1.d7d6d5d4d3d2d1d0

Newton-Raphson iteration

such that

LUT index to get initial guess for NR

LUT(index)

Figure 3.11: Flow-chart to demonstrate the division function approximation in fixed-point
arithmetic using Newton-Raphson (NR) method, used at the variable nodes.

52

Simulations were performed to find an optimal LUT size to get a reasonable initial
guess for the NR approximation and ensure high accuracy of the division result with a
minimum number of iterations. Specifically the performance with LUT sizes of 4, 8 and 16
entries were computed by numerical simulation using the procedure described below. For
LUT sizes of 8 and 16 entries, similar FER performance is obtained after two NR iterations
while one NR iteration results in performance loss compared to 2 iterations. For a LUT
size of 4 entries, FER performance is 0.2 dB worse than that of the 8 entry LUT even
after 2 or more iterations. Based on these results, we create a LUT with only 8 numerical
values.

In order to obtain these 8 initial values, the range of s, i.e., 1 to 2, is divided into 8
equal sub-intervals: 1, 11

8
, 12

8
, 13

8
, 14

8
, 15

8
, 16

8
, 17

8
, 2. Then, the mid-points of these sub-

parts are computed. As we want to calculate the reciprocal of s, the mid-points of these
sub-intervals is obtained by their geometric means. For example, the geometric mean of
11
8

and 12
8

is (11
8
× 12

8
)1/2. Then we compute the reciprocal of this geometric mean, i.e.,

(11
8
× 12

8
)−1/2.

In a similar fashion, the other entries of the look up table are computed, i.e., {(1× 11
8
)−1/2,

(11
8
× 12

8
)−1/2, . . . , (17

8
× 2)−1/2}, and converted to a fixed-point representation that is used

for the rest of the decoder.

For a fixed-point number, s, we use the 3 bits after the leading 1 (since 1 ≤ s < 2)
as the index for the LUT to obtain the initial guess. The complexity of this method is
constant time, i.e., O(1) [77]. From an FPGA perspective, a larger LUT (5-bit or 6-bit)
can provide a better initial guess for the NR approximation with no additional circuitry.
However, it is important to know the smallest required LUT size for possible future ASIC
implementation. Fig. 3.11 summarizes the steps to approximate division for the fixed-point
decoder.

Approximation of exponential function using LUTs

A direct implementation of the exponential function in FPGA has large resource require-
ments and design complexity. In the literature, the exponential function has been ap-
proximated in fixed-point arithmetic using various techniques, e.g., approximating the
exponential function by a Taylor series and exponential approximation using parabolic
synthesis [78–81]. Decomposing the exponential function into the product of a few com-
ponents where each component is computed using lookup-tables is a simple and feasible
implementation with limited FPGA resources.

53

In an LDLC decoder implementation, the exponent is always non-positive. Specifically,
we approximate exp(−a/2) for a ≥ 0, where the division by two accounts for the factor of
1
2

in the exponent of (3.6).

For ease of computation, the exponential function exp (−a/2) is written as the product
of three easily computable terms.

In particular, a is decomposed into 3 parts as

a = I22
P2 + I12

P1 + I02
P0 , (3.15)

where P0 < P1 < P2 are the positions of the least significant bit of each part and I0, I1, I2 are
integers that depend on a such that 0 ≤ I0 < 2P1−P0 , 0 ≤ I1 < 2P2−P1 and 0 ≤ I2 < 2Wi−P2 .
Fig. 3.12 illustrates the relationship between a and I0, I1 and I2. Since I0 is comprised of
P1 − P0 bits, its range is from 0 to 2(P1−P0) − 1. Likewise I1 is comprised of P2 − P1 bits
and its range is from 0 to 2(P2−P1)− 1 and I2 comprises of Wi−P2 bits with its range from
0 to 2(Wi−P2) − 1.

Then the exponential is given as,

exp (−a/2) = exp (−I22P2/2)

× exp (−I12P1/2) exp (−I02P0/2). (3.16)

Decomposing a into three smaller parts thus allows for three smaller look-up tables
instead of a single large lookup table to approximate the exponential.

We choose P0, P1 and P2 carefully, e.g., P0 = −Wf , P2 is the smallest positive integer
such that exp (−2P2/2) underflows the fixed-point representation of the LDLC decoder and
P1 = b(P0 + P2)/2c. Due to the choice of P2, if I2 > 0 then exp (−a/2) is approximated as
0. Otherwise I2 = 0 and thus exp (−I22P2/2) = 1 and only two small look-up tables are
sufficient to compute exp (−I12P1/2) and exp (−I02P0/2).

The first lookup table contains 2(P2−P1) entries to approximate exp(−I12P1/2) for pos-
sible I1 values, i.e., 0 to 2(P2−P1) − 1. Likewise, the second lookup table approximates
exp(−I02P0/2) for all possible 2(P1−P0) values of I0. The exponential approximation in
fixed-point representation (Q12.8) is explained with an example in Appendix C.

3.5.2 Optimal Word Length and Newton-Raphson (NR) Itera-
tions for Fixed-point decoder

In order to find the optimal word length for the fixed-point representation, simulations are
performed for different values of Wi and Wf . Fig. 3.13 compares the frame error rates for

54

b17

I0I1I2

P0decimal place P1P2

Figure 3.12: Diagram to show the relationship between a and I0, I1 and I2 as used in the
approximation of the exponential function in fixed-point arithmetic at the variable nodes.

different values of Wf while keeping Wi large and varying the number of NR iterations for
block length n = 1000. Fig. 3.14 compares decoder performance for different values of Wi

while Wf is fixed.

A key observation in Fig. 3.13 is that at 4.5 dB the FER for Q14.8 with 2 NR iterations
is 0.13 dB better compared to Q14.18. The LDLC decoder is sub-optimal because it is both
iterative and parametric in nature. Therefore, it is anticipated that some approximations
could potentially improve the decoder performance.

To understand this behaviour, simulations were performed with a floating-point de-
coder where the components of the Gaussian mixture message at the variable node that
have coefficients less than a certain threshold, denoted coeffth, are removed from the Gaus-
sian mixture. As illustrated in Fig. 3.15, the FER does not monotonically increase with
coeffth, but instead achieves a minimum at approximately coeffth ≈ 0.03. Based on these
simulation results, an appropriate choice of Wf helps the decoder by naturally underflow-
ing the fixed point representation of small coefficients. However if Wf is further reduced,
then performance deteriorates.

A similar trend has previously been seen in published fixed-point turbo decoders, where
the quantization methodology leads to fixed-point implementations where the bit error
rate (BER) can be slightly better than the BER of floating-point implementation [82].
The results reported in Fig. 3.14 demonstrate that the decoder performance degrades with
smaller Wi due to the computation errors that occur from the saturation in arithmetic
operations, primarily multiplication.

Based on the results in Fig. 3.13 and Fig. 3.14, a word length of 21 with 12 integer bits,
8 fractional bits and a sign bit is an appropriate choice for a fixed-point representation.
As demonstrated in Fig. 3.14 the single-Gaussian decoder achieves an FER of 3 · 10−3 at
−10 log10 2πeσ2 = 5 dB which is slightly better than the floating-point.

55

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q14.7 (3 NR Iterations)

Q14.8 (1 NR Iterations)

Q14.8 (2 NR Iterations)

Q14.10 (2 NR Iterations)

Q14.18 (2 NR Iterations)

Figure 3.13: FER for different numbers of fractional bits and Newton-Raphson iterations
for n = 1000, d = 3 where −10 log10 2πeσ2 is distance from the theoretical noise limit.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q12.8

Q11.8

Q10.8

Q9.8

Figure 3.14: Frame error rate for different numbers of integer bits and two Newton-Raphson
iterations with n = 1000, d = 3.

56

0.00 0.02 0.04 0.06 0.08
Threshold (coeffth)

0.045

0.050

0.055

0.060

0.065

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Figure 3.15: Effect of removing small coefficients from Gaussian mixture in floating point
LDLC decoder at −10 log10 2πeσ2 = 4 dB, n = 1000 and d = 3.

3.6 LDLC Decoder FPGA Implementation

We now present our FPGA implementation results including 3 architectures: A) an ar-
chitecture with a single check node and a single variable node, B) an architecture where
parallelism and hardware resources are exploited to implement 20 variable nodes and a
single check node and C) an architecture with a single check node and with pipelining to
achieve an effective parallelism equivalent to 50 variable nodes. Decoder architectures A,
B and C are implemented on an Intel FPGA (Arria 10, 10AX115N3F45I2SG).

As the decoder design is complex and multiplication intensive, it is not feasible to fit
it on a smaller FPGA, e.g., Intel Cyclone. If given a larger FPGA, e.g., Intel Stratix 10, it
would likely be possible to further exploit parallelism by balancing the check and variable
node computation times.

All the implemented architectures have been verified for correct behaviour with gate
level and post-fit timing netlist simulations. Fig. 3.16 summarizes the design and verifica-
tion flow followed for the LDLC decoder architecture implementations.

57

RTL Design

Design Synthesis
(Quartus)

Behavioral Simulation
(ModelSim)

Behavior

OK?

No

Yes

Place and Route

(Quartus)

Functional verification
OK?

No

Yes

Timing Analysis

(Quartus)

Yes

No

Yes

Functional verif.
on timing netlist (Modelsim)

OK?

timing violatations

No

Yes

Program the device

(Quartus)

Add Design

Constraints

Figure 3.16: The design and verification flow.

58

Architecture A) A single check node and a single variable node: A fully parallel
LDLC decoder implementation is large and does not fit on the target reconfigurable device.
However, there are possible approaches to build the complete decoder on a target FPGA
device that can fit a few check and variable nodes.

To better understand the issues involved in an LDLC decoder implementation and
make key estimates, e.g., resource requirements and performance, as a baseline design
Fig. 3.17 presents a serial architecture for the decoder. This implementation contains one
check node and one variable node. The check node and variable node messages generated
during decoding iterations are stored in two separate single-ported memory banks. Read-
only-memories (ROMs) are used to store check node connections to variable nodes and
vice-versa, according to the H matrix. The edge weights of the connections are stored in
a separate ROM.

In order to compute the outgoing messages from a check node, ck, the message routing
network looks up the variable nodes connected to ck and the edge weights associated with
these connections from the respective ROMs. Then, it fetches the corresponding means and
variances from the variable node message memory and the check node message processing
block computes the outgoing messages. The variable node message processing block receives
the check node messages and computes the outgoing variable node messages in a similar
fashion.

Check node message processing block The check node message processing block
consists of a check node unit that performs convolution of the incoming messages according
to (3.1) and (3.2). Fig. 3.18 and Fig. 3.19 show the mean and variance computations of
the outgoing check node message that can be implemented with only a few adaptive logic
modules (ALMs), digital signal processing (DSP) blocks and registers. Fig. 3.20 depicts
the timing diagram for the check node message processing block in architectures A, B, and
C.

Variable node message processing block At the variable nodes, the outgoing message
along an edge is computed by taking the product of the channel message and all the
Gaussian mixtures (obtained after the periodic extension), except the one associated with
that edge. As discussed in Subsection 3.2.3 this message computation is performed using
a forward backward recursive algorithm.

Fig. 3.21 shows the top-level architecture of the variable node unit (VNU) used in variable
node message processing block of architecture A. The variable node unit consists of two sub-
blocks, i.e, FWBW computation block and VOut computation block. The FWBW computation

59

Variable Node Message

Processing Block

Check Node Message

Processing Block

Variable Node

Message Memory

Check Node

Message Memory

Channel Message

Check Node Unit

Decoded Integer

Message Computation

Message Routing Network

Message Routing Network

Figure 3.17: Block diagram of a two-node serial single-Gaussian LDLC decoder with a
single check node and a single variable node (architecture A).

block computes the FW` and BW` for ` = 1, 2 . . . , d and the VOut computation block
reads-in the forward-backward messages and generates the outgoing variable node messages
(m`, V`) for ` = 1, 2 . . . , d as well as the estimate for the transmitted codeword, ŵk. The
timing diagram for the variable node message processing block in architecture A is shown
in Fig. 3.22.

This serial implementation was designed as a proof-of-concept for LDLC decoding in
hardware. However, more than one check node and/or variable node with design optimiza-
tions can provide considerable improvement in decoding speed.

Architecture B) A single check node and 20 variable nodes: The variable node
described above requires 140 clock cycles for message computation while the check node
takes a single cycle, and thus the variable node limits the throughput. Several parallel
variable nodes can render variable-node message computation faster and boost decoder
throughput significantly. To exploit the inherent parallelism of iterative decoding we im-
plement 20 parallel variable nodes with the available resources on the target FPGA (of

60

ADDMUL

MUL

MUL

MUL

MUL

MUL

ADD

ADD

sign flip

sign flip

sign flip

Figure 3.18: Block diagram for the mean computation of the outgoing messages at the
check node. The mean is computed by first multiplying each incoming message with its
respective edge weight (except the one on the outgoing edge), summing the results and
further dividing the result of the summation by the outgoing edge weight and a sign flip.

course, a larger FPGA could potentially fit even more variable nodes).

Fig. 3.23 shows the decoder architecture where the check node message processing block
has a single check node and the variable node message processing block contains 20 parallel
variable node units denoted by VNUp, with inputs VNinput{p} and outputs, VNoutput{p} for p =
0, 1, 2 . . . , 19. Fig. 3.24 shows the timing diagram for the variable node message processing
block in architecture B. The message routing network fetches check node messages for
one variable node every clock cycle and the incoming messages are driven to VNinput{p} for
p = 0, 1, 2 . . . , 19 in 20 clock cycles sequentially.

Architecture C) A single check node and with pipelining to achieve an effective
parallelism equivalent to 50 variable nodes: After additional data flow and design
optimizations, in the variable node unit shown in Fig. 3.21, the FWBW computation block
requires 109 clock cycles while the calculations in the VOut computation block take 10
clock cycles. This implies that one VOut computation block can be sufficient to process the
output from 10 FWBW computation blocks (when pipelined), which could provide significant
hardware savings.

For efficient variable node message computation, we implement a two-stage pipeline in
the variable node message processing block. The first stage of the pipeline consists of 10
FWBW computation blocks that compute the FW` and BW` messages corresponding to 10

61

ADDMUL

MUL

MUL

MUL

MUL

MUL

ADD

ADD

Figure 3.19: Block diagram for the variance computation of the outgoing check node
messages.

variable nodes, xk for k = 0, 1, 2 . . . , 9, according to Algorithm 4. Further, the second stage
block reads-in stage 1 output and computes outgoing variable node messages according to
(3.9) corresponding to a variable node. The design components are reused in different clock
cycles within the two pipeline stages. For convenience, this two pipelined stage is termed
as VNUCluster.

The resources on the target FPGA are sufficient to implement 5 parallel VNUCluster
blocks (VNUClusterp for p = 0, 1, 2 . . . , 4), achieving a parallelism equivalent to 50 vari-
able node units (VNUs). Thus rendering significantly reduced computation time for each
variable node message generation overall. Fig. 3.25 shows the top-level block diagram
of the variable node message processing block used in architecture C that consists of
5 VNUCluster blocks. The sub-blocks of the pipelining inside the VNUCluster blocks
are shown specifically for VNUCluster0. Here, 10 forward-backward message computation
blocks, i.e., FWBW{p}VNUCluster0 with inputs, inp{p}VNUCluster0 and outputs, op{p}VNUCluster0
for p = 0, 1, 2 . . . , 9 comprise the first stage of the pipeline. The second stage consists of
the VOut0 computation block with input In0 and output Out0. Fig. 3.26 shows the timing
diagram for the various signals used in the two pipelining stages of the VNUCluster0 block.

The resource requirement and throughput of the variable node message processing block
used in architectures A, B, and C, are provided in Table 3.2 and Table 3.3 respectively.

62

all incoming messages

C0

C0

C1

C1

C2

C2

C998

C998

C999

C999

...

...

Figure 3.20: Timing diagram of the check node message processing block in architecture
A , B and C.

Table 3.2: Resource requirements of the variable node message processing block in archi-
tecture A, B and C.

Resource Arch. A Arch. B Arch. C

ALM 8151 321128 406281
Dedicated Regs. 6464 146260 229380
DSPs 160 1509 1507

Based on Table 3.2 and Table 3.3, it is evident that parallelism and pipelining boost
throughput of the variable node message processing block significantly. However, it is
achieved with an extra hardware cost.

Fig. 3.27 shows a high-level block diagram for decoder architecture C, that consists of
a single check node and 5 VNUCluster blocks.

Performance and Resource Usage All three architectures achieve the frame error
rate shown in Fig. 3.14 at a clock frequency of 125 MHz. If the decoder is operated at a
higher frequency, some critical paths in the design may have timing issues. Therefore, 125
MHz is the recommended fastest clock for our architectures in the target technology.

With further critical path optimizations architecture A can run at a higher frequency,
while architectures B and C are difficult to improve because of the very large use of re-
sources, impeding the place-and-route process and then penalizing the frequency.

The resource usage for the decoder architectures A, B and C is provided in Table 3.4.

63

Variable

Node,

Product
of

Gaussians

Forward Recursive Computation

Backward Recursive Computation

 Product
 of Gaussians

 Mean, Variance.

 Coeff. Computation

Gaussian
Mixture

Reduction

Periodic
Extension

Block

 Product
 of Gaussians

 Mean, Variance.

 Coeff. Computation

Gaussian
Mixture

Reduction

Mux

Mux

Computation Block

 Computation Block

Figure 3.21: High-level architecture of a variable node unit (VNU) in single-Gaussian decoder
with d = 3. At a variable node, xk, the incoming check node messages are periodically
extended, FW` and BW` for ` = 1, 2 . . . , d are computed in FWBW computation block and
finally the outgoing variable node messages, (ml, Vl) for ` = 1, 2 . . . , d and estimate for
transmitted codeword, ŵk is obtained in VOut computation block.

64

V0

V0 V1

V0 V1

Figure 3.22: Timing diagram of the variable node message processing block in architecture
A.

Fig. 3.28 shows the throughput comparison for these architectures. Architecture C
attains a throughput of 10.5 Msymbols/sec at a distance of 5 dB from capacity which
is a 24× improvement over the baseline implementation A and a 1.8× improvement over
architecture B. Note that the decoder throughput varies over SNR values due to early
termination in the iterative decoding process.

The storage requirement for this implementation is O(n · d) and the computational
complexity is O(n · d ·R) where n is block length, d is degree for the LDLC design and R
is the number of periodic extensions.

3.7 Summary

This chapter described the performance results and design strategies used for a fixed-point
single-Gaussian LDLC decoder implementation in hardware. After developing approaches
to address the complexities of the hardware implementation, e.g., efficient approximations
of the non-linear functions and a comprehensive quantization study, we have achieved a
successful FPGA implementation of a decoder for low-density-lattice codes.

With the detailed knowledge gained from the serial and partially parallel single-Gaussian

65

Variable Node Message

Processing Block

Check Node Message

Processing Block

Variable Node

Message Memory

Check Node

Message Memory

Check Node Unit

Channel Message
Decoded Integer

Message Computation

Message Routing Network

Message Routing Network

Figure 3.23: Top-level block diagram of the LDLC decoder with one check node and 20
parallel variable node units (architecture B).

LDLC decoder implementations, we now move on to the implementation of LDLC decoders
where messages exchanged are Gaussian mixtures, where we expect to improve frame error
rate performance.

66

141 clock cycles

19 clock cycles

V0

V0

V0

V20

V20

V19

V19

V19

V39

V39

Figure 3.24: Timing diagram of the variable node message processing block in architecture
B.

Table 3.3: Throughput (clock cycles/message) of the variable node message processing
block in the architectures A, B and C.

Architecture Throughput
cycles/message

A 140
B 9.2
C 3.9

67

Figure 3.25: High-level diagram of the variable node message processing block used in
architecture C, that consists of 5 VNUCluster blocks. The two stage pipelining used in
VNUCluster blocks is shown specifically for VNUCluster0.

68

V0

V0

V0

V0

V5

V5

V1

(processing for 10 cycles)V0

Pipelining Stage 1:

45 clock cycles

V0

V0

V0 (processing for 109 cycles)

V0

V0

V45

V45

V45 (processing for 109 cycles)

V50

V50

V50

V45

Pipelining Stage 2:

Figure 3.26: Timing diagram of VNUCluster block used in variable node message processing
block of architecture C. The waveforms are shown particularly for VNUCluster0 block.

69

Variable Node Message

Processing Block

Check Node Message

Processing Block

Check Node Unit

Channel Message
Decoded Integer Message

 Computation

Check Node

Message Memory

Variable Node

Message Memory

Message Routing Network

Message Routing Network

Figure 3.27: Top-level architecture for the LDLC decoder with a single check node and
with two-stage pipelining to achieve an effective parallelism equivalent to 50 variable nodes
(architecture C).

Table 3.4: Resource usage of different architectures for single-Gaussian decoder

Resource A
1 check node,

1 var.node

B
1 check node,
20 var.nodes

C
1 check node,

parallelism
equivalent to
50 var. nodes

ALMs (lut and reg) 12,560 328,490 411,436
Dedicated Registers 11,038 169,843 300,280
DSPs (27x27 mult.) 171 1,518 1,518
BRAMs 30 12 47

70

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10log102πσ
2 (in dB)

105

106

107

T
h
ro
u
gh
p
u
t
(s
ym

b
ol
s/
se
c,
@
12
5M

H
z)

24x

1.8x

1 check node,1 var. node

1 check node,20 var. nodes

1 check node,parallelism equiv. to 50 var. nodes

Figure 3.28: Throughput comparison of different decoder architectures for n = 1000 and
clock frequency of 125 MHz.

71

Chapter 4

Multi-Gaussian LDLC Decoder

In Chapter 3, the hardware implementation of a single-Gaussian LDLC decoder on an
FPGA device was presented. It described a comprehensive study to choose a suitable
architecture for the first known hardware implementation of an LDLC decoder. This
implementation used an iterative decoding algorithm where the Gaussian mixture messages
are reduced to a single-Gaussian. Then, a detailed quantization analysis of the fixed-point
arithmetic used for FPGA implementation, along with hardware throughput and resource
requirements was described.

Following this, a natural extension of the work is to look at the hardware implementa-
tion of a parametric LDLC decoder where Gaussian mixture messages are represented by
multiple triples of Gaussian parameters, i.e., means, variances and coefficients [9, 11, 12].
This approach is significantly more challenging compared to the single-Gaussian case; how-
ever, it provides better frame error rate performance. In this thesis, for convenience, a
decoder where the Gaussian mixture messages exchanged during the iterative decoding
process contain multiple components is termed, multi-Gaussian decoder.

This chapter describes the criteria used to select an appropriate multi-Gaussian de-
coder for a hardware implementation. Then, we include the design optimizations applied
to reduce the decoder complexity and different hardware architectures implemented on
the target FPGA. Subsequently, the resource requirements and throughput of different
architectures as well as design trade-offs are discussed.

72

4.1 Selection of an Appropriate Decoder for the Hard-

ware Implementation

Table 3.1 in Chapter 3 presents a comparison of various parametric decoders published
in the literature, where multi-Gaussian decoders II and III achieve similar decoding per-
formance when the Gaussian mixture messages exchanged during the iterative decoding
process contain only two components. Based on Table 3.1, decoder II attains performance
similar to that of III with significantly lower design complexity, and is thus preferred choice
for hardware implementation.

In decoder II, the messages are two triples of the Gaussian parameters, means, variances
and coefficients, i.e., M = 2. The Gaussian mixture messages generated during the variable
node and check node operations are reduced to a mixture with two components according
to Algorithm 3 (described in Subsection 2.5.2). For a reasonable comparison of the multi-
Gaussian decoder with the single-Gaussian decoder in terms of frame error rate and design
throughput, we choose a multi-Gaussian decoder with degree 3 for the initial hardware
implementation.

4.2 Iterative Decoding for Multi-Gaussian LDLC De-

coder (M = 2)

Subsection 2.4 presented an iterative decoding algorithm where the messages exchanged
during the decoding iterations are continuous functions; then in Section 3.2, the iterative
decoding process for the single-Gaussian LDLC decoder was described. Here, we outline
the operations that occur in the multi-Gaussian decoder (M = 2) at the check nodes and
variable nodes during the iterative decoding process.

4.2.1 Initialization

At the start of the decoding process, each variable node xk sends the received channel
message given by (m0, V0, 1), along all the edges connected to this variable node where m0

is yk and V0 is σ2, as shown in Fig. 4.1.

73

Figure 4.1: A variable node, xk sends the message received from the channel to all connected
check nodes.

Figure 4.2: Illustration of all the incoming and the outgoing messages at a check node in
multi-Gaussian decoder with M = 2 and d = 3.

4.2.2 Basic Iteration: Check Node Message

Each check node has d input messages coming along the edges connected to it with weights
hp, p = 1, . . . , d, where hp is one of the h̄’s with a possible sign flip as shown in Fig. 4.2.
The incoming messages contain two components given by {(m`1, V`1, c`1), (m`2, V`2, c`2)},
where ` = 1, 2 . . . , d.

The outgoing message along an edge is computed by the convolution of all the incoming
messages except the one incoming on that edge. To achieve this, each possible pair of
components between the mixtures is convolved. If two Gaussians with triples (m1, V1, c1)
and (m2, V2, c2) are convolved, the resultant Gaussian represented by triple (mr, Vr, cr) is
obtained using (2.45), (2.46) and (2.47).

Convolution of two Gaussian mixture messages that contain two components, i.e., M =
2, generates a Gaussian mixture with four components. It is then reduced into a mixture

74

Figure 4.3: All the incoming and outgoing messages at a variable node in multi-Gaussian
decoder with M = 2 and d = 3.

Figure 4.4: For final decision, the channel message and all the incoming messages to a
variable node, xk, are multiplied.

with two components using an algorithm based on merging the Gaussian components in a
range (Algorithm 3).

In order to compute the outgoing messages efficiently, a recursive forward-backward
algorithm is applied at the check nodes [11]. The pseudo-code for the algorithm is provided
in Algorithm 5. In the algorithm, ‘*’ denotes convolution of Gaussian mixtures and the
incoming check node messages, i.e, ((m`1, V`1, c`1), (m`2, V`2, c`2)) for ` = 1, 2 . . . , d are
denoted as, CheckNodeMessage`. Here, the Gaussian mixture reduction (including the
normalization step) is represented by GMR CNRangebased.

We first compute the forward-backward messages, denoted by CNFW` and CNBW` for
` = 1, 2, . . . , d. Then the outgoing check node messages, i.e., ((m`1, V`1, c`1), (m`2, V`2, c`2))
for ` = 1, 2 . . . , d are calculated as below:

((m`1, V`1, c`1), (m`2, V`2, c`2)) = GMR CNRangebased(CNFW` ∗ CNBW`). (4.1)

75

Algorithm 5: Forward-backward recursive algorithm at check node

initialization
CNFW1 = ((0, 0.03, 1), (0, 0.03, 1))
CNBWd = ((0, 0.03, 1), (0, 0.03, 1))
CNFW2 = CheckNodeMessage1
CNBWd−1 = CheckNodeMessaged
main loop
for i = 2 to d− 1 do

CNFW(i+1) = GMR CNRangebased(CheckNodeMessagei ∗ CNFWi)
CNBW(d−i) = GMR CNRangebased(CNBW(d−i+1) ∗ CheckNodeMessage(d−i+1))

end

Algorithm 6: Forward-backward recursive algorithm at variable node

initialization
V NFW1 = ((m0, 2, 1), (0, 0.03, 1)
V NBWd = ((m0, 2, 1), (0, 0.03, 1)
main loop
for i = 1 to d− 1 do

V NFW(i+1) = GMR VNRangebased(V NFWi · MPeriodici)
V NBW(d−i) = GMR VNRangebased(V NBW(d−i+1) · MPeriodic(d−i+1))

end

4.2.3 Basic Iteration: Variable Node Message

Each variable node receives d Gaussian mixture messages with two components denoted
by {(m`1, V`1, c`1), (m`2, V`2, c`2)}, where ` = 1, 2 . . . , d as shown in Fig. 4.3. These received
messages are periodically extended at the variable node. Similar to the single-Gaussian
implementation in Chapter 3, in a multi-Gaussian decoder, the periodic extension step is
performed at the variable nodes instead of the check nodes.

In this step, the mean of the incoming check node message along an edge with weight
hl is first periodically extended as below:

m`1(i) = m`1 +
i

h`
, (4.2)

m`2(i) = m`2 +
i

h`
, (4.3)

76

where i denotes the ith extension. In principle, similar to the single-Gaussian decoder the
variable i can be any integer value; however, in practice the range is restricted within a
certain limit to a subset of integers.

The periodic extension step converts each incoming message with two components
(M = 2) into a larger Gaussian mixture, e.g., taking R periodic extensions generates a
Gaussian mixture with M · R components. The variable node message along the edge
with weight hp is computed by taking the product of the channel message, denoted by
(m0, V0, 1), and all the Gaussian mixtures obtained after the periodic extension, except the
mixture associated with that edge.

The product of two Gaussian mixtures is calculated by the pair-wise multiplication of
each possible pair of components between the two mixtures, as described in Subsection
2.5.2. The Gaussian mixture generated in the product-step must be reduced to a Gaussian
mixture with only two components before it can be sent along an outgoing edge of the
node. This Gaussian mixture reduction is obtained using the Gaussian mixture reduction
Algorithm 3 in Subsection 2.5.2.

Similar to the single-Gaussian decoder, a forward-backward recursion algorithm is used
to generate variable node messages in the multi-Gaussian decoder. The algorithm is ini-
tialized with the channel message. Let’s assume the periodically extended messages are
denoted by MPeriodic` for ` = 1, 2 . . . , d and the Gaussian mixture reduction (includ-
ing the normalization step) by GMR VNRangebased. The pseudo-code for the recursive
algorithm is provided in Algorithm 6. Here, “·” denotes the product of Gaussian mix-
tures. First, the forward-backward messages, V NFW` and V NBW` for ` = 1, 2 . . . , d
are computed using Algorithm 6 and then, the outgoing variable node messages, i.e.,
((m`1, V`1, c`1), (m`2, V`2, c`2)) for ` = 1, 2 . . . , d are obtained as,

((m`1, V`1, c`1), (m`2, V`2, c`2)) = GMR VNRangebased(V NFW` · V NBW`). (4.4)

4.2.4 Final Decision

To estimate b̂ in the multi-Gaussian decoder, first an estimate ŵk of the transmitted code-
word element xk for k = 1, 2 . . . , n is computed. In order to estimate the value of ŵk, first
a Gaussian mixture is created around the channel message, yk, using the set of triples ob-
tained after the multiplication and Gaussian mixture reduction step at the variable node [9]
and the peak value of this Gaussian mixture is the estimated codeword symbol ŵk.

Then, b̂ is estimated as

b̂ = bH · ŵe, (4.5)

77

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

−10 log10 2πσ
2 (in dB)

10−6

10−5

10−4

10−3

10−2

10−1

100
D
ec
od
er

P
er
fo
rm

an
ce

Parametric decoder(M=2) - symbol error rate [9]

Multi-Gaussian decoder (M=2) - symbol error rate

Multi-Gaussian decoder (M=2) - frame error rate

Figure 4.5: Frame error rate and symbol error rate performance of a multi-Gaussian LDLC
decoder (M = 2) for block length n = 1000 and d = 7.

where be denotes coordinate-wise integer rounding. Consistent with the decoding method-
ology of the single-Gaussian decoder, we do an early termination where the iterative de-
coding is terminated as soon as the decoder output is equal to the encoder input.

4.3 Frame Error Rate to Measure the Decoder Per-

formance

The published results in the literature report the multi-Gaussian decoder SER performance
for a degree of 7; therefore, to benchmark the multi-Gaussian decoder simulation, first the
SER for block length n = 1000 and d = 7 is computed and compared with results in [9]. As
seen in Fig. 4.5, the simulated SER shows good agreement with the results in [9]. In Fig. 4.5
the slope of the blue curves flatten in the higher SNR regime. This decoder performance
is with floating point arithmetic so the flattening is not due to quantization error usually

78

1 2 3 4 5

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100
D
ec
od
er

P
er
fo
rm

an
ce

Multi-Gaussian decoder (M=2) - symbol error rate

Multi-Gaussian decoder (M=2) - frame error rate

Figure 4.6: Frame error rate and symbol error rate performance of a multi-Gaussian LDLC
decoder (M = 2) for block length n = 1000, d = 3, and 200 decoding iterations.

observed with fixed-point arithmetic. It may be a limitation of the code or decoding
algorithm (in this thesis the LDLC decoding algorithm is taken from the literature [7] and
the decoder performance is extended for high SNR values not reported in the literature).

Using this verified simulation setup, the SER and FER for a multi-Gaussian decoder
for block length n = 1000 and d = 3 is simulated, as shown in Fig. 4.6.

Simulation results provided are for a multi-Gaussian decoder with M = 2, n = 1000
and degree, d = 3. The generating sequence is {1, 1√

3
, 1√

3
} and random lattice codewords

are in the integer range b ∈ Ln, where L = {-2, -1, 0, 1, 2}.

79

0 25 50 75 100 125 150 175 200
Number of decoding iterations

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

4 dB

2 dB

Figure 4.7: Frame error rate of the multi-Gaussian decoder (floating-point with no approx-
imations) versus number of decoding iterations for n = 1000 and d = 3 at distance from
capacity of 2 dB ad 4 dB.

4.4 Optimizations to Reduce the Decoder Complexity

4.4.1 Fixed-point Arithmetic for Hardware Implementation

To implement the multi-Gaussian decoder on a target FPGA, a fixed-point arithmetic
implementation is favoured, as was the case for the single-Gaussian implementation. Con-
sistent with the convention established for the single-Gaussian decoder in Chapter 3, in
the multi-Gaussian decoder also each fixed point number is represented by QWi.Wf , where
Wi integer bits, Wf fractional bits (along with a sign bit).

80

1 2 3 4 5

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

200 decoding iterations

30 decoding iterations

Figure 4.8: Frame error rate of a multi-Gaussian decoder (floating-point with no approxi-
mations) for n = 1000 and d = 3 with 200 and 30 decoding iterations.

4.4.2 Number of Decoding Iterations

In [6, 7, 9, 10, 12], the SERs for LDLC decoders are simulated for 200 decoding iterations.
However, similar to the single-Gaussian decoder presented in Chapter 3, for reduced power
consumption and a reasonable decoding latency fewer decoding iterations are preferred in
the multi-Gaussian decoder.

Fig. 4.7 shows the decoder FER performance versus number of decoding iterations at
a distance from capacity of 2 dB and 4 dB. As seen in the graph, 30 decoding iterations
achieve comparable performance to 200 decoding iterations, albeit in significantly less run
time. Fig. 4.8 shows a comparison of the decoding performance for 200 and 30 decoding
iterations.

81

1 2 3 4 5

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

Estimated codeword symbol: peak of Gaussian mixture

Estimated codeword symbol: mean of strongest component in mixture

Figure 4.9: Frame error rate of a multi-Gaussian decoder using a method for final decision
(in iterative decoding) where the mean of the strongest component in the Gaussian mixture
is considered as the estimated codeword symbol, ŵk, for n = 1000, d = 3 and 30 decoding
iterations.

4.4.3 Final Decision in Iterative Decoding Algorithm

As described in Section 4.2, for the final decision in the parametric decoder, at a variable
node xk, the channel message and all the incoming check node messages are multiplied,
and then using the multiplication result, a Gaussian mixture is generated. The peak value
of this Gaussian mixture is the estimated codeword symbol ŵk, further used for estimating
the decoded integer vector b̂.

An exact implementation of the Gaussian mixture generation for the final decision at a
variable node is resource and time intensive. For a practical decoder implementation it is
important to devise a simpler method to estimate the codeword symbol ŵk. An intuitive
approach is to take the mean of the strongest component in the Gaussian mixture as the
estimate of the codeword symbol.

82

1 2 3 4 5

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

Multi-Gaussian decoder, minVar = 0.03σ2

Multi-Gaussian decoder, minVar = 0.05σ2

Multi-Gaussian decoder, minVar = 0.06σ2

Figure 4.10: Frame error rate of a multi-Gaussian decoder (floating-point) with different
minimum variance, minVar values for n = 1000 and d = 3.

The multi-Gaussian decoder FER is simulated using this approach. A decoder using
this final decision method attains a frame error rate similar to the one where the peak
of the Gaussian mixture is ŵk, as shown in Fig. 4.9, albeit with significantly less design
complexity.

4.4.4 Minimum Variance

Following the convention established in the single-Gaussian decoder, for better numeri-
cal stability, at the variable nodes in the multi-Gaussian decoder, the smallest allowable
variance is limited to a certain minimum value denoted by minvar.

Simulations are performed to investigate if a larger value for minvar can be used for the
multi-Gaussian decoder without any significant degradation on the decoder performance.
As seen in Fig. 4.10, the FER of the decoder deteriorates with minvar values larger than
0.03σ2, where σ2 is the channel noise variance.

83

1 2 3 4 5

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

Coeff. computation with 1/(2π
√
(Ṽ1 + Ṽ2))

Coeff. computation with 1/(2π
√
(Ṽ1 + Ṽ2)) approx. to constant

Figure 4.11: Frame error rate of a multi-Gaussian decoder (floating-point) for n = 1000
and d = 3 when 1

2π
√

(Ṽ1+Ṽ2)
component in the coefficient computation, i.e., (3.6) is approx-

imated to a constant.

4.4.5 Variance Measured with Respect to the Channel Variance

Similar to the single-Gaussian decoder in Chapter 3, all variances in the multi-Gaussian
decoder are measured relative to the channel variance.

4.4.6 Optimizations in the Coefficient Computation at the Vari-
able Nodes

During the iterative decoding process of Section 4.2, at each variable node, a pairwise mul-
tiplication is computed for each possible pair of the components between the two Gaussian
mixtures. The computation of V NFWi·MPeriodici in Algorithm 6 described in Subsec-
tion 4.2.2 computes the product of a Gaussian mixture with two components (V NFWi)
with a larger Gaussian mixture, MPeriodici with M ·R components.

84

In Equation (3.6), i.e., cF = c̃1c̃2√
2π(Ṽ1+Ṽ2)

e
−(m̃1−m̃2)

2

2(Ṽ1+Ṽ2) , the term c̃1c̃2e
−(m̃1−m̃2)

2

2(Ṽ1+Ṽ2) dominates

the overall value of cF . Based on the simulation results shown in Fig. 4.11, replacing
1√

2π(Ṽ1+Ṽ2)
with a constant (i.e., ‘1’) does not significantly impact the decoder’s perfor-

mance. Therefore, we compute cF as,

cF = c̃1c̃2e
−(m̃1−m̃2)

2

2(Ṽ1+Ṽ2) . (4.6)

The weights in the computation of the product V NBW(d−i+1) · MPeriodic(d−i+1) are
calculated in similar fashion.

Similar to the single-Gaussian decoder, the factor of 1
2

in the exponent of (4.6) is accom-
modated in the exponentiation function approximation. Thus, the exponent is computed
as

cF = c̃1c̃2e
−(m̃1−m̃2)

2

(Ṽ1+Ṽ2) . (4.7)

For improved numerical stability, the coefficients generated during the product step are

scaled such that the strongest exponential term, i.e, e
−(m̃1−m̃2)

2

(Ṽ1+Ṽ2) is ‘1’.

4.5 Fixed Point Quantization Study

4.5.1 Approximation of Non-Linear Functions

The multi-Gaussian decoding algorithm has three non-trivial non-linear functions: division,
exponentiation and square-root.

The square root function is used in the coefficient computation at the variable nodes
(2.54) and to identify the strongest component in the mixture during GMR at the check
nodes and variable nodes (Algorithm 3 in Subsection 2.5.2). With the explanation provided
in Subsection 4.4.6, both the square root computations can be considered constant. Thus
only two non-linear functions are required for decoder implementation: 1) division and 2)
exponentiation.

85

Approximation of Division Function using Newton-Raphson

The multi-Gaussian fixed-point decoder uses the division function approximation devised
in Subsection 3.5.1 where the division Qdiv(u, a) is computed using (3.14).

The look-up table previously used in the single-Gaussian decoder to obtain the initial
values for Newton-Raphson iteration is reused for the multi-Gaussian decoder.

Approximation of Exponential Function using LUTs

Similar to the single-Gaussian decoder, the exponent in the coefficient computation (4.7)
at the variable nodes of the multi-Gaussian LDLC decoder (parametric decoder) is always
non-positive.

Following the methodology developed to approximate exp (−a/2) for the single-Gaussian
decoder in Chapter 3, for the multi-Gaussian decoder we calculate exp(−a/2) for a ≥ 0
and first decompose the exponential function exp (−a/2) as the product of three easily
computable terms as,

exp (−a/2) = exp (−I22P2/2) exp (−I12P1/2) exp (−I02P0/2). (4.8)

Initially, for the multi-Gaussian decoder we select P0 = −Wf , P2 as the smallest positive
integer such that exp (−2P2/2) underflows the fixed-point representation of the LDLC
decoder, and P1 = b(P0 + P2)/2c. Due to the choice of P2, two small look-up tables are
sufficient to compute exp (−I12P1/2) and exp (−I02P0/2).

Based on simulation results, P1 is increased further (by 3 bits) without much change
in the value of exp (−I02P0/2). The value of component, exp (−I02P0/2) does not vary
much and is replaced by ‘1’ in exponential approximation with no significant effect on the
decoder performance. Hence, only one lookup table to compute exp (−I12P1/2) is sufficient
for exponential approximation, and (4.8) can be re-written as

exp (−a/2) = exp (−I22P2/2) exp (−I12P1/2). (4.9)

Fig. 4.12 illustrates the relationship between a and I0, I1 and I2 for the multi-Gaussian
decoder.

86

b17

I0I1I2

P0decimal place P1P2

Figure 4.12: Diagram to show the relationship between a and I0, I1 and I2, as used in the
approximation of the exponential function in fixed-point arithmetic at the variable nodes
in the multi-Gaussian decoder.

4.5.2 Optimal word length and Newton-Raphson (NR) iterations
for fixed-point decoder

To keep the hardware cost low, we aim to obtain the minimum possible word length for
the fixed-point representation that can attain the floating point decoding performance.
Simulations are performed to find decoder performance for different values of Wi and Wf .
Fig. 4.13 compares the FERs for different values of Wf while keeping Wi large and varying
the number of NR iterations for block length of 1000 and degree, 3. Fig. 4.14 compares
decoder performance for different values of Wi while Wf is fixed.

As seen in Fig. 4.13, in the multi-Gaussian decoder, fixed-point performance improves
with smaller Wf (up to a certain limit) compared to the floating-point decoder. If Wf is
reduced any further, then the FER performance deteriorates. This is similar to the trend
observed for the single-Gaussian LDLC decoder in Subsection 3.5.2, where the decoder
performance slightly improves with smaller number of fractional bits.

Fig. 4.14 plots the effect of different numbers of integer bits on the decoder perfor-
mance. Similar to the single-Gaussian decoder, the degradation seen in the the decoder
performance with smaller Wi is due to the computation errors that occur from the satura-
tion in multiplication operations.

Based on the results in Fig. 4.13 and Fig. 4.14, a word length of 25 with 12 integer bits,
12 fractional bits and one sign bit is an appropriate choice for a fixed-point representation.

4.6 LDLC Decoder FPGA Implementation

In the previous section, we investigated the quantization requirements for a multi-Gaussian
decoder implementation in fixed-point arithmetic and characterized the FER performance.
Here, we present the decoder architectures implemented on a target FPGA, along with the

87

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q14.18

Q14.15

Q14.12

Q14.11

Q14.10

Figure 4.13: FER for different numbers of fractional bits and two NR iterations for n = 1000
and d = 3 where −10 log10 2πeσ2 is distance from the theoretical noise limit.

resource requirements and throughput results: D) an architecture with a single check node
and a single variable node, E) an architecture with a single check node and with pipelining
to achieve an effective parallelism of 5 variable nodes.

Architecture D) A single check node and a single variable node: A serial decoder
with a single check node and a single variable node is chosen for the preliminary multi-
Gaussian decoder hardware implementation. The estimate of the resource requirements
of a serial decoder is important to benchmark the benefits of adding parallelism in the
decoder implementation.

Two separate dual-ported memory banks are used to save the check node and variable
node messages generated during iterative decoding. Read-only-memories (ROMs) are used
to store check node connections to variable nodes and vice-versa, according to theH matrix.
The edge weights of the connections are stored in a separate ROM. A block diagram of the
two-node serial multi-Gaussian decoder in shown in Fig. 4.15.

88

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q12.12

Q11.12

Q10.12

Figure 4.14: FER performance of the multi-Gaussian decoder with different numbers of
integer bits and two NR iterations for n = 1000 and d = 3.

To compute the outgoing messages from a check node, ck, the message routing network
finds out the three variable node connections to ck and the associated edge weights from
the respective ROMs. Then, it reads corresponding means, variances and coefficients from
the variable node message memory and the check node message processing block computes
the outgoing messages. Likewise, the variable node message processing block receives the
check node messages and computes the outgoing variable node messages.

Check node message processing block In multi-Gaussian LDLC decoder, unlike the
single-Gaussian decoder the check node message processing block is complex.

The top-level architecture of the check node unit (CNU) is presented in Fig. 4.16. It
contains two blocks, CNFWBW computation block which computes the forward-backward
messages and CNVOut computation block which reads in the forward-backward messages
and calculates the outgoing check node messages. Fig. 4.17 depicts the timing diagram for
the check node unit in architectures D and E.

89

Variable Node Message Processing Block

Check Node Message Processing Block

Variable Node Message Memory

Check Node Message Memory

Channel Message
Decoded Integer

Message Computation

Message Routing Network

Message Routing Network

R
ea

d
-O

n
ly

-M
em

o
ry

(E
d
g

e
W

ei
g
h

ts
)

R
ea

d
-O

n
ly

-M
em

o
ry

)

(C
h

ec
k

 N
o

d
e

to
 V

ar
.

N
o

d
e

C
o

n
n

ec
ti

o
n

s)

R
ead

-O
n

ly
-M

em
o

ry
)

(V
ar. N

o
d

e to
 C

h
eck

 N
o

d
e C

o
n

n
ectio

n
s)

Figure 4.15: Block diagram of a two-node serial multi-Gaussian LDLC decoder with one
single check node unit, CNU and one single variable node unit, VNU (architecture D).

Variable node message processing block As described in Subsection 4.2.3, to com-
pute the outgoing message along an edge at each variable node, first the d − 1 incoming
check node messages are periodically extended and then we iteratively calculate the product
of the channel message and the periodically extended messages, except for the one associ-
ated with that edge. After every product computation, the result is reduced to a Gaussian
mixture with only two components using Gaussian mixture reduction method (Algorithm 3
described in Subsection 2.5.2). The top-level architecture of the variable node is presented
in Fig. 4.18. The timing diagram for the variable node message processing block is shown
in Fig. 4.19.

Table. 4.1 shows the hardware resources, i.e., adaptive logic modules (ALMs), registers
and DSPs used for the check node and variable node implementation in the serial imple-
mentation. At a clock frequency of 105 MHz, architecture D attains a throughput of 245
Ksymbols/sec at a distance of 5 dB from capacity, as shown in Fig. 4.20.

90

Check

Node,

Conv.
of

Gaussians
and

GMR

Forward Recursive Computation

Backward Recursive Computation

Gaussian
Mixture

Reduction

 Convolution
 of Gaussians
 Mean, Variance.

 Coeff. Computation

Gaussian
Mixture

Reduction

Mux

Mux

Computation Block Computation Block

multiply
means and
variances

with edge wts.

 Convolution
 of Gaussians
 Mean, Variance.

 Coeff. Computation

divide
means

and
var.

with
edge wts.

Figure 4.16: High-level architecture of a check node unit (CNU) in the multi-Gaussian
decoder of degree 3.

Architecture E) A single check node and pipelining to achieve an effective par-
allelism equivalent to 5 variable nodes: Based on the hardware resource requirement
for architecture D shown in Table 4.1, we conclude that there are resources available on
the target FPGA that can be utilized to add parallelism.

In architecture D, a check node takes 59 clock cycles to calculate a check node message
while a variable node requires 329 clock cycles to compute a variable node message. In
order to achieve balanced check node and variable node message computation time overall,
it is reasonable choice to add more variable nodes to architecture D.

In variable node unit (VNU), shown in Fig. 4.18, the VNFWBW computation block re-
quires 268 clock cycles to compute forward-backward messages while the calculations in
the VNVOut computation block take 53 clock cycles. This implies that one VNVOut compu-
tation block is adequate to process the output for 5 VNFWBW computation blocks.

As shown in Fig. 4.21, in architecture E, the check node message processing block

91

60 clock cycles

C0 C1

C0 C1

C0

Figure 4.17: Timing diagram of the check node message processing block in both architec-
tures D and E of the multi-Gaussian decoder.

contains a single check node unit and the variable node message processing block consists
of a MNUCluster block. The MNUCluster block (shown in Fig. 4.22) is a two-stage pipeline,
the first stage consists of five parallel VNFWBW computation blocks and the second stage,
i.e., VNVOut computation block reads in the output of first pipeline stage and generates
the outgoing variable node message. Fig. 4.23 shows timing diagram of the variable node
message processing block in architecture E.

The resource requirements for architecture E are provided in Table 4.2. The two-stage
pipelined architecture used in the variable node message processing block helps to attain an
overall 2.25× improvement over a two node serial implementation, i.e., architecture D, as
depicted in Fig. 4.24. However, this throughput improvement is obtained with additional
hardware resources, as shown in Table 4.2. Further optimizations can improve the critical
path in architecture D and it can run at a higher frequency. However architecture E has
large usage of resources and complex routing, that limits the operating frequency.

An implementation with three parallel variable nodes does better than architecture E
but does not fit on the board; the implementation is limited by the available DSPs on the
FPGA. To obtain higher throughput compared to the two variable node implementation
and fit the design on the FPGA, the partially parallel architecture (E) is implemented.

92

Variable

Node,

Product
of

Gaussians
and

GMR

Forward Recursive Computation

Backward Recursive Computation

Gaussian
Mixture

Reduction

 Product
 of Gaussians
 Mean, Variance.

 Coeff. Computation

Gaussian
Mixture

Reduction

Mux

Mux

Computation Block

 Computation Block

 Product
 of Gaussians
 Mean, Variance.

Coeff. Computation

Periodic
Extension

Block

Figure 4.18: High-level architecture of a variable node unit (VNU) in multi-Gaussian decoder
of degree 3.

4.7 Comparison of Single-Gaussian and Multi-Gaussian

LDLC Decoder (M = 2)

Fig. 4.25 compares decoding performance of the single-Gaussian decoder (M = 1) and
multi-Gaussian decoder (M = 2) for block length of 1000 and degree 3, where the multi-
Gaussian decoder achieves an improvement of ∼ 0.75 dB over the single-Gaussian decoder
(a much higher gain in decoding performance is obtained with higher degrees, presented
in Chapter 5 of the thesis). This is primarily due to the fact that the Gaussian mixture
messages that are exchanged in the multi-Gaussian decoder during the iterative decoding
process contain more components and also a more accurate Gaussian mixture reduction
method is applied.

Table. 3.4 and Table 4.2 show the resource requirements for the single-Gaussian decoder

93

V0

V0 V1

V0 V1

330 clock cycles

Figure 4.19: Timing diagram of the variable node message processing block in architecture
D of the multi-Gaussian decoder.

(architecture C) and the multi-Gaussian decoder (architecture E). Due to huge hardware
requirements of the check node and variable nodes in the multi-Gaussian decoder, only a
parallelism equivalent of 5 variable nodes can be obtained with the available resources on
the target FPGA attaining an throughput of 550 Ksymbols/sec.

Based on the results in Fig. 4.25, we can conclude that the multi-Gaussian decoder
achieves ∼ 0.75 dB improvement in decoding performance compared to the single-Gaussian
decoder. However, due a simpler design and smaller resource requirements, it was possi-
ble to add more parallelism in the variable node message processing block of the single-
Gaussian decoder and thus the single-Gaussian decoder throughput is significantly higher.

4.8 Summary

In this chapter, we studied different aspects of the hardware implementation of a multi-
Gaussian LDLC decoder on a field-programmable device.

First the selection criteria to choose a multi-Gaussian decoder for an FPGA imple-
mentation was presented. Then, we described an iterative decoding algorithm for the
multi-Gaussian decoder (parametric) where the messages exchanged between a check node

94

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

104

105

T
h
ro
u
gh
p
u
t
(s
ym

b
ol
s/
se
c,
@
10
5M

H
z)

1 check node, 1 variable node

Figure 4.20: Throughput of the multi-Gaussian decoder (degree 3) with a single check node
and a single variable node.

and a variable node are denoted by two triples of Gaussian parameters, i.e., means, variance
and coefficients.

We simulated the multi-Gaussian decoder in floating-point and achieved decoding per-
formance identical to that published in the literature for block length of 1000 and degree
of 7 (this validated of our simulation setup). We then characterized the SER and FER
of the multi-Gaussian decoder for degree of 3. Then, we discussed various optimizations
techniques that can be applied to the multi-Gaussian decoder design in order to achieve
feasible hardware using limited resources. Further, a quantization analysis was presented to
approximate required non-linear functions, i.e, division and exponentiation in fixed-point
arithmetic and we characterized decoder performance for different number of fractional
and integer bits. These simulations helped to determine an optimal word length for the
fixed-point implementation of the decoder.

We also described different architectural implementations of the multi-Gaussian LDLC
decoder. A serial two-node (a single check node and a single variable node) architecture,

95

Table 4.1: Resource usage of the LDLC decoder, check node and variable node processing
blocks in architecture D.

Resource Decoder Check Node Variable node

ALM 120342 9877 68640
Dedicated Regs. 87436 10083 46048

DSPs 672 105 564
BRAM 48 0 0

Table 4.2: Resource usage of the decoder, check node and variable node processing blocks
in architecture E.

Resource LDLC decoder Check Node Variable node

ALM 371645 11009 317433
Dedicated Regs. 203044 10828 160118
DSPs 1422 65 1354
BRAM 48 0 0

and then a partially parallel pipelined architecture (with a single check node and a two-
stage pipelining in the variable node message processing block) was implemented.

The multi-Gaussian decoder implementation achieved an FER improvement of 0.75
dB compared to the single-Gaussian decoder for block length, 1000 and degree of 3. The
design throughput of partially parallel implementation of multi-Gaussian decoder was 550
Ksymbols/sec at a clock frequency of 105 MHz.

In the next chapter, we present single-Gaussian and multi-Gaussian LDLC decoders
for degrees 5 and 7 and study the trade-offs between the frame error rate and design
throughput of these decoders on a target FPGA. We also study the decoding performance
of the multi-Gaussian decoders with larger number of components in the Gaussian mixture
messages exchanged during the iterative decoding (M = 5).

96

Variable Node Message Processing Block

Check Node Message Processing Block

Variable Node Message Memory

Check Node Message Memory

Channel Message

Check Node

Decoded Integer

Message Computation

Message Routing Network

Message Routing Network

R
ea

d
-O

n
ly

-M
em

o
ry

)

(C
h
ec

k
 N

o
d
e

to
 V

ar
.
N

o
d
e

C
o
n
n
ec

ti
o
n
s)

R
ea

d
-O

n
ly

-M
em

o
ry

(E
d

g
e

W
ei

g
h

ts
)

R
ead

-O
n

ly
-M

em
o

ry
)

(V
ar. N

o
d
e to

 C
h
eck

 N
o
d
e C

o
n
n
ectio

n
s)

Figure 4.21: Block diagram of a partially parallel multi-Gaussian LDLC decoder with one
single check node and variable node message processing block with pipelining to achieve
an effective parallelism equivalent to 5 variable nodes (architecture E).

97

Figure 4.22: Block diagram of two-stage pipelining used in the variable node message
processing block (architecture E) of the multi-Gaussian decoder .

98

Pipelining Stage 1:
4 clock cycles

V0

V0

V0 (processing for 268 cycles)

V0

V0

V4

V4

V4 (processing for 268 cycles)

V5

V5

V5

V4

Pipelining Stage 2:

V0

V0

V0

V0

(processing for 53 cycles)V0

V1

V1

Figure 4.23: Timing diagram of the variable node message processing block in architecture
E of the multi-Gaussian decoder.

99

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

104

105

T
h
ro
u
gh
p
u
t
(s
ym

b
ol
s/
se
c,
@
10
5M

H
z)

2.25x

1 check node, 1 variable node

1 check node, parallelism equivalent of 5 variable nodes

Figure 4.24: Throughput comparison of architectures D and E (of the multi-Gaussian
LDLC decoder) for block length 1000 and degree 3.

100

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Single Gaussian

Multi-Gaussian (M=2)

Figure 4.25: FER comparison of the single-Gaussian and multi-Gaussian fixed-point LDLC
decoder (M = 2) implementations for block length of 1000 and degree 3.

101

Chapter 5

Pushing the Design Limits

In Chapter 3, we implemented a single-Gaussian LDLC decoder, where the continuous
functions (Gaussian mixtures) exchanged in the sampled PDF decoder [7] are approximated
with a single Gaussian using a set of Gaussian parameters, namely mean and variance.
After a detailed quantization analysis to determine the minimum word length for the
fixed-point representation, serial and partially parallel architectures of the single-Gaussian
decoder were implemented on the target FPGA for a block length of 1000 and degree 3.

Based on the knowledge gained from the single-Gaussian decoder, in Chapter 4 we
presented multi-Gaussian decoder implementations for degree 3, where the messages ex-
changed in the iterative decoder are reduced to Gaussian mixtures with two components
represented by two sets of triples of means, variances and coefficients. A comprehensive
study of the quantization requirements, along with efficient methods to approximate the
required non-linear functions, helped to achieve fixed-point implementations of a multi-
Gaussian decoder. A i) two-node serial (with a single check node and a single variable
node) and ii) a partially parallel decoder architecture (with a single check node and with
pipelining to achieve an effective parallelism equivalent of 5 variable nodes) were imple-
mented on the FPGA device for block length of 1000. The pipelined architecture attained
an overall 2.25× improvement in throughput over the two node serial implementation.

Chapter 4 also included a comparison of decoding performance and throughput of the
single-Gaussian and multi-Gaussian decoders. The multi-Gaussian decoder attained an
improvement of ∼ 0.75 dB in frame error rate, compared to the single-Gaussian decoder
for degree of 3. However, the improvement in the decoding performance is obtained at
additional hardware cost and design throughput was reduced by a factor of 19.

In this chapter, we implement single-Gaussian and multi-Gaussian LDLC decoders

102

(with M =2) for degrees 5 and 7 on the target FPGA and study the trade-offs between
frame error rate performance and design throughput. Higher degree decoders are expected
to gain in decoding performance at the cost of additional hardware for implementation.
We also characterize the decoding performance of the multi-Gaussian decoders where the
Gaussian mixture messages contain larger number of components, i.e., M = 5.

Simulation results provided are with generating sequence {1, 1√
5
, 1√

5
, 1√

5
, 1√

5
} for degree

5, and {1, 1√
7
, 1√

7
, 1√

7
, 1√

7
, 1√

7
, 1√

7
} for degree 7. The random lattice codewords are obtained

in the integer range b ∈ Ln, where L = {-2, -1, 0, 1, 2}.

5.1 Single-Gaussian Decoders

5.1.1 Single-Gaussian Decoder, d = 5

Optimal Number of Decoding Iterations Simulations are performed to obtain the
ideal number of decoding iterations for a floating-point single-Gaussian decoder of degree 5.
Similar to the single-Gaussian decoder of degree 3, only 20 decoding iterations are needed
to attain a frame error rate comparable to 200 decoding iterations, as shown in Fig. 5.1.

Fixed-Point Quantization Analysis We use the methods devised in Chapter 3 to
approximate division and exponentiation functions.

In order to obtain the word length for the fixed-point decoder, we performed simulations
for different values of Wi and Wf . Fig. 5.2 compares the FER for different values of Wf

while keeping Wi large for block length of 1000 and degree 5 while Fig. 5.3 presents decoder
performance for different values of Wi when Wf is fixed.

Based on the results in Fig. 5.2 and Fig. 5.3, a word length of 28 with 12 integer bits,
15 fractional bits and a sign bit is a suitable choice for a fixed-point representation.

FPGA Implementation We implement a partially parallel architecture for the single-
Gaussian decoder with degree 5 as shown in Fig. 5.4.

Similar to Chapter 3, the check and variable node message processing blocks receive
the means and variances of the connected nodes and the associated edge weights on the
connections through the message routing network and compute the outgoing messages, as
described for a single-Gaussian decoder with degree 3.

103

0 25 50 75 100 125 150 175 200
Number of decoding iterations

10−3

10−2

10−1

F
ra
m
e
E
rr
or

R
at
e

3.5 dB

5 dB

Figure 5.1: Performance of the floating-point single-Gaussian decoder for different number
of decoding iterations at distance from capacity of 3.5 dB and 5 dB, n = 1000 and d = 5.

The check node processing block consists of a check node unit (CNU) similar to one used
in Chapter 3. However, it receives 5 variable node messages as input and generates 5 cor-
responding outgoing messages. The timing diagram for the check node message processing
block is shown in Fig. 5.5.

Likewise, the primary design component of the variable node message processing block
is a variable node unit, similar to the VNU block in Chapter 3. However, in this decoder, VNU
is comprised of 5 incoming and outgoing messages. The outgoing messages at a variable
node are computed using a forward-backward recursive algorithm described in Chapter 3.

The variable node unit requires 248 clock cycles to compute the outgoing variable node
messages at a variable node while the check node takes 6 clock cycles. In order to attain a
decoder architecture with more balanced check node and variable node message computa-
tion times, we implement a pipelined architecture for variable node message computation.
The FWBW computation block requires 236 clock cycles whereas the calculations in the VOut
computation block take 12 clock cycles. To speed up the variable node message computa-

104

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q14.18

Q14.15

Q14.14

Q14.13

Q14.12

Figure 5.2: Frame error rate comparison between the floating-point decoder (without ap-
proximations) and the fixed-point single-Gaussian decoder for different numbers of frac-
tional bits and two NR iterations with n = 1000 and d = 5.

tion, we use VNUCluster blocks with a two-stage pipeline designed in Chapter 3. With the
available resources on the available FPGA, we can implement two VNUCluster blocks, and
thus achieve an effective parallelism equivalent to 20 variable node units (VNUs). Fig. 5.6
shows the timing diagram for the variable node message processing block.

The resource requirements of the check node message processing block, variable node
message processing block and LDLC decoder are provided in Table 5.1. The decoder
architecture attains a throughput of 3.9 Msymbols/sec at a clock frequency of 100 MHz,
as observed in Fig. 5.7.

5.1.2 Single-Gaussian Decoder, d = 7

It is evident from the simulation results in Fig. 5.8 that similar to the earlier implemented
single-Gaussian decoders, 20 decoding iterations is again a suitable choice for the single-

105

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100
F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q12.15

Q11.15

Q10.15

Figure 5.3: Frame error rate of single-Gaussian decoder for different numbers of integer
bits and two NR iterations with n = 1000, d = 5 (floating-point decoder performance is
without any approximation).

Gaussian decoder of degree 7.

Fixed-Point Quantization Analysis Fig. 5.9 and Fig. 5.10 show the decoder perfor-
mance of various values of fractional bits, Wf , and integer bits, Wi, while keeping Wi and
Wf fixed respectively. Based on characterization results, a word length of 28, which com-
prises of 15 fractional bits, 12 integer bits and 1 sign bit is an appropriate choice for the
fixed-point representation of this decoder.

FPGA Implementation We implemented a partially parallel architecture presented
in Fig. 5.11 for the single-Gaussian LDLC decoder of degree 7. The check node and the
variable node units are similar to the ones used in Chapter 3; however, both units use 7
incoming and 7 outgoing messages.

106

Variable Node Message

Processing Block

Check Node Message

Processing Block

Check Node Unit

Channel Message
Decoded Integer Message

 Computation

Check Node

Message Memory

Variable Node

Message Memory

Message Routing Network

Message Routing Network

Figure 5.4: Top-level architecture for single-Gaussian LDLC decoder of degree 5, with a
single check node and two-stage pipelining to achieve an effective parallelism equivalent to
20 variable nodes.

The check node needs only 9 clock cycles to compute the outgoing messages whereas
the variable node unit requires 368 clock cycles. Fig. 5.12 shows the timing diagram for
the check node message processing block. In a variable node unit, the FWBW computation
block requires 352 clock cycles while the calculations in the VOut computation block take
13 clock cycles. We implement two VNUCluster blocks, and achieve an effective parallelism
equivalent to 20 variable node units. Fig. 5.13 shows the timing diagram for the variable
node message processing block in this implementation.

The resource usage of the check node message processing block, variable node message
processing block and LDLC decoder are provided in Table 5.2. The decoder architecture
attains a throughput of 3.1 Msymbols/sec at a clock frequency of 100 MHz as shown in
Fig. 5.14.

5.2 Performance and Throughput Comparison of Single-

Gaussian Decoders

Fig. 5.15 compares the decoding performance and throughput of the single Gaussian de-
coder of degree 3, 5 and 7 on the target FPGA device. As seen in the graph the decoding

107

7 clock cycles

C0 C1

C0

C0

C1

Figure 5.5: Timing diagram for the check node message processing block in single-Gaussian
decoder of degree 5.

performance of the single-Gaussian decoder with degree 7 is ∼ 0.75 dB better compared
to the decoder of degree 3; however, the throughput deteriorates by a factor of 1

3.5
.

After implementation of single-Gaussian decoders and analysis of their decoding per-
formance and design throughput trade-offs, in next section we implement multi-Gaussian
decoders for degree 5 and 7 and study the architectural and design trade-offs for the de-
coders.

5.3 Multi-Gaussian Decoders

5.3.1 Multi-Gaussian Decoder, d = 5 and M = 2

Similar to the multi-Gaussian decoder of degree 3 presented in Chapter 4, 30 decoding
iterations are suitable for this decoder as shown in Fig. 5.16. We characterize the decoder
performance for different number of Wf (Wi) while keeping Wi(Wf) constant. Based on the
results shown in Figs. 5.17 and 5.18, a word length of 28, with 12 integer bits, 15 fractional
bits and a sign bit is appropriate for the fixed-point representation of the decoder.

108

Table 5.1: Resource usage of single-Gaussian decoder (M = 1), d = 5.

Resource Check Node Variable Node Decoder

ALMs 5638 322093 400044
Registers 2131 197335 241751

BRAM(M20K) 0 28 54
Variable Precision DSPs 0 920 920

Table 5.2: Resource usage of single-Gaussian decoder (M = 1), d = 7.

Resource Check Node Variable Node Decoder

ALMs 2975 301407 390181
Registers 3691 214684 261635

BRAM(M20K) 0 40 78
Variable Precision DSPs 31 1487 1518

FPGA Implementation For the multi-Gaussian LDLC decoder of degree 5, we imple-
mented a partially parallel architecture presented in Fig. 5.19. The check node and the
variable node units in this architecture are similar to the design blocks used in Chapter 4;
however, they each receive 5 messages and compute 5 outgoing messages.

In this implementation, the check node message processing block contains a single check
node unit and variable node message processing block consists of a two-stage pipeline
similar to the MNUCluster block of Chapter 4. However, for the MNUCluster block used
in this decoder, the first stage consists of two parallel VNFWBW computation blocks and the
second stage is a VNVOut computation block, which reads in the output of first pipeline
stage and generates the outgoing message.

Fig. 5.20 and Fig. 5.21 show the timing diagram for the check node and variable node
message processing block for this architecture. The resources required for the check node,
variable node message processing blocks and LDLC decoder are provided in Table 5.3. The
decoder architecture attains a throughput of 145 Ksymbols/sec at a clock frequency of 105
MHz, as shown in Fig. 5.22.

109

Table 5.3: Resource usage of multi-Gaussian decoder, d = 5 and M = 2.

Resource Check Node Variable Node Decoder

ALMs 45262 222580 335870
Registers 21836 110982 173253

BRAM(M20K) 0 0 865
Variable Precision DSPs 150 1358 1518

5.3.2 Multi-Gaussian Decoder, d = 7 and M = 2

Fig. 5.23 plots the decoder performance for different number of decoding iterations at a
distance from capacity of 2.5 dB and 4 dB. As seen in the graph, with 30 decoding iterations
the decoder achieves a performance comparable to 200 decoding iterations.

We characterized the multi-Gaussian decoder performance to obtain the optimal word
length for the fixed-point implementation of the decoder. Based on the results, shown in
Figs. 5.24 and 5.25, a word length of 28 with 12 integer bits 15 fractional bits and a sign
bit is suitable for the fixed-point representation of the decoder.

FPGA Implementation In this section, we present a serial LDLC decoder architecture
with a single check node and a single variable node designed on a target FPGA (shown
in Fig. 5.26). The check node and variable node units are similar to the blocks used in
Chapter 4, with 7 incoming messages and 7 out going messages corresponding to degree 7.

The variable node unit requires 1015 clock cycles for outgoing message computation
while the check node takes 197 clock cycles. The available hardware resources on the target
FPGA are sufficient to implement a serial architecture with a single check node and a single
variable node.

The timing diagrams for the check node and variable node message processing block
for this architecture are shown in Fig. 5.27 and Fig. 5.28. The hardware resources required
for the check node, variable node message processing blocks and LDLC decoder implemen-
tation are provided in Table 5.4. This serial decoder architecture achieves a throughput of
84 Ksymbols/sec at a distance of 5 dB from capacity for a clock frequency of 100 MHz as
shown in Fig. 5.29.

So far in thesis, for the implemented multi-Gaussian decoders, the Gaussian mixture
messages exchanged during the iterative decoding comprised of only two components. How-

110

Table 5.4: Resource usage of multi-Gaussian decoder, d = 7 and M = 2.

Resource Check Node Variable Node Decoder

ALMs 63505 279008 352443
Registers 22401 81236 109580

BRAM(M20K) 10 80 140
Variable Precision DSPs 139 1379 1518

ever, it is compelling to characterize the decoding performance of the multi-Gaussian de-
coders where the Gaussian mixture messages contain more than two components in the
mixture. To understand the effect of larger Gaussian mixtures on the decoding perfor-
mance, in Subsection 5.3.3 to Subsection 5.3.5 we present multi-Gaussian fixed-point LDLC
decoders for degree 3, 5, and 7 with M=5.

5.3.3 Multi-Gaussian Decoder, d = 3 and M = 5

Simulation results demonstrated (Fig. 5.30) that for this multi-Gaussian decoder 30 de-
coding iterations are sufficient to attain a frame error rate comparable to 200 decoding
iterations.

Based on the quantization results, shown in Fig. 5.31 and Fig. 5.32, a word length of
28 with 12 integer bits 15 fractional bits and a sign bit is appropriate for the fixed-point
representation of the decoder.

We designed a serial implementation of the multi-Gaussian decoder with a single check
node and a single variable node for degree d=3 and M=5. However, due to large resource
requirements the design does not fit on the target device. As the DSP requirement of the
implementation is large, it does not fit on a Stratix GX FPGA either.

5.3.4 Multi-Gaussian Decoder, d = 5 and M = 5

Based on the results shown in Fig. 5.33 we choose 30 decoding iterations for the multi-
Gaussian decoder implementation of d=5 and M=5. Further, the quantization simulation
results presented in Fig. 5.34 and Fig. 5.35 suggest that a word length of 28 with 12 integer
bits 15 fractional bits and a sign bit is suitable for the fixed-point decoder implementation.

111

Similar to the multi-Gaussian decoder with degree 3 and M=5, we designed a serial
implementation of this multi-Gaussian decoder, but it does not fit on the target Intel
FPGA.

5.3.5 Multi-Gaussian Decoder, d = 7 and M = 5

As shown in Fig. 5.36 30 decoding iterations are suitable choice for the multi-Gaussian
decoder implementation of degree d=7 and M=5. According to the quantization study
(shown in Fig. 5.37 and Fig. 5.38) a word length of 28 with 12 integer bits 15 fractional
bits and a sign bit is appropriate for the fixed-point decoder implementation.

From hardware implementation perspective, this multi-Gaussian decoder does not fit on
the target FPGA. However, a larger FPGA device that contains more hardware resources
can fit the decoder implementation.

5.4 Performance and Throughput Comparisons

A comparison of decoding performance and throughput of the multi-Gaussian decoders
of degree 3, 5 and 7 (for M =2) is shown in Fig. 5.39. It is evident from the results
that the multi-Gaussian decoder of degree 7 attains a performance improvement of ∼ 1.75
dB compared to the decoder of degree 3. Nonetheless, throughput of the multi-Gaussian
decoder with degree 7 is ∼ 15% compared to that of the decoder with degree 3.

Fig. 5.40 compares the performance of the multi-Gaussian decoder of degrees 3, 5 and
7 where Gaussian mixture messages consist of 5 components, i.e., M=5. As seen in the
graphs, there is a minimal improvement of ∼ 0.1 dB for degrees 3 and 7 while we get
achieve a boost of ∼ 0.3 dB in frame error rate for degree 5.

5.4.1 Single-Gaussian vs. Multi-Gaussian Decoders

In the previous sections, we implemented single-Gaussian and multi-Gaussian decoders of
degrees 3, 5 and 7 on an Intel Arria 10 FPGA. We characterized the frame error rate
performance and obtained design throughputs for various architectures of the decoders.
Fig. 5.41 presents a comparison of the frame error rates and throughputs of the single-
Gaussian and multi-Gaussian decoders of degree 3, 5 and 7. As seen in the graphs, for
high throughput requirements, e.g., 107 symbols/sec, a single-Gaussian decoder of degree

112

Table 5.5: Performance and Throughput Comparison of LDLC Decoders.

Degree Number of
Components

(M)

gain(dB) Throughput
(Ksymbols/sec.)

3 1 0 (reference) 10, 500
2 ∼ 0.75 550
5 ∼ 0.85 (simulation) doesn’t fit on FPGA

5 1 ∼ 0.5 3, 800
2 ∼ 2.25 145
5 ∼ 2.55 (simulation) doesn’t fit on FPGA

7 1 ∼ 0.7 3, 080
2 ∼ 2.5 84
5 ∼ 2.6 (simulation) doesn’t fit on FPGA

3 is a suitable choice while for ultra-reliable communication applications a multi-Gaussian
decoder of degree 7 is appropriate.

Table 5.5 provides a summary of the fixed-point LDLC decoder implementations de-
veloped in this thesis in terms of decoding performance and design throughput. For this
comparison the first known hardware implementation of an LDLC decoder (so far to us),
i.e., the single Gaussian decoder presented in Chapter 3, is considered as a reference.

5.5 Summary

In this chapter, we first studied the decoding performance of the single-Gaussian and
multi-Gaussian decoders (M = 2) for degrees 5 and 7 and implemented different decoder
architectures on the target hardware.

Then, we characterized the frame error rate performance of the multi-Gaussian decoders
where Gaussian mixture messages consist of more than two components. This chapter pre-
sented a detailed study of different LDLC decoder implementations, decoding performance
and design throughput trade-offs. This study is particularly important to choose an ap-
propriate decoder for an application based on decoding accuracy and design throughput
requirements.

113

V0

V0

V0

V0

V2

V2

V1

(processing for 12 cycles)V0

Pipelining Stage 1:

18 clock cycles

V0

V0

V0 (processing for 236 cycles)

V0

V0

V18

V18

V18 (processing for 236 cycles)

V20

V20

V20

V18

Pipelining Stage 2:

Figure 5.6: Timing diagram for the variable node message processing block in single-
Gaussian decoder of degree 5. The waveforms are shown specifically for VNUCluster0
block.

114

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

106

T
h
ro
u
gh
p
u
t
(s
ym

b
ol
s/
se
c,
@
12
5M

H
z)

1 check node,parallelism equiv. to 20 var. nodes

Figure 5.7: Throughput of the single-Gaussian decoder of degree 5 for block length 1000.

0 25 50 75 100 125 150 175 200
Number of decoding iterations

10−2

10−1

F
ra
m
e
E
rr
or

R
at
e

3.5 dB

5 dB

Figure 5.8: Performance of the single-Gaussian decoder (floating-point) versus number of
decoding iterations at distance from capacity of 3.5 dB and 5 dB for n = 1000 and d = 7.

115

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q14.18

Q14.15

Q14.14

Q14.13

Figure 5.9: FER comparison of floating-point (without approximations) and fixed-point
single-Gaussian decoder for different Wf and two NR iterations with n = 1000 and d = 7.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q12.15

Q11.15

Q10.15

Figure 5.10: FER of single-Gaussian decoder for different Wi and two NR iterations with
n = 1000, d = 7 (floating-point decoder is without any approximation).

116

Variable Node Message

Processing Block

Check Node Message

Processing Block

Check Node Unit

Channel Message
Decoded Integer Message

 Computation

Check Node

Message Memory

Variable Node

Message Memory

Message Routing Network

Message Routing Network

Figure 5.11: Top-level architecture for the fixed-point single-Gaussian LDLC decoder of de-
gree 7, with a single check node and two-stage pipelining to achieve an effective parallelism
equivalent to 20 variable nodes.

10 clock cycles

C0 C1

C0

C0

C1

Figure 5.12: Timing diagram for the check node message processing block in single-
Gaussian decoder of degree 7.

117

V0

V0

V0

V0

V2

V2

V1

(processing for 13 cycles)V0

Pipelining Stage 1:

18 clock cycles

V0

V0

V0 (processing for 352 cycles)

V0

V0

V18

V18

V18 (processing for 352 cycles)

V20

V20

V20

V18

Pipelining Stage 2:

Figure 5.13: Timing diagram for the variable node message processing block in single-
Gaussian decoder of degree 7. The waveforms are shown specifically for VNUCluster0
block.

118

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

106

T
h
ro
u
gh
p
u
t
(s
ym

b
ol
s/
se
c,
@
12
5M

H
z)

1 check node,parallelism equiv. to 20 var. nodes

Figure 5.14: Throughput of fixed-point single-Gaussian decoder with n = 1000 and d = 7.

1 2 3 4 5

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

d=3

d=5

d=7

0.0

0.2

0.4

0.6

0.8

1.0
T
h
ro
u
gh
p
u
t
(s
ym

b
ol
s/
se
c)

×107

Figure 5.15: FER and throughput comparison for the fixed-point single-Gaussian decoders
of degree 3, 5 and 7 with block length 1000.

119

0 25 50 75 100 125 150 175 200
Number of decoding iterations

10−4

10−3

10−2

10−1

F
ra
m
e
E
rr
or

R
at
e

2.5 dB

4 dB

Figure 5.16: FER of the floating-point multi-Gaussian decoder at distance from capacity
of 2.5 dB and 4 dB for different numbers of decoding iterations with n = 1000 and d = 5.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q14.18

Q14.15

Q14.14

Q14.13

Figure 5.17: FER of the floating-point (without approximations) and fixed-point multi-
Gaussian decoder for different Wf and two NR iterations with n = 1000 and d = 5.

120

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q12.15

Q11.15

Q10.15

Figure 5.18: FER performance of the multi-Gaussian decoder with different Wi and two
NR iterations for n = 1000 and d = 5 (floating-point decoder performance is without any
approximation).

Variable Node Message Processing Block

Check Node Message Processing Block

Variable Node Message Memory

Check Node Message Memory

Channel Message

Check Node

Decoded Integer

Message Computation

Message Routing Network

Message Routing Network

R
ea

d
-O

n
ly

-M
em

o
ry

)

(C
h
ec

k
 N

o
d
e

to
 V

ar
.
N

o
d
e

C
o
n
n
ec

ti
o
n
s)

R
ea

d
-O

n
ly

-M
em

o
ry

(E
d

g
e

W
ei

g
h

ts
)

R
ead

-O
n

ly
-M

em
o

ry
)

(V
ar. N

o
d
e to

 C
h
eck

 N
o
d
e C

o
n
n
ectio

n
s)

Figure 5.19: Top-level architecture of the fixed-point multi-Gaussian LDLC decoder (de-
gree, 5) with a single check node and with two-stage pipelining to achieve an effective
parallelism equivalent to 2 variable nodes.

121

134 clock cycles

C0 C1

C0 C1

C0

Figure 5.20: Timing diagram of the check node message processing block in multi-Gaussian
decoder (degree 5).

122

Pipelining Stage 1:

Pipelining Stage 2:

V0

V0

V0

V0

(processing for 53 cycles)V0

V1

V1

V0

V0

V1

(processing for 580 cycles)V0

V1

V1

V3

V0

V0

V2

V2

V3

(processing for 580 cycles)V1

Figure 5.21: Timing diagram of the variable node message processing block for multi-
Gaussian decoder (degree 5).

123

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

104

105

T
h
ro
u
gh
p
u
t
(s
ym

b
ol
s/
se
c,
@
12
5M

H
z)

1 check node,parallelism equiv. to 2 var. nodes

Figure 5.22: Throughput of the fixed-point multi-Gaussian decoder (M=2) with degree 5
and block length 1000.

0 25 50 75 100 125 150 175 200
Number of decoding iterations

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

2.5 dB

4 dB

Figure 5.23: Performance of floating-point multi-Gaussian decoder (d=7, n=1000, M=2)
for different number of decoding iterations at distance from capacity of 2.5 dB and 4 dB.

124

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q14.18

Q14.15

Q14.14

Q14.13

Figure 5.24: FER of the floating-point (without approximations) and the fixed-point multi-
Gaussian decoder for different Wf and two NR iterations for d = 7 and n = 1000.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q12.15

Q11.15

Figure 5.25: FER of the multi-Gaussian decoder for different Wi and two NR iterations
with degree 7 and n = 1000 (floating-point decoder is without approximation).

125

Variable Node Message Processing Block

Check Node Message Processing Block

Variable Node Message Memory

Check Node Message Memory

Channel Message

Check Node Unit

Decoded Integer

Message Computation

Message Routing Network

Message Routing Network

R
ea

d
-O

n
ly

-M
em

o
ry

)

(C
h

ec
k

 N
o

d
e

to
 V

ar
.

N
o

d
e

C
o

n
n

ec
ti

o
n

s)

R
ea

d
-O

n
ly

-M
em

o
ry

(E
d
g
e

W
ei

g
h
ts

)

R
ead

-O
n
ly

-M
em

o
ry

)

(V
ar. N

o
d

e to
 C

h
eck

 N
o

d
e C

o
n

n
ectio

n
s)

Variable Node Unit

Figure 5.26: Block diagram of a two-node serial fixed-point multi-Gaussian LDLC decoder
of degree 7 (one single check node and one single variable node).

126

198 clock cycles

C0 C1

C0 C1

C0

Figure 5.27: Timing diagram of the check node message processing block in multi-Gaussian
decoder of degree 7.

1016 clock cycles

V0 V1

V0 V1

V0

Figure 5.28: Timing diagram of the variable node message processing block for multi-
Gaussian decoder of degree 7.

127

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

104

T
h
ro
u
gh
p
u
t
(s
ym

b
ol
s/
se
c,
@
97
M
H
z)

1 check node, 1 variable node

Figure 5.29: Throughput of the fixed-point multi-Gaussian decoder of degree 7 for block
length 1000.

0 25 50 75 100 125 150 175 200
Number of decoding iterations

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

2.5 dB

4 dB

Figure 5.30: Performance of the multi-Gaussian decoder for different number of decoding
iterations at distance from capacity of 2.5 dB and 4 dB with M = 5, d = 3 and n = 1000.

128

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q14.18

Q14.15

Q14.14

Q14.13

Figure 5.31: FER of the floating-point (without approximations) and the fixed-point multi-
Gaussian decoder (M=5) for different Wf and two NR iterations with d = 3 and n = 1000.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q12.15

Q11.15

Q10.15

Figure 5.32: FER of multi-Gaussian decoder (M=5) for different Wi and two NR iterations
with d = 3, n = 1000 (floating-point performance is without approximations).

129

0 25 50 75 100 125 150 175 200
Number of decoding iterations

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

2.5 dB

4 dB

Figure 5.33: Performance of the multi-Gaussian decoder for different number of decoding
iterations at distance from capacity of 2.5 dB and 4 dB with M = 5, d = 5 and n = 1000.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q14.18

Q14.15

Q14.14

Q14.13

Figure 5.34: FER of the floating-point (without approximations) and fixed-point multi-
Gaussian decoder (M=5) for different Wf and two NR iterations for n = 1000, d = 5.

130

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q12.15

Q11.15

Q10.15

Figure 5.35: FER of the multi-Gaussian decoder (M=5) for different Wi and two NR
iterations with n = 1000 and d = 5 (floating-point performance is without approximation).

0 25 50 75 100 125 150 175 200
Number of decoding iterations

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

2.5 dB

4 dB

Figure 5.36: Performance of the multi-Gaussian decoder for different number of decoding
iterations at distance from capacity of 2.5 dB and 4 dB with M = 5, d = 7 and n = 1000.

131

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q14.18

Q14.15

Q14.14

Q14.13

Figure 5.37: FER of the floating-point (without approximations) and the fixed-point multi-
Gaussian decoder (M=5) for different Wf and two NR iterations for d = 7, n = 1000.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Floating Point

Q12.15

Q11.15

Q10.15

Figure 5.38: FER of the multi-Gaussian decoder (M=5) for different Wi and two NR
iterations with d = 7, n = 1000 (floating-point performance is without approximation).

132

1 2 3 4 5

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

d=3

d=5

d=7

0

100

200

300

400

500

T
h
ro
u
gh
p
u
t
(k
sy
m
b
ol
s/
se
c)

Figure 5.39: FER and throughput comparison of the fixed-point multi-Gaussian decoders
with degree 3 , 5 and 7 for block length 1000 and M=2.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10 log10 2πσ
2 (in dB)

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

Multi-Gaussian, d=3, M=2

Multi-Gaussian, d=3, M=5

Multi-Gaussian, d=5, M=2

Multi-Gaussian, d=5, M=5

Multi-Gaussian, d=7, M=2

Multi-Gaussian, d=7, M=5

Figure 5.40: FER of the multi-Gaussian decoder with larger Gaussian mixtures exchanged
in iterative decoding (i.e., M = 5) for degree 3, 5 , 7 and n = 1000.

133

104 105 106 107

Throughput (symbols/sec)

10−5

10−4

10−3

10−2

10−1

100

F
ra
m
e
E
rr
or

R
at
e

SingleGaussian, d=3

SingleGaussian, d=5

SingleGaussian, d=7

MultiGaussian, d=3

MultiGaussian, d=5

MultiGaussian, d=7

Figure 5.41: Comparison of the frame error rate and throughput of the fixed-point single-
Gaussian and multi-Gaussian decoders for block length 1000.

134

Chapter 6

Concluding Remarks

6.1 Summary of Contributions and Conclusions

While the literature has demonstrated the ideal decoding capabilities of LDLC decoders
assuming floating point arithmetic, practical hardware implementations are missing. A
hardware implementation of an LDLC decoder is important to realize the potential of
LDLC codes in real applications. Therefore, in this thesis we presented the first hardware
implementation of decoders for low-density lattice codes. Specifically, fixed-point single-
Gaussian and multi-Gaussian LDLC decoders were designed on hardware with a detailed
exploration of various parameters of the design space. The decoding performance and
design throughput were studied for different degrees of the H-matrix (used for LDLC code
construction) and sizes of the Gaussian mixture message.

The following are the major contributions of the thesis:

In Chapter 3, we presented a fixed-point single-Gaussian LDLC decoder implementation
on an FPGA. To the best of our knowledge, this is the first proof-of-concept of LDLC
decoding in hardware. We implemented three different architectures for the decoder and
studied FER and design throughput trade-offs between (a) a serial architecture with a
single check node and a single variable node, (b) an architecture with a single check node
and 20 parallel variable nodes, and (c) an architecture with a single check node and with
pipelining to achieve an effective parallelism equivalent to 50 variable nodes.

The primary accomplishments of the single-Gaussian LDLC decoder implementation
are as follows:

135

• We completed a detailed quantization analysis (to get suitable word length) and
devised methods to approximate the required non-linear functions of (a) division and
(b) exponentiation in fixed-point arithmetic.

• We designed a serial architecture with a single check node and a single variable node
that attained a design throughput of 440 KSymbols/sec. Then a partially parallel
architecture with a single check node and 20 variable nodes was designed that gained
an∼ 13× improvement in throughput over the serial architecture. To further improve
the decoder throughput, we implemented an architecture with pipelining (in the
variable node message processing block) that comprises a single check node and a
parallelism equivalent to 50 variable nodes. This implementation achieved a design
throughput of ∼ 24× compared to the serial architecture.

In Chapter 4 we implemented a multi-Gaussian LDLC decoder of degree 3 where the
Gaussian mixture messages that are exchanged during iterative decoding consist of two
components. This decoder was specifically designed with the aim of improving the perfor-
mance of the LDLC decoder presented in Chapter 3.

We first designed a multi-Gaussian decoder implementation in floating-point arithmetic
and matched the performance results against the literature results. Then, using efficient
methods to approximate non-linear functions and a word length of 28 (12 integer bits,
15 fractional bits and a sign bit) we obtained a decoder implementation in fixed-point
arithmetic.

We implemented 2 different architectures for the multi-Gaussian decoder: (a) a se-
rial architecture with a single check node and a single variable node, and (b) a partially
parallel architecture with a single check node and pipelining to achieve an effective par-
allelism equivalent to 5 variable nodes. The serial architecture achieved a throughput of
245 Ksymbols/sec and the partially parallel decoder with an effective parallelism equiva-
lent to 5 variable nodes (at the variable node message processing block) attained a 2.25×
improvement in throughput over the serial implementation.

The multi-Gaussian decoder of degree 3 achieved an overall improvement of∼ 0.75 dB in
FER compared to the single-Gaussian decoder of degree 3 for block length 1000. However,
due to the more complex check node and variable node message processing blocks this FER
improvement was obtained at a cost of reduced decoder throughput. The single-Gaussian
decoder (Chapter 3) throughput was 19× compared to the multi-Gaussian decoder (Chap-
ter 4) for degree 3.

In Chapter 5 of the thesis, we explored the design space for single-Gaussian and multi-
Gaussian decoders. The implementation of LDLC decoders with a wide range of architec-

136

tural and design parameters presents different throughputs, hardware costs and decoding
performance trade-offs. In this chapter, we developed complex LDLC decoders of higher
degrees, i.e., 5 and 7, with larger Gaussian mixture messages, i.e. M = 5.

The decoding performance and throughput results for the single-Gaussian and multi-
Gaussian decoders suggest that for applications which require very high data reliability,
multi-Gaussian decoders are the preferred choice. However, in high throughput regimes,
single-Gaussian LDLC decoders are more desirable.

6.2 Directions for Future Work

In the following section, we present possible design enhancements for the single-Gaussian
and multi-Gaussian decoders.

Simultaneous Processing of Check Node and Variable Node Messages The
current implementations of the check node and variable node message processing blocks do
not operate simultaneously as they may overwrite data which has not yet been processed
by the other node. Decoder architectures where both nodes operate simultaneously can be
explored in the future. This design enhancement would prevent half of the hardware from
remaining idle during execution and would improve the decoder throughput. However, this
could involve unknown challenges and can be the focus for future research.

Pipelining Unrolling of the recursive forward-backward computation block used in the
variable node message computation and potential pipelining can be an area of study in the
future work.

Variable Precision Bits for Fixed-Point LDLC Decoders The LDLC decoders have
used a fixed number of fractional bits throughout the design. However the implementations
can be extended to a different number of fractional bits in different blocks. This can help
to reduce the decoder cost further in hardware.

ASIC Implementation In this thesis, we have implemented LDLC decoders on an
FPGA device to achieve a proof-of-concept of LDLC decoding in hardware. FPGAs are a
suitable choice for an early prototype of LDLC decoders in hardware and constitute a viable
alternative to an ASIC implementation. However, for practical applications that require

137

high performance and low-power consumption, ASIC implementations are preferred. Thus,
an ASIC implementation of LDLC decoders is important future work. The results obtained
in this thesis can be used as a baseline for ASIC implementation.

Greater Block Lengths In this thesis, we explored the design space of FPGA imple-
mentations of the single-Gaussian and multi-Gaussian decoders for block length of 1000.
However, it would be quite compelling in future research to study the architectural de-
sign space for LDLC decoder implementations with greater block lengths, e.g., 10000 or
more, on a larger FPGA or in an ASIC implementation in order to achieve higher decoding
performance for LDLCs in hardware.

Applications Now that the hardware decoding of LDLCs was shown to be feasible,
an important direction for the future research is to explore the application of the LDLC
decoders in real world communication networks.

138

References

[1] Cisco, “Cisco annual internet report (2018–2023),” Report, Mar. 2020. [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

[2] Satista, “Number of wireless local area network (wlan) connected devices
worldwide from 2016 to 2021,” Report, Jul. 2020. [Online]. Available: https:
//www.statista.com/statistics/802706/world-wlan-connected-device/

[3] O. Ordentlich, J. Zhan, U. Erez, M. Gastpar, and B. Nazer, “Practical code design for
compute-and-forward,” IEEE International Symposium on Information Theory, pp.
1876–1880, July 2011.

[4] M. N. Hasan and B. M. Kurkoski, “Practical compute-and-forward approaches for the
multiple access relay channel,” IEEE International Conference on Communications,
pp. 1–6, May 2017.

[5] S. H. Lee, A. Ghiya, S. Vishwanath, S. S. Hwang, and S. Kim, “Structured dirty-
paper coding using low-density lattices,” IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 3350–3353, Mar. 2010.

[6] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,” IEEE International
Symposium on Information Theory, pp. 88–92, July 2006.

[7] ——, “Low-density lattice codes,” IEEE Transactions on Information Theory, vol. 54,
no. 4, pp. 1561–1585, April 2008.

[8] M. R. Sadeghi, A. H. Banihashemi, and D. Panario, “Iterative decoding algorithm of
lattices,” Canadian Conference on Electrical and Computer Engineering, vol. 3, pp.
1417–1420, May 2004.

139

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.statista.com/statistics/802706/world-wlan-connected-device/
https://www.statista.com/statistics/802706/world-wlan-connected-device/

[9] Y. Yona and M. Feder, “Efficient parametric decoder of low density lattice codes,”
IEEE International Symposium on Information Theory, pp. 744–748, June 2009.

[10] R. A. P. Hernandez and B. M. Kurkoski, “The three/two Gaussian parametric LDLC
decoder,” IEEE Information Theory Workshop, pp. 172–176, Oct. 2015.

[11] B. M. Kurkoski and J. Dauwels, “Message-passing decoding of lattices using Gaussian
mixtures,” IEEE International Symposium on Information Theory, pp. 2489–2493,
July 2008.

[12] B. Kurkoski and J. Dauwels, “Reduced-memory decoding of low-density lattice codes,”
IEEE Communications Letters, vol. 14, no. 7, pp. 659–661, July 2010.

[13] Y. Li and Z. Bie, “Message-passing decoding algorithm of low-density lattice codes
with Gaussian approximation,” IEEE International Conference on Wireless Informa-
tion Technology and Systems, pp. 1–4, Nov. 2012.

[14] C. Ling and J. Belfiore, “Achieving the AWGN channel capacity with lattice Gaussian
coding,” IEEE International Symposium on Information Theory, pp. 1416–1420, July
2013.

[15] R. A. P. Hernandez and B. M. Kurkoski, “Low complexity construction of low density
lattice codes based on array codes,” International Symposium on Information Theory
and its Applications, pp. 264–268, Oct. 2014.

[16] B. Chen, D. N. K. Jayakody, and M. F. Flanagan, “Distributed low-density lattice
codes,” IEEE Communications Letters, vol. 20, no. 1, pp. 77–80, Jan. 2016.

[17] P. Mitran and H. Ochiai, “Parallel concatenated convolutional lattice codes with con-
strained states,” IEEE Transactions on Communications, vol. 63, no. 4, pp. 1081–
1090, April 2015.

[18] B. M. Kurkoski, J. Dauwels, and H. A. Loeliger, “Power-constrained communications
using LDLC lattices,” IEEE International Symposium on Information Theory, pp.
739–743, June 2009.

[19] J. Xu, C. Duan, D. Zhao, Y. Wang, and F. Xie, “Early stopping criterion for message-
passing decoding of LDLC,” International Conference on Advanced Communication
Technology, pp. 315–318, July 2015.

140

[20] Y. Li and Z. Bie, “Message-passing decoding algorithm of low-density lattice codes
with Gaussian approximation,” IEEE International Conference on Wireless Informa-
tion Technology and Systems, pp. 1–4, Nov. 2012.

[21] P. Elias, “Coding for noisy channels,” IRE Convention Record, vol. 3, no. 4, pp. 37–46,
Mar. 1955.

[22] R. de Buda, “The upper error bound of a new near-optimal code,” IEEE Transactions
on Information Theory, vol. 21, no. 4, pp. 441–445, July 1975.

[23] ——, “Some optimal codes have structure,” IEEE Journal on Selected Areas in Com-
munications, vol. 7, no. 6, pp. 893–899, Aug. 1989.

[24] T. Linder, C. Schlegal, and K. Zeger, “Corrected proof of de Buda’s theorem (lattice
channel codes),” IEEE Transactions on Information Theory, vol. 39, no. 5, pp. 1735–
1737, 1993.

[25] H. Loeliger, “Averaging bounds for lattices and linear codes,” IEEE Transactions on
Information Theory, vol. 43, no. 6, pp. 1767–1773, 1997.

[26] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, no. 3, pp. 379–423, Jul.-Oct. 1948.

[27] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting
coding and decoding: Turbo-codes. 1,” IEEE International Conference on Communi-
cations, vol. 2, pp. 1064–1070, May 1993.

[28] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on Information
Theory, vol. 8, no. 1, pp. 21–28, 1962.

[29] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE
Transactions on Information Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[30] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density
parity check codes,” Electronics Letters, vol. 33, no. 6, pp. 457–458, Mar. 1997.

[31] C. Howland and A. Blanksby, “A 220 mW 1 GB/s 1024-bit rate-1/2 low density parity
check code decoder,” IEEE Custom Integrated Circuits Conference, pp. 293–296, 2001.

[32] C. E. Shannon, “Probability of error for optimal codes in a Gaussian channel,” The
Bell System Technical Journal, vol. 38, no. 3, pp. 611–656, 1959.

141

[33] R. Urbanke and B. Rimoldi, “Lattice codes can achieve capacity on the AWGN chan-
nel,” IEEE Transactions on Information Theory, vol. 44, no. 1, pp. 273–278, 1998.

[34] U. Erez and R. Zamir, “Achieving 1/2 log (1+SNR) on the AWGN channel with
lattice encoding and decoding,” IEEE Transactions on Information Theory, vol. 50,
no. 10, pp. 2293–2314, 2004.

[35] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference through
structured codes,” IEEE Transactions on Information Theory, vol. 57, no. 10, pp.
6463–6486, Oct. 2011.

[36] J. Zhu and M. Gastpar, “Lattice codes for many-to-one interference channels with
and without cognitive messages,” IEEE Transactions on Information Theory, vol. 61,
no. 3, pp. 1309–1324, Mar. 2015.

[37] A. Mejri and G. Rekaya-Ben Othman, “Efficient decoding algorithms for the compute-
and-forward strategy,” IEEE Transactions on Communications, vol. 63, no. 7, pp.
2475–2485, 2015.

[38] Y. Tan and X. Yuan, “Compute-compress-and-forward: Exploiting asymmetry of wire-
less relay networks,” IEEE Transactions on Signal Processing, vol. 64, no. 2, pp.
511–524, 2016.

[39] A. Mejri, G. R. Othman, and J. C. Belfiore, “Lattice decoding for the compute-and-
forward protocol,” International Conference on Communications and Networking, pp.
1–8, 2012.

[40] C. Feng, D. Silva, and F. R. Kschischang, “Blind compute-and-forward,” IEEE Trans-
actions on Communications, vol. 64, no. 4, pp. 1451–1463, 2016.

[41] M. Nokleby and B. Aazhang, “Cooperative compute-and-forward,” IEEE Transac-
tions on Wireless Communications, vol. 15, no. 1, pp. 14–27, 2016.

[42] Y. Wang and A. Burr, “Physical-layer network coding via low density lattice codes,”
European Conference on Networks and Communications, pp. 1–5, 2014.

[43] R. Zamir, S. Shamai, and U. Erez, “Nested linear/lattice codes for structured mul-
titerminal binning,” IEEE Transactions on Information Theory, vol. 48, no. 6, pp.
1250–1276, June 2002.

142

[44] N. E. Tunali, K. R. Narayanan, and H. D. Pfister, “Spatially-coupled low density
lattices based on construction A with applications to compute-and-forward,” IEEE
Information Theory Workshop, pp. 1–5, Sept. 2013.

[45] Y. Huang, K. R. Narayanan, and P. Wang, “Adaptive compute-and-forward with
lattice codes over algebraic integers,” IEEE International Symposium on Information
Theory, pp. 566–570, 2015.

[46] J. Belfiore, “Lattice codes for the compute-and-forward protocol: The flatness factor,”
IEEE Information Theory Workshop, 2011.

[47] S. Gelincik and G. R. Othman, “Lattice codes for C-RAN based sectored cellular
networks,” IEEE International Conference on Communications, pp. 1–7, 2020.

[48] Y. Huang and K. R. Narayanan, “Multistage compute-and-forward with multilevel
lattice codes based on product constructions,” IEEE International Symposium on
Information Theory, pp. 2112–2116, 2014.

[49] S. Lin and D. J. Costello, Error control coding: fundamentals and applications. NJ:
Pearson/Prentice Hall, 2004.

[50] R. Roth, Introduction to Coding Theory. USA: Cambridge University Press, 2006.

[51] B. Sklar and F. Harris, “The ABCs of linear block codes,” IEEE Signal Processing
Magazine, vol. 21, pp. 14 – 35, Aug. 2004.

[52] J. G. Proakis, Digital Communications 5th Edition. McGraw Hill, 2007.

[53] A. G. Burr, “Block versus trellis: an introduction to coded modulation,” Electronics
and Communication Engineering Journal, vol. 5, no. 4, pp. 240–248, Aug. 1993.

[54] R. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on
Information Theory, vol. 27, no. 5, pp. 533–547, Sept. 1981.

[55] K. Chung and J. Heo, “Improved belief propagation (BP) decoding for LDPC codes
with a large number of short cycles,” IEEE Vehicular Technology Conference, vol. 3,
pp. 1464–1466, 2006.

[56] G. Han and X. Liu, “An efficient dynamic schedule for layered belief-propagation
decoding of LDPC codes,” IEEE Communications Letters, vol. 13, no. 12, pp. 950–
952, 2009.

143

[57] J. Chen, Y. Zhang, and R. Sun, “An improved normalized min-sum algorithm for
LDPC codes,” IEEE/ACIS International Conference on Computer and Information
Science, pp. 509–512, 2013.

[58] Y. Cao, “An improved LDPC decoding algorithm based on min-sum algorithm,” Inter-
national Symposium on Communications Information Technologies, pp. 26–29, 2011.

[59] W. Han, J. Huang, and Fangfei Wu, “A modified min-sum algorithm for low-density
parity-check codes,” IEEE International Conference on Wireless Communications,
Networking and Information Security, pp. 449–451, 2010.

[60] V. V. Vityazev, E. A. Likhobabin, and E. A. Ustinova, “Min-sum algorithm-structure
based decoding algorithms for LDPC codes,” Mediterranean Conference on Embedded
Computing, pp. 256–259, 2014.

[61] P. Dhanorkar and M. Kalbande, “Design of LDPC decoder using message passing
algorithm,” International Conference on Communication and Signal Processing, pp.
1923–1926, 2017.

[62] R. Lehmann and G. M. Maggio, “An approximate analytical model of the message
passing decoder of LDPC codes,” IEEE International Symposium on Information
Theory,, p. 31, 2002.

[63] P. Radosavljevic, A. de Baynast, and J. R. Cavallaro, “Optimized message passing
schedules for LDPC decoding,” Asilomar Conference on Signals, Systems and Com-
puters, pp. 591–595, 2005.

[64] G. Poltyrev, “On coding without restrictions for the AWGN channel,” IEEE Trans-
actions on Information Theory, vol. 40, no. 2, pp. 409–417, Mar. 1994.

[65] D. F. Crouse, P. Willett, K. Pattipati, and L. Svensson, “A look at Gaussian mixture
reduction algorithms,” International Conference on Information Fusion, July 2011.

[66] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability & statistics for
engineers and scientists, 8th ed. Pearson Education, 2007.

[67] H. Cramer, Mathematical Methods of Statistics (PMS-9). Princeton University Press,
1999.

[68] S. Liu, Y. Hong, E. Viterbo, A. Marelli, and R. Micheloni, “Efficient decoding of
low density lattice codes,” IEEE Wireless Communications Letters, vol. 8, no. 4, pp.
1195–1199, 2019.

144

[69] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-product al-
gorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519,
2001.

[70] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, 2nd ed. Ox-
ford University Press, 2010.

[71] M. Ferrari, S. Bellini, and A. Tomasoni, “Safe early stopping for layered LDPC de-
coding,” IEEE Communications Letters, vol. 19, no. 3, pp. 315–318, 2015.

[72] T. Chen, “An early stopping criterion for LDPC decoding based on average weighted
reliability measure,” Cross Strait Quad-Regional Radio Science and Wireless Technol-
ogy Conference, pp. 123–126, 2012.

[73] J. Sodha, “Early stopping criterion for LDPC,” International Conference on Circuits,
System and Simulation, pp. 134–137, 2017.

[74] J. Wang, J. He, and X. Xu, “An early stopping criterion for LDPC decoder based
on CMMB standard,” International Conference on BioMedical Engineering and In-
formatics, pp. 1432–1434, 2012.

[75] E. Libessart, M. Arzel, C. Lahuec, and F. Andriulli, “A scaling-less Newton–Raphson
pipelined implementation for a fixed-point reciprocal operator,” IEEE Signal Process-
ing Letters, vol. 24, no. 6, pp. 789–793, 2017.

[76] A. Rodriguez-Garcia, L. Pizano-Escalante, R. Parra-Michel, O. Longoria-Gandara,
and J. Cortez, “Fast fixed-point divider based on Newton-Raphson method and piece-
wise polynomial approximation,” International Conference on Reconfigurable Com-
puting and FPGAs, pp. 1–6, 2013.

[77] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
3rd ed. The MIT Press, 2009.

[78] S. S. Jadhav, C. Gloster, J. Naher, C. Doss, and Y. Kim, “An FPGA-based
application-specific processor for implementing the exponential function,” South east
Conference, pp. 1–8, 2020.

[79] P. Nilsson, A. U. R. Shaik, R. Gangarajaiah, and E. Hertz, “Hardware implementation
of the exponential function using Taylor series,” NORCHIP, pp. 1–4, 2014.

145

[80] C. Chang, S. Chen, B. Chen, J. Wang, and J. Wang, “A division-free algorithm for
fixed-point power exponential function in embedded system,” International Confer-
ence on Orange Technologies, pp. 223–226, 2013.

[81] P. Pouyan, E. Hertz, and P. Nilsson, “A VLSI implementation of logarithmic and
exponential functions using a novel parabolic synthesis methodology compared to the
CORDIC algorithm,” European Conference on Circuit Theory and Design, pp. 709–
712, 2011.

[82] H. Michel, A. Worm, and N. Wehn, “Influence of quantization on the bit-error perfor-
mance of turbo-decoders,” IEEE Vehicular Technology Conference, vol. 1, pp. 581–585,
2000.

[83] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley, 1991.

146

APPENDICES

147

Appendix A

Derivation of the Squared Distance
Equation

This derivation is adapted from [11,83]. The squared distance, SD (i.e., Gaussian quadratic
loss (GQL)) between a Gaussian mixture p(t) and its approximation q(t) is defined as ,

SD(p(t), q(t)) =

∫ ∞

−∞
(p(t)− q(t))2dx. (A.1)

Let’s assume a normalized Gaussian mixture p(t) with two components, represented by
{(c1,m1, V1), (c2,m2, V2)} where c1 + c2 = 1. The distribution of p(t) can be written as

p(t) =
c1√
2πV1

e
− (t−m1)

2

2V1 +
c2√
2πV2

e
− (t−m2)

2

2V2 . (A.2)

If the single-Gaussian approximation q(t) is represented by the triple (mMM, VMM, cMM),
then the distribution for q(t) is given by

q(t) = cMM
1√

2πVMM
e
− (t−mMM)2

2VMM . (A.3)

Further combining (A.2) and (A.3), (A.1) can be written as,

SD(p(t), q(t)) =

∫ ∞

−∞

(c1√
2πV1

e
− (t−m1)

2

2V1 +
c2√
2πV2

e
− (t−m2)

2

2V2 − 1√
2πVMM

e
− (t−mMM)2

2VMM

)2
dt.

(A.4)

148

Integration in (A.4) will give two type of terms, squared terms and cross − product
terms. Integrating the first squared term yields,

∫ ∞

−∞

(c1√
2πV1

e
− (t−m1)

2

2V1

)2
dt =

∫ ∞

−∞

(c1√
2πV1

c1√
2πV1

e
− 2(t−m1)

2

2V1

)
dt (A.5)

=
c1

2

2
√
πV1

∫ ∞

−∞

(1»
2π (V1)

2

e
− (t−m1)

2

2(
V1
2)

)
dt (A.6)

=
c1

2

2
√
πV1

(A.7)

Similarly the other squared terms integrate to c22

2
√
πV2

and 1
2
√
πVMM

.

For the first cross− product term we have,

∫ ∞

−∞

(2c1√
2πV1

e
− (t−m1)

2

2V1
c2√
2πV2

e
− (t−m2)

2

2V2

)
dt (A.8)

=

∫ ∞

−∞

2c1c2√
2πV1

√
2πV2

e
−
(

(t−m1)
2

2V1
+

(t−m2)
2

2V2

)
dt (A.9)

=

∫ ∞

−∞

2c1c2√
2π
√

2πV1V2
e
−
(

(t−m1)
2

2V1
+

(t−m2)
2

2V2

)
dt (A.10)

=

∫ ∞

−∞

2c1c2√
2π
√

2πV1V2
e
−
(
V2(t−m1)

2+V1(t−m2)
2

2V1V2

)
dt (A.11)

=

∫ ∞

−∞

2c1c2√
2π
»

2π(V1V2)
(V1+V2)
V1+V2

e
−
(

(V1+V2)t
2−2(m1V2+m2V1)t+V1m

2
2+V2m

2
1

2V1V2

)
dt (A.12)

=

∫ ∞

−∞

2c1c2√
2π(V1 + V2)

»
2π V1V2

V1+V2

e
−
(

(V1+V2)t
2−2(m1V2+m2V1)t+V1m

2
2+V2m

2
1

2V1V2

)
dt (A.13)

=

∫ ∞

−∞

2c1c2√
2π(V1 + V2)

»
2π V1V2

V1+V2

e
−
(
t2−2

(m1V2+m2V1)
(V1+V2)

t+
(V1m

2
2+V2m

2
1)

(V1+V2)

2
V1V2
V1+V2

)

dt (A.14)

149

Solving the integration and re-arranging the terms, we obtain

2c1c2√
2π(V1 + V2)

e
−
(

(m1−m2)
2

2(V1+V2)

)
. (A.15)

Similarly the other two cross−product terms integrate to 2c1√
2π(VMM+V1)

e
−
(

(mMM−m1)
2

2(VMM+V1)

)

and 2c2√
2π(VMM+V2)

e
−
(

(mMM−m2)
2

2(VMM+V2)

)
. Therefore, the GQL or the penalty for merging the two

Gaussian components to a single Gaussian is given by

SD(p(t), q(t)) =
1

2
√
πVMM

+
c21

2
√
πV1

+
c22

2
√
πV2
− 2c1√

2π(VMM + V1)
e
− (mMM−m1)

2

2(VMM+V1)

− 2c2√
2π(VMM + V2)

e
− (mMM−m2)

2

2(VMM+V2) +
2c1c2√

2π(V1 + V2)
e
− (m1−m2)

2

2(V1+V2) .

(A.16)

150

Appendix B

Newton Raphson Approximation for
a Reciprocal Function

The Newton-Raphson approximation can be used to compute the reciprocal of a given
number, a. To compute the reciprocal let’s assume,

f(x) =
1

a
, or (B.1)

f(x) = a−1. (B.2)

The Newton-Raphson equation is,

xi+1 = xi −
f(xi)

f1(xi)
, (B.3)

where i denotes the iteration number and f1(xi) is the first derivative of f(xi). The function
which is used to compute the reciprocal of a is f(x) = (x−1) − a. For function f(x), the
Newton-Raphson iteration (B.3) is given as,

xi+1 = xi(2− axi). (B.4)

151

Appendix C

Example Exponential Approximation
in Fixed Point Representation

Here we will explain the exponential approximation applied in the LDLC decoder imple-
mentation with a specific example of a fixed-point representation. Specifically, consider
Q12.8 that is used in the single-Gaussian decoder (in Chapter 3), with 12 integer bits, 8
fractional bits and a sign bit. Recall that we wish to compute exp(−a) where a ≥ 0.

Let b0, . . . , b20 be the bits that represent the fixed point number a in two’s complement
and b0 is the least-significant bit. Then

a = b0 × 2−8 + b1 × 2−7 + b2 × 2−6 + · · ·+ b17 × 29 + b18 × 210 + b19 × 211 − b20 × 212.
(C.1)

Since a ≥ 0, the sign bit b20 = 0, and therefore

a = b0 × 2−8 + b1 × 2−7 + b2 × 2−6 + · · ·+ b17 × 29 + b18 × 210 + b19 × 211. (C.2)

After factoring and algebraic manipulations, we have

a = (b0 + b12
1 + · · ·+ b52

5)2−8 + (b6 + b72
1 + b82

2 + b92
3 + b102

4)2−2

+ (b11 + b122
1 + · · ·+ b192

8)23,
(C.3)

and after rearranging terms in (C.3), a is represented as

a = (b11 + b122
1 + · · ·+ b192

8)︸ ︷︷ ︸
,I2

23

︸︷︷︸
,2P2

+ (b6 + b72
1 + b82

2 + b92
3 + b102

4)︸ ︷︷ ︸
,I1

2−2︸︷︷︸
,2P1

+ (b0 + b12
1 + · · ·+ b52

5)︸ ︷︷ ︸
,I0

2−8︸︷︷︸
,2P0

.
(C.4)

152

where , denotes equality by definition. From this, we have that

a = I22
P2 + I12

P1 + I02
P0 . (C.5)

where

I0 = b0 + b12
1 + b22

2 + b32
3 + b42

4 + b52
5 (C.6)

I1 = b6 + b72
1 + b82

2 + b92
3 + b102

4 (C.7)

I2 = b11 + b122
1 + b132

2 + b142
3 + b152

4 + b162
5 + b172

6 + b182
7 + b192

8 (C.8)

P0 = −8 (C.9)

P1 = −2 (C.10)

P2 = 3 (C.11)

As is evident, P0 < P1 < P2 by construction. One could swap the definitions of P0 and P1

in (C.9) – (C.10) as well as I0 and I1 in (C.6) – (C.7), and (C.5) would still hold. But by
convention we pick to keep P0, P1 and P2 ordered, i.e., P0 < P1 < P2.

The range of I0 is the range of b0 + b12
1 + b22

2 + b32
3 + b42

4 + b52
5, which is from 0 to

26 − 1. Similarly the range for I1 is from 0 to 25 − 1 and that of I2 is from 0 to 29 − 1.

Finally, I0 has b0 as its least-significant bit and is weighted by 2−8 when computing a.
Likewise I1 has b6 as its least-significant bit and is weighted by 2−2 when computing a.
Since the most-significant bit of I0 (i.e., b5) is the bit before the least-significant bit of I1
(i.e., b6), the number of bits that comprise I0 is given by 6 = −2− (−8) = P1−P0. Hence,
the range of I0 is from 0 to 2P1−P0 − 1 = 63, as confirmed by (C.6).

The two lookup tables used in the exponential approximation are look-up tables to
approximate exp(−I12P1) from I1 and to approximate exp(−I02P0) from I0.

LUT for exp(−I12P1): This lookup table contains 32 entries corresponding to 32 possible
values for I1, i.e., 0 to (25 − 1). Ideally the entries should be exp(− I1

4
) since P1 = −2.

Due to a numerical optimization (i.e., to accommodate the division by two in the expo-
nent part of the coefficient calculation at the variable nodes (3.6)) we actually compute

exp(−I12P1/2) = exp(− I1/2
4

). Table C.1 shows all 32 entries for the exp(−I12P1/2) look-up
table. Please note that the first 12 zeros of the Q12.8 representation are not stored in the
LUT.

153

Table C.1: Look up table for exp(−I12P1/2)

LUT Index (I1) Value (exp(−I12P1/2)) Q12.8 representation

0 exp
(
− 0/2

4

)
000000000000100000000

1 exp
(
− 1/2

4

)
000000000000011100001

2 exp
(
− 2/2

4

)
000000000000011000111

3 exp
(
− 3/2

4

)
000000000000010110000

4 exp
(
− 4/2

4

)
000000000000010011011

5 exp
(
− 5/2

4

)
000000000000010001001

6 exp
(
− 6/2

4

)
000000000000001111001

7 exp
(
− 7/2

4

)
000000000000001101011

8 exp
(
− 8/2

4

)
000000000000001011110

9 exp
(
− 9/2

4

)
000000000000001010011

10 exp
(
− 10/2

4

)
000000000000001001001

11 exp
(
− 11/2

4

)
000000000000001000001

12 exp
(
− 12/2

4

)
000000000000000111001

13 exp
(
− 13/2

4

)
000000000000000110010

14 exp
(
− 14/2

4

)
000000000000000101100

15 exp
(
− 15/2

4

)
000000000000000100111

16 exp
(
− 16/2

4

)
000000000000000100011

17 exp
(
− 17/2

4

)
000000000000000011111

18 exp
(
− 18/2

4

)
000000000000000011011

19 exp
(
− 19/2

4

)
000000000000000011000

20 exp
(
− 20/2

4

)
000000000000000010101

21 exp
(
− 21/2

4

)
000000000000000010011

22 exp
(
− 22/2

4

)
000000000000000010000

23 exp
(
− 23/2

4

)
000000000000000001110

24 exp
(
− 24/2

4

)
000000000000000001101

25 exp
(
− 25/2

4

)
000000000000000001011

26 exp
(
− 26/2

4

)
000000000000000001010

154

27 exp
(
− 27/2

4

)
000000000000000001001

28 exp
(
− 28/2

4

)
000000000000000001000

29 exp
(
− 29/2

4

)
000000000000000000111

30 exp
(
− 30/2

4

)
000000000000000000110

31 exp
(
− 31/2

4

)
000000000000000000101

LUT for exp(−I02P0): This lookup table contains 64 entries corresponding to 64 possible
values for I0, i.e., 0 to (26−1). Considering the same numerical optimization used in the first

LUT, the LUT entries are: exp(−0/2
256

), exp(−1/2
256

), · · · , exp(−62/2
256

), exp(−63/2
256

), converted
into Q12.8 fixed-point representation.

155

	List of Figures
	List of Tables
	Introduction
	Motivation and Contributions
	Thesis Outline

	Literature Survey
	Channel Capacity and Channel Codes
	Codes for Binary Channels
	Codes for Additive White Gaussian Noise Channels

	LDLC and Related Codes
	Block Codes
	Low-Density Parity-Check Codes
	Low-Density Lattice Codes

	Parameters for LDLC Code Design
	Constraint Matrix
	Distance from Channel Capacity
	Generating Sequence

	LDLC Decoding for the Additive White Gaussian Noise Channel
	LDLC Decoders in the Literature
	Sampled PDF LDLC decoder
	Parametric LDLC decoders

	Summary

	Single-Gaussian LDLC Decoder Implementation
	Selection of an LDLC Decoder for Hardware Implementation
	Iterative Decoding for the single-Gaussian LDLC decoder
	Initialization
	Basic Iteration: Check Node Message
	Basic Iteration: Variable Node Message
	Final Decision

	Frame Error Rate to Measure the Decoder Performance
	Optimizations to Reduce the Decoder Complexity
	Fixed-Point Arithmetic for Hardware Implementation
	Minimum Variance
	Variances Measured with Respect to the Channel Variance
	Optimizations for the Coefficient Computation at the Variable nodes
	Number of Decoding Iterations

	Fixed-Point Quantization Study
	Approximation of Non-Linear Functions
	Optimal Word Length and Newton-Raphson (NR) Iterations for Fixed-point decoder

	LDLC Decoder FPGA Implementation
	Summary

	Multi-Gaussian LDLC Decoder
	Selection of an Appropriate Decoder for the Hardware Implementation
	Iterative Decoding for Multi-Gaussian LDLC Decoder (M=2)
	Initialization
	Basic Iteration: Check Node Message
	Basic Iteration: Variable Node Message
	Final Decision

	Frame Error Rate to Measure the Decoder Performance
	Optimizations to Reduce the Decoder Complexity
	Fixed-point Arithmetic for Hardware Implementation
	Number of Decoding Iterations
	Final Decision in Iterative Decoding Algorithm
	Minimum Variance
	Variance Measured with Respect to the Channel Variance
	Optimizations in the Coefficient Computation at the Variable Nodes

	Fixed Point Quantization Study
	Approximation of Non-Linear Functions
	Optimal word length and Newton-Raphson (NR) iterations for fixed-point decoder

	LDLC Decoder FPGA Implementation
	Comparison of Single-Gaussian and Multi-Gaussian LDLC Decoder (M=2)
	Summary

	Pushing the Design Limits
	Single-Gaussian Decoders
	Single-Gaussian Decoder, d=5
	Single-Gaussian Decoder, d=7

	Performance and Throughput Comparison of Single-Gaussian Decoders
	Multi-Gaussian Decoders
	Multi-Gaussian Decoder, d=5 and M=2
	Multi-Gaussian Decoder, d=7 and M=2
	Multi-Gaussian Decoder, d=3 and M=5
	Multi-Gaussian Decoder, d=5 and M=5
	Multi-Gaussian Decoder, d=7 and M=5

	Performance and Throughput Comparisons
	Single-Gaussian vs. Multi-Gaussian Decoders

	Summary

	Concluding Remarks
	Summary of Contributions and Conclusions
	Directions for Future Work

	References
	APPENDICES
	Derivation of the Squared Distance Equation
	Newton Raphson Approximation for a Reciprocal Function
	Example Exponential Approximation in Fixed Point Representation

