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Abstract

Maintenance and operation of modern dynamic engineering systems requires the use
of robust maintenance strategies that are reliable under uncertainty. One such strategy is
condition-based maintenance (CBM), in which maintenance actions are determined based
on the current health of the system. The CBM framework integrates fault detection and
forecasting in the form of degradation modeling to provide real-time reliability, as well
as valuable insight towards the future health of the system. Coupled with a modern
information platform such as Internet-of-Things (IoT), CBM can deliver these critical
functionalities at scale.

The increasingly complex design and operation of engineering systems has introduced
novel problems to CBM. Characteristics of these systems—such as the unavailability of
historical data, and highly dynamic operating behaviour of these systems—has rendered
many existing solutions infeasible. These problems have motivated the development of new
and self-sufficient—or in other words—unsupervised CBM solutions. The issue, however, is
that many of the necessary methods required by such frameworks have yet to be proposed
within the literature. Key gaps pertaining to the lack of suitable unsupervised approaches
for the pre-processing of non-stationary vibration signals, parameter estimation for fault
detection, and degradation threshold estimation, need to be addressed in order to achieve
an effective implementation.

The main objective of this thesis is to propose set of three novel approaches to ad-
dress each of the aforementioned knowledge gaps. A non-parametric pre-processing and
spectral analysis approach, termed spectral mean shift clustering (S-MSC)—which ap-
plies mean shift clustering (MSC) to the short time Fourier transform (STFT) power
spectrum for simultaneous de-noising and extraction of time-varying harmonic compo-
nents—is proposed for the autonomous analysis of non-stationary vibration signals. A sec-
ond pre-processing approach, termed Gaussian mixture model operating state decomposi-
tion (GMM-OSD)—which uses GMMs to cluster multi-modal vibration signals by their re-
spective, unknown operating states—is proposed to address multi-modal non-stationarity.
Applied in conjunction with S-MSC, these two approaches form a robust and unsupervised
pre-processing framework tailored to the types of signals found in modern engineering
systems. The final approach proposed in this thesis is a degradation detection and fault
prediction framework, termed the Bayesian one class support vector machine (B-OCSVM),
which tackles the key knowledge gaps pertaining to unsupervised parameter and degrada-
tion threshold estimation by re-framing the traditional fault detection and degradation
modeling problem as a degradation detection and fault prediction problem.
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Validation of the three aforementioned approaches is performed across a wide range of
machinery vibration data sets and applications, including data obtained from two full-scale
field pilots located at Toronto Pearson International Airport. The first of which is located
on the gearbox of the LINK Automated People Mover (APM) train at Toronto Pearson
International Airport; and, the second which is located on a subset of passenger boarding
tunnel pre-conditioned air units (PCA) in Terminal 1 of Pearson airport. Results from val-
idation found that the proposed pre-processing approaches and combined pre-processing
framework provides a robust and computationally efficient and robust methodology for
the analysis of non-stationary vibration signals in unsupervised CBM. Validation of the
B-OCSVM framework showed that the proposed parameter estimation approaches enables
the earlier detection of the degradation process compared to existing approaches, and the
proposed degradation threshold provides a reasonable estimate of the fault manifestation
point. Holistically, the approaches proposed in thesis provide a crucial step forward to-
wards the effective implementation of unsupervised CBM in complex, modern engineering
systems.
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Chapter 1

Introduction

As the complexity of engineering systems continue to increase over time, so do the demands
associated with the maintenance and operation of these systems. Such systems are better
understood as a ”system of systems” as opposed to a singular system. One example is the
automated people mover (APM), which is comprised of multiple, interconnected control
systems and mechanical assemblies that work in unison to meet the real-time needs of the
application. Achieving the desired level of reliability in these systems requires the use of
new, robust and dynamic maintenance strategies that are capable of keeping up the dy-
namic operation of these systems [100]. One such strategy is condition-based maintenance
(CBM), which has quickly evolved to become a powerful alternative to traditional main-
tenance strategies such as preventative maintenance or run-to-failure maintenance [148].
CBM is a predictive maintenance strategy in which maintenance actions are performed
based on the current health of the asset, which is inferred through a process known as
condition monitoring (CM). Tying maintenance actions directly to the real-time health
of the asset makes CBM well suited for the monitoring of highly dynamic systems. In
addition, CBM is commonly deployed within an online framework to further facilitate the
timely visualization of critical information.

The analytical portion of a CBM framework can be divided into two main branches: a
diagnostic branch which includes fault detection, and a prognostic branch which deals with
forecasting and degradation modeling [86]. The goal in diagnostics is to detect or classify a
fault as soon as it appears to allow for corrective maintenance to be performed in a timely
manner, while the goal of prognostics is to make the most accurate long-term predictions
on the future health of the system using the data available. An effective CBM strategy
is one that is capable of detecting faults early in their development stage, while simulta-
neously providing operators and planners with the necessary detail and foresight required
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to schedule maintenance actions. A third component—pre-processing—is typically applied
prior to both of these steps in order to maximize the quality of information represented in
the data. In most real-world applications, pre-processing is necessary for obtaining accu-
rate detection and prediction results. Hence, the overall effectiveness of a CBM framework
is largely governed by the degree to which these three components perform collectively
[152].

1.1 Motivation

Pertaining to CBM analytics as a whole, research and interest—particularly in methods
utilizing machine learning (ML), signal processing and statistical methods—has seen sig-
nificant growth over the last two decades [148, 104, 61]. Coupled with the advent of big
data and increasing ubiquity of sensing in industry, the resulting exponential growth of
CBM knowledge over this period has helped establish a strong foothold for CBM within
industry. To date, the current body of literature in CBM is predominantly comprised of
solutions and methods to tackle the supervised problem [104]—or in other words, the case
where specific knowledge (i.e. labelled data, operational characteristics, failure behaviour)
is assumed to be known. With respect to fault detection, the state-of-the-art in super-
vised ML approaches have already achieved near-perfect performance across most public
validation data sets [209]. From a practical standpoint, however, these methods cannot be
readily applied to many complex or novel engineering systems for which this pre-requisite
information is not available.

Related issues also exist within the literature pertaining to prognostics and degradation
modeling [61], where a central focus is to obtain an estimate of the remaining useful life
(RUL) of a system [52]. In relation to maintenance and planning, an accurate RUL esti-
mate provides operators with invaluable information that can be used towards optimizing
maintenance actions and replacement scheduling. However, the crucial failure threshold
used by most methods to obtain the RUL is almost always determined using prior infor-
mation such as the failure histories of similar units or sensor measurements from a prior
faulty state [102, 61]. The near-absolute requirement for historical data in current prog-
nostic approaches inhibits the deployment of these methods in a wide range of real-world
applications, especially those involving bespoke systems or systems where little to no prior
knowledge is available.

In relation to pre-processing, the dynamic (i.e. non-stationary) operational profile of
many modern systems requires the use of specialized approaches tailored to the analysis
of the signals obtained from such systems. While many methods have been developed
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and successfully applied to the analysis of such signals [138, 2, 15], these methods are
typically computationally expensive, and require parameter tuning, domain expertise or
prior knowledge in order to be effective. Hence, existing pre-processing methods for non-
stationary signals are not well-suited either to the present research problem.

Achieving an effective realization of CBM on these types of novel systems requires the
development of new approaches to address each of the aforementioned knowledge gaps
within these research areas. The specific challenges of this research problem—in conjunc-
tion with the practical limitations of existing supervised approaches—form the motivation
behind the development of computationally efficient, robust, and self-sufficient (i.e. unsu-
pervised) methods for CBM.

1.2 Overarching Objectives

The overarching goal of this research is to develop novel methods to enable the effective
realization of CBM within unsupervised, real-world settings. The aforementioned scien-
tific and technical challenges of this application will require the development of robust
statistical, machine learning and signal processing algorithms that can be applied to the
pre-processing, fault detection and degradation modeling of non-stationary machinery vi-
bration signals, without the need for prior knowledge of the system. In addition, to enable
efficient and large-scale CBM deployment, these algorithms must be designed with practical
considerations, such as computational complexity and compatibility with IoT in mind.

1.3 Overall Methodology

The overall methodology to achieve these objectives are summarized below, and contextu-
alized within the unsupervised CBM framework in Fig. 1.1:

1. Development of an unsupervised and application-agnostic time-frequency approach
for pre-processing and vibration analysis of non-stationary machinery vibration sig-
nals

2. Development of a robust, unsupervised degradation detection and fault prediction
framework applicable to rotating machinery systems with no historical failures

3. Development of an unsupervised pre-processing approach for analysis of systems with
multiple operating states
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4. Validation of the proposed approaches using data collected from the industrial test
beds located at Toronto Pearson International Airport as well as public machinery
datasets

A comprehensive version of the flowchart in Fig. 1.1 and detailed description of the overall
methodology is presented in section 4.2.1.

Figure 1.1: Contextualization of overall methodology with respect to unsupervised CBM;
disconnects represent current gap areas, while red dashed lines and corresponding labels
indicate the proposed solution(s) in this thesis to bridge each gap.

4



1.4 Organization of Thesis

This thesis is organized as follows:

• Chapter 1 presents a high-level overview of the current research problem, motivating
statements, and a summary of the overall solution methodology.

• Chapter 2 presents the overarching theoretical background for the thesis, beginning
with a description of the CBM architecture and it’s various constituent components.
The CBM architecture is used to contextualize the fundamental concepts presented
afterwards within signal processing, machine learning, statistics and prognostics.

• Chapter 3 presents a review of literature on the state-of-the-art in CBM, specifically
in relation to unsupervised CBM. The chapter begins by identifying the bodies of
research within CBM relevant to this thesis, which is followed by a discussion of liter-
ature within three main areas: pre-processing and vibration analysis, fault detection
and degradation modeling. The chapter concludes by summarizing the key knowl-
edge gaps in the existing body of literature with respect to the effective realization
of unsupervised CBM.

• Chapter 4 presents the proposed methodology to address the key knowledge gaps
identified in Chapter 3. The main purpose of this chapter is to provide the reader
with a clear understanding of the relationship between the different bodies of work
within this thesis, as well as their relationship to the unsupervised CBM framework.
The chapter begins with a detailed description of the specific research problems and
presents a high level description of the proposed methodology to tackle each issue.
The chapter concludes with a overview of the datasets used for validation in this
thesis, including a description of the two field pilots located at Toronto Pearson
International Airport.

• Chapter 5 presents the Spectral Mean Shift Clustering (S-MSC) time-frequency ap-
proach for non-parametric pre-processing and vibration analysis of non-stationary
signals along with validation results obtained using the Pearson LINK APM gear-
box, CMMNO’14 wind turbine [29] and Surveillance 8 Safran engine [8] datasets.

• Chapter 6 presents the Gaussian Mixture Model Operating State Decomposition
(GMM-OSD) clustering approach for unsupervised pre-processing of vibration signals
obtained from multi-operating state machinery along with validation results obtained
using the Pearson LINK APM gearbox and Terminal 1 PCA unit datasets.
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• Chapter 7 presents the Bayesian One Class Support Vector Machine (B-OCSVM)
framework for unsupervised early degradation detection and fault prediction along
with validation results obtained using the IMS [101], FEMTO [133] and C-MAPSS
[163] run-to-failure datasets.

• Chapter 8 summarizes the main conclusions and key contributions of the thesis,
followed by recommendations for future work.
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Chapter 2

Background

At a holistic level, a fundamental understanding of the CBM framework can be achieved
using the analogy of the modern day computer. In the simplest sense, the modern day
computer can be thought of as a set of inter-connected sub-assemblies, software and instruc-
tions that work together to perform various functions in real-time, including interpretation,
analysis and storage of data, visualization via graphics, along with providing connectiv-
ity to the internet or other external devices. The typical CBM framework functions in
the same capacity - containing elements responsible for data collection, interpretation,
analysis, visualization and connectivity that work together to meet the needs outlined
by operators or specific policies. Consequently, the theoretical background for CBM has
roots in many areas of engineering, including instrumentation, signal processing, machine
learning, statistics, prognostics, Internet-of-Things and infrastructure management.

The scope of work presented in this thesis is focused on the analytical component of
CBM, and specifically, on the development of new approaches and methods for the effective
realization of unsupervised CBM. This chapter will provide the relevant, fundamental
background for CBM and it’s constituent components, beginning with an overview of the
CBM architecture. Following the introduction of CBM, overarching concepts relevant to
the analytical component of CBM from signal processing, machine learning, statistics,
prognostics and machinery vibrations are presented. Specific concepts to each proposed
CBM tool will instead be presented in the corresponding chapter.
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2.1 Condition-based Maintenance

Condition-based maintenance, or CBM, is a predictive maintenance strategy in which
maintenance actions are performed on an as-needed basis, as opposed to the scheduled
intervals commonly found in traditional preventative maintenance approaches [86]. In
CBM, maintenance actions for a particular asset are determined based on the current
health, or condition of the asset. In practice, the current health of an asset is often inferred
through some surrogate measure (i.e. sensor data) that can be obtained while the system
is in operation. This process of active health tracking is known as condition monitoring
(CM). CM is an integral component of any CBM framework, and the critical role it plays
within the overall framework will be discussed in greater detail in the Section 2.2.

A high-level depiction of typical CBM architecture is depicted in Fig. 2.1, in which
primary functions in a CBM framework are shown in sequential layers. The first level of
a CBM framework is the input layer. In most data-driven CBM frameworks, the primary
input is sensor data. Where applicable, historical records, such as any information pertain-
ing to recorded failures, and SCADA data (i.e. operational status, speed, etc.) can also
be provided as inputs. These inputs are typically passed through a crucial pre-processing
step. The broad role of the pre-processing step is to maximize the readability of critical
information in the input data before passing it along to the subsequent analytical com-
ponent of the CBM framework. The analytical component of a typical CBM framework
can be categorized into one of two main branches: a diagnostic branch which deals with
the detection and classification of anomalies or faults; and, a prognostic branch which is
concerned with forecasting and predictive modeling. While the primary functions of these
two branches may differ at a fundamental level, strong synergies between these two com-
ponents are often found at the core many successful CBM implementations. For example,
outputs from the diagnostic branch (i.e. condition indicators, ML classification results)
are commonly used as inputs to some prognostic models. Typical outputs of the analytical
layer in a CBM framework include maintenance alarms, which are generated to alert the
appropriate personnel when a fault is detected, and prognostic metrics such as remaining
useful life and reliability. The final layer of the CBM framework is the decision support
layer, which utilizes the outputs from the analytical layer to make informed maintenance
and planning decisions. Alarm information can be used to trigger immediate maintenance
actions or for maintenance scheduling, while predictions can be used for long term planning
and scheduling [148].
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Figure 2.1: Typical CBM Architecture
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2.1.1 Scope and Design of a CBM Framework

The extent of the diagnostic and prognostic capabilities in a given CBM framework are
governed by a combination of user needs and practical constraints. Examples of user or
application-specific needs include the type of asset to be monitored, the level of detection
sensitivity required, or the long term goals of the end-user. User needs may impose re-
quirements on the type and quality of sensors employed, or the depth of diagnostic and
prognostic analysis required. The degree to which these specific user needs can be addressed
are typically governed by practical constraints, such as implementation cost, installation
requirements, and synergy with existing information technology (IT) and operational tech-
nology (OT) systems. Hence, there are often several trade-offs that need to be in the design
process between ease of implementation and level of comprehensiveness: a generalized (i.e.
”plug-and-play”) framework will result in a low implementation cost, but will typically
lack the sensitivity and comprehensiveness offered in a framework that has been fine tuned
using expert knowledge. As new developments in CBM research continue to introduce new
tools to address existing knowledge gaps, or improve upon the robustness of existing tools,
this trade-off will diminish. It follows then, that the effectiveness of a CBM framework can
be inferred by the degree to which it meets the specific needs of user or application, while
staying within the imposed constraints.

Fig. 2.2 illustrates this CBM framework design process using the example application
of a user who wants to deploy motor bearing monitoring across all of the units in their
fleet. In Fig. 2.2, the user provides their specific needs, which include the determining the
optimal replacement interval, detection of motor bearing faults, large-scale deployment of
monitoring across the entire fleet, complete with the ability to visualize CBM information
online and generate alarms automatically when a fault is detected. The CBM design begins
by proposing the optimal solutions to meet each of these needs: vibration monitoring to
maximize sensitivity to bearing faults, coupled with wireless sensing and remote connectiv-
ity via an IoT platform to provide fleet-wide coverage. Cost constraints impose a reduction
on the program scope to limit monitoring to critical units only. Lack of historical failure
data requires the analysis to be performed with methods which do not rely on such data
(i.e. unsupervised methods). Finally, security constraints forces the design to adopt an
LTE-enabled IoT implementation, and the subsequent increased costs of data transmission
forces the use of edge computing and computationally efficient methods.
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Figure 2.2: Example of CBM framework design process for fleet-wide motor bearing mon-
itoring application
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2.2 Condition Monitoring

In most data-driven CBM frameworks, CM is the primary method employed to track and
infer the current health state of a monitored asset. For the majority civil and industrial
assets, the current health of the asset cannot be inferred directly. In such cases, the most
common approach is to infer the health of the asset using surrogate measures known as
condition indicators (CIs), which are extracted from sensor data through the feature ex-
traction process using signal processing, time series analysis or machine learning techniques
[59, 184]. Prior to monitoring, a typical CM process will include a training phase in which
extracted CIs are used to construct statistical or ML models which reflect the baseline
(typically healthy) health of an asset. Once these baseline models are established, the
monitoring phase of CM begins. During monitoring, CIs extracted from new observations
of sensor data are classified as healthy or anomalous using the baseline models, in a process
known as fault detection. These general steps of CM are shown in Fig. 2.3.

Figure 2.3: General steps of condition monitoring

2.2.1 Influence of CM on Overall CBM Framework

Beyond its role in monitoring and fault detection, CM has significant implications for the
rest of the CBM framework. The type and nature of data pre-processing employed and
choice of CIs has a significant impact on the subsequent diagnostic and prognostic analyses
which use the outputs of CM as inputs.
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2.2.2 Real-time Online CM

CM can be implemented at various levels of time localization and time resolution. In
addition, the setting in which CM results are made accessible (i.e. offline vs. online) to the
user can also vary framework-to-framework. The purpose of this subsection is to provide
disambiguation and differentiation between two commonly misused terms in CM: ”real-
time” and ”online”. While these terms are often used interchangeably in CBM literature,
there are several important distinctions to be made.

In the context of CM, the term ”real-time” refers to when CM is employed in a fully
continuous manner - sensor data is collected either continuously or at closely spaced in-
tervals, and CI extraction and fault detection are performed immediately as new data
becomes available. Consequently, the information obtained during real-time monitoring
provides the highest level of time localization and time resolution. On the other hand,
the term ”online” is reference to the setting in which CM information is made available to
the end-user. ”Online” in this case means that results are accessible by the user over the
internet or equivalent wireless connection. Typically, an online implementation will enable
end-users to access real-time CM information with the minimal time delay. Due to this
implication, the term ”online” is often used interchangeably with ”real-time” in literature.
In this body of work, the phrase ”real-time online monitoring” refers to the scenario in
which CM is performed continuously, and the resulting information is made accessible to
the end-user immediately.

2.3 Signal Processing

In practice, data captured by a sensor mounted on an asset is contaminated by a num-
ber of processes along the transmission path before it reaches the data acquisition device,
including various sources of noise and other transmission path effects. In order to mit-
igate these negative effects, signal processing is typically applied to pre-process the raw
sensor data prior to analysis in order to de-convolve the signal and extract the buried,
useful information. Signal processing is a field of electrical engineering concerned with the
manipulation of signals such as sound, images and measured signals [60]. The types of sig-
nals considered in this thesis consist exclusively of digitized sensor measurements. Hence,
the theoretical background presented hereafter pertains to the sub-field of signal process-
ing concerned with the analysis of digital signals known as digital signal processing (DSP).
Pre-processing in CBM uses a wide range of signal processing tools, including filtering, time
domain-based techniques, frequency-domain-based techniques and time-frequency-domain-
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based techniques. The following sections will provide the general theoretical background
for signal processing in the context of CBM.

2.3.1 Basic Signal Assumptions

In this thesis, the signals to be analyzed consist solely of sensor measurements, which obtain
a discrete representation of an underlying time-continuous process by sampling said process
repeatedly at specified time intervals. Let x(t) represent a time-continuous process, where t
is a continuous time variable. Then, the discrete representation of x(t), as obtained through
evenly-spaced sensor measurements can be written as x[n]. The relationship between x(t)
and x[n] is shown in Fig. 2.4 and can be expressed mathematically as

x[n] = x(
n

fs
) n = 1, 2, ..N (2.1)

where, n is the quantized time variable or sample number, N is the total number of samples,
and fs is the sample rate. The sample rate fs is inversely proportional to the time difference
∆t between any two consecutive samples, given by

fs =
1

∆t
∆t = t[n]− t[n− 1] (2.2)

Figure 2.4: Continuous vs. discrete signal

In practice, it is common to assume that each measurement x[n] consists of the signal
of interest, denoted by s[n], contaminated by some additive noise processes ε[n], resulting
in

x[n] = s[n] + ε[n] (2.3)
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In Eq. 2.3, each observation of ε[n] is assumed to be uncorrelated. In addition, the methods
proposed in thesis will assume that the true probability distribution of ε is unknown. The
following subsections will present several quintessential concepts from DSP.

2.3.2 Stationarity

In DSP, a stationary process is a statistically time-invariant process [170]. In other words,
the statistical properties of a stationary process x(t) would be the same at any given time t.
Machinery vibration signals contain many examples of both stationary and non-stationary
signals. To understand stationarity intuitively, consider the example of a machinery vi-
bration signal collected from an APM gearbox shown in Fig. 2.5. The APM signal shown
here contains many examples of stationarity and non-stationarity. Depending on the defi-
nition, the signal in Fig. 2.5 could be considered stationary or non-stationary. The signal
in Fig. 2.5 can be considered stationary with respect to the mean. However, it cannot be
considered stationary with respect to the variance. Stationarity is an integral concept in
vibration analysis, as it often determines the type of tools that would be valid for analyzing
a particular signal. Mathematically, a strict-sense stationary process satisfies the following
relationship

px(t)(α) = px(t+k)(α) ∀t, k ∈ R (2.4)

where px(t) is the probability density function of x(t), α are the parameters of px(t), and
k is any number. In practice, the requirements for strict sense stationarity can rarely be
satisfied by real signals. Hence, most DSP approaches will consider looser definitions of
stationarity based on the mean, variance and co-variance.

A process can be classified with varying levels of stationary (i.e. first order stationary,
second order or weak-sense stationary) [170]. The order is determined by the highest
statistical moment of the process which satisfies the time-invariant property in Eq. 2.4.
For example, in order for a process to be considered first order stationary, it must satisfy
the following relationship

E[x(t)] = E[x(t+ k)] ∀t, k ∈ R (2.5)

In other words, a first order stationary process is one in which the mean is constant.
Similarly, it follows that a second order or weak-sense stationary process is one in which
the joint probability density function of x(t) and x(t+ k) is the same for all k such that

E[x(t)] = E[x(t+ k)] ∀t, k ∈ R
E[x(t)x(t+ k)] = E[x(t+ τ)x(t+ k + τ)] ∀t, k, τ ∈ R

(2.6)
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The final type of stationarity that is required for vibration analysis is cyclostationarity. As
the name implies, cyclostationarity refers to a signal that exhibits stationarity at periodic
intervals [170]. Similar to the definition in Eq. 2.6, a process is considered cyclostationarity
if it exhibits the same mean and joint probability density function at periodic intervals.

In general, the performance of methods which have been designed for analysis of sta-
tionary signals does not translate well to non-stationary signals. Analysis of non-stationary
signals requires specialized tools that are able of adapting to or characterizing the time-
varying properties of non-stationary signals. This class of tools forms the basis for much
of the body of work contained in this thesis.

Figure 2.5: Example of non-stationary machinery vibration signal obtained from APM
gearbox

2.4 Fourier Analysis

In CBM, the frequency content of a signal is commonly used for many applications including
fault detection, filter design and system identification. Fourier analysis, which assumes
that a signal can be expressed a sum of trigonometric or exponential functions of different
frequencies, forms the basis from which most common frequency analysis methods are
predicated upon [60]. Let g(t) represent a periodic signal with period T such that

g(t) = g(t+mT ) m ∈ Z (2.7)
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Fourier Analysis states that g(t) can be expressed as an equivalent Fourier series with the
form

g(t) =
∞∑

k=−∞

Cke
jkω0t (2.8)

where ω0 = 1/T is the fundamental angular frequency, and Ck is the Fourier series coeffi-
cient given by,

Ck =
1

T

∫ T/2

−T/2
g(t)e−jkω0tdt (2.9)

In 2.8, Ck represents the magnitude of each frequency component kω0. Hence, Fourier
analysis allows us to view the equivalent frequency representation of a periodic time signal.
In practice, signals obtained from sensor measurements are rarely perfectly periodic. The
Fourier series approximation in Eq. 2.8 can be extended for non-periodic signals as well by
allowing T → ∞. Let f(t) represent a non-periodic signal with relationship to g(t) given
by

f(t) = lim
T→∞

g(t) (2.10)

Bringing Ck to the LHS of 2.9 yields,

TCk =

∫ T/2

−T/2
g(t)e−jkω0tdt (2.11)

Setting kω0 = ω at T →∞ results in

ω0 =
2π

t
|T→∞ → 0 (2.12)

Eq. 2.12 transforms the discrete Fourier spectrum into continuous, replacing the sum-
mation by integral which results in f(t) → g(t). Then, the Fourier transform of the
non-periodic signal f(t) is obtained as T →∞ in Eq. 2.11

TCk = lim
T→∞

∫ T/2

−T/2
g(t)e−jωtdt

TCk =

∫ ∞
−∞

[ lim
T→∞

g(t)]e−jωtdt

F (ω) =

∫ ∞
−∞

f(t)e−jωtdt

(2.13)

17



where F (ω), known as the spectral density, represents the frequency spectrum of f(t).
The reverse transformation, which can be used to re-construct the original time signal is
referred to as the Inverse Fourier Transform (IFT), and is defined as

f(t) =
1

2π

∫ ∞
−∞

F (ω)ejωtdω (2.14)

Oftentimes, the Fourier transform pair defined by Eq. 2.13 and 2.14 are expressed using
the following notations

F (ω) = F [f(t)] or f(t) = F−1[F (ω)] (2.15)

2.4.1 Discrete Fourier Transform

The formulation used to arrive at Eq. 2.13 and 2.14 contain two assumptions that cannot
be realized in practice. Namely, the signals obtained through sensor measurements are
neither continuous functions nor infinite in length. Rather, the signals of interest are
discrete and finite in nature. Applying the transforms in Eq. 2.13 and 2.14 to these signals
requires yet another extension of the Fourier Transform known as the Discrete Fourier
Transform (DFT) [60]. In the DFT, the infinite integrals of the FT are replaced by finite
sums, and is expressed as

F (k) =
1

N

N−1∑
n=0

f(n)e−j2πkn/N k = 0, 1, ..., K (2.16)

where k indicates the kth discrete spectral component, N is the length of the input signal,
K = N/2 is the total number of spectral components according to Nyquist theorem.
Division by N ensures that the Fourier series components are scaled accordingly. The
corresponding Discrete Inverse Fourier Transform is given by

f(n) =
N−1∑
k=0

F (k)ej2πkn/N (2.17)

In matrix notation, the DFT in Eq. 2.16 can be represented by the following matrix
multiplication

Fk =
1

N
Wknfn (2.18)

where Fk is a vector of N frequency components, fn is a vector containing the original input
signal, and Wkn is a square matrix of unit vectors e−j2πkn/N whose angular orientation is
a function of both k and n.
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2.4.2 Fast Fourier Transform

In many modern computing packages, the DFT is often evaluated using the Fast Fourier
Transform (FFT) algorithm [170]. The FFT is computationally efficient method that
evaluates Eq. 2.16 and 2.17 under the principle that N is a power of 2. The FFT algorithm
factorizes Wkn in Eq. 2.18 into log2N matrices each requiring only N complex operations
for multiplication, in contrast to the N2 operations required for direct multiplication using
Wkn. Hence, the FFT algorithm reduces the overall computational complexity from N2

to Nlog2N .

2.4.3 Nyquist Frequency, Sampling Rate and Frequency Resolu-
tion

Three crucial parameters in Fourier analysis are the Nyquist Frequency, the previously
defined sampling rate fs and the frequency resolution. The choice in each of these param-
eters will have a large impact on the type and quality of frequency information available
for analysis.

Nyquist Frequency and Signal Bandwidth

According to the Nyquist theorem, the Nyquist frequency represents the highest frequency
that can unambiguously represented in a sampled signal [170]. Frequency components
above the Nyquist frequency will become indistinguishable due to aliasing, which refers
to the phenomenon when a signal component becomes an alias or copy of another. The
Nyquist frequency is equal to half of the sampling rate fs. In practice, fs is typically
determined from a priori knowledge of the highest frequency component of interest in a
given application. Fig. 2.6 illustrates the aliasing phenomenon using a simple 60 Hz cosine
wave. According to Nyquist theory, a minimum sampling rate of 120 Hz would be required
to capture the cosine wave without introducing aliasing effects. Fig. 2.6a illustrates the
cosine wave sampled at 70 Hz. Fig 2.6b shows that due to aliasing, the waveform of the
sampled points appears instead as a 10 Hz cosine wave.

In Fourier analysis, the signal bandwidth simply refers to the maximum range between
the highest and lowest umambiguous frequency components in a signal, which for a raw
unprocessed signal, is the range between zero and the Nyquist frequency. The term ”band-
width” is also used in filtering where it carries a slightly different meaning. To disambiguate
between the two use cases, ”bandwidth”, when used with respect to Fourier Analysis will
be referred to instead as ”signal bandwidth”.
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Figure 2.6: Example of aliasing. a) 60 Hz cosine wave sampled at fs = 70 Hz b) Corre-
sponding waveform of sampled points aliasing as a 10 Hz cosine wave

Sampling Rate and Frequency Resolution

In addition to its relationship with the Nyquist frequency, the choice of fs also controls
the maximum frequency resolution available for analysis. Frequency resolution refers to
the size of the interval between two consecutive frequencies in the Fourier spectrum, which
is determined by the relationship fs/N , where N is the length of the input signal to
the DFT [170]. Frequency resolution represents the minimum required spacing for two
frequencies to be distinguished uniquely in the DFT. Frequencies spaced closer together
than the frequency resolution will appear as a single frequency in the DFT. Increasing
the frequency resolution will allow for better differentiation of closely spaced frequencies,
and is particularly important in many CBM fault diagnosis approaches which rely on
the identification of fault frequencies that can manifest around harmonic components as
closely spaced ”sideband” frequencies. Hence, where practically feasible, oversampling of
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the signal (i.e. sampling at a rate higher than two times the Nyquist frequency) is desirable
in order to obtain the best possible frequency resolution for analysis.

2.4.4 Windowing

Under ideal conditions, the time signals analyzed using Fourier analysis will contain a per-
fect integer multiple of the period. In practice, this condition is rarely satisfied, and the
start and end points of a sampled signal will contain discontinuities which will manifest
as high frequency components above the Nyquist frequency in Fourier analysis. These
artificial high frequency components will lead to aliasing and spectral leakage in the fre-
quency spectrum. Spectral leakage, refers to the phenomenon in which the energy in one
frequency is smeared into other frequencies, which makes it difficult to distinguish closely
spaced frequencies [170]. Controlling or managing spectral leakage is particularly impor-
tant when analyzing machinery vibration signals, which are often contain many closely
spaced frequency components. The first purpose of windowing in DSP is to eliminate
these discontinuities in the time domain of the signal in order to control spectral leakage.
The second common application of windowing is for time-frequency analysis, which will be
discussed in more detail in section 2.5.

Typically, a window is a function that is real-valued, smooth and symmetric over a
chosen interval and zero otherwise. Hence, when a window function is applied to a signal,
the symmetry property will force the start and end points of the signal within the windowed
interval to be continuous. The two main parameters that need to be determined when
designing a window function w(n) are the length of the window Lw, and the type of
window. The two main types of window functions used in analysis of machinery vibration
signals are the Hanning and Dirichlet (rectangular) windows.

• Hanning: the Hanning window is a tapered cosine window that is commonly used
to control spectral leakage, especially in the analysis of machinery vibration signals
[170]. The Hanning window symmetrically tapers to zero at each end, which helps to
minimize spectral leakage. The Hanning window can be expressed by the following
equation

w(n) = 0.5(1− cos(2π n

Lw − 1
) 0 ≤ n ≤ Lw − 1 (2.19)

• Rectangular: the rectangular window is the simplest type of window function, in
which all points within the window are weighted equally (i.e. w(n) = 1). Unlike
the Hanning window, the rectangular window does not help to control spectral leak-
age. Rectangular windows are commonly used in time-frequency analysis to capture
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transients or short-lived events within a signal, which are difficult to capture with
Hanning windows due to their smoothing effects.

Fig. 2.7 illustrates the time and frequency representations for the Hanning and Rect-
angular windows. The optimal choice of window type and length will vary depending on
the type of signal and analysis required.

Figure 2.7: Time and frequency representations for the Hanning and Rectangular Window
Functions

2.5 Time-frequency Analysis

Time-frequency (TF) analysis is an extension of Fourier analysis that focuses on the study
of a signal in both the time domain and frequency domain simultaneously. TF methods are
essential for analyzing non-stationary signals, such as those commonly obtained from rotat-
ing machinery. Contrary to Fourier analysis, which produces a 1-D output, time-frequency
analysis produces 2-D outputs which are referred to as time-frequency representations. TF
analysis can also be used to capture transients and other short-lived events within a signal
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that would otherwise be obscured in regular Fourier analysis. The following sections will
present several of the key TF methods which will be used throughout this thesis.

2.5.1 Short-time Fourier Transform and Spectrogram

The Short-time Fourier Transform (STFT) is the natural extension of the FT to the time-
frequency domain [60]. In essence, the STFT is obtained by combining the FT with
windowing. Thus, instead of calculating a single FT to represent the frequency content
of the entire signal, the STFT calculates the FT of the signal at each specified window,
allowing any short-lived phenomena or other non-stationary behaviour within the signal to
be captured through some subset of windows. Mathematically, the discrete STFT S(m, k)
for a signal of length L is expressed as

S(m, k) =
N−1∑
n=0

x(n+mH)w(n)e−j2πkn/N

M =
L−N
H

m = 1, 2, ...,M

k = 1, 2, ..., K

(2.20)

where m dictates the window number, k represents the kth spectral component, w(n) is
a window function of length N , K = N/2 is the total number of spectral components
as dictated by Nyquist theorem, H represents the shift length between two consecutive
windows and M is the total number of windows. The most common representation of the
STFT is the spectrogram, which is simply the squared amplitude of the STFT in Eq. 2.20,
commonly expressed as

Ŝ(m, k) ≡ |S(m, k)|2 (2.21)

2.5.2 Hilbert Transform and Envelope Analysis

Although inherently not a time-frequency method, the Hilbert Transform (HT) is widely
used in tandem with filtering for time-frequency analysis of machinery vibration signals
[153]. In vibration analysis, the primary function of the HT is to obtain the analytic
signal, which can detailed information regarding the structure of the signal, such as the
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instantaneous amplitude (i.e. envelope) or phase. This information is often useful for
diagnosing machinery faults, which can manifest more clearly in within the envelope of a
signal. Mathematically, the HT of a signal x(t) can be simply expressed as the convolution
of x(t) with kernel 1/πt

H[(x(t)] =
1

πt

∫ ∞
−∞

x(t− τ)

τ
dτ (2.22)

Using the definition of HT in Eq. 2.22, the analytic signal x̄(t) of x(t) can be obtained by
adding the imaginary component of the HT Hx(t) to x(t)

x̄(t) = x(t) + jH(x(t)) (2.23)

The instantaneous amplitude or envelope signal |x̄(t)| can then be obtained by simply
taking the absolute value of Eq. 2.23. Fig. 2.8 below illustrates the envelope signal
extracted from a convolved cosine signal.

Figure 2.8: Example of envelope signal extracted using the Hilbert transform

2.5.3 Spectral Kurtosis

The spectral kurtosis (SK) is a statistical parameter that can be used for transient detection
in the frequency domain [6]. Conceptually analogous to the kurtosis of a signal in the time
domain, the SK is defined as the normalized fourth-order moment of the real part of
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previously defined discrete short-time Fourier transform |S(m, k)|, given by:

SK(k) =
〈|S(m, k)|4〉
〈|S(m, k)|2〉

(2.24)

where 〈·〉 represents the time-averaging operator. Similar to the behaviour of kurtosis in the
time domain, the value of SK is nominal at frequencies containing only stationary Gaussian
components, and high for frequencies containing transient, or non-Gaussian behaviour.
The ability of SK to perform transient detection at the per-frequency level makes it well
suited to the detection of various narrow-band machinery fault signatures [6]. Fig. 2.9
below illustrates this use of SK for the detection of a narrow band linear chirp buried in
dense, Gaussian noise. A popular extension of SK is the Kurtogram, which essentially
computes the SK as a function of the window length in addition to frequency and provides
a convenient tool for parameter selection in time-frequency analysis [7].

Figure 2.9: Example using spectral kurtosis for detection of a narrow band linear chirp
buried in Gaussian noise

2.5.4 Time Synchronous Averaging

Time synchronous averaging (TSA) is a pre-processing technique used for the isolation
of periodic signal components in noisy or non-stationary data, and is widely used in the
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diagnosis of machinery faults [15]. The principle of TSA is to resample a signal in the
time domain into the angular domain with respect to the phase of a particular compo-
nent of interest (i.e. as a function of shaft rotation). In doing so, any signal components
not synchronized with the phase of the component of interest will be filtered out of the
signal. TSA requires angular reference signal that is synchronized with the time signal
(i.e. phase-locked). In practice, this angular reference is typically obtained using tachome-
ter measurements; however, tachometer-less (albeit computationally expensive) estimation
approaches also exist within the literature [8].

2.6 Filtering

In the broad sense, the main purposes of filtering are signal separation and signal restoration
[170]. Signal separation, which is the primary type of filtering employed in this thesis, refers
to the process of isolating or separating frequency components of interest (i.e. the original
signal) from noise and sources of interference encountered along the transmission path.
Signal restoration refers to the process of recovering or reconstructing a signal that has
been distorted i.e. de-blurring an image that is out of focus. In essence, a filter is a process
which takes an input signal and produces an output that is either a linear or non-linear
combination of the input. Additionally, filters mostly commonly operate within the time
domain - that is to say that the input and output signals of a filter are in the time domain.
This thesis will employ both linear and non-linear filtering methods that act within the
time, frequency and time-frequency domains. The filter theory presented hereafter will
focus on digital filtering practices for signal separation in digitally sampled signals.

2.6.1 Linear Filters

A linear filter can be understood as a filter in which the output signal is a linear combination
of the input signal [170]. Let x represent an arbitrary input signal of length N . Then,
the output y[n] obtained by passing x through a filter L is expressed by the following
relationship

y[n] = Ln{x} (2.25)

In Eq. 2.25, the filter Ln{} is expressed as a real-valued function with value at every
sample n. A filter L is linear if satisfies the superposition principle for linear systems given
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by

Ln{ax} = aLn{x}
Ln{x1 + x2} = Ln{x1}+ Ln{x2}

(2.26)

where a is a scalar. A linear filter can be described by it’s impulse response function
(IRF), step response or frequency response function (FRF) [170]. As the name implies,
the impulse response of a filter is simply the output the filter produces when an impulse
is provided as input. The frequency response can be obtained by taking the FT of the
impulse response, and it follows that the step response can be obtained by integrating the
impulse response. Each of these descriptions can be used to implement and understand
the effect a given filter will have on an input signal. Fig. 2.10 illustrates the step, impulse
and frequency response functions for a simple digital linear filter. These functions will be
useful when defining the various types of filters hereafter. Mathematically, the IRF of a

Figure 2.10: Example of a step, impulse and frequency response functions for a digital
linear filter

filter is expressed as

h[n] = Ln{δn(x)}

where δn(x) =

{
1 if n = 0

0 if n 6= 0

(2.27)

One method to implement a linear filter is to convolve the input signal with the IRF of a
filter. In other words, the output signal of a filter can be understood as the weighted sum
of the input signal. Filters implemented using convolution are also known as finite impulse
response (FIR) filters. One other important type of implementation approach that builds
upon the convolution in a more efficient manner is known as recursion. Recursion is the
method employed by many common filters, including Butterworth filters. In recursion, the
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next output y[n] in a sequence is defined as a weighted combination of the previous inputs
as well as the previous outputs. Mathematically, recursion can be expressed as

y[n] =
N∑
l=1

aly(n− 1) +
M∑
k=0

bkx(n− k) (2.28)

where al and bk are the called the recursion coefficients. Recursive filters are defined by their
recursion coefficients, as well as the filter order (typically N = M). Filters implemented
using recursion are also known as infinite impulse response (IIR) filters. IIR filters are
generally more efficient than their FIR counterparts, but this comes at the cost of being
more complex to design.

2.6.2 Common Types of Frequency Response Functions

In engineering, filters are often described by their FRF. The FRF provides an intuitive way
to understand which frequencies a given filter will reject or admit, as well as the level of
attenuation applied to each frequency band. The band of frequencies admitted by a filter
is known as the passband, while the band of frequencies rejected by a filter is known as the
stopband. The boundary(s) between these two regions is known as the cutoff frequency fc.

The four most common types of filters as classified by their FRFs are low-pass, high-
pass, band-pass and stopband filters. These four types of filters are shown in Fig. 2.11.
Beyond rejecting the frequencies in the stopband, most filters will also produce some form
of attenuation or ripple effect in the passband as well, which can be seen in all four FRFs
in Fig. 2.11.

• Low-pass filters: low-pass filters (Fig. 2.11a) admit frequencies below fc and reject
frequencies above fc

• High-pass filters: high-pass filters (Fig. 2.11b) admit frequencies above fc and
reject frequencies below fc

• Bandpass filters: bandpass filters (Fig. 2.11c) admit frequencies in the band
bounded by the cutoff frequencies fc1 and fc2, and rejects all others

• Bandstop filters: bandstop filters (Fig. 2.11d) admits all frequencies except for
those in the band bounded by the cutoff frequencies fc1 and fc2.
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Figure 2.11: Common FRFs a) Low-pass filter b) High-pass filter c) Bandpass filter d)
Bandstop filter

2.6.3 Butterworth Filters

One of the most widely used recursive linear filters is the Butterworth Filter [20]. Butter-
worth filters have a unique property in their frequency response in which the passband is
maximally flat, which comes at the expense of a shallower slope in the transition region
between the passband and stopband compared to other filters (i.e. elliptic) [170]. Hence,
Butterworth filters are frequently used in engineering applications due to their ease of
design and intuitiveness. The recursive form of the Butterworth filter is identical to the
expression derived in Eq. 2.28, and hence, Butterworth filters are defined by the set recur-
sive coefficients bl and ak and the filter order (commonly N = M). Filter order controls
the steepness of the roll-off at the cutoff frequency. The effect of filter order on a low-pass
Butterworth filter is shown in Fig. 2.12. Increasing the filter order will result in a steeper
roll-off. However, increasing the filter order past a certain point will begin to introduce

29



ripples in the passband, which would negate the main advantage of the Butterworth filter.
The method to solve for the Butterworth filter coefficients can be found in Appendix A.

Figure 2.12: Effect of filter order on low-pass Butterworth filter

2.6.4 Non-Linear Filters

As the name implies, a non-linear filter can be used to describe any filter whose output
is not a linear function of its input. In other words, a non-linear filter does not satisfy
the superposition principle of a linear system defined by Eq. 2.26. Unlike linear filters,
the frequency response of a non-linear filter cannot be easily characterized. A common
application of non-linear filters is for de-noising [170]. Specifically, non-linear filters can be
used to remove non-additive noise processes from a signal. An intuitive example of one such
filter is the median filter, which is commonly used for signal smoothing. Fig.2.13 illustrates
how a median filter can be used to recover a sine wave contaminated by multiplicative noise.
Another example of a pseudo-non-liner filter introduced earlier in this chapter is TSA [15].
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Figure 2.13: Removal of multiplicative noise using median filter

2.7 Machine Learning and Statistical Analysis

Machine learning (ML) and statistical analysis tools have been widely implemented in
all aspects of CBM and vibration analysis, including feature extraction, fault detection,
fault classification and degradation modeling [160, 17]. The field of statistics is often con-
sidered as the pre-cursor to modern ML, and as result, many methods from both fields
today have dual classifications. Despite the vast sea of ML and statistical tools available
today, the optimal choice(s) of tools will depend primarily on the application and corre-
sponding constraints. Hence, achieving the optimal design or performance with these tools
in a particular application requires both expert knowledge and careful consideration of
application-specific parameters, needs and constraints. This section presents the overar-
ching concepts used throughout this thesis within ML and statistical analysis. Concepts
which are specific to a particular method will be presented in their corresponding chapters.

2.7.1 Classification of ML Methods

At the highest level, ML methods can be classified by the type of learning approach used.
The learning approach of a method will dictate the type and level of information required
by that method for training. The three types of learning approaches are: supervised,
semi-supervised and unsupervised learning. The descriptions provided here are intended
to provide a high-level understanding of the key characteristics and differentiating factors
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between each classification.

Supervised Learning

Supervised learning assumes that data used for training a classifier is fully labelled, or in
other words, that the case each point in the training set belongs to (i.e. healthy, faulty)
is known a-priori. These labels are passed onto the classifier along with the data, and
the goal of a classifier in supervised learning is to learn the best relationships between
the data and it’s assigned class label, and apply these relationships to the classification of
unseen data. Hence, the common task in supervised learning techniques is classification i.e.
determining the correct class assignment for a new observation [17]. Widely used examples
of supervised ML tools including neural networks (NNs) [199] and support vector machines
(SVMs) [194].

Unsupervised Learning

Contrary to supervised learning, unsupervised learning assumes the opposite scenario
where the training data provided to the classifier contains no label information. Hence, the
number and nature of the underlying classes in the training data are not known a-priori.
Since unsupervised classifiers are unable to make use of labels for learning class relation-
ships, these approaches typically make use of inducted biases (i.e. assume only one of class
present in the training data) in order to develop decision rules. An explicit example of
this is OC-SVM [166]. Another common class of methods within unsupervised learning
is clustering, which is used to describe the process of organizing or grouping points in a
data set such that the similarity of points to each other within a given group (i.e. cluster)
is than to those in other groups [17]. An example of a common unsupervised clustering
technique is K-means clustering [17].

Semi-supervised Learning

Semi-supervised learning bridges the gap between supervised and unsupervised learning.
Semi-supervised learning involves the use of a partially labelled training set. For example,
within a training set, complete labels may be available for only a subset of data points,
which will require a semi-supervised classifier to use those labels to make inferences on
the remaining unlabelled data points in the training set. Depending on the amount of
labelled data present in the training set, the types of classification approaches and decision
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rules obtained in semi-supervised learning can vary to resemble those obtained in the both
supervised and unsupervised learning cases. Examples of semi-supervised learning include
negative support vector data description (N-SVDD) [110] and cluster-based active learning
[19].

2.7.2 Kernel Density Estimation

The kernel density estimate (KDE) is a non-parametric statistical approach to estimate
the probability density of a variable [31]. The non-parametric nature of KDE makes it
well suited to applications in which the underlying distribution of the data is not known
a-priori, and provides a flexible means for PDF estimation in ML methods where the PDF
is pre-requisite. Consider a variable X = {x1, x2, ..., xn} ∈ Rd. Mathematically, the KDE
of X is given by

p(X) =
1

n

n∑
i=1

K

(
X − xi
h

)
. (2.29)

where K(X;h) is a kernel function with kernel bandwidth h. Common choices for K(X;h)
in KDE include the uniform kernel and the Gaussian kernel. The uniform kernel is anal-
ogous to previously described Dirichlet window function, and the Gaussian kernel is given
by

K(x) =
1√
2π
e−

1
2
x2 (2.30)

The choice of the bandwidth parameter h has a strong influence on the clustering result. In
supervised learning approaches, the bandwidth parameter h can be found using brute-force
algorithms such as cross-validation [17].

2.7.3 Support Vector Machine (SVM)

SVM is a widely used supervised learning approach for classification [194]. The goal of
SVM is to find a the hyperplane providing the maximum margin of separation between the
separate two classes within a given a data set. This separating hyperplane can be sparsely
represented by only a subset of points in the data set, which are known as the support
vectors (SVs). Given a two-class data set X = {x1, x2, ..., xn} ∈ Rd with corresponding
class labels Y = {y1, y2, ..., yn} ∈ {−1, 1}, the separating hyperplane f(X) = 0 between
these two classes is given by

f(X) = wTX + b =
n∑
i=1

wTxi + b = 0 (2.31)
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where w represents a vector of weights and b is the bias. In order to define a separating
hyperplane between the points in each class, each point in X should satisfy the follow
constraints

wTxi + b ≥ 1 if y = 1

wTxi + b ≤ −1 if y = −1
(2.32)

Equivalently, this can be expressed more succinctly by

yif(xi) = yi(w
Txi + b) ≥ 1 ∀ i = 1, 2, ..., n (2.33)

From Eq. 2.32, it can be shown that the only points within X required to fully define the
separating hyperplane between to classes are those which satisfy the equalities wTxi+b = 1
and wTxi+ b ≤ −1. The points xi satisfy these equalities represent the SVs. Oftentimes, a
data set may contain classes which are not linearly separable in the original dimension Rd.
In these cases, a transformation is applied to the map the data into a higher-dimensional
space (i.e. ϕ : Rd → Rd′ , where d′ ≫ d ∈ Rd′) where it becomes linearly separable [17].

2.7.4 Principle Component Analysis (PCA)

Principle component analysis (PCA) is a data dimensionality reduction technique widely
used within statistical analysis and ML frameworks [50]. In practice, the two main pur-
poses of dimensionality reduction are: for feature selection; and, to avoid the ’curse of
dimensionality’ [17]. For feature selection, dimensionality reduction is typically applied
to remove non-informative, redundant (i.e. highly correlated) features from a feature set.
Discarding these extra features enables a classifier to learn more efficiently and learn bet-
ter decision rules using only the ’useful’ features in the original feature set [160]. Within
unsupervised learning, the most widely used dimensionality reduction technique is PCA
[17].

Given a feature space of dimension D, the goal in PCA is to compute a transformation
fromD to a new set of coordinates (i.e. principal components) of dimension d (s.t. d≪ D),
while retaining the maximum amount of variance from the original feature space. By
definition then, the principal components (PCs) U = {u1, u2, ..., ud} form an orthonormal
basis for the data. The PCs are arranged in order of decreasing variance (i.e. PC u1

contains the largest amount of variance). Hence, in practice, value of d is determined by
the desired level of variance to be retained after the transformation. Given a data set
X = {x1, x2, ..., xn} ∈ RD, let ui represent the projection of xi in the direction of w such
that

ui = wTxi wTw = 1 (2.34)
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The variance of U V ar(U) is given by

V ar(U) = wTX(wTX)T = wTSw S = XXT (2.35)

Then, using the definition above, the goal of PCA is to determine the set w which maximizes
wTSw. The previously assigned constraint on the length of w i.e. wTw = 1 ensures that
the optimal solution for w is with respect to it’s direction, rather than length. Eq. 2.35
can be re-written as the eigenvalue decomposition

wTSw = λ (2.36)

where w and λ are the eigenvectors and eigenvalues of S, respectively. Hence, the value w1

corresponding to the largest eigenvalue λ1 is the principal component u1, and so forth.

2.7.5 Bayesian Updating

Bayesian updating is a statistical framework which uses Bayes’ theorem to incrementally
update a set of prior beliefs as more observations become available [185]. This property
makes Bayesian updating particularly useful for applications where accurate prior knowl-
edge is not available, as it allows for the discovery of the unknown prior distribution purely
through observation. Given a model M described by set of parameters θ, Bayes’ theorem
states that the posterior probability of θ given X (i.e. P (θ|X)) is given by

P (θ|X) =
π(θ)P (X|θ)

P (X)
(2.37)

where π(θ) is the prior probability, P (X|θ) is the likelihood, and P (X) is the marginal
probability. Since P (X) is independent of the choice of θ, Bayes’ rule is often expressed as
the following proportionality instead

P (θ|X) ∝ π(θ)P (X|θ) (2.38)

Let π1(θ) represent the prior probability at some time step t = 1 where new observations
become available. Bayesian updating states that π1(θ) is equal to the posterior probability
P1(X|θ) computed at t = 1. In other words, the principle of Bayesian updating is to take
the posterior of the previous update as the prior for the current update. Generalizing this
for any time step t = n, the updated prior probability πn(θ) is given by the hierarchical
Bayesian framework

πn(θ) = Pn(θ|X) ∝ Pn−1(θ|X)Pn(X|θ) (2.39)

Given enough observations of X over time, the framework in Eq. 2.39 will converge to the
true distribution of π(θ) even if the initial estimate of π(θ) is poor, or non-informative [52].
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2.8 Degradation Modeling and RUL Estimation

Degradation modeling is a central aspect of CBM prognostics which deals with the char-
acterization and prediction of an observed degradation process and estimation of the RUL
[128, 134]. The RUL of an asset is typically defined as the time remaining until the failure
of that asset [61]. In statistical degradation modeling [128], the RUL is calculated as the
time remaining until the prediction the modeled degradation process exceeds a specified
failure threshold DY . In practice, DY is typically set using prior information such as histor-
ical failure data, or observed faults from similar units [102, 61]. Hence, for assets without
this type of prior knowledge available, determination of a suitable failure threshold is a
challenging task [102].

While both physics-based and data-driven approaches for degradation modeling [61]
have been explored in the literature, the background presented in this section pertains
specifically to the data-driven, parametric, random variable (i.e. statistical) degradation
models employed in this thesis. Random variable (RV) degradation models assume that
an underlying degradation process Y can be described using some pre-defined functional
form η, subject to random effects β which may vary unit-to-unit. The general formulation
for the RV model is given by

Y = η(t, θ, β) + ε (2.40)

where θ are the parameters of functional form η, and ε represents the additive measurement
error, which is typically assumed to be independent, zero-mean, and normally distributed
with variance σ2

ε . β is typically assumed to be multi-variate normal with mean µβ and
covariance Σβ [128]. Commonly used functional forms of η include linear, exponential [52]
or logistic [128].

One of the key practical benefits of parametric RV models is their ability to be initialized
without explicit prior knowledge [52]. In these circumstances, the true model parameters
can be iteratively refined using a suitable parameter updating framework such as the previ-
ously described hierarchical Bayesian framework. This property of parametric RV models
makes them well suited for implementation in the unsupervised setting. Fig. 2.14 illus-
trates an example of a exponential RV degradation model using the hierarchical Bayesian
framework for parameter updating. The degradation paths and model posteriors P (θ|Y )
are shown at t = 2 years and t = 3.25 years. In addition, labels for the failure threshold
DY and corresponding RUL are provided for the set of plots at t = 2. Comparison of the
width between the posterior distributions obtained at the two time steps demonstrates the
convergence towards the ’true’ model parameters over time using Bayesian updating. A
detailed derivation and justification of the exponential RV degradation model used in this
thesis (Chapter 7) is presented in the corresponding methodology found in Section 7.3.9.
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Figure 2.14: Example of exponential RV degradation model using hierarchical Bayesian
updating. Degradation paths, failure threshold DY and posterior probabilities shown at t
= 2 years (top) and t = 3.25 years (bottom)

2.9 Fault Vibration Signatures

Faults in rotating machinery can manifest across a number of critical components including
gears [184], shafts [152] and bearings [153]. The range of possible fault conditions is further
expanded by considering that each of these components can also experience a number of
different types of faults ranging from misalignments, chips, cracks and spalls, to only name
a few [152, 184]. The nuances and challenges specific to different types of faults has led to
extensive bodies of fault-specific literature [104], which makes the development of an all-
encompassing diagnosis or classification approach infeasible, if not impossible. However,
due to the unsupervised nature of the present research problem, the underlying goal in
this context is to simply detect a fault, rather than to diagnose or classify it. Hence,
while classification of a particular fault may require special knowledge or analysis to reveal
information specific to that fault—detection of faults at a more holistic level can be achieved
by designing around characteristics common to a wide range of faults.

The generalizations applied towards machinery vibration signals to facilitate the devel-
opment of robust detection methods towards the present research problem are as follows:
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1. Vibration signals are comprised of both deterministic and stochastic components,
alongside multiple noises processes. Common deterministic components include shaft
frequencies, gearmeshing frequencies, and sidebands resulting from transmission er-
rors [125, 152].

2. Gear faults will manifest in the form of amplitude and frequency modulations within
the gearmesh harmonics [152]

3. Bearing fault signatures, which typically manifest as faint impulses in the vibration
signal, are buried within the noise component of the signal [153, 136].

4. The appearance of a fault will induce changes in the composition of the signal assumed
above which can be characterized using well-studied features extracted from the
vibration signal [184, 59, 104]. These extracted features can be used to detect, but
not diagnose the fault in the unsupervised setting.

5. Potential sources of non-stationarity in the signal will also induce changes in the
signal composition. A detailed discussion on the types of on-stationarities central to
the present research problem are presented in Chapter 4.

In reference to (4), examples of the typical types of features extracted from vibration
signals used in this thesis for fault detection are listed below. References next to each type
of feature are examples of their application to fault detection, while detailed descriptions
of typical vibration features can be found in [59, 184, 104].

• Measures of Energy: (i.e. root mean square (RMS))[143, 105]: xrms = ( 1
n

∑n
i=1 x

2
i )

0.5

• Standardized Moments: (i.e. skewness and kurtosis) [143, 189, 147]: E[(X−µ)n]
σn

• Measures of Peakiness: (i.e. crest factor) [36, 11]: CF = max|xi|
xrms

• Measures of Entropy (i.e. Shannon entropy)[59]: H(x) = E[− log(P (X))]

• Equivalent features to the above in the Fourier domain (i.e. mean frequency, spectral
entropy) [6, 103, 110, 143].
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2.10 Summary

This chapter presents the overarching theoretical background used in this thesis, beginning
with a comprehensive overview of the CBM architecture and it’s constituent components.
Following this, the fundamental concepts within signal processing, machine learning, statis-
tics and degradation modeling are presented. The chapter concludes by presenting key
generalizations of gearbox vibration signatures used within the proposed methodology.
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Chapter 3

Literature Review

This chapter presents a review of CBM literature relevant to the research problem and
proposed methodology, beginning with an overview of the main research areas and trends
in CBM to help contextualize the specific motivations behind the present body of work.
Following this, the state-of-the-art from three research areas directly related to the present
body of work are discussed in the context of unsupervised CBM. These research areas
are: pre-processing and vibration analysis methods for non-stationary vibration signals,
data-driven fault detection/condition monitoring; and, data-driven degradation modeling.
A holistic summary of the key gaps across all three research areas is provided at the end
of the chapter.

3.1 Core Areas and Research Trends in CBM

The body of literature underneath the umbrella of CBM spans across a wide range of re-
search fields including maintenance policy, machine learning [104], signal processing [51],
diagnostics [35] and prognostics [61], with active contributions from multiple disciplines
ranging from engineering to decision sciences. A recent review by Quatrini et al. [148]
analyzed over 4000 contributions attempted to quantify the main research areas and re-
search trends within CBM over the last 30 years. Their review identified the following
four key research areas within CBM: CBM fundamentals, CBM strategies (encompassing
fault detection and condition monitoring), unsupervised methods, and prognostics. CBM
fundamentals primarily encompasses high-level contributions discussing the role of CBM
in maintenance, policy and planning [3, 40, 43]. Apart from an initial spike in research
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activity in the early 2000s coinciding with the mainstream inception of CBM as a main-
tenance strategy, research interest in CBM fundamentals has remained relatively constant
over the past two decades [148].

At the next level down, CBM strategies encompasses the broadest range of topics,
ranging from specific signal processing, fault detection and condition monitoring strategies
[121, 200, 84] to detailed frameworks for implementation [71, 18, 142, 178]. Relative to
CBM fundamentals, these contributions approach CBM at a more technical level. Research
activity in CBM strategies gained significant traction between 2008 and 2015, but has de-
creased over the last few years [148]. The rise and fall of research activity in this category
is perhaps correlated to the increasing presence of engineering systems of comprised of
multiple, interconnected systems, which demand analytical capabilities and robust frame-
works beyond what is currently available in the literature [104]. A key distinction to make
here is that the drop in contribution rate in recent years is not for lack of interest, but
rather an increase in the complexity and novelty of the problem to be solved [104]. At the
same time, the ubiquity of sensing in modern engineering systems and increasing matu-
rity of ML literature in recent years [87] has paved the way for the development of new,
data-driven and ML-based analytical approaches [61, 104]. Additional evidence to support
these claims can found by examining the underlying trends within prognostic research over
the last decade [148]. Apart from the general rise in popularity, much of the prognostic
research in recent years has shifted towards use of data-driven ML approaches for feature
learning, health and RUL estimation [204, 87, 85].

The final key research area identified in their review pertains to unsupervised CBM
methods, and specifically, CBM methods which rely solely on the sensor data. Research
activity in unsupervised methods remained relatively silent between 2008 and 2015 [148].
The lack of interest over this period can be attributed to the same reasons previously
used to explain the trajectory of prognostics research. Namely, prior to 2015, there was
no real demand for unsupervised CBM methods, as the existing tools within literature
were more than adequate to address the needs at the time [59, 86]. The key difference
between unsupervised methods and prognostics however (and the reason why prognostics
achieved traction much earlier on), is that the need for prognostics in CBM was there
since the inception of CBM [181]. In recent years, the same needs that drive the develop-
ment of data-driven ML approaches in prognostics have motivated new research activity
within unsupervised methods as well [104]. In response to the increasing complexity of
engineering systems, recent contributions from unsupervised methods [67, 129, 169] and
semi-supervised methods [124, 110, 104] are also focused on the development of tools to
enable the implementation of CBM in applications where prior knowledge (i.e. operating
characteristics or failure records) is not available, to enable the implementation of CBM
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in applications where the system characteristics and/or operational behaviour cannot be
easily understood. These central motivations are also the driving mechanism behind the
body of work presented in this thesis.

3.1.1 Specific Research Areas

With respect to the research trends and motivations presented in Section 3.1, the body
of work presented in this thesis is also focused on the development of new, unsupervised
and non-parametric tools for CBM in response to the novel research problems posed by
modern day engineering systems. Specifically, the proposed methodology aims to tackle
specific knowledge gaps in relation to the availability of non-parametric pre-processing
and vibration analysis of non-stationary engineering systems; and, unsupervised tools for
data-driven condition fault detection, thresholding and degradation modeling. Hence, the
literature review presented hereafter will focus on the following three specific research areas
within CBM:

1. Pre-processing and vibration analysis methods for non-stationary vibration signals

2. Data-driven fault detection

3. Data-driven degradation modeling

The following sections will present the state-of-the-art in each of these areas to identify the
key knowledge gaps with respect the unsupervised CBM to be addressed by the proposed
methodology.

Limitations in Scope

The limitations in the scope of the literature presented in this chapter are as follows:

1. Emphasis on Vibration-based Approaches — while CBM has been studied through-
out literature using a number of different sensor measurements, including acoustic
[73], temperature [66], current [14], oil debris [41] measurements, the vast majority of
CBM studies are conducted using vibration measurements [153] due to their high sen-
sitivity to machinery faults [186, 86] and relative ease to which they can be obtained.
The present body of work is also formulated around vibration data, and hence, the
literature presented in this chapter will pertain predominantly to vibration-based
CBM methods.
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2. Emphasis on Data-driven Approaches — while both fault detection and degradation
modeling have been studied in CBM using model-based approaches [35, 82, 49], these
approaches generally suffer from inflexibility and the inability to be updated using
sensor data [61], and therefore are not well-suited to the present research problem.
Hence, the literature presented and discussed in this chapter will focus primarily on
data-driven approaches for fault detection and degradation modeling.

3.2 Pre-processing and Vibration Analysis

Realization of an effective unsupervised vibration-based CBM framework will require ro-
bust and non-parametric pre-processing and vibration analysis tools, that can address the
unique challenges present in the unsupervised setting. Broadly speaking, the primary func-
tion of pre-processing is to maximize the visibility of desired signal components within a
given signal [60]. In this sense, ”pre-processing” is an application-agnostic term and ubiq-
uitous across all fields of science and engineering that deal with signals or sensor data [170].
Vibration analysis on the other hand, has deep roots within CBM, and encompasses both
pre-processing techniques [65, 138] and signal processing-based methods for fault detec-
tion and diagnosis [151, 11, 152] specific to vibration signals. Hence, the emphasis of the
discussion presented in this section will be placed on the-state-of-the-art from the latter.
This section begins by presenting an overview of the state-of-the-art in vibration analysis
and pre-processing in CBM to help contextualize the detailed discussions that follow.

3.2.1 Vibration Analysis

In the realm of CBM and machinery monitoring, vibration analysis has been demonstrated
to be a powerful tool for fault detection and condition monitoring [184, 59, 1]. When a
fault develops within a mechanical component, the information pertaining to the fault
will often manifest found the vibration signal. This information can be extracted using a
wide variety of pre-processing and vibration analysis techniques, of which the nature and
complexity will vary depending on the application. Examples of simple approaches include
time-domain, feature-based approaches which involve the extraction and monitoring of
signal statistics such as RMS, crest factor and kurtosis [78, 59], and basic Fourier analysis
(i.e. DFT [170]), which can be applied to stationary signals to identify fault frequencies in
the spectrum. More sophisticated techniques, which are typically used for the analysis of
non-stationary signals, will typically approach the problem in the time-frequency domain
[65, 137, 9, 70] or angular domain [64, 15, 8]. Examples of these techniques include cepstral
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editing [138, 151], minimum entropy deconvolution (MED) [26], cyclo-stationary analysis
[23], and time synchronous averaging [15], to name a few. The common tradeoff found in
many current techniques is that increased analytical capability or robustness comes at the
expense of increased computational complexity and heavy dependency on prior knowledge
of the operational characteristics or system kinematics [184]. This is especially true for the
case of non-stationary signals.

Vibration analysis techniques for non-stationary signals will typically require some form
pre-processing as a pre-requisite. In these techniques, the role of pre-processing is to either
directly enhance the presence of diagnostic information buried within the signal [65, 137], or
to convert the signal into a form that is more suitable for extracting diagnostic information
[64, 15, 138]. Depending on the type of fault, the critical diagnostic information can be
found within different components of the signal. As discussed in Section 2.9, gear fault
signatures will typically manifest within the harmonic content of the signal, while bearing
faults can manifest themselves in both the harmonic or stochastic components of a signal
[152]. Hence, a common goal in both pre-processing approaches is the separation of the
deterministic and stochastic components of a signal.

3.2.2 Pre-processing Techniques for Non-Stationary Vibration
Signals

Time-frequency-based pre-processing approaches such as the Fourier synchrosqueezing
transform (FSST), MED [26] [2, 137], sliding window singular spectrum analysis [65], au-
tomated cepstral editing (ACEP) [138, 151], and stochastic resonance method [136] have
all been applied to the spectral analysis of non-stationary signals. While highly effective,
these methods are computationally expensive, and require user expertise for parameter
tuning, filter design, as well as prior knowledge in order to be effective. Hence, these meth-
ods are not conducive to online monitoring or the unsupervised setting. Similarly, angular
domain-based approaches such as auto-regressive TSA [11] and multi-order probabilistic
approach [8] add an additional layer of computational complexity and constraints to the
problem by requiring the instantaneous shaft speed to either be measured or estimated
using computationally expensive algorithms [34, 99, 8, 30], which makes these types of ap-
proaches difficult to implement at scale or in the unsupervised setting. Vibration analysis in
the unsupervised setting requires the use of autonomous, unsupervised or non-parametric
approaches.
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3.2.3 Autonomous Vibration Analysis Techniques for Non-Stationary
Vibration Signals

In the context of autonomous vibration analysis techniques for non-stationary signals,
literature is relatively sparse and generally inapplicable to non-stationary signals containing
time-varying harmonic components. Schoukens et al. proposed a method for autonomous
spectral analysis [165]. However, the proposed method was limited to analysis of periodic
signals, and cannot be applied to highly non-stationary signals. Barbe and Van Moer
presented another autonomous approach for the detection of peaks buried within noise
using discriminant analysis in conjunction with thresholds [13]. However, this method
yields optimal results only if the underlying Gaussian assumption is satisfied. Additionally,
the thresholds used in their study were heuristically determined. Martin et al. proposed an
automatic spectral analysis technique using a multi-estimator approach that can be used to
autonomously extract and classify spectral peaks in a stationary vibration signal [125]. The
proposed method is parametric and the thresholds pertaining to the spectral estimators are
user-defined and dependent on the probability distribution of the data, which may vary
significantly in non-stationary signals. Singh et al. proposed a real-time pre-processing
approach for non-stationary signals based on the orthogonal empirical mode decomposition
(OMED) [159, 117] The use of OMED over EMD provides practical advantage of increased
robustness to noise. However, like EMD, the performance of OMED is heavily influenced
by the choice of frequency resolution. Under non-ideal conditions (i.e. low sampling
frequency), EMD approaches are unable to separate low-amplitude harmonic components
in signals containing dominant harmonic frequencies [113]. Though not explicitly stated in
their contribution, Ma et al. proposed a matching synchroextracting transform (MSET)
approach based on the synchroextracting transform (SET) and instantaneous frequency for
extraction of time-varying harmonics in non-stationary signals [122], which can be adapted
to autonomous applications. However, the results obtained MSET are heavily predicated
on the quality of the initial estimate obtained for the fundamental instantaneous frequency,
which may be unreliable in highly non-stationary or low-SNR conditions.

Apart from autonomous pre-processing and vibration analysis techniques required for
the spectral analysis of non-stationary signals, dedicated pre-processing tools to address
other forms of potential non-stationary present dynamic systems are also required for suc-
cessful implementation. For example, in condition monitoring of machinery with multiple
discrete operating states (i.e. multimodal systems), the differences in the operational be-
haviour within each state will manifest in the vibration signal as well. The unsupervised
problem will require autonomous pre-processing tools that are capable of differentiating
vibration data between each operating state without knowledge of the operating charac-
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teristics. Outside of vibration analysis, autonomous pre-processing techniques applicable
to this problem can be found in clustering literature [156]. In the context of CBM, clus-
tering methods such as K-means [17], Hidden Markov Models (HMMs) [55] and Gaussian
Mixture Models (GMMs) [155] have all been applied to fault diagnosis [95, 74, 75, 135].
Nelwamondo et al. [135] applied HMM and GMM clustering in conjunction with mel-
frequency cepstrum coefficients for bearing fault diagnosis. Heyns et al [75] applied the
negative log likelihood of GMM from windowed TSA segments as a feature for fault detec-
tion in non-stationary conditions. A subsequent study by Heyns et al. [75] proposed an
updated GMM-based fault detection approach for non-stationary systems which does not
require the use of TSA. Schmidt et al. [164] proposed a fault diagnosis approach for non-
stationary signals using an HMM-based discrepancy criteria. In all of these approaches,
the role of clustering is to facilitate the diagnosis or direct detection of an underlying fault
within a non-stationary signal, which is a significantly more complex (i.e. computation-
ally expensive) solution than the present problem (i.e. unsupervised CBM) requires. The
present problem requires a computationally efficient tool for unsupervised classification of
the current machine operating state.

Pertaining more towards operating state classification, Zhang et al. [206] proposed
an approach for transient and steady-state discrimination for bearings using variational-
Bayesian GMMs (v-GMM). In their research problem, only one operating state is known
initially. Detection of the unknown transient operating state was performed by monitoring
for changes in the vGMM clustering result as new data is added to the model. This,
in essence, is still anomaly detection as opposed to unsupervised classification, since the
framework used in their study does not leverage the inference aspect of GMMs. Such is
also the case in the approach proposed by Cao et al. [22], which uses the Kullback-Leibler
(KL) divergence of the entire GMM result to perform holistic condition monitoring of a
multimodal manufacturing process. The works presented by Zhang et al. and Cao et al.
represent complete, but focused solutions to specific CBM problems. The present problem
requires a more flexible clustering tool that can be easily implemented alongside other pre-
processing tools in the unsupervised setting. Such types of problems have been investigated
within other areas of research [88, 206, 37], but have yet to be fully explored in the context
of unsupervised CBM.

3.3 Data-Driven Fault Detection

Fault detection is primary means deployed in condition monitoring to identify anomalies
(i.e. faults) in real-time [188]. For complex systems of systems, where degradation be-
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haviour may be difficult to predict, fault detection and condition monitoring are quintessen-
tial to maintaining the desired level of reliability during operation. Within the hierarchy
of CBM diagnostics, fault detection occurs at the first layer, preceding fault isolation and
fault diagnosis [152]. Hence, fault detection is solely concerned with obtaining a binary
classification result. Detailed analysis, such as determining the location, nature and cause
of a fault are functionalities reserved for fault isolation and fault diagnosis [104]. As the
desired level of detail in diagnostic information increases, so does the complexity of the
analysis. In general, fault isolation and fault classification either require domain expertise
(i.e. methods described in Sections 3.2.1 and 3.2.2) and/or specific prior knowledge of the
system (i.e. fault frequencies, system kinematics, labelled data), which increases the diffi-
culty of real-time implementation [51, 104]. To draw a healthy balance between reliability,
computational complexity and deployability, most unsupervised CM and CBM frameworks
will aim to implement fault detection only.

This section presents the discussion on the relevant literature within the state-of-the-art
of supervised, semi-supervised and unsupervised fault detection and condition monitoring
literature. Definitions of these classifications were first introduced in Section 2.7.1. This
section begins by presenting the past and present research trajectory of supervised fault
detection, which will be essential for contextualizing the motivations and contributions
within semi-supervised and unsupervised fault detection. Given the nature of supervised
learning (i.e. the use of labelled data), fault detection and classification will occur simulta-
neously in most of these approaches. Hence, where appropriate, the term ”classification”
will be used in place of ”detection”.

3.3.1 Supervised Fault Detection

Early supervised fault detection approaches, which began to gain traction near the turn of
the century, employed statistical or traditional ML tools for fault detection [104]. Between
2000 and 2015, the body of work in supervised fault detection was dominated by statistical
approaches such as support vector networks (SVNs) [33], probabilistic graphical models
[94], NNs [199] and SVMs [194] as classification tools. The general methodology used
in traditional, supervised data-driven fault detection is to pre-process and extract hand-
crafted, fault-sensitive features from labelled data, which are then used to train a classifier
to perform fault classification [104, 190]. Typical features include time-domain features
such as RMS, kurtosis, crest factor, mean frequency, and standard deviation frequency, to
name a few [103]. During this period, significant research interest was directed towards
SVM-based approaches [79] due to their strong performance on small datasets, high in-
terpretability over black-box approaches such as NNs, and high consistency in training as
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a result of convex optimization [103]. These properties have helped to maintain a con-
sistent research interest in SVM-based fault detection approaches even up to present day
[141, 108].

During the advent of deep learning and big data, research endeavours turned towards
the use of deep-learning (DL) architectures for feature learning and fault detection [104].
The main types of DL tools used in the literature include stacked de-noising autoencoders
(SDAEs) [158], generative adversarial networks (GANs) [57], deep belief networks (DBNs)
[76], and convolutional neural networks (CNNs) [96]. In particular, hierarchical feature
learning approaches, which employ DL methods such as stacked autoencoders (AEs) to
learn features from latent, non-linear relationships in data [63, 87, 197], have gained sig-
nificant traction over the last few years. When these features are applied in similar DL
architectures for fault classification [83, 69, 24, 119], state-of-the-art approaches have al-
ready demonstrated near perfect classification accuracy on most publicly available datasets
[209]. Hierarchical feature learning - while powerful - requires both significant user exper-
tise and domain knowledge in order to design and tune the network architecture to achieve
reasonable results. An important point to make here is that hierarchical feature learning
can be applied in both the supervised [63, 87, 197] and unsupervised setting [67, 129]. The
caveat is that the features extracted using these black-box approaches suffer from low in-
terpretability compared to traditional, handcrafted features, of which their relationships to
different types of machinery faults are well-understood [59, 103]. In the unsupervised set-
ting, handcrafted features can offer intrinsic, interpretable diagnostic value in the absence
of all other information that hierarchical features cannot.

Given the rapid advancement and performance saturation of supervised fault classifi-
cation approaches over the last half decade, recent research interest has shifted towards
addressing the practical shortcomings of these approaches. Namely, the strong, if not
absolute dependency on labelled data for detection and classification means that these
approaches cannot be easily applied to novel systems or applications in which adequate
training data is not available (i.e. the present research problem) [104]. Existing supervised
fault classification approaches require not only a sufficient volume of labelled data, but
also a relatively balanced dataset - the latter of which is extremely difficult to obtain in
most real-world applications. Secondly, the heavily parametric nature and computational
complexity of DL-based approaches is a major barrier towards implementation in real-time
online monitoring, unsupervised settings and large-scale applications [104]. These practi-
cal considerations have propelled diagnostic research along two divergent pathways. The
first path involves the use of transfer learning theory [140] to enable the implementation
of existing supervised diagnostic approaches in novel applications and scenarios with class
imbalance. The principle of transfer learning is to facilitate the application of knowledge
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learned in one ”known” setting to a new, but related setting (e.g. two different types
of machinery with some similarity). While several exploratory studies have already been
published on the topic [198, 146, 192, 168], the research area of transfer learning is still
in it’s infancy, and hence - there are significant milestones left to achieve before transfer
learning approaches can be applied efficiently in practice. The second path forward involves
the use of semi-supervised [110, 124] and unsupervised approaches [67, 130, 169] for fault
detection. Due to the relaxed nature of their learning requirements relative to supervised
approaches, semi-supervised and unsupervised fault detection approaches are inherently
more conducive for implementation on novel systems, online monitoring and large scale
applications.

3.3.2 Semi-Supervised Fault Detection

Situated between supervised and unsupervised approaches, semi-supervised fault detection
approaches encompass a wide range of methods and frameworks, including contributions
which lean closer to supervised learning [19] and others which border on unsupervised
learning [124]. Close evaluation of semi-supervised works is crucial even when designing
supervised and unsupervised approaches, as many semi-supervised approaches are inspired
by practical constraints and limitations encountered during the application of particular
supervised and unsupervised methods. For example, the practical benefits of applying a
particular supervised approach to an application containing only partially labelled data
may motivate the modification of that supervised approach to work under the new set of
constraints. Relative to supervised fault detection approaches, the relaxed requirements
of semi-supervised learning makes this class of approaches more conducive to real-time
monitoring.

In comparison to the body work surrounding supervised fault detection approaches,
the literature pertaining to unsupervised and semi-supervised methods is relatively sparse.
Semi-supervised approaches were proposed by Liu et al. [110], Mao et al. [124], Bull et al.
[19] and Potočnik et al. [143]. Liu et al. [110] proposed a semi-supervised fault detection
method for rolling element bearings based on features obtained from cyclic spectral analysis
and a negative support vector data description (NSVDD) classifier. To train their NSVDD,
the uniform object generation method was used to augment the unlabelled training set with
a small fraction of labelled, synthetic anomalous data. Additionally, a new multi-criteria
fault detection threshold is introduced, in which the severity of an anomaly is based on the
number of criteria met. This multi-criteria threshold introduces the idea of differentiating
between the beginning of the degradation process and a fault, but the proposed threshold
cannot be used for smooth prediction since the classification levels are based on binary
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criteria. Mao et al. [124] proposed an online semi-supervised fault detection framework
using SDAE feature learning and a safe semi-supervised support vector machine (S4VM). A
limitation of this approach is that a small fraction of labelled faulty samples are required for
training, which means it cannot be applied in scenarios where only healthy data is available.
Additionally, the hyperparameter tuning approach is not explicitly clear, and the detection
threshold is determined a-posteriori. Bull et. al [19] proposed a semi-supervised approach
for vibration-based structural damage detection on an aircraft wing using cluster-based
active learning. The principle of active learning is to reduce the amount of labelled data
required for learning in big data applications, but assumes that the corresponding labels
for a given datapoint can be queried if need [167]. Hence, the main contribution of their
approach is a primarily a method for optimized supervised learning, rather than a dedicated
semi-supervised detection framework. Potočnik et al. [143] presented a semi-supervised
framework for multi-class classification of compressor operating state using handcrafted
features extracted from unlabelled data. Class labels for a small subset of the training
data were inferred using a heuristic measure. The study compared the classification results
obtained using several types of classifiers including linear discriminant analysis (LDA),
NNs, extreme learning machines (ELMs) and SVMs. Among the classifiers considered,
non-linear SVM was identified as a robust choice, given it’s consistency in training (i.e.
convex optimization) and strong ability to generalize. The main challenge identified with
SVM is the proper selection of the hyperparameters.

3.3.3 Unsupervised Fault Detection

Unlike supervised and even semi-supervised approaches, the complete lack of prior informa-
tion available in the unsupervised setting poses a unique set of challenges for fault detection.
Historically (see Section 3.1), these challenges and limitations have functioned as a deter-
rent to detailed exploration of unsupervised approaches so long as feasible solutions existed
within supervised and unsupervised learning [148]. Recently however, the novel problems
introduced by the increasing complexity of modern day engineering systems - along with
the practical constraints inhibiting the implementation of existing supervised and semi-
supervised approaches to these problems, has renewed research interest in unsupervised
fault detection approaches [104, 157, 72]. The common framework used in unsupervised
fault detection is to evaluate fault detection as a one-class problem. In other words, the
assumption or underlying inductive bias [115] in unsupervised learning is that the data
observed pertains only to the negative (i.e. healthy) class. A primary challenge then in
unsupervised fault detection is the trade-off between detection sensitivity and generaliza-
tion performance i.e. how does one decide how far out to set the decision boundary between
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classes if they only have knowledge of one of those classes? This paradox commonly man-
ifests itself in the area of parameter estimation in unsupervised approaches [169, 39, 130],
as well as in threshold estimation in data-driven prognostics [61] and is a knowledge gap
that has yet to be sufficiently addressed in the literature.

Fully unsupervised CBM approaches were proposed by Hasani et al. [67], Michau and
Fink [129], Shi et al. [169], Diez-Olivan et al. [39]. Hasani et al. [67] proposed an un-
supervised fault detection framework based on the correlation rate of features extracted
using an AE. In their study, the degradation starting point is defined as the time the auto-
encoder correlation rate falls below 90% of its value from t−100 steps prior. Although fully
unsupervised, the use of vanilla AE architecture for feature learning results in significant
training times, and the fault threshold used is determined heuristically. Michau and Fink
[129] presented a fully unsupervised approach using a stacked extreme learning machine
auto encoder (ELM-AE). The ELM architecture drastically reduces the training time com-
pared to vanilla AE. Michau and Fink also proposed that the distance of an anomalous
point from the healthy class can be used to infer the severity of a fault. The main lim-
itations of their approach are that the fault detection threshold is set heuristically, and
that the ELM-AE hyperparameters are tuned based on maximizing the detection accuracy
a-posteriori. Shi et al. [169] proposed an unsupervised fault detection approach using a
stacked de-noising auto encoder (SDAE) and long short-term memory (LSTM) architec-
ture for feature learning. The SDAE reconstruction error was used to train a Support
Vector Data Description (SVDD) classifier for fault detection. However, the process used
to estimate the SVDD hyperparameters is not clear. Like Michau and Fink, Shi et. al. also
proposes the concept of using the classifier distance as a measure of severity. The concept
of distance-based severity inference was also proposed by Diez-Olivan et. al [39] in their
kernel-density estimate (KDE) based One Class Support Vector Machine (OC-SVM) ap-
proach to fault detection. In [39], sigmoid normalization is applied to the classifier output
to normalize the results of multiple OC-SVM classifiers. The use of KDE in the hyperpa-
rameter estimation process introduces an additional bandwidth parameter that must be
optimized.

3.4 Data-Driven Degradation Modeling

Prognostics and degradation modeling play a fundamental role within the CBM framework
[98]. Accurate estimates of prognostic parameters, such as the RUL, can provide operators
with invaluable information to optimize maintenance actions, operational planning and
replacement scheduling. This is particularly true for systems with uncharacterized degra-
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dation or failure behaviour, for which a deeper understanding of these characteristics can
only be drawn from the data. As shown in Section 3.1, research interest in prognostics,
especially data-driven prognostics has continued to grow over the last decade - partially in
response to the increasing complexity of the systems to be modeled, but also as a result
of the emergence of new tools in AI and ML which help address existing challenges within
prognostics such as operational uncertainties [207]. The challenges posed by operational
uncertainties are further compounded in the unsupervised case, where the current body
of literature remains relatively unexplored [61, 207, 116]. While the methodology (i.e.
fault prediction) proposed in this thesis is not concerned specifically with the traditional
prognostic framework (i.e. RUL/failure estimation), a discussion on the state-of-the-art
in traditional data-driven prognostics is still necessary to understand the knowledge gaps
and motivations behind the proposed approach. This section presents a high-level review
of literature pertaining to statistical and ML-based degradation modeling, and identifies
the overarching knowledge gaps which motivate the proposed methodology.

3.4.1 Statistical Degradation Modeling

Similar to the dichotomy found in data-driven fault detection, data-driven approaches
in prognostics can also be divided into statistical and ML-based approaches [61, 207].
Statistical approaches include regression-based models [120, 144, 90, 52], hidden Markov
models (HMMs) [161, 127], proportional hazard models (PHMs) [180, 205], and Bayesian
networks (BNs) [126, 116].

Regression-based models operate on the assumption that the underlying degradation
trend, captured through a CI or set of CIs, can be mapped to some functional form [120].
Within statistical degradation modeling, regression-based models are the most commonly
employed statistical degradation modeling approach, due to their relative simplicity and
high interpretability [61]. The mathematical convenience of certain models, such as the
exponential degradation model [52], makes these models computationally efficient and suit-
able for real-time applications. A key barrier to their implementation in unsupervised
frameworks is that the required failure threshold is determined using prior knowledge (i.e.
failure records) [40, 97, 109, 102, 61]. The topic of threshold estimation in the absence of
prior knowledge has not been a topic of focus yet in prognostics literature [61]. Addition-
ally, without a proper framework in place for updating prior beliefs [27], regression-based
models may perform poorly under highly uncertainty conditions.

HMM-based approaches offer a powerful means to map the relationship between CIs and
the actual underlying degradation process, but are limited in their predictive capabilities
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due to the underlying Markovian assumption and lack of closed form solution for the RUL
[61]. HMMs also suffer from the same pitfall as regression-based models, in that the failure
threshold is typically defined using prior knowledge [61]. PHM approaches [180, 205] offer
the advantage of high model intepretability. However, the absolute requirement for failure
or censored data makes them unconducive to unsupervised applications [127, 61]. BNs,
and specifically dynamic Bayesian networks [116], combine the Markovian principle with
graph theory and the reliability concept of the P-F curve [131] to model degradation as
a function of time-invariant processes and observations [81]. Due to the their inherent
ability to use observations to influence prior beliefs, dynamic BNs are well equipped to
handle and respond to uncertainty [116]. Furthermore, the use of the P-F principle means
that a degradation threshold does not need to be defined explicitly using prior knowledge
[131]. However, the construction of the BN architecture from data in BNs and dynamic
BNs is largely dependent upon domain knowledge and user expertise [182], which makes
BNs unconducive to unsupervised applications.

3.4.2 ML-based Degradation Modeling

ML-based approaches for degradation modeling have continued to increase in popularity
over the last decade [61, 207]. Powerful characteristics of ML tools, such as the ability
to learn latent relationships between observed variables [199, 63, 87], and the ability to
construct model-free representations from the data [194], have propositioned ML as an
attractive solution to both new and existing challenges within data-driven prognostics
[61, 207]. Examples of ML applications in prognostics include fuzzy logic (FL) condition
state estimation [106, 212], NN-based RUL estimation [177, 53, 28], SVM-based regression
for RUL estimation [80, 118, 171, 180], and DL tools such as RNNs [112], CNNs [42] and
LSTMs [210] have also been applied to RUL estimation.

Among these tools, SVM has been the most widely applied ML tool in data-driven
degradation modeling [80]. The strong generalization performance of SVM means that it
is both effective and straightforward to implement across a wide range of applications [80].
Tran et al. [180] applied SVM in conjunction with PHM for RUL estimation. However, the
use of PHM means that failure data is required. Benkedjouh et. al [16] proposed the use of
the SVDD decision boundary width as a CI for degradation modeling. In their approach,
the failure threshold is defined directly from the data, using an assumption placed on the
true distribution of the SVDD boundary width. However, the assumption used requires
the data to be well-behaved and compact in the healthy state of the machine, as well as
the degradation behaviour to be monotonic. The study by Benkedjouh et. al represents
one of few work to explicitly address the problem of failure threshold estimation. Sun

53



et al. [171] proposed a Bayesian least squares SVM approach for RUL estimation. The
Bayesian framework was applied to recursively update the SVM model parameters. The
use of a Bayesian framework helped to improve the robustness of the RUL prediction under
uncertainty. However, the failure threshold in this approach is still predefined.

The robustness of the Bayesian learning to types of the uncertainties present in degra-
dation modeling, including model parameter estimation, has led to the exploration of
relevance vector machines (RVMs) for RUL estimation [195, 111, 21, 38]. RVM is a sparse
Bayesian SVM approach that provide a probabilistic classification result [179]. The use
of Bayesian learning in RVM means that the SVM model parameters can be estimated
using iterative Bayesian parameter estimation approaches (i.e. expectation-maximization
(EM) [179]. Widodo et al. [195] presented an RVM approach for estimating survival prob-
ability using partially-censored data. While the primary motivation behind their work
is to address the ubiqituous failure threshold paradox in RUL estimation, the proposed
approach still requires the use some failure data, and hence, cannot be applied to appli-
cations containing no historical failures. Liu et al. [111] studied the performance of RVM
for real-time RUL estimation on small datasets, and demonstrated that RVM - and by
extension, SVM - are well-suited to real-time or online monitoring applications. Hybrid
approaches, which aim to leverage the advantages of RVM and statistical regression models
such as the exponential degradation model [38] and logistic degradation model [21], have
been demonstrated within the literature to be strong performers as well. While the use of
Bayesian learning in RVM alleviates the issue of parameter estimation, the use of the EM
algorithm means that computational efficiency of RVMs scale poorly with increasing size
of data, and convergence to the global maximum is not guaranteed [179].

3.5 Summary of Research Gaps

The increasing complexity of modern engineering systems and limited applicability of ex-
isting supervised and semi-supervised CBM approaches to these applications has created
a new demand for the development of CBM solutions conducive to these systems. Within
CBM literature, the unique requirements of this novel research problem has motivated
solution finding along two divergent pathways. Within supervised CBM, the response has
come in the form of increased research interest in transfer learning methodologies. At
the same time, the congruent nature of semi-supervised and unsupervised frameworks to
the specific challenges presented has led to increased research interest in the development
of solutions within both of these areas. While interest in semi-supervised/unsupervised
frameworks has expanded, many of the tools required to facilitate the realization of such
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frameworks in practice have yet to be proposed in the literature. In relation to unsuper-
vised CBM, the key knowledge gaps within the current-state-of-the-art - which are to be
addressed by the proposed methodology - are as follows:

1. In relation to pre-processing and vibration analysis:

(a) The majority of existing pre-processing and vibration analysis approaches for
non-stationary signals require significant user expertise, heavy parameter tun-
ing and prior knowledge (i.e. angular measurements, operating characteristics,
system kinematics) to be effective. These factors inhibit the deployment of
these tools in the unsupervised setting, real-time monitoring and large scale
applications.

(b) Existing methods for autonomous spectral analysis are generally not applicable
to non-stationary signals.

(c) Non-stationarities present in modern engineering systems (i.e. systems of sys-
tems) include systemic, stochastic and multimodal sources of non-stationarity.
In conjunction with autonomous tools for non-stationary spectral analysis, the
dynamic operational behaviour of such engineering systems will require addi-
tional, unsupervised pre-processing tools (i.e. clustering methods) to further
differentiate between different operating conditions in the unsupervised setting.
While such methods have been applied within CBM in the context of fault di-
agnosis, the application of such methods—especially in conjunction with other
unsupervised pre-processing tools—has yet to be explored in detail within the
context of unsupervised CBM.

2. In relation to fault detection:

(a) The strong generalization performance of SVM-based classifiers has lead to ex-
tensive application of such methods within unsupervised fault detection. How-
ever, the problem of hyperparameter estimation, particularly in the unsuper-
vised setting, has yet to be properly addressed within the literature.

(b) The majority of existing unsupervised and semi-supervised fault detection ap-
proaches apply black-box hierarchical feature learning to extract CIs from the
data. Unlike traditional handcrafted features - of which their relationships to
various types of machinery faults is well understood - the interpretability of
black-box features is low.

3. In relation to unsupervised degradation modeling:
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(a) Determination of a suitable degradation threshold is fundamental for RUL esti-
mation. In almost all cases, however, the degradation threshold is either prede-
fined (i.e. heuristically set) or derived from prior knowledge such as historical
failure data. Without a means for determining a suitable threshold in the ab-
sence of prior knowledge, RUL estimates cannot be obtained in the unsupervised
setting. Apart from a handful of studies, the problem of prior-less degradation
thresholding has yet to be explored in the literature.

(b) Existing unsupervised approaches are heavily focused on the detection aspect
of CBM. Additional exploration of dedicated, unsupervised prognostic or degra-
dation modeling methods are required to achieve a complete implementation of
CBM in the unsupervised setting.

Chapter 4 will present a detailed description of the specific research problem and pro-
posed methodology to address each of the aforementioned gap areas.
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Chapter 4

Problem Description and
Methodology

Chapter 3 identified key gaps in literature across the various fields of research relevant to
unsupervised CBM. The purpose of this chapter is to present the various methodologies
proposed in this thesis to tackle each of these gap areas, and contextualize these contri-
butions within the overall unsupervised CBM framework. In other words, this Chapter
is meant to act as a map to illustrate the connections between the various methodologies
within this body of work.

This chapter is structured as follows. Section 4.2 presents a high level description of
the unsupervised CBM framework and the relationship of each gap area with respect to
the overall framework. Section 4.2.1 provides a summary of these gap areas along with the
proposed methodology to tackle each of the knowledge gaps. Lastly, Section 4.4 provides
an overview of the two field pilots at Toronto Pearson International Airport and additional
data sets used for validation in this thesis.

4.1 Types of Non-Stationarity in Machinery Vibra-

tion Signals

Non-stationarities in machinery vibration signals originate from a number of physical phe-
nomena and operational parameters. Classifying the types of non-stationarity types ex-
amined in this thesis using traditional statistical definitions (i.e. first order stationary,
weak-sense stationary) described in Section 2.3.2 may not provide the clearest or most
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intuitive description of these processes. Alternatively, the types of non-stationarity en-
countered in this thesis can be categorized with respect to the physical phenomena that
causes them, with real examples provided to further illustrate each case of non-stationary
behaviour. This Section presents the main categorizations of non-stationarity addressed in
this thesis and provides context in relation to the types challenges posed by each type of
non-stationarity towards unsupervised CBM.

4.1.1 Non-Stationarity Arising From Multimodal Operation

The first categorization pertains to non-stationarity found in multimodal machinery i.e.
machinery with multiple, discrete operating states. The differences in the operating char-
acteristics between each operating state will manifest accordingly in the vibration signal,
and in it’s entirety, the resulting signal will be non-stationary. However, the stipulating
assumption applied in this thesis is that the vibration behaviour within a given operat-
ing state is stationary. Hence, if pre-processing can be applied to a multi-operating state
signal to decompose the signal into a set of constituent, stationary signals (where each
signal pertains to one operating state), then conventional vibration analysis techniques for
stationary analysis can be easily applied to the resulting signals.

A clear example of multimodal non-stationarity is found in the Pearson Terminal 1
passenger boarding tunnel pre-conditioned air (PCA) units. Each PCA unit has a finite
set of pre-configured settings to service different sizes of aircraft. The differences between
each operating states are clearly manifested in the vibration behaviour of the unit. The
typical vibration signal and corresponding sliding mean frequency for a PCA unit with
four discrete settings is shown in Fig. 4.1. The vibration signal in Fig. 4.1 is comprised of
three discrete phases, each associated with a specific level of variance, which suggests the
presence of three discrete operating states. However, closer evaluation of the corresponding
sliding mean frequency of the vibration signal clearly illustrates the presence of four, well-
separated operating states, each described by a different mean frequency.

4.1.2 Systemic and Stochastic Non-Stationarity

The second categorization of non-stationarity broadly encompasses all non-stationarities
resulting from the time-varying and stochastic processes present in the machinery. The
most common examples of these non-stationarities are speed and load fluctuations - which
can occur deterministically (i.e. systematic speed regulation via control system) or stochas-
tically (i.e wind loading on a wind turbine). Several key challenges arise in the analysis of
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Figure 4.1: Example of multi-operating state non-stationarity in Pearson Terminal 1 PCA
units: vibration signal (top) and corresponding sliding mean frequency (bottom)

signals containing these types of non-stationarity. For vibration analysis and fault detection
approaches that rely upon the tracking of harmonic content, speed and load fluctuations
will induce frequency and amplitude modulations that will result in sub-optimal conditions
for analysis. In the supervised setting, the common solution is to apply domain expertise
and time-frequency analysis methods to pre-process the signals.

Fig. 4.2 provides an example of stochastic non-stationarity found in the wind turbine
vibration data obtained from the CMMNO’ 14 [29] challenge. The amplitude modulation
of the signal is clear in the time domain, and the corresponding spectrogram helps to
illustrate the resulting frequency modulation caused by the stochastic wind loading.

4.1.3 Combination Non-Stationarity

The two categorizations of non-stationarity presented are not mutually exclusive. While
only a subset of real-world examples will exhibit multimodal non-stationarity, almost all
real-world examples will contain some degree of systemic and stochastic non-stationarity.
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Figure 4.2: Example of systemic and stochastic non-stationary found in CMMNO’14 wind
turbine signal: vibration signal (top) and corresponding spectrogram (bottom)

However, in many cases, the latter type of non-stationarity may not severe enough to
require sophisticated pre-processing to be applied to the vibration signal prior to analysis.
An example of a real-world system in which both categorizations of non-stationarity are
non-negligible is the LINK Pearson APM gearbox. Fig. 4.3 illustrates the vibration signal
and corresponding spectrogram of the APM gearbox for one complete cycle of the train’s
travel. The APM vibration signal contains clear examples of discrete operating states,
stochastic non-stationarity in the form of short-duration impulse-like phenomena, as well
as systemic non-stationarity during the train’s acceleration and deceleration phases, which
result in the time-varying harmonics shown in the corresponding spectrogram. Hence, pre-
processing of such signals will require a combination of methods to tackle both types of

60



non-stationarity.

Figure 4.3: Example of combination non-stationarity in Pearson LINK APM Gearbox:
vibration signal (top) and corresponding spectrogram (bottom)

4.2 Problem Description

Relative to the general CBM structure presented in Section 2.1 and Fig. 2.1, the key
differences between traditional (i.e. supervised) CBM and unsupervised CBM stem from
the complete absence of prior knowledge in the latter. As shown in Section 3.2, many
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(if not all) existing pre-processing and vibration analysis techniques for non-stationary
signals require some form of prior knowledge in order to be effective. Taking into account
practical considerations as well, the majority of existing methods presented in Section 3.2.2
are computationally expensive and/or require significant user expertise, which makes them
unconducive to online monitoring or large-scale CBM applications.

4.2.1 Key Gap Areas in Unsupervised CBM

Fig. 4.4 presents the high-level structure of an unsupervised CBM framework. Key gap
areas are denoted by the red dotted lines, while the corresponding labels indicate the
proposed solution methodologies, which will be presented in the following Section. Fig.
4.4 helps to visualize the key disconnects within the framework predominantly exist within
the pre-processing level prognostic levels. The main observations from Fig. 4.4 are as
follows:

1. Without the development of specific unsupervised approaches for pre-processing the
various types of non-stationary data found in machinery vibration signals, current
unsupervised CBM frameworks are not able to deliver the high-quality pre-processed
data necessary for subsequent analyses. The specific approaches required are:

(a) A computationally efficient and robust non-parametric pre-processing method
for general (i.e. systemic and stochastic) non-stationarity (Section 4.1.2), which
can be using for de-noising, and extraction of time-varying harmonic components
for use in subsequent vibration analyses. The proposed solution for this is S-
MSC (Chapter 5).

(b) An unsupervised means for blind decomposition of a multimodal vibration signal
(Section 4.1.1) into a set of stationary, constituent signals to which common
vibration analysis methods can be applied. The proposed solution for this is
GMM-OSD (Chapter 6).

2. Pertaining to unsupervised fault detection and degradation modeling, the main knowl-
edge gaps pertain to parameter estimation. For fault detection, existing unsupervised
hyperparameter estimation approaches for the one class problem perform poorly when
applied to noisy real-world data [54, 114]. For degradation modeling, there are a lack
of methods available to determine a suitable threshold for degradation modeling
without the use of prior knowledge. Hence, the specific approaches required are:
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(a) A fully unsupervised parameter estimation approach for hyperparameter esti-
mation in one-class fault detection applications.

(b) A fully prior-independent approach for determining a suitable failure threshold
for degradation modeling.

The methodology developed in this thesis to address both these gaps is the B-OCSVM
(Chapter 7). The following Section presents a detailed methodology for the solutions
developed in this thesis.
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Figure 4.4: Overview of unsupervised CBM framework: red dotted lines denote gap ar-
eas and corresponding labels indicate proposed solution methodology and relevant thesis
chapters
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4.3 Methodology

The three methodologies presented in this thesis to tackle the existing gaps in unsupervised
CBM are: Spectral Mean Shift Clustering (S-MSC), Gaussian Mixture Model Operating
State Decomposition (GMM-OSD), and Bayesian One Class Support Vector Machine (B-
OCSVM). The purpose of this Section is to provide a concise description of the method-
ology employed by each approach. To improve the clarity and organization of the work
in presented in this thesis, the detailed background and descriptions of each approach can
be found in their respective chapters. Descriptions of the datasets used to validate each
approach are presented at the end of this Section.

4.3.1 Spectral Mean Shift Clustering (S-MSC)

The S-MSC approach is proposed as a robust, non-parametric time-frequency approach
for pre-processing and spectral analysis of signals containing systemic and stochastic non-
stationarity. The S-MSC approach applies mean shift clustering (MSC) [32] to the STFT
power spectra to separate time-varying harmonic components from noise and other stochas-
tic low-energy signal components. Section 5.8 presents an unsupervised approach to esti-
mate the kernel bandwidth parameter in MSC. The validation approach for S-MSC is as
follows:

1. De-noising and extraction of time-varying harmonic content from the LINK APM
gearbox data (Section 5.5), including:

(a) Comparison against the marginal spectrum

(b) Comparison against Time Synchronous Averaging (TSA)

2. Pre-processing and envelope analysis for non-stationary bearing fault detection on
the Safran aircraft engine dataset (Section 5.6)

3. Comparison against the following state-of-the-art time-frequency spectral analysis
approaches using the CMMNO’14 wind turbine dataset (Section 5.7):

(a) Singular Spectrum Analysis (SST)

(b) Fourier Synchrosqueezing Transform (FSST)

The S-MSC approach is presented in Chapter 5.
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4.3.2 GMM-OSD

The proposed GMM-OSD approach is a soft-clustering pre-processing approach for unsu-
pervised decomposition of multi-state machinery vibration signals. GMM-OSD employs
Gaussian Mixture Modeling (GMM) [135] in conjunction with CIs extracted from the vibra-
tion signal to decompose a multimodal vibration signal into stationary, constituent clusters
- each representing a discrete operating state of the machine. Applied together with S-
MSC, these two approaches form a robust pre-processing framework for the unsupervised
analysis of non-stationary signals. OSD is presented using two GMM methods:

1. A classical GMM approach using Bayesian Information Criterion (BIC) for model
selection

2. A variational Bayesian GMM approach

The validation approach for GMM-OSD is as follows:

1. Supervised study on the proposed feature set and featured-based operating state char-
acterization of the LINK Pearson APM gearbox and Terminal 1 passenger boarding
tunnel PCA unit data (Section 6.3)

2. Application of GMM-BIC approach (Section 6.4):

(a) OSD of Terminal 1 PCA vibration data

(b) OSD of LINK APM gearbox vibration data with no pre-processing applied

(c) OSD of LINK APM gearbox vibration data with S-MSC pre-processing

(d) Application of the vGMM approach (Section 6.5):

i. OSD of Terminal 1 PCA vibration data

ii. OSD of LINK APM gearbox vibration data with S-MSC pre-processing

The GMM-OSD approach is presented in Chapter 6.

4.3.3 B-OCSVM

The proposed B-OCSVM approach is an unsupervised approach for early degradation de-
tection and fault prediction building upon OC-SVM [166] and the hierarchical Bayesian
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framework [52]. Unlike traditional fault detection approaches, B-OCSVM targets the de-
tection of the degradation process before it manifests into a fault. In conjunction, B-
OCSVM employs hierarchical Bayesian degradation modeling to predict the time at which
a degradation process will manifest into a fault. For deployability in unsupervised CBM,
new unsupervised methods are proposed for OC-SVM hyperparameter estimation (Section
7.3.5) and degradation model thresholding (Section 7.3.7). The validation approach for
B-OCSVM is as follows:

1. Application of B-OCSVM to the IMS bearing dataset 7.6:

(a) Benchmarking against current state-of-the-art ML fault detection approaches

(b) Sensitivity analysis of the proposed OC-SVM hyperparamter estimation ap-
proach

2. Application of B-OCSVM to the FEMTO bearing dataset to validate the generaliza-
tion performance across multiple operating states and multi-fault bearings (Section
7.7).

3. Application of B-OCSVM to the C-MAPSS turbofan engine dataset 7.8:

(a) Validation of generalization performance to non-bearing faults

(b) Validation of generalization performance on sparsely sampled data

The B-OCSVM approach is presented in Chapter 7.

4.3.4 Practical Considerations

In addition to technical requirements, two additional practical considerations are central to
the design of each approach. The first design consideration is the ability of said approach
to integrate into IoT frameworks. IoT readiness plays a crucial role in expediting the
deployment of these methods into real world applications. The second consideration is the
ability of these approaches to integrate cleanly into existing asset management frameworks
already in use within organizations, to minimize disruptions to workflow and reduce the
number of barriers to implementation. In other words, the secondary overarching objective
is to make the proposed approaches easily implementable in real world applications.
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4.4 Field Implementations

Vibration data was collected from two field pilots located at Toronto Pearson International
Airport. This Section presents the details of both studies.

4.4.1 Pearson Link APM Gearbox

The Pearson LINK APM train shown in Fig. 4.5a is a cable-driven APM system that
provides an around-the-clock transportation service for passengers and employees between
the airport’s two terminals (Terminal 1 and 3) and adjacent parking facilities (Fig. 4.5b.
The trains themselves are computer-controlled, cable-driven carriages that are devoid of
any drive assemblies. Power is generated from a central station that houses all of the drive
train machinery, and tractive forces are delivered to the train via a cable connecting the
gearbox to the underside of the carriage. Hence, the LINK APM gearbox was determined
to be the critical component to be monitored during the field pilot.

Figure 4.5: Pearson LINK APM a) Train b) Route

Gearbox Description

The LINK gearbox (Fig. 4.6 is a three-stage gearbox with a maximum input shaft speed
of 1340 rpm and corresponding maximum output shaft speed of 54 rpm. The fundamental
gear mesh frequencies (h1) and corresponding harmonics for the gearbox are shown in
Table 4.1 for each gearbox stage. Each shaft of the gearbox was instrumented with a
uniaxial PCB model: 352C68 accelerometer (A1, A2, A3, A4 in Fig. 4.7), measuring
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tangential acceleration. The gearbox and accelerometer mounting positions are illustrated
in Fig 4.7. Accelerometer data is collected using a Siemens LMS SCADAS Mobile (LMS)
data acquisition system. Continuous vibration data was sampled at 20 kHz during normal
operation of the train. Each test corresponds to one complete round trip of the train over
the route shown in Fig. 4.5b.

Figure 4.6: LINK APM gearbox: plan view

Figure 4.7: LINK APM gearbox: accelerometer mounting locations

Collection of Angular Data for Time Synchronous Averaging

In addition to the collection of vibration data, angular measurements (i.e. order tracking)
of the input and output shaft were collected using a Monarch PLT 200 Tachometer. To fa-
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Gearbox Stage h1 h2 h3 h4

a (Input) 624 1248 1872 2496
b (Intermediate) 221.8 443.6 665.4 887.2
c (Output) 47.23 94.5 141.7 189

Table 4.1: LINK APM gearbox stages: gearmeshing frequencies (h1) and harmonics (Hz)

cilitate order tracking, the input and output shafts of the the APM gearbox were retrofitted
with reflective taping as shown in Fig. 4.8. For tests including angular measurements, vi-
bration data was sampled at 200 kHZ to provide adequate frequency resolution during
synchronous averaging.

Figure 4.8: LINK APM gearbox - angular measurement locations for: a) Output shaft b)
Input Shaft

4.4.2 Pearson Terminal 1 PCA Units

The second, ongoing field pilot at Toronto Pearson International Airport is conducted on a
set of pre-conditioned air (PCA) units housed on passenger boarding tunnels in Terminal
1. The scope of work consists of a preliminary study to collect vibration data from each
unit to characterize the vibration behaviour of each PCA unit, followed by a long-term

70



IoT CBM study. The preliminary phase of work was completed in 2021, and the pilot is
currently in the implementation process for the IoT CBM study. The study area is shown
in Fig. 4.9. The PCA units are used to filter, heat, cool and remove moisture from air
before circulating it into the cabins of aircraft while they are docked at a gate for passenger
boarding. The PCA units under study operate on 4 discrete settings, dependant on the size
of aircraft docked at the gate. The typical exterior, interior and sensor mounting location
for a PCA unit are shown in Fig. 4.10 a, b and c, respectively.

Figure 4.9: Pearson Terminal 1 PCA Field Pilot - Area of Study

Preliminary Study

For the preliminary study, the main motor bearing housing of each unit was instrumented
with a uniaxial accelerometer (PCB model: 352C68) in the location shown in Fig. 4.10c.
Vibration data in the tangential direction, sampled at 20kHz, was collected using was
collected using the LMS data acquisition system. For each unit, 2-5 minutes of continuous
vibration data was collected for each operating state.
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Figure 4.10: Typical Pearson terminal 1 passenger boarding tunnel PCA unit: (a) exterior,
(b) interior (c) sensor location on motor bearing housing

4.5 Additional Datasets

While the datasets obtained from the field pilots at Toronto Pearson International Airport
contain valuable examples of non-stationarity in real-world systems, the lack of observed
failure and degradation behaviour in the data requires the use of additional datasets for
validation of the proposed approaches. The following datasets are publicly available ma-
chinery vibration datasets, which contain fault or run-to-failure data suitable for validation
of the proposed approaches. The information presented here is simply to provide a high-
level description of the unique properties of each dataset. Detailed descriptions of each
dataset will be presented as they appear in validation.

1. CMMNO’14 Wind Turbine Dataset: data from wind turbine containing roller
bearing fault. Signals containing significant, non-linear speed fluctuations and other
sources of stochastic non-stationarity (Section 5.7).

2. Surveillance 8 Challenge - Safran Engine Dataset: data from Safran aircraft
engine containing two faulty bearings. Signals collected during linear acceleration of
the engine, resulting in time-varying bearing fault frequencies (Section 5.6).

3. IMS Run-to-Failure Bearing Dataset: run-to-failure bearing data. Widely used
for benchmarking in ML-based fault detection (Section 7.5.1).

4. FEMTO Run-to-Failure Bearing Dataset: run-to-failure bearing data collected
across multiple operating states. Failed bearings are presumed to contain every type
of bearing fault (Section 7.5.2).
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5. C-MAPSS Run-to-Failure Turbofan Engine Dataset: simulated run-to-failure
turbofan engine data. Data is sampled at a very low frequency (1Hz) (Section 7.5.3).

4.6 Summary

This chapter presents the detailed description of the research problem and the overall
methodology to address the key knowledge gaps identified in Chapter 3. High-level descrip-
tions for each component of the overall methodology are presented, followed by descriptions
of the two field pilots located at Toronto Pearson International Airport.
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Chapter 5

Spectral Mean Shift Clustering
(S-MSC)

This chapter presents a non-parametric pre-processing tool for analysis of non-stationary
signals, termed spectral mean shift clustering (S-MSC). The purpose of S-MSC is to provide
a robust, pre-processing tool that can be used for analysis of non-stationary vibration
signals in the absence of prior knowledge. S-MSC tackles the following key gaps in literature
- namely, the lack of computationally efficient, blind pre-processing methods conducive to
online CM frameworks; and, the lack of non-parametric pre-processing methods for spectral
analysis of non-stationary vibration signals.

The chapter begins by summarizing the specific gaps in knowledge and motivations
behind the approach, followed by section 5.3, which presents the background and de-
tailed description of the methodology. Sections 5.4-5.7 presents validation results obtained
through different applications of the proposed approach, including several use cases for
the approach in vibration analysis, application to different types of machinery signals, and
evaluation of the performance of S-MSC against state-of-the-art spectral pre-processing
approaches. Following validation, section 5.8 proposes an automated estimator for the
S-MSC kernel bandwidth parameter.

5.1 Motivations for S-MSC

While a detailed discussion on the key knowledge gaps within the current state-of-the-
art for pre-processing of non-stationary vibration signals is presented in 3.2, the following
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summary is intended to provide the reader with the specific context required for under-
standing the motivations behind the work presented hereafter. The key observations from
the current-state-of-the art are as follows:

1. The main purpose of pre-processing in machinery diagnostics is to either directly
enhance the presence of diagnostic information buried within the signal, or to convert
the signal into a form that is more suitable for extracting diagnostic information.
Depending on the type of fault, the critical diagnostic information can be found
within different components of the signal: gear faults typically manifest themselves
within the harmonic components, while bearing faults can manifest themselves within
the harmonic or stochastic components of a signal [152]. Hence, the separation of the
deterministic and stochastic components of a signal is a fundamental pre-processing
phase to many diagnostic approaches.

2. The majority of pre-processing techniques suitable for the analysis non-stationary
vibration signals require significant domain knowledge or iterative parameter tuning
in order to be effective. In addition, many of these methods are computationally
expensive or depend upon other pieces of prior knowledge (i.e. angular reference
signals), which further inhibits the deployability of these approaches in online CM
and CBM applications

3. Spectral (i.e. time frequency) methods are particularly effective for analysis non-
stationary signals. A central focus in many of these spectral tools is the extraction
of time-varying harmonic components, or in a more general sense, to enhance the
visibility of diagnostic information buried in a time-varying signal. However, most if
not all existing methods for this are parametric, and hence, cannot be easily applied
to applications where the required model parameters are not known a-priori. These
methods also suffer from the same aforementioned practical limitations makes them
unconducive for online CM and CBM applications.

5.2 Background

S-MSC is a spectral pre-processing method for machinery diagnostics, which can be used
to separate time-varying harmonics from noise or stochastic components in non-stationary
vibration signals. The proposed approach aims to address the aforementioned knowledge
gaps in 5.1 by adopting a computationally efficient, non-parametric approach for pre-
processing and spectral analysis of non-stationary signals that can be easily implemented
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within online CM and CBM applications. The proposed approach uses MSC in conjunction
with the STFT to blindly separate the noise and time-varying harmonic components within
each spectrum. One key property of the proposed approach is that the signal decomposition
behaves like a linear filter in that the properties of the extracted components of the signal
(harmonics and noise), including phase and magnitude, are preserved after performing
separation using MSC. This means that the original signal can be reconstructed simply
combining the IFTs of each decomposition component. Hence, the proposed approach can
be used as a pre-processing technique for many existing fault detection methods.

5.2.1 Mean Shift Clustering

MSC is a clustering algorithm that performs density mode detection on the KDE of a data
[32]. The MSC algorithm consists of two sequential steps: KDE estimation followed by
hill climbing algorithm to find then the local maxima (i.e. clusters) of the KDE [32]. MSC
is a non-parametric algorithm, meaning that it does not require any a-priori knowledge
or assumptions to be made regarding the underlying distribution of the data. The non-
parametric nature of MSC also implies that the probability of convergence is initialization-
independent, in contrast to other popular clustering techniques such as Gaussian Mixtures
or K-Means [123]. These properties make MSC well suited to the unsupervised setting and
for large-scale CM and CBM applications [25]. Prior to the work presented in this chapter,
the application of MSC as a time-frequency analysis tool for machinery diagnostics has not
previously been studied.

5.2.2 Spectral Mean Shift Clustering

The approach used in this work, termed S-MSC is blind time-frequency signal processing
technique for non-stationary gearbox vibration signals. The principle of S-MSC is to apply
MSC to the power spectral amplitudes obtained from each STFT window in a given vi-
bration signal to separate the time-varying harmonic components from noise components.
In the context of an arbitrary gearbox vibration signal, S-MSC blindly separates a signal
into two components: a de-noised signal containing only the time-varying harmonics and
other deterministic frequencies, and a residual component containing the noise.

The signal decomposition of S-MSC is best understood through an example. Consider
the composition of a typical gearbox vibration spectrum shown in Fig. 5.1a. The frequency
content in the spectrum can be broadly categorized into two groups: a group consisting of
sparse higher energy components or peaks, corresponding to harmonics and other dominant
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processes in the gearbox, and a second group containing dense lower energy broadband
noise and/or non-dominant gearbox processes. Examples of these two groups are shown
in the STFT spectrum of the LINK APM gearbox in Fig. 5.1a. Consider also the 1-
D representation of the spectrum in Fig. 5.1a shown in Fig. 5.1b, which is created by
flattening the frequency axis. This flattened spectrum is the input to S-MSC, except that
in practice, no labels (i.e. noise/peaks) are assigned to the frequency components a-priori.
The KDE of the flattened spectrum shown in Fig. 5.1c represents the starting point for
the S-MSC clustering algorithm. Fig. 5.1c illustrates that the peak corresponding to
the density of the noise components is significantly higher than those corresponding to
harmonics and other dominant gearbox frequencies. Hence, it can be assumed that in
S-MSC that the highest density cluster corresponds to noise, thereby allowing it to be
blindly separated from the signal. In other words, the density distribution, or rather the
contrast in density between the two aforementioned groups of signal components in relation
to one-another is what enables their blind separation using S-MSC.

Figure 5.1: Typical composition of gearbox vibration spectrum: (a) LINK Pearson APM
gearbox STFT spectrum, (b) frequency-flattened spectrum of (a), and (c) kernel density
estimate of (a)

Unlike many existing model-based approaches or TSA-based techniques, a major ad-
vantage of S-MSC is that it is not dependent on priori knowledge. Spectral decomposition

77



using S-MSC can be performed directly on the STFT of the raw time signal, without the
need for knowledge of gearbox kinematics or resampling in the angular domain using an
angular reference signal as is often required in many current state of the art pre-processing
techniques for non-stationary vibration signals. The ability to directly and simultaneously
extract both the time-varying harmonic components and the noise from raw non-stationary
signals in a single step significantly reduces the computational complexity, which is of par-
ticular practical importance for online CBM applications.

5.3 Methodology

This section presents the methodology for the S-MSC approach.

5.3.1 Basic Assumptions

Consider a discrete gearbox vibration signal x[n] sampled from a continuous time process
x(t) such that

x[n] = x(
n

fs
) (5.1)

where, n is the sample number, and fs is the sampling rate. It is assumed that x(t) follows
the basic assumptions described in 2.3.1 such that

x(t) = c(t) + e(t). (5.2)

where c(t) contains the harmonic content in the signal and e(t) is an additive term com-
prised of noise and other stochastic processes.

5.3.2 Spectrogram Representation

Given a discrete signal x[n] of length L satisfying the representation in Eq. 5.2, the STFT
of x[n] using the definition found in Eq. 2.20 is given as

X(m, k) =
N−1∑
n=0

x(n+mH)w[n]e−j2πkn/N

M =
L−N
H

m = 1, 2, ...,M

k = 1, 2, ..., K

(5.3)
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where m dictates the window number, k represents the kth spectral component, w[n] is
a window function of length N , K = N/2 is the total number of spectral components
as dictated by Nyquist theorem, H represents the shift length between two consecutive
windows and M is the total number of windows. Taking the square of the absolute value
of 5.3 for all k produces the spectrogram |X(m, k)|2. For conciseness and clarity in the
following steps, the notation |Xm|2 is used to represent |X(m, k)|2 of the m− th window.

5.3.3 Spectral Decomposition

The blind signal decomposition of x[n] is then obtained by applying the MSC algorithm
to |Xm|2. For each window m, calculate the KDE of |Xm|2, given by

p(|Xm|2) =
1

N

N∑
n=1

K

(
|Xm|2 − |Xm|2n

h

)
. (5.4)

In Eq. 5.4 K(u) is a kernel function (see section 2.7.2) and h > 0 is the kernel bandwidth.
The choice of kernel bandwidth has a large influence on the resulting signal decomposition.
Further demonstrations will show how h can be estimated as function of the skewness of the
resulting noise decomposition spectrum in the absence of prior knowledge. Let Z(|Xm|2) =
[z1, z2, ..., zI ] denote the I cluster centers of |Xm|2. Since MSC is non-parametric, the total
number of clusters I is not known a-priori. Given p(|Xm|2), the cluster centers Z(|Xm|2)
can be obtained by applying the iterative mean shift transformation to each point in |Xm|2,
given by

|Xm|2τ+1 = g(|Xm|2τ ) τ = 0, 1, 2, .. (5.5)

where τ denotes the iteration number, and g(|Xm|2) is the gradient ascent function obtained
by setting the gradient of p(|Xm|2) to zero, resulting in

g(|Xm|2) =

∑N
n=1 |Xm|2nK ′

(∥∥∥ |Xm|2−|Xm|2nh

∥∥∥2
)

∑N
n=1 K

′
(∥∥∥ |Xm|2−|Xm|2nh

∥∥∥2
) (5.6)

where K ′ = dK/du. Using Eq. 5.6, the mean shift vector m(|Xm|2) can be defined as

m(|Xm|2) = g(|Xm|2)− |Xm|2 (5.7)

Using Eq. 5.7 in conjunction with Eq. 5.6, each point in |Xm|2 is shifted towards the
local mean until the magnitude of the m(|Xm|2) is less than the standard error. A more
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intuitive way to understand the mean shift algorithm is to revisit the example shown in
Fig. 5.1. Recall in the KDE, the regions of high probability density appear as ”hills” or
peaks, as shown in Fig. 5.1c. Eq. 5.7 and 5.6 simply tells every point in |Xm|2 to climb
towards the nearest peak. Over iterations, every point in |Xm|2 will converge into clusters
at the dominant peaks in p(|Xm|2). At convergence, the remaining peaks in |Xm|2 will form
the set of cluster centers Z(|Xm|2), and the peak (i.e. zi) that each point has to climbed
to determines the cluster membership of that point. Spectral decomposition can then be
performed by classifying the clusters in Z(|Xm|2). Applying the same signal assumption
in eq. 5.2 to Z(|Xm|2) produces

Z(|Xm|2) = Zc(|Xm|2) + Ze(|Xm|2) (5.8)

Eq. 5.8 assumes that S-MSC separates the original signal components c(t) and noise
processes e(t) into discrete clusters, where Zc contains all clusters containing harmonic
components while Ze denotes all clusters which contains only noise processes. Classification
is performed by sorting Z in order of their population (i.e. number of points belonging to
the cluster). As described in section 5.2.2, the implicit biases placed on the composition
of machinery vibration spectra can be used to determine the membership of each cluster
in Z. More simply put, the typical frequency content in the spectrum can be broadly
categorized into two groups: a group consisting of sparse higher energy components or
peaks, corresponding to harmonics and other dominant processes in the gearbox, and a
second group containing dense lower energy broadband noise and/or non-dominant gearbox
processes (Fig. 5.1). Hence, it is assumed that the cluster containing the largest number
of points will contain any dense underlying noise processes as well as other low-energy
components within the signal, while the remaining clusters will correspond to harmonic
components. Formally, this can be expressed by the logic

Zi ∈ Zc if Zi 6= arg max
Zi

count(Z)

Zi ∈ Ze if Zi = arg max
Zi

count(Z)

i = 1, 2, ..., I

(5.9)

Hence, the points in |Xm|2 belonging to Zc comprise the S-MSC harmonic spectrum, while
the points belonging to Ze comprise the S-MSC residual spectrum.
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5.4 Validation Approach

In order to demonstrate robustness of S-MSC as a pre-processing tool for analysis of non-
stationary signals, the validation approach will involve the application of S-MSC to a
number of different applications and analysis frameworks, defined as follows:

1. Extraction of time-varying harmonic content from noise in non-stationary
vibration signals: apply S-MSC to extract time-varying gearbox harmonics in non-
stationary LINK APM gearbox vibration data. Comparison of S-MSC to marginal
spectrum and TSA [15].

2. S-MSC as a pre-processing technique for bearing fault detection in non-
stationary signals: apply S-MSC to for de-noising of non-stationary aircraft engine
vibration data prior to performing envelope analysis for bearing fault detection in
non-stationary signals. This data was obtained from exercise 2 of the Surveillance 8
challenge, which features an accelerating Safran aircraft engine containing two outer
race bearing faults [8].

3. Comparison to other spectral pre-processing approaches: apply S-MSC to
extract time-varying harmonics from a non-stationary wind turbine vibration signal
and compare the performance of S-MSC to those obtained using the synchrosqueezing
transform [137] and singular spectrum analysis [65]. This data was obtained from
the CMMNO 14’ challenge [29].

5.4.1 Evaluation Metrics

The appropriate evaluation metric(s) will vary between each validation application. In
general, where a-priori knowledge is available (i.e. known gearbox frequencies), the per-
formance of the S-MSC algorithm can be evaluated against/using the known parameters.
In addition, while the main objective of the proposed approach is the extraction of time-
varying harmonic components in non-stationary vibration signals, the extracted harmonic
components are inherently de-noised as a part of the process. For the three former cases,
this level of inherent de-noising achieved by the proposed approach is estimated. Often
in practice, the signal-to-noise ratio is unknown and varying in the case of non-stationary
and time-varying signals. In order to estimate the inherent de-noising performance of the
proposed method, all non-harmonic signal components are assumed to be part of the noise
process. Hence, at each position of the time window, the energy of the non-harmonic
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signal components isolated by MSC is assumed to be equivalent to the local noise level.
The global level of noise extracted from the entire signal can then be represented in terms
of the average and standard deviation (σ) of the the local noise values obtained at each
position of the time-window.

5.5 Application of S-MSC to LNK APM Gearbox Data

5.5.1 Characterization of the LINK APM Gearbox Vibration
Data

Examples of the non-stationarity found in the LINK APM gearbox vibration data can be
seen from the typical LINK APM gearbox vibration signal and corresponding spectrogram
depicted in 5.2 and 5.3, respectively. The signal shown in 5.2 and 5.3 corresponds to one
complete round trip cycle of the LINK train. The spectrogram representation of the APM
gearbox signal shows that the spectral content of the gearbox is non-stationary and noisy
throughout the train’s travel. In addition to the amplitude and frequency modulations,
the APM signals exhibit many instances where harmonics appear and disappear from the
signal entirely. This phenomena appears to be dependent on the position of the train
along it’s route. This behaviour is illustrated in the zoomed time-frequency representation
in Fig. 5.4 and the Fourier transform spectra shown in Fig. 5.5. Fig. 5.5 illustrates the
STFT spectra obtained from different time windows of the APM signal, in which several
harmonics are present in the signal at one train position, while missing from another.
These non-stationarities can be attributed to operational factors, such as the stop and
start phases and fluctuating passenger loads; as well as to mechanical factors such as
the bi-directionality of the gearbox and variable gradient of the guideway. The results
presented hereafter are generated using the vibration data obtained from the input shaft
accelerometer (A4 in Fig. 4.7).

S-MSC is applied to the signal shown in Fig. 5.2, using a frequency resolution of 1 Hz.
Fig. 5.6 illustrates the original Fourier spectrum and resulting peak (Zc) and noise (Ze)
spectra for a single STFT window obtained using S-MSC. Fig. 5.6 illustrates the linear
filter property of S-MSC, in that the original spectrum is decomposed without any loss
of information or non-linear transformation. The complete spectrogram of S-MSC peak
component Zc is shown in Fig. 5.7. The average level of noise removed during the S-MSC
process is estimated to be -0.13 dB with σ = 7.5dB.
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Figure 5.2: Vibration signal for LINK APM gearbox - round trip

Figure 5.3: Spectrogram of LINK APM gearbox round-trip vibration signal

5.5.2 Comparison to the Marginal Spectrum

A baseline for the performance of S-MSC can be established by comparing the S-MSC
Fourier and TF results to those obtained without pre-processing. Fig. 5.8a shows the time-
averaged spectrum of the S-MSC peak spectrogram shown in Fig 5.7. For comparison, Fig.
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Figure 5.4: Spectrogram for a single stop-start-stop phase of the LINK APM gearbox

Figure 5.5: Fourier spectra from different segments of the raw LINK APM vibration signal,
containing different harmonic components

5.8b illustrates the marginal spectrum distribution of the entire vibration signal, which is
obtained by time-averaging the spectrogram shown in Fig. 5.3 without pre-processing using
S-MSC. The following analysis references the LINK APM gearbox frequencies contained
in Table 4.1 in Section 4.4.1. Direct comparison between the two spectra shows that the
spectrum obtained using S-MSC contains more harmonic spectral content than its marginal
counterpart. While both spectra contain spectral components related to the gear meshing
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Figure 5.6: Typical decomposition of a frequency spectrum into peak and noise components
using Mean Shift Clustering

Figure 5.7: De-noised spectrogram of LINK APM gearbox round-trip signal after mean
shift clustering
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families from gearbox stage a and b, the S-MSC spectrum was able to capture additional
harmonics from these families, as well as a gear mesh harmonic from gearbox stage c that
is absent in the marginal spectrum. Specifically, the enhanced spectrum in Fig. 5.8a
captures the harmonics h3

c , h
3
b , h

4
b , h

6
a, which are missing from the marginal counterpart.

Furthermore, the resonant region around 6-8 kHz is captured in the S-MSC spectra, and
far less visible in the marginal spectra.

Figure 5.8: (a) S-MSC spectrum obtained using the proposed approach in conjunction with
time averaging (b) Marginal frequency spectrum obtained from the signal spectrogram -
the extracted gearmesh components labeled

Further comparisons between the S-MSC and marginal spectra can be made from
zoomed-in depictions shown in Fig. 5.9a and b. Comparison of these spectra again shows
that the S-MSC spectrum contains frequency information not present in the marginal coun-
terpart, including frequency components related to the shaft rotational frequency. Other
prominent spectral structures, such as modulation sidebands, are also captured more clearly
by S-MSC. Fig. 5.10a shows that the modulation sidebands surrounding the second har-
monic from gear mesh stage B were also captured in the S-MSC spectrum, but missing
from the mariginal spectrum shown in Fig. 5.10b.

5.5.3 Comparison to Time Synchronous Averaging

Order-tracked vibration data was sampled from the LINK APM gearbox to obtain the
TSA signal. The corresponding TSA spectrum for the APM signal was computed using
the TSA algorithm presented in [15], which applies re-sampling of the time domain data
in order to account for non-stationary shaft speed. The TSA spectrum corresponding
to the input shaft, is shown in Fig. 5.11, for data sampled at 200 kHz and 20 kHz.
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Figure 5.9: Comparison in the 0-400 Hz region: rotational frequency, gearmesh harmonics
and modulation sidebands extracted using (a) S-MSC, (b) the marginal frequency spectrum

Figure 5.10: Comparison in the 800-100 Hz region: gearmesh harmonics and modulation
sidebands extracted using (a) S-MSC (b) the marginal frequency spectrum

Comparison of the 200 kHz SA spectrum with the S-MSC spectrum in Fig 5.8a shows
that both spectra contain the same harmonic content corresponding to the input shaft,
with very similar noise levels. However, the S-MSC has several advantages over TSA for
the type of vibration data considered. First, when using TSA, any frequency components
that are asynchronous to the selected fundamental frequency (usually shaft speed) are
removed in the process. Hence, the spectrum corresponding to each gearbox stage must be
obtained separately, as opposed to the proposed spectral analysis technique, where all of the
spectral information is obtained in single step. Second, TSA needs an additional angular
reference signal and requies the kinematic information (i.e. gear ratios) for the gearbox
must be known a-priori for TSA. Third, comparison of the spectra shown in Fig. 5.11a
and b illustrates the influence of sampling rate on the frequency resolution when using
SA. Closely spaced harmonics and sidebands, which are visible in the S-MSC spectrum
shown in Fig. 5.8a, are not visible in the TSA spectrum for data sampled at the same
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Figure 5.11: Frequency spectrum obtained using time synchronous averaging where the
sampling frequency is (a) 200 kHz, (b) 20 kHz

rate. Comparable frequency resolution between the two methods could only be obtained
for TSA data sampled at 200kHz, which would increases the data collection requirements
for TSA by an order of magnitude relative to S-MSC. Finally, from a practicality angle,
the presence of the significant speed fluctuations within the APM gearbox presented a
challenge for obtaining suitable data for TSA. Without the use of more sophisticated pre-
processing techniques prior to TSA, the TSA spectrum can only be obtained in regions
where the speed fluctuations are nominal, whereas S-MSC imposes no restriction on the
type or level of speed fluctuations in the signal.

5.6 Application of S-MSC to Safran Aircraft Engine

Data

The main challenge posed to bearing fault detection by the Safran aircraft engine data is
that the constantly changed speed results in bearing fault frequencies that are function
of time, rather than constant. A common diagnostic approach for this type of data is to
first obtain an estimate of the shaft speed, which can be then be used in a subsequent
pre-processing step, such as angular resampling, to obtain a stationary representation of
the signal which can be used for bearing fault analysis. A key observation from the Surveil-
lance 8 challenge debriefing [8] is that all of the successful approaches relied upon tradi-
tional, computationally expensive and parametric pre-processing methods to perform this
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speed estimation. This section is intended to demonstrate how S-MSC can be used as an
efficient, non-parametric substitute to the computationally expensive and parametric pre-
processing approaches found in most existing fault diagnostic approaches for non-stationary
signals. Specifically, this section illustrates the results obtained when using S-MSC as a
pre-processing tool in combination with envelope analysis 2.5.2 for detection of bearing
faults in the Surveillance 8 Safran Aircraft engine data.

5.6.1 Dataset Description

The data used was obtained from exercise 2 of the Surveillance 8 challenge. A full descrip-
tion of the engine, gearbox kinematics and data acquisition process can be found in [8].
The vibration data was sampled from an accelerating Safran aircraft engine with a sample
rate of 50 kHz over a duration of 200s. The engine contained two faulty bearings (L1
and L5) with outer race faults. Fig. 5.12 illustrates the speed of the shaft containing the
damaged bearing (L5), and shows non-stationarity due to the acceleration of the engine
over the sampling interval.

Figure 5.12: Rotational speed of shaft containing damaged bearing L5
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5.6.2 Procedure

The S-MSC bearing fault detection procedure is as follows:

1. Segment the signal into 2s windows and calculate the STFT and corresponding PSD
of each window according to Eq. 5.3.

2. For each window:

(a) Compute the KDE of the PSD (Eq. 5.4)

(b) Apply the mean shift clustering to Eq. 5.4 using Eqs. 5.5, 5.6 and 5.7 and
decompose the spectrum using Eq. 5.9 to obtain Zc and Ze

(c) Band-pass filter Zc at the resonant frequency band of 21.5-24.8 kHz

(d) Demodulate the band-pass filtered signal Zc and obtain the envelope signal |x̄(t)|
using the HT according to Eq. 2.22

(e) Compute the envelope spectrum of |x̄(t)|

3. Combine the envelope spectra of |x̄(t)| into a single spectrogram representation.

5.6.3 Envelope Analysis Results

The performance of the S-MSC was assessed by comparing the envelope spectrograms
obtained with and without the application of S-MSC. Fig. 5.13a illustrates the envelope
spectrogram without S-MSC, while Fig. 5.13b illustrates the spectrogram produced using
the procedure outlined in section 5.6.2. Comparison of the two spectrograms shows that
the raw envelope spectrogram contains a high level of background noise, resulting in only
faint traces of the outer race bearing fault frequency (BPFO) and its second harmonic
(BPFO 1 and 2) appearing in the spectrogram. However, the de-noised S-MSC envelope
spectrogram shows relatively sharp traces of the outer race fault frequency along with two
harmonics (BPFO 1, 2 and 3) as well as the corresponding modulation sidebands - which
can be used to diagnosis the bearing fault. Furthermore, the cage frequency (CF), and its
corresponding sidebands are also visible in the S-MSC spectrogram. Comparing the noise
of the two resulting spectrograms, it was found that the S-MSC spectrogram contained 18
dB less noise than the raw counterpart, indicating a significant improvement to the SNR
after the application of the proposed approach. These results demonstrate that S-MSC
can be used as an efficient, non-parametric alternative to traditional pre-processing tools
for bearing fault detection in non-stationary signals.
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Figure 5.13: Envelope spectrogram of vibration signal: (a) without and (b) with spectral
de-noising using Mean Shift Clustering

5.7 Application of S-MSC to CMMNO’14 Wind Tur-

bine Data

The purpose of this section is to compare the performance of S-MSC to two state-of-the-
art spectral pre-processing approaches: the Fourier Synchro Squeezing Transform (FSST)
[137] and sliding-Singular Spectrum Analysis (SSA) [65]. The analysis is conducted using
data obtained from the CMMNO’ 14 wind turbine dataset consists of non-stationary wind
turbine gearbox data. FSST is a spectral pre-processing tool for non-stationary signals
that can be used to express an input signal as a sum of analytic signals [137]. The prin-
ciple of FSST is similar to that of frequency reassignment, in that FSST localizes energy
surrounding a harmonic to the harmonic, which produces an enhanced TF representation.
Like S-MSC, FSST operates on the spectrogram of the signal obtained using the STFT.
Unlike S-MSC however, FSST is not conducive to online CM applications due to its com-
putationally heavy process. FSST has been used applied to the analysis of non-stationary
wind turbine signals and hence, is included here for the comparison against S-MSC. Sliding
SSA is a parametric spectral pre-processing tool that utilizes singular value decomposition
(SVD) in conjunction with a sliding window to decompose a non-stationary signal into
physically interpretable components representing oscillations and noise [65]. According to
SSA-based de-noising, the separation of signal harmonics from noise is achieved by selecting
the first n pairs of singular values, which are sorted in decreasing order, and reconstruct-
ing the signal using the associated singular vectors, where n is the number of harmonics
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perceived to be in the signal.

5.7.1 Dataset Description

The CMMNO’ 14 wind turbine dataset consists of non-stationary wind turbine gearbox
data sampled at 20kHz. The wind turbine contains a inner ring fault on the planet bear-
ing. A detailed description of the gearbox and test parameters can be found in [99]. The
wind turbine signal to be analyzed consists of multiple families of deterministic frequen-
cies embedded within broadband noise, which are subjected to frequent non-linear speed
fluctuations. Wind turbine signals contain multiple sources of stationarity stemming from
time-dependent, angle-dependent and time and angle-independent phenonena [99].

5.7.2 Comparison to sliding SSA

The raw time-frequency spectrogram of the wind turbine signal is shown in Fig. 5.14a,
which was generated using overlapping 2s windows (75% overlap) and a frequency resolu-
tion of 1Hz. Fig.5.14b shows the S-MSC de-noised spectrogram generated using the same
parameters, which shows that the time-varying harmonic components were successfully
separated from the broadband noise, despite the presence of heavy non-linear speed fluc-
tuations. The average level of noise removed from the signal using S-MSC is estimated to
be 1.45 dB, with σ = −11dB.

Figure 5.14: Spectrogram of wind turbine vibration signal: (a) without and (b) with
spectral de-noising using Mean Shift Clustering
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Since SSA is a parametric approach, the spectral information shown in Fig. 5.14a was
used to determine the optimal value of n = 20. Applying sliding SSA to the wind turbine
signal using the same window parameters produces the de-noised spectrogram shown in
Fig. 5.15. The level of noise removed using the SSA approach is estimated to be -18
dB, with standard deviation σ = 1dB. Comparison of the SSA spectrogram shown in
Fig. 5.15 to S-MSC spectrogram in Fig. 5.14b shows both methods are equally effective
at highlighting the signal harmonics buried in noise. However, the S-MSC spectrogram
contains less residual noise and sharper harmonics than the SSA counterpart. Additionally,
unlike MSC, sliding SSA involves the use of the computationally expensive SVD algorithm,
which makes sliding SSA less conducive for online CBM applications.

Figure 5.15: Spectrogram of wind turbine vibration signal with spectral de-noising using
sliding SSA

5.7.3 Comparison to FSST

Based on the assumed nature of the frequency content in the signal, FSST was applied to
the wind turbine signal using both a Kaiser and Hanning window, and the optimal window
type and window length N was determined using an iterative approach. In all cases, a
window overlap of N − 1 was used. For larger values of N , the signal was batch processed
due to memory constraints. The best TF representation was obtained using the FSST with
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a Kaiser window with β = 10 and N = 512. From Fig. 5.16, it can be seen that FSST
struggles to localize the energy around the harmonics due to the low SNR of the signal.
While the wavelet based SST and generalized SST approach in [1] may perform better on
this type of signal, they are not conducive to online monitoring, which is one of the primary
motivations behind the proposed MSC approach. These results illustrate the robustness of
the proposed approach, and suggests that the MSC approach is insensitive to the type of
speed fluctuations commonly found in non-stationary systems such as wind turbines. For
these types of signals, the performance of the proposed approach in both the extraction of
time-varying harmonic components and de-noising was found to be comparable to that of
Sliding SSA, while requiring significantly less computational resources.

Figure 5.16: Spectrogram of wind turbine vibration signal with spectral pre-proccesing
using FSST

5.8 Evaluation of the Kernel Bandwidth Parameter

The choice of KDE kernel bandwidth parameter h controls the behaviour of the S-MSC
spectral decomposition. The value of h directly influences the smoothness of KDE surface
over the data set, which can affect the clustering result obtained using S-MSC [32, 25].
The topic of bandwidth estimation has been extensively studied, resulting in a number of
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data-driven estimators associated with different optimization criteria which can be used
to estimate h [32]. If specific prior information is known, such as the true probability
distribution of the data, h can simply be estimated by minimizing the RMSE. Conversely,
if a-priori information is not available, numerical approaches such as cross-validation, or
application-specific criterion can be used to select the kernel bandwidth.

In the present context, S-MSC is used as a pre-processing approach to separate time-
varying harmonic components from noise in non-stationary machinery vibration signals.
In the absence of prior knowledge, there currently does not exist a suitable criterion to
obtain a blind estimate h for spectral decomposition of machinery vibration spectra. Hence,
this section presents the results of a heuristic study which was used to determine a rule-
of-thumb estimator for h in the context of machinery vibration signals. The proposed
estimator, which is based on the spectral skewness of the decomposition component Ze,
can be used to determine a suitable value for h in the absence of prior knowledge. The
Surveillance 8 Safran and CMMNO’14 wind turbine vibration signals were considered for
the study.

5.8.1 Results of Bandwidth Study

For each signal, an arbitrary 3s window of the data was selected, and the S-MSC is applied
to the each window across a broad range of bandwidth values. For each value of h, the
power and spectral skewness of the resulting decomposition spectra Zc and Ze is calculated.
Spectral skewness is analogous to skewness for a time signal, and is defined as the third
central moment of the Fourier spectrum, which can be expressed as

spectral skewness = E[(|Xm|2 − E[|Xm|2)3] =

∑K
k=1(k − µ1)3|Xmk |2

µ3
2

∑K
k=1 |Xmk |2

µ1 =

∑K
k=1 k|Xmk |2∑K
k=1 |Xmk |2

µ2 =

√∑K
k=1(k − µ1)2|Xmk |∑K

k=1 |Xmk |2

(5.10)

For each signal, the resulting spectral skewness and power of each window are shown
in Fig. 5.17a and b, respectively. An important observation from Fig. 5.17 is that the
skewness of a spectrum consisting of purely harmonic components is much higher than
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the skewness of the spectrum consisting of pure noise. Using this principle, the following
hypothesis is proposed: the value of h which minimizes the spectral skewness of the residual
spectrum Ze produces the optimal decomposition result. Based on Figs. 5.17a and b, there
appears to be an optimal region for the h for both signals in which the skewness of the Ze
is minimized.

Figure 5.17: Effect of bandwidth on skewness and power of MSC decomposition spectra
(a) Safran (b) Wind Turbine

Fig. 5.18 shows the decomposition spectra for the wind turbine signal using the band-
width corresponding to the minimum skewness, illustrating an effective separation of har-
monic and noise components. Fig. 5.19a-b shows the decomposition spectra corresponding
to the smallest and largest bandwidth values for the wind turbine data, respectively. In the
case of the smallest bandwidth, the over-decomposition of the noise component is apparent,
leading to the minimum noise power level shown in Fig. 5.19a. In the case of the largest
bandwidth, the decomposition is unable to separate harmonic components from noise, re-
sulting in the residual spectrum shown in Fig. 5.19b, which contains both harmonic and
noise components. The over-decomposition of noise can also be seen in power trend of the
decomposition spectra, as shown in Fig 5.17. When considering the range of bandwidths
to the left of the optimum region, the power of both decomposition spectra can be seen to
change rapidly with respect to the bandwidth, indicating a significant amount of frequency
components (presumably noise) are transferred between the Zc and Ze as the bandwidth
increases. This behaviour continues until the bandwidth approaches the lower bound of
the optimal region, at which point the skewness of the residual spectrum approaches a
minimum, at which point it is presumed that the majority of the noise in the signal has

96



been separated from the harmonic component.

Figure 5.18: MSC decomposition of wind turbine signal corresponding to optimal band-
width

The results of the bandwidth study demonstrate that for machinery vibration spectra,
smaller values of h increase the sensitivity of the decomposition with respect to |Xm|2,
which allows for a larger number of clusters and separation of weaker harmonic components
situated closer to the noise floor. However, a lower bound exists in which the bandwidth
will result in over-decomposition of the noise. On the contrary, larger bandwidths can only
capture significant differences in frequency amplitudes, resulting in clusters which contain
mixtures of harmonic and noise components. In both cases, selecting the kernel bandwidth
h based on the minimization of the spectral skewness of Ze provides a reasonable rule-of-
thumb estimator which can be used in the absence of prior information. Formally, this can
be expressed as

hopt = arg min
h

E[(|Xm|2 − E[|Xm|2)3] (5.11)
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Figure 5.19: S-MSC decomposition of wind turbine signal using extreme values of h (a)
lower bound (b) upper bound

5.9 Summary

This chapter presents a model-free, blind spectral analysis approach for pre-processing
non-stationary vibration signals. The approach consists of applying MSC to the STFT of
vibration signals in order to simultaneously de-noise and separate time-varying harmonics
from noise. Validation was performed across multiple use cases and data sets. The key
conclusions from this work are as follows:

1. Validation performed on the LINK APM gearbox data showed that S-MSC was
effective at separating the time-varying gearbox harmonics from noise. Comparison
to pre-processing using TSA showed that S-MSC was able to extract more harmonic
components than TSA, without requiring the angular signal needed for TSA.

2. Application to the Safran engine data set showed that the use of S-MSC for de-noising
in envelope analysis enabled the detection of time-varying bearing fault frequencies,
circumventing the need for alternative, computationally expensive solutions.

3. Further validation against FSST and SSA using the CMMNO’14 wind turbine data
showed that S-MSC performs better than FSST and equal to SSA on the low-SNR
CMMNO’14 data, at a much lower computational cost.

4. The S-MSC approach depends upon only a single parameter, the kernel bandwidth.
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To enable autonomous deployment of S-MSC, a criterion based on the spectral skew-
ness of the S-MSC residual spectrum was proposed for the estimation of the kernel
bandwidth.
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Chapter 6

Gaussian Mixture Model Operating
State Decomposition (GMM-OSD)

This chapter presents a soft-clustering pre-processing tool for blind separation of sensor
data obtained from machinery over multiple operating states, termed Gaussian Mixture
Model Operating State Decomposition (GMM-OSD). The purpose of GMM-OSD is to
provide an unsupervised means to decompose a non-stationary multi-state vibration sig-
nal—for which many conventional vibration analysis and fault detection techniques are
not suitable—into a set of stationary, constituent signals to which existing tools can be
readily applied. In GMM-OSD, each of the resulting decomposition signals corresponds
to a discrete operating state. Using the fitted model, the unknown operating state of a
new observation can be classified using posterior inference. GMM-OSD can also be used
in conjunction with other unsupervised pre-processing tools (i.e. S-MSC) to form a robust
pre-processing framework suitable for the complex, dynamic operational behaviour of many
modern engineering systems. Hence, the method presented in this chapter addresses the
key gap in CBM literature pertaining to the lack of computationally efficient, unsupervised
pre-processing algorithms to perform operating state-decomposition.

This chapter begins by presenting the motivations for GMM-OSD, followed by Section
6.1, which presents the required background and methodology. Section 6.3 and onwards
presents the results from validation of the proposed approach performed on experimental
data collected from the Pearson LINK APM and passenger boarding tunnel PCA field
pilots.
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6.1 Motivations

As shown in Section 4.1, many types of rotating machinery in industrial applications, such
as APMs and pre-conditioned air units, have more than one operational state. These
changes in operational behaviour are reflected in their vibration behaviour as well, which
results in a non-stationary signal that is not conducive to many common vibration analysis
and fault detection tools, such as statistical process control (SPC). Applying these tools
to multi-state systems involves either first decomposing the signal into a set of station-
ary, constituent signals to which these tools can be easily applied, or, applying real-time
knowledge of the machine operating status to improve the accuracy of the analysis or fault
detection results. When prior information, such as machine status is made available to
the CBM framework, implementing either of these approaches becomes a straightforward
process. However, in the case where such data is not available, and information pertaining
to the nature or exact number of the operating states is not known a-priori, this classifica-
tion task becomes non-trivial. This problem is further complicated for systems containing
additional forms of non-stationarity as well (ex: Section 4.1.3), which typically requires
additional pre-processing to resolve. GMM-OSD addresses this challenge by presenting a
robust means for unsupervised modeling and classification of multi-state machinery vibra-
tion data, which can be implemented alongside other pre-processing tools (i.e. S-MSC) for
unsupervised condition monitoring of modern, dynamic engineering systems.

The GMM-OSD approach employs GMMs in conjunction with CIs extracted from the
vibration signal to classify each data point in a signal collected over multiple machinery
operating states into its respective operating state. In the CBM analytical framework,
GMM-OSD is applied in the pre-processing step after feature extraction preceding model
training, and can be used in conjunction with other pre-processing tools, such as S-MSC.
Fig. 6.1 provides an example of a CBM signal processing chain incorporating both GMM-
OSD and S-MSC. Model selection without the use of prior knowledge is demonstrated
using two approaches–an information criterion-based approach, and a variational Bayesian
approach. The ability to automatically determine the optimal number of classes (i.e.
operating states) without parameter tuning or user intervention makes GMM-OSD easily
deployable in large-scale CBM applications with limited a priori information. In addition,
the underlying Gaussian assumption in GMM-OSD makes the models easily interpretable
and conducive to subsequent analyses that benefit from knowing the distribution of the
data, e.g., Gaussian process regression or hierarchical Bayesian updating.
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Figure 6.1: Example CBM signal processing chain using GMM-OSD in conjunction with
S-MSC pre-processing

6.2 Background and Methodology

This section presents the background and methodology pertaining to GMM-OSD.

6.2.1 Gaussian Mixture Models

Gaussian Mixture Modeling is soft-clustering approach that assumes that a set of data
was generated using a group (or mixture) of Gaussian processes. Unlike its hard-clustering
K-means counterpart, which assigns a definitive label to each data point, GMM performs
soft clustering on the data, which instead assigns a probability of cluster membership
of each point instead. The latter approach is more conservative since it captures the
uncertainty of the cluster assignment, and hence, is better suited to the unsupervised
setting where the ground truth labels of the data points are not known. The central
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assumption in GMMs is that the underlying data is generated by some unknown mixture
of K Gaussian distributions. Each individual Gaussian distribution k is described by the
Gaussian parameters µk and Σk, as well as a mixture weight πk, which is used to individual
Gaussian distrubtions in the mixture to one another. πk has the following property

K∑
k=1

πk = 1 (6.1)

Given a data set X = {x1, x2, ..., xN} ∈ Rd, the probability that a data point xi belongs to
a Gaussian distribution k can be expressed as

p(zik = 1|xi) (6.2)

where z is a latent variable belonging to the set Z = z1, z2, ..., zK . zik is equal to 1 if
xi belongs to Gaussian k, and zero otherwise. Using this property, following relationship
between z and the Gaussian mixture weights πk is defined:

πk = p(zk = 1) (6.3)

Then, the marginal probability of a point xi for the multivariate case can be expressed as

p(xi) =
K∑
k=1

p(xi|z)p(z) =
K∑
k=1

N (xi|µk,Σk)πk

N(xi|µk,Σk) =
1√

|Σk|(2$)K
exp

(
− (xi − µi)T

Σk(xi − µk)

) (6.4)

Using Eq. 6.4, the marginal probability p(X) is given as

p(X) =
N∏
i=1

p(xi) =
N∏
i=1

K∑
k=1

N (xi|µk,Σk)πk (6.5)

Let θ = {π, µ, σ} represent the unknown GMM model parameters. Then, given K, the
optimal model values of θ are those which maximize the log-likelihood of p(X), given by

L(X|θ) = log(p(X)) =
N∑
i=1

log

(
K∑
k=1

N (xi|µk,Σk)πk

)
(6.6)
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6.2.2 Expectation Maximization Algorithm

Eq. 6.6 has no closed-form analytical solution, and is typically evaluated numerically using
the expectation maximization (EM) algorithm. The EM algorithm is an iterative, two step
structure to solve for the maximum likelihood. Let θt represent the current estimate of θ,
and θt−1 represent the subsequent estimate of θ obtained from the previous EM iteration.
At each iteration, the expectation step computes the expected value of the log-likelihood
of θt over Z given X (i.e. posterior probability of the data being generated by the current
Gaussian mixture), given by

Q(θt, θt−1) = E[log(p(X,Z|θt)] =
∑
Z

p(Z|X, θt−1)log(p(X,Z|θt)) (6.7)

To evaluate an expression for p(Z|X, θt−1) can be derived as a function of zik using Bayes
rule

p(Z|X, θt−1) =
p(xi|zk = 1)p(zk = 1)∑K
j=1 p(xi|zj = 1)p(zj = 1)

=
πkN (xi | µk,Σk)∑K
j=1 πjN (xi | µj,Σj)

= γ(zik)

(6.8)

as well as an expression for p(X,Z|θt), which is the likelihood with respect to both X and
Z, given in log form as

log(p
(
X,Z|θt

)
=

N∑
i=1

K∑
k=1

zik [logπk + logN (xi | µk,Σk)] (6.9)

Substituting Eq. 6.8 and 6.9 into Eq. 6.2.2 results in

Q(θt, θt−1) =
N∑
i=1

K∑
k=1

γ(zik) [logπk + logN (xi | µk,Σk)] (6.10)

Using Eq. 6.10 calculated in the expectation step, the maximization step solves for the
updated model parameters θt which maximize the the Eq. 6.10. To simplify the optimiza-
tion, the previously-defined property of π (i.e.

∑K
k=1 πk = 1) is applied as a constraint to

Eq. 6.10 which yields

Q(θt, θt−1) =
N∑
i=1

K∑
k=1

γ(zik) [logπk + logN (xi | µk,Σk)]− λ(
K∑
k=1

πk − 1) (6.11)
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where λ is a Langrange multiplier. Then, the updated model parameters θt = {µtk,Σt
k, πk}

can be found by evaluating the partial derivative of Eq. 6.11 with respect to each parameter,
which yields

πk =

∑N
i=1 γ (zik)

N
µtk =

∑N
i=1 γ (zik)xi∑N
i=1 γ (zik)

Σt
k =

∑N
i=1 γ (znk) (xi − µk) (xi − µk)T∑N

i=1 γ (zik)

(6.12)

Once the new parameters are obtained, the process is repeated from the beginning of the
expectation step until a convergence criteria is reached.

Initialization

Prior to the first iteration of EM, an initial estimate needs to be obtained for θ. As
discussed in Section 2.7.5, θinit can can be estimated be estimated using prior knowledge
(even if limited), or initialized using non-informative priors, which is the approach used in
this thesis.

6.2.3 Model Selection

The parameter optimization approach described in Section 6.2.2 pertains to a fixed value
of K, and a fixed structure for the covariance matrices Σk. For the intended applications
of this work (i.e. unsupervised CBM), the optimal value of K and the optimal structure of
Σ are assumed to be unknown. In this thesis, four main types of structures for the GMM
covariance matrices are defined: full-shared, full-unshared, diagonal-shared and diagonal-
unshared. Full/diagonal simply refers to whether or not the off-diagonal elements are
non-zero (non-zero in the former), while unshared/shared refers to whether or not the
covariance matrix should be the same or independent across each Gaussian. In general, the
results obtained using the full-unshared covariance should produce the optimal clustering
results, as the diagonal and shared options are constraints that are typically applied to
improve computational efficiency.

Given that K and the shape of Σ are unknown, selection of the optimal GMM to
describe the underlying data requires optimization to be performed with respect to both
K and shape(Σ). This thesis presents two such approaches to determine these parameters:
an information criterion approach using the Bayesian information criterion (BIC); and, the
variational Bayesian GMM (ν −GMM) approach.
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Akaike and Bayesian Information Criterion

The Akaike and Bayesian information criterion (AIC and BIC, respectively) are model
selection criteria based used to evaluate the goodness-of-fit within a set of similar models,
as a function of their log-likelihood and model complexity (i.e. number of parameters)
[191]. Both AIC and BIC contain a penalty term with respect to the model complexity
to discourage overfitting, however, the penalty term in BIC is larger. The smaller penalty
term in AIC results in a greater bias towards more complex models relative to BIC, which
can lead to overfitting if the underlying (i.e. true) distribution of the data is not complex.
Hence, for greater generalization performance in the unsupervised setting, BIC is selected
over AIC as the model selection criterion in this thesis. BIC is given by the following
expression

BIC = klog(N)− 2log(L̂) (6.13)

where k is the total number of model parameters, N is the size of the data, and L̂ represents
the maximum log-likelihood. The term klog(N) is the penalty term to control overfitting,
and is positive increasing as k increases. Hence, lower BIC values are indicative of a
better model fit. Since BIC is not an absolute metric, the important point to make is that
BIC (and AIC) are only useful for obtaining a relative comparison of models within the
same class (i.e. GMMs with different K), which is the current use case. Given a search
range K = {K1, K2, ...KM} for K and four aforementioned types of covariance matrices
C = {cov1, .., cov4}, the optimal GMM model is the one which produces the lowest BIC
value across K and C.

6.2.4 Variational Bayesian Gaussian Mixture Models

Variational Bayesian GMMs (v-GMM) is an extension of the GMM approach which uses
variational inference (VI) to simplify the parameter estimation process [132]. In v-GMM,
the intractable GMM posterior p(Z|X, θ) is approximated using a family of distributions
q(Z) with simpler functional forms than p(Z|X, θ). The goal then, is to find the member
of q(Z) which gives the best approximation of p(Z|X, θ). In addition to determining the
optimal model parameters θopt, v-GMM has the additional benefit of implicitly optimizing
over K in the parameter estimation process, which enables Kopt to be determined simulta-
neously. Specifically, v-GMM works by approximating the GMM p(Z|X, θ) with a mean
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field approximation given by

p(Z|X) ≈ q(Z)

q(Z) =
M∏
i=1

qi(Zi|X)
(6.14)

The key simplifying assumption in Eq. 6.14 is that the unknown parameters (i.e. µ,Σ
z) are independent. Then, the member of q(Z) that best approximates p(Z|X), can be
quantified by

qopt(Z) = arg minKL[q(Z)||p(Z|X)] (6.15)

where KL is the Kullback-Leibler divergence given by

KL[q(Z)||p(Z|X)] =

∫
q(Z) log

q(Z)

p(Z|X)
= E

[
log

q(Z)

p(Z|X)

]
(6.16)

The KL divergence quantifies the similarity between two probability distributions by mea-
suring the distance between the distributions. However, obtaining qopt from Eq. 6.15
directly is not possible, and hence, the alternative approach is to maximize an equivalent
function known as the evidence lower bound (ELBO). It can shown that expansion of
Eq.6.16 will yield the ELBO given by

ELBO(q) =

∫
q(Z) log

p(Z,X)

q(Z)
dZ =

∫
q(Z) log p(Z,X)dZ −

∫
q(Z) log q(Z)dZ

= E[log p(Z,X)]− E[log q(Z)]

(6.17)

and qopt is the member of q(z) which maximizes Eq. 6.17.

6.2.5 Coordinate Ascent Variational Inference

In v-GMM, qopt can be solved for using coordinate ascent VI, which is analogous to the
previously introduced EM algorithm. Let q∗ denote the coordinate update of q. Then,
applying the mean field approximation in Eq. 6.14 to p(z|x) and substituting the result
into Eq. 6.17 yields the following expression

q∗j (zj) ∝ exp{E−j[log p(zj|z−j, x)]} (6.18)

where −j denotes all indices other than the j-th. qj(zj) is initialized, and then similar to
EM, coordinate ascent VI uses the following two step iterative approach to solve for qopt
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1. For all j ∈ {1, 2, ...,m}, compute Eq. 6.18.

2. Then, compute ELBO(q) using Eq. 6.17.

3. The above steps are repeated until a convergence criteria is reached

6.2.6 Feature Selection

The choice of feature set used for GMM-OSD will affect the decomposition result. In an
ideal setting, the selected features for GMM-OSD are those which provide the maximum
degree of separation between discrete operating states, which in the supervised setting,
can be determined using a variety of feature selection approaches. In the unsupervised
setting however, apart from applying bias (i.e. domain knowledge) to pre-select a subset of
features that are more likely to be good separators, the optimal set of features cannot be
known a priori. In addition, the use of unsupervised ML-based black box feature learning
approaches is also challenging, since the number of classes in the underlying data is not
known a-priori - and, the features generated by these approaches lack the interpretability
of traditional, hand-crafted features.

The proposed feature set consists of eight time and frequency domain features for
vibration analysis: RMS, variance, skewness, kurtosis, spectral kurtosis, spectral entropy,
mean frequency and half-power bandwidth. The sensitivity of these features to different
types of changes in the vibration behaviour of a machine have been well studied in the
context of fault detection. The choice of handcrafted features increases the interpretability
of the OSD result, the choice of a larger feature set (as opposed to only a few features)
provides robustness in the unsupervised use case, which will be demonstrated hereafter in
Section 6.3. In addition, a wider feature set provides the GMMs with more measures to
differentiate between similar (yet discrete) operating states. Prior to parameter estimation,
dimensionality reduction is applied to the feature set using PCA, retaining 95% of the
variance.

6.2.7 Validation Approach

Validation of the proposed approach is performed in three steps:

1. First, an exploratory study is conducted to characterize the proposed feature set
in the context of OSD across different types of machinery. The purpose here is
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qualitatively assess the sensitivity of each individual feature in the feature set to the
various operating states across different types of machinery. The proposed feature
set is assessed using labelled data from the Pearson LINK APM gearbox and the
Pearson Terminal 1 passenger boarding tunnel PCA units. For the LINK APM data,
labelled data is used to provide a physical interpretation of the various clusters in
the feature data.

2. Next, the classical GMM-OSD approach is applied to the LINK APM and PCA
datasets to perform unsupervised OSD. To improve the GMM result on the highly
non-stationary LINK APM data, pre-processing using S-MSC is applied to the data
prior to GMM-OSD to improve the decomposition result.

3. Finally, the v-GMM approach is applied to both aforementioned datasets to verify
that the optimal decomposition results obtained using v-GMM are in agreement with
those obtained using GMM and BIC.

6.3 Operating State Characterization

The Pearson Terminal 1 passenger boarding tunnel PCA units and LINK APM gearbox are
both examples of multi-operating state machinery. In the case of the former, the discrete
operating states of the machine are well defined i.e. four distinct settings to service four
different types/sizes of aircraft. This is reflected in both the feature space and resulting
GMMs, in which each of the four discrete operating states are well separated from one
another. In the case of the LINK APM gearbox however, the operational parameters or
conditions which define its different operating states are not as immediately obvious. While
the vibration data from the LINK APM certainly does imply the existence of multiple
discrete states, the physical phenomena to which those clusters pertain to needed to be
determined a-posteriori. The results of this study are presented in AppendixC. Using
the results of this study, the LINK APM data is labelled and divided into two operating
states - each corresponding to one direction of the train’s travel. Overall, these two pieces
of machinery provide a wide spectrum of operational behaviour to assess the robustness of
the proposed feature set.

Given that the proposed approach is to applying GMM clustering, characterization of
the feature set across both machines is done with respect to the Gaussian distribution
parameters (i.e. mean and variance). For this particular qualitative analysis, a ”good”
feature can be defined as a feature with well-separated means across each operating state,
with similar variance for that feature across operating states. In the context of GMM,
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these characteristics will help minimize mixing of individual Gaussians, which will help
with convergence during parameter estimation, and reduce uncertainty during posterior
inference. The means of the normalized features for the the LINK APM gearbox and
Terminal 1 PCA units for each operating state are shown in Fig. 6.2 and 6.3, respectively.
Similarly, Fig. 6.4 and 6.5 show the corresponding coefficients of variation (COVs) for each
machine.

Figure 6.2: Normalized feature means by operating state for Pearson LINK APM gearbox

Evaluation of Fig. 6.2 shows that for the APM, the time domain features (RMS,
variance, skewness) and spectral kurtosis contain well-separated means between the two
operating states. Considering the COVs of these well-separated features (Fig. 6.4 shows
that apart from the skewness, the COVs of the other four features are relatively high,
which indicates the presence of non-stationarities within each operating state. In the case
of the Terminal 1 PCA units (Fig. 6.3, mean frequency and spectral kurtosis are the best
differentiators with respect to the mean. Furthermore, unlike the LINK APM features, the
COVs across the PCA feature set are nominal, apart from half power bandwidth, which is
indicative of the stationarity of each discrete operating state.

Two key observations can be made from these results. First, the features which provide
the highest level of differentiation between the operating states of each machine are different
for each machine. In the case of the APM - the best features were the RMS, variance,
skewness and spectral kurtosis; while in the case of the PCA units, spectral kurtosis and
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Figure 6.3: Normalized feature means by operating state for Pearson Terminal 1 Passenger
Boarding Tunnel PCA Unit

Figure 6.4: Feature coefficients of variation by operating state for Pearson LINK APM
gearbox
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Figure 6.5: Feature coefficients of variation by operating state for Pearson Terminal 1
Passenger Boarding Tunnel PCA Unit

mean frequency were the best separators. For the unsupervised use case, this encourages
the use of a broader feature set for robustness. Second, while the APM data contained
multiple features with well-separated means, the high COVs resulting from non-stationarity
will negatively affect the GMM result. The following section demonstrates how these non-
stationarities affect the GMM result, and how pre-processing using S-MSC can be used to
non-parametrically remove these non-stationarities and improve the GMM result.

6.4 Application of GMM-OSD with BIC to LINK APM

and T1 PCA Unit

This section presents the validation results from the application of GMM-OSD with BIC to
the Terminal 1 PCA unit and LINK APM gearbox data. For the LINK APM gearbox data,
the GMM results with and without S-MSC pre-processing are presented and discussed.
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6.4.1 GMM result on T1 PCA Unit

The GMM-OSD approach is applied to both the Terminal 1 PCA unit and LINK APM
gearbox feature data. For each K in K = {1, 2, .., 7} and covariance type, parameter
optimization was performed using the EM algorithm, and the best model was selected
based on the minimum BIC value. Fig. 6.6 illustrates the BIC and optimal GMM result
for the Terminal 1 PCA feature data. Fig. 6.6 shows that for the PCA unit, the four
discrete states are easily captured by four, fully separate Gaussians. In the case where
each operating state is stationary and clearly differentiable using the proposed feature set,
the resulting GMM poses very little uncertainty for posterior interference. In other words,
the cluster membership of any unseen point is unambiguous.

Figure 6.6: Optimal GMM for Terminal 1 PCA Unit (K = 4)
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6.4.2 GMM results on LINK APM with S-MSC

The LINK APM gearbox data provides an excellent basis to demonstrate the simultaneous
use of two unsupervised pre-processing tools presented in this thesis - S-MSC and GMM-
OSD. Fig. 6.7 illustrates the optimal GMM result for the LINK APM data without pre-
processing applied. In the case of the LINK APM data, the high variability of the feature
data across all operating states produces a convoluted GMM result. In order to reduce the
feature variability, S-MSC is applied to the pre-process the raw data and non-parametrically
remove the non-stationary components in the signal prior to feature extraction. The process
flowchart for this approach was shown earlier in the beginning of the chapter in Fig.
6.1. S-MSC was applied to each windowed segment of the signal to separate the signal
into harmonic and residual (noise) signals. The residual signals were discarded, and the
resulting harmonic signals were used for feature extraction. The detailed discussion of the
application of S-MSC to the LINK APM data can be found in Section 5.5.

Fig. 6.8 illustrates the GMM result with S-MSC applied to pre-process the signal
prior to feature extraction. Compared to the un-processed result in Fig. 6.7 for which
the lowest BIC value corresponded to a GMM with K = 6, the BIC of the S-MSC pre-
processed feature data is best described by two Gaussians - which agrees with the posterior
knowledge of the operating states present within the LINK APM data.

6.5 Application of v-GMM to LINK APM and T1

PCA Unit

The purpose of this section is to assess the performance of v-GMM-OSD in comparison to
the previous GMM-OSD approach with BIC. From the formulation presented in 6.2.4, a
primary advantage of v-GMM over traditional GMM is the ability of v-GMM to implicitly
optimize over K during the coordinate ascent VI estimation of the GMM model parameters.
To formulate a comparison with traditional GMM, v-GMM is applied in the same manner
to both the Terminal 1 PCA unit and S-MSC pre-processed APM gearbox data.

For both cases, v-GMM is initialized with K = 10. Fig. 6.9 illustrates the optimization
process over K. At the first iteration, the v-GMM model is initialized usingK = 10 clusters.
As clusters begin to overlap as number of the iterations increases, v-GMM automatically
removes overlapping clusters by assigning a weight of zero to redundant clusters. By the
10th iteration, v-GMM has nearly converged to the optimal number of clusters. Fig. 6.10
shows the final, optimal v-GMM result for the S-MSC pre-processed LINK APM gearbox
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Figure 6.7: GMM result without S-MSC pre-processing - LINK APM Gearbox (K = 6)

data, and comparison of this result to the one obtained using GMM in Fig. 6.8 shows
that both results are in agreement. Similar results are obtained when v-GMM is applied
to the Terminal 1 PCA data, as shown in Fig. 6.11. The symmetry of these results to
those obtained using traditional GMM with BIC demonstrates that v-GMM is a practical
improvement over the traditional GMM approach for GMM-OSD, since the model selection
with respect to K is integrated directly with the parameter optimization process. However,
the lack of a BIC score in v-GMM means that the result is less interpretable compared
to traditional GMM. The BIC in the traditional GMM approach can be used to provide
additional insight into the operating behaviour of a machine. For example, the similarity of
the BIC values for K = [2, 3, 4] in Fig. 6.8 suggests that the feature data can be clustered
to represent multiple sets of physical phenomena beyond train direction.
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Figure 6.8: Optimal GMM result with S-MSC pre-processing - LINK APM Gearbox (K =
2)

6.6 Summary

This chapter presents an unsupervised pre-processing tool for blind decomposition of vi-
bration signals obtained from multi-modal machinery (GMM-OSD), as well as a combined
pre-processing framework in which S-MSC and GMM-OSD are applied in sequence for
pre-processing of vibration signals containing multiple types of non-stationarity. For vali-
dation, the proposed approach is applied to labelled multi-modal data collected from the
LINK APM gearbox and Terminal 1 PCA units for validation. The key conclusions from
this work are as follows:

1. A qualitative study was performed on data obtained from the LINK APM gearbox
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Figure 6.9: Optimization over K in v-GMM during coordinate ascent VI - LINK APM
Gearbox

and Terminal 1 PCA units to characterize the dynamic operational behaviour of these
machines and and validate the proposed feature set. The results of the study showed
that the best differentiating features varied between the two data sets, which justifies
the use of a wider feature set in the unsupervised setting.

2. Applied to data obtained the LINK APM gearbox and Terminal 1 PCA unit field
pilots, GMM-OSD was able to blindly decompose the multi-modal data in each signal
into the corresponding discrete operating states. For the well-separated Terminal 1
PCA data, GMM-OSD could be applied effectively without pre-processing.

3. For the LINK APM gearbox data, GMM-OSD was unable to cluster the data effec-
tively without pre-processing. After applying S-MSC first as a pre-processing tool
to remove non-multi-modal sources of non-stationarity from the signal, GMM-OSD
was able to decompose the filtered signal into the correct, discrete operating states.

4. A second formulation using vGMMs was also validated using both datasets, and was
shown to converge to the same optimal model selected using BIC in the traditional
approach. Both approaches were equally effective for decomposition, with vGMM
providing a more computationally efficient solution, and GMM-BIC providing higher
interpretability of the model choice due to the use of BIC.

117



Figure 6.10: Optimal v-GMM of S-MSC Harmonic Features - LINK APM Gearbox (K =
2)

Figure 6.11: Optimal v-GMM for Terminal 1 PCA Unit (K = 4)
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Chapter 7

Bayesian One-class Support Vector
Machine (B-OCSVM)

This chapter presents an unsupervised approach for early degradation detection and fault
prediction, termed the Bayesian One-Class Support Vector Machine (B-OCSVM). The goal
of this chapter, and B-OCSVM, is to tackle the several key gaps in literature pertaining to
the application of unsupervised CBM in the real world - namely, the issues of hyperparam-
eter estimation for anomaly detection and degradation threshold setting in the absence of
prior knowledge. Ultimately, these key knowledge gaps severely hinder the applicability of
these CBM approaches in real world, unsupervised settings.

The chapter begins by reviewing the specific gaps in knowledge and motivations behind
the approach, followed by an overview and detailed description of the methodology. The
final sections of this chapter presents results obtained from three public run-to-failure
datasets, which are used for validation, benchmarking, sensitivity analysis, and evaluation
of robustness and generalization performance.

7.1 Motivations for B-OCSVM

While a detailed discussion on the current state-of-the-art and overview of the key knowl-
edge gaps within unsupervised CBM methods are presented in Sections 3.3.3 and 3.5,
respectively, the following summary is intended to provide the reader with the necessary
context required for understanding the motivations behind the work presented hereafter.
The key observations from the current-state-of-the art are as follows:
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1. The majority of unsupervised and semi-supervised CBM approaches employ some
form of support vector-based classifier for fault detection (i.e. OC-SVM, SVDD, or
N-SVDD). This supports the choice of type of classifier for the current application.

2. Within the current body of literature, however, the challenging task of unsupervised
hyperparameter estimation has not been adequately addressed. Additionally, existing
approaches for unsupervised OC-SVM hyperparameter estimation are predicated on
assumptions placed on the data which cannot be easily realized in the real-world
setting. Hence, there currently is no established framework available to facilitate the
implementation of the state-of-the-art to unsupervised applications in the real-world.

3. Similarly, methods for determining a suitable threshold for degradation modeling are
largely dependent upon prior knowledge (i.e. failure records, previous fault observa-
tions). Even in unsupervised approaches, there is insufficient guidance pertaining to
the estimation of a suitable threshold without the use of prior information or poste-
rior inference. Without a suitable degradation threshold, these methods cannot be
applied effectively in the unsupervised setting.

4. Likely related to the previous point is the fact that many existing unsupervised
approaches are heavily focused on the detection aspect of CBM, and lacking in prog-
nostic capabilities, which are often of equal practical significance. Several studies
have proposed the use of ML classifier distance from the decision boundary as a
means to infer the severity of degradation, but none of these studies have provided a
formal framework applicable to the unsupervised setting.

5. Finally, while not as large of an issue as the aforementioned gap areas, the vast major-
ity of methods rely on features are extracted using black-box ML processes meaning
that the interpretability of these features is low relative to traditional handcrafted
features. The well-understood behaviour of traditional handcrafted features with
respect to different types of machinery faults can provide some intrinsic diagnostic
value in an otherwise information-scarce setting.

7.2 Background

B-OCSVM is an unsupervised approach for early degradation detection and fault predic-
tion based on the OC-SVM [166] and the hierarchical Bayesian framework [52]. Unlike
traditional CBM frameworks which aim to detect well-developed faults, B-OCSVM in-
stead shifts the focus towards the detection of the degradation process earlier on in the
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fault development cycle, and aims to predict the time until a detected degradation process
will manifest into a well-developed fault. In other words, the intent of B-OCSVM is fault
prediction, as opposed to the traditional approach of fault detection failure prediction. Fig.
7.1 illustrates the idea of early degradation region targeted by B-OCSVM in relation to
the typical fault detection region found in traditional fault detection approaches.

Figure 7.1: Early degradation region targeted by B-OCSVM vs. traditional fault detection
region for IMS bearing S1B3 [101]

The overarching goal of B-OCSVM to provide a fault prediction framework that can
be easily translated into real-world unsupervised settings. This requires the ability to esti-
mate both the OC-SVM hyperparameters and degradation thresholds without the reliance
on prior knowledge. Hence, new approaches to determine both of these parameters in
the unsupervised setting are proposed. In B-OCSVM, early detection of the degradation
process and fault prediction are achieved using the scaled logistic sigmoid output of the
OC-SVM classifier in tandem with a prior-independent degradation threshold that is de-
fined as a function of the classifier decision space. The task of estimating the optimal
values of OC-SVM hyperparameters γ and ν in the unsupervised setting is achieved using
a novel parameter estimation approach which hybridizes heuristics and brute-force param-
eter optimization. When a degradation process is detected by B-OCSVM,a hierarchical
Bayesian degradation framework is used in conjunction with a novel prognostic, termed
time-to-threshold (t3), to predict the time at which the degradation process will manifest
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into a fault.

7.3 Methodology

This section presents the specific background and detailed methodology for the B-OCSVM
approach. A summary of the key steps in the methodology is provided at the end of the
section.

7.3.1 Basic Assumptions

In order to satisfy the conditions for unsupervised learning, only unlabelled data is used
for training with a single imposed bias [115] that the training data is sampled from the
healthy operating state of a machine and can be contaminated with some unknown fraction
of anomalies ρ.

7.3.2 Feature Extraction

The handcrafted features used in B-OCSVM consists of well-studied set of traditional di-
agnostic features from the time, frequency and time-frequency domain: root-mean square,
variance, skewness, kurtosis, shape factor, absolute energy, Shannon entropy, spectral en-
tropy, spectral kurtosis and wavelet entropy [186]. To further demonstrate the robustness
of the feature set in the unsupervised setting, no traditional pre-processing steps, such as
de-noising or demodulation, are performed on the signals prior to feature extraction. All
features are extracted providing only the sampling frequency fs as an input argument.
Prior to training the OC-SVM classifier , dimensionality reduction is applied to the fea-
ture set using PCA [196] (retaining 95% of the variance) in order to prevent the curse of
dimensionality.

7.3.3 OC-SVM

The OC-SVM classifier is a special case of SVM. Recall from section that the primary goal
in SVM is to transform a dataset into a higher dimensional space that results in the maximal
margin decision boundary between the different classes in the dataset. As the name implies,
OC-SVM is simply the special case of SVM in which there is only one class contained in the
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data. Hence, the goal in OC-SVM is to provide the maximal margin of separation between
the data and the origin. Specifically, given a training set X = {x1, x2, ..., xn} ∈ Rd, the
OC-SVM classifier finds a decision boundary that encapsulates the densest regions of X
[166]. A test point x is classified as normal if it lies within the boundary, and anomalous
otherwise. Often times, a transformation of the data to a higher dimensional space (i.e.
ϕ : Rd → Rd′ , where d′ ≫ d ∈ Rd′) is applied to make the data linearly separable, resulting
in the primal quadratic problem [166]

min
∀ω,ξ,ρ

1

2
‖ω‖2 − ρ+

1

νN

n∑
i=1

ξi

s.t. ν ∈ (0, 1], 〈ω · ϕ(xi)〉 ≥ ρ− ξi
ξi ≥ 0, ∀i = 1, 2, ..., n

(7.1)

where ω ∈ Rd, ξi are slack variables, ρ is the variable which represents the bias, and ν is
a hyperparameter which dictates the upper bound on the fraction of training errors (i.e.
points that will be classified as an anomaly) and the lower bound on the number of training
points that can act as SVs. Evaluating the limit as ν approaches zero results in the slack
variables ξi → 0, and a hyperplane that separates nearly all of the training data from the
origin in Rd′ . However, forcing ν towards zero proportionally increases risk of overfitting
on the training data. In Eq. 7.1, the distance from the origin to the hyperplane is given by
dhyper = ρ

‖ω‖ , and the maximal solution for dhyper is obtained by minimizing the term 1
2
‖ω‖2.

For computational efficiency, the kernel trick with kernel function K(x, xi) = ϕ(x)Tϕ(xi)
is used to compute ϕ implicitly, from which Eq. 7.1 can be re-written as the following
quadratic dual problem:

min
∀αi

1

2

∑
i,j

αiαjK(xi, xj)

where K(xi, xj) = e−γ‖xi−xj‖
2

s.t. 0 ≤ αi ≤ 1/νn
n∑
i=1

αi = 1,∀i = 1, 2, ..., n

(7.2)

where αi are the Langrange multipliers. In this form, ρ =
∑

j αjK(xj, xsv), where xsv
represents any arbitrary SV. In this approach, K(x, xi) is the widely adopted Gaussian
kernel described in section 2.30. The corresponding decision function of 7.2 is then given
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by:

f(x) = sgn(
nsv∑
j=1

αjK(x, xj)− ρ)

where f(x) =

{
anomaly if f(x) = −1

healthy if f(x) = 1

(7.3)

From Eq. 7.2 and 7.3, the signed distance of a new data point x from the separating
hyperplane can be obtained as

dist(x) =

∑nsv
j=1 αjK(x, xj)− ρ

‖ω‖
(7.4)

7.3.4 OC-SVM Hyperparameter Estimation for Early Degrada-
tion Detection

Early detection of the degradation process requires choosing values of γ and ν that minimize
the volume of the training set (i.e. tight decision boundary). Recall from section 7.3.3 that
while decreasing the value of ν will result in a tighter decision boundary, there is an
inherent risk or tradeoff in regards to overfitting. An additional practical constraint is that
the parameter estimation should converge even on small training sets, as the large volumes
of data required in many existing hyperparameter approaches may not be easily obtainable
in practice.

Existing unsupervised OC-SVM hyperparameter estimation methods can be classified
as either heuristic [54, 114] or grid-search based [154, 175] approaches. Existing heuris-
tic approaches, while efficient, may under-perform or overfit when the data in question
does not satisfy underlying assumptions or when the training set is small. Grid-search ap-
proaches can circumvent the aforementioned pitfalls of heuristic methods through careful
objective function design, but these approaches suffer primarily from high computational
cost, particularly when both hyperparameters are solved for using this manner.

The motivations behind the proposed OC-SVM hyperparameter approach are best
understood using an example. Consider the KDES of the 2-D PCA projection of a
healthy bearing (IMS bearing S1B3 [101]) and a bivariate standard normal random vari-
able (Z(x, y)) shown in Fig. 7.2 illustrates the KDEs. Both sets of data contain the same
number of points (n = 425), and can be described by the same first and second order
statistical moments. However, the KDE of bearing S1B3 is far more complex than that
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of Z(x, y), consisting of several lower density regions interspersed between higher density
regions. The corresponding OC-SVM decision boundary for the IMS bearing data fitted
using the proposed hyperparameter estimation approach and a density-based heuristic ap-
proach are shown in Fig. 7.3. Using the heuristic approach shown on the right in Fig. 7.3,
the complex density distribution of S1B3 results in the classifier overfitting on the data,
while the decision boundary determined using the proposed estimation approach (Fig.
7.3 left) is able to encapsulate the training data with the minimal margin of separation
without overfitting in the process. Therefore, the decision boundary obtained using the
proposed hyperparameter estimation approach enables an underlying degradation process
to be detected early on while preventing a high false positive rate.

Figure 7.2: Kernel density estimate for: bearing vibration PCA data (left) and bivariate
standard normal variable (right)

7.3.5 Proposed OC-SVM Hyperparameter Estimation Procedure

The proposed approach aims to circumvent the aforementioned pitfalls of existing OC-SVM
hyperparameter estimation method by using a hybridized heuristic and optimization-based
approach. First, a heuristic approach to filter the training data and set ν, followed by
the estimation of γ using a newly defined objective function in conjunction with grid
search optimization. This hybrid approach leverages computational efficiency of heuristic
approaches while preventing the overfitting problem in these approaches shown in Fig. 7.3
through the use of grid-search optimization. Furthermore, the proposed approach satisfies
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Figure 7.3: OC-SVM decision boundary for IMS bearing S1B3 using: proposed parameter
estimation approach (left) density-based parameter estimation approach (right)

the additional practical constraint by allowing the OC-SVM classifier to find the optimal
decision boundary even when the size of the training set is small. The integration of a
heuristic filter the training data and to set ν drastically reduces the complexity of the
estimation approach from O(N2) to O(N).

The proposed OC-SVM hyperparameter estimation approach is comprised of three main
steps: (1) outlier removal, (2) heuristic estimation of ν and (3) grid search optimization-
based estimation of γ.

Outlier Removal

OC-SVM is highly sensitive to the presence of outliers in the training data as these points
can easily be misidentified as support vectors by the classifier in the unsupervised setting
[62, 4], which can result in delayed detection of the degradation process in the context
of CBM. In order to reduce their influence on the decision boundary and increase the
sensitivity of the classifier to early degradation, outliers must be removed from the training
set prior to parameter estimation [62].

Outlier removal is performed using a k-Nearest Neighbours (k-NN) based filtering ap-
proach for its strong performance in detecting global outliers without over-sensitivity to-
wards local outliers [107]. The L2 k-NN distance dL2

k (xi) of point xi from its k nearest
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Figure 7.4: k-NN distances for IMS bearing S1B3: sorted ascending distances Dk (left)
and 1st difference of Dk (∆Dk) with proposed outlier threshold Dcut (right)

neighbours is given by:

dL2
k (xi) =

1

k

√√√√ k∑
j=1

(xi − xj)2 (7.5)

In Eq. 7.5, the k-NN error asymptotically approaches a minimum as k, n → ∞ and
k/N → 0. Hence, k = 5log(n) is set to satisfy this condition [107]. In the training set, dk is
minimized for points residing belonging to a high density region, and maximized for points
farthest from these regions. Hence, points with the largest values of dk can be considered as
potential outliers [56]. A key challenge in the unsupervised setting is that the exact fraction
of outliers in the training set, denoted by η, is not known a priori. Existing approaches
for determining a suitable outlier threshold requires either prior knowledge of η or the use
of additional expensive algorithms [54, 114]. In response, a new computationally efficient
method is proposed to determine a suitable threshold for k-NN-based outlier removal.

Let Dk represent the sorted ascending list of dk(xi) ∀ xi ∈ X. Dk for IMS bearing S1B3
is shown on the left in Fig 7.4. The constant slope region of Dk for S1B3 (i.e. the range
between sample 0 to 425) corresponds to the data within the high density regions, while the
remaining region to the right of this data corresponds to outliers. Hence, the changepoint
between these two regions (x = 425) can be used as a cutoff point for outlier removal [54].
To determine this changepoint in an unsupervised setting, the following efficient method
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is proposed, using the first difference ∆Dk of Dk, given by:

∆Dk = {∆Dk(1),∆Dk(2), ...,∆Dk(n)}
where ∆Dk(i) = Dk(i)−Dk(i− 1)

∀i = 1, 2, .., n

(7.6)

∆Dk for IMS bearing S1B3 is shown on the right in Fig 7.4. According to the behaviour
of Dk, ∆Dk is stationary for all non-outlier points, and increasing for outliers. A closed
form solution to determine the changepoint (i.e threshold) Dcut can be derived using the
weighted mean µw and weighted standard deviation σw of ∆Dk as follows:

Dcut = µw + σw

where wi = 1− |µ−∆Dk(i)|
max |µ−∆Dk|

, µw =

∑n
i=1wi∆Dk(i)∑n

i=1wi

σw =

[∑n
i=1wi(µw −∆Dk(i))

2∑n
i=1 wi

]0.5

(7.7)

In Eq. 7.7, µ is the unweighted mean of ∆Dk. A point xi with ∆Dk(i) exceeding Dcut is
classified as an outlier and removed from the training set. The cutoff point identified by
proposed method (x = 426; Fig. 7.4a) is in close agreement with the targeted cutoff point
(x = 425; Fig. 7.4b). The role of the weights wi is to reduce the influence of outliers when
calculating the sample statistics, which is particularly important in cases where n is small
or when η is non-trivial.

Heuristic estimation of ν

Prior to outlier removal, the fraction of outliers η in the training set is unknown in the
unsupervised setting. However, removal of outliers from the training set places an implicit
assumption on η (i.e. η ≈ 0 after filtering), which enables ν to be efficiently determined
using a heuristic [54]. It was shown in [54] that following outlier removal, the resulting
decision boundary is robust to the choice of ν. Hence, for consistency with [54], ν = 0.01.

Estimation of γ using grid-search optimization

To estimate γ, the following new objective function is defined based on the heuristic used
to determine ν, which is evaluated using 5-fold cross validation:
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arg min
γ

J(γ) =
[n−

∑n
i=1|f(xi,γ)=−1 f(xi, γ)]− (1− ν)n

(1− ν)n

where γ = 2m,m ∈ Z : m ∈ [−18, 2]

(7.8)

where n is the number of the points in the filtered training set, and
∑n

i=1|f(xi,γ)=−1 f(xi, γ)

is the sum of all training samples classified as an anomaly for a given value of γ, (1−ν)n is
the theoretical fraction of normal points in the filtered training set. In Eq. 7.8, the optimal
value of γ is the one that minimizes the difference [n−

∑nt
i=1|f(xi,γ)=−1 f(xi, γ)]− (1− ν)n,

which thereby satisfies the heuristic used to determine ν. To prevent overfitting, Eq. 7.8
is evaluated using 5-fold cross validation over a typical OC-SVM γ search range.

7.3.6 Logistic Sigmoid Normalized OC-SVM Distance as a Degra-
dation Surrogate

For most fault detection applications, the binary result obtained using decision function
in Eq. 7.3 is often sufficient. However, as proposed by several other unsupervised and
semi-supervised works, the raw classifier output (i.e. signed distance) can be used to infer
the severity of the underlying degradation process [129, 169, 39]. This is true for the case
of SVM and OC-SVM - the distance of a data point from the decision boundary can be
interpreted as an implicit measure of severity. Hence, the proposed approach uses a scaled
version of the OC-SVM output is used as a surrogate to infer the severity of the underlying
degradation process. Prior to detection and prediction, the signed OC-SVM distance is
normalized through convolution with a logistic sigmoid function. The logistic sigmoid S(x)
maps an input onto an S-curve bounded between 0 and 1, and is given by:

S(x) =
[
1 + e−ζx

]−1

where 0 < S(x) < 1, ∀x ∈ R
(7.9)

where ζ is a scale parameter that controls the steepness of the curve. Due to the exponential
e−x, saturation of Eq. 7.9 can be achieved over a small range of x (i.e. [x−lim, x

+
lim] =

[−6, 6] ∈ R. The logistic sigmoid with ζ = 1 over x ∈ [−6, 6] is shown in Fig. 7.5.

S(x) provides several benefits when applied as the convolution kernel to the OC-SVM
output. S(x) magnifies monotonic degradation trends within the subset of points close to
the decision boundary i.e. d(x) ≈ 0. Furthermore, convolution with the sigmoid function
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Figure 7.5: Logistic sigmoid function

standardizes the input to the range (0, 1), which can beneficial when combining multiple
classifiers in ensemble learning applications. Finally, and most importantly, the horizontal
asymptotes of S(x) provide natural boundaries that can be scaled accordingly to define
suitable thresholds for degradation modeling and fault prediction. In this approach, a scal-
ing factor is proposed for the steepness parameter ζ in Eq. 7.9 that integrates the margin
ρ
‖ω‖ of the OC-SVM classifier into S(x), from which a new prior-independent degradation
threshold can be defined. The resulting scaled logistic sigmoid transformation, denoted by
Ssvm(xnew) is given by:

Ssvm(x) =

[
1 + exp

( −ζ
‖ω‖

nsv∑
j=1

αjK(x, xj)− ρ
)]−1

where ζ = x+
lim/ρ

(7.10)

where the parameter ζ = x+
lim/ρ ensures that the scale of the original OC-SVM decision

space is preserved in the new transformed space. The OC-SVM decision function in Eq.
7.3 can now be expressed in terms of the transformed variable Ssvm:

f(Ssvm(x)) = sgn(0.5− Ssvm(x)) (7.11)

where a f(Ssvm(x)) = −1 indicates an anomaly.

7.3.7 OC-SVM-Scaled Sigmoid Degradation Threshold

Using Eq. 7.10, a new prior-independent degradation threshold for fault prediction is de-
rived. Recall from the previous section that in the OC-SVM decision space Rd′ , anomalous
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points are situated in the region bounded by the decision boundary and the origin (i.e.
0 < ϕ(x) < ρ

‖ω‖). Points further from the decision boundary imply a higher level of severity,
with points situated at the origin representing the maximum deviation from the healthy
class (i.e. indicative of a fault). The scaling applied to ζ in Eq. 7.10 means that the
lower sigmoid asymptote of Ssvm(x) is analogous to the origin in the Rd′ OC-SVM decision
space. Hence, the lower asymptote of Eq. 7.10 is proposed as a new degradation threshold
for fault prediction. To account for the asymptotic behaviour of Ssvm, a nominal non-zero
value is chosen and the degradation threshold TSsvm is defined as the following:

TSsvm ≡ lim
x→−∞

Ssvm ≈ Ssvm = 0.05 (7.12)

The results shown in section 7.6 will validate that the degradation threshold proposed in
Eq. 7.12 is indicative of the level of degradation at which other approaches typically detect
a fault.

7.3.8 Smoothing and Degradation Detection Criteria

To minimize the false positive rate while monitoring, two post-processing measures are
applied to the normalized OC-SVM output Ssvm from Eq. 7.10 prior to classification.
First, Ssvm is passed through a moving-average filter:

S̄svm(wk) =
1

m

k∑
j=k−m+1

Ssvmj (7.13)

where wk is the k-th sliding window of size m. For all the experimental validation performed
in this thesis, m = 5 is used. Finally, a moving window majority vote decision criterion
based on the fault detection criteria proposed in [124] is applied to filtered output, resulting
in the final decision function:

df(S̄svmk) =

{
anomaly if mode[f(wS̄svmk )] = −1

healthy otherwise

where wS̄svmk =
[
S̄svmk , S̄svmk−1

, ..., S̄svmk−l+1

]
, l = 5

(7.14)

7.3.9 Hierarchical Bayesian Degradation Modeling

Fault prediction is performed using a Hierarchical Bayesian degradation modeling ap-
proach, which is based off the hierarchical Bayesian framework described in section 2.7.5.
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In this application, the Bayesian framework provides a suitable, general solution to the un-
supervised problem where model parameters cannot be assumed to be known prior to the
start of monitoring [52]. In this approach, the hierarchical Bayesian framework is applied to
the exponential degradation model, and initialize each model with non-informative priors.
Then, as new observations become available, the true priors are obtained using hierarchical
Bayesian updating.

Exponential Degradation Model

The exponential degradation model is selected for four reasons: first, the exponential degra-
dation model has been used extensively to model the degradation of many mechanical
components [52]. Second, the scaled logistic sigmoid normalization applied the OC-SVM
output (Eq. 7.10) imposes an exponential or linear functional form on the data. Third,
for practical considerations, model updating for the exponential model is computation-
ally inexpensive since a closed-form solution exists for the joint-posterior of the model
parameters. Finally, it is assumed that since only a single phase (i.e. incipient) of the
degradation process is considered, the degradation behaviour can be sufficiently modeled
using a single Bayesian process. The exponential degradation model assumes that the state
of degradation at time k, denoted by Ytk is given as:

Y (tk) = φ+ θeβtk+ε(tk)−σ
2

2 (7.15)

where φ is a constant, ln θ ∼ N(µθ, σ
2
θ) and β ∼ N(µβ, , σ

2
β) are normal random variables

and ε(tk) ∼ N(0, σ2) is standard normal error term. For mathematical convenience, Ytk is
often expressed in the logarithmic form Ltk :

L(tk) = θ′ + β(tk) + ε(tk)

where L(tk) = ln(Yk − φ)

θ′ = lnθ − σ2/2 ∼ N(µθ′ , σ
2
θ)

µθ′ = µθ − σ2/2

(7.16)

The joint posterior distribution of θ and β follows a bivariate normal distribution with
mean (µ̃θ, µ̃β) and variance (σ̃2

θ , σ̃
2
β) from which the mean and variance of the degradation

process at time t in the future, estimated from the current time tj, is given by [52]:

µ̃Lt+tj = µ̃θ′ + µ̃β(t+ tk)−
σ2

2
σ̃2
Lt+tj

= σ̃2
θ′ + σ̃2

β(t+ tk)
2 + σ2

(7.17)
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7.3.10 A New Prognostic: Time-to-Threshold (t3)

In conjunction with the previously defined degradation threshold Tsvm, a new prognostic
called the time-to-threshold (t3) is defined, which represents the probabilistic estimate of
the time until the degradation process manifests into a fault at the degradation threshold
TSsvm . From Eq. 7.17 the cumulative density function (CDF) of t3 at time step k is given
by:

t3k = P (Lj < t|L1, ...,Lj)
= P (Lt+tk > TSsvm|L1, ...,Lj)

= Φ
(TSsvm − µ̃Lt+tj

σ̃Lt+tj

) (7.18)

where Φ(·) is the CDF of the standard normal random variable Z.

7.3.11 Summary of Methodology

The key steps in the B-OCSVM approach are summarized as follows:

1. Training:

(a) Feature extraction and dimensionality reduction

(b) OC-SVM hyperparameter estimation:

i. Remove outliers using NN-based approach (Eq. 7.5-7.6) with proposed
outlier threshold (Eq. 7.7).

ii. Set ν = 0.01 heuristically.

iii. Estimate γ through k-fold CV grid search optimization of the proposed
objective function J(γ) (Eq. 7.8)

(c) Train OC-SVM classifier using obtained optimal hyperparameters

(d) Compute proposed fault prediction threshold TSsvm (Eq. 7.12)

2. Online monitoring (degradation detection):

(a) Compute Ssvm using the scaled-logistic sigmoid convolution (Eq. 7.10)

(b) Smoothing of Ssvm (Eq. 7.13)
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(c) Detection of the incipient degradation process using decision function df(S̄svmk)
(Eq. 7.14)

3. Online monitoring (fault prediction):

(a) Upon detection of degradation process, initialize non-informative Bayesian ex-
ponential degradation model (Eq. 7.15, 7.16)

(b) Hierarchical model updating with Ssvm(xnew)

(c) Estimate time until fault develops using proposed prognostic t3 (Eq. 7.17-7.18)

7.4 Validation Approach

Proper validation of the B-OCSVM approach requires complete run-to-failure data on
which the proposed OC-SVM hyperparameter estimation, degradation thresholding, and
t3 fault prediction approaches can be applied. Furthermore, demonstrating the robust-
ness and generalization ability of B-OCSVM requires validation to be performed across
multiple datasets containing different fault types, sampling conditions and assets. Hence,
validation is performed using three run-to-failure datasets: the IMS bearing dataset [101],
the FEMTO bearing dataset [133] and the C-MAPSS turbofan engine dataset [163]. Each
dataset serves the following purposes:

1. IMS Bearing Dataset: general validation of the methodology, benchmarking and
sensitivity analysis of proposed OC-SVM hyperparameter estimation approach

2. FEMTO Bearing Dataset: evaluates the ability of B-OCSVM to generalize across
different operating conditions, fault types, as well as bearings experiencing multiple
types of faults simultaneously

3. C-MAPSS Turbofan Engine Dataset: evaluates the generalization ability of B-OCSVM
when applied to applications outside of bearing faults (i.e. turbofan engine faults);
and, assesses the performance of B-OCSVM when applied to sparsely sampled data

7.4.1 Evaluation Metrics

Due to the experimental conditions used to generate each of the validation datasets, ground
truth labels for start of the degradation process and time of fault manifestation are not
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available to calculate traditional performance metrics such as root mean squared error
(RMSE). Hence, the performance of B-OCSVM will be quantified and compared to other
approaches using the following proposed metrics:

1. First detection time (tFD): time at which the degradation process is detected by
B-OCSVM

2. Fault prediction time (tFP ): the time at which the degradation process is predicted
to manifest into a fault based on the proposed degradation threshold TSsvm

3. Earliest prediction time (t3EP ): earliest time at which an accurate prediction of tFP
is obtained using t3, which is quantified as the time the confidence interval for t3

converges with the true RUL trajectory

4. Maximum actionable time (tFD−F ): the time between first detection and failure,
which quantifies the maximum amount of time made available by B-OCSVM to take
preventative action

For benchmarking, the goal is to compare the values of tFD and tFP obtained using
B-OCSVM to the first fault detection times obtained by other approaches. Early detec-
tion would imply that tFD in B-OCSVM precedes the first fault detection time of other
approaches, while close alignment of tFP to those fault detection times would indicate that
the proposed degradation threshold provides a reasonable representation of the fault man-
ifestation time. The remaining metrics t3EP and t3EP will be used to quantify the practical
benefits (i.e. extra time to perform maintenance) provided by B-OCSVM.

7.5 Dataset Descriptions

This section describes each of the run-to-failure datasets used for validation of the proposed
B-OCSVM approach.

7.5.1 IMS Run-to-Failure Bearing Dataset

The IMS dataset [101] provided by the Center for Intelligent Maintenance Systems (IMS)
at the University of Cincinnati contains run-to-failure data for four bearings. The test
rig consists of four force lubricated double row Rexnord ZA-2115 bearings mounted on
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Test # Samples Faulty Bearing Type Fail. Time Designation

S1 2156 B3 IRF 35 days S1B3
S1 2156 B4 RF 35 days S1B4
S2 984 B1 ORF 8 days S2B1
S3 6322 B3 ORF 40 days S3B3

Table 7.1: IMS dataset specifications [101]: IRF (inner race fault), RF (roller fault), ORF
(outer race fault)

a shaft coupled to an AC motor rotating at 2000 RPM with a radial load of 6000 lbs.
Dual-channel data collection was facilitated by two PCB 253B33 high sensitivity Quart
ICP accelerometers mounted in the x and y directions. The sensing configuration and
test bench layout are shown in Fig. 7.6 a and b, respectively. Data corresponding to
four faulty bearing was collected over three independent run-to-failure tests. One second
of vibration data is sampled at 20.48 kHz at 10 minute intervals until failure. Failure is
defined as the time when the measured accumulated debris exceeds a specified threshold,
which automatically terminates the test. Three independent run to failure tests were
conducted, which resulted in a total of four failed bearings

Key Characteristics

The IMS dataset has been widely used for validation in machinery diagnostics, making it
a suitable dataset for not only validation but also benchmaking. Table 7.1 summarizes the
specifications for each failed bearing in the IMS dataset. The IMS bearing set contains
three different types of bearing faults: inner race fault, roller fault and two outer race
faults, with failure times ranging from 8 days to 40 days. Each test is conducted with-
out any artificial defect initiation, resulting in more realistic degradation behaviour. The
degradation behaviour varies significantly between each failed bearing, and this is reflected
in the degree of difficulty for analysis. As a direct result, many methods have elected
to analyze only a subset of the IMS bearings (shown in Table 7.5 hereafter). Successful
detection and modeling of the fault mechanism across all four bearings requires a robust
analysis approach. For validation and benchmarking, B-OCSVM is applied to all four
faulty bearings in the dataset.
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Figure 7.6: IMS Test Rig a. Sensing configuration b. Layout [58]

7.5.2 FEMTO Run-to-Failure Bearing Dataset

The FEMTO dataset is a run-to-failure bearing dataset provided for the IEEE PHM 2012
Prognostic Challenge. Run-to-failure bearing data was collected using the PRONOSTIA
accelerated aging platform shown in Fig. 7.7. The PRONOSTIA platform uses a two shaft
configuration containing an asynchronous 250W motor on the primary shaft connected
via gearbox to the secondary shaft which houses the test bearing. The maximum speed
of the motor is 2830 rpm, which corresponds to a maximum secondary shaft speed of
2000 rpm. A radial load up to 4000 N can be applied to the test bearing to simulate a
variety of loading conditions. The dataset contains 17 run-to-failure data (6 complete, 11
truncated), collected using a dual-channel (x and y) accelerometer configuration, sampled
at 25.6 kHz for a duration of 0.1s every 10s. Failure is defined as the time when the
measured acceleration exceeds 20g. It is presumed that each failed bearing experiences
contains almost all types of possible faults [133].

Key Characteristics

Similar to the IMS dataset, each test into the FEMTO dataset was initiated with no
artificial defects, resulting in more realistic degradation behaviour. Contrary to the IMS
dataset however, the failed bearings in the FEMTO dataset were obtained across several
different operating conditions and are presumed to contains almost all types of possible
faults. Additionally, the failed bearings exhibit a wide range of degradation behaviours,
which adds further complexity to the analysis. These qualities make the FEMTO dataset
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an excellent tool for demonstrating the ability of a method to generalize across different
operating states and bearings containing multiple types of faults. The data specifications
are provided in Table 7.2. to demonstrate generalization performance, B-OCSVM is applied
to all six complete run-to-failure bearing data.

Figure 7.7: FEMTO Test Rig Layout [133]

7.5.3 C-MAPSS Run-to-Failure Turbofan Engine Dataset

The commercial modular aero-propulsion system simulation (C-MAPSS) dataset contains
simulated run-to-failure turbofan engine data which are generated using the C-MAPSS
simulation platform [163]. The engine simulated is of the 90,000 lb thrust class, with
user configurable conditions including altitude, mach number, sea level temperature and
thrust level. The built-in control system consists of a fan-speed controller, three high-limit
regulators to prevent the engine from exceeding the designed core speed, engine-pressure
ratio and high pressure turbine (HPT) exit temperature, and acceleration and deceleration
limiters for the core speed. The configuration of the simulated engine is shown in Fig. 7.8.
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Bearing # Samples Speed (rpm) Load (N) Lifetime (hrs)

B11 2803 4000 1800 7.8
B12 871 4000 1800 2.4
B21 911 4200 1730 2.5
B22 796 4200 1730 2.2
B31 515 5000 1500 1.4
B32 1636 5000 1500 4.5

Table 7.2: FEMTO dataset specifications [133]

The simulation dataset is divided into four subsets (FD001-FD004), outlined in Table 7.3,
each containing different operating conditions and fault types. In every single test, the
engine is initiated with a varying degree of initial wear and manufacturing variation, which
introduces slight variations in degradation behaviour across machines, even within the
subset. Multivariate sensor data is collected across 21 sensors placed at different locations
in the engine.

Key Characteristics

Unlike the IMS and FEMTO bearing datasets, the C-MAPSS dataset provides run-to-
failure data for a different type of mechanical asset - the turbofan engine, which provides
several unique qualities for validation. Unlike the IMS and FEMTO bearing datasets,
in which analysis is performed on a singular mechanical component, analysis on the C-
MAPSS dataset can be performed at the system level (i.e. entire engine assembly). The
other key difference is in the sampling rate - the C-MAPSS data is sampled at 1Hz, which
is significantly lower than the sampling rate used in the IMS and FEMTO datasets, which
poses a problem for many analysis approaches, particularly those heavily reliant upon
frequency and time-frequency methods. Hence, the C-MAPSS dataset is an excellent
choice for further demonstrating the ability of a method to generalize across different
applications, and for evaluating performance in the case of sparsely sampled data. The
proposed approach is applied to the first six complete run-to-failure data (denoted as Mach.
1-6) from the FD001 subset.
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Figure 7.8: C-MAPSS simulated engine configuration [163]

Parameter FD001 FD002 FD003 FD004

Engines for training 100 260 100 249
Engines for testing 100 259 100 248

Simulation conditions 1 6 1 6
Fault modes 1 1 2 2

Table 7.3: C-MAPPS dataset specifications []

7.6 Application of B-OCSVM to IMS Dataset

The B-OCSVM approach is applied to all four failure conditions in the IMS dataset. To
maintain consistency for benchmarking, the test/train partitions for each bearing are based
on those used in [110]. Feature extraction, dimensionality reduction, outlier removal using
the proposed NN-based approach Eq. 7.7 is applied to the training partition of each
bearing. Following outlier removal, ν is set to 0.01 [54]. Fig. 7.9 illustrates ∆Dk (Eq. 7.6),
the outlier threshold (Eq. 7.7) and fraction of outliers η for each bearing. The optimal
value of γ for each bearing is found by minimizing the objective functions (Eq. 7.8) shown
in Fig. 7.10 and taking the central value (γopt) of the minimum region. Fig. 7.10 shows
that a region where J(γ) is at a minimum exists for each case.

The OC-SVM classifiers are trained using γopt and ν = 0.01 and the scaled sigmoid-
normalized OC-SVM distances (Ssvm) for the test partitions shown in Fig. 7.11 are obtained
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Figure 7.9: First difference of sorted k-NN distances ∆Dk and outlier threshold Dcut

(dashed line) for each faulty bearing in IMS dataset

using Eq. 7.10. The early degradation process is detected using Eq. 7.14 to obtain tFD
for each bearing. At tFD, a Bayesian degradation model is initialized with φ = Ssvm(tFD),
and non-informative priors θ ∼ N(−1, 106), β ∼ N(1, 106). Updated model parameters are
updated by computing the posteriors after each subsequent observation, and an estimate
for t3 is generated after each update until the earliest prediction time (t3EP ) can be obtained.
The degradation model for bearing S1B3 and corresponding probability density function
of t3 are shown in Fig. 7.12a and b, respectively. The metric t3EP is obtained from the
α− λ plot (Fig. 7.13) as the earliest time at which the confidence interval for t3 converges
with the true RUL trajectory (t3EP = 1580 in Fig. 7.13) [162].

7.6.1 Results

The resulting B-OCSVM first detection times (tFD), earliest prediction times (t3EP ), fault
prediction times (tFP ) and maximum actionable times (tFD−F ) on the IMS dataset are
summarized in Table 7.4. In all cases, the degradation process is identified by tFD well
in advance of failure. Additionally, Fig. 7.11 shows that prior to tFD, the behaviour of
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Figure 7.10: Objective function J(γ), corresponding optimal region of γ and γopt for IMS
dataset.

Ssvm is relatively stable with little to no trend. Post-tFD however, Ssvm begins to deviate
sharply from the healthy class, indicating that B-OCSVM correctly captures the start of
the degradation process. In terms of the maximum actionable time, the values of tFD−F
in Table 7.4 show that B-OCSVM provides at least several days in each case to take
preventative action before failure occurs.

7.6.2 Benchmarking

In order to validate the claims of early detection and fault prediction threshold, B-OCSVM
is benchmarked against the current state-of-the-art supervised, semi-supervised and unsu-
pervised fault detection approaches using the IMS dataset. Table 7.5 summarizes the
performance of B-OCSVM against several comparable state-of-the-art approaches. Note
that for the other approaches, tFD in Table 7.5 represents the earliest time at which a fault
is detected (i.e. first detection time). With the exception of S2B1, Table 7.5 shows that

142



Figure 7.11: Scaled logistic sigmoid normalized OC-SVM distance (Ssvm) on IMS Dataset

tFD obtained using B-OCSVM occurs well in advance of those obtained using other meth-
ods. Comparing the B-OCSVM values of tFP to the values of tFD obtained using other
approaches finds that there is close alignment in S1B3, S1B4 and S3B3, which demon-
strates the that proposed threshold TSsvm accurately captures the level of degradation that
would be typically considered a fault by other approaches. The exception to this is S2B1,
in which tFD occurs only slightly earlier in B-OCSVM and tFP occurs slightly later than
in most approaches. Also of significance is the fact that the detection sensitivity achieved
using the unprocessed handcrafted feature set is comparable to those obtained using black
boxing feature learning approaches.
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Figure 7.12: (a) Bayesian degradation model Y (t) for IMS bearing S1B3 (t = 1580) (b)
Corresponding PDF of t3

7.6.3 Practical Significance of B-OCSVM and t3 to Maintenance
Planning

To illustrate the practical significance of the early-detection capabilities of B-OCSVM
and prognostic t3, several additional quantitative time-based metrics obtained using B-
OCSVM are compared to those obtained using a comparable state of the art approach
(CSC-NSVDD [110]). These results are shown in Table 7.6. With the exception of S3B3,
where the degradation occurs very suddenly prior to failure, it can be shown by the metric
tFP − t3EP that B-OCSVM and the t3 prognostic provides a significant window of time
to take preventative actions before a typical fault manifests. Furthermore, comparing the
time until failure from first detection (tFD−F ) of B-OCSVM to those obtained using CSC-
NSVDD, it was found that for all four cases B-OCSVM also offers a significantly longer
window to take preventative actions before failure occurs.
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Figure 7.13: α-λ plot for IMS bearing S1B3

7.6.4 Sensitivity Analysis of OC-SVM Hyperparameter Approach

The performance of the proposed OC-SVM hyperparameter estimation approach is assessed
by evaluating the influence of the estimated values of γ on the detection results. Specifically,
the robustness of tFD and tFP to the choice of γ is demonstrated by computing tFD and
tFP for the boundary values of γ shown in Fig. 7.10. The results are presented in Table
7.7. In Table 7.10, ∆−max represents the maximum deviation of the detection times with
respect to those obtained using γopt, and demonstrates that tFD remains unchanged for all
values of γ with the optimal region. In regards to the tFP , nominal changes are observed
for S1B3 and S3B3, while a larger deviation of ≈ 12% is observed in S1B4 and S2B1. This
result is acceptable given that these deviations are associated with the extreme (boundary)
values of γ and conclude that choice of γ, provided that is selected from within the optimal
region, will not meaningfully influence the detection results.
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Measure S1B3 S1B4 S2B1 S3B3

tFD 891 508 523 3289
t3EP 1580 1274 568 6010
tFP 1844 1508 639 6071
Failure 2156 2156 984 6322
tFD−F (days) 4.0 6.1 2.9 2.2

Table 7.4: First detection time (tFD), earliest prediction time (t3EP ) obtained using t3,
fault prediction time (tFP ) and maximum actionable time (tFD−F ) on IMS dataset using
B-OCSVM

Approach S1B3 S1B4 S2B1 S3B3

B-OCSVM 891 1844 508 1508 523 639 3289 6071
CSC-NSVDD [110] 1796 831 532 5973

AEC [67] 2027-2120 1641-1681 547-610 2367-2435
SODRMB-S4SVM [124] - - 535 -

SDAE-LSTM [169] 1812 1572 540 -
GAN [12] 1626-1684 1179-1192 - -

MAS-Kurtosis [93] 1910 1650 710 No det.
DPCA-HMM [201] 2120 1760 539 -

VRCA [201] - 1727 - No det.
RMS [67] 2094 1730 539 No det.

Table 7.5: First detection times (tFD) on IMS dataset based on literature from 2012 to
2020. For B-OCSVM, the first value for each case (tFD) denotes the initial detection of
the degradation process, while the second value denotes the fault prediction time (tFP ). ’-’
indicates when a bearing was not analyzed

7.7 Application of B-OCSVM to FEMTO Dataset

The purpose of the FEMTO dataset and subsequent C-MAPSS datasets are to provide
supplemental validation of the generalization performance of B-OCSVM across additional
scenarios. The FEMTO dataset specifically is used here to demonstrate the ability of
B-OCSVM to generalize across different operating conditions, failure types, and bearings
containing more than one type of fault. The proposed approach is applied to the six
complete run-to-failure bearing data obtained across three discrete operating states as
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Measure S1B3 S1B4 S2B1 S3B3

tFP − t3EP 1.8 days 1.7 days 0.9 days 0.4 days
tFD−F (B-OCSVM) 4 days 6.1 days 2.9 days 2.2 days
tFD−F (CSC-NSVDD) 2.2 days 4.6 days 1.7 days 0.3 days

Table 7.6: Time to fault from t3EP (tFP − t3EP ) and maximum actionable time (tFD−F ) on
IMS dataset using B-OCSVM and CSC-NSVDD [110]

γ S1B3 S1B4 S2B1 S3B3

Lower Bound 891 1883 508 1581 523 639 3289 6158
Central Value 891 1844 508 1508 523 639 3289 6071
Upper Bound 891 1832 508 1323 523 561 3289 5968

∆-max 0% 2.1% 0% -12.3% 0% -12.2% 0% -1.7%

Table 7.7: Sensitivity of tFD and tFP on IMS dataset with respect to γ within the optimal
region. ∆-max denotes the maximum change in detection point with respect to the central
(optimal) value of γ

shown in Table. 7.2. The process used to apply B-OCSVM to the FEMTO dataset
is identical to the approach used for the IMS dataset in section 7.6, with changes or
adjustments made to the methodology between the two datasets.

7.7.1 Generalization to Different Operating States, Fault Types,
Multi-Fault Bearings - Results

The degradation behaviour of Ssvm and objective functions for each bearing into the
FEMTO dataset are shown in Fig. 7.15 and 7.14, respectively. Fig. 7.15 shows that
the FEMTO data contains a wide range of degradation paths. While the degradation
behaviour captured by Ssvm varies significantly between bearings, the proposed objective
function (J(γ)) (Fig. 7.14 converges to an optimum region for all six bearings. The ob-
tained results are summarized in Table 7.8. As was the case with the IMS dataset, the
tFDs obtained for each case occur well in advance of failure, and the unsupervised predic-
tion for time of fault occurrence (tFP ) corresponding to the degradation threshold TSsvm
precedes the actual point of failure in all cases. Furthermore, the degradation models with
prognostic t3 are able to successfully obtain a prediction of tFP (t3EP ) well in advance of
fault occurrence in most cases except in operating state 3 (B31 and B32), in which the
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fault manifests spontaneously. Lastly, relative to the total lifetime of each bearing found
in Table 7.2, the maximum actionable times (tFD−F ) obtained using B-OCSVM provide
a significant window to take preventative action before failure occurs. These results are
consistent with those obtained using the IMS dataset and demonstrates that B-OCSVM
generalizes well across different loading and speed conditions as well as on bearings con-
taining multiple types of faults.

Figure 7.14: Objective function J(γ), corresponding optimal region of γ for FEMTO bear-
ing dataset

7.8 Application of B-OCSVM to C-MAPSS Turbofan

Dataset

To demonstrate the ability of B-OCSVM to generalize to faults in other types of systems
and to evaluate the performance of B-OCSVM with sparsely sampled sensor data in which
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Figure 7.15: Scaled logistic sigmoid normalized OC-SVM distance (Ssvm) on FEMTO
Dataset

Op. State 1 Op. State 2 Op. State 3
Measure B11 B12 B21 B22 B31 B32

tFD 1128 564 498 204 408 503
t3EP 1414 664 753 225 478 1362
tFP 1731 826 894 400 495 1434
Failure 2803 871 911 796 515 1636
tFD−F (hrs) 4.7 0.9 1.2 1.6 0.3 3.2

Table 7.8: First detection time (tFD), fault prediction time (tFP ), earliest prediction time
(t3EP ) and maximum actionable time (tFD−F ) on FEMTO bearing dataset using B-OCSVM
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Measure Mach. 1 Mach. 2 Mach. 3 Mach. 4 Mach. 5 Mach. 6

tFD 76 130 60 86 99 71
t3EP 104 153 70 111 120 111
tFP 150 223 128 141 201 154
Failure 190 285 177 187 267 186
tFD−F
(# cyc.)

114 155 117 101 168 115

Table 7.9: First detection time (tFD), fault prediction time (tFP ), earliest prediction time
(t3EP ) and maximum actionable time (tFD−F ) on C-MAPSS turbofan dataset using B-
OCSVM

the proposed feature set cannot be extracted, the proposed approach is applied to the first
six run-to-failure data (Mach. 1-6) from the FD001 subset of the C-MAPSS Turbofan
dataset. Since the sampling rate of the data is too low for proposed feature set, the raw
data from all 21 sensors is used instead. Apart from the feature set used, the methodology
used here is identical to approach applied to the previous two datasets.

7.8.1 Generalization to Turbofan Engine Faults and Sparse Data
- Results

The objective functions (J(γ)) and degradation paths (Ssvm) for the six FD001 turbofan
data are shown in Fig. 7.16 and 7.17, respectively. Given that subset FD001 contains only
one operational condition, the degradation behaviour is consistent across all six engines,
with slight variations due to random initial defects. Similar to the IMS and FEMTO
datasets, Fig. 7.16 shows that an optimal region for γ is obtained for each of the six
engines. The obtained results are summarized in Table 7.9. From Table 7.9, the main
observations regarding tDT , t3EP ,tFP and tFD−F are consistent with those obtained on the
IMS and FEMTO datasets, which indicates that B-OCSVM generalizes well to different
faults in other machinery and performs well even in cases where the proposed feature set
cannot be used.
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Figure 7.16: Objective function J(γ), corresponding optimal region of γ for C-MAPPS
dataset

7.9 Summary

This chapter presents an unsupervised framework for early degradation detection and
fault prediction (B-OCSVM), based on OC-SVM and the hierarchical Bayesian framework.
Within this approach, a new method for unsupervised OC-SVM hyperparameter estima-
tion in the context of early degradation detection and a new prior-independent degradation
threshold (TSsvm) based on the OC-SVM decision space are proposed. he proposed thresh-
old can be used in conjunction with a novel prognostic t3 to predict the time at which the
detected degradation process will manifest into a fault without prior knowledge regarding
the failure of the component. Validation and benchmarking against the state-of-the-art
was performed using multiple data sets. The key conclusions from this work are as follows:

1. Benchmarking against state-of-the-art fault detection approaches on the IMS data
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Figure 7.17: Scaled logistic sigmoid normalized OC-SVM distance (Ssvm) on C-MAPPS
dataset

set demonstrated that B-OCSVM was able to identify the start of the degradation
process well in advance of the typical detection point found using other approaches,
while still correctly predicting the fault manifest point identified by other approaches.
These results demonstrate the early degradation detection capabilities of B-OCSVM,
and validates that the proposed degradation threshold TSsvm is a good indicator of
the fault manifestation point.

2. Sensitivity analysis of the proposed OC-OCSVM hyperparameter approach demon-
strated that the choice of γ within the estimated optimal range does not meaningfully
impact the detection results, which demonstrates the robustness of the parameter es-
timation approach.

3. Direct compared of the maximum actionable time tFD−F obtained using B-OCSVM
to CSC-NSVDD on the IMS dataset showed that B-OCSVM provides a significantly

152



longer window to take preventative action across all four failed bearings.

4. Validation performed on the FEMTO data set demonstrated the robustness of B-
OCSVM to different operating states and bearings containing multiple types of faults.

5. Validation performed on the C-MAPSS turbofan engine data set demonstrated the
ability of B-OCSVM to generalize to different machinery types, and showed that
B-OCSVM can still be effective even in situations where the proposed feature set
cannot be extracted.
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Chapter 8

Contributions and Conclusions

In response to the unique challenges introduced by the increasing complexity of engineer-
ing systems—and the limited applicability of existing solutions within literature to these
problems—this thesis presents a novel set of three, autonomous and unsupervised tools
towards the realization of CBM on such systems. The proposed tools address several of
the key knowledge gaps within the current body of unsupervised CBM literature pertain-
ing to the areas of pre-processing, fault detection and degradation modeling. Validation
of the proposed approaches is performed using a combination of data collected from two
full-scale field implementations at Toronto Pearson International Airport, in addition to
five, competition and public validation data sets. This chapter summarizes the significant
contributions and key conclusions from this research, followed by several recommendations
for future study.

8.1 Summary of Contributions

The main contributions of this thesis are as follows:

1. An autonomous, non-parametric pre-processing tool for spectral analysis of non-
stationary signals (S-MSC) which uses MSC in conjunction with the STFT to blindly
separate time-varying harmonic components from noise within a signal. The proposed
S-MSC approach addresses the key gap in literature pertaining to the lack of com-
putationally efficient, fully-blind, pre-processing methods conducive to unsupervised
CBM. Validation performed across multiple use cases and data sets demonstrated
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the robustness and effectiveness of S-MSC as an non-parametric pre-processing tool
for non-stationary signals.

(a) Collection of angular measurements from the LINK APM gearbox for validation

(b) Data-driven derivation of a suitable estimator for the kernel bandwidth to enable
autonomous deployment of S-MSC in the unsupervised setting.

2. An unsupervised pre-processing tool for blind decomposition of vibration signals ob-
tained from multi-modal machinery (GMM-OSD), which uses GMMs to cluster and
classify data within a non-stationary multi-modal vibration signal into a set of con-
stituent, stationary signals. Applied in conjunction with S-MSC, the combined tools
form a robust pre-processing framework for the efficient, unsupervised analysis of
vibration signals containing multiple types of non-stationarity. The GMM-OSD ap-
proach and combined S-MSC GMM-OSD approach was validated using data obtained
from two field pilots located at Toronto Pearson International Airport.

(a) Collection and hand-labelling of multi-modal data sets from both the LINK
APM gearbox and Terminal 1 PCA units; and, feature-based characterization
of the LINK APM gearbox operational behaviour for validation

3. An unsupervised framework for early degradation detection and fault prediction (B-
OCSVM), which builds upon OC-SVM and the hierarchical Bayesian framework.
B-OCSVM addresses two key gaps in the literature pertaining to hyperparmeter es-
timation and degradation thresholding in the unsupervised setting. By re-framing the
traditional fault detection and degradation modeling problem as a degradation detec-
tion and fault prediction problem, novel unsupervised approaches for both OC-SVM
hyperparameter estimation and degradation threshold setting could be proposed.
Validation and benchmarking against the state-of-the-art was performed using mul-
tiple data sets.

4. Design, implementation and collection of data across two full-scale field pilots located
at Pearson Toronto International Airport: one pertaining to the gearbox of the LINK
APM train; and, the other pertaining to three passenger boarding tunnel PCA units
located in Terminal 1.

5. Peer-reviewed journal and conference publications corresponding to each of the afore-
mentioned contributions, with more forth-coming. A list of publications that have
resulted directly from this work is provided in Appendix A.
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8.2 Key Conclusions

For the sake of completeness and ease of contextualization with the contributions listed
above, the key conclusions from each of the three proposed approaches are aggregated in
this section.

Pertaining to S-MSC, the key conclusions are:

1. Validation performed on the LINK APM gearbox data showed that S-MSC was
effective at separating the time-varying gearbox harmonics from noise.

2. Comparison to pre-processing using TSA showed that S-MSC was able to extract
more harmonic components than TSA, without requiring the angular signal needed
for TSA.

3. Application to the Safran engine data set showed that the use of S-MSC for de-noising
in envelope analysis enabled the detection of time-varying bearing fault frequencies,
circumventing the need for alternative, computationally expensive solutions.

4. Further validation against FSST and SSA using the CMMNO’14 wind turbine data
showed that S-MSC performs better than FSST and equal to SSA on the low-SNR
CMMNO’14 data, at a much lower computational cost.

5. The S-MSC approach depends upon only a single parameter, the kernel bandwidth.
To enable autonomous deployment of S-MSC, a criterion based on the spectral skew-
ness of the S-MSC residual spectrum was proposed for the estimation of the kernel
bandwidth.

Pertaining to GMM-OSD, the key conclusions are:

1. A qualitative study was performed on data obtained from the LINK APM gearbox
and Terminal 1 PCA units to characterize the dynamic operational behaviour of these
machines and and validate the proposed feature set. The results of the study showed
that the best differentiating features varied between the two data sets, which justifies
the use of a wider feature set in the unsupervised setting.

2. Applied to data obtained the LINK APM gearbox and Terminal 1 PCA unit field
pilots, GMM-OSD was able to blindly decompose the multi-modal data in each signal
into the corresponding discrete operating states. For the well-separated Terminal 1
PCA data, GMM-OSD could be applied effectively without pre-processing.
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3. For the LINK APM gearbox data, GMM-OSD was unable to cluster the data effec-
tively without pre-processing. After applying S-MSC first as a pre-processing tool
to remove non-multi-modal sources of non-stationarity from the signal, GMM-OSD
was able to decompose the filtered signal into the correct, discrete operating states.

4. A second formulation using vGMMs was also validated using both data sets, and was
shown to converge to the same optimal model selected using BIC in the traditional
approach. Both approaches were equally effective for decomposition, with vGMM
providing a more computationally efficient solution, and GMM-BIC providing higher
interpretability of the model choice due to the use of BIC.

Lastly, pertaining to B-OCSVM, the key conclusions are:

1. Benchmarking against state-of-the-art fault detection approaches on the IMS data
set demonstrated that B-OCSVM was able to identify the start of the degradation
process well in advance of the typical detection point found using other approaches,
while still correctly predicting the fault manifest point identified by other approaches.
These results demonstrate the early degradation detection capabilities of B-OCSVM,
and validates that the proposed degradation threshold TSsvm is a good indicator of
the fault manifestation point.

2. Sensitivity analysis of the proposed OC-OCSVM hyperparameter approach demon-
strated that the choice of γ within the estimated optimal range does not meaningfully
impact the detection results, which demonstrates the robustness of the parameter es-
timation approach.

3. Direct compared of the maximum actionable time tFD−F obtained using B-OCSVM
to CSC-NSVDD on the IMS dataset showed that B-OCSVM provides a significantly
longer window to take preventative action across all four failed bearings.

4. Validation performed on the FEMTO data set demonstrated the robustness of B-
OCSVM to different operating states and bearings containing multiple types of faults.

5. Validation performed on the C-MAPSS turbofan engine data set demonstrated the
ability of B-OCSVM to generalize to different machinery types, and showed that
B-OCSVM can still be effective even in situations where the proposed feature set
cannot be extracted.
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8.3 Limitations

The unsupervised methods presented in this thesis have been developed within the con-
text of machinery monitoring. While unsupervised (i.e. no requirements for labelled data)
inductive biases or assumptions drawn from domain knowledge are incorporated in the for-
mulation of these methods. As such, while these methods are designed to generalize well
within the realm of machinery monitoring, the generalization performance and applicabil-
ity of these methods - without modification - to other applications outside of machinery
monitoring, has yet to be evaluated.

8.4 Recommendations for Future Studies

While the tools proposed within this thesis provide a step forward towards a more effective
implementation of CBM in the unsupervised setting, there remain several important topics
that require further exploration:

1. IoT Integration: application of the proposed tools within the real-world will require
further studies which focus specifically on their implementation within IoT. Namely,
the feasibility of these tools over stream processing, and their integration into existing
cloud computing services needs to be explored in greater detail.

2. Multi-Component or Fleet-level Application: all of the validation performed
in this thesis considers only a single component or system at a time. Hence, two
sensible extensions of this work are to explore their application within the context of
multi-component and fleet-level CBM applications.

3. Ensemble Learning: To further improve the robustness of the proposed tools
(namely B-OCSVM and GMM-OSD), particularly for challenging or highly uncer-
tain real-world applications,extensions of this work to incorporate ensemble learning
should be explored.

4. Extension of CBM tools to Other Applications: Relative to many other fields,
the literature within CBM pertaining to DSP and ML is dense but pragmatic. Many
existing methods, including those presented in this thesis, can be extended and ex-
plored in the context of other applications and other fields of engineering. The
application of S-MSC to hydrophone signals as a spectral pre-processing tool for ac-
tive leak detection by the author is only one such example [89]. A summary of this
work is provided in Appendix B.
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5. Continued Exploration of Unsupervised CBM: Relative to supervised CBM,
the depth of literature within unsupervised CBM is comparatively shallow, leaving
much left to be explored. While challenging to develop and implement, the practical
implications of unsupervised CBM tools are highly significant and worthwhile to
continue exploring.
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Appendix B

Application of S-MSC to Active Leak
Detection in Water Distribution
Networks

This appendix presents the extension of S-MSC to a new application outside of fault
detection for rotating machinery: active leak detection and localization in fluid filled pipes.
For leak detection and localization, S-MSC is applied as a spectral pre-processing tool to
acoustic data obtained from hydrophone sensors installed inside fluid filled pipes. This
appendix begins with a brief overview of the required theoretical background for active
leak detection and localization, followed by a description of the experimental test bed and
data set. Next, the S-MSC leak detection and localization procedure is presented, followed
by results obtained using data collected from the experimental test bed.

B.0.1 Background

The theory and details presented here are solely intended to provide the reader with the
necessary background to understand this particular use case for S-MSC. A detailed the-
oretical background and description of the work presented hereafter can be found in the
co-authored publication [89].

In active leak detection, an active acoustic source located inside the pipe sends plane-
wave excitations along the length of the pipe, which can be measured using hydrophone
receivers located along the pipe. Physical discontinuities such as junctions, valves, as
well as leaks, will cause a reflection in the portion of the incident the wave that comes
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in contact with the impedance. This phenomenon manifests in the TF domain as a pair
of same-frequency, similar amplitude peaks, separated by a time delay ∆t, as illustrated
in Fig. B.1. Using the theoretical or measured (i.e. experimentally determined) speed
of sound in water, the measured time delays can be converted into an equivalent length
of pipe which can be used to localize the position of the impedance or leak. For small
impedances (i.e. leaks) the low energy of the corresponding peak pairs are easily buried
within the noise of the signal. In addition, the transient nature of the excitation method
coupled with other sources of time-varying phenomena (i.e. water usage) present in live,
pressurized fluid filled pipes, the measured hydrophone signals will often contain many
sources of non-stationarity which further complicates the task of peak pair extraction.
Hence, in this application, S-MSC is used as a spectral pre-processing tool to extract low
energy peak pair information buried in the signal noise.

Figure B.1: Example TF representation of incident and reflected wave peak pair

B.0.2 Laboratory Test Bed

The data was obtained from experiments conducted on a straight 11.4m long pressurized
PVC pipe located at the University of Waterloo. A diagram illustrating the configuration
of the pipe, complete with labels for the hydrophone locations, leak location and other
impendances is shown in Fig. B.2. Excitations produced by the acoustic source located
on the end of the pipe are sampled at 25.6kHz using two Teledyne RESON TC4013 hy-
drophones (H1 and H2 in Fig. B.2 spaced 5.8m apart. The leak, located between the
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hydrophones, is generated by opening a valve which simulates a leak with a flow rate in
the range of 20L/min. To simulate realistic operating conditions, the pipe is connected to
a pressurized water inlet (50-55 psi) connected to the City of Waterloo’s main distribution
system. The data analyzed hereafter pertains to experiments using a 0-100 Hz broadband
excitation. Data collected separately for the non-leak and leak case.

Figure B.2: Schematic of experimental set-up used for tests; also shown is the acoustic
source, the hydrophone receiver locations (for H1-H2) and the leak location.

B.0.3 S-MSC Procedure for Leak Detection and Localization

S-MSC is used to perform leak detection and localization using hydrophone data obtained
from a single sensor. The analysis pre-processing procedure is analogous to the approach
presented in section 5.3. The key differences are in the post-processing steps follow S-MSC
decomposition. Contrary to the approach used in the previous vibration analysis examples
in which the noise spectrum of the S-MSC decomposition was discarded, this analysis will
instead discard the harmonic spectra Zc in order to obtain the time delay information
buried inside the noise spectra Ze. The post-processing procedure for leak detection and
localization is as follows:

1. Using the non-leak data:

(a) Use the S-MSC noise decomposition spectra Ze to obtain a spectrogram repre-
sentation of the ”low-energy” frequency components in the original hydrophone
signal.

(b) Use peak finding to extract time delay information in the low-energy spectro-
gram
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(c) Normalize and aggregate peak-pair information into a histogram representation
with bin size equal to the STFT time resolution.

2. Calculate an upper statistical process control (SPC) limit for each histogram bin
using the mean and standard deviation of the bin count obtained across all non-leak
runs.

3. Using the leak data:

(a) Repeat the process under step 1) for the leak hydrophone signals.

(b) Detection: the bin frequencies of the leak histograms are compared against
the non-leak control limits. A leak is detected when the upper control limit is
exceeded at one or more of the histogram bins.

(c) Localization: if a leak is detected in a bin, the time lag associated with that
bin is converted into an equivalent distance from the hydrophone using the
experimental wave speed (µc = 464m/s)

B.0.4 Results

Fig. B.3a, b and c present an example of a the raw spectrogram and typical S-MSC high en-
ergy and low energy decomposition results, respectively, for H1 hydrophone data collected
from the no-leak case. Fig. B.3a shows that the spectral content of the hydrophone signal
is comprised of numerous low-energy regions which are interspersed between and obscured
by higher energy regions. Fig. B.3c shows that the noise spectrum Ze produced using S-
MSC decomposition successfully unmasks the low energy signal components, allowing peak
pair information to be extracted from the signal. An example histogram representation of
the time lags extracted from the the S-MSC low energy spectrogram of a single pair of leak
and non-leak tests is shown in Fig. B.4. The time lags associated with known impedances
are labelled on Fig. B.4. Fig. B.4 shows that the largest discrepancy between the bin
frequencies of the leak and non-leak histograms occurs at the leak location, for which the
frequency is significantly higher in the leak case than in the non leak case. Similarly, the
frequency of the bins for the leak case at the endcap, H2 and the pressure gauge decreases
proportionally.

Detection and Localization

Normalizing and aggregating the time delay information across all non-leak runs results
in the histogram and control limits shown in Fig. B.5. The superimposed leak histogram
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Figure B.3: Sample spectrograms for no-leak single pipe hydrophone: (a) raw signal, (b)
MSC high energy components, (c) MSC low energy components

information is shown to exceed the non-leak SPC limit at only one bin: 0.0175s. Using the
mean experimental speed of sound (464 m/s) to convert the time lags associated with the
histogram bin center and edges corresponds to a leak location centered at 4.06 m measured
from H1, bounded by [3.77m 4.35m]. Taking center distance of 4.06 m produces an estimate
within 2% error of the actual leak location. The maximum error associated with the bin
edges remains within 9% of the actual leak location. Alternatively, a probabilistic estimate
of the leak location can be obtained by using the distribution of the experimental speed of
sound instead - the corresponding result using this approach is shown in Fig. B.6.
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Figure B.4: Aggregated histogram of pairs extracted from MSC low-energy spectrogram
with known impedances labelled - Hydrophone H1 (n = 350)

Figure B.5: SPC control chart based on normalized leak vs. no leak histograms - 100 hz
bandwidth excitation - Hydrophone H1
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Figure B.6: Probabilistic leak localization result using SPC control chart histogram bin (t
= 0.0175s) and statistical distribution of µc - true leak location labelled in red
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Appendix C

Labelled Study on APM Operating
States

In the preliminary phase of the LINK APM field pilot, a supervised study was conducted
to determine a physical interpretation for the clusters found in the feature data. Vibration
data collected from the APM gearbox was labelled with respect to the position of the
train along its route. The following is a brief summary of the study results pertaining to
accelerometer A1. The feature pair of hyper-kurtosis and crest factor used for the study
were heuristically determined at the time.

Fig. C.1 (left) illustrates the position-labelled feature pair data, while Fig. C.1 (right)
illustrates the corresponding result obtained from the minimum-BIC GMM model. Com-
parison of the two plots in Fig. C.1 shows that GMM clustering for this feature pair is
consistent with the position/direction of the train. Further evaluation shows that clusters
1 and 2 correspond to different directions of travel for the train, while cluster 3 corresponds
to scatter, containing points from all track segments.
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Figure C.1: GMM APM Comparison Example
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