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A Phase Model with Large Time Delayed Coupling”

Isam Al-Darabsah*t Sue Ann Campbell*-t

Abstract

We consider two identical oscillators with weak, time delayed coupling. We start with
a general system of delay differential equations then reduce it to a phase model. With the
assumption of large time delay, the resulting phase model has an explicit delay and phase
shift in the argument of the phases and connection function, respectively. Using the phase
model, we prove that for any type of oscillators and any coupling, the in-phase and anti-phase
phase-locked solutions always exist and give conditions for their stability. We show that for
small delay these solutions are unique, but with large enough delay multiple solutions of each
type with different frequencies may occur. We give conditions for the existence and stability
of other types of phase-locked solutions. We discuss the various bifurcations that can occur
in the phase model as the time delay is varied. The results of the phase model analysis
are applied to Morris-Lecar oscillators with diffusive coupling and compared with numerical
studies of the full system of delay differential equations. We also consider the case of small
time delay and compare the results with the existing ones in the literature.
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1 Introduction

Coupled oscillator models have been used to study different aspects of biology, chemistry and
engineering, for example chemical waves [1], flashing of fireflies [2], laser arrays [3,4], power system
networks [5], neural networks [6-9], movement of a slime mold [10], and coupled predator-prey
systems [11,12]. Time delays in the connections between the oscillators are inescapable due to
the time for a signal to propagate from one element to the other. Many of these systems exhibit
phase-locking behaviour, i.e., all the oscillators have similar waveforms and frequencies, but with
some fixed phase difference between different oscillators. To study the existence and stability of
such phase-locked solutions and how they are related to the time delay and other parameters, one
must formulate a model for the system. We discuss two approaches below.

Omne approach to study connected networks of oscillators is through phase models [13]. In
these models, each oscillator is represented only by its phase along its limit cycle, with amplitude
variation neglected [14-16]. Phase models take the general form [14,17]:

do;

& =G OO, 0,(0), i1, (1)
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where 6; € [0,27) is the phase of the i*" oscillator, ; > 0 the natural frequency and H; are the
connection functions. Motivated by the famous Kuramoto model [1], in the literature the functions
H; often take the form:

Hz(el(g)v79n(§)):zj;KZ]H(ej(g)_ez(g))v izl?"'?”? (2>

where K;; is the adjacency matrix of an unweighted network [15, 18]. In the original Kuramoto
model [1] the function H in (2) is the sine function. Usually, transmission time delay is introduced
as an explicit delay in the argument of the phases [18-23]:

d0

—Q +Z GH(0;(6-7)-0,(¢)), i=1,...,n. (3)

Most studies of this model focus only on synchronization [18] or use simplifications such as H(-) =
sin(-) [19-24] or n =2 [19,22,23].

Other authors introduce additional processes into system (3). For instance, in [19], the dynamic
behavior of coupled oscillators with time delayed interaction under a pinning force is studied.
In [21,22], the authors study time delayed phase models with H = sin(-) and random noise forcing.
Finally, a phase shift is sometimes included in the model of a network of connected oscillators to
represent the temporal distance between the oscillators. In general, the phase shift between two
oscillators «y; is incorporated in the phase model as, see e.g., [24-26],

de o Z H(0,(6) = 6:(8) —agy), i=1,....m. (@)

In the case where H(-) = sin(-) this model is called the Kuramoto-Sakaguchi model [26]. In fact,
there is a relation between such phase shifts and the transmission time delay. In [27,28], the
authors have shown how the model with delay and the model with the phase shift are linked. We
will review the details of this link later in this section.

Models of coupled oscillators are also formulated as physically or biological derived differential
equations [11,12,17]. These models are of the form

dX;
dp

=F; (X;(p)) +eGi(Xi(p),.... Xi(p), ..., Xn(p)), i=1,....n, X;eR™, (5)

and are such that when € = 0 the dynamical system of each uncoupled oscillator has an exponentially
asymptotically stable T;—periodic limit cycle with corresponding (natural) frequency €2;. In these
models, X; represents the state of the ¥ oscillator of the system, G; are the coupling functions
and € > 0 is the coupling strength [14,27,29,30]. Note that X; is a vector of dimension at least
2, but can be high dimensional. For example, in a pendulum model X; represents the position
and velocity of the i** pendulum, while in a neural model X; represents the voltage and gating
variables of the i** neuron.

If the coupling is weak, 0 < € << 1, then the theory of weakly coupled oscillators can be used to
connect the physical model (5) to a phase model [8,29-32] . More precisely, the dynamics of each
oscillator in the network can be rigorously reduced to a single equation that indicates how the
phase of the oscillator changes in time [14,16,27]. One form of weakly coupled oscillator theory
is Malkin’s Theorem where the connection functions in the phase model are determined explicitly
in terms of G; and the limit cycles of the uncoupled system, (5) with € = 0. Let ¢;(¢) € S! be the
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phase deviation of the ith oscillator of (5), i.e., the change in the phase due to the coupling. Tt
then follows from Malkin’s Theorem (see e.g., [14, Theorem 9.2]) that the dynamics of (5) can be
described by the phase deviation model:

W H(e1 (D)= i) () -0 (0) OO, i=1m, ©
where H; are the phase interaction functions and the variable ¢ := ep represents slow time because
the phase deviations ; are slow variables. The references [14, 16, 30] provide other forms of the
theory and give further references. We also refer the reader to the recent articles [33-35] for an
overview of various numerical and analytical techniques for phase reduction. In [27], Izhikevich
generalizes Malkin’s theorem to weakly connected oscillators with fixed delay, 7, in their interac-
tion:

dX;
dp

=F; (Xi(p)) +eGi(Xi(p-7),.... Xi(p-7),...Xu(p-7)), i=1....,n, X;eR™ (7)

where all uncoupled oscillators have nearly identical natural frequencies. Assuming the natural
frequency is 1, Izhikevich shows that the phase deviation model corresponding to (7) is

dp;
dt

=Hi(or (t=n) =i (1) = ¢, oon (E=m) =i (1) =¢) + O(e), i=1,...,m, (8)

where 7 := e and ¢ := 7 mod 27. The functions H; are still defined explicitly in terms of G; and
the uncoupled limit cycle in (7). It is clear that the time delay 7 enters the phase model (8) as
both an explicit delay, n, and a phase shift, (. The major result that Izhikevich proved in [27] is
that if the delay 7 in (7) satisfies er = O(1) (large delay), then the explicit delay occurs in the
phase model (8). However, when the delay satisfies 7 = O(1) with respect to e (small delay), no
delay appears in the argument of the phases. Hence, (8) becomes:

dgii =Hi(o1(t) = 0i(t) = oo von () =05 (1) = C) + O(e), i=1,....m. 9)

We refer the reader to the review article [24] and the references therein for different scenarios where
large or small delay appears in-phase models.
In this article we focus on physical models with the following particular form

dX

—F(X (p) )+ez G(Xi(p),X(p-7)), i=1,...n, X;eR" (10)

where K; = 0. This represent the following modelling assumptions. The oscillators are identical.
The coupling occurs pairwise between the oscillators and there is no coupling from an oscillator to
itself. The coupling to the i** oscillator occurs close to that oscillator, so the time delay represents
the time it takes for information to travel from the 7t oscillator to the i*" oscillator. Models with
such structure occur in models of biological systems [8, 11].

Assuming the uncoupled oscillators in (10) have a natural frequency €2 and the K;; = O(1) with
respect to €, we show in the appendix that the approach of [27] can be applied to yield

TG L EH () 600+ 0 (1)



where 7 := €Q7 and ¢ := Q7 mod 27, in the case of large delay, i.e., when eQ7 = O(1). In the case
of small delay (11) becomes

T = G S KU (54(0) - air) - 7) +O(0) (12)

To see how the phase deviation model relates to the standard phase model, note that the phase
of oscillations 6; in (10) have the form:

91(5)2954-@@(25), ’i=].,...,7’L, (13)

where t = €Q&, see [14,27]. Notice that the natural frequency of each uncoupled oscillator in (13)

is €). Then,

—Z-Q
d£ + €€

Similarly, when the time delay is small, we have

Z H (0;(&-7) = 0:(8)) + O(e). (14)

d9-9+ez K H (0;(6) - 0,(6) - €) + O(2). (15)

Thus in the phase model formulation, the coupling strength parameter e explicitly appears in front
of the connection function h. Regarding the dynamics, it follows from (13) that

0i+1_0i:90i+1_@i7 i=1,...7n—1

i.e., phase-locked solutions are the same as phase deviation locked solutions [14]. The existence
and stability of phase-locked solutions of system (15) has been studied in the case of two oscillators
[24,36] and many oscillators with structured coupling [17,24,37].

The goals in this paper are twofold. First, the majority of studies of coupled oscillators with
large delays have been done in the context of isolated phase models, often with just sine function
coupling. Thus we will revisit and extend this analysis in the case where the phase model is
explicitly connected to a physical differential equation model and the function H is general. In
particular, we will show that the multiple stable phase-locked solutions of the same type may occur
even when the coupling is weak. Second, note that the small delay phase deviation model (12) is
a system of ordinary differential equations, while the large delay model (10) is a delay differential
equation model. Thus the spectrum of Floquet multipliers of a periodic solution is finite for the
former and countably infinite for the latter. Nevertheless, several studies have verified numerically
that the model (12) gives an accurate description of existence and stability of phase-locked periodic
solutions of (5) in the case of weak coupling and small delay [17,36]. Here we will show why this
is the case. In particular we will show how the solutions of system (10) reduce to those of system
(12) if the delay is small. In this article, we will focus on (10) when n = 2 as this is enough to
illustrate our main points.

The paper is organized as follows. In the next section, we reduce the model of two weakly
connected oscillators with large time delay to a phase model, and study the existence of phase-
locked solutions. In Section 3, we give a complete description of the stability criteria for all phase-
locked solutions and describe the potential bifurcations that can occur in the system. Then we
compare our results with the stability criteria in [36] when the time delay is small. In Section 4, we
consider a particular application to Morris-Lecar oscillators with diffusive coupling. Numerically,
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we derive the corresponding phase model, calculate the phase-locked solutions, determine their
stability and explore the existence of bifurcations. We also compare prediction of the phase model
and solutions of the full model. Finally, we examine the behaviour when the time delay is small.
In Section 5, we discuss our results.

2 Phase Model

Consider the system of ODEs

dX;
dp

=F(X;(p)) i=1,2, X,;eR" (16)

Assume that the system (16) admits an exponentially asymptotically stable periodic orbit given
by X = X(p) with natural frequency Q, 0 < p <T = 27/Q.

Next, consider a weakly connected system of two identical coupled oscillators of the form (16)
with time delayed coupling:

BU R (X0(0) + G (X3 (), Ka(p - 7):6),
d}é (17)
T = F (Xa(p)) #¢G (Xa(p). Xalp 7))

where G : R" x R® - R™ describes the coupling between the two oscillators and ¢ is the coupling
strength. Assume that e is sufficiently small and 7 := eQ7 = O(1). Let t = ep be slow time and
©i(t) € S! be the phase deviation from the natural oscillation X (p), p > 0. Then, by applying
weakly coupled oscillator theory with delayed interactions in [27], (1, p2)T € T? is a solution to

dpy 1
= GH(pa(t=m) — i(1) - Q) + O(e), -
18
dpy 1
== GH (et =)~ a(t) - Q) + O(e),
where H is a 2m—periodic function defined by
1 2m
H©6) = o= [ 2(0)" G (X(0), X(p+6))dp. (19)
0

Here Z(p) is the unique nontrivial 27—periodic solution to the adjoint linear system

% - -[DF (X(p))] Z

satisfying the normalization condition

2T
1 A N
— | Z(p)F(X dp=1.
\ / (0)F (X(p)) dp
The derivation of system (18) from (17) follows from the Appendix with n =2 and K9 = Ko = 1.
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Dropping the terms O(¢) in (18), we obtain the phase deviation model:

% = éH(%(t —n) = pu(t) - Q7), (20)
% = éH(%(t =) = pa2(t) - Q).

For simplicity, in the rest of the paper we will refer to (20) as the phase model instead of the phase
deviation model.

We study the dynamics of the model (20) by exploring phase locking in (20), that is, solutions
of (20) such that ¢y — ¢ = constant [14]. We suppose that

p1(t) = wt and wo(t) =wt + (21)

where w is the frequency deviation of the oscillator and ¢ is the natural phase difference [14].
Substituting (21) into (20) leads to

w—éH(w—wn—QT):O,

1 (22)
w—ﬁH(—w—wn—Qr) =0.
We rewrite this as
Fw,¢) =0=F(w,-) (23)
where
F(w,") ::w—%H(-—wn—QT). (24)

In this article, we are interested in exploring how the solutions (¢ and w) of (22) vary with 7
when the coupling strength (€) and frequency (€2) are fixed. Note that, we need only to investigate
Y in [0,27), due to the 27 periodicity of H, and w € R.

First, by subtracting the equations of (22), we obtain

H(p-wn-Qr)-H(-¢Y-wn-Q71) =0. (25)
Since H is 2m—periodic function, equation (25) always has the solutions ¢ = 0, 7. The corresponding
frequency deviation is determined from the equation
1
F(w,0) zw—ﬁH(—wn—QT) =0 (26)
when ¢ =0 and
1
F(w,ﬂ)zw—ﬁﬂ(w—wn—QT):O (27)

when ¢ = 7.

Equations (26) and (27) are guaranteed to have a least one solution due to the continuity and
2m periodicity of H. In fact, if 7 is sufficiently large, they may have multiple solutions. To see
this, recall that n = ewr and note that

F,(w,0)=1+erH'(—weQdr - QT), (28)

where F, is the partial derivative of F' with respect to w. If there exists @ such that F(w,0) =0
and F,(@,0) < 0 then (26) has more than one solution. Similar arguments apply to equation (27).
This may be possible if 7 is sufficiently large.



Remark 2.1. The solutions ¥* =0 and * = of (25) correspond to in-phase and anti-phase
periodic solutions of the original model (17), respectively. By in-phase solution we mean both
oscillators reach their highest peak at the same time, whereas an anti-phase solution means one

oscillator reaches its highest peak one half-period after the other oscillator. Examples of these
solutions are given in Figure 1.
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Figure 1: Illustrations of the phase-locked dynamics of model (17).

In fact, system (17) could have other phase-locked solutions (neither in-phase nor anti-phase)
corresponding to the solutions ¢ of (22) such that ¢ ¢ {0,7}. As in [38], we will refer to these
solutions of (17) as out-of-phase solutions. Let (w*,7*) be a solution of (22) at 7 = 7* such that
Y* ¢ {0,7}. Then w* and ¥* satisfy (23), that is, (w*,1*) is an intersection point of the contours
F(w,v) =0 and F(w,—%) =0 in the wiy-plane. Suppose that ¢* € (0,7) with a corresponding w*
are solutions to (22) at 7 = 7%, then

1 1
ﬁH(@b* —2r—w'n* -Qr*) = ﬁH(i/J* —wny -Qr*) =w*

and 1 1
5H(27r - —wpt - Q1) = EH(—w* W -QrY) =w*

due to the periodicity of H. Thus, 27 — 1~ is also a solution in (22) with corresponding w*.
This leads to the following.

Proposition 2.1 (Existence of phase-locked solutions). For any interaction function H and any
values of 0, € and T the phase model (20) has the solutions ¥* =0 and * = 7w with corresponding
frequency deviations determined by (26) and (27), respectively. If ¥* € (0,m) with corresponding
w* are solutions to (22) at T =7* then so is 2w —* with w*, i.e., solutions come in pairs.



3 Stability

In this section, we discuss the linear stability of the solutions (21) of (20). The linearization of
(20) about the solution (21) is

% = —auy (t) + aus(t — 1),
d‘z (29)
d—; = —bus(t) + buy (t— 1),
where ) .
a= ﬁH'(dJ—wn—QT) and b= ﬁH’(—@b—wn—QT). (30)

In (30), H' represents the derivative of H with respect to its argument. It is useful for our analysis
to scale time so the delay becomes one. Applying the scaling

ns=t,Ui(s) =ui(t), Ua(s) =ua(t),

results in iU
d—l =-nalUy(s) + nals(s - 1),
S

d
% = -nbUy(s) + nbUi(s - 1).

It follows that the corresponding characteristic equation is
A(X;n) = A2 +n(a+ b))\ +n%ab - n*abe ™ = 0. (32)
In the following we study the distribution of roots of this equation.
Proposition 3.1. Assume ab=0. Then A(X\;n) has:
. One positive root and one zero root when a+b < 0;
1. Two zero roots when a+b=0;
15. One negative root and one zero root when a+b > 0.
Proof. The characteristic equation in this case reduces to
N +n(a+b)\=0.
The result follows. ]
Proposition 3.2. A(\;n) has a positive real root when one of the following holds.
. ab>0 and a+b<0;
1. ab<0 and a+b<0;

1. ab<0, a+b>0 and a+b+2nab < 0.



Proof. Define

f(N)=(A+na)(A+nb) and g(N) = n?abe . (33)

Then f(0) = ¢(0) = n%ab and

i.

1il.

AN =0 = f(A)=g9). (34)

It follows from ab >0 and a +b < 0 that a < 0 and b < 0. Since (32) is symmetric in a and b,
without loss of generality, we may assume b < a < 0. Note that f(-nb) =0 < g(-nb). Since
f is positive and increasing for A > -nb > 0 and ¢ is positive and decreasing for A > 0, there
exists A\* > —nb such that f(\*) = g(\*), see Figure 2a.

. Assume a >0 and b< 0. When a+0b<0, f is decreasing for \ € (O, —‘%bn) and is increasing

for A > —%by. Further, g increases for A > 0 and limy.« g(A) = 0, thus there exists \* €
(-2n, —nb) such that f(A*) = g(A\*), see Figure 2b. When a+b =0, f(0) = g(0) = nab,
f'(0) =0 < ¢’(0) and f is increasing for A > 0. Thus, with the same arguments, A\* lies in
(07‘775)

Assume a > 0 and b < 0. In this case f and g are increasing for A > 0 and g < 0 for A > 0. Since
f'(0) =n(a+b) < —2n%ab = ¢’(0), then there exists \* € (0,-nb) such that f(A*) = g(\*), see
Figure 2c.

|
o Iy
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b
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A*
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g(A) /

1 g(A

\/ Y s

(a) ab>0 and a+b<0. (b) ab< 0 and a+b<0. (¢c) ab<0and a+b>0.

Figure 2: Positive real roots in A(\;n) =0.

Proposition 3.3. When ab>0 and a+b>0, A(\;n) has no roots with positive real part.

Proof. Since ab > 0 and a+b > 0, we have a > 0 and b > 0. Assume there is a root A\* = z + 1y of
A(X;n) =0 with > 0. Then, it follows from (33) and (34) that

S =1g(A)]- (35)

Notice that, due to the positivity of x we get

F O =V (@ +na)* +y2y/ (@ + nb)? + 2 > n?ab
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and
lg (\)] = n?abe™* < n?ab.

Hence, |f(A*)| > |g(A*)|, which contradicts (35). Thus, all roots of A(A;n) = 0 have nonpositive
real parts when ab >0 and a + b > 0. [

Proposition 3.4. A =0 is a root of (52) for any n. If n#n* = -%L then X =0 is a simple root.

Otherwise, it is a double root. The double multiplicity of A =0 occurs only in the following cases.
. ab>0 and a+b<0;
1. ab< 0 and a+b>0.

Proof. Tt is clear that A(0;n) = 0 and A’(0;7) = n(a+b+2abny) where ’ is the derivative with
respect to A. If n # n* then A’(0;n) # 0, and hence A =0 is a simple root. When 1 = n*, we have
A'(0;7*) =0 and

S a? + b?
A"(0;n*) = - ” #0.

Thus, A =0 has double multiplicity.
It is clear that n* exists if and only if

_a+b
2ab

>0 < {ab>0and a+b<0} or {ab<0 and a+b>0}.
u

Proposition 3.5. When ab<0, a+b>0 and a+b+2nab >0, A(X\;n) has no roots with positive
real part.

Proof. Note that the characteristic equation (32) can be written as
2
ANn) =22 +n(a+b)X+ n2abf e “Mu = 0.
0

Suppose that A(X;n) =0 has root A with Re(\) > 0. Then

2

f o-u(Re(N) gy,

0

‘/_\(;\+n(a+b))‘ = <n?|ab| |\ < 202 |abl|\l.

2
n%ab\ f e du
0

Since ab < 0 and a + b+ 2nab > 0, we have
INA +n(a+b))| < =2n%ablA| < n(a+ )|\
which is satisfied if A =0 (a contradiction) or
A+ n(a+b)[<n(a+b).

This implies that A is in the disk of radius n(a+b) centred at the point —n(a +b) in the complex
plane. Thus, Re(A) <0 or A =0. In both cases we arrive at a contradiction. ]

Finally, we show that (32) does not have pure imaginary roots for any value of the parameters.

Proposition 3.6. The characteristic equation (32) has no pure imaginary roots.
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Proof. Assume A\ =iy (y > 0) is a root of (32). Separating the real and imaginary parts, we obtain
n*ab - y* = n*abcos(2y)
n(a+b)y = —n*absin(2y)

Squaring and adding these equations leads to
y? (y2 +n?(a®+ b2)) =0.

which has no real roots. Thus, there are no roots of the form y. ]

The distribution of roots in (32) is summarized in Figure 3.

[ A7) == N+ n(a + b)A + rPab —nPabe™ =0 |

Iab>0| |ab=0|

a+b>0

A =0 is a simple root at+b<0

a+b<0 a+b>0

There exists a positive real root

Other roots satisfy Re(A) <0

One positive real root

and one zero root

One negative real root

and one zero root

a+b+2nab=0
A =0 is a double root

a + b+ 2nab#0
A =0 is a simple root

ab< 0

a+b=0
Double zero root

a+b<0
There exists a positive real root

a+b>0

A =0 is a simple root

a+b+2nab<0
There exists a positive real root
A =0 is a simple root

a+b+2nab>0
A =0 is a simple root
Other roots satisfy Re(A\) < 0

a+b+2nab=0
A =0 is a double root
Other roots satisfy Re(\) <0

Figure 3: The distribution of roots in (32) as discussed in Propositions 3.1-3.6.

Recall the structure of the phase-locked solutions (21) of the phase model (20). From this we
see that a phase-locked periodic solution of the original model (17) corresponds to a line in the
phase model (20), that is, when ¢* and w* are solutions of (22), it follows that

©1 = w*t (mod27) ~ .
{ wo =w*t+1* (mod2m) = %2 = @1+ 97" (mod2m).

From Proposition 3.4, we know that for any 7 >0, A(X;n(7)) =0 has a zero root. The simple zero
root corresponds to the motion along these lines. It corresponds to the Floquet multiplier 1 which
is associated with the periodic solution of the original model (17). Thus phase-locked solutions
will be asymptotically stable if A = 0 is a simple root of the characteristic equation (32) and all
other roots have negative real part.

Remark 3.1. The solution y* # 0,7 is asymptotically stable for values of a,b such that a >0 and
b>0orab<0, a+b>0 and a+b+2nab>0. Since H' is a 2m—periodic function, the solutions 1*
and 2w —Y* have the same stability.
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Remark 3.2. Since H is a 2r—periodic function, a = b= s H' (Y*-w*n-Qr) in (30) when ¢* = 0, .
Hence, the stability of solutions when 1* = 0,7 is determined by the sign of H'(V* —w*n—-Q1), that
is, the solution is asymptotically stable when H'(y* —w*n—Q7) > 0 and unstable when H'(y* -
wn—Qr) <0.

3.1 Bifurcation

Suppose that €2 and e are fixed, but 7 may be varied. From the discussion above, potential
bifurcation points of the model (20) are values 7 = 7* where the characteristic equation for a
particular phase-locked solution, ¢*, w* has a double zero root. Let n* = eQ7*. When ¢¥* =0 or 7
there are two types of potential bifurcation points:

(1) 7% where H'(¢* —w*n* —Q7*) =0 (see Remark 3.2);
(2) 7 where 1+ n*$H'(¢* —w*n* = Qr*) = 0 (see Proposition 3.4).

For other values of 1*, Proposition 3.4 indicates there is a potential bifurcation point at

_atb

(3) 7 where n* = -

Note that it is impossible to find an explicit expression for the bifurcation values because each of
these conditions are implicit equations for 7*.

Now we consider what type of bifurcations may occur at these points. We do not make a
rigorous proof, which would require centre manifold and normal form theory. However, we can
make some plausible arguments based on the equations for the equilibrium solutions. Recall that
(¢*,w*) with ¢* = 0 or 7 defines a phase-locked solution at 7 if F'(w*,¢*;7) =0 where

F(w,v*;7) :w—éH(zﬁ* —-wn - Q7).

Differentiating F' with respect to w shows that the condition (2) corresponds to F,(w*,v*;7%) =0,
that is, w* is a double root of F' when 7 = 7*. Thus as 7 varies near 7* we may expect that there
should be two roots of F' near w* or none '. Thus the bifurcation associated with condition (2)
should be a saddle-node bifurcation involving two different phase-locked solutions with the same
Y*. Note that this bifurcation is only physically relevant if n* > 0, i.e., H'(¢* —w*n* - Qr*) < 0.
Thus, from Remark 3.2, the associated solutions will be unstable. In a similar manner one can
show that condition (3) corresponds to (¢*,w*) at 7 = 7* being a point of tangency of the curves
defined by equations (22). Thus we expect it to correspond to a saddle-node bifurcation involving
two out-of-phase solutions with different ¢*. The stability of these solutions will depend on which
case of Proposition 3.4 applies. Finally, we consider phase-locked solutions near ¢ = 0. Expanding
equations (25) and the first of (22) in ¢ and keeping the two lowest order terms we have

0

2H'(—wn - Q1) + %H"’(—wn—QT)w?’ (36)

w

L (0 (o = 2r) + H (o - 2. @7

Thus we see that ¢* =0, w* = H(-w*n—Q7)/Q, is always a solution of this system and if there is
7% such that condition (1) is satisfied and H"'(-w*n* — Q7*) # 0 then this will be a triple root of

'More precisely, we expect this will occur if F satisfies the further conditions F, (w*,9*;7*) = -Q(1+ew*)/n* #0
and F,(w*,¥*;7%) = =(n*)?H" (¢¥* —w*n* —=Q7*) £ 0 [39].
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the system. Thus we expect that condition (1) with ¢* =0 corresponds to a pitchfork bifurcation
where two out-of-phase solutions are created near 0. Similarly condition (1) with ¢* = 7 should
correspond to a pitchfork bifurcation where two out-of-phase solutions are created near .

Note that the phase interaction function H can be represented by Fourier series expansion

H(¢p) =ap+ ii [ay, cos(ke) + by sin(ko)].

When the interaction function H is represented by the first set of Fourier modes

H(¢) = ap + ay cos(¢p) + by sin(o), (38)

the authors in [36] show that the out-of-phase solutions and pitchfork bifurcation cannot occur in
the phase model (20) with small time delay. However, it may occur when the time delay is large.
Indeed, when H has the form in (38), then it follows from (22) and (25) that

Qu* =ag+ A(w*) sin(¢*) + B(w*) cos(v*), (39)
0=2A(w*)sin(y*) (40)

respectively, where
A(w™) = by cos(wn + Q1) + ag sin(w*n + Q7),
B(w*) = aj cos(w*n + Q7) = by sin(w*n + Q7).
Thus, from sin(¢*) = 0, we have that ¢)* = 0,7 with the corresponding w* determined by

Qu* —ap = +B(w"). (41)

where the + corresponds to ¢* = 0 and the — to ¢* = w. Also, from A(w*) = 0 we determine w*
and the corresponding ¢* is obtained from

Quw* — ag

cos(¢*) = B (42)

Consequently, we have the following cases
o if |Qw* — ag| < |B(w*)|, then two out-of-phase solutions 1* and 27 — ¢* exist,
o if |Quw* —ap| = |B(w*)|, then one solution exists (* =0 or ¢* =),
o if |Qw* - ag| > |B(w*)|, then no solution satisfying (42) exists.

Note that H'(-w*n—-Qr) = A(w*) and H'(m —w*n - Q1) = —A(w*). Thus, the solutions 0 and 7
change stability when A(w*) = 0 where w* satisfies (41). As 7 varies, out-of-phase solutions will

disappear if Qg(;_f)o — 1 changes its sign from negative to positive. When Qg(;‘f)o =1, then ¢* = 0.
Hence, a pitchfork bifurcation occurs at ¢* = 0. Similarly when QB"J(;_*“)O = —1 a pitchfork bifurcation

occurs at ¢Y* = 1.
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3.2 The full model with small delay

When the time delay, 7, in (17) is relatively small, in the sense that Qr = O(1), it follows from
the theory of averaging that the time delay 7 enters the interaction function H in (20) as a phase
shift [14,24,27,36]. In [36], the authors considered this case and consequently the time delay n in
the phase model (20) was neglected, and hence, it becomes

% = éH(g&z(t) - Spl(t) - QT)’ (43)
% = %H(@l(t) - SOQ(t) - QT)7

Therefore, they were able to reduce (20) into a one dimensional ordinary differential equation

d

% e[ H(o-Or) - H(-9-0n)]. (44)
where ¢ = @9 — 1. The existence of phase-locked solutions of (44) was discussed in [36] without
introducing the frequency deviation w. Hence, the in-phase and anti-phase solutions were unique.

Moreover, the stability of the phase-locked solution ¢* in (44) was determined by the sign of
A(6)mash (45)

where @ = H'(¢* - Qr) and b = H’(:gb* -Qr). If H'(¢*) > 0 then ¢* is asymptotically stable and
if H'(¢*) <0 it is unstable. When H’(¢*) = 0 the stability is not determined by the linearization.

Remark 3.3. In [30], due to the reduction of the two dimensional system (43) into a single
equation (44), the zero root was omitted in characteristic equation. Indeed, the characteristic
equation of (/4) is A+ H'(¢*) = 0 while the characteristic equation of (43) is

A+ H'(¢7)) =0, (46)
It is clear that the latter characteristic equation always has a zero root.

Now we compare these results with what happens when 7 is small, i.e., Qr = O(1), in our
model (20). Recall that n = €Q27 thus the assumption on 7 implies that 7 = O(¢). Also, note that
the phase difference ¢* of the phase locked solutions for the model (45) is the same as the phase
deviation difference ¥* for our model.

First consider the existence of phase-locked solutions. For our model we must solve the equa-
tions (25) and one of (22) simultaneously for ¢ and w. When 1 = O(¢), however, to first order in €
the H function no longer depends on w. Thus phase-locked solutions are determined by * satis-
fying H,(¢*) = 0, with w* = $ H(¢* - Q7). This equation for ¢* is the same as in [36]. In [36] they
did not solve for w* as it was not needed to determine the phase-locked solutions or their stability.
It remains to consider the uniqueness of the in-phase and anti-phase solutions. From equations
(26) and (27), these solutions correspond to frequency deviations w* satisfying F'(w*,¢*) = 0 with
Y* =0, m, respectively. Since H and H' are continuous and 27 periodic they are bounded. Thus
we see that lim,,_, .., F'(w) = +oo. Further, recalling (28), since n = O(¢), F,(w*,¥*) > 0. Thus for
any 7 sufficiently small, there will be a unique frequency deviation w* for ¥* = 0 and for ¥* = 7.
This is consistent with the results in [36] which have only one in-phase and anti-phase solution for
each value of 7.
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Now consider the stability of the phase-locked solutions. Recall that the stability for our model
is summarized in Figure 3. When n = O(e), sgn(a + b+ abn) ~ sgn(a + b), thus the conditions for
stability /instability of phase-locked solutions of our model reduce to the stability if a + b > 0 and
instability if @ + b < 0. Further a ~ @ and b ~ b, thus the stability results of our model reduce to
those of [36] when Q7 = O(1). The key point is that, regardless of the size of 7, the countable
infinity of complex roots of the characteristic equation (32) all have negative real part. Thus the
stability of the phase-locked solutions is determined by finitely many real roots, and it is possible
for an ordinary differential equation to accurately reflect this stability.

In Section 4.3, we will show numerically that our model with Q7 = O(1) fully recovers [36, Figure
4b] and [36, Figure 5b].

4 Application to Morris-Lecar oscillators with diffusive
coupling

In this section we apply the results from the previous sections to a network of dimensionless
Morris-Lecar oscillators with time delayed diffusive coupling, see e.g., [40,41]. This model is given
by

i = Lapp = GcaMoo (Vi) (Vi = Voa) = grwi(vi = v ) = gr(vi —vr) —e(v;(t = 7) —vi(t)),
1= A (0) (Weo (Vi) = wy),

for i,7 = 1,2 such that ¢ # j, where

(47)

Moo () = % (1 + tanh ((v—11) /1)) |

e (V) =%(1+tanh((v—ug)/u4)),
A(v) =cosh ((v-13)/(2vy)) .

Using the parameter set I\II from [36, Table 1], when there is no coupling in the network each
oscillator has a unique exponentially asymptotically stable limit cycle with period T" = 23.87\13.81
corresponding to frequency € = 0.2632\0.455. The normalized system, such that the frequency is
1, corresponding to (47) is

v; = l(Iapzo = gcaMoo (Vi) (Vi = vea) = grwi(v; — vk ) = gr(vi —vL)) - é(vj(f - Qr) —ui(t)),

w; = 5 (@A (Vi) (Wee (v:) = w3)),

—2

(48)

o)

i = 1,2. Note that this is in the form (17) with X;(¢) = (v;(t),w;(t))T and the function G :
R? x R? -~ R? is given by G = (Gi,G2) where G1(X;(t),Xa(t)) = &(v2(t = Q7) — v1(¢)) and
G2(X(t),X2(t)) =0. Then, the phase model interaction function H is given by (19).

For each parameter set, the authors in [36] solved (19) numerically and calculated the approxi-
mation of the phase model interaction function H by the first five terms of its Fourier series. These
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are given by

Hi(¢) = 2.915252 — 2.684797 cos(¢) — 0.3278022 cos(2¢)
+0.05596774 cos(3¢) + 0.0351635 cos(4¢) + 4.908449 sin ()
—0.7020183 sin(2¢) — 0.09934668 sin(3¢) — 0.01104474 sin(4¢),
Hi1(¢) = 0.6271561 — 0.5209326 cos(¢) — 0.08538575 cos(26)
— 0.005648281 cos(3¢) — 0.0002642404 cos(4¢) + 1.595618 sin(¢)
—0.047271765in(2¢) — 0.00301241 sin(3¢) — 0.002760313 sin(4¢)

(49)

corresponding to the parameter sets I and II, respectively, see [36, Table 2]. Note that the two
parameter sets represent limit cycles which are created by different bifurcations as the input current
I,y is varied. For parameter set I the limit cycle is created in a saddle-node on an invariant circle
bifurcation, while for parameter set II the limit cycle is created in a supercitical Hopf bifurcation.
The chosen parameter values have I,,, slightly larger than the bifurcation values.

In [36] the authors studied how small epsilon needed to be for the phase model to faithfully
represented the behaviour of the full system (48), in the case of small delay. They found that for
parameter set I € could be as large as 0.05 while for parameter set 11 epsilon should not exceed 0.001.
Therefore, in the rest of this section, we take € = 0.05 with parameter set I and € = 0.001 when we
use parameter set II. Consequently, we choose 7 > 75.988 for parameter set I and 7 > 2197.8 for
parameter set II so that eQr = O(1). Moreover, we compare our results with the results in [30]
when the time delay, 7, in (17) is relatively small.

4.1 In-phase and anti-phase solutions

To find w* corresponding to the in-phase and anti-phase solutions, ¢* = 0,7, we solve (26) and
(27) with H given by either H; or Hy; from (49). Note that these equations can only be solved
numerically due to the complicated form of H; and Hj;. For particular values of 7, we represent
these solutions graphically in Figure 4 as the intersection points of the line y = w and the curve
y = H(-wn-Qr)/Q. In (26), the slope of the right hand side at any w is ¢, = —eT H'(-wn — Q7).
Then, by applying the stability condition in Remark 3.2, we see that the in-phase solution is
stable when the line y = w intersects the curve of the function H(-wn - Q7)/Q at a point where
it has negative slope, while it is unstable when the intersection is at a point with positive slope,
see Figure 4. When the line y = w alternates from intersecting the curve of H(-wn - Qr1)/Q
at a point with positive slope to intersecting it at a point with negative slope, the solutions w?*
alternate between stable and unstable, see Figure 4. For fixed §2 and €, as 7 increases the curve
H(-nw-Q71) = H(-Q7(1 + ew)) compresses horizontally causing the creation and destruction of
intersection points. For specific values 7 = 7 > 0, an intersection point will occur at the point
where the function H has slope one, i.e., the curve y = H will be tangent to the line y = w at
these values of 7, see Figure 5b. Near such points, i.e., for 7 slightly bigger or smaller, there
exist two consecutive intersection points both of which are unstable, see Figure 5c. Then, as 7
changes further to 7, one unstable point quickly passes through the point where H has zero slope
and becomes stable, see Figure 4b. The values 7;* correspond to the saddle-node bifurcations of
in-phase and anti-phase solutions discussed in Section 3.1. We will discuss the points 7, later. In
Figure 7, we plot w* corresponding to ¥* = 0, 7 for various values of the time delay 7, showing the
many co-existing solutions which can occur and the transitions of the solutions as 7 varies. These
solutions were found by implementing the algorithm from [42] in Wolfram Mathematica to find all
the solutions of (26) or (27).
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Figure 4: Graphical representation of the solutions to (26) with fixed 7. The circles ®/O represent
stable/unstable solutions.
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Figure 5: Graphical solutions of Hjj(—wn - Q7)/Q and y = w with fixed 7. The circles ®/O represent
stable/unstable solutions.

To compare prediction of the phase model (20) and solutions of the full model (47), we solve (48)
numerically with parameter sets I and II with various values of 7 and different initial conditions.
The initial conditions are of the form

(v1.(t), wi(t), v2(t), wa(£))" = (v10, Wro, Va0, wag) " t € [-7€2,0]. (50)

Figure 6 shows time series of v; in (48) with different initial conditions. We notice the coexistence
of in-phase solutions with different frequencies when 7 = 110 with parameter set I. The numerical
solutions are obtained by using Wolfram Mathematica. We use the command NDSolve to solve the
full model numerically.

When € = 0, each uncoupled equation in (48) has 2r—periodic solution, that is, the frequency of
each oscillator is unity. Consequently, when e # 0 and equation (48) has a phase-locked solution, the
phase of the first oscillator is 61 (t) = t + w*et and that of the second oscillator is 0y(t) = t+w*et + 1)~
where w* is the frequency deviation and * is the phase shift. Thus, the frequency of each oscillator
is 1+ we*, and the period T is approximately

~ 21
1+ wre
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Figure 6: The coexistence of in-phase solutions of (48) with different frequencies when 7 =110 with
parameter sets I. We take different initial conditions: (1.53422,-4.42364,1.58103,-4.12258)" for
red/orange curves and (-2.22807, 3.626, —2.28885, -0.972632)T for blue/green curves.

From the numerical solution of (48) for a stable phase-locked solution, we can calculate the period
T of the oscillators and determine the approximate frequency deviation from

s L(2T
wNe(T 1). (51)

Figure 7 shows the coexistence of stable in-phase and anti-phase periodic solutions and demon-
strates that the approximation of w* from (51) is close to a stable solution of the phase model.
The values of w* with the normalized error

_ (w* in the phase model) — (w* in the full model)

w* in the full model (52)

Ex
are shown in Tables 1 and 2. Note that the quantity Ey is the normalized error with respect to the
size of w* in the full model. Except for a few cases, the phase model gives a very accurate prediction
of the values of w*. The phase model predicted stable phase-locked solutions that we did not find
numerically, however, it is possible that further exploration with different initial conditions might
find them.

4.2 Out-of-phase solutions

To find phase-locked solutions other than the in-phase and anti-phase solutions, we fix 7 and solve

1
w* = §H11(¢* —w'n-Qr),

1 (53
w* = ﬁHH(—w* —w'n-Qr)

for w* and ¥*. Figure 8 shows all solutions to (53) when 7 = 100\2205 with the parameter set
I\II. As seen for the existence of in-phase and anti-phase solutions in Section 4.1, the number of
phase-locked solutions with the parameter set I is bigger that II. For the purpose of clarity in the
bifurcation figures, we consider the parameter set II in this section.
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Figure 7: The circles ®/O represent stable/unstable solutions to the phase model (20) corresponding to
(48) and x represents the calculated w* for each stable phase-locked periodic solution found by
numerical integration of the full model (48) with parameter sets I and II. The insets are in-phase and
anti-phase periodic solutions of (48). The initial conditions for all simulations was of the form (50). For
the insets the values of (v19,w1o, Ugo,wzo)T are as follows. (a) (1.53422,-4.42364,1.58103, -4.12258)T
(b) (1.57882,4.1827,2.78262,0.358165) (c) (1.892,-0.296437, -1.05518,1.09985)% (d)
(~1.72448,-1.46442,4.4848,1.31822)T

In Figure 8b, we observe that there are four non-trivial phase-locked solutions: %} = 1.85996
and 5 = 2.13981 in (0,7); and o5 = 2w — 1} = 4.42323 and ] = 27 —¢p; = 4.14338 in (m,2m).
Moreover, we have wj = w; = 0.14125 and w; = wj = 0.14125 where w} is the corresponding
frequency deviation to v, i =1,2,3,4. This agrees with Proposition 2.1.

In Figure 9a, we plot all solutions of system (53) in 7¢)—plane and mark the stability using the
criteria in Section 3. Note that since this representation suppresses w*, the multiple in-phase or
anti-phase solutions which occur for particular values of 7 in Figure 7 are superimposed. As 7 varies,
we observe that a stable solution corresponding to 1* = 0, w always exists with the appearance of an
unstable solution in disjoint intervals of 7, while all the out-of-phase solutions are unstable. More
precisely, for the in-phase solution, as 7 increases, we notice that an unstable solution disappears at
T ~ 2203, exists between 7 » 2207.5 and 7 ~ 2217, and reappears at 7 ~ 2221. The same behaviour
occurs for the anti-phase solution at different values of 7. Near the appearance and disappearance
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Y =0
7=90 7 =110 7=130
Phase Model Full Model En Phase Model | Full Model En Phase Model | Full Model En
w* 1.1446 0.988971 0.1574 1.61521 1.44374 | 0.1188 -1.55286 | —-1.31666 | —0.1794
6.17015 5.68396 0.0855 9.95867 9.67259 | 0.0296 5.48587 5.16611 0.0619
7 =150 7=170 7=190
Phase Model Full Model En Phase Model | Full Model En Phase Model Full Model En
w* —-0.860951 | -0.766851 | —0.1227 2.38636 2.23525 | 0.0676 0.101849 | 0.092197 | 0.1047
2.19521 2.03459 0.0789 5.11589 4.87837 | 0.0487 7.44601 7.16109 0.0398
Yr=m
7=90 T=110 7=130
Phase Model Full Model En Phase Model | Full Model En Phase Model Full Model En
w* -1.32864 | -1.08976 | -0.2192 3.68511 3.39257 | 0.0862 0.193408 | 0.169843 | 0.1387
8.70987 8.244 0.0565 7.86 7.36178 | 0.0677 7.26467 6.86785 0.0578
7 =150 7=170 7 =190
Phase Model Full Model En Phase Model | Full Model En Phase Model Full Model En
w* 0.663926 0.600602 0.1054 1.02812 | 0.946137 | 0.0867 3.76194 3.58466 0.0495
9.92786 9.41424 0.0546 3.74932 3.55154 | 0.0557 8.67729 8.34016 0.0404

Table 1: Comparison of w* between the phase model prediction and the full model (48) when ¢* =0, 7
with parameter set I. The quantity Ex is defined in (52).

(a) Parameter set I with 7 = 100.

— First equation

Second equation

(b) Parameter set IT with 7 = 2205.

Figure 8: Contour plot of the equations in (53) to show the graphical solutions of (53) with fixed 7.

of these unstable solutions the unstable out-of-phase solutions appear and disappear. As we observe
in Figure 8, there are multiple solutions (w*,1*) of (53) when 7 is fixed. To study the creation and
destruction of solutions further, we take particular values for 7 and show all solutions in the blue
rectangles from Figure 9a in the wi—plane, see Figures 9b—-9i. We now see that there are pitchfork
bifurcations where a stable in-phase or anti-phase solution becomes unstable as two unstable out-
of-phase solutions merge together, see Figures 9b-9¢ and 9f-9g. This correspond to the values 7,
discussed above. Moreover, there are saddle-node bifurcations where two unstable in-phase or anti-
phase solutions collide then vanish, see Figures 9d-9¢ and 9h—9i. This corresponds to the value
7, discussed above. For other parameter values, we observe the opposite sequence of bifurcations:
two unstable in-phase or anti-phase solutions are created by a saddle-node bifurcation after which
one gets stabilized by a pitchfork bifurcation involving two unstable out-of-phase solutions. All
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V=
T =2200 7 = 2500
Phase Model Full Model Ex Phase Model Full Model En
w* | -1.418638 | -1.10245 | -0.2868 -0.159684 | -0.223359 | 0.2851
T = 2800 7 = 3100
Phase Model Full Model En Phase Model Full Model En
w* | 0.9584587 | 0.720141 0.3309 1.914776 1.880915 0.018
g =
7 =2200 7 = 2500
Phase Model Full Model En Phase Model Full Model En
w* | 0.913646 0.647528 0.411 2.06122 1.58187 0.303
T = 2800 7 =3100
Phase Model Full Model En Phase Model Full Model En
w* | =1.011297 | -0.880915 | -0.148 0.0496789 | -0.03801 | -2.307

Table 2: Comparison of w* between the phase model prediction and the full model (48) when ¢* =0, 7
with parameter set II. The quantity The quantity Ey is defined in (52).

the bifurcations are as predicted for the general model in Section 3.1. We did not observe any
saddle-node bifurcations of out-of-phase solutions for this parameter set.

To help understand these bifurcations, we plot solutions in the 7w—plane and the solutions near
1 = in the Twiy—space in Figures 10a—10b, respectively. Considering the case ¢* = 7, we observe
that:

e the pitchfork bifurcation occurs when two unstable out-of-phase solutions merge together
with one stable anti-phase solution @ to produce one unstable anti-phase solution m,

e the saddle-node bifurcation occurs when the created unstable anti-phase solution m in the
above collides with another unstable anti-phase m and both vanish.

4.3 Small delay

In this subsection, we consider small time delay, in the sense that, Q7 = O(1) with respect to the
small parameter €, and compare the results with [36] where the authors studied this case using the
parameter set II. In [36], the authors studied the dynamics of the phase model corresponding to
the full model (17) without introducing the frequency deviation in their analysis because the time
delay n was neglected in the phase model when Q7 = O(1). We have stated some results from [36]
in Section 3.2.

As in the previous section we solve (26) and (27) to find w* for the in-phase and anti-phase
solutions and (53) to find (¢*,w*) for the out-of-phase solutions. We choose 7 € (0, 15), which is
similar to the range chosen by [36]. In contrast with the results of the last section, here we observe
that for ¢* = 0,7 there is a unique solution w* for each 7 in the range we considered. This agrees
with the prediction of the phase model in Section 3.2. We describe our results in more detail below.

In Figure 11, we plot the in-phase and anti-phase solutions as 7 varies in (0, 15) in the 7¢)—plane.
We note that there is similar behaviour in Figure 11a and [36, Figure 4b]. The in-phase and anti-
phase solutions change stability as 7 increases and their stabilities appear to be the opposite of
each other. To examine the behaviour near changes of stability, in Figures 11b—11c we show the

21



(a) (b) 7=2202.75  (c) T = 2203.25

2200 2205 2210 2215 2220 2225 | 7[1009 oo
i
27T 0 fo)
EY > (o]
b L oo 7 L oO—*
o
o o
o100 o ol=ten o
. -2 0, 2 4 -2 o, 2 4
(d) T = 2203.409 (e) T =2203.5
2 (9] W 271! . 2
o o
> 0 ES (o]
s L (5} L 2 s L (6] L 4
R (€4 € (€ (440€ (T ((((C0CTCCOIC (T ((((CC OOt 3 3 0 o (o]
2200 2205 2210 2215 2220 2225 o 0
T
0 2 o 0 Py
-2 0 w 2 4 -2 0 w 2 4
(f) 7 = 2209.75 (g) T = 2210 (h) 7 =2210.327 (i) =2210.5
2n & O = 2 ¥ " 2mn & O : 2mn @ O g
o o) o) o
o) o o o)
ES > E3 3> ﬁ
e 80 ® =400 ® b @ - - rr 4
o (o] 0 (0]
0 o o) o
0 e -0 0 o = S 0 . O-—-e 0 — -—-8
-2 0 w 2 4 -2 0 w 2 4 2 0 w 2 4 -2 0 w 2 4

Figure 9: The solutions of phase model (20) corresponding to (48) in the blue rectangles in Figure 10 in
wtp—plane. The circles ®/O represent stable/unstable solutions of (53).

bifurcation diagrams zoomed close to the two switching points. We see that the transition from
stable in-phase solution to stable anti-phase solution involves two pitchfork bifurcations and one
saddle-node bifurcation of out-of-phase solutions, which agrees with [36]. Figure 13 shows this
behaviour when the solutions are plotted in the 7w-plane. Furthermore, we observe in Figures
11b-11c that there are small intervals of 7 where bistability occurs. Figure 12 shows the coexistence
of stable anti-phase and out-of-phase solutions.

Remark 4.1. The results in this section are consistent with the results in [27], which indicate that
a phase model where the time delay enters as a phase shift is accurate when T is small in the full
model (17) in the sense that Q1 = O(1) with respect to € for 0 < e < 1.

5 Conclusions

In this paper, we studied the phase-locking dynamics of a system of two weakly connected os-
cillators with time-delayed interaction. By applying the theory of weakly coupled oscillators,
we transformed the system into a phase model with an explicit delay in the argument of the
phases. We showed that the system always has phase-locked solutions corresponding to in-phase
(synchronous, 0 phase difference) and anti-phase (phase difference of half the period) solutions.
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Figure 10: Numerical bifurcation diagram with respect to 7 € (2200,2225) for the solutions of the phase
model (20) corresponding to the Morris-Lecar model (48) with parameter set II. The circles ®/
represent stable/unstable in-phase solutions, 4 /m represents stable/unstable anti-phase solutions, and x
represents unstable out-of-phase solutions of (53).

01 159 308 457 606 755 904 1053 1202 1351 27 271 273 274 276 277 279 281 282 50 961 962 964 965 967 968 970 971

27| 27| 2|
° ¢

° o
o oy
o '

> l . S~ . ™~

CX .,
o ‘s

Q

0
0 0 959 961 962 964 965 967 968 970 971
01 159 308 457 6067 755 904 1053 1202 1351 27 271 273 274 276,277 279 281 282 T

(a) 7€ (0,15) (b) 7€ (2.7,2.84) (c) 7€ (9.59,9.73)

Figure 11: Numerical bifurcation diagram with respect to 7 € (0,15) for the phase model (20)
corresponding to the Morris-Lecar model (48) with parameter set II. The circles ®/O represent
stable/unstable solutions in the phase model (53).

Further, we showed for small delay (27 = O(1)) the in-phase and anti-phase solutions are unique,
but for large delay multiple solutions of each type may exist, corresponding to different frequen-
cies. Finally, we showed that phase-locked solutions with any other phase differences (out-of-phase
solutions) are also possible. Since the phase model is an infinite-dimensional system of delay dif-
ferential equations, the linearized system about the phase-locked solutions has a countable infinity
of eigenvalues. Through the stability analysis for our model, we discussed the distribution of the
eigenvalues on the complex plane to provide stability conditions for the in-phase, anti-phase and
out-of-phase solutions. We found that the zero eigenvalue always exists for any choice of parame-
ters and functions which corresponds to the motion along the phase-locked solutions. We showed
that the only way in which bifurcations can occur is through the existence of (additional) zero
eigenvalues and argued that the following bifurcations may occur: saddle-node bifurcations of two
in-phase solutions with different frequencies, saddle-node bifurcations of two anti-phase solutions
with different frequencies, saddle-node bifurcations of two different out-of-phase solutions, pitch-
fork bifurcations where two out-of-phase solutions arise from an in-phase or anti-phase solution.
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Figure 13: Numerical bifurcation diagram with respect to 7 for the phase model (20) corresponding to
the Morris-Lecar model (48) with parameter set II. The circles ®/O represent stable/unstable solutions
in the phase model (53).

We showed that the saddle-node bifurcations of in-phase and anti-phase solutions only involve
unstable solutions.

Our results on in-phase and anti-phase solutions agree with those in [23,24], which study the
phase model (3), with n = 2 and H(-) = sin(-). We note that they emphasized the need for
large coupling-strength for multiple in-phase/anti-phase solutions to exist, however, we show that
it is possible with weak coupling and sufficiently large delays. They do not study out-of-phase
solutions as these are not possible in their model due to the restriction on H. As can be seen in
the literature [8,9,11,12], in order for phase models derived from biophysical oscillator models to
adequately capture the dynamics of the full model, the function H generally must include multiple
Fourier modes. In [36] it was shown that out-of-phase solutions and pitchfork bifurcations cannot
occur in a phase model with small delay if only the first Fourier modes are included in H. However,
when the time delay is large, we showed that both out-of-phase solutions and pitchfork bifurcations
can occur in the phase model with only the first Fourier modes of H. In general, in the case of large
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time delay, the bifurcation structure may change if some modes are dropped. If the coefficients of
the modes that are dropped are small, then the bifurcation structure wouldn’t change much. The
bifurcation points may just move around. If the coefficients of the modes dropped are big enough
then there could be large changes in the bifurcation structure.

When the delay is small (27 = O(1)), Campbell and Kobelevskiy studied the system

B _ v eH(B2(1) - 0:(1) - 7).
; "
d_; = Q+ eH(01(t) - 0a(t) - Qr),

and proved that in-phase and anti-phase solutions are stable when H'(¢* — Q1) > 0, ¢* € {0, 7}
in [36]. On the other hand, when the time delay is large eQ7 = O(1), we proved that these
solutions are stable whenever H'(¢* — w*eQ)r — Q1) > 0 where w* is the corresponding frequency
deviation. It is clear that the stability condition in the first case is independent of the coupling
strength parameter and the frequency deviation. Indeed, under the assumption 6;(t) = Q + wt
and 09(t) = Q + wt + ¢* (see (21)), the terms of the frequency deviation w will cancel out inside
the function H in (54). In fact, in [36], the authors reduce (54) into a single ordinary differential
equation and study the dynamics of the model without introducing the frequency deviation. Due
to the explicit delay in the phase model, we couldn’t reduce the model into a single equation. For
the out-of-phase solutions ¢* ¢ {0, 7}, the stability condition H'(¢*—Q7) > 0 is still valid when the
delay is small. While for the large delay the stability becomes more complicated since the explicit
delay is an additional parameter that needs to be considered in the phase model.

As an example we considered two Morris-Lecar oscillators with delayed, diffusive coupling. We
adopted the parameter values from [36] to compare the results when the time delay is small. We
studied the existence and stability of the phase-locked solutions, and explored the bifurcations in
the phase model by using a four mode trunction of the Fourier series for the interaction function
and compared these results with numerical simulations of the full model. When the time delay 7
is large, we found:

e There exist more than one frequency deviation w corresponding to the in-phase and anti-
phase solutions, i.e., co-existence of multiple stable and unstable solutions;

e All out-of-phase solutions are unstable;

e Both the pitchfork and saddle-node bifurcations of in-phase and anti-phase solutions occur.
When the time delay is small, we observed:

e Unique solution in each phase-locked solution category (in-phase, anti-phase and out-of-
phase).

e The occurrence of saddle-node bifurcations of out-of-phase solutions and pitchfork bifurca-
tions of in-phase and anti-phase solutions.

Our results agree with [36] when the time delay is small and are consistent with the results in [27],
that the explicit time delay can be neglected in the phase model when 7 is small.

A special type of phase-locked solutions, so-called symmetric cluster solutions, can appear in a
network of n identical oscillators, see e.g., [17,43],

dX;
dt

SF(Xi(D) + €2 0yG (Xi(0).X; (t-7)), i=1...n, X;eR™ (55)
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In these solutions, also called travelling wave solutions, oscillators in the same cluster are synchro-
nized while those in different clusters have non-zero phase-difference. In [17], Campbell and Wang
determined conditions for existence and stability of symmetric cluster solutions in (55) when 7 is
small and the coupling matrix is circulant. Stability conditions for cluster solutions in networks
with small distance dependent delays and random, nearest neighbour coupling have been formu-
lated by several authors (see [24,37] and references therein). When the time delay is large, Earl
and Strogatz provided the stability condition for the in-phase solution (6;(t) = Qt, i.e., one cluster
solution), see [18]. For future research, it would be interesting to study the existence and stability
of symmetric cluster solutions in (55) with large time delay.
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Appendix: Phase reduction

Assume that the system (10) admits an exponentially asymptotically stable periodic orbit with
natural frequency  when € = 0. It follows from the time rescaling p — Qp that the natural
frequency of the periodic orbit becomes 1 and (10) can be written as

Xm 1 € 7 . m
:_F(Xz’(P))+§ZK@G(X1'(P)7XJ'(P_QT))7 i=1,...n, X;eR (A.1)
j=1

dp

Consequently, there exists a normally hyperbolic invariant manifold M = x---x~y of system (A.1)
when € = 0, where v is an exponentially orbitally stable 2r—periodic solution of

ax; 1
L= —F(X; =1,...,n. A2
Lo =L (A2)
Hence, the solution of the i** equation of (A.1) in an € neighborhood of M can be written as
Xi(p) =7 (p+@i(t)) + b (p,e1(t), ., on(t), €) (A.3)

where the term €P; is a smooth vector function which denotes the deviation from the manifold M
in the normal plane.
Recall that ¢ = ep and let 7 := €Q7, then the substitution of (A.3) in (A.1) gives

d;;i = %F [v(p+@i(t)) +€P; (p,01(1), ..., on(l), €)]
* 6 inG [v(p+@i()) + P (py o1 (), pn(t) ), (A.4)

T(p=Qr +p;(t=n)) + P (p,pr(t=1), .., on(t = 1), €)].
Due to the infinite differentiability of F and G, it follows from (A.4) that

di;i - %F[Wwi(tm + SDF [ (p+ (D)1 P (p1(D), - (1), €)

€ & (A.5)
ta ;KijG [V (p+0i(1) ;7 (p= Q7 + @i (t =) ]+ O (€?)
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where DF is the Jacobian matrix of F.
Now, we differentiate X; in (A.3) with respect to p to have

dd);i =" (p+pi(t)) (1 + e%) + eapi (e, gpl(tg; 2 en(t) €) +0 (62) ) (A.6)
Note that 1
v (p+ei(t) = GF [v(p+ei()]. (A7)

Thus, from (A.5) and (A.6), we obtain

Ply (o () 200 ¢ @202 Dy (g )]y (0 0 0)

n

+ 2 KiyGly (p+ i) 7 (p = Qr +9;(t=n))] + O(e) (A.8)
=1
where y; (p, p1(t), ..., on(t)) = B (p,o1(t), ..., n(t),0) + O(€) because P; is smooth function of

e. Consequently, since ¢ = ep, we replace ' by ‘(ljypi in (A.8). Hence, we can write (A.8) as:

dy;
;; = A,y +bi (0,01 o) + O(€) (A.9)

where ¢; is ;(t),
1
Alp,pi) = GF [y (p+¢i(?))]
and

bi (P @is- -5 Pn) = é [(éKijG [v (p+0i(8) 7 (p— Q7 + soj(t—n))]) ~Fly(p+ei(t))] —dﬁit) :

Since ¢;(t) and ¢;(t—n) in b do not depend directly on p, we have a linear non-homogeneous
system for y;, where both the matrix A and the vector b; are 27 periodic in p.

To study existence and uniqueness of solutions to (A.9), we consider the adjoint linear homo-
geneous system
dQi(p #i)

dp = -A(p, SOi)TQz‘(P7 ©i) (A.10)

with the normalization condition:
1 2
%/Q? (0, 00)F [v(p+wi)]dp=1. (A.11)
0

Since the limit cycle 7 is exponentially orbitally stable, the homogeneous (b; = 0) linear system
of the form (A.9) the adjoint system (A.10) both have 1 as a simple Floquet multiplier, and all
the other multipliers lie inside the unit circle. Thus, system (A.10)-(A.11) has a unique nontrivial
periodic solution ¢; (p, ¢;).

Now, by the Fredholm alternative, the linear non-homogeneous system (A.9) has a unique
periodic solution Y; if and only if the following orthogonality condition holds:

21
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Assume that g;(p,0) is found. Hence, g;(p, ;) = q;(p+i,0) because A (p, ;) = G DF [v (p+¢i(t))] =
A(p+¢i(t)). Thus, when we substitute b; in (A.12), we obtain the following:

2

%f({?(P+%,O) (éKijG[W(P+%(t)),'y(,o—Q7'+g0j(t—77))])dp+(9(e)
:%O/QiT(p"'@i;O)DF[’y(p—ngi(t))] %gt) dp
dei(t)

Since =4~ is treated as a parameter and is independent of p, it follows from the normalization
condition (A.11) that

di}ﬁt) sz% (p+¢i,0) (Fl Gly(p+ei(t)),v(p- QT+90j(t—77))])dp+O(e)

Letting s = p + ¢; leads to

d@;}ft) - ﬁi ij ([ g (5,0)G[v(s),7(s=Qr+¢;i(t—-n)-¢i(t))] d$)+0(e)

Define
H (p;j(t-n)-¢i(t) -Qr) = %fqiT (5,0)G [7v(8),7(s = Q7 +p;(t-n) - @i(t))]ds

Thus, we have system (11) with

dpi(t)

7t éKin(%(t—n) —¢i(t) - Qr) + O(e). (A.13)

Recall that 1 = eQ7. Hence, when Q7 = O(1) with respect to €, we have

wi(t—=n) =pi(t—eQr) = pi(t) + O(e), i=1,...,n.
Consequently, the Taylor series expansion for h with respect to € gives

H (i (t - €Q7) = pi(t) = Q7) = H (95(t) = s(t) = Q7 + O(e))
= H (p;(t) = wi(t) = Q1) + O(e),

that is, no delay appears in the argument of the phases. Hence, (A.13) becomes:

d%t) 1i Ky H (95(1) - i) - Q1) + O(e), (A.14)
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