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Abstract

In this thesis, the effect of circularly polarized light on a graphene sheet is explored.
The fundamental question that we try to answer in this work is whether circularly polarized
light is able to induce a DC magnetization in a sheet of graphene. We also consider whether
that magnetization can be related to important structural constants and if the form it takes
can be connected to the Inverse Faraday Effect. We first describe the basics of graphene
and its lattice structure and energy dispersion. We then discuss some of the literature
regarding optomagnetics and the Inverse Faraday Effect, including Pitaevskii’s paper which
uses the Maxwell-Abraham stress tensor to predict static magnetization in a dispersive,
transparent medium. In the theoretical analysis section, we use a quantum mechanical
approach to calculate modified wavefunctions for graphene using a modified Hamiltonian.
After obtaining the new wavefunctions, we apply these wavefunctions in the context of a
quantum mechanical expectation value to find the magnetization. We find an analytical
expression for the DC magnetization which includes very important structural constants as
we expected and has the form of the Inverse Faraday Effect. Finally, we present a numerical
analysis which shows that DC magnetization has a maximum value and a saturation value
for increasing values of the electric field amplitude E0. We find magnetization values
between 1.68 × 10−13A and 3.58 × 10−6A within an experimental range of applied laser
intensities and wavelengths. We also find a theoretical saturation value of 1.07 × 10−4A
for this magnetization. Our result shows that not only can DC magnetization be induced
in graphene, but within certain criteria, can be experimentally detected. This can open
more possibilities for the use of graphene in the field of optomagnetics.
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Chapter 1

Introduction

We will be looking at the effect of linearly and circularly polarized light on a sheet of
graphene on the wavefunction of the graphene and analyze the effects of the the wavefunc-
tion obtained from the application of circularly polarized light on the magnetization of
graphene. As such, we will first introduce the basic structure and properties of graphene,
and then introduce the basic idea of the Inverse Faraday Effect and optomagnetism and
how they have developed.

1.1 Graphene

Graphene is a two-dimensional sheet of carbon atoms arranged with a hexagonal or hon-
eycomb crystal lattice which shows very special optical properties. The triangular Bravais
lattice vectors are (as shown in Figure 1.1 (a)):

a1 =
a

2
(3,

√
3), a2 =

a

2
(3,−

√
3) (1.1)

with a ≈ 1.42Å being the distance between nearest-neighbour atoms.

For every elementary cell in the honeycomb lattice, there are two atoms which belong
to two different sublattices, A and B. As a result, every atom from either of the two
sublattices has three nearest-neighbour atoms from the other sublattice. The nearest-
neighbour vectors are:

δ1 =
a

2
(1,

√
3), δ2 =

a

2
(1,−

√
3), δ3 = a(−1, 0) (1.2)
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(a) (b)

Figure 1.1: (a) Real-space graphene honeycomb lattice. Sublattices A and B are shown in
blue and red respectively. (b) Reciprocal lattice (first Brillouin zone) with special points
K, K ′ (also called Dirac points), M and Γ.

The area of a primitive unit cell is

Ap = |a1 × a2 · a3| =
3
√
3

2
a2 (1.3)

where a3 = ẑ is the unit vector pointing perpendicular to the plane of the graphene lattice
[22].

The reciprocal lattice is also hexagonal with a rhomboidal unit cell. The primitive
vectors for the reciprocal lattice are

b1 = 2π
a2 × a3

a1 × a2 · a3

=
4π

3a

(
1

2
,−

√
3

2

)
(1.4)

b2 = 2π
a3 × a1

a1 × a2 · a3

=
4π

3a

(
1

2
,

√
3

2

)
(1.5)

We will then have
ai · bj = 2πδij (1.6)

where δij is the Kronecker delta function.
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The special high symmetry points in the Brillouin zone labelled in Figure 1.1b have
wave vectors

K =

(
2π

3a
,

2π

3
√
3a

)
, K′ =

(
2π

3a
,− 2π

3
√
3a

)
, M =

(
2π

3a
, 0

)
(1.7)

The electronic band structure of graphene is obtained through the tight-binding method.
In this method, two Bloch functions are constructed from the atomic orbitals for the atoms
in sublattice A and B. These Bloch functions which describe the π-states arising from 2pz
orbitals, provide the basis functions for the graphene Hamiltonian [29] (this is the starting
point of our analysis in section 2.) Considering only the nearest-neighbour interactions,
there is no hopping within sublattices, but rather, only between them. The tight-binding
Hamiltonian can then be represented as

Ĥ(k) =

(
0 tS(k)

tS∗(k) 0

)
(1.8)

where

S(k) =
∑
δ

eik·δ = 2e
ikxa
2 cos

(
kya

√
3

2

)
+ e−ikxa (1.9)

and t ≈ −2.97 eV is the nearest-neighbour hopping parameter [14]. Defining the function
f(k) as

f(k) = 2 cos
(√

3kya
)
+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
(1.10)

the energy can be written as

E(k) = ±t|S(k)| = ±t
√

3 + f(k) (1.11)

The energy dispersion diagram resulting from Eq (1.11) is shown in Figure 1.2. As can be
seen, the energy dispersion around these points is conical without any gaps between the
valence band and the conduction band. As such, graphene is called a gapless semiconductor
[14] and can also be called a semimetal as shown in the work of Burkov, A. [5]. A main part
of our analysis will include the opening of this gap through the application of circularly
polarized light to the graphene sheet.

The effective Hamiltonian near the symmetry points K and K ′ is

ĤK,K′(q) = ℏv
(

0 qx ∓ iqy
qx ± iqy 0

)
(1.12)
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Figure 1.2: Dispersion diagram for graphene. The zoomed-in area shows the dispersion at
the K point which is called the Dirac cone.

where v =
3a|t|
2ℏ

is the electron velocity at the Dirac cones [14]. In the vicinity of the Dirac

points, this velocity is approximately equal to 1.0× 106m/s. Oftentimes in literature, the
Hamiltonian in Eq (1.12) is also written as [22] [14]:

ĤK = vσ · ℏk (1.13)

where σ = (σx, σy) is the Pauli matrix vector:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
(1.14)

This is an equivalent form of Eq (1.12) where instead of q, k is taken to be the wave vector
and the Hamiltonian is only considered around the K point, instead of both the K and
K ′ points. We will use the form of the Hamiltonian from Eq (1.13) for our calculations in
the theoretical analysis section.
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1.2 Inverse Faraday Effect and Optomagnetism

Optomagnetism originally comes from nonlinear interactions between the spin and orbital
magnetic moments of electronic structures with intensive not-linearly polarized light (e.g.
circularly polarized light) where the control, generation and detection of magnetization in
materials is determined by the gyration or angular momentum of light. The optomagnetic
effect is mostly researched in terms of the IFE (Inverse Faraday Effect), and that will be
the central result of the thesis.

It is difficult to come up with an exact point of beginning for the field of optomagnetism,
but the best point of departure for our current purposes is the paper that laid the theoretical
foundations for the IFE. In his paper in 1960, L. P. Pitaevskii uses a phenomenological
approach using the Maxwell-Abraham stress tensor to predict static magnetization in a
dispersive and transparent medium. Subsequently in 1965, van der Ziel et al. [34] observed
this effect experimentally and coined the term Inverse Faraday Effect. They derived an
expression for the static magnetization using a potential function [25] and derived the
expression for magnetization in the form

M = −∂F

∂H
= −γ (ERE∗

R − ELE∗
L) , (1.15)

where F is the potential function, H is the DC magnetic field, γ is the optical gyration
coefficient and ER and EL are the amplitudes of the right and left circularly polarized light
respectively. This relation is also written as

M(t) = −γE∗(t)× E(t). (1.16)

This equation connects the magnetization to the generating electric field of the light pulse.
They also showed that the generated magnetic moment was proportional to the Verdet
constant of the material, demonstrating the connection between the Faraday effect and the
IFE (See also Shen (2002) [30, Chapter 5]).

Furthermore, Pershan et al. [26] provided a detailed quantum-mechanical explanation
of the IFE by formulating an effective Hamiltonian for the process and linearizing the
nonlinear problem through it. For example, for a spin-1

2
system, the effective Hamiltonian is

given asHeff = iAS·E×E∗ with S as the spin matrix and A as a phenomenological constant.
It is important to note that the IFE is a nonlinear optical effect creating nonequilibrium
magnetization without scattering of light. This implies that after interaction with spins,
the spectral distribution of light does not change and only the average number of photons
decreases, reflecting the energy transfer between the spin system and light [9].

5



To see the nonlinearity of this optical effect clearly, we look at the dynamics and inter-
action of magnetic moments with magnetic fields through the Landau-Lifshitz equation.
For a volume V of a magnetized solid, the magnetic moment is given by m = VM where
M is the magnetization and m is the magnetic moment of a given volume. All interactions
contribute to a thermodynamical potential Φ and the action of these combined can be
considered as the effective magnetic field

Heff = − ∂Φ

∂M
. (1.17)

The Landau-Lifshitz equation corresponds to the motion of the magnetization vector [21]:

dm

dt
= γm×Heff, (1.18)

describing the magnetic moment precession around the effective magnetic field. The full
expression for the thermodynamical potential (neglecting terms with orders higher than 3
in E(ω)) can be written as

Φ = χ
(l)
ij Ei(ω)

∗Ej(ω) + α
(l)
ijkEi(ω)

∗Ej(ω)Mk(0)

+ β
(l)
ijkEi(ω)

∗Ej(ω)lk(0) + χ
(nl)
ijk Ei(2ω)

∗Ej(ω)Ek(ω)

+ α
(nl)
ijklEi(2ω)

∗Ej(ω)Ek(ω)Ml(0) + β
(nl)
ijklEi(2ω)

∗Ej(ω)Ek(ω)ll(0)

(1.19)

where χ
(l)
ij , χ

(nl)
ijk , α

(l)
ijk, α

(nl)
ijkl , β

(l)
ijk, β

(nl)
ijkl are tensors that describe the optical properties of

the material and the superscript l corresponds to the linear response, and the superscript
nl corresponds to the nonlinear response and M(0) and l(0) correspond to the static
magnetization and the antiferromagnetic vector respectively [25]. The Faraday Effect and
the Inverse Faraday Effect were derived from equation (1.19). The Faraday Effect involves
the rotation of linearly polarized light passing through a material under a magnetic field,
while the IFE is the process of circularly polarized light creating a magnetization in a
material. As such, the strength and degree of rotation (measured by the Verdet constant)
that the linearly polarized light undergoes in the Faraday Effect is also a measure and
determining factor of the strength of the IFE and the resulting static magnetization.

With the discovery of ultrafast demagnetization of a Ni film by 60 fs optical laser pulse
by Beaurepaire et al. (1996) [2], a new field of ultrafast manipulation of magnetization
was created. After this paper, there were many experiments aimed at demonstrating other
possibilities such as laser-induced spin orientation [15] and optical generation of coherent
magnetic precession [12] on time scales of 1 ps or less. In general, there are three classes
describing the effects of pump laser pulses on magnetic systems [17]:
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1. Thermal effects are caused by absorption of photons as energy is pumped into
the material. The magnetization change is thus an effect of the spin temperature
M = M(Ts). Phonons and electrons are pumped with the energy from light. Any
subsequent magnetization changes and their time scales are determined by the in-
ternal equilibration processes like electron-spin interactions, which can be as low as
50 fs for ferromagnets. External parameters such as thermal conductivity of sub-
strates and the geometry of the material give the lifetime of such thermal effects.
This class is limited by the cooling time as it limits the repetition frequency of the
magnetization manipulation through spin excitation.

2. Nonthermal photomagnetic effects involve the absorption of pump photons [13]. For
this class, through certain electronic states that have direct influence on magnetic
parameters such as magnetocrystalline anisotropy, photons are absorbed. Through
these same magnetic parameters, the magnetic moment of the material is affected
and the lifetime of the effect is given by the lifetime of the corresponding electronic
states.

3. Nonthermal optomagnetic effects are unrelated to the absorption of pump photons
and are seen mostly in transparent crystals [13]. They are based on an optically
coherent stimulated Raman scattering mechanism and mainly include effects such
as the IFE and the Inverse Cotton-Mouton effect. This mechanism’s action can be
considered as instantaneous and the spin-orbit coupling which is the driving force for
the magnetization change is its limiting factor. The lifetime of the effect is similar
to optical coherence (100–200 fs).

The publication by Kimel et al. [16] had managed to experimentally demonstrate for the
first time, that spins can be manipulated with a circularly polarized laser beam [10]. This
was a major milestone in the understanding of optomagnetism. Not only had it managed
to demonstrate this effect, it utilized this effect for ultrafast non-thermal coherent control
of magnetization and spin dynamics in magnets through the application of these circularly
polarized femtosecond light pulses with the use of the IFE. Until then, IFE had remained
relatively unknown and unexplored experimentally, and only in a limited form was the basic
theory of the process theoretically explored. There were papers which focused on thermal
and photomagnetic effects. For example, Kimel et al. (2004) [15] had already shown a
laser-induced ultrafast spin reoriontation in TmFeO3 on a timescale of a few picoseconds,
contrasting to what was previously hundreds of picoseconds. Photomagnetic effects were
already shown to exist in garnets with certain dopants [32] and Duong et al. (2004) [7]
had probed and examined magnetic changes that were caused by the photoexcitation of
NiO by optical second-harmonic generation.
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The paper by Kimel et al. [16] starts from the basic theory of the IFE, with the equation
for Faraday rotation through a medium under a magnetic field:

αF =
χ

n
M · k (1.20)

where n is the refractive index of the material, k is the wave vector of light and M is the
magnetization. They use the expression for the magnetization from the basic theory for
IFE:

M(0) =
χ

16π
[E(ω)× E∗(ω)] (1.21)

where χ is the magnetic susceptibility. This is another form of the equations we have
previously shown. They used DyFeO3 for their experiment as it had a strong anisotropy
of the magnetic susceptibility χ. Finally, they were able to show that an ultrashort laser
pulse will act on the ensemble of strongly correlated spins, acting as a magnetic field pulse
which is directed along the wave vector k. They showed that such femtosecond circularly
polarized laser pulses are equivalent to 200 fs magnetic pulses up to 5T [16].

Consequently, new research was beginning to find more applications for the IFE and
optomagnetic effects. Hertel (2005) explored the theoretical side of the IFE in metals using
a microscopic approach based on the Drude approximation of a free-electron gas, where
the magnetization due to IFE was interpreted as a result of microscopic solenoidal currents
generated by electromagnetic waves [10]. It was shown by Stanciu, Hansteen, et al. (2007)
[31] that IFE could be used to reverse magnetization in a controllable way with a single 40
fs circularly polarized laser pulse without the use of any applied magnetic field. Others such
as Popova et al. (2011) [27] have tried to correct some of the shortcomings of the theory
behind IFE to account for extremely short laser pulse durations which cause problems
for the original formulation. Others such as Battiato et al. (2014) [1] further explored
the quantum mechanical model of the IFE using perturbations in conjunction with an
analytical time-dependent solution of the Liouville-von Neumann equation and the density
matrix approach. The interest in optical control of magnetization and specifically the IFE
has consistently increased and can be seen by the papers from Lambert et al. (2014) [20]
and Kozhaev et al. [18]. Tokman et al. [33] published a paper on the IFE effect in graphene
which attempts to address the same issue as we do in this thesis, with a completely different
approach. We will compare our results with those of Tokman et al. in the next chapters.
More recently, Majedi, A. Hamed and Lounis, Brahim [23] developed a quantummechanical
formulation for a generalized Pitaevskii’s relationship and showed that photoinduced DC
magnetization is proportional to the odd harmonics of light power. Our purpose here is to
apply a similar methodology with graphene and theoretically determine whether we can
induce DC magnetization in graphene, and whether this magnetization follows the same
form as the IFE observed in previous research.
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Chapter 2

Theoretical Analysis

2.1 Circularly Polarized Light

Before we begin with the calculations, we will give a summary of the method and the steps
used to obtain the final result. We first start from the Hamiltonian of graphene around
the K point, which includes the interaction term coming from the vector potential of the
circularly polarized light that we apply to the graphene. This will break up our total
Hamiltonian into two parts: 1) Ĥk which is the original Hamiltonian and 2) Ĥ0 which is
the interaction Hamiltonian.

We then solve Schrödinger’s equation for the interaction Hamiltonian and obtain the
wavefunctions which we name ψ±

0 . In order to solve for the wavefunction considering the
total Hamiltonian, we assume the form of the solution ψk is a combination of functions
of time ξ±(t) multiplied by the interaction wavefunctions found in the previous step. We
then plug our assumptions into Schrödinger’s equation with the full Hamiltonian to arrive
at a system of ODEs. This system turns out to have non-constant coefficients, so we use
an approximation to simplify it to a system with constant coefficients. We then solve this
system and arrive at the total wavefunction ψk for both the conduction and valence band.

After finding the total wavefunction, we use the formula from the paper by Majedi, A.
Hamed and Lounis, Brahim [23] for magnetization, which involves taking the expectation
value of the total angular momentum operator. Since our basis functions are orbital func-
tions, we break up the angular momentum operator into two parts, one for r× p and one
for r×eA. We then apply translations to the two orbital functions for the A and B atom to
account for their physical translation in space. After showing that the expectation values

9



Figure 2.1: Diagram of the steps used in finding the dressed wavefunction of graphene.

for the first part of the angular momentum operator is zero, we use Matlab to numerically
solve the integrals arising from the expectation values of the second part of that operator.

Finally, after obtaining the values for these integrals, we combine the integrals with
the constant terms that we obtain from the multiplication ψ∗

kψk and show the complete
expression for the magnetization of graphene (refer to Figures 2.1 and 2.2 for a visual
representation of the steps.)

For graphene, the Hamiltonian in the presence of an electromagnetic field can be written
in the following form:

Ĥ = vσ · (ℏk− eA) (2.1)

where A = (Ax, Ay) is the magnetic vector potential, σ = (σx, σy) is the Pauli matrix
vector and k = (kx, ky) = (k cosφ, k sinφ) is the wave vector and φ is the azimuth angle
of the electron wave vector. To find the dressed states in graphene, we follow a similar

10



Figure 2.2: Diagram of steps for finding the expression for DC magnetization of graphene.

methodology as the one used in the paper by Kristinsson, K., Kibis, O., Morina, S. and
I. A. Shelykh [19], by applying a circularly polarized field to the graphene and solve the
corresponding Schrödinger’s equation using the above Hamiltonian, as illustrated in Figure
2.3. Since we are using circularly polarized light, our vector potential will have the following
form:

A = (A0 cosωt, A0 sinωt) (2.2)

where

A0 =
E0

ω
(2.3)

We will have two parts to our Hamiltonian if we expand the total Hamiltonian

Ĥ = Ĥ0 + Ĥk (2.4)

11



Figure 2.3: Circularly polarized light applied to a sheet of graphene.

First we find the interaction Hamiltonian Ĥ0:

Ĥ0 = −vσ · eA
= −ve(σxAx + σyAy)

= −ve
[(

0 1
1 0

)
(A0 cosωt) +

(
0 −i
i 0

)
(A0 sinωt)

]
= (−veA0)

(
0 cosωt− i sinωt

cosωt+ i sinωt 0

)
Ĥ0 = (−veA0)

(
0 eiωt

e−iωt 0

)
(2.5)
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Next we find the graphene Hamiltonian Ĥk:

Ĥk = vσ · ℏk
= vℏ(σxkx + σyky)

= vℏ
[(

0 1
1 0

)
kx +

(
0 −i
i 0

)
ky

]
= vℏ

(
0 kx − iky

kx + iky 0

)
Ĥk =

(
0 vℏ(kx − iky)

vℏ(kx + iky) 0

)
(2.6)

We arrive at the following wavefunctions that are also derived by Kristinsson et al. [19] by
solving the system of equations iℏ d

dt
ψ0 = Ĥ0ψ0:

ψ±
0 = e±

iΩt
2ℏ

[√
Ω± ℏω
2Ω

Φ
′

1(r)e
− iωt

2 ±
√

Ω∓ ℏω
2Ω

Φ
′

2(r)e
iωt
2

]
(2.7)

where we define the new energy of the system dressed by circularly polarized light as

Ω =

√
(ℏω)2 +

(
2veE0

ω

)2

(2.8)

We can see from equation (2.8) that the frequency of the system is also being dressed. Tak-

ing Ω = ℏωdressed, we get the expression for the dressed frequency, ωdressed =
√
ω2 +

(
2veE0

ℏω

)2
.

We put these wavefunctions in vector form, using Φ
′
1(r) and Φ

′
2(r) as the basis vectors

ψ+
0 =

(
ψ+
01

ψ+
02

)
=

√Ω+ℏω
2Ω

e
iΩt
2ℏ − iωt

2√
Ω−ℏω
2Ω

e
iΩt
2ℏ + iωt

2


ψ−
0 =

(
ψ−
01

ψ−
02

)
=

 √
Ω−ℏω
2Ω

e−
iΩt
2ℏ − iωt

2

−
√

Ω+ℏω
2Ω

e−
iΩt
2ℏ + iωt

2


ψ̇+
0 =

(
ψ̇+
01

ψ̇+
02

)
=

i (Ω−ℏω
2ℏ

)√
Ω+ℏω
2Ω

e
iΩt
2ℏ − iωt

2

i
(
Ω+ℏω
2ℏ

)√
Ω−ℏω
2Ω

e
iΩt
2ℏ + iωt

2


ψ̇−
0 =

(
ψ̇−
01

ψ̇−
02

)
=

−i
(
Ω+ℏω
2ℏ

)√
Ω−ℏω
2Ω

e−
iΩt
2ℏ − iωt

2

i
(
Ω−ℏω
2ℏ

)√
Ω+ℏω
2Ω

e−
iΩt
2ℏ + iωt

2



(2.9)
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ψk will have the following form

ψk = ξ+(t)ψ+
0 + ξ−(t)ψ−

0 (2.10)

= ξ+(t)

(
ψ+
01

ψ+
02

)
+ ξ−(t)

(
ψ−
01

ψ−
02

)
(2.11)(

ψk1

ψk2

)
=

(
ξ+(t)ψ+

01 + ξ−(t)ψ−
01

ξ+(t)ψ+
02 + ξ−(t)ψ−

02

)
(2.12)

We have the Hamiltonian

Ĥ =

(
0 −W0

2
e−iωt + ℏv(kx − iky)

−W0

2
eiωt + ℏv(kx + iky) 0

)
(2.13)

Ĥ =

(
0 H1

H2 0

)
(2.14)

where
W0 = 2veA0 (2.15)

The Schrödinger equation has the following form

iℏψ̇k = Ĥψk (2.16)

Applying the product rule to the derivative of ψk

ψ̇k = ξ̇+(t)ψ+
0 + ξ+(t)ψ̇+

0 + ξ̇−(t)ψ−
0 + ξ−(t)ψ̇−

0 (2.17)

On the right hand side of equation (2.16), we have

Ĥψk =

(
0 H1

H2 0

)(
ψk1

ψk2

)
=

(
H1ψk2

H2ψk1

)
(2.18)

The full Schrödinger equation will now be the following

iℏ
[
ξ̇+
(
ψ+
01

ψ+
02

)
+ ξ+

(
ψ̇+
01

ψ̇+
02

)
+ ξ̇−

(
ψ−
01

ψ−
02

)
+ ξ−

(
ψ̇−
01

ψ̇−
02

)]
=

(
H1ψk2

H2ψk1

)
(2.19)

This leads to two sets of coupled differential equations

iℏ
[
ξ̇+ψ+

01 + ξ+ψ̇+
01 + ξ̇−ψ−

01 + ξ−ψ̇−
01

]
= H1ψk2 (2.20)

iℏ
[
ξ̇+ψ+

02 + ξ+ψ̇+
02 + ξ̇−ψ−

02 + ξ−ψ̇−
02

]
= H2ψk1 (2.21)
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Rearranging equation (2.21) in terms of ξ̇−:

ξ̇− =
H2ψk1 − iℏ

[
ξ̇+ψ+

02 + ξ+ψ̇+
02 + ξ−ψ̇−

02

]
iℏψ−

02

(2.22)

Subbing in equation (2.22) into equation (2.20)

iℏ

ξ̇+ψ+
01 + ξ+ψ̇+

01 +

H2ψk1 − iℏ
[
ξ̇+ψ+

02 + ξ+ψ̇+
02 + ξ−ψ̇−

02

]
iℏψ−

02

ψ−
01 + ξ−ψ̇−

01

 = H1ψk2

(2.23)
Multiplying both sides by ψ−

02 and dividing by ℏ:

iξ̇+ψ+
01ψ

−
02 − iξ̇+ψ+

02ψ
−
01+iξ

+ψ̇+
01ψ

−
02 +

H2

ℏ
ψk1ψ

−
01

− iξ+ψ̇+
02ψ

−
01 − iξ−ψ̇−

02ψ
−
01 + iξ−ψ̇−

01 =
H1

ℏ
ψk2

(2.24)

i
(
ψ+
01ψ

−
02 − ψ+

02ψ
−
01

)
ξ̇+ =− i

(
ψ̇+
01ψ

−
02 − ψ̇+

02ψ
−
01

)
ξ+

− i
(
ψ̇−
01ψ

−
02 − ψ̇−

02ψ
−
01

)
ξ−

− H2

ℏ
ψk1ψ

−
01

+
H1

ℏ
ψk2ψ

−
02

(2.25)

To simplify the calculations, we define the following variables

ζ ≜ ψ+
01ψ

−
02 − ψ+

02ψ
−
01 (2.26)

δ+ ≜ ψ̇+
01ψ

−
02 − ψ̇+

02ψ
−
01 (2.27)

δ− ≜ ψ̇−
01ψ

−
02 − ψ̇−

02ψ
−
01 (2.28)

Using these definitions in equation (2.25)

iζξ̇+ = −iδ+ξ+ − iδ−ξ− − H2

ℏ
(
ξ+ψ+

01 + ξ−ψ−
01

)
ψ−
01 +

H1

ℏ
(
ξ+ψ+

02 + ξ−ψ−
02

)
ψ−
02 (2.29)

Gathering all terms with ξ+ and ξ− together and dividing both sides by ζ:

iξ̇+ =−
(
i
δ+

ζ
+
H2

ℏζ
ψ+
01ψ

−
01 −

H1

ℏζ
ψ+
02ψ

−
02

)
ξ+

−
(
i
δ−

ζ
+
H2

ℏζ
ψ−
01ψ

−
01 −

H1

ℏζ
ψ−
02ψ

−
02

)
ξ−

(2.30)
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Using the following definitions

∆+ ≜ i
δ+

ζ
+
H2

ℏζ
ψ+
01ψ

−
01 −

H1

ℏζ
ψ+
02ψ

−
02 (2.31)

∆− ≜ i
δ−

ζ
+
H2

ℏζ
ψ−
01ψ

−
01 −

H1

ℏζ
ψ−
02ψ

−
02 (2.32)

The equation becomes
iξ̇+ = −∆+ξ+ −∆−ξ− (2.33)

Now we need to find ∆+ and ∆−. To do this, we first find ζ, δ+, δ−, noting that W 2
0 =

Ω2 − (ℏω)2:

ζ = ψ+
01ψ

−
02 − ψ+

02ψ
−
01

= −
(
Ω + ℏω
2Ω

)
−
(
Ω− ℏω
2Ω

)
= −

(
Ω + ℏω
2Ω

+
Ω− ℏω
2Ω

)
ζ = −1, (2.34)

δ+ = ψ̇+
01ψ

−
02 − ψ̇+

02ψ
−
01

= −i
(
Ω− ℏω

2ℏ

)(
Ω + ℏω
2Ω

)
− i

(
Ω + ℏω

2ℏ

)(
Ω− ℏω
2Ω

)
= −i 1

4ℏΩ
[(Ω− ℏω)(Ω + ℏω) + (Ω + ℏω)(Ω− ℏω)]

= −i(Ω− ℏω)(Ω + ℏω)
2ℏΩ

δ+ = −i W
2
0

2ℏΩ
, (2.35)

δ− = ψ̇−
01ψ

−
02 − ψ̇−

02ψ
−
01

= i

(
Ω + ℏω
4ℏΩ

)√
(Ω− ℏω)(Ω + ℏω)e−

iΩt
ℏ

− i

(
Ω− ℏω
4ℏΩ

)√
(Ω− ℏω)(Ω + ℏω)e−

iΩt
ℏ

= i
ω

2Ω

√
(Ω− ℏω)(Ω + ℏω)e−

iΩt
ℏ

δ− = i
W0ω

2Ω
e−

iΩt
ℏ (2.36)
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Now we calculate ∆+:

∆+ = i
δ+

ζ
+
H2

ℏζ
ψ+
01ψ

−
01 −

H1

ℏζ
ψ+
02ψ

−
02

= b+ c− d

(2.37)

Calculating b, c and d:

b = i

(
−i W

2
0

2ℏΩ

)
(−1)

b = −W 2
0

2ℏΩ

(2.38)

c:

c =
H2

ℏζ
ψ+
01ψ

−
01

= −1

ℏ

(
−W0

2
eiωt + ℏv(kx + iky)

)
W0

2Ω
e−iωt

= −W0

2Ω

(
−W0

2ℏ
eiωt + v(kx + iky)

)
e−iωt

= −W0

2Ω

(
−W0

2ℏ
+ v(kx + iky)e

−iωt

)
(2.39)

d:

d =
H1

ℏζ
ψ+
02ψ

−
02

=
1

ℏ

(
−W0

2
e−iωt + ℏv(kx − iky)

)
W0

2Ω
e−iωt

=
W0

2Ω

(
−W0

2ℏ
e−iωt + v(kx − iky)

)
eiωt

=
W0

2Ω

(
−W0

2ℏ
+ v(kx − iky)e

iωt

)
(2.40)
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c− d:

c− d = −W0

2Ω

(
−W0

2ℏ
+ v(kx + iky)e

−iωt +−W0

2ℏ
+ v(kx − iky)e

iωt

)
= −W0

2Ω

(
−W0

ℏ
+ vkx

(
eiωt + e−iωt

)
+ ivky

(
e−iωt − eiωt

))
= −W0

2Ω

(
−W0

ℏ
+ 2v (kx cosωt+ ky sinωt)

)
(2.41)

∆+:

∆+ = b+ c− d

= −W 2
0

2ℏΩ
− W0

2Ω

(
−W0

ℏ
+ 2v (kx cosωt+ ky sinωt)

)
= −(1− 1)

W 2
0

2ℏΩ
− v

W0

Ω
(kx cosωt+ ky sinωt)

∆+ = −vW0

Ω
(kx cosωt+ ky sinωt) (2.42)

Now we calculate ∆−:

∆− = i
δ−

ζ
+
H2

ℏζ
ψ−
01ψ

−
01 −

H1

ℏζ
ψ−
02ψ

−
02

= f + g − h (2.43)

Calculating f , g and h:

f = i

(
i
W0ω

2Ω
e−

iΩt
ℏ

)
(−1)

=
W0ω

2Ω
e−

iΩt
ℏ (2.44)

g:

g =
H2

ℏζ
ψ−
01ψ

−
01

= −1

ℏ

(
−W0

2
eiωt + ℏv(kx + iky)

)(
Ω− ℏω
2Ω

)
e−

iΩt
ℏ −iωt

= −
(
−W0

2ℏ
eiωt + v(kx + iky)

)(
Ω− ℏω
2Ω

)
e−

iΩt
ℏ −iωt

= −
(
−W0

2ℏ
e−

iΩt
ℏ + v(kx + iky)e

− iΩt
ℏ −iωt

)(
Ω− ℏω
2Ω

)
(2.45)
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h:

h =
H1

ℏζ
ψ−
02ψ

−
02

= −1

ℏ

(
−W0

2
e−iωt + ℏv(kx − iky)

)(
Ω + ℏω
2Ω

)
e−

iΩt
ℏ +iωt

= −
(
−W0

2ℏ
e−iωt + v(kx − iky)

)(
Ω + ℏω
2Ω

)
e−

iΩt
ℏ +iωt

= −
(
−W0

2ℏ
e−

iΩt
ℏ + v(kx − iky)e

− iΩt
ℏ +iωt

)(
Ω + ℏω
2Ω

)
(2.46)

g − h:

g − h = −e−
iΩt
ℏ

[(
− W0

2ℏ
+ v(kx + iky)e

−iωt

)(
Ω− ℏω
2Ω

)

−
(
−W0

2ℏ
+ v(kx − iky)e

iωt

)(
Ω + ℏω
2Ω

)]

= −e−
iΩt
ℏ

[
W0ω

2Ω
+ v(kx + iky)

(
Ω− ℏω
2Ω

)
e−iωt

− v(kx − iky)

(
Ω + ℏω
2Ω

)
eiωt

]
(2.47)

∆−:

∆− = f + g − h

=
W0ω

2Ω
e−

iΩt
ℏ − e−

iΩt
ℏ

[
W0ω

Ω
+ v(kx + iky)

(
Ω− ℏω
2Ω

)
e−iωt

− v(kx − iky)

(
Ω + ℏω
2Ω

)
eiωt

]

= (1− 1)
W0ω

2Ω
e−

iΩt
ℏ − v(kx + iky)

(
Ω− ℏω
2Ω

)
e−i(Ω

ℏ +ω)t

+ v(kx − iky)

(
Ω + ℏω
2Ω

)
e−i(Ω

ℏ −ω)t

∆− = −v(kx + iky)

(
Ω− ℏω
2Ω

)
e−i(Ω

ℏ +ω)t + v(kx − iky)

(
Ω + ℏω
2Ω

)
e−i(Ω

ℏ −ω)t (2.48)
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Finally, subbing equations (2.42) and (2.48) into equation (2.33), we get the following:

iξ̇+ = v

[
W0

Ω
(kx cosωt+ ky sinωt) ξ

+

−(kx − iky)

(
Ω + ℏω
2Ω

)
e−i(Ω

ℏ −ω)tξ− + (kx + iky)

(
Ω− ℏω
2Ω

)
e−i(Ω

ℏ +ω)tξ−
] (2.49)

iξ̇− = −v
[
W0

Ω
(kx cosωt+ ky sinωt) ξ

−

+(kx + iky)

(
Ω + ℏω
2Ω

)
ei(

Ω
ℏ +ω)tξ+ − (kx − iky)

(
Ω− ℏω
2Ω

)
ei(

Ω
ℏ −ω)tξ+

] (2.50)

Under high frequency, where the relation
W0

ℏω
holds, equations (2.49) and (2.50) will simplify

with the following:
W0

Ω
≈ W0

ℏω
≈ 0,

Ω + ℏω
2Ω

≈ 1,
Ω− ℏω
2Ω

≈ 0, (2.51)

to the following equations [19]:

iξ̇+(t) = −v(kx − iky)e
−i(Ω

ℏ −ω)tξ−(t)

iξ̇−(t) = −v(kx + iky)e
i(Ω

ℏ −ω)tξ+(t)
(2.52)

From here, we take the time derivative of the first equation of these two coupled equations
and insert the second equation into the derivative of the first to get a second order equation
in terms of ξ+:

iξ̈+ = −v(kx − iky)

(
−i(Ω− ℏω)

ℏ

)
e−i(Ω

ℏ −ω)tξ− − v(kx − iky)e
−i(Ω

ℏ −ω)t ξ̇− (2.53)

We have the following:

ξ− = − iξ̇+

v(kx − iky)
ei(

Ω
ℏ −ω)t (2.54)

and
ξ̇− = iv(kx + iky)e

i(Ω
ℏ −ω)tξ+ (2.55)

Inserting the above equations into equation (2.53):

ξ̈+(t) = −i(Ω− ℏω)
ℏ

ξ̇+(t)− (vk)2ξ+(t) (2.56)
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We can get both ξ+ and ξ− from this equation. First we find ξ+:

ξ+ = C+e
− i

2

(
−i

√
− (Ω−ℏω)2

ℏ2 −4(vk)2+Ω−ℏω
ℏ

)
t

= C+e
− i

2

(
−i
√

−(Ω−ℏω)2−4(ℏvk)2+Ω−ℏω
)

t
ℏ

= C+e
−i

(
−i
√

−(Ω−ℏω
2 )

2
−(ℏvk)2+Ω−ℏω

2

)
t
ℏ

= C+e
−i

(√
(Ω−ℏω

2 )
2
+(ℏvk)2+Ω

2
− ℏω

2

)
t
ℏ (2.57)

Similarly for ξ−:

ξ− = C−e
i
2

(
−i

√
− (Ω−ℏω)2

ℏ2 −4(vk)2−Ω−ℏω
ℏ

)
t

= C−e
− i

2

(
i
√

−(Ω−ℏω)2−4(ℏvk)2−Ω−ℏω
)

t
ℏ

= C−e
−i

(
i
√

−(Ω−ℏω
2 )

2
−(ℏvk)2−Ω−ℏω

2

)
t
ℏ

= C−e
−i

(
−
√
(Ω−ℏω

2 )
2
+(ℏvk)2−Ω

2
+ ℏω

2

)
t
ℏ (2.58)

We make the following definition:

εk =

√(
Ω− ℏω

2

)2

+ (ℏvk)2 (2.59)

or written a different way:

εk =

√(εg
2

)2
+ (ℏvk)2 (2.60)

where:

εg =

√
(ℏω)2 +

(
2veE0

ω

)2

− ℏω

= ℏωdressed − ℏω
= ℏ(ωdressed − ω)

(2.61)
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Figure 2.4: Gap created at the location of the Dirac cones, with a magnitude of εg.

The immediate result of this energy dispersion is the opening of a gap at the Dirac points
as shown in Figure 2.4. (compare with Figure 1.2.) The energy gap can be expressed in
terms of the difference between the dressed and the original frequency multiplied by ℏ. It
is similar to the detuning for the generalized Rabi frequency of a two-level system.

Now we can write ξ+ and ξ− in the following form:

ξ±(t) = C±e−i(±Ω
2
∓ ℏω

2
+εk) t

ℏ (2.62)

To find C+ and C−, we must make use of the normalization condition for the wavefunction
ψk:

1 = ⟨ψk|ψk⟩
= |ξ+|2 ⟨ψ+

0 |ψ+
0 ⟩+ |ξ−|2 ⟨ψ−

0 |ψ−
0 ⟩

= |ξ+|2 + |ξ−|2

= |C+e−i(Ω
2
− ℏω

2
+εk) t

ℏ |2 + |C−e−i(−Ω
2
+ ℏω

2
−εk) t

ℏ |2

1 = |C+|2 + |C−|2 (2.63)

Now using this result alongside the first equation in (2.52), the left hand side will be:

iξ̇+ = i

(
C+

(
− i

ℏ

(
Ω

2
− ℏω

2
+ εk

))
e−i(Ω

2
− ℏω

2
+εk) t

ℏ

)
= C+ 1

ℏ

(
Ω

2
− ℏω

2
+ εk

)
e−i(Ω

2
− ℏω

2
+εk) t

ℏ (2.64)
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The right hand side will be:

= −v(kx − iky)e
−i

(Ω−ℏω)
ℏ tC−e−i(−Ω

2
+ ℏω

2
−εk) t

ℏ (2.65)

At t = 0, we will have the following equation:

C+ 1

ℏ

(
Ω

2
− ℏω

2
+ εk

)
= −v(kx − iky)C

− (2.66)

Taking the magnitude squared of both sides:∣∣∣∣C+ 1

ℏ

(
Ω

2
− ℏω

2
+ εk

)∣∣∣∣2 = ∣∣−v(kx − iky)C
−∣∣2

∣∣C+
∣∣2 1

ℏ2

(
Ω

2
− ℏω

2
+ εk

)2

= (vk)2
∣∣C−∣∣2

∣∣C+
∣∣2 1

ℏ2
(εg
2
+ εk

)2
= (vk)2

∣∣C−∣∣2 (2.67)

Now we use the normalization condition obtained previously (|C−|2 = 1− |C+|2):∣∣C+
∣∣2 1

ℏ2
(εg
2
+ εk

)2
= (vk)2

(
1−

∣∣C+
∣∣2)∣∣C+

∣∣2 1

ℏ2
(εg
2
+ εk

)2
= (vk)2 − (vk)2

∣∣C+
∣∣2∣∣C+

∣∣2 1

ℏ2
(εg
2
+ εk

)2
+ (vk)2

∣∣C+
∣∣2 = (vk)2∣∣C+

∣∣2 (εg
2
+ εk

)2
+ (ℏvk)2

∣∣C+
∣∣2 = (ℏvk)2∣∣C+
∣∣2 = (ℏvk)2( εg

2
+ εk

)2
+ (ℏvk)2∣∣C+

∣∣2 = ε2k −
( εg

2

)2( εg
2

)2
+ ε2k + εgεk + (ℏvk)2∣∣C+

∣∣2 = (
εk − εg

2

) (
εk +

εg
2

)
2εk

(
εk +

εg
2

)
∣∣C+

∣∣2 = εk − εg
2

2εk

C+ = ±

√
εk − εg

2

2εk
(2.68)
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From this result, we can simply find C− using the normalization condition:

C− = ∓

√
εk +

εg
2

2εk
(2.69)

Solving for C+ and C− using the second equation in (2.52) will result in the following:

C+ = ±

√
εk +

εg
2

2εk
(2.70)

C− = ∓

√
εk − εg

2

2εk
(2.71)

So we have four solutions for these constants which come in pairs. We can express the final
result as such:

C+ = ±

√
εk ∓ εg

2

2εk
(2.72)

C− = ∓

√
εk ± εg

2

2εk
(2.73)

We must note that since we have used the normalization condition, and since C+ and C−

are complex numbers, we have lost the information of their complex phase. To account for
it, we must add this phase in the expression and find it using equation (2.52):

C+ = ±

√
εk ∓ εg

2

2εk
eiθ1 (2.74)

C− = ∓

√
εk ± εg

2

2εk
eiθ2 (2.75)

Subbing these expressions into equation (2.52):

C+ 1

ℏ

(
Ω

2
− ℏω

2
+ εk

)
e−i

εk
ℏ t = −v(kx − iky)e

−i
(Ω−ℏω)

ℏ te−i(−Ω
2

+ ℏω
2
−εk) t

ℏC− (2.76)

Setting t = 0 and substituting the expressions for C+ and C−:√
εk − εg

2

2εk
eiθ1

1

ℏ

(
Ω

2
− ℏω

2
+ εk

)
= −v(kx − iky)

−

√
εk +

εg
2

2εk
eiθ2

 (2.77)
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Multiplying both sides by

√
εk+

εg
2

2εk
:√

ε2k −
(εg
2

)2
eiθ1
(
Ω

2
− ℏω

2
+ εk

)
= ℏv(kx − iky)

(
εk +

εg
2

)
eiθ2

(ℏvk)eiθ1
(εg
2
+ εk

)
= (ℏvk)e−iφ

(
εk +

εg
2

)
eiθ2

eiθ1 = e−iφeiθ2

ei(θ2−θ1) = eiφ

θ2 − θ1 = φ (2.78)

We have found the relation between the phases of C+ and C−. We set θ1 = −φ
2
and θ2 =

φ
2
.

Now we can express the full form of the wavefunction ψk using our results:

ψk = e−i
εk
ℏ t

[
±

√
|εk| ∓ εg

2

2|εk|
e−iφ

2

(√
Ω + ℏω
2Ω

Φ
′

1(r) +

√
Ω− ℏω
2Ω

Φ
′

2(r)e
iωt

)

∓

√
|εk| ± εg

2

2|εk|
ei

φ
2

(√
Ω− ℏω
2Ω

Φ
′

1(r)e
−iωt −

√
Ω + ℏω
2Ω

Φ
′

2(r)

)] (2.79)

The + and − correspond to the wavefunction for the conduction band and the valence
band respectively. This also holds for the sign of εk (this detail is important for when we
calculate expectation values using this total wavefunction.)

Setting Φ
′
1,2(r) = Φ1,2(r)φk(r) and applying the previous approximation in (2.51):

ψk = φk(r)e
−i

εk
ℏ t

±√ |εk| ∓ εg
2

2|εk|
e−iφ

2 Φ1(r)±

√
|εk| ± εg

2

2|εk|
ei

φ
2 Φ2(r)

 (2.80)

This equation is physically equivalent to Eq (2.79), only simplified with the aforementioned

approximations which removes all
√

Ω+ℏω
2Ω

,
√

Ω−ℏω
2Ω

, eiωt and e−iωt terms. Both equations

refer to the total wavefunction for electrons in the graphene sheet around the K point for
the conduction and valence bands.

2.2 Magnetization Formula Applied to Wavefunction

Following the definition of magnetization developed in the paper by Majedi, A. Hamed and
Lounis, Brahim [23], we define the formula (ignoring the spin term) for the expectation
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value of the magnetization as

⟨M̂⟩ = Ne

2m
⟨L̂⟩ (2.81)

where N is the atomic number density of the material (3.82×1019m−2 for graphene). Note
that the angular momentum operator L̂ is the total angular momentum operator which
includes the angular momentum induced from the vector potential of the light. First we
write our wavefunction from the previous section (from Eq (2.80)):

ψk = φk(r)e
−i

εk
ℏ t

√ |εk| − εg
2

2|εk|
e−iφ

2 Φ1(r) +

√
|εk|+ εg

2

2|εk|
ei

φ
2 Φ2(r)

 (2.82)

ψ∗
k = φ∗

k(r)e
i
εk
ℏ t

√ |εk| − εg
2

2|εk|
ei

φ
2 Φ∗

1(r) +

√
|εk|+ εg

2

2|εk|
e−iφ

2 Φ∗
2(r)

 (2.83)

Using the formula for magnetization as follows [23]:

⟨M̂⟩ = Ne

2m

∫
ψ∗
kL̂ψk d

3r

=
Ne

2m

[
M1I11 +M2I12 +M3I21 +M4I22

] (2.84)

where we have the following terms which come from the multiplication of the constant
terms attached to the basis functions

M1 =
|εk| − εg

2

2|εk|
(2.85)

M2 =
ℏvk
2|εk|

eiφ (2.86)

M3 =
ℏvk
2|εk|

e−iφ (2.87)

M4 =
|εk|+ εg

2

2|εk|
(2.88)

and I11, I12, I21 and I22 are the integral terms arising from the expectation value of the
angular momentum operator with basis functions as the wavefunctions. Although the
calculation for all of the Mi terms are not given for the unsimplified wavefunction from
Eq (2.79), the final results of the calculation are given and used in the last section of the
theoretical analysis.
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2.3 Calculation of Expectation Value of Angular Mo-

mentum Operator

We note that in this case, the angular momentum operator is:

L̂ = r× (p− eA) (2.89)

which can be written as
L̂ = L̂p + L̂A (2.90)

where we have

L̂p = r× p

=
(
L̂px , L̂py , L̂pz

) (2.91)

L̂px = −iℏ
(
y
∂

∂z
− z

∂

∂y

)
(2.92)

L̂py = −iℏ
(
z
∂

∂x
− x

∂

∂z

)
(2.93)

L̂pz = −iℏ
(
x
∂

∂y
− y

∂

∂x

)
(2.94)

and

L̂A = −er×A

=
(
L̂Ax , L̂Ay , L̂Az

) (2.95)

L̂Ax = eA0z sinωt (2.96)

L̂Ay = −eA0z cosωt (2.97)

L̂Az = −eA0(x sinωt− y cosωt) (2.98)

We take the position vector and the wavevector to be:

r = x̂x+ ŷy + ẑz (2.99)

k = x̂k cosφ+ ŷk sinφ (2.100)
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We also know the formula for the pz orbital for the carbon atom from the hydrogen atom
model:

Ψ210(r) =
1√
32π

(
6

a0

)5/2

re
− 3r

a0 cos θ

=
1√
32π

(
6

a0

)5/2

ze
− 3

a0

√
x2+y2+z2

(2.101)

where a0 is the Bohr radius. Now we find the expanded form of φk(r) which is simply the
form of the Bloch wavefunction with a normalization factor of S. Usually, this factor is V ,
but since we are dealing with a 2D material, this factor is a surface area instead:

φk(r) =
1√
S
eik·r

=
1√
S
eik(x cosφ+y sinφ)

=
1√
S
eik

√
x2+y2

(2.102)

However, since we are dealing with only one unit cell in our calculations, we normalize
S and remove it from calculations. Relating the orbital function to our basic functions,
we have (the positions of the atoms are shown with respect to our chosen coordinates in
Figure 2.5) [29]:

Φ1(r) = eik·RAΨ210(r−RA)

Φ2(r) = eik·RBΨ210(r−RB)
(2.103)

where we have

RA = − al

2
√
3
x̂ (2.104)

RB =
al

2
√
3
x̂ (2.105)

where al = 2.46Å is the lattice constant of the graphene honeycomb lattice. Note that
|RA| = |RB| is half of the distance between two adjacent A and B sublattice carbon
atoms. From section 1, we can write |RA| = |RB| = a/2. Figures 2.6a and 2.6b show the
probability density of the orbitals with their respective shifts.
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Figure 2.5: Coordinate reference frame for the shifts in the orbital functions.

(a) (b)

Figure 2.6: Orbital probability density for a shift in the direction of (a) RA, (b) RB.
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It is important to note that since these exponential functions are only there to satisfy the
Bloch form for the wavefunction in the crystal, they will not be included in the integration
process for the inner product of states. Combining these results we will have:

Φ1(r)φk(r) =
1√
32π

(
6

a0

)5/2

ze
− 3

a0

√(
x+ a

2
√
3

)2
+y2+z2

eik·RAeik
√

x2+y2

Φ∗
1(r)φ

∗
k(r) =

1√
32π

(
6

a0

)5/2

ze
− 3

a0

√(
x+ a

2
√
3

)2
+y2+z2

e−ik·RAe−ik
√

x2+y2

(2.106)

Φ2(r)φk(r) =
1√
32π

(
6

a0

)5/2

ze
− 3

a0

√(
x− a

2
√
3

)2
+y2+z2

eik·RBeik
√

x2+y2

Φ∗
2(r)φ

∗
k(r) =

1√
32π

(
6

a0

)5/2

ze
− 3

a0

√(
x− a

2
√
3

)2
+y2+z2

e−ik·RBe−ik
√

x2+y2

(2.107)

The integrals from the angular momentum operator L̂p are very straightforward. Since we
know that

L̂z|ψnlm⟩ = mℏ|ψnlm⟩ (2.108)

Since m = 0 for the 2pz orbital, the resulting expectation value will also be zero. This
is a very predictable result since it states that expectation value of the angular momen-
tum for the 2pz orbitals are zero. We have also carried out the integral calculations for
the L̂p expectation values as an extra check and confirmed that they are all zero (we do
not include these calculations here.) Essentially, it means that any nonzero expectation
for the angular momentum operator with the 2pz orbitals has to come from the angular
momentum imparted by light, or in other words, the canonical momentum.

We will have the following integrals (note that I12 = I21):

I11 =

∫
Φ∗

1(r)φ
∗
k(r)L̂A

[
Φ1(r)φk(r)

]
d3r (2.109)

I12 =

∫
Φ∗

1(r)φ
∗
k(r)L̂A

[
Φ2(r)φk(r)

]
d3r (2.110)

I22 =

∫
Φ∗

2(r)φ
∗
k(r)L̂A

[
Φ2(r)φk(r)

]
d3r (2.111)
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We will need to solve these integrals numerically with Matlab (refer to Appendix B).

I11x =

∫
Φ∗

1(r)φ
∗
k(r)(−eA0z sinωt)

[
Φ1(r)φk(r)

]
d3r

= (−eA0 sinωt)
1

32π

(
6

a0

)5 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
z3e

− 6
a0

√
(x−RA)2+y2+z2

dx dy dz

(2.112)

I11y =

∫
Φ∗

1(r)φ
∗
k(r)(−eA0z cosωt)

[
Φ1(r)φk(r)

]
d3r

= (−eA0 cosωt)
1

32π

(
6

a0

)5 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
z3e

− 6
a0

√
(x−RA)2+y2+z2

dx dy dz

(2.113)

I11z =

∫
Φ∗

1(r)φ
∗
k(r)(−eA0x sinωt+ eA0y cosωt)

[
Φ1(r)φk(r)

]
d3r

= (−eA0 sinωt)
1

32π

(
6

a0

)5 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xz2e

− 6
a0

√
(x−RA)2+y2+z2

dx dy dz

+ (eA0 cosωt)
1

32π

(
6

a0

)5 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
yz2e

− 6
a0

√
(x−RA)2+y2+z2

dx dy dz

(2.114)

With the exception of I11z and I22z , all of the integrals are zero:

I11z = −a
2
eA0 sinωt (2.115)

I22z =
a

2
eA0 sinωt (2.116)

If we use equations (2.84) and (2.85)–(2.88), we will have the following:

⟨M̂⟩z =
Ne

2m

[( |εk| − εg
2

2|εk|

)(
−a
2
eA0 sinωt

)
+

( |εk|+ εg
2

2|εk|

)(a
2
eA0 sinωt

)]
=
Na e

4m
eA0 sinωt

[(
−
|εk| − εg

2

2|εk|

)
+

( |εk|+ εg
2

2|εk|

)]
=
Na e

4m
eA0 sinωt

εg
2|εk|

⟨M̂⟩z =
Ne2aE0

8mω

εg
|εk|

sinωt (2.117)

This result clearly has no DC components. In order to get the magnetization with non-zero
DC component, we will have to use the unsimplified wavefunction from Eq (2.79) where
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the approximations in Eq (2.51) are not applied to the wavefunction itself. This will yield
the following:

⟨M̂⟩z =
Ne

2m

[
ℏω
Ω

εg
2|εk|

− ℏvk
|εk|

W0

Ω
cos (−ωt+ φ)

]
I11z

= − Ne2aℏE0

4mω|εk|Ω

[
ωεg
2

− 2ev2kE0

ω
cos (−ωt+ φ)

]
sinωt (2.118)

Therefore, the total magnetization will be:

⟨M̂⟩z = −Ne
2aℏ εgE0

8m|εk|Ω
sinωt+

Ne3aℏv2kE2
0

4mω2|εk|Ω

[
sinφ+ sin (2ωt− φ)

]
(2.119)

The DC components of the magnetization in the z-direction will then be (the +z-direction
is in the direction of the propagation of the polarized light):

⟨M̂⟩DC =
Ne3aℏv2k sinφE2

0

4mω2|εk|Ω
(2.120)

Eq (2.120) can be fully expanded as:

⟨M̂⟩DC =
Ne3aℏv2k sinφE2

0

4mω2

√
(ℏω)2 +

(
2veE0

ω

)2√1
4

(√
(ℏω)2 +

(
2veE0

ω

)2 − ℏω
)2

+ (ℏvk)2
(2.121)

Eq (2.121) physically describes the magnitude of the resultant DC magnetization vector
that we expect to obtain by applying circularly polarized light to a sheet of graphene. As a
sanity check, we can see that by setting the bandgap εg to zero, or in other words, setting
E0 = 0, the magnetization will vanish as well.

The term k sinφ in Eq (2.120) is the y-component of the wave vector k. Since our
Hamiltonian was constructed on the assumption that it is specifically for the regions very
near the Dirac point K, the wave vector k has to be in that same region. For simplification,
we have taken the Dirac point K itself as the value for k. In other words,

k = K =

(
2π

3a
,

2π

3
√
3a

)
, (2.122)

k sinφ =
2π

3
√
3a

(2.123)
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We can further simplify Eqs (2.120) and (2.121) with the above assumption:

⟨M̂⟩DC =
Nπe3ℏv2E2

0

6
√
3mω2|εk|Ω

(2.124)

Expanding Eq (2.121) as a Taylor series in terms of E0 as the variable, up to the sixth
order, we will have:

⟨M̂⟩DC =
Ne3av

8mℏω3
E2

0 −
Ne5av3

4mℏ3ω7
E4

0 +
Ne7av3(27a2ω3 − 192π2v2)

256π2mℏ5ω11
E6

0 + . . . (2.125)

The orders of the Taylor polynomial will be 2, 4, 6, . . . , thus the DC magnetization is a
function of E0 in the form of |Ep × E∗

p|N (where N = 1, 2, 3, . . . ), as predicted by Majedi,
A. Hamed and Lounis, Brahim [23]. We use the second order term in the Taylor expansion
from Eq (2.125) to compare our result with other formulas derived for magnetization of
graphene:

⟨M̂⟩DC ≃ Ne3av

8mℏω3
E2

0 (2.126)

Comparing Eq (2.126) with Pitaevskii’s equation MDC = γE × E∗, we obtain the optical
gyration coefficient for our magnetization:

γ =
iNe3av

16mℏω3
(2.127)

Furthermore, we observe that our result from Eq (2.126) is similar to the results obtained

classically by Hertel [10], with the magnetization formula M = ⟨n⟩e3
2m2ω3 where ⟨n⟩ is the time

averaged electron density. Although the method here is completely different from that of
Hertel, we see the same proportionalities of ∼ e3 and ∼ ω−3. Comparing our result with
Tokman et al. [33] shows even more similarities. Their expression for magnetization in
graphene is:

m(0)
z =

e3v2

2πcℏ2ω3

(
2WF

ℏ

)2 − 2ω2(
2WF

ℏ

)2 − ω2
Re(iẼyẼ

∗
x) (2.128)

where WF is the Fermi energy. Here we see the same proportionalities of ∼ e3, ∼ ω−3 and
also ∼ v2. However, our method of taking into account the band gap created in graphene
due to the circularly polarized light results in no singularities in our expression for the
magnetization, while the expression by Tokman et al. does contain a singularity in terms
of the frequency ω.
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Chapter 3

Numerical Results

In this section we will show our final results by looking at the equations derived in the
previous section and plot them in regions of interest. The parameters used for the numerical
calculations are given in Table 3.1.

Parameter Symbol Value

Graphene lattice constant al 2.46 Å
Graphene nearest-neighbour atoms distance a 1.42 Å

Orbital left shift |RA| 0.71 Å
Orbital right shift |RB| 0.71 Å

Fermi velocity in graphene vF 106 m/s
Graphene atomic density N 3.82× 1019m−2

Wave vector k sinφ 8.51549× 109 m/s

Table 3.1: Parameters for numerical calculation

First, we will show the effect of the applied electric field strength and angular frequency
on the dressed energy Ω which was given by Eq (2.8).

We take into account a realistic spectrum range for typical tunable lasers between the
near ultraviolet (NUV) and near infrared (NIR) wavelengths. We note how the surface
plot in Figure 3.1a looks entirely linear in the region of low electric field amplitudes and
in a frequency range between ω = 1 × 1015 s−1 to ω = 5 × 1015 s−1, corresponding to a
wavelength range of λ = 380 nm to λ = 1890 nm. The energy ℏω is between 0.6582 eV
and 1.3164 eV. It is clear that in this region, the energy is hardly dressed with any extra
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(a)

(b)

Figure 3.1: Surface plots for the dressed energy Ω with respect to field amplitude and
energy, for high and low field amplitudes. Both figures are in the same frequency range of
between ω = 1 × 1015 s−1 to ω = 5 × 1015 s−1 The electric amplitude range is (a) E0 = 0
to E0 = 103 V/m, (b) E0 = 109 to E0 = 1010 V/m.
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(a)

(b)

Figure 3.2: Surface plots for the dressed energy Ω with respect to field amplitude and
energy, for high and low field amplitudes. Both figures are in the same electric field
amplitude range of between E0 = 0 V/m to E0 = 109 V/m The electric amplitude range
is (a) ω = 1× 1015 to ω = 2× 1015 s−1, (b) ω = 1× 1015 to ω = 5× 1015 s−1.
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energy, and this is already clear from the equation. We can see a nearly seven-fold increase
in the dressed energy when increasing the field amplitude from 103 to 109 V/m in Figure
3.1b. This corresponds to field intensities of 2.65W/cm2 to 2.65 × 1011W/cm2, easily
attainable with lasers such as a Ti:Sapphire laser [8]. However, this maximum increase is
mostly in the lowest range of frequencies in the selected range, meaning the lower original
energy sees the most increase. What is more interesting is how we see a gradual shift in
the surface plot gradient in Figure 3.2a to Figure 3.2b just by increasing the frequency
range to a higher value. In Figure 3.2a, the dressed energy maximum is slightly higher
than the original energy, but in Figure 3.2b, the dressed energy is almost the same. Much
higher field amplitudes are required for significant dressed energies if the original energy is
significantly high.

Finally, we will look at the magnetization formula we derived earlier and apply it to
graphene as we plot the result.

Looking at Eq (2.124), one interesting observation that we also see numerically when
graphing the magnetization plot is that there is an asymptote for the DC magnetization
in terms of E0 (choosing ω to be a constant.) Theoretically, we can determine this value
by taking a limit:

lim
E0→∞

Nπe3ℏv2E2
0

6
√
3mω2|εk|Ω

=
Nπeℏ
12
√
3m

(3.1)

This shows there is a saturation point for the DC magnetization which is directly related to
very fundamental constants including the atomic number density of graphene, the graphene
lattice constant, and electron charge. It is also inversely proportional to the mass of an
electron. We have plotted this equation for frequency values of ω = 1015, 5 × 1015 and
1016 s−1 with the saturation line at 1.071× 10−4 A in Figure 3.3.

As can be seen from Figure 3.3b, the magnetization approaches this saturation value.
There is also a maximum value for the magnetization for each frequency, but it is not
shown in the plot as the range which the maximum can be viewed from the plot would be
beyond experimentally viable intensities. We were unable to obtain analytical expressions
for this maximum value, unlike the saturation point, but it is very simple to observe it
with a graph and obtain them numerically.

Note that with an increase in angular frequency, this maximum magnetization value
increases, but it also takes significantly more applied field intensity to for the magnetization
to even rise above the saturation point. Compare the blue line in Figure 3.3a to the orange
line. It is clear that for any realistic applications, frequencies above 1016 s−1 are much less
feasible because of the higher values of applied intensity required to get to the highest ranges
of magnetization. As Figure 3.3b shows, very high intensity lasers are required for inducing
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(a)

(b)

Figure 3.3: Magnetization plot with respect to field amplitude E0. (a) Semi-log graph
for the range of E0 = 108 to 1010 V/m (intensity of 2.65 × 109 to 2.65 × 1013W/cm2).
(b) Log-log graph for the range of E0 = 102 to 1010 V/m (intensity of 2.65 × 10−3 to
2.65× 1013W/cm2)
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any significant magnetization. This was expected, as the induction of magnetization has
been shown to be a nonlinear effect. In nonlinear optics, we generally employ ultrafast
(femtoseconds) high intensity lasers for the experiments.

Figure 3.4 shows the magnetization for an experimentally applicable range of wave-
lengths of 800nm, 1000nm, 1650nm, 2000nm and 2500nm within a range of field intensities
I = 107 to I = 1013 W/cm2.

Figure 3.4: Semi-log graph of magnetization of graphene as a function of the light intensity
I for the wavelength values 800nm, 1000nm, 1650nm, 2000nm and 2500nm.

Figure 3.5 shows the magnetization for the same range of wavelengths as Figure 3.4,
but as a log-log graph in a wider range of intensities. Xing et al. estimate the intensity
cutoff threshold for optical damage to graphene at 300GW/cm2 based on nonlinear optical
measurements [35], which is what we have indicated in both of these figures by the blue
dashed line. other research has shown that graphene has a single-shot damage threshold
of ∼ 3× 1012W/cm2 with 50fs laser pulse [28].
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Figure 3.5: Log-log graph of magnetization of graphene for the wavelength values 800nm,
1000nm, 1650nm, 2000nm and 2500nm within a range of field intensities I = 102 to
I = 1013W/cm2. Note the increased value of magnetization with increasing wavelengths
for the same intensity.

It is important to note that the units of magnetization here are given in Amperes
(A) instead of A/m. Normally, the magnetic moment is given in units of A · m2 and the
magnetization is defined as the magnetic moment divided by the volume of the material.
In our case, the volume is replaced by the area of graphene, due to its 2D nature. We
have confirmed this by dimensional analysis with Eq (2.120). It is interesting that in two
dimensions, magnetization is difficult to distinguish from current itself in terms of units.

Finally, we can once again compare our results with the results of Tokman et al. [33]
by comparing the magnetization values for a specific value of frequency and applied light
intensity, ignoring their results for values of frequency which are near the singularity points
as we do not have such singularities. In their paper, Tokman et al. use an applied circularly
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polarized light with intensity of 10 kW/cm2 and vary the frequency. We compare the
magnetization at one of their frequencies of ℏω = 100meV, which is equivalent to ω =
1.52 × 1014 s−1, with the magnetization from our own plot for the same frequency value
and intensity. Tokman et al. predict a magnetization of 1× 10−10G · cm = 7.85× 10−10A,
while we predict a magnetization of 3.09 × 10−10A. These values are on the same order
and it further verifies that for any significant and detectable magnetization, a significantly
high laser intensity is required.
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Chapter 4

Conclusion

In conclusion, we fully derived the expression for the modified total wavefunction of
graphene around the K point by solving the Schrödinger equation for the full Hamil-
tonian with the orbital functions Φ1(r) and Φ2(r) as the basis functions. We showed how
the expression for the modified energy Ω and band gap εg appear from the procedure of
solving for the total wavefunction.

We applied the resulting total wavefunction and the atomic orbital basis functions to the
magnetization formula to obtain the final expression for the total magnetization induced
by a circularly polarized light applied to a sheet of graphene. The total magnetization
expression included both AC and DC terms, confirming that it is theoretically possible to
obtain DC magnetization with this application of circularly polarized light. Importantly,
this DC magnetization follows our expectation that this is a form of the Inverse Faraday
Effect.

In the section on numerical results, we used the expressions from the analytical section
to obtain several plots that showed the trends for both the modified energy amplitude and
DC magnetization with respect to applied field amplitude E0 and the applied field intensity
I. We noted that there is a saturation magnetization with increasing intensities of light
and noted that there are maximum values of magnetization for each wavelength (although
not shown in the graphs.)

Since the predicted magnetization values even at relatively high applied intensities are
very small, one possible method of detecting them is through SQUID (Superconducting
QUantum Interference Device) magnetometry. This involves inducing a static magnetic
field in graphene by an intense circularly polarized laser beam and direct magnetic field
measurement by a mounted SQUID chip on the back of the graphene that is connected to
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SQUID controller electronics. There are various measurement modes for SQUID such as
VSM (Vibrating Sample Magnetometer), DC, etc., but we are not concerned with the mode
at this point. One of the more widely used SQUID magnetometers, the MPMS (Magnetic
Property Measuring System) has the sensitivity of < 1 × 10−8 emu, or equivalently, <
1× 10−11A ·m2 [4].

In a realistic scenario, we could have a 150fs applied laser pulse of wavelength 1650nm
with a power of 10W concentrated in an area of 1µm × 1µm with a resulting intensity of
1013W/m2 or 109W/cm2. Referring to the plot in Figure 3.5, the expected magnetization
will be 7.3×10−8A. This value must then be converted to magnetic moment by multiplying
by the area of the graphene sheet. Assuming a graphene sheet of area 5mm× 5mm sits on
a SiO2/Si substrate (which also acts as a heat sink), the resulting magnetic moment will be
1.825×10−12A ·m2 which is lower than the sensitivity for this magnetometer. If we increase
the power from 10W to 60W, the magnetization will be 4.19×10−7A with a corresponding
magnetic moment of 1.048× 10−11A ·m2 which will be within the sensitivity limit of this
SQUID model. The intensity of 6× 109W/cm2 would be the absorbed intensity. However,
this is without taking the absorption of graphene into consideration.

If we take into account the 2.3% absorption rate of graphene [14], the absorbed intensity
for the above scenario would be 1.38 × 108W/cm2 which would give a magnetization of
1.012×10−8A and a magnetic moment of 2.53×10−13A ·m2. This is outside the detectable
range of the model we have mentioned. To be able to detect with the current MPMS
model and the same sample size, the applied intensity would have to be increased to
2.8 × 1011W/cm2 which is a significant increase in intensity, but still below the damage
threshold of graphene.

Alternatively, it is possible to increase the area of the substrate as a way of increasing
the magnetic moment for detection, but any higher values than already assumed could
lead to problems with the measurement process of the SQUID itself [4]. Increasing the
absorption rate of the graphene sheet is also another possibility [24], although it is most
likely not sufficient by itself with the increased absorption rates that could be achieved.
Higher wavelengths will also allows us to achieve higher magnetizations, but that is limited
by the range of wavelength for lasers which is usually in the visible spectrum range.

It could also be possible to detect the magnetization more indirectly by passing linearly
polarized light through the graphene sheet that has already been irradiated by circularly
polarized light. If the rotation angle can be measured in that case, due to the similarity
in concept of the Inverse Faraday Effect and the Faraday Effect, we should see a Faraday
rotation directly proportional to the DC magnetization derived (although the expression
for this rotation and its exact relation with the DC magnetization expression was beyond
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the scope of this thesis.)

The importance of DC magnetization stressed throughout this thesis is that because of
a lack of time-dependence, it opens up the possibility for ultrafast magnetization. In con-
trast to the bulk magneto-optical crystals, graphene combines high optical transmission
with optomagnetic phenomena such as Faraday rotation in a two-dimensional platform
making it attractive for integrated magneto-photonic devices and systems. From our re-
sults, we expect the possibility of creating electrically-tunable magneto-optical devices
based on graphene structures and its combination with conventional photonic circuitry,
i.e. integrated silicon photonics platform and silicon-based photonic band gap structures.
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Appendix A

Calculations with Linearly Polarized
Light

In this appendix, we carry out similar calculations to the ones in section 2, except with a
different vector potential (illustrated in Figure A.1):

A = (A0 cosωt, 0) (A.1)

Consequently, the Hamiltonians will be:

Ĥ0 = −vσ · eA
= −ve(σxAx + σyAy)

= −ve
[(

0 1
1 0

)
(A0 cosωt)

]
Ĥ0 = veA0 cosωt

(
0 −1
−1 0

)
(A.2)

Ĥk = vσ · ℏk
= vℏ(σxkx + σyky)

= vℏ
[(

0 1
1 0

)
kx +

(
0 −i
i 0

)
ky

]
= vℏ

(
0 kx − iky

kx + iky 0

)
Ĥk =

(
0 vℏ(kx − iky)

vℏ(kx + iky) 0

)
(A.3)
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Figure A.1: Linearly polarized light applied to a sheet of graphene.

We assume the form of ψ0 taken from the solution to Schrödinger’s equation from Ĥ0

to be:

ψ±
0 =

1√
2

(
Φ′

1(r)± Φ′
2(r)

)
e±i

2veA0
ℏω sinωt (A.4)

Similar to the previous section, we assume the solution to the Schrödinger equation for the
total Hamiltonian to be:

ψk = ξ+
(
ψ+
01

ψ+
02

)
+ ξ−

(
ψ−
01

ψ−
02

)
(A.5)

Using the same algorithm for solving for the differential equations in ξ+ and ξ− by solving
for ζ, δ−, δ+, ∆−, ∆+ with the new Hamiltonian, we will get the following expressions:

iξ̇+ = vkxξ
+ + ivkyξ

−e−i
2veA0

ℏω sinωt

iξ̇− = −vkxξ− − ivkyξ
+ei

2veA0
ℏω sinωt

(A.6)

We use Floquet’s theorem for ξ+(t) and ξ−(t):

ξ±(t) = e−i
εk
ℏ tξ̃±(t) (A.7)
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where

ξ̃±(t) =
∞∑

n=−∞

c±n e
inωt (A.8)

We also use the Jacobi-Anger expansion for the term that includes the exponential of the
sine function [19]:

eiz sin θ =
∞∑

n=−∞

Jn(z)e
inθ (A.9)

Where Jn(z) is the nth order Bessel function. Before applying these expansions, we find
the time derivatives of ξ±(t) according to these expansions:

ξ̇+ = −iεk
ℏ
e−i

εk
ℏ tξ̃+ + e−i

εk
ℏ t ˙̃ξ+ (A.10)

ξ̇− = −iεk
ℏ
e−i

εk
ℏ tξ̃− + e−i

εk
ℏ t ˙̃ξ− (A.11)

We note that ˙̃ξ± can be written according to the expansion in equation (A.8):

˙̃ξ± =
∞∑

n=−∞

inωc±n e
inωt (A.12)

We then applying expansions in equations (A.9), (A.10), (A.11) and (A.12) to the first
equation in (A.6):

i

(
−iεk

ℏ
e−i

εk
ℏ t

∞∑
n=−∞

c+n e
inωt + e−i

εk
ℏ t

∞∑
n=−∞

inωc+n e
inωt

)
=

vkxe
−i

εk
ℏ t

∞∑
n=−∞

c+n e
inωt + ivkye

−i
εk
ℏ t

∞∑
n=−∞

c−n e
inωt

∞∑
m=−∞

Jm

(
−2veA0

ℏω

)
eimωt

(A.13)

First we focus on the double summation in the final term on the right hand side of this
equation to simplify it (m′′ = n+m):

∞∑
n=−∞

c−n e
inωt

∞∑
m=−∞

Jm

(
−2veA0

ℏω

)
eimωt =

∞∑
n,m=−∞

einωteimωtc−n Jm

(
−2veA0

ℏω

)
(A.14)

∞∑
n,m=−∞

einωteimωtc−n Jm

(
2veA0

ℏω

)
=

∞∑
m′′=−∞

eim
′′ωt

∞∑
m=−∞

c−m′′−mJm

(
−2veA0

ℏω

)
(A.15)
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Since m′′ is a dummy index, we set m′′ = n so we will have:
∞∑

n=−∞

einωt
∞∑

m=−∞

c−n−mJm

(
−2veA0

ℏω

)
(A.16)

Now using the result of equation (A.16) in equation (A.13):

∞∑
n=−∞

einωtc+n

[
vkx −

εk
ℏ

− nω
]
+

∞∑
n=−∞

einωt

[
ivky

∞∑
m=−∞

c−n−mJm

(
−2veA0

ℏω

)]
= 0 (A.17)

Performing the same operation for the differential equation of ξ−(t) and applying the same
results will give us the final equations:(

vkx −
εk
ℏ

− nω
)
c+n + ivky

∞∑
m=−∞

c−n−mJm

(
−2veA0

ℏω

)
= 0

(
vkx +

εk
ℏ

+ nω
)
c−n + ivky

∞∑
m=−∞

c+n−mJm

(
2veA0

ℏω

)
= 0

(A.18)

For n ̸= 0 and in the high-frequency field, equations (A.18) will become:

c±n ≈ i
vky
nω

∞∑
m=−∞

c∓n−mJm

(
∓2veA0

ℏω

)
(A.19)

Since |c±n | ≤ 1 and |J±
m(z)| ≤ 1, all the terms except c±0 will vanish (i.e. c±n̸=0 ≈ 0). Noting

that J0(x) = J0(−x), then equations (A.18) will simplify to:(
vkx −

εk
ℏ

)
c+0 + ivkyc

−
0 J0

(
2veA0

ℏω

)
= 0(

vkx +
εk
ℏ

)
c−0 + ivkyc

+
0 J0

(
2veA0

ℏω

)
= 0

(A.20)

The determinant of this system of equations must be 0 to have consistent solutions:

0 =
(
vkx −

εk
ℏ

)(
vkx +

εk
ℏ

)
−
(
ivkyJ0

(
2veA0

ℏω

))2

= (vkx)
2 −

(εk
ℏ

)2
+ (vky)

2J2
0

(
2veA0

ℏω

)
= (vk cosφ)2 −

(εk
ℏ

)2
+ (vk sinφ)2J2

0

(
2veA0

ℏω

)
0 = (ℏvk cosφ)2 − ε2k + (ℏvk sinφ)2J2

0

(
2veA0

ℏω

)
(A.21)
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Rearranging equation (A.21) in terms of εk:

ε2k = (ℏvk)2
[
cos2 φ+ sin2 φ

(
2veA0

ℏω

)]
(A.22)

Thus we get the final expression for εk:

εk = ±ℏvkf(φ) (A.23)

where

f(φ) =

√
cos2 φ+ J2

0

(
2veA0

ℏω

)
sin2 φ (A.24)

Now we need to find the c±0 terms themselves. We can easily deduce the normalization con-
dition on these terms through equation (A.5). Like the previous section, the normalization
condition will lead to the following equation:∣∣c+0 ∣∣2 + ∣∣c−0 ∣∣2 = 1 (A.25)

Applying this normalization condition to equation (A.20):(
vkx −

εk
ℏ

)
c+0 = −ivkyc−0 J0

(
2veA0

ℏω

)
(
vk cosφ− εk

ℏ

)
c+0 = −ivk sinφ c−0 J0

(
2veA0

ℏω

)
(A.26)

Taking the magnitude square of both sides:(
vk cosφ− εk

ℏ

)2 ∣∣c+0 ∣∣2 = (vk)2 sin2 φJ2
0

(
2veA0

ℏω

) ∣∣c−0 ∣∣2(
vk cosφ− εk

ℏ

)2 ∣∣c+0 ∣∣2 = (vk)2 sin2 φJ2
0

(
2veA0

ℏω

)(
1−

∣∣c+0 ∣∣2)∣∣c+0 ∣∣2 = (vk)2 sin2 φJ2
0

(
2veA0

ℏω

)(
vk cosφ− εk

ℏ

)2
+ (vk)2 sin2 φJ2

0

(
2veA0

ℏω

) (A.27)

Simplifying further, noting that sin2 φJ2
0

(
2veA0

ℏω

)
= f 2(φ) − cos2 φ and also that εk

ℏ =
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vkf(φ): ∣∣c+0 ∣∣2 = (vk)2 (f 2(φ)− cos2 φ)

(vk cosφ− vkf(φ))2 + (vk)2 sin2 φJ2
0

(
2veA0

ℏω

)
=

f 2(φ)− cos2 φ

cos2 φ+ f 2(φ)− 2 cosφf(φ) + sin2 φJ2
0

(
2veA0

ℏω

)
=

f 2(φ)− cos2 φ

f 2(φ) + f 2(φ)− 2 cosφf(φ)

=
f 2(φ)− cos2 φ

2f 2(φ)− 2 cosφf(φ)

=
(f(φ) + cosφ)(f(φ)− cosφ)

2f(φ)(f(φ)− cosφ)

=
cosφ+ f(φ)

2f(φ)
(A.28)

So we have:

c+0 = ±

√
cosφ+ f(φ)

2f(φ)
(A.29)

We use the result from equation (A.29) in the second equation in (A.20):

(vk cosφ+ vkf(φ))c−0 = −ivk sinφJ0
(
2veA0

ℏω

)(
±

√
cosφ+ f(φ)

2f(φ)

)

(cosφ+ f(φ))c−0 = −i sinφJ0
(
2veA0

ℏω

)(
±

√
cosφ+ f(φ)

2f(φ)

)

c−0 = ∓i sinφ

cosφ+ f(φ)
J0

(
2veA0

ℏω

)√
cosφ+ f(φ)

2f(φ)
(A.30)

Now that we have found both c+0 and c−0 , we can substitute them back into equation (A.5)
to get the final dressed electron wavefunction ψk:

ψk = φk(r)e
−i

εk
ℏ t

√
cosφ+ f(φ)

4f(φ)

(
±
[
Φ1(r)± Φ2(r)

]
e±i

2veA0
ℏω sinωt

∓ i
sinφ

cosφ+ f(φ)
J0

(
2veA0

ℏω

)[
Φ1(r)∓ Φ2(r)

]
e∓i

2veA0
ℏω sinωt

) (A.31)
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This wavefunction can be used in the calculation of polarization with a similar method
as before, by taking the expectation of the position operators to obtain an expression for
the polarization vector which is equivalent to the form given by Boyd as P = −Nex [3].
We have also looked at the possibility of finding the nonlinear refractive index of graphene
using this method, but it is outside of the scope of this thesis.
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Appendix B

Matlab Code

B.1 Integrals for the Expectation Value

All figure properties can also be manipulated from the command line. Here’s an example:

a_0 = 1; % Bohr radius normalized to 1

a = 2.46e-10; % Graphene lattice constant

R_A = -a/(2*sqrt(3)); % Shift vector for atom A

R_B = a/(2*sqrt(3)); % Shift vector for atom B

norm = (1/(32*pi))*(6/a_0)^5; % Normalization constant

I_11_z1 = @(x,y,z) norm * x.* z.^2 .* exp(-(6/a_0)*sqrt((x - R_A).^2 + ...

+ y.^2 + z.^2)); % Integrate the first of the two terms in I_11_z

I1 = integral3(I_11_z1,-inf,inf,-inf,inf,-inf,inf,’RelTol’,1e-6);

I_11_z2 = @(x,y,z) norm * y.* z.^2 .* exp(-(6/a_0)*sqrt((x - R_B).^2 + ...

y.^2 + z.^2)); % Integrate the second of the two terms in I_11_z

I2 = integral3(I_11_z2,-inf,inf,-inf,inf,-inf,inf,’RelTol’,1e-6);

I_11_xy = @(x,y,z) norm * z.^3 .* exp(-(3/a_0)*sqrt((x - R_A).^2 + ...

y.^2 + z.^2)); % Integrate I_11_x and I_11_y (they are equal)

I3 = integral3(I_11_xy,-inf,inf,-inf,inf,-inf,inf,’RelTol’,1e-6);

I_12_z1 = @(x,y,z) norm * x.* z.^2 .* exp(-(3/a_0)*sqrt((x - R_A).^2 + ...
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y.^2 + z.^2)).* exp(-(3/a_0)*sqrt((x - R_B).^2 + y.^2 + z.^2));

I4 = integral3(I_12_z1,-inf,inf,-inf,inf,-inf,inf,’RelTol’,1e-6);

% Integrate the first of the two terms in I_12_z

I_12_z2 = @(x,y,z) norm * y.* z.^2 .* exp(-(3/a_0)*sqrt((x - R_A).^2 + ...

y.^2 + z.^2)).* exp(-(3/a_0)*sqrt((x - R_B).^2 + y.^2 + z.^2));

I5 = integral3(I_12_z1,-inf,inf,-inf,inf,-inf,inf,’RelTol’,1e-6);

% Integrate the first of the two terms in I_12_z

I_12_xy = @(x,y,z) norm * z.^3 .* exp(-(3/a_0)*sqrt((x - R_A).^2 + ...

y.^2 + z.^2)).* exp(-(3/a_0)*sqrt((x - R_B).^2 + y.^2 + z.^2));

I6 = integral3(I_12_xy,-inf,inf,-inf,inf,-inf,inf,’RelTol’,1e-6);

% Integrate I_12_x and I_12_y (they are equal)

B.2 Code for Dressed Energy Plot

v = 1e6; % Fermi velocity in graphene (m/s)

charge = 1.60217662e-19; % Electron charge (C)

hbar = 1.0545718e-34; % Reduced Planck’s constant (J.s)

joules_to_eV = 6.241509e18; % Conversion factor from Joules to eV

E_0_start = 0;

E_0_end = 1e3;

w_start = 1e15;

w_end = 5e15;

E_0 = linspace(E_0_start,E_0_end,2000);

hw_space = joules_to_eV*hbar*linspace(w_start,w_end,2000);

[hw, E_0] = meshgrid(hw_space, E_0);

w = hw/((joules_to_eV*hbar));

Omega = sqrt((hw).^2 + (joules_to_eV*(2*v*charge.*E_0)./w).^2);

set(gca,’FontSize’,30);

h = surf(hw, E_0, Omega);

set(h,’LineStyle’,’none’)

c = colorbar(’FontSize’,30);

c.Label.String = ’\Omega (eV)’;
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ax = gca;

ax.FontSize = 30;

xlabel(’$\hbar \omega$ (eV)’,’interpreter’,’latex’,’FontSize’,30);

ylabel(’Electric Field Amplitude, $E_0 (V/m)$’,’interpreter’,’latex’, ...

’FontSize’,30);

zlabel(’$\Omega$ (eV)’,’FontSize’,30);

view(2)

xlim([hw_space(1) hw_space(length(hw_space))]);

ylim([E_0_start E_0_end]);

B.3 Code for the Magnetization Plot

a = 2.46e-10; % Graphene lattice constant (m)

a2 = 1.42e-10; % Nearest-neighbour distance (m)

R_A = -a/(2*sqrt(3)); % Orbital shift (m)

v = 1e6; % Fermi velocity in graphene (m/s)

charge = 1.60217662e-19; % Electron charge (C)

hbar = 1.0545718e-34; % Reduced Planck’s constant (J.s)

m = 9.10938356e-31; % Electron mass in kg

N = 3.82*10^19; % Graphene atomic density (m^-2)

k = 4*pi/(3*sqrt(3)*a2); % Dirac point K (m^-1)

graphene_damage_cutoff = 3e11; % Intensity W/cm^2

asymptote_value = N*pi*charge*hbar/(12*sqrt(3)*m);

format long

E_0 = logspace(2,10,100000); % V/m

I = (E_0.^2/377)/(10^4);

w = [(2*pi*3*10^8)/(2500*10^-9) (2*pi*3*10^8)/(2000*10^-9) ...

(2*pi*3*10^8)/(1650*10^-9) (2*pi*3*10^8)/(1000*10^-9) ...

(2*pi*3*10^8)/(800*10^-9)]; % s^-1

Omega = zeros(length(w), length(E_0));

eg = zeros(length(w), length(E_0));

ek = zeros(length(w), length(E_0));

M_full = zeros(length(w), length(E_0));
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asymptote_array = zeros(1, length(E_0));

asymptote_array(1,:) = asymptote_value;

for i=1:length(w)

for j=1:length(E_0)

Omega(i,j) = sqrt((hbar*w(i)).^2 + ((2*v*charge*E_0(j))./w(i)).^2);

eg(i,j) = Omega(i,j) - hbar*w(i);

ek(i,j) = sqrt((eg(i,j)/2).^2 + (hbar*v*k)^2);

M_full(i,j) = (N*pi*charge^3*hbar*v^2*E_0(j).^2)./ ...

(6*sqrt(3)*m*w(i).^2*ek(i,j).*Omega(i,j));

end

end

loglog(I, M_full,’LineWidth’,3)

hold on

semilogx([graphene_damage_cutoff graphene_damage_cutoff], ylim, ...

’LineWidth’,2,’LineStyle’,’--’)

semilogx(I,asymptote_array,’LineWidth’,3,’LineStyle’,’--’,’Color’,’black’)

set(gca,’FontSize’,26)

xlabel(’Light Intensity, $I (W/cm^2)$’,’interpreter’,’latex’,’FontSize’,30);

ylabel(’Magnetization $(A)$’,’interpreter’,’latex’,’FontSize’,30);

legend(’\lambda = 2500 nm ’,’\lambda = 2000 nm ’,’\lambda = 1650 nm ’, ...

’\lambda = 1000 nm ’,’\lambda = 800 nm’, ...

’Graphene damage threshold’, ’Magnetization = 1.071 \times 10^{-4} A’);

xlim([10^2 10^13]);

ylim([10^-14 10^-3]);

grid on

hold off
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