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Abstract

Mixed integer programs are a powerful mathematical tool, providing a general model for
expressing both theoretically difficult and practically useful problems. One important
subroutine of algorithms solving mixed integer programs is a cut generation procedure.
The job of a cut generation procedure is to produce a linear inequality that separates
a given infeasible point x∗ (usually a basic feasible solution of the linear programming
relaxation) from the set of feasible solutions for the problem at hand. Early and well-
known cut generation procedures rely on analyzing a single row of the simplex tableau for
x∗. The authors of [4] renewed interest in d-row cuts (i.e. cuts derived from d rows of the
simplex tableau) by showing that these cuts afford some theoretical benefit.

One lens from which to study d-row cuts is in the context of the intersection cuts of
Balas [12] and, in particular, intersection cuts obtained from lattice-free convex sets. The
strongest d-row intersection cuts are obtained from maximal lattice-free convex sets in
Rd - all of which are polyhedra with at most 2d facets. This thesis is concerned with
theoretical comparison of the d-row cuts generated by different families of maximal lattice-
free convex sets. We use the gauge measure (following [47]) to appraise the quality of the
approximation. The main area of focus is 2-row cuts.

The problem of generating 2-row cuts can be re-posed as generating valid inequalities
for a mixed integer linear set F with two free integer variables and any number of non-
negative continuous variables, where there are two defining equations. Every minimal valid
inequality for the convex hull of F is an intersection cut generated by a maximal lattice-
free split, triangle or quadrilateral. The family of maximal lattice-free triangles can be
subdivided into the families of type 1, type 2, and type 3 triangles.

Previous results [15, 11] compare how well the inequalities from one of these families
approximates the convex hull of F (a.k.a. the corner polyhedron). In particular, the
closure of all type 2 triangle inequalities is shown to be within a factor of 3

2
of the corner

polyhedron. The authors also provide an instance where all type 2 triangles inequalities
cannot approximate the corner polyhedron better than a factor of 9

8
. The same bounds are

shown for type 3 triangles and quadrilaterals. These results are obtained not by directly
comparing the given closures to the convex hull of F , but rather to each other.

In this thesis, we tighten one of the underlying bounds, showing that the closure of all type
2 triangle inequalities are within a factor of 5

4
of the closure of all quadrilateral inequalities.

We also consider the sub-family of quadrilaterals where opposite edges have equal slope. We
show that these parallelogram cuts can be approximated by all type 2 triangle inequalities
within a factor of 9

8
, and there exist instances where no better approximation is possible.
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In proving both these bounds, we use a subset of the family of type 2 triangles; we call the
members of this sub-family ray-sliding triangles.

A secondary area of focus in this thesis is d-row cuts for d ≥ 3. For d-row cuts in general,
the underlying maximal lattice-free convex sets in Rd are not easily classified. Absent a
classification, the authors of [8] show that all inequalities generated by lattice-free convex
sets with at most i facets approximate the corner polyhedron within a finite factor only
when i > 2d−1. Here we take a different tact and try to prove analogues of 2-row cut results.
We extend the proof techniques to obtain a constant factor approximation between two
structured families of maximal lattice-free convex sets in Rd for d ≥ 3.
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Chapter 1

Introduction

A mixed integer linear program (MIP henceforth) is the problem of optimizing a linear
objective function of the variables subject to linear constraints on the variables and the
restriction on some variables to take integer values. MIPs have broad modelling power,
ranging from classical NP-hard problems such as the Boolean satisfiability problem to
industrial applications modelling physical constraints. For example, MIPs can model the
scheduling of nurses to shifts, the operations of shipping ports, or the production plan for
a factory.

Given their wide applicability, algorithms for MIPs have received considerable research. An
algorithm solving a MIP is a series of steps that is given the MIP as input and outputs the
assignment of values to variables optimizing the objective function. A classical approach to
efficient algorithm design requires a provably fast algorithm producing the best assignment
of values to the variables of the MIP. The speed of the algorithm is measured by the number
of steps - often basic arithmetic operations - it performs. Certain classes of MIPs such
as network flows admit efficient algorithms. However, general MIPs can model provably
difficult problems in complexity theory and are thought not to admit efficient algorithms.

In “real world” applications, however, the speed at which a MIP needs to be solved may
be more related to clocktime. The hours, minutes, or seconds a decision maker has until
the solution is no longer useful is more relevant than the number of steps the algorithm
performed to find the solution. In fact, often times a close to optimal solution may suffice.
From this perspective an algorithm may be practical if it can produce a “good enough
solution fast enough”. The codes solving MIPs (a.k.a. solvers) marry the theoretical and
practical aspects of MIPs; the underlying algorithmic theory guides practical algorithms.

A linear program is the problem of optimizing a linear objective function of the variables

1



subject to linear constraints on the variables - unlike a MIP, no variables can be restricted
to take integer values. For a given mixed integer program, its linear programming (LP)
relaxation is obtained by removing the restriction that certain variables take integer values.
Unlike MIPs, linear programs can be solved efficiently in theory and quickly in practice.
Many techniques for solving MIPs leverage this fact.

One such technique is cut generation based on the LP relaxation. The idea is as follows.
First, solve the LP relaxation of the MIP to obtain a solution x∗. If x∗ also satisfies
the integrality restrictions of the MIP, then it is in fact optimal for the MIP. Otherwise,
find a linear inequality that is violated by x∗ but holds for all points satisfying the linear
constraints and integrality restrictions of the MIP (i.e. all feasible solutions). Add this
inequality to the MIP constraints. The idea is illustrated in Figure 1.1 for the mixed integer
program (Ex1) in variables x1 and x2 given by

min x1 + x2 (1.1)

subject to 2x1 + x2 ≥ 3 (1.2)

− 20x1 + 25x2 ≥ −23 (1.3)

− 35x1 + 15x2 ≥ −69 (1.4)

x1, x2 ≥ 0 , x1 ∈ Z. (1.5)

x2

x1
x∗

xopt

x2

x1
x∗

xopt

Figure 1.1: Illustration of cut generation based on LP relaxation for mixed integer program
(Ex1). All images drawn on grid paper within this thesis were produced using TikZ [69].
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The points satisfying the linear constraints of (Ex1) are shaded in green. The points
also satisfying x1 ∈ Z are marked thick red. The optimal solution of (Ex1) is xopt and
the optimal solution of its LP relaxation is x∗. The magenta inequalities in the left and
right images are both examples of linear inequalities that are violated by x∗ but satisfied
by all feasible solutions of the MIP. Now, intuitively, the inequality in the right image is
better than the inequality in the left image - it excludes a larger portion of the shaded
region. In fact, adding the right inequality to (Ex1), and solving the LP relaxation of the
new problem yields the optimal solution of (Ex1). Of course, we’re ahead of ourself in
discussing which inequality is better (a.k.a. stronger) before discussing how to find such
inequalities, or even if they always exist.

Consider an arbitrary mixed integer program and point x∗ violating its constraints. A
linear inequality that is violated by x∗ but satisfied by all feasible solutions of the MIP is
called a cutting plane. A cut generation procedure is a sequence of steps that produces a
cutting plane. Often such a procedure requires x∗ to be an optimal basic solution to the
LP relaxation. Figure 1.2 illustrates a “geometric cutting plane procedure” to obtain the
right inequality in Figure 1.1. Section 1.1.1 provides one specific sequence of steps and
affiliated formulas that yields the inequality via an algebraic argument.

x2

x1
x∗

xopt

x2

x1
x∗

xopt

Figure 1.2: The patched blue sets identify a convex set B that does not contain any
feasible points of (Ex1) in its interior. Let F be the shaded green set indicating the points
satisfying the linear constraints of (Ex1). The magenta inequality is the unique linear
inequality needed to reconvexify F after removing the interior of B.
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This thesis aims to compare the strength of cutting planes that can be produced by a pro-
cedure akin to the geometric one illustrated above. The property differentiating the cutting
planes we compare will be the types of convex sets used to produce them. Section 1.1,
Section 1.2, and Section 1.3 provide the necessary technical preliminaries to pose these
questions rigorously, placing the questions we address in a broader context. Section 1.3.2
gives an overview of past results directly related to the problem at hand while Section 1.3.3
provides the new results. Section 1.4 orients the reader to the remainder of the thesis.

Before moving on, we note the importance of cut generation procedures in practice. MIP
solvers are complicated codes and part of their success comes from using many diverse
techniques in concert. However, cut generation is an important subroutine. Cut generation
procedures played a key role in speeding up commercially available solvers in the early
2000s; “turning off” the cutting planes feature in CPLEX lead to the worst performance
hit, compared to turning off other features [22].

Throughout, we assume familiarity with the fundamentals of mixed integer linear program-
ming, and mathematical optimization more generally. For a recent treatment of mixed
integer linear programming theory, the reader is referred to [27]. Although we endeavour
to define terminology as it is used, the reader is referred to [66] for standard definitions
pertaining to convex sets and convex analysis.

1.1 Cut Generation Procedures

A set P ⊆ Rk is a polyhedron if it is the intersection of a finite number of halfspaces, each
of the form {x ∈ Rk : αTx ≤ β} for some α ∈ Rk and β ∈ R. A polyhedron is rational
if each of the halfspaces is of the form {x ∈ Rk : αTx ≤ β} where α ∈ Qk and β ∈ Q.
Polyhedron P is a polytope if it is bounded - i.e. if there exists L ∈ R+ such that ||x||2 ≤ L
for all x ∈ P .

A mixed integer linear program (MIP) is the problem of optimizing a linear function of
vector variable x ∈ Rk subject to x being a member of some polyhedron P , and some
entries of x being restricted to take integer values. Throughout, we will consider MIPs
with rational constraints given in a specific way.

Let m ∈ Z++ and n ∈ Z+ be integers. Let Q be the rational polyhedron given by

Q := {x ∈ Rm+n : Ax = b, x ≥ O} (1.6)
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for A ∈ Qn×(m+n) a full row rank matrix and b ∈ Qn a vector. Let c ∈ Qm+n be a vector
and p ∈ {1, . . . ,m+ n}. We will consider the MIP in variables x1, . . . , xm+n described by

max{cTx : x ∈ Q ∩ (Zp × Rm+n−p)}. (1.7)

An optimal solution to this optimization problem is an assignment of values to variables
(i.e. xi := x̂i for i ∈ {1, . . . ,m + n}) that maximizes cTx over all feasible x (i.e. all
x ∈ Zp × Rm+n−p such that Ax = b and x ≥ O). An algorithm solving this optimization
problem takes data c, A, and b as input and either: produces an optimal solution, identifies
there are no feasible solutions, or determines the problem is unbounded.

1.1.1 Cuts Through the Lens of Pure Cutting Plane Algorithms

A pure cutting plane strategy is one approach to designing an algorithm that solves any
MIP given as above. First, assume that the MIP has a feasible solution and is not un-
bounded. Under this assumption, the strategy adheres to the following framework.

1. Solve the LP relaxation max{cTx : x ∈ Q}. Since (by assumption) the MIP has an
optimal solution, so also does its LP relaxation.

2. Find an optimal basic solution x∗ to the LP relaxation.
3. If x∗ ∈ Zp ×Rm+n−p, then return x∗ as an optimal solution for the original problem.
4. Otherwise, find a linear inequality αT z ≤ β for α ∈ Qm+n, β ∈ Q such that αTx∗ < β

but αTx ≥ β for all x ∈ Q ∩ (Zp × Rm+n−p).
5. Update Q := Q ∩ {x : αTx ≥ β}. To keep the problem in the same form add a

non-negative continuous slack variable s ≥ 0 and add the constraint αx − s = β.
Return to the first step.

The inequality generated in the fourth step is called a cutting plane or cut. Methods for
calculating cuts are called cut generation procedures.

Many cut generation procedures are designed to cut off an optimal basic solution of the
LP relaxation using information from the affiliated simplex tableau. A basis of the linear
system Ax = b is a set B ⊆ {1, . . . ,m+n} with |B| = n such that column sub-matrix of A
restricted to the columns in B (denoted AB) is invertible. A solution of Ax = b is basic if it
is the unique solution to ABxB = b, xN = 0 for some basis B where N := {1, . . . ,m+n}\B.
If the linear program max{cTx : x ∈ Q} has an optimal solution, then it has an optimal
solution x∗ that is a basic solution of Ax = b. The linear system Ax = b can be rewritten so
the basic variables xB are expressed with respect to the non-basic variables xN as follows:

xi +
∑
j∈N

āijxj = b̄i for all i ∈ B (1.8)

5



where b̄i ∈ Q for all i ∈ B and āij ∈ Q for all i ∈ B, j ∈ N . System (1.8) is the simplex
tableau for basis B. If x∗ is an optimal basic solution corresponding to basis B then b̄i ≥ 0
for all i ∈ B since x∗ is feasible. For example, we can rewrite optimization problem (Ex1)
as problem (Ex2) given by

max − x1 − x2

subject to

−2 −1 1 0 0
20 −25 0 1 0
35 −15 0 0 1



x1

x2

x3

x4

x5

 =

−3
23
69


x1, x2, x3, x4, x5 ≥ 0

x1 ∈ Z.

The unique optimal solution to its LP relaxation is x∗ =
(

7
5
, 1

5
, 0, 0, 23

)
, which is the basic

solution for basis B = {1, 2, 5}. The corresponding simplex tableau is

1 0 − 5
14

1
70

0
0 1 −2

7
− 1

35
0

0 0 115
14

−13
14

1



x1

x2

x3

x4

x5

 =

 7
5
1
5

23

 .
One of the earliest cut generation procedures was proposed by Gomory [48] and works for
any pure integer program (p = m+n). We illustrate the procedure on problem (Ex2) with
the additional restrictions x2, x3, x4, x5 ∈ Z. Since all variables are non-negative, we can
round down the coefficients of the first row of the simplex tableau to obtain the inequality
x1 − x3 ≤ 7

5
. Then, since all variables take integer values, we can round down the right

hand side to obtain the inequality x1 − x3 ≤ 1. Substituting x3 = −3 + 2x1 + x2 and
rearranging we obtain the inequality x2 + x2 ≥ 2. One can verify in Figure 1.1 that this
inequality holds for all solutions to (P) with the additional restriction x2 ∈ Z. In general,
the procedure selects a row ı̂ ∈ B of the simplex tableau (1.8) and outputs the cutting
plane

xı̂ +
∑
j∈N

bāı̂jcxj ≤ bb̄ı̂c. (1.9)

This inequality is called a Chvátal-Gomory (CG) cut. Note that this inequality is always
violated by the basic solution for basis B. If the optimal basic solution and row of the
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simplex tableau used to derive a cut are chosen carefully in each iteration, then the pure
cutting plane strategy using CG cuts produces an optimal solution for any pure integer
program in a finite number of steps [48].

For mixed integer programs (p < m + n), there also exist cut generation procedures that
use a single row of the simplex tableau to derive a cut. For example, the Gomory mixed
integer (GMI) cut [48] for row ı̂ ∈ B ∩ {1, . . . , p} with bı̂ fractional is∑
j∈N∩{1,...,p}:fj≤f0

(
fj
f0

)
xj +

∑
j∈N∩{1,...,p}:fj>f0

(
1− fj
1− f0

)
xj +

∑
j∈N∩{p+1,...,m+n}:āı̂j≥0

(
āı̂j
f0

)
xj

−
∑

j∈N∩{p+1,...,m+n}:āı̂j<0

(
āı̂j

1− f0

)
xj ≥ 1 (1.10)

where fj := āı̂j − bāı̂jc for j ∈ N is the fractional part of the coefficient of xj and f0 :=
bı̂ − bbı̂c is the fractional part of the right hand side. Note that this inequality is always
violated by the basic solution for basis B. A bit of algebra is required to show that the
inequality is satisfied by all feasible solutions of the underlying MIP; we point to [27,
Chapter 5.3] for one derivation. Returning to (Ex2) and applying this formula to the first
row of the simplex tableau yields the inequality(

1

70

)(
1
2
5

)
x4 +

(
5

14

)(
1

1− 2
5

)
x3 ≥ 1,

or, equivalently 50x3+3x4 ≥ 84. Substituting x3 = −3+2x1+x2 and x4 = 23−20x1+25x2,
yields the inequality 8x1 + 25x2 ≥ 33, which is exactly the magenta inequality in the right
image of Figure 1.1.

Unlike in the pure integer case, there is no way to choose the optimal basic solution and
simplex tableau row so that a pure cutting plane strategy based on GMI cuts solves every
mixed integer program in a finite number of steps [29]. Obtaining a general pure cutting
plane algorithm for MIPs requires more complicated cuts; see [37], [54], and [33]. The
problem is more straightforward under various assumptions of boundedness: see [45], [24],
[63], [64], and [13].

Note that the cutting plane strategy can be revised to handle instances where the under-
lying MIP is unbounded or infeasible. If the LP relaxation is infeasible in step 1, the MIP
is also infeasible. If the LP relaxation is unbounded in step 1, first note the unbounded
direction r and then run the procedure replacing Q with Q∩{x ∈ Rm+n : −L1l ≤ x ≤ L1l}
for large enough L depending on the entries of A and b (see [68, Corollary 17.1b], for ex-
ample, for bounds). This new problem is necessarily bounded. If it has a feasible solution
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x then the original MIP is also unbounded (using direction r) and if it is infeasible, then
the original MIP is infeasible. For a discussion of the practicality of pure cutting plane
algorithms and underlying numerical issues see, for example, [75].

1.1.2 The Corner Polyhedron and k-Row Cuts

A cut generation procedure produces a cutting plane separating feasible region F from
some point x∗ 6∈ F . Formally, it solves the following separation problem: given a mixed
integer linear set F := {x ∈ Zp × Rm+n−p : Ax = b, x ≥ O} and a point x∗ that is not a
member of F , find (α, β) ∈ Qm+n × Q such that αTx∗ < β and αTx ≥ β for all x ∈ F .
The inequality αTx ≥ β is said to separate x∗ from F .

Such a procedure may use any characteristic of the structure of F to derive a cut. Most
common approaches, however, tend to generate cuts for a relaxation R of F . Set R ⊆ Rm+n

is a relaxation of F if F ⊆ R. Suppose x∗ 6∈ R and let (α, β) ∈ Qm+n × Q be such that
αTx∗ < β and αT r ≥ β for all r ∈ R. As F ⊆ R, it follows that αx ≥ β separates F from
x∗.

A common choice for relaxation R is a corner polyhedron. Let B be a basis for the system
Ax = b for which the corresponding solution is non-negative. The corresponding simplex
tableau is of the form xB + ĀxN = b̄, where Ā ∈ Qn×m, b̄ ∈ Qn

+, and xB and xN index the
basic and non-basic variables, respectively. The affiliated corner polyhedron is obtained by
dropping the non-negativity constraints on the basic variables and then taking the convex
hull. A set C ⊆ Rd is convex if λx + (1− λ)y ∈ C whenever x, y ∈ C and λ ∈ [0, 1]. The
convex hull of a set S ⊆ Rd, denoted convS, is the smallest convex set C ⊆ Rd such that
S ⊆ C. See [66, Section 2] for standard facts regarding convex sets and convex hulls. So
the corner polyhedron for basis B is given by

corner(B) := conv{x ∈ (Zp × Rm+n−p) : xB + ĀxN = b̄, xN ≥ O}. (1.11)

By construction F ⊆ corner(B) and therefore corner(B) is a relaxation of the feasible region
F . As the name suggests, the corner polyhedron is indeed a polyhedron (the intersection
of finitely many halfspaces). In fact, it follows from Meyer’s Theorem [62, Theorem 3.9]
that corner(B) is a rational polyhedron. Note that any continuous basic variable appears
in exactly one equality constraint and therefore can be removed without loss of generality.
Thus, we may assume B ⊆ {1, . . . , p} in corner(B) and the further relaxations that follow.

Another common choice for relaxation R is a k-row relaxation of the corner polyhedron.
Let I ⊆ B. An |I|-row relaxation of the corner polyhedron is obtained by dropping all
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equality constraints except those including basic variable xi for all i ∈ I. That is,

corner(B, I) := conv{x ∈ (Zp × Rm+n−p) : xi + āTi xN = b̄i ∀i ∈ I, xN ≥ O} (1.12)

where āT1 , . . . , ā
T
n are the rows of Ā. Note that corner(B) ⊆ corner(B, I). The set

corner(B, I) can be further relaxed by removing the integrality restrictions on the non-
basic variables. If so, we will denote the corresponding relaxation by cornerR(B, I). It is
given by

cornerR(B, I) := conv{x ∈ (ZB × RN) : xi + āTi xN = b̄i ∀i ∈ I, xN ≥ O}. (1.13)

We refer to such a relaxation as a continuous k-row relaxation. Note that corner(B, I) ⊆
cornerR(B, I) and in general the inclusion is strict. In this thesis, we are mostly concerned
with continuous relaxations.1

We refer to cuts that can be derived from a k-row relaxation of the corner polyhedron as
k-row cuts. Any cut that can be derived from a continuous k-row relaxation is (trivially)
a k-row cut; the converse does not hold. However, one common approach to obtaining
k-row cuts is to modify the cuts derived from the continuous k-row relaxation by lifting
the coefficients of the integer non-basic variables (i.e. to somehow incorporate the inte-
grality information ex-post). See [27, Chapter 6.3.4] and the references therein for formal
definitions; we don’t require them herein.

The CG cuts and GMI cuts introduced in Section 1.1.1 are both examples of 1-row cuts;
split cuts [29] are another classical example of a 1-row cut. Although 1-row cuts are most
commonly used in practice, the example in [29] is of a MIP instance where a pure cutting
plane strategy based only on split cuts (or GMI cuts since all GMI cuts are split cuts [63])
cannot terminate in a finite numbers of steps. See [56] for a generalization of this example.
In [4], Andersen et al. show that a 2-row cut generated from the first simplex tableau for
this instance leads to immediate termination of a pure cutting plane strategy. Note that
in this example all the non-basic variables of the first simplex tableau are continuous and
thus the 2-row relaxation and continuous 2-row relaxation coincide. The 2-row cut derived
for this example is an intersection cut ; this class of cuts will be introduced in detail in the
next section.

1In other expositions, a k-row relaxation may also be obtained by first aggregating rows of the simplex
tableau into k equations and treating the aggregation of the original variables as a new variable.
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1.2 Comparing Families of Intersection Cuts

Recall that general MIPs can model provably difficult problems in complexity theory and
are thought not to admit efficient algorithms. An algorithm solving a MIP of the form
(1.7) is efficient if it runs in time polynomial in the size of inputs c, A, and b. For a
discussion of algorithm runtime in the context of MIPs see [50] or [27, Chapter 1.3]. Pure
cutting plane strategies are not proven to be theoretically efficient; they also tend to be
less successful in practice than the state of the art. The code solving MIPs in practice
(a.k.a. solvers) provide practical algorithms, making use of cut generation procedures, but
not at the exclusion of other techniques.

One can think2 of a solver as starting with the given instance and iteratively using infor-
mation at hand to choose a strategy/subroutine to run. The goal is to identify a better
solution, prove the incumbent one is good enough, or learn more information about the
problem structure. Under this lens, the running time of the solver depends on how well
it chooses its next strategy and how long the underlying subroutine takes. Two choices a
solver makes when it comes to running a cut generation procedure are:

1. when it should run the procedure (as opposed to apply a different technique), and
2. which procedure to use (i.e. which cut - or often cuts - to generate).

Here we are mostly interested in the latter choice. We study different families of intersection
cuts that can be derived from continuous k-row relaxations of the corner polyhedron and
compare them using the gauge (or “blow up”) measure.

1.2.1 Intersection Cuts

One way to generate cuts for continuous k-row relaxations of the corner polyhedron is by
calculating the intersection cuts for lattice-free convex sets. A systematic framework for
studying corner polyhedra (absent the MIP context) is provided in [49] and [30], and used
extensively in related work. We will adopt this framework (and affiliated notation and
conventions) to define intersection cuts. We consider the mixed integer linear set

F :=

{
(x, s) ∈ Zd × Rk

+ : x = f +
k∑
j=1

rjsj

}
(1.14)

where d, k ∈ Z++, f ∈ Qd \ Zd and rj ∈ Qd \ {O} for all j ∈ {1, . . . , k}. Note that
cornerR(B, I) defined in (1.13) is a mixed linear set of the form convF ; take rj := (−āij)i∈I

2For exposition purposes, but consult [57] or [1] for a more nuanced discussion.
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for j ∈ N and f = (b̄i)i∈I . Let Γ denote the ordered set (r1, . . . , rk). Define R(f ; Γ) ⊆ Rk
+

by

R(f ; Γ) := conv

{
s ∈ Rk

+ : f +
k∑
j=1

rjsj ∈ Zd
}
. (1.15)

Remark 1.2.1. If there exists s ∈ Rk such that f +
∑k

j=1 r
jsj ∈ Zd, then R(f ; Γ) is a

full-dimensional3 rational polyhedron. Otherwise R(f ; Γ) = ∅.

Proof. It is straightforward to show that

R(f ; Γ) = projs(convF) := {s ∈ Rk
+ : ∃x ∈ Rd s.t. (x, s) ∈ convF}.

As f, r1, . . . , rk have rational data, it follows from Meyer’s Theorem [62, Theorem 3.9]
that convF is a rational polyhedron. The projection of a rational polyhedron is again
a rational polyhedron and therefore R(f ; Γ) is a rational polyhedron. Note that the ra-
tionality assumption here is required; if r1 := (r1

x, r
1
y) is such that r1

x/r
1
y is irrational,

r1 6∈ {
∑k

j=2 λjr
j : λj ≥ 0 ∀j}, and the ray {f + λr1 : λ ≥ 0} contains no integral point,

then R(f ; Γ) is not polyhedral.

If there does not exist s ∈ Rk such that f +
∑k

j=1 r
jsj ∈ Zd then clearly R(f ; Γ) = ∅.

Suppose ŝ ∈ Rk is such that f +
∑k

j=1 r
j ŝj ∈ Zd. Since r1, . . . , rk ∈ Qd there exists D ∈ Z+

such that Dr1, . . . , Drk ∈ Zd. Let K− = {j ∈ {1, . . . , k} s.t. ŝj < 0} and let ŝmin =
|minj∈K− ŝj|. If ei denotes the i-th standard basis vector then s′ := ŝ+D

∑
j∈K−d

ŝmin
D
eej ≥

O and f+
∑k

j=1 r
js′j ∈ Zd. Therefore R(f ; Γ) 6= ∅. Moreover {s′, s′+De1, . . . , s′+Dek} are

a set of affinely independent points in R(f ; Γ) and therefore R(f ; Γ) is full-dimensional.

Throughout we will assume that R(f ; Γ) 6= ∅. An inequality
∑k

j=1 αjsj ≥ β is valid for
R(f ; Γ) if it is satisfied by every s̄ ∈ R(f ; Γ). A valid inequality for R(f ; Γ) is trivial if it
is of the form sj ≥ 0 for all j ∈ {1, . . . , k}, or implied by such inequalities.

Remark 1.2.2. Every non-trivial valid inequality for R(f ; Γ) is of the form
∑k

j=1 γjsj ≥ 1
where γ ≥ O.

3The dimension of a set S ⊆ Rd is the dimension of its affine hull, the smallest affine set containing S.
See [66, Section 1] for additional information regarding dimension, affine spaces, and affine independence.
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Proof. Let
∑k

j=1 αjsj ≥ β be a valid inequality for R(f ; Γ). By way of contradiction
suppose that α̂ < 0 for ̂ ∈ {1, . . . , k}. Let ŝ ∈ R(f ; Γ) and let D ∈ Z+ be such that
Dr̂ ∈ Zd. Then s′(`) := ŝ + `De̂ ∈ R(f ; Γ) for all ` ∈ Z+ and so for ` large enough∑k

j=1 αj[s
′(`)]j < β. Thus αj ≥ 0 for all j ∈ {1, . . . , k}. Since the inequality is non-

trivial, β > 0. Multiplying by 1
β

we conclude the inequality can be written in the form∑k
j=1 γjsj ≥ 1 for γ ≥ O.

Now, every linear inequality separating conv(F) from (f,O) can be expressed with respect
to the variables sj for j ∈ {1, . . . , k} by substituting the equality constraints. So, to
generate cuts separating (f,O) from conv(F) we can generate cuts separating O from
R(f ; Γ) - that is to say, we can find non-trivial valid inequalities for R(f ; Γ) .

One way to obtain such valid inequalities is using lattice-free convex sets. Set B ⊆ Rd is
lattice-free if it contains no integral points in its interior - that is, if (intB)∩Zd = ∅ where
intB denotes the interior of B. Let B ⊆ Rd be a closed lattice-free convex set with f in
its interior. Let ψf ;B : Rd → R be defined by

ψf ;B(r) :=

{
1
λ

if λ ∈ R+ is such that f + λr on the boundary of B
0 if no such λ exists

}
.

This function is well defined because B is closed and convex. It is the gauge function
[52, Definition 1.2.4] of B − f and measures the reciprocal of the distance from f to the
boundary of B along r. A function h : Rd → R is:

• non-negative if h(r) ≥ 0 for all r ∈ Rd,
• positively homogeneous if h(λr) = λh(r) for all λ ≥ 0 and r ∈ Rd,
• subadditive if h(r1) + h(r2) ≥ h(r1 + r2) for all r1, r2 ∈ Rd, and
• convex if λh(r1) + (1− λ)h(r2) ≥ h(λr1 + (1− λ)r2) for all λ ∈ [0, 1] and r1, r2 ∈ Rd.

Remark 1.2.3. [52, Theorem 1.2.5] Let B ⊆ Rd be a closed lattice-free convex set with
f in its interior. Then ψf ;B is non-negative, positively homogeneous, subadditive, and
(therefore) convex.

The intersection cut generated by B for given (f ; Γ) is

k∑
j=1

ψf ;B(rj)sj ≥ 1. (1.16)

This inequality is valid for R(f ; Γ).
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Theorem 1.2.4 ([12]). Let f ∈ Qd \ Zd and let Γ be the ordered set (r1, . . . , rk) with
rj ∈ Qd \ {O} for all j ∈ {1, . . . , k}. Let B be a lattice-free convex set with f in its
interior. The intersection cut generated by B for given (f ; Γ) is valid for R(f ; Γ).

Proof. For the first proof see [12]. This original proof also handles intersection cuts gener-
ated by sets that are not lattice-free. The proof here is akin to the one in [27].

Let
∑k

j=1 ψjsj ≥ 1 be the intersection cut generated by B. Let s̄ ∈ Rk
+ be such that

f +
∑k

j=1 r
j s̄j = x̄ ∈ Zd. It suffices to show s̄ satisfies

∑k
j=1 ψj s̄j ≥ 1 since R(f ; Γ)

is the convex hull of all such s̄. By way of contradiction, suppose
∑k

j=1 ψj s̄j < 1. Let
J6=0 = {j ∈ {1, . . . , k} : ψj 6= 0} and J=0 = {j ∈ {1, . . . , k} : ψj = 0}. We can express x̄ as

x̄ = f +
∑
j∈J 6=0

s̄jr
j +

∑
j∈J=0

s̄jr
j

= f +
∑
j∈J 6=0

ψj s̄j

(
rj

ψj

)
+
∑
j∈J=0

s̄jr
j

=

(
1−

k∑
j=1

ψj s̄j

)
f +

∑
j∈J 6=0

ψj s̄j

(
f +

rj

ψj

)
+
∑
j∈J=0

s̄jr
j

Since
∑k

j=1 ψj s̄j < 1 and ψj s̄j ≥ 0 for all j ∈ {1, . . . , k}, it follows that x̄ = p + q where

p is in the interior of the convex hull of f and {f + rj

ψj
: j ∈ J6=0} and q is in the cone

generated by {rj : j ∈ J=0}. By the definition of ψ, each of f + rj

ψj
for j ∈ J6=0 is on the

boundary of B and each of rj for j ∈ J=0 is in the recession cone of B. It follows that x̄ is
in the interior of B. This is a contradiction because the interior of B contains no integral
points. It follows that s̄ satisfies

∑k
j=1 ψj s̄j ≥ 1, completing the proof.

A valid inequality
∑k

j=1 γjsj ≥ 1 for γ ≥ O is a minimal constraint of R(f ; Γ) if for every

γ′ ≤ γ that is distinct from γ there exists s̄ ∈ R(f ; Γ) such that
∑k

j=1 γ
′
j s̄j < 1. From a cut

generation point of view, minimal constraints are appealing because they guarantee there
is no constraint achieving the same trade-offs; to obtain a smaller or stronger coefficient
for one variable, the coefficient for another must be increased.4

Lattice-free convex B ⊆ Rd is a maximal lattice-free convex set if there does not exist
lattice-free convex B′ distinct from B such that B ⊆ B′. Every lattice-free convex set is

4Being strong from this point of view and being useful in practice may not always agree. See, for
example, [28], [2] and [39].
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contained in a maximal lattice-free convex set; for a proof (not necessarily the first) see
[17]. Not only are the intersection cuts generated by maximal lattice-free convex sets valid,
but all minimal constraints of R(f ; Γ) can be obtained in this way.

Theorem 1.2.5 ([25, Theorem 1]). Let f ∈ Qd\Zd and let Γ be the ordered set (r1, . . . , rk)
with rj ∈ Qd \ {O} for all j ∈ {1, . . . , k}. If R(f ; Γ) 6= ∅, then every minimal constraint of
R(f ; Γ) is the intersection cut of (f ; Γ) for some maximal lattice-free convex set B with f
in its interior.

Connections to the Semi-Infinite Relaxation

Although the semi-infinite relaxation is not required directly in this thesis, we discuss it
briefly for completeness. The continuous semi-infinite relaxation Rf [49] [26] is given by

the set of vectors (x, s) ∈ Rd × RQd satisfying

x = f +
∑

r∈Qd:sr 6=0

rsr (1.17)

x ∈ Zd (1.18)

s ≥ O and has a finite support. (1.19)

An inequality
∑

r∈Qd:sr 6=0 γrsr ≥ β is valid for Rf if it satisfied by every vector in Rf .
All valid inequalities that separate (f,O) from Rf are of the form

∑
r∈Qd:sr 6=0 ψ(r)sr ≥ 1

where ψ : Qd → R ∪ {+∞}. A valid inequality of this form is minimal if there is no valid
inequality

∑
r∈Qd:sr 6=0 ψ

′(r)sr ≥ 1 such that ψ′ ≤ ψ and ψ′(r) 6= ψ(r) for some r ∈ Qd.

Function ψ : Qd → R ∪ {+∞} is a valid or minimal function, respectively, if the cor-
responding inequality is valid or minimal, respectively. Every minimal valid function is
non-negative, piece-wise linear, positively homogeneous, subadditive, and convex [23]. A
full description of R(f ; Γ) can be obtained from the valid inequalities for Rf by restriction;

if
∑

r∈Qd:sr 6=0 ψ(r)sr ≥ 1 is valid for Rf then
∑k

j=1 ψ(rj)srj ≥ 1 is valid for R(f ; Γ). A sort
of converse of this statement is also true; see [17]. For more details on these important
connections see [26].

1.2.2 Maximal Lattice-Free Convex Sets

Since intersection cuts for maximal lattice-free convex sets provide the minimal inequalities
for R(f ; Γ), the structural properties of such sets is a natural topic of interest for a couple
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reasons. Firstly, one must identify a maximal lattice-free convex set B to generate such an
intersection cut. Secondly, to calculate the intersection cut

∑k
j=1 ψf ;B(rj)sj ≥ 1 generated

by B, one must evaluate the gauge ψf ;B : Rd → R.

A theorem of Lovász is the typical launching point into the structure of maximal lattice-free
convex sets. Before stating it, we require some definitions. Let P ⊆ Rd be a polyhedron.
The set F ⊆ P is a face of P if F = {x ∈ P : cTx = k} for some c ∈ Rd and k ∈ R such
that P ⊆ {x ∈ Rd : cTx ≤ k}. Note that ∅ and P itself are both faces of P . A face of
dimension 0 is called a vertex of P , while a face of dimension dim(P )− 1 is called a facet
of P . The recession cone of P is given by rec(P ) := {r ∈ Rd : x+λr ∈ P ∀x ∈ P, ∀λ ≥ 0}
and the lineality space of P is given by lin(P ) := {r ∈ Rd : x+ λr ∈ P ∀x ∈ P, ∀λ ∈ R}.

Theorem 1.2.6 ([60]; see [17] or [6] for a proof). Full dimensional C ⊆ Rd is a maximal
lattice-free convex set if and only if C is a polyhedron with an integral point in the relative
interior of each facet and intC ∩ Zd = ∅. Furthermore, if full-dimensional C ⊆ Rd is a
maximal lattice-free convex set, then its recession cone and lineality space coincide.

An immediate consequence of this theorem is that ψf ;B is a piecewise-linear function whose
number of pieces is equal to the number of facets, say t, of B. This is easy to see. Since
f ∈ intB, we can express B as B = {x ∈ Rd : dix ≤ 1 + dif ∀i ∈ {1, . . . , t}} where di is a
row vector in Rd for i ∈ {1, . . . , t}. Then

ψf ;B(r) = max
i∈{1,...,t}

dir.

This expression for the gauge of a full-dimensional polyhedron is well-known; we mention
[25, Corollary 2] where it is used to show every minimal valid function for the continuous
semi-infinite relaxation Rf is continuous and piecewise-linear.

Pursuant to the above discussion, one natural way to distinguish families of maximal
lattice-free convex sets is by number of facets. Now, if x1, x2 ∈ Zd are such that x1

i and x2
i

are congruent modulo two for all i ∈ {1, . . . , d}, then 1
2
(x1 + x2) ∈ Zd. Hence two distinct

facets F1 and F2 of a lattice-free convex set cannot contain points x1 ∈ relint(F1) and
x2 ∈ relint(F2) such that x1 and x2 are congruent modulo two. Applying the Pigeonhole
Principle, it follows that any maximal lattice-free polyhedron has at most 2d facets.

Remark 1.2.7 ([67] [21] [42]). If full dimensional C ⊆ Rd is a maximal lattice-free convex
set then C has at most 2d facets.

In two dimensions, all maximal lattice-free convex sets have two, three or four facets. The
following theorem of Lovász summarizes the classification nicely.
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Theorem 1.2.8 ([60]). In the plane, a full dimensional maximal lattice-free convex set is
one of the following.

1. A split {x ∈ R2 : c ≤ ax1 + bx2 ≤ c+ 1} for a, b, c ∈ Z, and a, b coprime.
2. A triangle with at least one integral point in the relative interior of each of its edges.
3. A quadrilateral containing exactly four integral points with exactly one of them in

the relative interior of each of its edges. The four integral points are vertices of a
parallelogram of area one.

In three dimensions, all maximal lattice-free convex sets have at least two and at most
eight facets. However, no analogue of Theorem 1.2.8 is known; see [17] for some partial
results on this topic. The work in [71], [10], [9], and [7] is also relevant; however, the
authors focus on the closely related problem of characterizing maximal lattice-free lattice
polytopes - those polytopes having integral vertices. In d dimensions for d ≥ 3, it seems to
be hard to give a nice classification of families of maximal lattice-free convex sets according
to number of facets and the position of the integral points in those facets.

Note that when we say Q ⊆ R2 is a maximal lattice-free quadrilateral we mean that
Q is a polygon with four facets (i.e. is a quadrilateral) and Q is a maximal lattice-
free convex set. It is not always true that a lattice-free polyhedron C1 with k facets
is contained in a maximal lattice-free polyhedron C2 again with k facets. For example
Q := conv {(0, 0)T , (0, 2)T , (1, 0)T , (1, 2)T} is a lattice-free quadrilateral strictly contained
in the split {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1}. So Q is not a maximal lattice-free quadrilateral.
Any set containing Q must contain at least six integral points but, per Theorem 1.2.8, all
maximal lattice-free quadrilaterals contain exactly four integral points.

Note that there exist lattice-free quadrilaterals that are not contained in any maximal
lattice-free quadrilateral (or as an element of a limiting family thereof such as a split).
However, every lattice-free triangle is contained in a maximal lattice-free triangle or an
element of a limiting family thereof. Later we see that splits appear as the limiting set of
an infinite family of lattice-free triangles.

1.2.3 The Gauge Measure

Let L be a family of lattice-free convex sets in Rd. One might think of L as the family of
all maximal lattice-free convex sets in Rd with exactly t facets for some t ∈ {1, . . . , 2d}, but
the following definitions apply for any well-defined family. The intersection cut generated
by L ∈ L with f ∈ intL is a valid inequality for R(f ; Γ). The L-closure for (f ; Γ), denoted
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L(f ; Γ), is the set of s ∈ Rk
+ satisfying all such intersection cuts. That is, for s̄ ∈ Rk

+, we

have s̄ ∈ L(f ; Γ) if and only if
∑k

j=1 ψf ;B(rj)s̄j ≥ 1 for all B ∈ L with f ∈ intB.

Note that the L-closure is a closed convex set but it is not necessarily a polyhedron. The
most well-known example for which the L-closure is a polyhedron is when L is the family of
maximal lattice-free convex sets in Rd with exactly two facets (i.e. L is the split closure).
There exist other families for which the L-closure is known to be a polyhedron; we’ll
encounter some later. We point to [3] and [5] for some sufficient conditions on the family
L to conclude the L-closure is a polyhedron.

Given C ⊆ Rk
+, we call C upper comprehensive if for all x ∈ C, x′ ≥ x implies x′ ∈ C.

Remark 1.2.9. If L is a family of lattice-free convex sets, then L(f ; Γ) is upper compre-
hensive.

Proof. Let s ∈ Rk
+ be such that s ∈ L(f ; Γ). Let s′ ∈ Rk

+ be such that s′ ≥ s. Since
ψf ;B(rj) ≥ 0 for all j ∈ {1, . . . , k} and s′ ≥ s ≥ O we have

k∑
j=1

ψf ;B(rj)s′j ≥
k∑
j=1

ψf ;B(rj)sj ≥ 1

for all B ∈ L with f ∈ intB. Thus s′ ∈ L(f ; Γ).

Theorem 1.2.5 says that if C is the set of all maximal lattice-free convex sets in Rd, then
C(f ; Γ) = R(f ; Γ). It is clear that R(f ; Γ) ⊆ L(f ; Γ) whenever L is a family of lattice-
free convex sets; that is, L(f ; Γ) is a relaxation of R(f ; Γ). To compare the intersection
cuts generated by two families of lattice-free convex sets L1 and L2, we will compare the
sets L1(f ; Γ) and L2(f ; Γ). Inherently, this comparison considers all cuts from one family
against all cuts from another.

We compare arbitrary relaxations of R(f ; Γ) - either to each other or to R(f ; Γ) itself -
using the “blow-up” measure for upper comprehensive sets. This measure was first used
to compare cutting plane strength in the integer programming context in [47]. Suppose C1

and C2 are convex upper comprehensive sets. Define αC2 := {αc2 : c2 ∈ C2}. Since C2 is
upper comprehensive, C2 ⊆ αC2 for all α ≤ 1 and a small α corresponds to inflating C2

towards the origin. Define

θ[C1, C2] := inf
α≤1

{
1

α
: C1 ⊆ αC2

}
; (1.20)
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if no such α exists, define θ[C1, C2] := +∞.5 We think of θ[C1, C2] as indicating how much
C2 must be inflated to contain C1. If C1 ⊆ C2, then θ[C1, C2] = 1 (i.e. no inflation is
required).

Let L1 and L2 be families of lattice-free convex sets in Rd. We compare the intersection
cuts generated by L1 and L2 on a “worst case” basis. We compare L1 to L2 by looking at
the largest amount (over all (f ; Γ)) by which L2(f ; Γ) must be inflated to contain L1(f ; Γ).
Accordingly, we define

ρ[L1,L2] := sup

θ[L1(f ; Γ),L2(f ; Γ)] :

k ∈ Z++,
f ∈ Qd \ Zd,
Γ = (r1, . . . rk), and
rj ∈ Qd \ {O} ∀j ∈ {1, . . . , k}

 . (1.21)

Note that ρ[L1,L2] 6= ρ[L2,L1]. To keep this straight, it is a useful shortcut to think
that ρ[#1,#2] indicates how well family #1 approximates family #2; a smaller number
indicates a better approximation. By definition θ[L1(f ; Γ),L2(f ; Γ)] ≥ 1 and therefore
ρ[#1,#2] ≥ 1. This means that the measure does not capture whether family #1 is better
than #2, only whether it is at least as good.

On Which Cut Generation Procedure to Use

As mentioned at the start of Section 1.2, one reason to study intersection cut closures is
to provide theoretical insight into which cuts might be useful to generate in practice. For
a discussion of the various theoretical frameworks under which cut quality is evaluated, as
well as some of the challenges in using theoretically good cuts in practice, see [39]. Some
of the gaps between theoretical measures and practical advice are particularly relevant to
the setup used in this thesis. The choice to compare all cuts from one family to all cuts
from another has some drawbacks. The choice of a worst case measure also has limits;
probabilistic analysis may be a fitting theoretical alternative, see [19], [36], and [51]. The
choice to consider a continuous relaxation (i.e. drop the integrality information for the
non-basic variables) also has limits; in practice, coefficients for integer variables can be
strengthened via lifting.

5Note that we require α ≤ 1, which may differ from definitions used elsewhere. We make this choice
because we only want to understand the extent to which C1 is weaker than C2. In past work this distinction
was often irrelevant because a relaxation C1 of C2 was compared to C2 itself (i.e. C2 ⊆ C1 held trivially).
Here we compare different relaxations of R(f ; Γ) to each other (as opposed to directly to R(f ; Γ) itself) so
the two sets involved may be incomparable with respect to set inclusion.
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Computational experiments are also a key piece in comparing the usefulness of cut gener-
ation procedures in practice; see [43], [38], [58], [59], and [14]. The results in this thesis
provide some insight on d-row cuts that might have good trade-off (in terms of complexity
to generate vs. strength of cut) based on the relative strength of the underlying closures.
Although we compare different classes of d-row cuts to each other for fixed d, such results
can be used to identify candidate strong families of d-row cuts to compare to `-row cuts for
d 6= `, as in [14] and [38]. In Section 6.6, we return to this topic and discuss the theoretical
bounds proved in this thesis in the context of past computational work.

1.3 Comparing Families of 2-Row Intersection Cuts

We now turn our attention to the d = 2 case. That is, we are interested in cuts separating
O from R(f ; Γ) where

R(f ; Γ) := conv

{
s ∈ Rk

+ : f +
k∑
j=1

rjsj ∈ Z2

}
(1.22)

for fractional point f ∈ Q2 \ Z2, ray directions r1, . . . , rk ∈ Q2 \ {O} and Γ as the ordered
set (r1, . . . , rk). The notation f, r1, . . . , rk, and Γ will be defined as such in the remainder
of this section.

Per Theorem 1.2.5 and Theorem 1.2.8, every minimal constraint of R(f ; Γ) is the inter-
section cut of (f ; Γ) for some maximal lattice-free split, triangle or quadrilateral with f
in its interior. A valid inequality

∑k
j=1 γjsj ≥ 1 for γ ≥ O is a facet-defining inequality

of R(f ; Γ) if the dimension of R(f ; Γ) ∩ {s ∈ Rk :
∑k

j=1 γjsj = 1} is k − 1. A valid in-

equality
∑k

j=1 γjsj ≥ 1 for γ ≥ O is rational if γj ∈ Q for all j ∈ {1, . . . , k}. Since f and

{rj : j ∈ {1, . . . , k}} are rational, every non-trivial facet-defining inequality for R(f ; Γ) is
rational and minimal and therefore is the intersection cut for a maximal lattice-free convex
set.

Given Theorem 1.2.8, it follows that every facet-defining inequality of R(f ; Γ) in R2 is an
intersection cut generated by a maximal lattice-free split, triangle, or quadrilateral. This
characterization was first proved in [4]. Although we present it above as a consequence of
later results, the first proof came by studying the structure of the set

Bψ := {x ∈ R2 : x = f +
k∑
j=1

rjsj for s ∈ Rk
+ such that

k∑
j=1

ψjsj ≤ 1}. (1.23)

19



where
∑k

j=1 ψjsj ≥ 1 is some facet defining inequality. The interior of Bψ gives a two-

dimensional representation of the points affected by adding the inequality
∑k

j=1 ψjsj ≥ 1 to
the linear relaxation of R(f ; Γ). Exactly which splits, triangles, and quadrilaterals actually
define facets of R(f ; Γ) is provided by [30].

Theorem 1.3.1. Let f ∈ Q2\Z2 and let Γ be the ordered set (r1, . . . , rk) with rj ∈ Q2\{O}
for all j ∈ {1, . . . , k}. The facets of R(f ; Γ) are

1. all intersection cuts generated by a split S where the unbounded direction of S is rj

for some j ∈ {1, . . . , k}, or where S satisfies the “ray condition”;
2. all intersection cuts generated by a maximal lattice-free triangle T where each vertex

of T is on one of the rays {f + λrj : λ ≥ 0} for some j ∈ {1, . . . , k}, or where T
satisfies the “ray condition”; and

3. all intersection cuts generated by a maximal lattice-free quadrilateral Q where each
vertex of Q is on one of the rays {f +λrj : λ ≥ 0} for some j ∈ {1, . . . , k}, or where
Q satisfies the “ratio condition”.

Part of this characterization was needed in the first paper comparing intersection cuts for
different families of lattice-free convex sets in two dimensions [15]. Since we will not require
this characterization in our techniques, we decline to define the ray and ratio conditions.

1.3.1 Families of Maximal Lattice-Free Convex Sets in R2

Let C denote the family of all maximal lattice-free convex sets in R2. Theorem 1.2.8 parti-
tions C into three subfamilies: splits, maximal lattice-free triangles, and maximal lattice-
free quadrilaterals. In this section, we define further subfamilies, identify “representatives”
for each family, and also provide the affiliated notation.

A function φ : Rd → Rd is an affine unimodular transformation if there exist c ∈ Zd and
unimodular M ∈ Zd×d (i.e. detM = ±1) such that φ is given by φ(x) = Mx+c . We say L
is closed under unimodular transformation if whenever B ∈ L so are all B′ obtained from
B by an affine unimodular transformation. Each family of maximal lattice-free convex
sets L defined here is closed under unimodular transformation. Since “obtainable via
affine unimodular transformation” is an equivalence relation, L can be partitioned into
equivalence classes. A set of representatives for L is a subset of L containing at least
one lattice-free convex set for each equivalence class. We will define for each family L a
normalized member of the family such that the set of all normalized members, denoted L̂,
is a set of representatives for L.
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For the most part, the families and normalized versions thereof introduced here appear in
[15] and [11], as well as [41] and [32] where the terminology “standard form” is used in the
place of “normalized”. The List of Symbols (page xvi) provides a handy reference for the
notation introduced herein.

Splits

Recall that S ⊆ R2 is a split if there exist a, b, c ∈ Z with a, b coprime such that S = {x ∈
R2 : c ≤ ax1 + bx2 ≤ c + 1}. Let S denote the family of splits in R2. By our choice of
definition, all splits are maximal lattice-free convex sets. The split VS := {(x1, x2) ∈ R2 :
0 ≤ x1 ≤ 1} will be referred to as the vertical split and the split HS := {(x1, x2) ∈ R2 :
0 ≤ x2 ≤ 1} will be referred to as the horizontal split. We take VS to be the (unique)
normalized split.

x1 = 1x1 = 0

x2 = 0

x2 = 1

Figure 1.3: Vertical split (left) and horizontal split (right).

Remark 1.3.2. Let S ∈ S be a split. Then there exists an affine unimodular transforma-
tion φ : R2 → R2 such that φ(S) = VS where VS = {(x1, x2)T ∈ R2 : 0 ≤ x1 ≤ 1}.

Given (f ; Γ), the split closure is

S(f ; Γ) :=

{
s ∈ Rk

+ :
k∑
j=1

ψf ;S(rj)sj ≥ 1 for all S ∈ S with f ∈ intS

}
. (1.24)

The split closure is a polyhedron [29].
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Triangles

Let T denote the family of maximal lattice-free triangles in R2. This family can be par-
titioned into three subfamilies [40, Proposition 1]. We say that triangle T ∈ T is either
a

1. type 1 triangle if T has integral vertices and exactly one integral point in the relative
interior of each edge; or

2. type 2 triangle if T has at least one fractional vertex v, exactly one integral point in
the relative interior of the edges incident to v and at least two integral points on the
edge opposite v; or

3. type 3 triangle if T has exactly three integral points on its boundary - one in the
relative interior of each edge.

Let T1 denote the family of type 1 triangles in R2. A type 1 triangle T ∈ T1 is normalized
if its vertices are (0, 0)T , (2, 0)T and (0, 2)T . Let T2 denote the family of type 2 triangles in
R2. A type 2 triangle T ∈ T2 is normalized if one of its edges contains (0, 0)T and (0, 1)T

and the other two edges contain in their relative interior (1, 1)T and (1, 0)T respectively.
Let T3 denote the family of type 3 triangles in R2. A type 3 triangle T ∈ T3 is normalized
if each of (0, 0)T , (1, 0)T and (0, 1)T is in the relative interior of a different edge of the
triangle and if as well the line defining the edge of T containing (1, 0)T separates (0, 0)T

and (1, 1)T . A triangle T ∈ T is normalized if it is a normalized type 1, type 2, or type 3
triangle.

(0, 2)T

(0, 0)T (2, 0)T

(0, 1)T

(0, 0)T

(1, 1)T

(1, 0)T

(0, 1)T

(0, 0)T

(1, 1)T

(1, 0)T

Figure 1.4: The unique normalized type 1 triangle (left), and examples of normalized type
2 (center) and type 3 (right) triangles.
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Remark 1.3.3. Let triangle T ∈ T be a type i triangle for i ∈ {1, 2, 3}. Then, there exists
an affine unimodular transformation φ : R2 → R2 such that φ(T ) is a normalized type i
triangle.

Given (f ; Γ), the type i triangle closure for i ∈ {1, 2, 3} is

Ti(f ; Γ) :=

{
s ∈ Rk

+ :
k∑
j=1

ψf ;T (rj)sj ≥ 1 for all T ∈ Ti with f ∈ intT

}
. (1.25)

Given (f ; Γ), the triangle closure is

T (f ; Γ) :=

{
s ∈ Rk

+ :
k∑
j=1

ψf ;T (rj)sj ≥ 1 for all T ∈ T with f ∈ intT

}
. (1.26)

Note that T (f ; Γ) = T1(f ; Γ) ∩ T2(f ; Γ) ∩ T3(f ; Γ). The triangle closure is a polyhedron
[20]. The type 1 triangle closure is a polyhedron; this follows directly from Remark 1.3.3
and [5, Corollary 1.4]. It is open as to whether the type 2 and type 3 triangle closures are
polyhedra.

Quadrilaterals

Let Q denote the family of maximal lattice-free quadrilaterals in R2. A quadrilateral
Q ∈ Q is normalized if each of the points (0, 0)T , (0, 1)T , (1, 0)T , and (1, 1)T is in the
relative interior of a different edge of the quadrilateral.

(1, 1)T(0, 1)T

(0, 0)T (1, 0)T

Figure 1.5: Example of a normalized quadrilateral.
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Remark 1.3.4. For every maximal lattice-free quadrilateral Q ∈ Q, there exists an affine
unimodular transformation φ : R2 → R2 such that φ(Q) is a normalized quadrilateral.

Proof. We prove this remark since we require it within this thesis. The proofs for Re-
mark 1.3.2 and Remark 1.3.3 are similar.

Let Q be a maximal lattice-free quadrilateral. By Theorem 1.2.8, there exist `1, `2, `3, `4 ∈
Z2 each contained in a unique edge of Q such that conv {`1, `2, `3, `4} is a parallelogram P of
area one. We may assume `1, `2, `3, `4 are labelled so that they occur on the boundary of P
in that order. Let U1 : R2 → R2 be the unimodular transformation given by U1(x) = Ix−`1.
Let U2 : R2 → R2 be the unimodular transformation given by U2(x) = M−1x where M
is the matrix with columns `2 − `1 and `4 − `1. The entries of M are integer and the
absolute value of the determinant of M is the area of P , which is one. Hence M−1 has
determinant ±1 and integer entries and therefore U2 is unimodular. Then U : R2 → R2

given by U(x) = U2(U1(x)) = M−1(x− `1) is an affine unimodular transformation. We will
show the image of Q under U is a normalized quadrilateral.

By construction, U maps conv {`1, `2, `3, `4} to [0, 1]2. To verify U(Q) is a quadrilateral:
note that U maps each of the vertices of Q to distinct points, U maps edges of Q to edges
of U(Q) and the interior of Q to the interior of U(Q). To verify U(Q) is normalized, the
last thing to check is that U(Q) is lattice-free. Suppose to the contrary that v ∈ Z2 is an
interior point of U(Q). Since U is unimodular, U−1 is unimodular and therefore it preserves
the integer lattice. So U−1v would be an integer point in the interior of Q, which would
contradict the fact Q is lattice-free. Hence U(Q) is lattice-free, completing the proof.

Given (f ; Γ), the quadrilateral closure is

Q(f ; Γ) :=

{
s ∈ Rk

+ :
k∑
j=1

ψf ;Q(rj)sj ≥ 1 for all Q ∈ Q with f ∈ intQ

}
. (1.27)

The quadrilateral closure is a polyhedron [35].

Throughout, we will refer to an intersection cut generated by a split, maximal lattice-free
triangle, type i triangle, or maximal lattice-free quadrilateral, respectively, as a split cut,
triangle cut, type i triangle cut, or quadrilateral cut, respectively.

1.3.2 Previously Established Bounds and Techniques

We would like to know ρ[L1,L2] for all pairs of families (L1,L2) where each family is one of
{S, T1, T2, T3, T ,Q}. Here we review the best bounds on such ρ[L1,L2] as calculated first

24



in [15] and improved subsequently in [11]. These bounds will be referred to as “previously
established bounds” to distinguish them from any bounds appearing in this thesis.

Each of the following subsections outlines a technique to calculate exactly or bound ρ[L1,L2]
for some pairs of families (L1,L2). Along the way we keep a “running table” of bounds.
At the end of a subsection we display the just discussed bounds in regular typeface in the
table, and the already introduced values in faded typeface. The final subsection summa-
rizes the discussed bounds and implications thereof, and uses them to bound ρ[L1, C] for
L1 ∈ {S, T1, T2, T3, T ,Q}.

Using Set Inclusion

When one family is a subfamily of the other, a ρ value of one follows from the definitions.
We provide a proof as a warm-up to using the definitions.

Remark 1.3.5. If L1 and L2 are families of lattice-free convex sets in Rd and L1 ⊆ L2

then ρ[L2,L1] = 1.

Proof. Consider arbitrary k ∈ Z++, f ∈ Qd \Zd, and Γ = (r1, . . . , rk) where rj ∈ Qd \ {O}
for all j ∈ {1, . . . , k}. Let s ∈ L2(f ; Γ); by definition, this means

∑k
j=1 ψf ;B(rj)sj ≥ 1 for

every B ∈ L2 with f ∈ intB. In particular,
∑k

j=1 ψf ;B(rj)sj ≥ 1 for every B ∈ L1 with
f ∈ intB. So, s ∈ L1(f ; Γ) and thus L2(f ; Γ) ⊆ L1(f ; Γ). By the definition of θ, this gives
θ[L2(f ; Γ),L1(f ; Γ)] = 1. The result follows from the definition of ρ.

ρ[L1,L2] S T1 T2 T3 T Q
S -
T1 -
T2 -
T3 -
T 1 1 1 -
Q -

Table 1.1: Values of ρ[L1,L2] = ρ[row set, column set] determined using set inclusion.

Using ε-Relaxations

In fact, exact set containment is not required in Remark 1.3.5. A ρ value of one also
follows when members of one family can be approximated “arbitrarily well” by members
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of the other. The presentation here unifies the analysis in [15] and [11] and requires a
strengthened version of [11, Proposition 2.1]. We first state a proposition required to prove
the strengthened result.

Proposition 1.3.6. Let k ∈ Z++, f ∈ Qd\Zd, and Γ = (r1, . . . , rk) where rj ∈ Qd\{O} for
all j ∈ {1, . . . , k}. Let B be a lattice-free convex set with f in its interior. Suppose s̄ ∈ Rk

+

violates the intersection cut generated by B. Then there exists M = M(s̄, r1, . . . , rk) such
that s̄ violates the intersection cut generated by B̄ := B ∩ {x ∈ Rd : ||x− f ||2 ≤M}.

Proof. Let δ := 1−
∑k

i=1 ψf ;B(ri)s̄i > 0 be the amount by which s̄ violates the constraint
generated by B. We choose

M :=
2k
(
maxj∈{1,...,k} ||rj||2

) (
maxj∈{1,...,k} s̄j

)
δ

and B̄ := B ∩ {x ∈ Rd : ||x − f ||2 ≤ M}. Let S := {i ∈ {1, . . . , k} : ψf ;B(ri) = ψf ;B̄(ri)}
and D := {1, . . . , k} \ S. Now for all i ∈ D we have ψf ;B̄(ri) = ||ri||2

M
≥ ψf ;B(ri) ≥ 0. Thus

k∑
i=1

ψf ;B̄(ri)s̄i =
k∑
i=1

ψf ;B(ri)s̄i +
∑
i∈D

[ψf ;B̄(ri)− ψf ;B(ri)]s̄i

≤
k∑
i=1

ψf ;B(ri)s̄i +
∑
i∈D

||ri||2
M

s̄i

≤
k∑
i=1

ψf ;B(ri)s̄i +
δ

2k

(∑
i∈D

||ri||2s̄i(
maxj∈{1,...,k} ||rj||2

) (
maxj∈{1,...,k} s̄j

))

≤
k∑
i=1

ψf ;B(ri)s̄i +
δ

2

= 1− δ +
δ

2
< 1.

and so s̄ violates the constraint generated by B̄. The result follows.

Now we return to specifying what it means for members of one family to approximate
members of another “arbitrary well”. For B ⊆ Rd and ε > 0, the ε-relaxation of B is
defined by

relax(B; ε) := {x ∈ Rd : ||x− x̄||2 ≤ ε for some x̄ ∈ B}. (1.28)
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Proposition 1.3.7. Let L1 and L2 be families of lattice-free convex sets in Rd. Let k ∈
Z++, f ∈ Qd \Zd, and Γ = (r1, . . . , rk) where rj ∈ Qd \{O} for all j ∈ {1, . . . , k}. Suppose
that for every M, ε > 0 and every B1 ∈ L1 with f ∈ intB1 there exists B2 ∈ L2 such that
B1 ∩ {x ∈ Rd : ||x − f ||2 ≤ M} ⊆ relax(B2; ε). Then the inclusion L2(f ; Γ) ⊆ L1(f ; Γ)
holds, and (therefore) ρ[L2,L1] = 1.

Proof. The result follows from applying Proposition 1.3.6 at the beginning of the proof of
[11, Proposition 2.1].

It suffices to verify Proposition 1.3.7 for an arbitrary normalized member of family L1 be-
cause the families of sets considered are closed under unimodular transformation. Figure 1.7
shows the proposition holds when L1 = S and L2 ∈ {T2, T3,Q}. The left image illustrates
that a vertical split can be approximated by a normalized type 2 triangle with vertex v
as close to (1, 1

2
)T as is necessary and opposite edge {(x1, x2)T ∈ R2 : x1 = 0}. The right

image illustrates that a vertical split can be approximated by a normalized quadrilateral

with two opposite vertices as close, and equally close, to
(
0, 1

2

)T
and

(
1, 1

2

)T
as necessary.

Figure 1.6 gives an analogous “proof by picture” when L1 = T1 and L2 ∈ {T2, T3,Q}.
Figure 1.8 gives an analogous “proof by picture when L1 = T2, and L2 ∈ {T3,Q}. The
shaded set represents a normalized member of L1 and the dashed polygons provide the
subfamily of L2 from which to choose B2 for given ε and M .

(1, 1)T(0, 1)T

(0, 0)T (1, 0)T

(1, 1)T(0, 1)T

(0, 0)T (1, 0)T

(1, 1)T(0, 1)T

(0, 0)T (1, 0)T

Figure 1.6: Approximate type 1 triangle by type 2 triangle (left), type 3 triangle (center),
and quadrilateral (right). These constructions appear in [11, Theorem 1.3].
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(1, 1)T(0, 1)T

(0, 0)T (1, 0)T

(1, 1)T(0, 1)T

(0, 0)T (1, 0)T

(1, 1)T(0, 1)T

(0, 0)T (1, 0)T

Figure 1.7: Approximate split by type 2 triangle (left), type 3 triangle (center), and quadri-
lateral (right). These constructions appear in [15, Theorem 1.4].

(1, 1)T(0, 1)T

(0, 0)T (1, 0)T

(1, 1)T(0, 1)T

(0, 0)T (1, 0)T

Figure 1.8: Approximate type 2 triangle by type 3 triangle (left) and quadrilateral (right).
These constructions appear in [11, Theorem 1.4].
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ρ[L1,L2] S T1 T2 T3 T Q
S -
T1 -
T2 1 1 -
T3 1 1 1 -
T 1 1 1 1
Q 1 1 1 -

Table 1.2: Values of ρ[L1,L2] = ρ[row set, column set] determined using ε-relaxations.

Upper Bounds Using a Representative Cut

Bounds on ρ[L1,L2] can be calculated by optimizing the inequality generated by an arbi-
trary member of L2 subject to all inequalities generated by members of L1. The following
three theorems provide lower bounds on the optimal value of the relevant optimization
problems. We explain the resulting upper bounds on ρ[L1,L2] afterwards.

Theorem 1.3.8 (Follows from proof of [15, Theorem 1.6]). Let T be a normalized type 1
triangle. Let f ∈ Q2 \Z2 be in the interior of T . Define ray directions r1, r2, r3 ∈ Q2 \{O}
so that the vertices of T are {f + ri : i ∈ {1, 2, 3}}. Hence, for Γ := (r1, r2, r3) the
intersection cut generated by T for (f ; Γ) is

∑3
j=1 ψf ;T (rj)sj = s1 + s2 + s3 ≥ 1. Then

inf{s1 + s2 + s3 : s ∈ S(f ; Γ)} ≥ 1

2
.

Proof Sketch. Consider the relaxation (P ′) of the given optimization problem obtained by
replacing the constraint s ∈ S(f ; Γ) with the constraint s ≥ O and two or three intersection
cuts generated by splits. The chosen splits are illustrated in Figure 1.9; use splits VS,
HS, and S3 for which f is in the interior of the split. Then (P ′) is a linear program in
non-negative variables s1, s2, s3 with two or three constraints of the form ψT s ≥ 0 for
ψ ≥ 0. The coefficients for each constraint can be calculated explicitly by computing the
corresponding gauge functions. Note that these coefficients are a function of f . Lower-
bounding the optimal value of the objective function as function of f and then minimizing
the lower bound over all f yields the bound of 1

2
.
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Figure 1.9: The splits VS (left), HS (center), and S3 (right) with dotted facets, imposed
on the shaded normalized type 1 triangle.

Figure 1.10: The fixed triangles F1 (left), F2 (top right), F3 (bottom middle), F4 (bottom
right) with dotted facets, imposed on the shaded normalized quadrilateral.
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Theorem 1.3.9 (Follows from proof of [11, Theorem 1.7], Weaker Bound of 1
2

given by [15,
Theorem 1.7]). Let Q be a normalized quadrilateral with rational vertices. Let f ∈ Q2 \Z2

be in the interior of Q. Define ray directions r1, r2, r3, r4 ∈ Q2 \ {O} so that the vertices of
Q are {f+ri : i ∈ {1, 2, 3, 4}}. Hence, for Γ := (r1, r2, r3, r4) the intersection cut generated
by Q for (f ; Γ) is s1 + s2 + s3 + s4 ≥ 1. Then

inf{s1 + s2 + s3 + s4 : s ∈ T2(f ; Γ)} ≥ 2

3
.

Proof Sketch. The proof is analogous to the proof of Theorem 1.3.8, except three or four
intersection cuts generated by type 2 triangles are used. The chosen type 2 triangles are
illustrated in Figure 1.10; use fixed triangles F1, F2, F3, and F4 for which f is in the interior
of the triangle. To get the weaker bound of 1

2
choose two of F1, F2, F3, and F4, depending

on position of f inside Q.

Theorem 1.3.10 (Follows from proof of [11, Theorem 1.8], Weaker Bound of 1
2

given by
[15, Theorem 1.7]). Let T be a type 3 triangle with rational vertices. Let f ∈ Q2 \Z2 be in
the interior of T . Define ray directions r1, r2, r3 ∈ Q2 \ {O} so that the vertices of T are
{f + ri : i ∈ {1, 2, 3}}. Hence, for Γ := (r1, r2, r3) the intersection cut generated by T for
(f ; Γ) is s1 + s2 + s3 ≥ 1. Then

inf{s1 + s2 + s3 : s ∈ T2(f ; Γ)} ≥ 2

3
.

Figure 1.11: The type 2 triangles F1 (left), F2 (center), and F3 (right) with dotted facets,
imposed on the shaded normalized type 3 triangle.
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Proof Sketch. The proof is analogous to the proof of Theorem 1.3.8, except two or three
intersection cuts generated by type 2 triangles are used. The chosen type 2 triangles are
illustrated in Figure 1.11; use triangles F1, F2, and F3 for which f is in the interior of the
triangle.

Although the conditions in the preceding theorems may seem a bit contrived, a theorem
of the above persuasion can be revised to upper bound the ρ value for the two families
involved. If the bound in the theorem is LB, then an upper bound of 1

LB
on ρ holds.

In particular, Theorem 1.3.8 gives ρ[S, T1] ≤ 2, Theorem 1.3.9 gives ρ[T2,Q] ≤ 3
2
, and

Theorem 1.3.10 gives ρ[T2, T3] ≤ 3
2
. A bit of technical machinery is required; see the details

in Section 2.1.1.

ρ[L1,L2] S T1 T2 T3 T Q
S - [1,2]
T1 -
T2 1 1 - [1,1.5] [1,1.5]
T3 1 1 1 -
T 1 1 1 1 -
Q 1 1 1 -

Table 1.3: Upper bounds on ρ[L1,L2] = ρ[row set, column set] determined using a rep-
resentative cut. Entries of the form [LB,UB] provide a lower bound and upper bound on
the value. Recall that a lower bound of 1 follows from the definition.

Inapproximability by the Split Closure and Type 1 Triangle Closure

A similar approach to the above strategy of using a representative cut can show ρ[L1,L2] is
unbounded. It suffices to construct for every β > 1 a member of L(β) ∈ L2 and fractional
point f(β) such that optimizing the inequality generated by L(β) over the L1-closure gives
a value at most 1

β
. The following theorem and below examples can be obtained by a

straightforward modification of the proof of [15, Theorem 8.6].

Theorem 1.3.11. For any β > 1, let T (β) be the normalized Type 2 triangle with vertices

v1 =

(
0

2β + 1

)
, v2 =

(
1 + 1

4β
1
2

)
, and v3 =

(
0
−2β

)
.
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Let f = (1, 1
2
)T . Define ray directions r1, r2, r3 ∈ Q2 \ {O} so that the vertices of T (β) are

{f + ri : i ∈ {1, 2, 3}}. Hence, for Γ := (r1, r2, r3) the intersection cut generated by T (β)
for (f ; Γ) is s1 + s2 + s3 ≥ 1. Then

inf{s1 + s2 + s3 : s ∈ S(f ; Γ)} ≤ 1

β
.

Families of type 3 triangles and quadrilaterals can be constructed based on the type 2
triangle T (β) by applying the construction in Figure 1.8. To construct the type 3 triangle
for β > 1, perturb T (β) by tilting the edge of T (β) defined by {(x1, x2)T ∈ R2 : x1 = 0}
clockwise using the integral point in the interior of the edge closest to v3 as the pivot. To
construct the quadrilateral for β > 1, perturb T (β) by removing the edge of T (β) defined
by {(x1, x2)T ∈ R2 : x1 = 0} and replacing it with a vertex v4 = (ε, 1

2
)T for small enough

ε and two edges defined by the lines joining v4 with (0, 0)T and (0, 1)T respectively. See
Figure 1.12. More families of examples are provided in [15, Section 8.4.2]; for instance,
there exist examples for every f = (1, f2)T with 0 < f2 < 1.

Another way to show ρ[L1,L2] is unbounded is directly through the definition; i.e. give
(f ; Γ) for which there does not exist α > 0 satisfying L1(f ; Γ) ⊆ αL2(f ; Γ). As one might
expect, these two approaches are equivalent - see the discussion in Section 2.1.1. We use this
approach for L1 = T1 and L2 = S and then use the discussion following Proposition 1.3.7
to obtain results for L2 ∈ {T2, T3, T ,Q}.

Proposition 1.3.12 ([11, Theorem 1.5(1)]). Let

f =

(
1
2

0

)
, r1 =

(
1
0

)
, r2 =

(
0
1

)
,

and Γ = (r1, r2). Then, there does not exist α > 0 such that T1(f ; Γ) ⊆ αS(f ; Γ).

Proof Sketch. Show that S(f,Γ) = {s ∈ R2
+ : s1 ≥ 1

2
} but that (0, 3

2
)T ∈ T1(f ; Γ).

Corollary 1.3.13. For all families L ∈ {S, T2, T3, T ,Q}, we have ρ[T1,L] = +∞.

Proof. Let f, r1, r2, and Γ be as in Proposition 1.3.12. Per the discussion in the ε-
Relaxations section and Proposition 1.3.7, we have L(f ; Γ) ⊆ S(f ; Γ) for all L ∈ {T2, T3, T ,Q}.
If there exists α > 0 such that T1(f ; Γ) ⊆ αL(f ; Γ), then also T1(f ; Γ) ⊆ αS(f ; Γ). This
contradicts Proposition 1.3.12 and ergo no such α exists. The result follows by the defini-
tion of ρ.
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r2

r3

r1

f r1

r2

r3

f r2

r3

r1

r4

f

Figure 1.12: The type 2 triangle appearing in Theorem 1.3.11 for β = 2 (left), perturbing
that triangle to obtain a type 3 triangle (center), and the quadrilateral (right).
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r1

r2

f

Figure 1.13: The dominating split and f , r1, and r2 from Proposition 1.3.12.

ρ[L1,L2] S T1 T2 T3 T Q
S - [1,2] +∞ +∞ +∞ +∞
T1 +∞ - +∞ +∞ +∞ +∞
T2 1 1 - [1,1.5] [1,1.5]
T3 1 1 1 -
T 1 1 1 1 -
Q 1 1 1 -

Table 1.4: Lower Bounds on ρ[L1,L2] = ρ[row set, column set] determined using inapprox-
imability by splits and type 1 triangles.

Lower Bounds using a Specific Cut

As in the preceding two sections, we bound ρ[L1,L2] by optimizing an inequality gen-
erated by a member of L2 subject to all inequalities generated by members of L1. The
following three theorems provide finite upper bounds on the optimal value of the relevant
optimization problems. These problems consider an inequality generated by a specific
“hard to approximate” member of L2. We explain the resulting lower bounds on ρ[L1,L2]
afterwards.

Theorem 1.3.14 (Follows from proof of [15, Theorem 1.6]). Let T be a normalized type

1 triangle. Let f =
(

2
3
, 2

3

)T
. Define ray directions r1, r2, r3 ∈ Q2 \ {O} so that the vertices
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of T are {f + ri : i ∈ {1, 2, 3}}. Hence, for Γ := (r1, r2, r3) the intersection cut generated
by T for (f ; Γ) is s1 + s2 + s3 ≥ 1. Then

inf{s1 + s2 + s3 : s ∈ S(f ; Γ)} ≤ 1

2
.

Proof Sketch. First, show that ŝ = 1
6
1l satisfies the intersection cuts generated by VS, HS

and S3 as given in Theorem 1.3.8. Second, show if s ∈ R3
+ satisfies the cuts generated by

VS, HS and S3, then s ∈ S(f ; Γ). Then the result follows because ŝ is a feasible solution
to the optimization problem with objective function value 1

2
.

Theorem 1.3.15 ([11, Theorem 1.6(1)]). Let Q be the normalized quadrilateral with ver-
tices

v1 =
1

5

(
7
4

)
, v2 =

1

5

(
4
−2

)
, v3 =

1

5

(
−2
1

)
, and v4 =

1

5

(
1
7

)
.

Let f =
(

1
2
, 1

2

)T
. Define ray directions r1, r2, r3, r4 ∈ Q2 \ {O} so that the vertices of Q are

{f + ri : i ∈ {1, 2, 3, 4}}. Hence, for Γ := (r1, r2, r3, r4) the intersection cut generated by
Q for (f ; Γ) is s1 + s2 + s3 + s4 ≥ 1. Then

inf{s1 + s2 + s3 + s4 : s ∈ T (f ; Γ)} ≤ 8

9
.

Proof Sketch. Show that ŝ = 2
9
1l satisfies every cut generated by a maximal lattice-free

triangle. For proof of a more general version of this theorem see Section 2.3.

Theorem 1.3.16 ([11, Theorem 1.6(2)]). Let T be the normalized type 3 triangle with
vertices

v1 =
1

3

(
4
−2

)
, v2 =

1

3

(
1
4

)
, and v3 =

1

3

(
−2
1

)
.

Let f =
(

1
3
, 1

3

)T
. Define ray directions r1, r2, r3 ∈ Q2 \ {O} so that the vertices of T are

{f + ri : i ∈ {1, 2, 3}}. Hence, for Γ := (r1, r2, r3) the intersection cut generated by T for
(f ; Γ) is s1 + s2 + s3 ≥ 1. Then

inf{s1 + s2 + s3 : s ∈ Q(f ; Γ)} ≤ 8

9
.

Proof Sketch. Show that ŝ = 8
27

1l satisfies every cut generated by a maximal lattice-free
quadrilateral.
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r1

r2

r3

f

r1

r2

r3

r4

f

r1

r2

r3 f

Figure 1.14: The instances for Theorem 1.3.14 (left), Theorem 1.3.15 (center), and Theo-
rem 1.3.16 (right).

A theorem of the above persuasion implies a lower bound on the ρ value for the two families
involved. The only extra step required is to argue the ρ value can be calculated by solving
the given optimization problem; this is in contrast to using a representative cut to upper
bound where one must also argue it is enough to consider (f ; Γ) with certain properties.
If the bound in the theorem is UB then a lower bound of 1

UB
on ρ holds. In particular,

Theorem 1.3.14 gives ρ[S, T1] ≥ 2, Theorem 1.3.15 gives ρ[T ,Q] ≥ 9
8
, and Theorem 1.3.16

gives ρ[Q, T3] ≥ 9
8
.

ρ[L1,L2] S T1 T2 T3 T Q
S - [2,2] +∞ +∞ +∞ +∞
T1 +∞ - +∞ +∞ +∞ +∞
T2 1 1 - [1,1.5] [1,1.5]
T3 1 1 1 -
T 1 1 1 1 - [1.125,+∞]
Q 1 1 1 [1.125,+∞] -

Table 1.5: Finite lower bounds on ρ[L1,L2] = ρ[row set, column set] determined using a
specific cut.
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Previously Established Bounds for All Pairs of Families

All previously established bounds are summarized in Table 1.6; this table can be found in
[11, Table 2]. Some of these bounds were accounted for in the preceding subsections; the
balance can be derived from the definition of ρ. The most pertinent example of such a
derived bound is the bound on ρ[T2, C].

Proposition 1.3.17. ρ[T2, C] ≤ 3
2
.

Proof. Fix (f ; Γ) such that f ∈ Q2\Z2 and Γ = (r1, . . . , rk) for k ∈ Z++ where rj ∈ Q2\{O}
for all j ∈ {1, . . . , k}.

1. Since ρ[T2,Q] ≤ 3
2
, it follows that T2(f ; Γ) ⊆ 2

3
Q(f ; Γ).

2. Since ρ[T2, T3] ≤ 3
2
, it follows that T2(f ; Γ) ⊆ 2

3
T3(f ; Γ).

3. Since T2(f ; Γ) is upper comprehensive and 2
3
≤ 1, it follows that T2(f ; Γ) ⊆ 2

3
T2(f ; Γ).

4. Since ρ[T2, T1] = 1, it follows that T2(f ; Γ) ⊆ T1(f ; Γ) and therefore T2(f ; Γ) ⊆
2
3
T1(f ; Γ) because T1(f ; Γ) is upper comprehensive and 2

3
≤ 1.

5. Since ρ[T2,S] = 1, it follows that T2(f ; Γ) ⊆ S(f ; Γ) and therefore T2(f ; Γ) ⊆ 2
3
S(f ; Γ)

because S(f ; Γ) is upper comprehensive and 2
3
≤ 1.

Therefore T2(f ; Γ) ⊆ 2
3

[S(f ; Γ) ∩ T1(f ; Γ) ∩ T2(f ; Γ) ∩ T3(f ; Γ) ∩Q(f ; Γ)] = 2
3
C(f ; Γ) where

the second equality holds because C = S∪T1∪T2∪T3∪Q. The bound on ρ[T2, C] follows.

The remainder of the bounds can be derived using similar arguments. For example, one
can use the fact upper bounds on ρ are transitive; if ρ[L1,L2] ≤ k and ρ[L2,L3] ≤ ` then
ρ[L1,L3] ≤ k`.

ρ[L1,L2] S T1 T2 T3 T Q C
S - 2 +∞ +∞ +∞ +∞ +∞
T1 +∞ - +∞ +∞ +∞ +∞ +∞
T2 1 1 - [1.125,1.5] [1.125,1.5] [1.125,1.5] [1.125,1.5]
T3 1 1 1 - 1 [1.125,1.5] [1.125,1.5]
T 1 1 1 1 - [1.125,1.5] [1.125,1.5]
Q 1 1 1 [1.125,1.5] [1.125,1.5] - [1.125,1.5]

Table 1.6: Previously established best bounds for ρ[L1,L2] = ρ[row set, column set] for
dimension two. Derived bounds are indicated in bold.

1.3.3 New Bounds

Let f ∈ Q2\Z2 and Γ = (r1, . . . , rk) for k ∈ Z++ where rj ∈ Q2\{O} for all j ∈ {1, . . . , k}.
Since R(f ; Γ) = C(f ; Γ), the bounds in the previous section provide insight into how well
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intersection cuts generated by a single family can approximate R(f ; Γ).

1. If all intersection cuts from any one of T2,T3 or Q are used, then the corresponding
relaxation T2(f ; Γ), T3(f ; Γ) or Q(f ; Γ) is within a factor of 3

2
of R(f ; Γ).

2. To the contrary, if all intersection cuts from any one of T2, T3 or Q are used, then
there is a gap of 1

8
between the corresponding relaxation T2(f ; Γ), T3(f ; Γ) or Q(f ; Γ)

and R(f ; Γ).

These bounds point to type 2 triangles as a natural compromise: the family is simple
and isn’t provably better or worse at approximating R(f ; Γ) based on established bounds.
Tighter bounds on ρ[T2,L] for L ∈ {T3,Q} would provide more insight into the strength
of cuts generated by type 2 triangles.

We prove a tighter bound on ρ[T2,Q] in this thesis by improving the bound in Theo-
rem 1.3.9. To do so, we choose a different relaxation of T2(f ; Γ). Rather than using the
intersection cuts generated by fixed triangles F1, F2, F3, and F4, we select triangles from
a family of type 2 triangles we call ray-sliding triangles. This family is illustrated in Fig-
ure 1.15; the main idea is to choose a parameterized family that captures the trade-off
in cut coefficient on three rays. Unlike fixed triangles, the family of ray-sliding triangles
depends on the fractional point f in the interior of the quadrilateral. Following the proof
sketch of Theorem 1.3.9 above, but relaxing the constraint s ∈ T2(f ; Γ) to require s ≥ O
and s satisfy the intersection cuts generated by certain ray-sliding triangles, we can obtain
the following result.

Theorem 1.3.18. Let Q be a normalized quadrilateral with rational vertices. Let f ∈
Q2 \ Z2 be in the interior of Q. Define ray directions r1, r2, r3, r4 ∈ Q2 \ {O} so that the
vertices of Q are {f + ri : i ∈ {1, 2, 3, 4}}. Hence, for Γ := (r1, r2, r3, r4) the intersection
cut generated by Q for (f ; Γ) is s1 + s2 + s3 + s4 ≥ 1. Then

inf{s1 + s2 + s3 + s4 : s ∈ T2(f ; Γ)} ≥ 4

5
.

A tighter upper bound on ρ[T2,Q] follows.

Theorem 1.3.19. ρ[T2,Q] ≤ 5
4
.

An upper bound on ρ[T2,Q] is of particular interest because quadrilaterals have one more
facet than type 2 triangles and, moreover, the family of type 2 triangles are a strict subset
of the family of maximal lattice-free triangles. We would like to understand this bound
better to extend such a result in R2 to Rd - comparing intersection cut closures of simple
families with fewer facets to closures of complicated families with more facets. To obtain
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Figure 1.15: The dashed trian-
gles show examples from the fam-
ily of ray-sliding triangles. For
ray direction ri, the family of ray-
sliding triangles has one vertex on
the ray {f+τri : τ ≥ 0}. The op-
posite edge is defined by the facet
of [0, 1]2 separating the quadrilat-
eral vertex opposite f + ri from
[0, 1]2. Note that this family in-
cludes the fixed triangles in Fig-
ure 1.10.
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a tighter bound on ρ[T2, C], however, a tighter bound on ρ[T2, T3] would also be required.
With respect to a type 3 triangle, we can similarly define a family of ray-sliding triangles
capturing the trade-off in cut coefficient on two rays. We expect that using this family
and similar techniques to the proof of Theorem 1.3.19, the upper bound on ρ[T2, T3] can
be improved. See the discussion in Section 6.2.

On our way to proving Theorem 1.3.19, we consider the specialization to the family of
maximal lattice-free parallelograms. We’ve already encountered a member of this family
once in Theorem 1.3.15. A quadrilateral is a parallelogram if each pair of opposite edges
has the same slope. Let Q2 ⊆ Q denote the family of maximal lattice-free parallelograms
in R2. A parallelogram is normalized if it is a normalized quadrilateral.

(1, 1)T(0, 1)T

(0, 0)T (1, 0)T

Figure 1.16: Normalized parallelogram.

Remark 1.3.20. For every parallelogram P ∈ Q2, there exists an affine unimodular trans-
formation φ : R2 → R2 such that φ(P ) is a normalized parallelogram.

Proof. The remark follows from Remark 1.3.4 and the fact affine unimodular transforma-
tions preserve parallel lines.

Given (f ; Γ), the parallelogram closure is

Q2(f ; Γ) :=

{
s ∈ Rk

+ :
k∑
j=1

ψf ;Q(rj)sj ≥ 1 for all Q ∈ Q2 with f ∈ intQ

}
. (1.29)

Since the quadrilateral in Theorem 1.3.15 is a parallelogram (a square, in fact), we already
know ρ[T2,Q2] ≥ 9

8
. We prove this bound is in fact tight.
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Theorem 1.3.21. ρ[T2,Q2] ≤ 9
8
.

Our study of the cuts generated by maximal lattice-free parallelograms was motivated by
treating such cuts as a restriction of those generated by maximal lattice-free quadrilaterals.
However, the family of maximal lattice-free parallelograms may be interesting in its own
right. Parallelograms are in some sense a “simpler set” - described by only two slopes.
We can construct parallelograms as the intersection of (not necessarily lattice-free) splits.
The family generalizes naturally to higher dimensions as the family of centrally symmetric
octahedra. We will return to parallelograms in Section 6.1 and, in particular, discuss
comparison of the Q2-closure to others.

1.4 Overview of Remainder of the Thesis

The next three chapters are dedicated to proving Theorem 1.3.21 and Theorem 1.3.19.
Chapter 2 reviews the existing techniques and introduces new concepts required to prove
Theorem 1.3.21 in Chapter 3 and Theorem 1.3.19 in Chapter 4. Chapter 5 investigates
extending these results to higher dimensions, providing an analogue of Theorem 1.3.9 for
d-row intersection cuts for d ≥ 3. Although an analogue can be obtained, the families of
intersection cuts being compared are less natural, echoing the difficulty in characterizing
maximal lattice-free convex sets in dimension d ≥ 3. Chapter 6 summarizes the results
and highlights some open problems.
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Chapter 2

Existing Techniques and New
Families of Triangles

Before bounding ρ[T2,Q2] in Chapter 3 and ρ[T2,Q] in Chapter 4, we present the tools
and techniques required. As always, let T2 denote the family of type 2 triangles in R2,
let T denote the family of maximal lattice-free triangles in R2, let Q denote the family of
maximal lattice-free quadrilaterals in R2, and let Q2 denote the family of maximal lattice-
free parallelograms in R2. Our strategy to calculate a target approximation measure - in
this section we choose target ρ[T2,Q] - closely follows [11] and [15]. Roughly, the strategy
is as follows.

1. Reduce calculating ρ[T2,Q] to solving the optimization problem (S(T2,Q)) in vari-
ables s1, s2, s3, s4 ∈ R and r1, r2, r3, r4, f ∈ R2 given by

inf s1 + s2 + s3 + s4 (2.1)

subject to s ∈ T2(f ; r1, r2, r3, r4) (2.2)

f + conv{r1, r2, r3, r4} ∈ Q̂ (2.3)

f ∈ Q2 \ Z2 (2.4)

r1, r2, r3, r4 ∈ Q2 \ {O} (2.5)

cone{r1, r2, r3, r4} = R2. (2.6)

2. To any feasible solution of (S(T2,Q)), there is an affiliated normalized quadrilateral
Q ∈ Q̂ and fractional point f in the interior of Q. Normalized quadrilateral Q can
be described by the slopes of its edges −a, b, c,−d for a, b, c, d > 0. Fractional point
f can be described by its coordinates (g, h)T . Reparameterize (S(T2,Q)) in terms of
a, b, c, d, g, and h.
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3. Find a lower bound for the optimal value of (S(T2,Q)) as a function of parameters
a, b, c, d, g, and h. To find the lower bound, consider a relaxation obtained by re-
placing constraint (2.2) with the constraint s ≥ O and the intersection cuts for a
small number of type 2 triangles. The resulting relaxation is a parameterized linear
program. Find a feasible solution to its dual to obtain a lower bound for the optimal
value of (S(T2,Q)) as a function of a, b, c, d, g, and h.

4. Vary a, b, c, d, g, and h to determine for which choices of these parameters the lower
bound is the weakest. Denote this value by L̂B.

5. Find a feasible solution to (S(T2,Q)) and denote its objective function value by ÛB.
6. If L̂B = ÛB then (S(T2,Q)) is solved and ρ[T2,Q] = 1

L̂B
. If L̂B < ÛB, even though

(S(T2,Q)) is not solved exactly, the bounds 1

ÛB
≤ ρ[T2,Q] ≤ 1

L̂B
follow.

To calculate the lower bound in step 3 as in the proof of Theorem 1.3.9 ([15] and [11]),
constraint (2.2) was replaced with the intersection cuts for two, three, or four fixed tri-
angles. The resulting parameterized linear program was solved exactly in both analyses,
even though a dual feasible solution suffices for the purposes of lower-bounding. Hence
the analyses are in some sense “tight” - no better bound can be calculated by replacing
the constraint (2.2) with the intersection cuts for the given triangles. In Chapter 3 and
Chapter 4, we will improve the lower bounds calculated in step 3 by choosing different
intersection cuts generated by ray-sliding triangles to replace constraint (2.2). In our anal-
ysis, we also solve the resulting parametric linear programs exactly. This guarantees the
analysis is again “tight” and demonstrates that certain simple families of triangle cuts are
limited in how well they approximate the quadrilateral closure.

To calculate the upper bound in step 5 as in Theorem 1.3.15, specific values for a, b, c, d,
g, h, s1, s2, s3, and s4 that provide a feasible solution to (S(T2,Q)) were given. This work
can be extended directly to provide a family of feasible solutions to (S(T2,Q)) where the
corresponding normalized quadrilateral can be fixed to any parallelogram. In light of the
parameterized lower bound in step 3, a parameterized family of feasible solutions in step 5
can provide a “tightness” guarantee as well. If the corresponding objective function value
matches the lower bound for the given parameters, then the intersection cuts chosen to
replace the triangle closure constraint are best possible.

The preceding observations will be detailed in the remainder of this chapter. First we refine
the technical details of the proof strategy above and prove two simple lemmas which will be
applied often to solve the optimization problems at hand. We use the proof strategy to re-
derive the previously established upper bound on ρ[T2,Q] and calculate a first upper bound
on ρ[T2,Q2]. Then, we provide a parameterized family of feasible solutions to (S(T ,Q))
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and use them to re-derive the previously established lower bounds on ρ[T ,Q] and ρ[T ,Q2]1.
Lastly, we define the family of ray-sliding triangles comprehensively.

2.1 Proof Strategy Detail

2.1.1 Step 1: Identify Optimization Problem (S(T2,Q))

Let L1 denote a family of lattice-free convex sets in Rd. Let L2 denote a family of lattice-free
polytopes in Rd such that each member has exactly ` ∈ Z++ vertices and L2 is closed under
unimodular transformation. For such families, we can reduce the problem of calculating
ρ[L1,L2] to solving a related semi-infinite optimization problem. The optimization problem
captures the fact θ[C1, C2] can be calculated by minimizing the defining inequalities of C2

over C1 . It also incorporates some simplifying assumptions about the fractional points
and ray directions we must consider. The optimization problem is provided by the below
theorem.

Theorem 2.1.1 ([11, Theorem 3.1]). Let L1,L2 denote families of lattice-free convex sets
in Rd. Suppose that all sets in L2 are polytopes with exactly ` vertices and that L2 is closed
under unimodular transformation. Let L̂2 denote a set of representatives for L2. Then

1
ρ[L1,L2]

is equal to the maximum of one and the optimal value of the optimization problem

(S(L1,L2)) given by

inf
∑̀
i=1

si (2.7)

subject to s ∈ L1(f ; r1, . . . , r`) (2.8)

f + conv{r1, . . . , r`} ∈ L̂2 (2.9)

f ∈ Qd \ Zd (2.10)

r1, . . . , r` ∈ Qd \ {O} (2.11)

cone{r1, . . . , r`} = Rd. (2.12)

Proof Sketch. We provide the main observations required (loosely and without proof). To
compute 1

θ[L1(f ;Γ),L2(f ;Γ)]
for any (f ; Γ) where Γ = (r1, . . . , rk) for some k ∈ Z++, it suffices to

take the minimizer of ψTf ;Bs over all B ∈ L2 and s ∈ L1(f ; Γ). In other words, there exists

1Observe here we are solving (S(T ,Q)) to obtain a stronger result.
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some B ∈ L2 such that the minimizer of ψTf ;Bs over s ∈ L1(f ; Γ) gives 1
ρ[L1(f ;Γ),L2(f ;Γ)]

.
As L2 is closed under affine unimodular transformation and the definition of ρ takes a
supremum over all (f ; Γ) we may assume B ∈ L̂2. As the definition of ρ takes a supremum
over all (f ; Γ), we may rescale the rays rj in Γ so that ψf ;B(rj) = 1 for all j ∈ {1, . . . , k}.
Since ψf ;B is convex, if κ = 1

θ[L1(f ;Γ),L2(f ;Γ)]
is determined by the constraint for B, then

for given fractional point f , the value of κ is smallest (and therefore ρ is largest) for
Γ = (r1, r2, . . . , r`) such that f + conv {r1, . . . , r`} = B.

This theorem shows that how well the L1-closure approximates the L2-closure is captured
completely by how well the L1-closure approximates the “hardest to approximate” inter-
section cut generated by a member of L2. So, it provides the machinery required to obtain
bounds from results such as Theorem 1.3.9 and Theorem 1.3.10. Problem (S(L1,L2)) is
easiest to parse as a two-stage optimization problem: think first of choosing a member
B of L̂2 and fractional point f in its interior. These choices impute a choice for ` rays
Γ = (r1, . . . , r`). Then, minimize 1lT s over the L1(f ; Γ) to calculate a bound. The value
for 1

ρ[L1,L2]
is obtained from the choices for B and f for which this bound is weakest.

Now, in general, the restriction s ∈ L1(f ; r1, . . . , r`) may require infinitely many linear
constraints and so we refer to this problem as a semi-infinite optimization problem. When
the L1-closure is a polyhedron - for example, when L1 ∈ {S, T ,Q} - only finitely many
constraints are required. Note that the bounds we prove here do not rely on the underlying
closure being a polyhedron.

Applying Theorem 2.1.1 for L1 = T2 and L2 = Q we see that to compute ρ[T2,Q], we
can solve the semi-infinite optimization problem (S(T2,Q)) given above by the infimum of
(2.1) subject to (2.2) - (2.6).

2.1.2 Step 2: Parameterize Normalized Quadrilateral and Frac-
tional Point

To solve (S(T2,Q)), we first describe Q̂ so that each Q ∈ Q̂ is determined by a small
number of parameters. We choose to parameterize each Q ∈ Q̂ by the slopes of its edges.
Given a normalized quadrilateral Q, there is a natural bijection between the edges of Q
and the vertices of [0, 1]2 given by containment.

1. Exactly one edge of Q contains (0, 0)T ; this edge must have negative slope; let its
slope be −a for a > 0.

2. Exactly one edge of Q contains (1, 0)T ; this edge must have positive slope; let its
slope be b for b > 0.

46



3. Exactly one edge of Q contains (0, 1)T ; this edge must have positive slope; let its
slope be c for c > 0.

4. Exactly one edge of Q contains (1, 1)T ; this edge must have negative slope; let its
slope be −d for d > 0.

v1

v2

v3

v4

−dc

−a b

Figure 2.1: Normalized quadrilateral Q(a, b, c, d) with edge slopes −a, b, c, and −d for
a, b, c, d > 0 and vertices v1, v2, v3, and v4.

In fact, any normalized quadrilateral is completely described by values for a, b, c, and d. We
denote by Q(a, b, c, d) the normalized quadrilateral with edge slopes −a, b, c,−d as given
above. For notational convenience, we also fix a labelling of the vertices of normalized
quadrilateral Q = Q(a, b, c, d) so that

1. v1 is at the intersection of the edges of Q containing (1, 1)T and (1, 0)T ,
2. v2 is at the intersection of the edges of Q containing (0, 0)T and (1, 0)T ,
3. v3 is at the intersection of the edges of Q containing (0, 0)T and (0, 1)T , and
4. v4 is at the intersection of the edges of Q containing (0, 1)T and (1, 1)T .

The coordinates of v1, v2, v3, and v4 are (necessarily) determined completely by the values
of a, b, c, and d. In particular

v1 := (v1
x, v

1
y)
T =

(
1 +

1

b+ d
,

b

b+ d

)T
, v2 := (v2

x, v
2
x)
T =

(
b

a+ b
,
−ab
a+ b

)T
,

v3 := (v3
x, v

3
y)
T =

(
−1

a+ c
,

a

a+ c

)T
, and v4 := (v4

x, v
4
y)
T =

(
d

c+ d
, 1 +

cd

c+ d

)T
.
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We can restrict Q̂ to {Q(a, b, c, d) : a, b, c, d > 0, ad ≤ bc} and maintain a set of representa-
tives (with respect to unimodular transformation) for the family Q of maximal lattice-free
quadrilaterals.

Remark 2.1.2. Let Q1 := Q(a, b, c, d) for a, b, c, d > 0 with ad > bc be a normalized
quadrilateral. Then there exist â, b̂, ĉ, d̂ > 0 with âd̂ ≤ b̂ĉ and affine unimodular transfor-
mation φ : R2 → R2 such that φ(Q1) = Q(â, b̂, ĉ, d̂).

Proof. Choose (â, b̂, ĉ, d̂) = (b, a, d, c) and φ as the map φ

([
x
y

])
=

[
−1 0
0 1

] [
x
y

]
+

[
1
0

]
corresponding to reflection in the line {(x, y)T ∈ R2 : x = 1

2
}.

Therefore, we can use the above parameterization to rewrite (S(T2,Q)) as the following
semi-infinite program in variables a, b, c, d, g, h, s1, s2, s3, and s4:

inf s1 + s2 + s3 + s4 (2.13)

s. t. s ∈ T2

((
g
h

)
;

(
1 + 1

b+d − g
b
b+d − h

)
,

( b
a+b − g
−ab
a+b − h

)
,

( −1
a+c − g
a
a+c − h

)
,

( d
c+d − g

1 + cd
c+d − h

))
(2.14)(

g
h

)
∈ int

(
conv

{(
1 + 1

b+d
b
b+d

)
,

( b
a+b
−ab
a+b

)
,

( −1
a+c
a
a+c

)
,

( d
c+d

1 + cd
c+d

)})
(2.15)

a, b, c, d > 0 ; a, b, c, d ∈ Q ; ad ≤ bc (2.16)(
g
h

)
∈ Q2 \ Z2. (2.17)

Treating a, b, c, d > 0 with ad ≤ bc and (g, h)T ∈ intQ(a, b, c, d) as data in the optimization
problem above, we obtain a semi-infinite linear program in variables s1, s2, s3, and s4. We
denote this program by (P (a, b, c, d, g, h)). It is given by

inf s1 + s2 + s3 + s4 (2.18)

s. t. s ∈ T2

((
g
h

)
;

(
1 + 1

b+d
− g

b
b+d
− h

)
,

(
b

a+b
− g

−ab
a+b
− h

)
,

( −1
a+c
− g

a
a+c
− h

)
,

(
d
c+d
− g

1 + cd
c+d
− h

))
. (2.19)

For i ∈ {1, 2, 3, 4} we will denote vi − f as appearing in (2.19) by ri.

2.1.3 Step 3: Replace the Type 2 Triangle Closure Constraint
with a Small Number of Intersection Cuts

For fixed a, b, c, d > 0 with ad ≤ bc and (g, h)T ∈ intQ(a, b, c, d), we would like to lower
bound the optimal value of (P (a, b, c, d, g, h)). To do so, we replace constraint (2.19) with
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the intersection cuts for at least two and at most four type 2 triangles. We can lower
bound the optimal value of the resulting parameterized linear program by finding a dual
feasible solution to obtain a lower bound LB : R6 → R. In practice, the parameterized
linear program we must solve is often in the form provided by the following lemma.

Lemma 2.1.3. Let n ∈ Z+. Consider the linear program (LP1) given by

min 1lT s (2.20)

subject to
[
1l1lT + A

]
s ≥ 1l (2.21)

s ≥ O (2.22)

where A ∈ Rn×n. If A is invertible and the entries of A−1 are non-negative, then

ŝ :=

(
1

1 + 1lTA−11l

)
A−11l

is an optimal solution of (LP1) and its optimal value is

1lTA−11l

1 + 1lTA−11l
= 1− 1

1 + 1lTA−11l
.

Proof. The dual of of (LP1) is (DP1) given by

max 1lTv (2.23)

subject to
[
1l1lT + AT

]
v ≤ 1l (2.24)

v ≥ O (2.25)

Note that ŝ ≥ O because the entries of A−1 are non-negative. Computing

(1l1lT + A)ŝ =

(
1

1 + 1lTA−11l

)(
1l1lTA−11l + AA−11l

)
=

(
1

1 + 1lTA−11l

)(
1lTA−11l + 1

)
1l

= 1l

we see that ŝ is feasible for (LP1) and satisfies the n constraints (2.21) with equality. Let

v̂ :=

(
1

1 + 1lTA−11l

)
A−T1l
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Note that v̂ ≥ O because the entries of A−1 and therefore also A−T are non-negative.
Computing

(1l1lT + AT )v̂ =

(
1

1 + 1lTA−11l

)(
1l1lTA−T1l + ATA−T1l

)
=

(
1

1 + 1lTA−11l

)(
1lTA−T1l + 1

)
1l

=

(
1

1 + 1lTA−11l

)(
1lTA−11l + 1

)
1l

= 1l

we see that v̂ is feasible for (DP1) and satisfies the n constraints (2.24) with equality.
Therefore (ŝ, v̂) are a pair of primal and dual feasible solutions satisfying complementary
slackness and ŝ is an optimal solution for (LP1). Calculating 1lT ŝ we see the optimal value
is as claimed.

2.1.4 Step 4: Vary Parameters to Find Weakest Bound

In step 4, we vary LB over all a, b, c, d > 0 such that ad ≤ bc and (g, h)T ∈ intQ(a, b, c, d)
to find the weakest lower bound L̂B on the optimal value of (S(T2,Q)). When Lemma 2.1.3
is used to find the optimal solution, the corresponding expression is of the form 1− 1

1+
∑m
i=1 ai

where ai for i ∈ {1, . . . ,m} are the entries of A−1. In these instances, the following lemma
can be used in finding the weakest lower bound.

Lemma 2.1.4. Let m ∈ Z+. Let a := (a1, a2, . . . , am). Then a := â is an assignment
of real values to non-negative variables ai for i ∈ {1, . . . ,m} minimizing the expression
1− 1

1+
∑m
i=1 ai

if and only if a := â is an assignment of real values to non-negative variables

ai for i ∈ {1, . . . ,m} minimizing the expression
∑m

i=1 ai.

Proof. Let x ≥ 0. Minimizing 1 − 1
x

is equivalent to maximizing 1
x
. Maximizing 1

x
is

equivalent to minimizing x. Setting x = 1 +
∑m

i=1 ai, the result follows.

After calculating the weakest lower bound L̂B we conclude ρ[T2,Q] ≤ 1

L̂B
.

Step 3 and step 4 are best illustrated by way of example, which is provided in the next
section.
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2.2 Previously Established Upper Bound on ρ[T2,Q]

We present a proof that ρ[T2,Q] ≤ 3
2

following [11] and the proof strategy outlined above.
We lower bound the optimal value of (P (a, b, c, d, g, h)) for all a, b, c, d > 0 with ad ≤ bc
and (g, h)T ∈ intQ(a, b, c, d). Since we vary a, b, c, and d restricted only by a, b, c, d > 0
and ad ≤ bc, the below remark shows that we can consider only the parameterizations
where (g, h)T ∈ (0, 1)2 or h ≤ 0.

Remark 2.2.1. Let Q1 := Q(a, b, c, d) for a, b, c, d > 0 with ad ≤ bc be a normalized
quadrilateral. Let f = (g, h)T ∈ intQ1 \ (0, 1)2. Then there exist â, b̂, ĉ, and d̂ with âd̂ ≤ b̂ĉ
and affine unimodular transformation φ : R2 → R2 such that:

1. φ(Q1) = Q(â, b̂, ĉ, d̂), and
2. φ(f) = (ĝ, ĥ)T where ĥ ≤ 0.

Proof. If h ≤ 0, then no transformation is required. If h ≥ 0, then either (1) g ≥ 1, (2)
h ≥ 1, or (3) g ≤ 0 because (g, h)T 6∈ (0, 1)2. In all three cases, the affine unimodular
transformation required is a clockwise rotation (by π

2
, π or 3π

2
, respectively).

Case 1: g ≤ 1: Choose (â, b̂, ĉ, d̂) :=
(

1
b
, 1
d
, 1
a
, 1
c

)
. Note that âd̂ = 1

bc
≤ 1

da
= b̂ĉ where the

inequality holds because ad ≤ bc. Consider the affine unimodular transformation φπ
2

given
by

φπ
2

([
x
y

])
:=

[
0 1
−1 0

]([
x
y

]
−
[

1
2
1
2

])
+

[
1
2
1
2

]
.

Then φπ
2
(Q(a, b, c, d)) = Q(â, b̂, ĉ, d̂) and φπ

2

([
g
h

])
=

[
h

1− g

]
and so ĥ = 1− g ≤ 0.

Case 2: h ≤ 1: Choose (â, b̂, ĉ, d̂) := (d, c, b, a). Note that âd̂ = da ≤ cb = b̂ĉ where the
inequality holds because ad ≤ bc. Consider the affine unimodular transformation φπ given
by

φπ

([
x
y

])
:=

[
−1 0
0 −1

]([
x
y

]
−
[

1
2
1
2

])
+

[
1
2
1
2

]
.

Then φπ(Q(a, b, c, d)) = Q(â, b̂, ĉ, d̂) and φπ

([
g
h

])
=

[
1− g
1− h

]
and so ĥ = 1− h ≤ 0.

Case 3: g ≤ 0: Choose (â, b̂, ĉ, d̂) := (1
c
, 1
a
, 1
d
, 1
b
). Note that âd̂ = 1

cb
≤ 1

ad
= b̂ĉ where the

inequality holds because ad ≤ bc. Consider the affine unimodular transformation φ 3π
2

given
by

φ 3π
2

([
x
y

])
:=

[
0 −1
1 0

]([
x
y

]
−
[

1
2
1
2

])
+

[
1
2
1
2

]
.
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Then φ 3π
2

(Q(a, b, c, d)) = Q(â, b̂, ĉ, d̂) and φ 3π
2

([
g
h

])
=

[
1− h
g

]
and so ĥ = g ≤ 0.

First we consider the case where (g, h)T ∈ (0, 1)2 and find a parameterized lower bound
when using the intersection cuts generated by the four fixed triangles F1, F2, F3, and F4.
For i ∈ {1, 2, 3, 4}, fixed triangle Fi is the type 2 triangle containing [0, 1]2 with vertex
vi whose opposite edge contains at least two integer points and is defined by the facet of
[0, 1]2 separating vi+2 mod 4 from [0, 1]2. See Figure 2.2.
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v3

v4

f

v1
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v4

f
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v4
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v2

v3

v4

f

Figure 2.2: Fixed triangles F1 (bottom left), F2 (top), F3 (bottom center), and F4 (bottom
right) for a = 1

5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.
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Lemma 2.2.2. For fixed a, b, c, d > 0 such that ad ≤ bc and (g, h)T ∈ (0, 1)2, let (P ′) be
the parameterized linear program obtained from (P (a, b, c, d, g, h)) by replacing constraint
(2.19) with the constraint s ≥ O and the intersection cuts for fixed triangles F1, F2, F3, and
F4. Then, the optimal value of (P ′) is equal to

LBQ
0 (a, b, c, d, g, h) := 1− 1

1 + t1 + t2 + t3 + t4

where t1 = (b+ d)(1− g) , t2 =
(a+ b)h

ab

t3 = (a+ c)g , and t4 =
(c+ d)(1− h)

cd
.

Proof. To calculate the constraints of optimization problem (P ′), we must calculate the
intersection cuts generated by F1, F2, F3, and F4. First, we calculate the cut coefficients
ψf ;F1(r

j) for j ∈ {1, 2, 3, 4}. By construction, v1, v2, and v4 are on the boundary of F1

and therefore ψf ;F1(r
1) = ψf ;F1(r

2) = ψf ;F1(r
4) = 1. To calculate ψf ;F1(r

3) we need to find
λ ≥ 0 such that f +λ(v3− f) is on the line x = 0. So, we need to solve g+λ( −1

a+c
− g) = 0

for λ. The solution is λ = (a+c)g
1+(a+c)g

and therefore ψf ;F1(r
3) = 1 + 1

(a+c)g
. The computations

for F2, F3, and F4 are analogous.

So optimization problem (P ′) is given by

min 1lT s

subject to
[
1l1lT + A

]
s ≥ 1l

s ≥ O

where

A :=



(
1

(b+d)(1−g)

)
0 0 0

0
(

ab
(a+b)h

)
0 0

0 0
(

1
(a+c)g

)
0

0 0 0
(

cd
(c+d)(1−h)

)

 .

We compute

A−1 =


(b+ d)(1− g) 0 0 0

0 (a+b)h
ab

0 0
0 0 (a+ c)g 0

0 0 0 (c+d)(1−h)
cd

 .
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Note that the entries of A−1 are non-negative because a, b, c, d > 0 and (g, h)T ∈ (0, 1)2.
Apply Lemma 2.1.3 to conclude the optimal value of (P ′) is

1− 1

1 + 1lTA−11l
= 1− 1

1 + t2 + t2 + t3 + t4

as required.

The analysis is similar for the case where h ≤ 0. However, the intersection cut for fixed
triangle F4 cannot be used because (g, h)T 6∈ intF4. We instead find the parameterized
lower bound when using the intersection cuts for F1, F2, and F3.

Lemma 2.2.3. For fixed a, b, c, d > 0 such that ad ≤ bc, and (g, h)T ∈ intQ(a, b, c, d) such
that h ≤ 0, let (P ′) be the parameterized linear program obtained from (P (a, b, c, d, g, h))
by replacing constraint (2.19) with the constraint s ≥ O and the intersection cuts for fixed
triangles F1, F2, and F3. Then, the optimal value of (P ′) is equal to

LBQ
1 (a, b, c, d, g, h) := 1− 1

1 + t1 + t3 + t4

where t1 = (b+ d)(1− g) , t3 = (a+ c)g , and t4 =
(c+ d)(1− h)

cd
.

Proof. The optimization problem (P ′) is given by

min 1lT s

subject to
[
1l1lT + A

]
s ≥ 1l

s ≥ O

where

A :=


(

1
(b+d)(1−g)

)
0 0 0

0 0
(

1
(a+c)g

)
0

0 0 0
(

cd
(c+d)(1−h)

)
 .

Note that A is a row sub-matrix of the constraint matrix for Lemma 2.2.2. We denote the
dual of this linear program by (D′). It is given by

max 1lTv

subject to
[
1l1lT + AT

]
v ≤ 1l

v ≥ O.
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Consider the (possibly infeasible) solution ŝ obtained by setting the intersection cut con-
straints tight and setting s2 = 0. We can compute

ŝ1

ŝ3

ŝ4

 =

1l1lT +


(

1
(b+d)(1−g)

)
0 0

0
(

1
(a+c)g

)
0

0 0
(

cd
(c+d)(1−h)

)


−1

1l.

That is, ŝ1

ŝ3

ŝ4

 =

(
1

1 + 1lTB−11l

)
B−11l

where

B =


(

1
(b+d)(1−g)

)
0 0

0
(

1
(a+c)g

)
0

0 0
(

cd
(c+d)(1−h)

)
 .

and thus

B−11l =

(b+ d)(1− g)
(a+ c)g
(c+d)(1−h)

cd

 =

t1t3
t4

 .
Note that ŝ ≥ O because g ∈ [0, 1], h ≤ 0 and a, b, c, d > 0; therefore it is feasible for (P ′).

It is straightforward to check that v̂ :=
[
ŝ1 ŝ3 ŝ4

]T
is feasible for (D′). The first, third

and fourth constraints hold at equality by construction. The second constraint requires
v̂1 + v̂2 + v̂3 ≤ 1; since v̂1 + v̂2 + v̂3 = 1lTB−11l

1+1lTB−11l
where 1lTB−11l ≥ 0, this constraint holds. So

(ŝ, v̂) are a pair of primal-dual feasible solutions satisfying complementary slackness and
therefore ŝ is optimal for (P ′) and v̂ is optimal for (D′). Therefore the optimal value of
(P ′) is

1lT ŝ = 1− 1

1 + t1 + t3 + t4

as required.
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Now, we can find the worst case lower bound on the optimal value of (S(T2,Q)) following
[11] closely.

Theorem 2.2.4 (Theorem 1.7 in [11]). The optimal value of (P (a, b, c, d, g, h)) is at least 2
3

for all a, b, c, d > 0 such that ad ≤ bc and (g, h)T ∈ intQ(a, b, c, d). Therefore ρ[T2,Q] ≤ 3
2
.

Proof. By Remark 2.2.1, it suffices to show that the optimal value of (P (a, b, c, d, g, h)) is
at least 2

3
for all a, b, c, d > 0 such that ad ≤ bc and (g, h)T ∈ intQ(a, b, c, d) where either:

(1) (g, h)T ∈ (0, 1)2, or (2) h ≤ 0.

Case 1: (g, h)T ∈ (0, 1)2

The optimal value of (P (a, b, c, d, g, h)) is lower-bounded by LBQ
0 := LBQ

0 (a, b, c, d, g, h) as
provided by Lemma 2.2.2. Now LBQ

0 = 1− 1
1+T (a,b,c,d,g,h)

where

T (a, b, c, d, g, h) := (b+ d)(1− g) +
(a+ b)h

ab
+ (a+ c)g +

(c+ d)(1− h)

cd

= b+
1

c
+ d+

1

d
+ (a− b+ c− d) g +

(
1

a
+

1

b
− 1

c
− 1

d

)
h.

Since T (a, b, c, d, g, h) ≥ 0, LBQ
0 is smallest whenever T is smallest by Lemma 2.1.4. Define

T ′ : R++ → R by

T ′(ε) := inf

{
T (a, b, c, d, g, h) : (g, h)T ∈ [0, 1]2, a, b, c, d ∈

[
ε,

1

ε

]}
.

For fixed ε > 0, T ′(ε) is the infimum of a continuous function over a compact set. It
therefore attains its minimum at some fixed values for a, b, c, d, g, and h. For fixed a, b, c,
and d, T (a, b, c, d, g, h) is affine in g and h and therefore attains its minimum for g = 0 or
g = 1 and also h = 0 or h = 1. Now

1. T (a, b, c, d, 0, 0) = b+ 1
c

+ d+ 1
d
≥ 2 because x+ 1

x
≥ 2 for all x > 0,

2. T (a, b, c, d, 1, 0) = a+ c+ 1
c

+ 1
d
≥ 2,

3. T (a, b, c, d, 0, 1) = 1
a

+ b+ 1
b

+ d ≥ 2, and
4. T (a, b, c, d, 1, 1) = a+ 1

a
+ 1

b
+ c ≥ 2.

Therefore T ′(ε) ≥ 2 for all ε > 0. It follows that T (a, b, c, d, g, h) ≥ 2 for all a, b, c, d > 0
such that ad ≤ bc and (g, h)T ∈ (0, 1)2. Therefore LBQ

0 ≥ 1− 1
1+2

= 2
3
.

Case 2: h ≤ 0
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The optimal value of (P (a, b, c, d, g, h)) is lower-bounded by LBQ
1 := LBQ

1 (a, b, c, d, g, h) as
provided by Lemma 2.2.3. Now LBQ

1 = 1− 1
1+R(a,b,c,d,g,h)

where

R(a, b, c, d, g, h) = (b+ d)(1− g) + (a+ c)g +
(c+ d)(1− h)

cd

= b+
1

c
+ d+

1

d
+ (a− b+ c− d)g −

(
1

c
+

1

d

)
h

Since R(a, b, c, d, g, h) ≥ 0, LBQ
1 is smallest whenever R is smallest by Lemma 2.1.4. Note

that

R(a, b, c, d, g, h) ≥ R(a, b, c, d, g, 0) = b+
1

c
+ d+

1

d
+ (a− b+ c− d)g

since h ≤ 0 and the coefficient of h is non-positive. Define R′ : R++ → R by

R′(ε) := inf

{
R(a, b, c, d, g, 0) : g ∈ [0, 1], a, b, c, d ∈

[
ε,

1

ε

]}
.

For fixed ε > 0, R′(ε) is the infimum of a continuous function over a compact set. It
therefore attains its minimum at some fixed values for a, b, c, d and g. For fixed a, b, c, and
d, R(a, b, c, d, g, h) is affine in g. Now

1. R(a, b, c, d, 0, 0) = b+ 1
c

+ d+ 1
d
≥ 2 because x+ 1

x
≥ 2 for all x > 0, and

2. R(a, b, c, d, 1, 0) = a+ c+ 1
c

+ 1
d
≥ 2.

Therefore R′(ε) ≥ 2 for all ε > 0. It follows that R(a, b, c, d, g, h) ≥ 2 for all a, b, c, d > 0
such that ad ≤ bc and (g, h)T ∈ intQ(a, b, c, d) ∩ {(x, y)T ∈ R2 : y ≤ 0}. Therefore
LBQ

1 ≥ 1− 1
1+2

= 2
3
.

Therefore the optimal value of (S(T2,Q)) is at least 2
3

and the bound on ρ[T2,Q] follows
immediately from Theorem 2.1.1.

The preceding bound is tight insofar as the linear program (P’) was solved to optimality in
Lemma 2.2.2 and Lemma 2.2.3. It is also tight insofar as it gives a family of quadrilateral
and fractional point pairs whose corresponding lower bound in Lemma 2.2.2 tends to 2

3
.

This family of quadrilateral and fractional point pairs is given by{(
Q

(
1,

√
ε

1− ε
,

√
1− ε
ε

, 1

)
, (ε, ε)T

)
: ε ∈ (0, 1)

}
.

Evaluating T as defined in the previous proof, we have

T

(
1,

√
ε

1− ε
,

√
1− ε
ε

, 1, ε, ε

)
= 2 + 4

√
ε(1− ε)
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which tends to 2 for ε→ 0.
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f v1

v2

v3
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f

Figure 2.3: Examples of quadrilateral and fixed point pairs from the “weakest lower bound”
family for ε = 1

20
(left) and ε = 1

50
(right).

Although the previous proof used affineness in g and h to analyze T (a, b, c, d, g, h) for fixed
a, b, c, and d, note that T (a, b, c, d, g, h) is also a separable function of a, b, c, and d for fixed
g and h. It can be expressed as

T (a, b, c, d, g, h) =

(
ga+

h

a

)
+

(
(1− g)b+

h

b

)
+

(
gc+

1− h
c

)
+

(
(1− g)d+

1− h
d

)
.

Remark 2.2.5 (Remark 4.4 in [11]). For every pair of constants c1, c2 > 0, the function

x→ c1x+ c2
1
x

attains it minimum value 2
√
c1c2 uniquely at x =

√
c2
c1

.

So given fixed (g, h)T ∈ (0, 1)2, the quadrilateral with the corresponding weakest lower

bound is Q(a, b, c, d) for a =
√

h
g
, b =

√
h

1−g , c =
√

1−h
g

, and d =
√

1−h
1−g . The corresponding

lower bound is 1− 1
1+V

where

V = 2
(√

gh+
√

(1− g)h+
√
g(1− h) +

√
(1− g)(1− h)

)
= 2

(√
g +

√
1− g

)(√
h+
√

1− h
)
.

This expression is largest for (g, h)T =
(

1
2
, 1

2

)
where the bound is equal to 1− 1

1+4
= 4

5
and

corresponds to the square a = b = c = d = 1. It is smallest for (g, h)T tending towards one
of the vertices [0, 1]2. The family of “weakest lower bound” quadrilateral and fractional
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point pairs was constructed by taking (g, h)T → (ε, ε)T and ε → 0. Tending the values
of g and h to 0 at different rates can give rise to different, though qualitatively similar,
families of quadrilaterals with weak lower bounds. In these families, the value of b will
tend to 0, the value of c will grow without bound, and the value of d will be around 1. In
the limit, these families of quadrilaterals all tend to a triangle with vertex (0, 0)T where
the fractional point is equal to (or as close as possible to) the vertex.

2.2.1 Specialization for Parallelograms

The families of quadrilateral and fractional point pairs with “weakest lower bound” con-
structed in the previous section do not include any parallelograms. In fact, specializing
Lemma 2.2.2 to parallelograms, the resulting optimal value of (P ′) does not depend on g
and h and can be lower-bounded more tightly. Before stating the specialized results, we
note that {Q(α, β, β, α) : β ≥ α > 0} is a set of representatives (with respect to unimodular
transformation) for the family of normalized parallelograms.

Lemma 2.2.6. For fixed α, β > 0 such that α ≤ β and (g, h)T ∈ (0, 1)2, let (P ′) be
the parameterized linear program obtained from (P (α, β, β, α, g, h)) by replacing constraint
(2.19) with the constraint s ≥ O and the intersection cuts for fixed triangles F1, F2, F3, and
F4. Then, the optimal value of (P ′) is equal to

LBP
0 (α, β) := 1− 1

1 + α + β + 1
α

+ 1
β

.

Proof. Substituting into the bound from Lemma 2.2.2 we get

LBQ
0 (α, β, β, α, g, h) = 1− 1

1 + (α + β)(1− g) + (α+β)h
αβ

+ (α + β)g + (α+β)(1−h)
αβ

= 1− 1

1 + (α + β) + (α+β)
αβ

= 1− 1

1 + α + β + 1
α

+ 1
β

as required.
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Figure 2.4: Contour and surface plots of (α, β) → 1 − 1
1+α+β+ 1

α
+ 1
β

for α, β ∈ [0, 8]. All

surface plots, contour plots, 2D plots, and images of polyhedra in R3 in this thesis were
produced using Matplotlib [53].

Lemma 2.2.7. For fixed α, β > 0 such that α ≤ β, and (g, h)T ∈ intQ(α, β, β, α) such
that h ≤ 0, let (P ′) be the parameterized linear program obtained from (P (α, β, β, α, g, h))
by replacing constraint (2.19) with the constraint s ≥ O and the intersection cuts for fixed
triangles F1, F2, and F3. Then, the optimal value of (P ′) is equal to

LBP
1 (α, β, h) := 1− 1

1 + α + β +
(

1
α

+ 1
β

)
(1− h)

.
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Proof. Substituting into the bound from Lemma 2.2.3 we get

LBQ
1 (α, β, β, α, g, h) = 1− 1

1 + (α + β)(1− g) + (α + β)g + (α+β)(1−h)
αβ

= 1− 1

1 + (α + β) + (α+β)(1−h)
αβ

= 1− 1

1 + α + β +
(

1
α

+ 1
β

)
(1− h)

as required.

Theorem 2.2.8 (Specialization of Theorem 2.2.4.). The optimal value of (P (α, β, β, α, g, h))
is at least 4

5
for all α, β > 0 such that α ≤ β and (g, h)T ∈ intQ(α, β, β, α). Therefore

ρ[T2,Q2] ≤ 5
4
.

Proof. By Remark 2.2.1, it suffices to show that the optimal value of (P (α, β, β, α, g, h))
is at least 4

5
for all α, β > 0 such that α ≤ β and (g, h)T ∈ intQ(α, β, β, α) where either

(1) (g, h)T ∈ (0, 1)2 or (2) h ≤ 0.

Case 1: (g, h)T ∈ (0, 1)2: The optimal value of (P (α, β, β, α, g, h)) is lower-bounded by

LBP
0 (α, β) as given in Lemma 2.2.6. By Lemma 2.1.4, LB0(α, β) is smallest whenever

α + β + 1
α

+ 1
β

is smallest. Since this is a separable expression in α and β and x + 1
x

is

smallest for x > 0 when x = 1 the weakest lower bound is given by LBP
0 (1, 1) = 1− 1

5
= 4

5
.

Case 2: h ≤ 0: The optimal value of (P (α, β, β, α, g, h)) is lower-bounded by LBP
1 (α, β, h)

as given in Lemma 2.2.7. This expression is smallest for h ≤ 0 for h = 0 where it equals
LBP

0 (α, β). The bound follows as in Case 1.

The bound on ρ[T2,Q2] follows immediately from Theorem 2.1.1.

Corollary 2.2.9. The optimal value of (P (α, β, β, α, g, h)) is at least 8
9

for all α, β > 0
with α ≤ β such that α + β + 1

α
+ 1

β
≥ 8 and (g, h)T ∈ intQ(α, β, β, α).

Proof. Following the proof of Theorem 2.2.8 we can check when LB0(α, β) ≥ 8
9
. This holds

whenever α + β + 1
α

+ 1
β
≥ 8.

So, if we use fixed triangles to approximate parallelograms, then the “weakest lower bound”
quadrilateral and fractional point pairs are the quadrilateral Q(1, 1, 1, 1) and any fractional

point. In particular, the fractional points
(

1
2
, 1

2

)T
and (ε, ε)T for ε→ 0 provide equal bounds
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of 4
5
. This is in contrast to the general quadrilateral case where if we fix (g, h)T and vary

a, b, c, and d to find the weakest bound, choosing (g, h)T =
(

1
2
, 1

2

)T
gives the largest bound

of 4
5

and choosing (g, h)T → (ε, ε)T for ε→ 0 gives the smallest bound of 2
3
.

Keep in mind that these families of “weak lower bound” examples give instances where
replacing the type 2 triangle closure constraint with the intersection cuts for fixed triangles
is worst case. The next section addresses how to show a family of instances is provably
“hard to approximate” within a given factor for any choices of triangle cuts.

2.3 Previously Established Lower Bound on ρ[T ,Q]

We would like to find a feasible solution to (S(T ,Q)) of objective function value 8
9
. Like

(S(T2,Q)), this optimization problem can again be parameterized by a, b, c, d, g, h - the tri-
angle closure replaces the type 2 triangle closure in constraint (2.14). Let (P T (a, b, c, d, g, h))
be the optimization problem

inf s1 + s2 + s3 + s4 (2.26)

s. t. s ∈ T
((

g
h

)
;

(
1 + 1

b+d
− g

b
b+d
− h

)
,

(
b

a+b
− g

−ab
a+b
− h

)
,

( −1
a+c
− g

a
a+c
− h

)
,

(
d
c+d
− g

1 + cd
c+d
− h

))
. (2.27)

We look for a feasible solution ŝ to (P T (a, b, c, d, g, h)) for some choice of a, b, c, d > 0 with
ad ≤ bc and (g, h)T ∈ intQ(a, b, c, d). The corresponding objective function value 1lT ŝ gives
an upper bound on the optimal value of (S(T ,Q)). The specific feasible solution described
in Theorem 1.3.15 comes from the family of feasible solutions in the following lemma.

Lemma 2.3.1. For every β > α > 0 and (g, h)T ∈
(

α
α+β

, β
α+β

)2

the point

ŝ(α, β, g, h) :=

(
αβ

α(β − α) + αβ(1 + β) + β(1 + α)

)
β(1− g) + h

h
α

+ g
βg + (1− h)

(1−h)
α

+ (1− g)


is feasible for (P T (α, β, β, α, g, h)). Thus

1 +
α(β − α)

αβ(1 + β) + β(1 + α)

is a lower bound on ρ[T ,Q] and ρ[T ,Q2] for all β > α > 0.
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Proof. The proof follows [11], where the authors analyze the (α, β, g, h) := (1
2
, 2, 1

2
, 1

2
) case.

Fix β > α > 0. Let f = (g, h)T and let Q := Q(α, β, β, α) so that

r1 =

(
1 +

1

α + β
− g , β

α + β
− h
)T

, r2 =

(
β

α + β
− g , −αβ

α + β
− h
)T

r3 =

(
−1

α + β
− g , α

α + β
− h
)T

, and r4 =

(
α

α + β
− g , 1 +

αβ

α + β
− h
)T

.

Given the bounds on α, β, g, and h, clearly ŝ(α, β, g, h) ≥ O. Now, to show that ŝ(α, β, g, h)
is feasible for (P (α, β, β, α, g, h)), we need to show that ŝ(α, β, g, h) satisfies every inter-
section cut generated by a maximal lattice-free triangle. Let T be an arbitrary maximal
lattice-free triangle containing f in its interior. Let ψi ≥ 0 denote the coefficient of si in
the intersection cut generated by T . To show ŝ(α, β, g, h) := (ŝ1, ŝ2, ŝ3, ŝ4)T satisfies this
intersection cut, we will show that ψ1ŝ1 + ψ2ŝ2 + ψ3ŝ3 + ψ4ŝ4 ≥ 1.

Now, because T is lattice-free and has three edges, one of the lines defining the edges of T
must separate f from two of: (0, 0)T , (0, 1)T , (1, 0)T , and (1, 1)T . By rotational symmetry
(analogous to Remark 2.2.1) we may assume this line, which we will denote L, separates
(1, 0)T and (1, 1)T from f . Then, ψ1 is given by 1

λ1
where

g + λ1

(
1 +

1

α + β
− g
)
≤ 1 =⇒ λ1 ≤

(α + β)(1− g)

(α + β)(1− g) + 1

Thus, ψ1 ≥ 1 + 1
(α+β)(1−g) .

Let r :=
(

α
1+α

)
r1 +

(
1

1+α

)
r2. Then(
α

1 + α

)
ψ1 +

(
1

1 + α

)
ψ2 ≥ ψf ;T (r) ≥ 1 (2.28)

where the first inequality holds because ψf ;T is convex (Remark 1.2.3) and the second
inequality holds because f + r = (1, 0)T and there are no integral points in the interior of
T .

Let r′ :=
(

α
1+α

)
r3 +

(
1

1+α

)
r4. Then(
α

1 + α

)
ψ3 +

(
1

1 + α

)
ψ4 ≥ ψf ;T (r′) ≥ 1 (2.29)

where the first inequality holds because ψf ;T is convex and the second inequality holds
because f + r′ = (0, 1)T and there are no integral points in the interior of T .
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The rest of the proof is divided into two cases, depending on the coefficient ψ3.

Case 1: ψ3 ≥ 1 + α
β(α+β)(1−g)

We check(
α(β − α) + αβ(1 + β) + β(1 + α)

αβ

)
ψT ŝ

= [β(1− g) + h]ψ1 +

[
h

α
+ g

]
ψ2 + [βg + (1− h)]ψ3 +

[
(1− h)

α
+ (1− g)

]
ψ4

≥ [β(1− g) + h]ψ1 +

(
1 + α

α

)
h− hψ1 + (1 + α)g − αgψ1 + . . .

. . .+ [βg + (1− h)]ψ3 +

[
(1− h)

α
+ (1− g)

]
ψ4 by (2.28)

= [β − (α+ β)g]ψ1 +

(
1 + α

α

)
h+ (1 + α)g + . . .

. . .+ [βg + (1− h)]ψ3 +

[
(1− h)

α
+ (1− g)

]
ψ4

≥ [β − (α+ β)g]ψ1 +

(
1 + α

α

)
h+ (1 + α)g + [βg + (1− h)]ψ3 . . .

. . .+

(
1 + α

α

)
(1− h)− (1− h)ψ3 + (1 + α)(1− g)− α(1− g)ψ3 by (2.29)

= [β − (α+ β)g]ψ1 +

(
1 + α

α

)
h+ (1 + α)g + . . .

. . .+ [(α+ β)g − α]ψ3 +

(
1 + α

α

)
(1− h) + (1 + α)(1− g)

= [β − (α+ β)g]ψ1 + [(α+ β)g − α]ψ3 +

(
1 + α

α

)
+ (1 + α)

= [(α+ β)(1− g)− α]ψ1 + [β − (α+ β)(1− g)]ψ3 +

(
1 + α

α

)
+ (1 + α)

≥ (α+ β)(1− g)− α+ 1− α

(1− g)(α+ β)
+ . . .

. . .+ β − (α+ β)(1− g) +
α

(1− g)(α+ β)
− α

β
+

(
1 + α

α

)
+ (1 + α) by ψ1 & ψ3 bnds

= 1 + β − α

β
+

(
1 + α

α

)
+ 1

=

(
α(β − α) + αβ(1 + β) + β(1 + α)

αβ

)

and therefore ψ1ŝ1 + ψ2ŝ2 + ψ3ŝ3 + ψ4ŝ4 ≥ 1 as required.
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Case 2: ψ3 ≤ 1 + α
β(α+β)(1−g)

It is straightforward to check that the x-coordinate of f + κ3r
3 is exactly zero for κ3 =

(α+β)g
(α+β)g+1

. Since ψ3 ≤ 1
κ3

, it follows that the intersection w = (w1, w2)T of T with {f +λr3 :

λ ≥ 0} is such that w1 < 0. Now, since T is convex, two distinct sides of T (not equal to
L) separate the segment wf from the points (0, 0)T and (0, 1)T . Let line L1 define the side
separating wf from (0, 0)T and line L2 define the side separating wf from (0, 1)T . Because
T is maximally lattice-free, L1 must contain (0, 0)T and L2 must contain (0, 1)T .

We may assume w is the vertex of T at the intersection of L1 and L2. Otherwise, whichever
of L1 or L2 intersects the ray {f + λr3 : λ ≥ 0} with a smaller x-coordinate can be tilted
on its integral point towards the other to obtain an inequality at least as strong. So,
w = f + τ3r

3 for some τ3 ≥ 1 − α
β(α+β)(1−g)+α gives the vertex of T at the intersection of

L1 and L2. In particular, L1 is the line through w and (0, 0)T and L2 is the line through
w and (0, 1)T .

fw

L2

L1 L

fw

L2

L1 L

Figure 2.5: In the left image, w is not at the intersection of L1 and L2. Line L2 intersects
the ray from f in direction r3 at a lesser x-coordinate. Tilting L2 on (0, 1)T gives a new
triangle whose intersection cut has the same coefficient on every ray except r4 where the
coefficient is smaller.

Note that the cut coefficient ψ4 is always determined by the intersection of {f+λr4 : λ ≥ 0}
with L2 because g > α

α+β
= v4

x. This intersection has x-coordinate at most one. Checking
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which facet of T determines the cut coefficient ψ2 is a bit more work. The intersection

point of {f + λr2 : λ ≥ 0} with {(x, y)T ∈ R2 : x = 1} is
(

1 , −α(h+β(1−g))
β−(α+β)g

)T
. For

τ3 = 1− α
β(α+β)(1−g)+α , the intersection point of line L1 with {(x, y)T ∈ R2 : x = 1} is also(

1 , −α(h+β(1−g))
β−(α+β)g

)T
. Since increasing τ3 will increase the y-coordinate of the intersection

point of L1 with {(x, y) ∈ R2 : x = 1}, the cut coefficient ψ2 is always determined by the
intersection of {f + λr2 : λ ≥ 0} with L1. This intersection has x-coordinate at most one.

The above two observations show we may assume line L is given by {(x, y)T ∈ R2 : x = 1}
because L only determines the cut coefficient ψ1, and such choice will give the strongest
coefficient. So, ψ1 = 1 + 1

(1−g)(α+β)
exactly.

f

L2

L1 L

f

L2

L1 L

Figure 2.6: In the left image, the facet separating (1, 0)T and (1, 1)T from f does not
determine the intersection cut coefficient for r2. Replacing this facet with {(x, y)T : x = 1}
gives a new triangle whose intersection cut has the same coefficient on every ray except r1

where the coefficient is smaller.
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Let r′′ :=
(

1
1+β

)
r2 +

(
β

1+β

)
r3. Then(
1

1 + β

)
ψ2 +

(
β

1 + β

)
ψ3 ≥ ψf ;T (r′′) = 1 (2.30)

where the inequality holds because ψf ;T is convex and the equality holds because f + r′′ =
(0, 0)T and (0, 0)T is on the boundary of T .

Then we check(
α(β − α) + αβ(1 + β) + β(1 + α)

αβ

)
ψT ŝ

= [β(1− g) + h]ψ1 +

[
h

α
+ g

]
ψ2 + [βg + (1− h)]ψ3 +

[
(1− h)

α
+ (1− g)

]
ψ4

≥ [β(1− g) + h]ψ1 +

[
h

α
+ g

]
(1 + β − βψ3) + . . .

. . .+ [βg + (1− h)]ψ3 +

[
(1− h)

α
+ (1− g)

]
(1 + α− αψ3) by (2.29) and (2.30)

= [β(1− g) + h]ψ1 +

[
h

α
+ g

]
(1 + β)− βh

α
ψ3 + . . .

. . .+

[
(1− h)

α
+ (1− g)

]
(1 + α)− (1− g)αψ3

= [β(1− g) + h]ψ1 +

[
βh

α
+ (1− g)α

]
(1− ψ3) +

(
1 + α

α

)
+ gβ + (1− h)

= [β(1− g) + h]

(
1 +

1

(α+ β)(1− g)

)
+

[
βh

α
+ (1− g)α

]
(1− ψ3) + . . .

. . .+

(
1 + α

α

)
+ gβ + (1− h) by value of ψ1

=

(
β(1− g) + h

(α+ β)(1− g)

)
+

[
βh

α
+ (1− g)α

]
(1− ψ3) +

(
1 + α

α

)
+ 1 + β

≥
(
β(1− g) + h

(α+ β)(1− g)

)
−
[
βh

α
+ (1− g)α

](
α

β(α+ β)(1− g)

)
+

(
1 + α

α

)
+ 1 + β by ψ3 bnd

=

(
(β2 − α2)(1− g)

β(α+ β)(1− g)

)
+

(
1 + α

α

)
+ 1 + β

= 1− α

β
+

(
1 + α

α

)
+ 1 + β

=

(
α(β − α) + αβ(1 + β) + β(1 + α)

αβ

)

and therefore ψ1ŝ1 + ψ2ŝ2 + ψ3ŝ3 + ψ4ŝ4 ≥ 1 as required.
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The lower bound on ρ[T ,Q] is strongest for (α, β, g, h) = (1
2
, 2, 1

2
, 1

2
) - the instance in

Theorem 1.3.15. The behaviour of the bound as a function of values α and β will be
investigated more closely in Chapter 3.

2.4 Ray-Sliding Triangles

To improve the bounds calculated in step 3 of the proof strategy, our plan is to replace
constraint (2.19) with the intersection cuts for different type 2 triangles. We will select
these triangles from the family of ray-sliding triangles. Here we define the family of ray-
sliding triangles for each ray i ∈ {1, 2, 3, 4}. For each ray i, this provides an infinite family
of type 2 triangles. For each ray i, we also identify a finite subfamily where each member
has a “geometric” interpretation.

A ray-sliding triangle is defined with respect to a given normalized quadrilateral Q(a, b, c, d)
and a point (g, h)T in the interior of Q(a, b, c, d). For such fixed quadrilateral and interior
point, define the following ray directions and corresponding rays.

1. Ray direction 1 is given by r1 :=

(
1 + 1

b+d
− g

b
b+d
− h

)
. Ray 1 is {(g, h)T + λr1 : λ ≥ 0}.

2. Ray direction 2 is given by r2 :=

(
b

a+b
− g

−ab
a+b
− h

)
. Ray 2 is {(g, h)T + λr2 : λ ≥ 0}.

3. Ray direction 3 is given by r3 :=

( −1
a+c
− g

a
a+c
− h

)
. Ray 3 is {(g, h)T + λr3 : λ ≥ 0}.

4. Ray direction 4 is given by r4 :=

(
d
c+d
− g

1 + cd
c+d
− h

)
. Ray 4 is {(g, h)T + λr4 : λ ≥ 0}.

The following definitions are made in the context of fixed a, b, c, d, g, and h and therefore
also fixed r1, r2, r3, and r4. To avoid cumbersome notation, we allow these parameters to
be implicit from context.

2.4.1 Motivation

Recall that the fixed triangle for ray 1 F1 is constructed so that it generates an intersection
cut with the same cut coefficients for r1, r2, and r4 as the intersection cut generated by
Q(a, b, c, d). The edges of fixed triangle F1 are defined by:

1. {(x, y)T ∈ R2 : x = 0};
2. the line joining (g, h)T + r1 and (1, 1)T ; and
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3. the line joining (g, h)T + r1 and (1, 0)T .

Hence one vertex of F1 is v1 = (g, h)T + r1 and the opposite facet is defined by {(x, y)T ∈
R2 : x ≥ 0}.

v1

v2

v3

v4

f
v1

v2

v3

v4

f

v1

v2

v3

v4

f

Figure 2.7: (left) Fixed Triangle F1 and τ -ray-sliding triangle for Ray 1 RS1(τ) for τ > 1
(center) and τ < 1 (right) for parameters a = 1

5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.

Suppose we are willing to accept the intersection cut coefficient for r3 as determined by
the edge {(x, y)T ∈ R2 : x = 0}, but would like to obtain stronger (i.e. smaller) coefficients
for some of r1, r2 and r4. Thinking specifically of improving the coefficient for r1, we could
replace the vertex v1 with the vertex (g, h)T + τr1 for some τ > 1, but still enforce the
opposite facet be defined by {x, y)T ∈ R2 : x ≥ 0}. One triangle meeting this requirement
is the type 2 triangle RS1(τ) with edges defined by:

1. {(x, y)T ∈ R2 : x = 0};
2. the line joining (g, h)T + τr1 and (1, 1)T ; and
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3. the line joining (g, h)T + τr1 and (1, 0)T .

Choosing τ > 1 will decrease the cut coefficient for r1, but necessarily increase the coef-
ficients for r2 and r4. Conversely, choosing τ < 1 will increase the cut coefficient for r1

and decrease the coefficient of r2 and r4. For some breakpoint τ bp < 1 (depending on the
direction of r2 or r4), the corresponding coefficient will no longer decrease since it will be
determined by the edge {(x, y)T ∈ R2 : x = 0} for all τ ≤ τ bp. One such breakpoint is
illustrated in the right image in Figure 2.7. We call RS1(τ) a “ray-sliding triangle” because
we think of sliding the vertex of our triangle along ray 1. Hence we call ray 1 the sliding-
ray, ray 3 the base-ray, and rays 2 and 4 the off-rays. We define the family of ray-sliding
triangles for ray i for all i ∈ {1, 2, 3, 4} formally in the next section.

Although this construction may seem a bit unnatural, we’ve actually seen this family of
triangles before in Case 2 of the proof of Lemma 2.3.1. For the given quadrilateral and
fractional point, the proof shows that the strongest triangle cuts are generated by triangles
of the above construction.

2.4.2 Formal Definition

For τ ≥ 0 and i ∈ {1, 2, 3, 4} the τ -ray-sliding triangle for ray i, denoted RSi(τ), is the
maximal lattice-free triangle such that

1. [0, 1]2 ⊆ RSi(τ) and
2. (g, h)T + τri is a vertex of the triangle,

provided such a triangle exists.

Remark 2.4.1. RS1(τ) is well-defined for appropriate bounds on τ .

Proof. We denote (g, h)T by f .

There exists some τmin1 ≥ 0 such that the x-coordinate of f + τmin1 r1 is 1. For all τ ≤ τmin1 ,
no triangle that contains [0, 1]2 and has vertex f + τr1 exists because f + τr1 is inside
[0, 1]2 but not a vertex thereof.

There exists some τmax1 > 1 such that the y-coordinate of f + τmax1 r1 is either 0 or 1. We
consider the case where τmax1 is such that the y-coordinate of τmax1 is 1; the other case is
symmetric. For all τ > τmax1 , no triangle that contains [0, 1]2 and has vertex f + τr1 exists
because the convex hull of {f + τr1, (1, 0)T , (0, 1)T} contains (1, 1)T in its interior.

Now consider τ ∈ (τmin1 , τmax1 ]. Let L(1,0)(τ) be the line through f + τr1 and (1, 0)T . Let
L(1,1)(τ) be the line through f + τr1 and (1, 1)T . Let T be the triangle with edges defined
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by L(1,0)(τ), L(1,1)(τ) and {(x, y) ∈ R2 : x = 0}. Then T is a maximal lattice-free triangle
with vertex f + τr1 such that [0, 1]2 ⊆ T .

In fact, T is the only such maximal lattice-free triangle. Consider any other maximal
lattice-free triangle T ′ with vertex f + τr1. Note that the y-coordinate of f + τr1 is
between zero and one. Hence the edges of T ′ incident to f + τr1 cannot contain (0, 0)T

or (0, 1)T (since either such edge would then separate (1, 0)T from (1, 1)T ). So (0, 0)T

and (0, 1)T must be on the edge of T ′ opposite f + τr1 and this edge must be defined by
{(x, y)T ∈ R2 : x = 0}. Then, the two edges of T ′ incident with f + τr1 must contain
(1, 0)T and (1, 1)T respectively. It follows that T ′ = T . Note that that triangle T matches
RS1(τ) as described in Section 2.4.1.

It follows by symmetry that for all i ∈ {1, 2, 3, 4} triangle RSi(τ) is well-defined for appro-
priate bounds on τ . Moreover, RSi(τ) is a type 2 triangle.

v1

v2

v3

v4

f

Figure 2.8: An alternative definition would include this τ -Ray-Sliding triangle for Ray 1
RS1(τ) for τ = 3

2
and parameters a = 1, b = 2, c = 1, d = 1

2
, g = 2

3
, and h = 1

4
.

Note that the requirement [0, 1]2 ⊆ RS1(τ) could be considered unnecessarily restrictive.
An alternative definition might require: f + τr1 be a vertex of RS1(τ), {(x, y)T ∈ R2 : x =
0} define the opposite facet of RS1(τ), and RS1(τ) be maximally lattice-free. Although
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enlarging the family in this way may provide additional candidate cuts, we have chosen to
require [0, 1]2 ⊆ RS1(τ) for a few reasons. Firstly, it ensures τmax1 is well-defined and it is
easy to verify RS1(τ) is lattice-free within this bound. Secondly, it ensures the coefficient
of r3 is always determined by its intersection with {(x, y)T ∈ R2 : x = 0}. Lastly, it ensures
the coefficients of r2 and r4 are no weaker than those determined by {(x, y)T ∈ R2 : y = 0}
and {(x, y)T ∈ R2 : y = 1}, respectively.

2.4.3 Standard Breakpoints

For ray-sliding triangle RS1(τ) we can identify values for τ that correspond to natural
geometric breakpoints. As in the proof of Remark 2.4.1, denote by τmin1 < 1 the smallest
allowable choice for τ and denote by τmax1 > 1 the largest allowable choice for τ .

v1

v2

v3

v4

f

v1

v2

v3

v4

f

Figure 2.9: τ -ray-sliding triangle for Ray 1 for τ = τmin1 (left) and τ = τmax1 (right) for
parameters a = 1

5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.

The cut coefficient improvement realized on r2 and r4 for τ < 1 is limited by the underlying
geometry. First consider r2.

1. If the x-coordinate of r2 is non-negative, then for all τ ∈ [τmin, 1] the intersection
cut coefficient for r2 is determined by the intersection of ray 2 with the line joining
f + τr1 and (1, 0)T . Note that if the x-coordinate of r2 is 0 and τ = τmin, then ray 2
is in the recession cone of the corresponding split and the intersection cut coefficient
for r2 is 0.

2. If the x-coordinate of r2 is negative, then there exists τ bp ∈ [τmin, 1] such that
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• for τ ∈ [τ bp, 1], the intersection cut coefficient for r2 is determined by the inter-
section of ray 2 with the line joining f + τr1 and (1, 0)T . Decreasing τ in this
range will improve the coefficient for r2; and

• for τ ∈ [τmin, τ bp], the intersection cut coefficient for r2 is determined by the
intersection of ray 2 with the line {(x, y)T ∈ R2 : x = 0}. This coefficient
does not depend on τ and so decreasing τ in this range does not improve the
coefficient for r2.

The analysis for r4 is analogous.

For example, in Figure 2.7, the x-coordinate of r2 is positive and so the intersection cut
coefficient is always determined by the intersection of ray 2 with the line joining f + τr1

and (1, 0)T . Thus for τ < 1, the intersection cut coefficient for r2 improves. However,
the x-coordinate of r4 is negative and so the intersection cut coefficient can be determined
by the intersection of ray 4 with either: the line joining f + τr1 and (1, 1)T , or, the facet
{(x, y)T ∈ R2 : x = 0}. The image on the right illustrates the τ bp for which the facet
of RS1(τ) determining the coefficient of r4 changes. For any τ < τ bp the intersection
cut coefficient for r4 does not improve. We consider τ bp to define a natural geometric
breakpoint for τ since it indicates a change in the cut coefficient formula for an off-ray.

2.4.4 Summary of Families of Ray-Sliding Triangles

There are four families of ray-sliding triangles: {RSi(τ) : τ ∈ [τmini , τmaxi ]} for i ∈
{1, 2, 3, 4}. For each family RSi(τ), there are always three breakpoints; they are

1. τmini : the smallest allowable choice for τ (defining a split cut in the limit);
2. τ fixedi = 1: corresponding to the fixed triangle for ray i; and
3. τmaxi : the largest allowable choice for τ (corresponding to where [0, 1]2 would no

longer be contained in the triangle).

There may be two additional ray breakpoints : τ bp2i , τ bp1i ∈ [τmini , 1]. These breakpoints
correspond to changes in the cut coefficient formula for off-rays where the facet of the
triangle determining the coefficient changes. These (at least three and at most five) break-
points will be called the standard breakpoints for a family of τ -ray-sliding triangles. Note
that if both off-rays have a corresponding breakpoint, the underlying geometry determines
which breakpoint is smaller. We adopt the convention that if only one additional break-
point applies then it is denoted τ bp1i and that if two additional breakpoints apply, they
are denoted τ bp1i ≥ τ bp2i . The subfamily {RSi(τ) : τ ∈ {τmini , τ bp2i , τ bp1i , τ fixedi , τmaxi }} com-
prised of the ray-sliding triangles at standard breakpoints is a natural finite subfamily of
{RSi(τ) : τ ∈ [τmin1 , τmax1 ]}.
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Appendix A provides the exact values of the standard breakpoints as well as the intersection
cut coefficients for RSi(τ) as a function of a, b, c, d, g, h, and τ for all i ∈ {1, 2, 3, 4}. Since
the coefficients can be calculated in a straightforward way by intersecting {f+λri : λ ≥ 0}
with the appropriate facet of the underlying triangle, we aggregate the results of these
computations in Appendix A for easy reference, and treat the appendix as a catalogue
of intersection cut coefficients. These computations are tedious to do by hand (and it’s
easy to make an error), so we also checked the computations using Sage2. For pedagogical
purposes, we provide one example of the necessary computations here.

We will compute the intersection cuts generated by the family {RS1(τ) : τ ∈ [τmin1 , τmax1 ]}
for instances where v4

x ≤ g ≤ v2
x (for example, as in Figure 2.7). Under this assumption,

there is one ray breakpoint, determined by the intersection of the ray {f+λr4 : λ ≥ 0} with
{(x, y) ∈ R2 : x = 0}. For i ∈ {1, 2, 3, 4}, let ψi denote ψf ;RS1(τ)(r

i). By the construction
of RS1(τ) we know that ψ1 = 1

τ
and ψ3 = 1 + 1

(a+c)g
as computed for fixed triangle F1 in

the proof of Lemma 2.2.2. To calculate ψ2, we calculate the value of λ2 ≥ 0 such that the
point f + λ2r

2 is on the line joining f + τr1 and (1, 0)T . The equation of the line L2(τ)
joining f + τr1 and (1, 0)T is given by

y =

[
(b+ d)h(1− τ) + bτ

(b+ d)(g − 1)(1− τ) + τ

]
(x− 1)

Then for λ2 := (a+b)τ
(a+b)τ−a(b+d)(1−τ)

, we calculate

p2 := f + λ2r
2 =

(
g +

τ [b− (a+ b)g]

(a+ b)τ − a(b+ d)(1− τ)
, h− τ [ab+ (a+ b)h]

(a+ b)τ − a(b+ d)(1− τ)

)T
.

Then we can check p2 is on line L2(τ) by calculating[
(b+ d)h(1− τ) + bτ

(b+ d)(g − 1)(1− τ) + τ

]
(p2
x − 1)

=

[
(b+ d)h(1− τ) + bτ

(b+ d)(g − 1)(1− τ) + τ

](
g +

τ [b− (a+ b)g]

(a+ b)τ − a(b+ d)(1− τ)
− 1

)
=

[
(b+ d)h(1− τ) + bτ

(b+ d)(g − 1)(1− τ) + τ

](
a(b+ d)(1− g)(1− τ)− aτ)

(a+ b)τ − a(b+ d)(1− τ)

)
=
−a(b+ d)h(1− τ)− abτ

(a+ b)τ − a(b+ d)(1− τ)

= p2
y

2SageMath [70] was used extensively to perform and verify many of the symbolic computations within
this thesis.
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as required. Thus ψ2 = 1
λ2

= 1− a(b+d)(1−τ)
(a+b)τ

.

Next we calculate the value of τ bp11 . The first step is to calculate the value of λ4 ≥ 0 such

that f + λ4r
4 is on the line x = 0. For λ4 := (c+d)g

(c+d)g−d , we calculate the x-coordinate of

f + λ4r
4 as

g +

[
(c+ d)g

(c+ d)g − d

](
d

c+ d
− g
)

= g +

[
(c+ d)g

(c+ d)g − d

](
d− g(c+ d)

c+ d

)
= g − g

and verify that it is indeed 0 as required. We’ll need the y-coordinate of f +λ4r
4 later and

calculate it now as

h+

[
(c+ d)g

(c+ d)g − d

](
1 +

cd

c+ d
− h
)

= h+

[
(c+ d)g

(c+ d)g − d

](
(c+ d)(1− h) + cd

c+ d

)
=

(c+ d)gh− dh+ (c+ d)g(1− h) + cdg

(c+ d)g − d

=
−dh+ (c+ d)g − cdg

(c+ d)g − d

= 1 +
d(1− h) + cdg

(c+ d)g − d
.

Then, we calculate the value of τ1 for which the line joining f + τ1r
1 and (1, 1)T contains

f+λ4r
4. We obtain the value τ bp11 = 1− d

c(b+d)g+d
. To check this is correct, first we compute

the equation of the line L4(τ) joining f + τr1 and (1, 1)T . It is given by

y =

[
(b+ d)(h− 1)(1− τ)− dτ
(b+ d)(g − 1)(1− τ) + τ

]
(x− 1) + 1.

We check f + λ4r
4 is on L4(τ bp11 ). Recalling the x-coordinate of f + λ4r

4 is 0, we check(b+ d)(h− 1)( d
c(b+d)g+d)− d c(b+d)g

c(b+d)g+d

(b+ d)(g − 1)( d
c(b+d)g+d) + c(b+d)g

c(b+d)g+d

 (−1) + 1 = 1−
[
d(b+ d)(h− 1)− dc(b+ d)g

d(b+ d)(g − 1) + c(b+ d)g

]

= 1 +
d(1− h) + gcd

(c+ d)g − d
.

which is the y-coordinate of f + λ4r
4 as required. Now, for τ ∈ [τmin1 , τ bp11 ], we have

ψ4 = 1
λ4

= 1 − d
(c+d)g

. For τ ∈ [τ bp11 , τmax1 ], we calculate the value of λ̂4 ≥ 0 such that the

point f + λ̂4r
4 is on the line joining f + τr1 and (1, 1)T . The computations are similar to

calculating λ2 as above, so we will omit them. We get λ̂4 = (c+d)τ
(c+d)τ−c(b+d)(1−τ)

. Thus for

τ ∈ [τ bp11 , τmax1 ] we have ψ4 = 1

λ̂4
= 1 − c(b+d)(1−τ)

(c+d)τ
. The results of these computations can

be found in Appendix A.3 Case 2.
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2.5 Observations and Summary

In this chapter we introduced the techniques we require to prove bounds on ρ[T2,Q2] and
ρ[T2,Q]. Before moving on to this task we make a couple observations.

Firstly, note that there is a disconnect between the family of instances that

1. give weak bounds when replacing constraint (2.19) with fixed triangle cuts (Figure 2.3
and surrounding discussion), and

2. were proven to be hard to approximate better than a given factor with any triangle
cuts (Lemma 2.3.1).

In fact, the latter family is comprised of parallelograms and therefore Theorem 2.2.8 gives
stronger bounds when using fixed triangles. In Chapter 3 we will see that the bound in
Lemma 2.3.1 is the optimal value of (P (α, β, β, α, g, h)) for all 0 < α < β and (g, h)T ∈
( α
α+β

, β
α+β

)2.

Secondly, observe that the bounds in Lemma 2.2.2 and Lemma 2.2.3 are continuous func-
tions of a, b, c, d, g, and h. Moreover, the bounds agree for (g, h)T on the boundary of the
two regions: i.e) for (g, h)T ∈ {(x, y) ∈ R2 : y = 0}. These properties arise because the
bounds come from dual solutions of a parameterized linear program for the same opti-
mal basis. It would be nice to improve these bounds and maintain the same smoothness
properties.

Lastly, we mention one technique to prove a target bound:

1. sequentially identify regions of the parameter set where the target bound holds using
a given set of type 2 triangle cuts; and

2. then focus on choosing different sets of type 2 triangle cuts for the other regions.

For example, Corollary 2.2.9 indicates target bound 8
9

holds for {(a, b, c, d, g, h) : a = d, b =
c, a+ b+ 1

a
+ 1

b
≥ 8} using fixed triangle cuts. One might hesitate to employ this technique

iteratively: it could lead to a disjointed analysis where different triangle cuts provide
bounds in different regions, with no consistency on the boundaries or intersections. The
practical obstacle we ran into was different: given a target lower bound L̂B and a parameter
set, there may be many choices of triangle cuts giving the target bound. So after accounting
for one set of parameters, the triangles we chose to analyze the next set of parameters often
worked for the first as well. Eventually, this technique lead to finding parameter sets for
which it is difficult to prove the target bound. Once triangle cuts that work for these “hard
to bound” parameter sets were identified, they could be used everywhere. We’ll see these
choices of triangles in the next two chapters.
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Chapter 3

Approximating Parallelogram Cuts
with Type 2 Triangle Cuts

v1

v2

v3

v4

f

v1

v2

v3

v4

f

Figure 3.1: Parallelograms for parameters α = 1
3
, β = 2, g = 1

3
, and h = 1

4
(left) and

α = 2, β = 3, g = 1
3
, and h = 1

4
(right).

The main purpose of this chapter is to prove Theorem 1.3.21 showing that ρ[T2,Q2] = 9
8
.

We follow the proof strategy in Section 2.1. Let Q2(α, β) := Q(α, β, β, α). Let Q̂2 :=
{Q2(α, β) : α > 0, β > 0} denote the family of normalized parallelograms. The value
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of 1
ρ[T2,Q2]

is equal to the optimal value of semi-infinite program (S(T2,Q2)) in variables

α, β, g, h, s1, s2, s3, and s4 given by

inf s1 + s2 + s3 + s4 (3.1)

s. t. s ∈ T2

( (
g
h

)
;

(
1 + 1

α+β − g
β

α+β − h

)
,

(
β

α+β − g
−αβ
α+β − h

)
,

(
−1
α+β − g
α

α+β − h

)
,

(
α

α+β − g
1 + αβ

α+β − h

))
(3.2)

(
g
h

)
∈ int

(
conv

{(
1 + 1

α+β
β

α+β

)
,

(
β

α+β
−αβ
α+β

)
,

(
−1
α+β
α

α+β

)
,

(
α

α+β

1 + αβ
α+β

)})
(3.3)

α, β > 0 ; α, β ∈ Q ; α ≤ β (3.4)(
g
h

)
∈ Q2 \ Z2. (3.5)

Note that the assumption α ≤ β follows from Remark 2.1.2. Treating α, β > 0 with
α ≤ β and (g, h)T ∈ intQ2(α, β) as data in the optimization problem above, we obtain a
semi-infinite linear program in variables s1, s2, s3, and s4 given by

inf s1 + s2 + s3 + s4 (3.6)

s. t. s ∈ T2

( (
g
h

)
;

(
1 + 1

α+β − g
β

α+β − h

)
,

(
β

α+β − g
−αβ
α+β − h

)
,

(
−1
α+β − g
α

α+β − h

)
,

(
α

α+β − g
1 + αβ

α+β − h

))
. (3.7)

We will denote this program by (P (α, β, g, h)).

Section 2.2.1 showed the optimal value of (P (α, β, g, h)) is at least 4
5

for all applicable
α, β, g, and h by:

1. fixing α and β, sub-dividing the interior of Q2(α, β), and identifying representative
regions R1 := (0, 1)2 and R2 := intQ2(α, β) ∩ {(x, y)T ∈ R2 : x ≤ 0};

2. for (g, h)T ∈ R1, replacing constraint (3.7) with the intersection cuts for four fixed
triangles and solving the resulting parametric linear program to obtain a bound;

3. for (g, h)T ∈ R2, replacing constraint (3.7) with the intersection cuts for three fixed
triangles and solving the resulting parametric linear program to obtain a bound; and
then

4. varying the parameters to find the weakest lower bound.

Here we subdivide the interior of Q2(α, β) differently to identify three representative re-
gions: the Central Region, the South-West Region, and the South Region. This subdivision
is illustrated in Figure 3.2. One reason this subdivision is natural is that the set of standard
breakpoints is the same for all (g, h)T in a region. For example, each family of ray-sliding
triangles has exactly one ray breakpoint in the Central Region.
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v1

v2

v3

v4

S Region

Central Region

SW Region

v1

v2

v3

v4

S Region

Central Region

SW Region

Figure 3.2: Central, South-West, and South Regions of base parallelograms for parameters
α = 1

3
, β = 2 (left) and α = 2, β = 3 (right).

In Section 3.2 we analyze the Central Region. We replace constraint (3.7) with the in-
tersection cuts for four ray-sliding triangles at their unique ray breakpoint and solve the
resulting parametric linear program. The resulting weakest lower bound is 8

9
.

Section 3.3 is investigative in nature; it probes the ray-sliding triangles to use to replace
constraint (3.7) for the South-West and South Regions. We learn that some natural choices
of ray-sliding triangles at standard breakpoints can improve on fixed triangles, but won’t
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lead to a bound of 8
9
. The investigation points us to the triangles we eventually choose for

the South-West and South Regions. A reader on the shortest path (within this thesis) to
proving ρ[T2,Q2] = 9

8
may comfortably skip this section.

In Section 3.4 we analyze the South-West Region. We replace constraint (3.7) with the
intersection cuts for RS2(τ̂2) and RS3(τ̂3) where τ̂2 and τ̂3 fall between the two ray break-
points, serving as a sort of geometric average. In Section 3.5 we analyze the South Region,
using RS2(τ̂2), as well as the ray-sliding triangles for ray 1 and ray 3 at their unique ray
breakpoint. We amalgamate the results for the Central, South-West, and South Regions
to conclude ρ[T2,Q2] ≤ 9

8
in Section 3.6.

v1

v2

v3

v4

f

v1

v2

v3

v4

f

v1

v2

v3

v4

f

Figure 3.3: τ -ray-sliding triangle for Ray 3 for α = 1, β = 3
2
, g = 1

10
, and h = 1

10
and (left)

τ = τ bp13 , (center) τ = τ̂3, and (right) τ = τ bp23 .
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3.1 Identify Regions of intQ2(α, β) to Analyze

As in Section 2.2, we identify sub-regions of intQ2(α, β) and use a symmetry argument to
show it suffices to analyze only these regions. The same regions and symmetry argument
are used in Chapter 4 and thus we present them for an arbitrary quadrilateral. For fixed
a, b, c, d > 0 with ad ≤ bc consider the following regions of intQ(a, b, c, d):

1. South-West Region: RSW (a, b, c, d) :=
{

(g, h)T ∈ intQ(a, b, c, d) : g ≤ d
c+d

, h ≤ a
a+c

}
,

2. South Region: RS(a, b, c, d) :=
{

(g, h)T ∈ intQ(a, b, c, d) : g ∈
[

d
c+d

, b
a+b

]
, h ≤ a

a+c

}
,

3. and Central Region:
RCentral(a, b, c, d) :=

{
(g, h)T ∈ intQ(a, b, c, d) : g ∈

[
d
c+d

, b
a+b

]
, h ∈

[
a
a+c

, b
b+d

]}
.

v1

v2

v3

v4

C Region

SW Region S Region
v1

v2

v3

v4

C Region
SW Region S Region

Figure 3.4: South-West, South, and Central Regions of base quadrilaterals for parameters
a = 1

3
, b = 6, c = 1

2
, and d = 1 (left) and a = 1

3
, b = 1

2
, c = 6, and d = 1 (right).

Since we vary a, b, c, d restricted only by a, b, c, d > 0 and ad ≤ bc, the below remark
shows that we can consider only the parameterizations where: (g, h)T ∈ RCentral(a, b, c, d),
(g, h)T ∈ RSW (a, b, c, d), or (g, h)T ∈ RS(a, b, c, d).

Remark 3.1.1. Let Q1 := Q(a, b, c, d) for a, b, c, d > 0 with ad ≤ bc be a normalized
quadrilateral. Let f = (g, h)T ∈ intQ1. Then there exist â, b̂, ĉ, and d̂ with âd̂ ≤ b̂ĉ and
affine unimodular transformation φ : R2 → R2 such that:
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1. φ(Q1) = Q(â, b̂, ĉ, d̂), and
2. φ(f) ∈ RSW (â, b̂, ĉ, d̂) ∪RS(â, b̂, ĉ, d̂) ∪RCentral(â, b̂, ĉ, d̂).

Proof. If f ∈ RSW (a, b, c, d) ∪ RS(a, b, c, d) ∪ RCentral(a, b, c, d), then no transformation is
required. If f 6∈ RSW (a, b, c, d) ∪ RS(a, b, c, d) ∪ RCentral(a, b, c, d), the result follows by
rotating the quadrilateral clockwise π

2
, π or 3π

2
as described below.

Case 1: g > b
a+b

and h ≤ b
b+d

: Choose (â, b̂, ĉ, d̂) :=
(

1
b
, 1
d
, 1
a
, 1
c

)
. Note that âd̂ = 1

bc
≤

1
da

= b̂ĉ where the inequality holds because ad ≤ bc. Consider the affine unimodular
transformation φπ

2
given by

φπ
2

([
x
y

])
:=

[
0 1
−1 0

]([
x
y

]
−
[

1
2
1
2

])
+

[
1
2
1
2

]
.

It is straightforward to verify that φπ
2
(Q(a, b, c, d)) = Q(â, b̂, ĉ, d̂) and

φπ
2

([
g
h

])
=

[
h

1− g

]
∈ RSW (â, b̂, ĉ, d̂) ∪RS(â, b̂, ĉ, d̂).

Case 2: g ≥ d
c+d

and h > b
b+d

: Choose (â, b̂, ĉ, d̂) := (d, c, b, a). Note that âd̂ = da ≤ cb = b̂ĉ

where the inequality holds because ad ≤ bc. Consider the affine unimodular transformation
φπ given by

φπ

([
x
y

])
:=

[
−1 0
0 −1

]([
x
y

]
−
[

1
2
1
2

])
+

[
1
2
1
2

]
.

It is straightforward to verify that φπ(Q(a, b, c, d)) = Q(â, b̂, ĉ, d̂) and

φπ

([
g
h

])
=

[
1− g
1− h

]
∈ RSW (â, b̂, ĉ, d̂) ∪RS(â, b̂, ĉ, d̂).

Case 3: g < d
c+d

and h > a
a+c

: Choose (â, b̂, ĉ, d̂) := (1
c
, 1
a
, 1
d
, 1
b
). Note that âd̂ = 1

cb
≤

1
ad

= b̂ĉ where the inequality holds because ad ≤ bc. Consider the affine unimodular
transformation φ 3π

2
given by

φ 3π
2

([
x
y

])
:=

[
0 −1
1 0

]([
x
y

]
−
[

1
2
1
2

])
+

[
1
2
1
2

]
.
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It is straightforward to verify that φ 3π
2

(Q(a, b, c, d)) = Q(â, b̂, ĉ, d̂) and

φ 3π
2

([
g
h

])
=

[
1− h
g

]
∈ RSW (â, b̂, ĉ, d̂) ∪RS(â, b̂, ĉ, d̂).

The affine unimodular transformation described has the required property in all three cases
and therefore the result holds.

For the parallelogram case (a = d = α and b = c = β) the three representative regions are:

1. South-West Region: RSW (α, β) :=
{

(g, h)T ∈ intQ2(α, β) : g ≤ α
α+β

, h ≤ α
α+β

}
2. South Region: RS(α, β) :=

{
(g, h)T ∈ intQ2(α, β) : g ∈

[
α

α+β
, β
α+β

]
, h ≤ α

α+β

}
,

3. and Central Region:

RCentral(α, β) :=
{

(g, h)T ∈ intQ2(α, β) : g ∈
[

α
α+β

, β
α+β

]
, h ∈

[
α

α+β
, β
α+β

]}
.

See Figure 3.2. Note that the Central Region always contains the point
(

1
2
, 1

2

)T
in the

parallelogram case because α ≤ β implies α
α+β
≤ 1

2
and β

α+β
≥ 1

2
.

3.2 Central Region

Focusing first on the Central Region, we use the intersection cuts for four ray-sliding
triangles at the first (unique) ray breakpoint, as illustrated in Figure 3.5

Lemma 3.2.1. For fixed α, β > 0 with α ≤ β and g, h with (g, h)T ∈ RCentral(α, β), let (P ′)
be the parameterized linear program obtained from (P (α, β, g, h)) by replacing constraint
(3.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles RS1(τ bp11 ),
RS2(τ bp12 ), RS3(τ bp13 ), and RS4(τ bp14 ). Then, the optimal value of (P ′) is equal to

LBCentral(α, β) := 1− α(β − α)

α(β − α) + αβ(1 + β) + β(1 + α)
.

Proof. We order the cuts RS3(τ bp13 ), RS4(τ bp14 ), RS1(τ bp11 ), RS2(τ bp12 ) in the constraint ma-
trix. Looking up the cuts in Appendix A, the constraint matrix for a general quadrilateral
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is 

(
1 + 1

(b+d)(1−g)

) (
1− a

(a+b)(1−g)

) (
1 + a

b(a+c)(1−g)

) (
1− ad

b(c+d)(1−g)

)(
1− ad

c(b+d)h

) (
1 + ab

(a+b)h

) (
1− a

(a+c)h

) (
1 + ad

(c+d)h

)(
1 + d

c(b+d)g

) (
1− ad

c(a+b)g

) (
1 + 1

(a+c)g

) (
1− d

(c+d)g

)(
1− d

(b+d)(1−h)

) (
1 + ad

(a+b)(1−h)

) (
1− ad

b(a+c)(1−h)

) (
1 + cd

(c+d)(1−h)

)

 .

v1

v2

v3

v4

f v1

v2

v3

v4

f

v1

v2
v3

v4

f v1

v2

v3

v4

f

Figure 3.5: Clockwise from top left : RS1(τ bp11 ), RS2(τ bp12 ), RS3(τ bp13 ), and RS4(τ bp14 ) for
α = 1

3
, β = 3

2
, g = 1

2
and h = 1

2
.
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Setting b = c = β and a = d = α the constraint matrix is

(
1 + 1

(α+β)(1−g)

) (
1− α

(α+β)(1−g)

) (
1 + α

β(α+β)(1−g)

) (
1− α2

β(α+β)(1−g)

)(
1− α2

β(α+β)h

) (
1 + αβ

(α+β)h

) (
1− α

(α+β)h

) (
1 + α2

(α+β)h

)(
1 + α

β(α+β)g

) (
1− α2

β(α+β)g

) (
1 + 1

(α+β)g

) (
1− α

(α+β)g

)(
1− α

(α+β)(1−h)

) (
1 + α2

(α+β)(1−h)

) (
1− α2

β(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

)

 .

So, optimization problem (P ′) is given by

min 1lT s

subject to
[
1l1lT + A

]
s ≥ 1l

s ≥ O

where

A :=

(
1

α+ β

)
1

1−g 0 0 0

0 1
h 0 0

0 0 1
g 0

0 0 0 1
1−h




1 0 0 0
0 α 0 0
0 0 1 0
0 0 0 α




1 −1 α
β −α

β

−α
β

β
α −1 1

α
β −α

β 1 −1

−1 1 −α
β

β
α




1 0 0 0
0 α 0 0
0 0 1 0
0 0 0 α

 .

First we assume α 6= β. We compute

A−1 =

(
β

β − α

)
1 0 0 0
0 1

α 0 0
0 0 1 0
0 0 0 1

α



β α 0 0
0 α α 0
0 0 β α
α 0 0 α




1 0 0 0
0 1

α 0 0
0 0 1 0
0 0 0 1

α




1− g 0 0 0
0 h 0 0
0 0 g 0
0 0 0 1− h

 ,

A−11l =

(
β

β − α

)
1 0 0 0
0 1

α
0 0

0 0 1 0
0 0 0 1

α



β α 0 0
0 α α 0
0 0 β α
α 0 0 α




(1− g)
h
α

g
1−h
α

 =

(
β

β − α

)
β(1− g) + h

h
α

+ g
βg + (1− h)
(1− g) + 1−h

α

 ,
and

1lTA−11l =

(
β

β − α

)(
1 + β + 1 +

1

α

)
=

(
1

α(β − α)

)
(αβ(1 + β) + β(1 + α)) .
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Note that the entries of A−1 are non-negative because α, β > 0, α < β and (g, h)T ∈ [0, 1]2.
We apply Lemma 2.1.3 to conclude the optimal value of (P ′) is

1− 1

1 + 1lTA−11l
= 1− α(β − α)

α(β − α) + αβ(1 + β) + β(1 + α)

whenever α 6= β.

If α = β, then the optimal primal and dual solutions can still be constructed in the same
way and the objective function value is 1. We handle this case in detail in the general
quadrilateral analysis; see Lemma 4.1.1.

Figure 3.6: Contour plot of LBCentral(α, β).

We vary α and β to find the weakest bound.

Lemma 3.2.2. For all α, β > 0 with α ≤ β, LBCentral(α, β) ≥ 8
9
.
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Proof. For α = β we have LBCentral(α, β) = 1 so we may assume α < β. Now

LBCentral(α, β) = 1− 1

1 + g(α, β)
where g(α, β) :=

αβ(1 + β) + β(1 + α)

α(β − α)
.

So, for α, β > 0, LBCentral(α, β) ≥ 8
9

if and only if g(α, β) ≥ 8 and

g(α, β) ≥ 8⇐⇒ αβ + αβ2 + β + αβ ≥ 8αβ − 8α2

⇐⇒ αβ2 + (1− 6α)β + 8α2 ≥ 0.

This inequality holds trivially for α ≤ 1
6

since all the terms are non-negative. Fixing α ≥ 1
6
,

we can view αβ2 + (1 − 6α)β + 8α2 as a degree two polynomial in β. Its discriminant is
(1 − 6α)2 − 4α(8α2) = (−1 + 2α)2(1 − 8α) which is negative because α ≥ 1

6
. Since

αβ2 + (1 − 6α)β + 8α2 is positive for β = 0, it follows that the polynomial is positive
everywhere. Therefore g(α, β) ≥ 8 for all α, β > 0.

Note that LBCentral(α, β) exactly matches the objective function value of the feasible so-
lution to (P (α, β, g, h)) given in Lemma 2.3.1. In fact, if we were to calculate the opti-
mal solution to (P (α, β, g, h)) in Lemma 3.2.1 using Lemma 2.1.3, it is exactly equal to
ŝ(α, β, g, h) in Lemma 2.3.1. Therefore, we have solved (P (α, β, g, h)) for all β > α > 0
and (g, h)T ∈ intRCentral(α, β).

3.3 Investigate Triangle Choices for the South-West

and South Regions

In the South-West Region, the ray-sliding triangles on rays 1 and 4 have no ray breakpoints
while the ray-sliding triangles on rays 2 and 3 have two ray breakpoints. In the South
Region, the ray-sliding triangle on ray 2 has two ray breakpoints while the ray-sliding
triangle on ray 4 has no ray breakpoints. Since each ray-sliding triangle has exactly one
ray breakpoint in the Central Region, it is not immediately obvious how to choose ray-
sliding triangles consistently with the Central Region analysis.

3.3.1 First Breakpoints

As a first attempt, we choose the ray-sliding triangle for ray i at the first breakpoint if it is
defined and use a fixed triangle otherwise. We restrict our analysis to the family of paral-
lelograms where α = 1

β
and fractional points (g, h)T ∈ [0, 1]2. This restricted case suffices
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to show both how the bound can be improved and limits on the gains. This restriction
isn’t too unnatural - it stems from the example showing ρ[T ,Q] ≥ 9

8
in Section 2.3.

South-West Region

First we consider the South-West Region. The candidate choices of ray-sliding triangles
are illustrated in Figure 3.7.
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Figure 3.7: Clockwise from top left: F1, RS2(τ bp12 ), RS3(τ bp13 ), and F4 for α = 1
2
, β = 2,

g = 1
6

and h = 1
7
.
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Lemma 3.3.1. For fixed β ≥ 1 and g, h such that (g, h)T ∈ RSW

(
1
β
, β
)
∩ [0, 1]2, let

(P ′) be the parameterized linear program obtained from (P ( 1
β
, β, g, h)) by replacing con-

straint (3.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles
F1, RS2(τ bp12 ), RS3(τ bp13 ), and F4. Then, the optimal value of (P ′) is equal to

LBSW1(β, g, h) := 1− β3(−1 + β)

2β5 + (1− β − β4)g − β(1 + β2 − β3)h
.

Proof. We order the cuts RS3(τ bp13 ), F4, F1, RS2(τ bp12 ). Looking up the cuts in Appendix A,
the constraint matrix for a general quadrilateral is

(
1 + 1

(b+d)(1−g)

) (
1− a

(a+b)(1−g)

) (
1 + a

b(a+c)(1−g)

) (
1− ad

b(c+d)(1−g)

)
1

(
1 + ab

(a+b)h

)
1 1

1 1
(

1 + 1
(a+c)g

)
1(

1− d
(b+d)(1−h)

) (
1 + ad

(a+b)(1−h)

) (
1− ad

b(a+c)(1−h)

) (
1 + cd

(c+d)(1−h)

)

 .

Setting a = d = 1
β

and b = c = β, optimization problem (P ′) is given by

min s1 + s2 + s3 + s4

s. t.



(
1 + β

(1+β2)(1−g)

) (
1− 1

(1+β2)(1−g)

) (
1 + 1

β(1+β2)(1−g)

) (
1− 1

β2(1+β2)(1−g)

)
1

(
1 + β

(1+β2)h

)
1 1

1 1
(

1 + β
(1+β2)g

)
1(

1− 1
(1+β2)(1−h)

) (
1 + 1

β(1+β2)(1−h)

) (
1− 1

β2(1+β2)(1−h)

) (
1 + β

(1+β2)(1−h)

)



s1

s2

s3

s4

 ≥ 1l

s1, s2, s3, s4 ≥ 0.

The dual (D′) of (P ′) is given by

max v1 + v2 + v3 + v4

s. t.



(
1 + β

(1+β2)(1−g)

)
1 1

(
1− 1

(1+β2)(1−h)

)(
1− 1

(1+β2)(1−g)

) (
1 + β

(1+β2)h

)
1

(
1 + 1

β(1+β2)(1−h)

)(
1 + 1

β(1+β2)(1−g)

)
1

(
1 + β

(1+β2)g

) (
1− 1

β2(1+β2)(1−h)

)(
1− 1

β2(1+β2)(1−g)

)
1 1

(
1 + β

(1+β2)(1−h)

)



v1

v2

v3

v4

 ≤ 1l

v1, v2, v3, v4 ≥ 0.
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It is straightforward (enough) algebra to show that

ŝ :=


β3+β6+(1−β4−β6)g−β(1+β2−β4)h

(1+β)[2β5+(1−β−β4)g−β(1+β2−β3)h]
β2(−1+β)(1+β2)h

2β5+(1−β−β4)g−β(1+β2−β3)h
β2(−1+β)(1+β2)g

2β5+(1−β−β4)g−β(1+β2−β3)h
β6(1−h)+β5(1−g)

(1+β)[2β5+(1−β−β4)g−β(1+β2−β3)h]


and

v̂ :=


β5(1−g)

2β5+(1−β−β4)g−β(1+β2−β3)h
β(−1+β4)h

2β5+(1−β−β4)g−β(1+β2−β3)h
(1−β)(1−β4)g

2β5+(1−β−β4)g−β(1+β2−β3)h
β3(1−β+β2)(1−h)

2β5+(1−β−β4)g−β(1+β2−β3)h


are a pair of primal and dual optimal solutions. Therefore the optimal value of (P ′) is

1lT ŝ = 1− β3(−1 + β)

2β5 + (1− β − β4)g − β(1 + β2 − β3)h
= LBSW1(β, g, h)

as required.

Corollary 3.3.2. The optimal value of (P ( 1
β
, β, g, h)) is at least 0.867 for all β ≥ 1 and

g, h such that (g, h)T ∈ RSW ( 1
β
, β) ∩ [0, 1]2.

Proof. First note that RSW ( 1
β
, β)∩ [0, 1]2 ⊆

[
0, 1

1+β2

]2

. Now, by Lemma 3.3.1, the optimal

value of (P ( 1
β
, β, g, h)) is greater than or equal to LBSW1(β, g, h) = 1 − β3(−1+β)

D(β,g,h)
where

D(β, g, h) = 2β5 + (1− β − β4)g − β(1 + β2 − β3)h. Note that β3(−1 + β) ≥ 0 and

D(β, g, h) ≥ 2β5 + (1− β − β4)g − β(1 + β2)h

≥ 2β5(1 + β2) + (1− β − β4)− β(1 + β2)

1 + β2

=
2β7 + 2β5 + 1− 2β − β3 − β4

1 + β2

> 0

for all β ≥ 1 and (g, h)T ∈
[
0, 1

1+β2

]2

. Hence for fixed β ≥ 1 the lower bound LB(β, g, h)

is smallest whenever D(β, g, h) is smallest.
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For fixed β ≥ 1 the denominator D(β, g, h) is affine in g and h. The coefficient of g in
D(β, g, h) is (1− β− β4), which is negative for all β ≥ 1. The coefficient of h in D(β, g, h)
is −β(1 + β2 − β3), which is non-positive for all β ≤ 3

2
and non-negative for all β ≥ 3

2
.

For fixed β ≤ 3
2
, it follows that the smallest bound is given by

LBSW1

(
β ,

1

1 + β2
,

1

1 + β2

)
= 1− β3(−1 + β)(1 + β2)

2β5(1 + β2) + (1− β − β4)− β(1 + β2 − β3)

= 1− −β3 + β4 − β5 + β6

1− 2β − β3 + 2β5 + 2β7
.

For fixed β ≥ 3
2
, it follows that the smallest bound is given by

LBSW1

(
β ,

1

1 + β2
, 0

)
= 1− β3(−1 + β)(1 + β2)

2β5(1 + β2) + (1− β − β4)

= 1− −β3 + β4 − β5 + β6

1− β − β4 + 2β5 + 2β7
.

Figure 3.8: Plot of LBSW1

(
β, 1

1+β2 , 0
)

in solid orange and LBSW1

(
β, 1

1+β2 ,
1

1+β2

)
in dashed

blue.

By inspection, the smallest bound is at least 0.867 and it occurs for β around 1.84, g = 1
1+β2 ,

and h = 0.
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South Region

Now we consider the South Region. The candidate choices of ray-sliding triangles are
illustrated in Figure 3.9.
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Figure 3.9: Clockwise from top left: RS1(τ bp11 ), RS2(τ bp12 ), RS3(τ bp13 ), and F4 for α = 1
2
,

β = 2, g = 1
2

and h = 1
6
.
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Lemma 3.3.3. For fixed β ≥ 1 and g, h such that (g, h)T ∈ RS

(
1
β
, β
)
∩ [0, 1]2, let (P ′)

be the parameterized linear program obtained from (P ( 1
β
, β, g, h)) by replacing constraint

(3.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles RS1(τ bp11 ),
RS2(τ bp12 ), RS3(τ bp13 ), and F4. Then, the optimal value of (P ′) is equal to

LBS1(β, g, h) := 1− β2(−1 + β)

−β2 + β3 + 2β4 − β3g − h
.

Proof. We order the cuts RS3(τ bp13 ), F4, RS1(τ bp11 ), RS2(τ bp12 ). Looking up the cuts in
Appendix A, the constraint matrix for a general quadrilateral is

(
1 + 1

(b+d)(1−g)

) (
1− a

(a+b)(1−g)

) (
1 + a

b(a+c)(1−g)

) (
1− ad

b(c+d)(1−g)

)
1

(
1 + ab

(a+b)h

)
1 1(

1 + d
c(b+d)g

) (
1− ad

c(a+b)g

) (
1 + 1

(a+c)g

) (
1− d

(c+d)g

)(
1− d

(b+d)(1−h)

) (
1 + ad

(a+b)(1−h)

) (
1− ad

b(a+c)(1−h)

) (
1 + cd

(c+d)(1−h)

)

 .

Setting a = d = 1
β

and b = c = β, optimization problem (P ′) is given by

min s1 + s2 + s3 + s4

s. t.



(
1 + β

(1+β2)(1−g)

) (
1− 1

(1+β2)(1−g)

) (
1 + 1

β(1+β2)(1−g)

) (
1− 1

β2(1+β2)(1−g)

)
1

(
1 + β

(1+β2)h

)
1 1(

1 + 1
β(1+β2)g

) (
1− 1

β2(1+β2)g

) (
1 + β

(1+β2)g

) (
1− 1

(1+β2)g

)(
1− 1

(1+β2)(1−h)

) (
1 + 1

β(1+β2)(1−h)

) (
1− 1

β2(1+β2)(1−h)

) (
1 + β

(1+β2)(1−h)

)



s1

s2

s3

s4

 ≥ 1l

s1, s2, s3, s4 ≥ 0.

The dual (D′) of (P ′) is given by

max v1 + v2 + v3 + v4

s. t.



(
1 + β

(1+β2)(1−g)

)
1

(
1 + 1

β(1+β2)g

) (
1− 1

(1+β2)(1−h)

)(
1− 1

(1+β2)(1−g)

) (
1 + β

(1+β2)h

) (
1− 1

β2(1+β2)g

) (
1 + 1

β(1+β2)(1−h)

)(
1 + 1

β(1+β2)(1−g)

)
1

(
1 + β

(1+β2)g

) (
1− 1

β2(1+β2)(1−h)

)(
1− 1

β2(1+β2)(1−g)

)
1

(
1− 1

(1+β2)g

) (
1 + β

(1+β2)(1−h)

)



v1

v2

v3

v4

 ≤ 1l

v1, v2, v3, v4 ≥ 0.
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It is straightforward (enough) algebra to show that

ŝ :=


β5−β3(1+β2)g−(1−β4)h

(1+β)(−β2+β3+2β4−β3g−h)
−β(1−β)(1+β2)h

(−β2+β3+2β4−β3g−h)
β4(1+βg−h)

(1+β)(−β2+β3+2β4−β3g−h)
β4(1−g)+β5(1−h)

(1+β)(−β2+β3+2β4−β3g−h)


and

v̂ :=


β4(1−g)

−β2+β3+2β4−β3g−h
(−1+β4)h

−β2+β3+2β4−β3g−h
β3(−1+β)g

−β2+β3+2β4−β3g−h
β4(1−h)

−β2+β3+2β4−β3g−h


are a pair of primal and dual optimal solutions. Therefore the optimal value of (P ′) is

1lT ŝ = 1−
(

β2(−1 + β)

−β2 + β3 + 2β4 − β3g − h

)
= LBS1(β, g, h)

as required.

Corollary 3.3.4. The optimal value of (P ( 1
β
, β, g, h)) is at least 0.862 for all β ≥ 1 and

g, h such that (g, h)T ∈ RS( 1
β
, β) ∩ [0, 1]2.

Proof. First note that RS( 1
β
, β)∩ [0, 1]2 ⊆

{
(x, y)T ∈ R2 : x ∈

[
1

1+β2 ,
β2

1+β2

]
, y ∈

[
0, 1

1+β2

]}
.

Now, by Lemma 3.3.3, the optimal value of (P ( 1
β
, β, g, h)) is greater than or equal to

LBS1(β, g, h) = 1 − β2(−1+β)
D(β,g,h)

where D(β, g, h) = −β2 + β3 + 2β4 − β3g − h. Note that

β2(−1 + β) ≥ 0 and

D(β, g, h) ≥ (−β2 + β3 + 2β4)(1 + β2)− β5 − 1

1 + β2

=
−1− β2 + β3 + β4 + 2β6

1 + β2

> 0

for all β ≥ 1, g ∈
[

1
1+β2 ,

β2

1+β2

]
and h ∈

[
0, 1

1+β2

]
. Hence for fixed β ≥ 1 the lower bound

LB(β, g, h) is smallest whenever D(β, g, h) is smallest.
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For fixed β ≥ 1 the denominator D(β, g, h) is affine in g and h. The coefficient of g in
D(β, g, h) is −β3, which is negative for all β ≥ 1. The coefficient of h in D(β, g, h) is −1,
which is negative for all β ≥ 1. For fixed β ≥ 1, it follows that the smallest bound is given
by

LBS1

(
β ,

β2

1 + β2
,

1

1 + β2

)
= 1− β2(−1 + β)(1 + β2)

(−β2 + β3 + 2β4)(1 + β2)− β5 − 1

= 1− −β2 + β3 − β4 + β5

−1− β2 + β3 + β4 + 2β6
.

Figure 3.10: Plot of LBS1(β, β2

1+β2 ,
1

1+β2 ).

By inspection, the smallest bound is at least 0.862 and it occurs for β around 1.82, g = β2

1+β2

and h = 1
1+β2 .

Observations

The above choices improve on the bound provided in Lemma 2.2.6. For example, the
optimal value of (P (1, 1, g, h)) for any (g, h)T ∈ [0, 1]2 can only be lower-bounded by 4

5

using fixed triangles but it can be lower-bounded by 1 using the triangles described above.
However, the analysis also shows that the selected triangles are insufficient to lower bound
the optimal value of (P (α, β, g, h)) by 8

9
for all applicable choices of α, β, g, and h. Moreover,

the bound calculated is not consistent for (g, h)T at the meeting of the Central, South-
West, and South Regions, nor on the boundary of the South and South-West Regions.
Together, these two facts suggest a better analysis may be possible.
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3.3.2 Testing Other Choices of Standard Breakpoints

Recall that in the South-West Region there are:

1. three standard breakpoints for the ray-sliding triangles for each of rays 1 and 4; and
2. five standard breakpoints for the ray-sliding triangles for each of rays 2 and 3.

If we aim to use one ray-sliding triangle at a standard breakpoint per ray to prove the
bound of 8

9
, there are 3 · 5 · 5 · 3 = 225 possible combinations. One might ask:

1. The first combination we guessed didn’t prove the 8
9

bound, but can another combi-
nation work?; and

2. Even if there isn’t one “global best choice”, is it possible that for every applicable
α, β, g, and h, there exists a combination that works?

Empirical evidence says that the answer to both of these questions is “no”. Although other
choices may improve on the bounds in Section 3.3.1, a bound of 8

9
cannot be obtained. To

show this, we fix the parameters α, β, g, and h to specific numerical values, solve 225
linear programs, and observe that each has optimal value strictly less than 8

9
. We will

solve these linear programs using a numerical solver and, accordingly, standard caveats
about numerical round-off, and the distance from the true optimal value apply (hence this
evidence is said to be “empirical” rather than “mathematically rigorous”).

We choose the parameters (α, β, g, h) =
(

1
2
, 2, 1

10
, 1

10

)
for our experiments. Note that(

1
10
, 1

10

)T ∈ RSW

(
1
2
, 2
)
. Let Ai for i ∈ {1, 2, 3, 4} denote the set of possible intersec-

tion cut coefficients obtained from a ray-sliding triangle for a standard breakpoint for ray
i. For example |A1| = 3 and its elements are (ψf ;T (r1), ψf ;T (r2), ψf ;T (r3), ψf ;T (r4))T for
T ∈ {RS1(τmin1 ), F1, RS1(τmax1 )}. Looking up the cuts in Appendix A and substituting our
choice of parameters a = d = 1

2
, b = c = 2, g = h = 1

10
we calculate

A1 :=




13
9
7
9

5
1
9

 ,


1
1
5
1

 ,


7
9
10
9

5
13
9


 , A2 :=




7
9

5
1
9
13
9

 ,


7
9
25
9
1
9
13
9

 ,


7
9
10
9
17
18
13
9

 ,


1
1
1
13
9

 ,


13
9
7
9
10
9
13
9


 ,

A3 :=




13
9
7
9

5
1
9

 ,


13
9
7
9
25
9
1
9

 ,


13
9
7
9
10
9
17
18

 ,


13
9

1
1
1

 ,


13
9
25
9
1
9
13
9


 , and A4 :=




7
9

5
1
9
13
9

 ,


1
5
1
1

 ,


13
9

5
25
9
1
9


 .
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Then for all a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, and a4 ∈ A4 we need to solve

min s1 + s2 + s3 + s4

subject to


(a1)T

(a2)T

(a3)T

(a4)T



s1

s2

s3

s4

 ≥ 1l

s1, s2, s3, s4 ≥ 0.

The problem data is reasonable and we use Python and scipy.optimize to do the heavy
lifting of solving these problems.1 The linear program with largest objective function value
is given by the assignment

a1 :=


13
9
7
9

5
1
9

 , a2 :=


7
9
10
9
17
18
13
9

 , a3 :=


13
9
7
9
10
9
17
18

 , and a4 :=


13
9

5
25
9
1
9

 ,
corresponding to using the cuts for RS1(τmin1 ), RS2(τ bp12 ), RS3(τ bp13 ) and RS4(τmax4 ). The
objective function value calculated is a little below 0.883.

Although these experiments suggest that using one ray-sliding triangle per ray won’t lead
to a bound of 8

9
, they can be modified to give insight into alternative candidate ray-sliding

triangle sets. Firstly, we solve the linear program

min s1 + s2 + s3 + s4

subject to (a1)T s ≥ 1 ∀a1 ∈ A1

(a2)T s ≥ 1 ∀a2 ∈ A2

(a3)T s ≥ 1 ∀a3 ∈ A3

(a4)T s ≥ 1 ∀a4 ∈ A4

s1, s2, s3, s4 ≥ 0.

It’s optimal value is around 0.90. For the optimal solution found, the tight primal con-
straints are those generated by the intersection cuts for RS2(τ bp22 ), RS2(τ bp12 ), RS3(τ bp23 ),
and RS3(τ bp13 ). So, if we are willing to use more than one ray-sliding triangle per ray, these

1Scipy [72] was used to perform numerical experiments that informed the choice of intersection cuts
made throughout this thesis.
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four triangles would be a reasonable candidate set to try. Alternatively, if we are willing to
consider choices for τ other than standard breakpoints, we might want to choose RS2(τ2)
for τ2 ∈ (τ bp22 , τ bp12 ) and RS3(τ3) for τ3 ∈ (τ bp23 , τ bp13 ). To further investigate this option, we
choose to fix F1 and F4, vary τ2 between τ bp22 and τ bp12 , and vary τ3 between τ bp23 and τ bp13 .
The results are illustrated in Figure 3.11. The optimal value of the corresponding linear
program is largest for some unique choice of τ2 and τ3, indicated in the figure by the black
dot. Denoting these values as τ̂2 and τ̂3, then these two triangles (or these two triangles
plus F1 and F4) are a reasonable candidate set to try.

Figure 3.11: Optimal value of linear program min s1 + s2 + s3 + s4 subject to s ≥ O and
s satisfying the intersection cuts generated by F1, RS2(τ2), RS3(τ3), and F4, as a function
of τ2 ∈ [τ bp22 , τ bp12 ] and τ3 ∈ [τ bp23 , τ bp13 ].
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This discussion has led us to the choices for ray-sliding triangles we use for the South and
South-West Regions in Chapter 3 and Chapter 4. When these triangles appear later, we
define and analyze them analytically, and do not depend on the discussion here.

3.4 South-West Region

We return to bounding the optimal value of (P (α, β, g, h)) analytically, focusing next on
the South-West Region. We use the intersection cuts for the two triangles RS2(τ̂2) and
RS3(τ̂3) where

τ̂2 :=
(α + β)(1− h)

αβ + (α + β)(1− h)
and τ̂3 :=

(α + β)(1− g)

1 + (α + β)(1− g)
.

These triangles are illustrated in Figure 3.12.

v1

v2

v3

v4

f

v1

v2

v3

v4

f

Figure 3.12: RS2(τ̂2) (left) and RS3(τ̂3) (right) for α = 1
3
, β = 3

2
, g = 1

6
and h = 1

7
.
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Lemma 3.4.1. For fixed α, β > 0 such that α ≤ β and g, h such that (g, h)T ∈ RSW (α, β),
let (P ′) be the parameterized linear program obtained from (P (α, β, g, h)) by replacing con-
straint (3.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles
RS2(τ̂2) and RS3(τ̂3). Then, the optimal value of (P ′) is greater than or equal to

LBSW (α, β, g, h) := 1− α(β − α)

α(β − α) + α(1 + β)(α + β)(1− g) + (1 + α)(α + β)(1− h)
.

Proof. Looking up the cuts in Appendix A and specializing for a = d = α and b = c = β,
the constraint matrix is

M(α, β, g, h) :=

(1− α
(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

) (
1− α

(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

)(
1 + 1

(α+β)(1−g)

) (
1− α

(α+β)(1−g)

) (
1 + 1

(α+β)(1−g)

) (
1− α

(α+β)(1−g)

) .
So, optimization problem (P ′) is given by

min s1 + s2 + s3 + s4

s. t.

(1− α
(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

) (
1− α

(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

)(
1 + 1

(α+β)(1−g)

) (
1− α

(α+β)(1−g)

) (
1 + 1

(α+β)(1−g)

) (
1− α

(α+β)(1−g)

)

s1

s2

s3

s4

 ≥ 1l

s1, s2, s3, s4 ≥ 0.

The dual (D′) of (P ′) is given by

max v1 + v2

s. t.



(
1− α

(α+β)(1−h)

) (
1 + 1

(α+β)(1−g)

)(
1 + αβ

(α+β)(1−h)

) (
1− α

(α+β)(1−g)

)(
1− α

(α+β)(1−h)

) (
1 + 1

(α+β)(1−g)

)(
1 + αβ

(α+β)(1−h)

) (
1− α

(α+β)(1−g)

)


[
v1

v2

]
≤ 1l

v1, v2 ≥ 0.

Note that the first and third dual constraints coincide, as do the second and fourth dual
constraints.

We will show that

v̂ :=

[
(1+α)(α+β)(1−h)

α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)
α(1+β)(α+β)(1−g)

α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)

]
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is feasible for (D′). Thus, the optimal value of (P ′) is bounded below by LBSW (α, β, g, h)
because

1lT v̂ =
(1 + α)(α+ β)(1− h) + α(1 + β)(α+ β)(1− g)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

= 1− α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)
.

Now we show that v̂ is feasible for (D′). Each entry of v̂ is of the form C · 1
K

for some
constant C where

K := α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h) > 0

for any fixed α, β > 0 with α ≤ β, g ≤ α
α+β

, and h ≤ α
α+β

. So, to verify v̂ ≥ O, we check
that the corresponding constant C is non-negative for each entry. To verify v̂1 ≥ 0, note
that (1 +α)(α+ β)(1− h) ≥ 0 for any fixed α, β > 0, and h ≤ α

α+β
. To verify v̂2 ≥ 0, note

that α(1 + β)(α + β)(1− g) ≥ 0 for any fixed α, β > 0, and g ≤ α
α+β

.

Having shown v̂ is non-negative, we next verify that v̂ satisfies the constraints of (D′). As
each constraint is of the form (1lT + [k1, k2])v ≤ 1, it suffices to check

k1v̂1 + k2v̂2 ≤
α(β − α)

α(β − α) + α(1 + β)(α + β)(1− g) + (1 + α)(α + β)(1− h)
.

To verify v̂ satisfies the first constraint, we calculate

LHS =

(
1

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

)
·[

−
(

α

(α+ β)(1− h)

)
((1 + α)(α+ β)(1− h)) +

(
1

(α+ β)(1− g)

)
(α(1 + β)(α+ β)(1− g))

]
=

−α(1 + α) + α(1 + β)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

=
α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

and conclude that v̂ satisfies the first constraint; moreover, it satisfies this constraint with
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equality. To verify v̂ satisfies the second constraint, we calculate

LHS =

(
1

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

)
·[(

αβ

(α+ β)(1− h)

)
((1 + α)(α+ β)(1− h))−

(
α

(α+ β)(1− g)

)
(α(1 + β)(α+ β)(1− g))

]
=

αβ(1 + α)− α2(1 + β)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

=
α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

and conclude that v̂ satisfies the second constraint; moreover, it satisfies this constraint with
equality. As the first and third dual constraints coincide, v̂ satisfies the third constraint
with equality. As the second and fourth dual constraints coincide v̂ satisfies the fourth
constraint with equality. Therefore, v̂ is feasible for (D′) and thus the optimal value of
(P ′) is at least LBSW (α, β, g, h).

Proposition 3.4.2. The optimal value of (P ′) in Lemma 3.4.1 is exactly LBSW (α, β, g, h).

Proof. See Appendix B.1 where a primal feasible solution of objective function value
LBSW (α, β, g, h) is provided.

3.5 South Region

In the South Region, we use the intersection cuts for the three triangles RS1(τ bp11 ), RS2(τ̂2),
and RS3(τ bp13 ) where

τ̂2 :=
(α + β)(1− h)

αβ + (α + β)(1− h)
,

consistently with our choice of τ̂2 in the South-West Region. These triangles are illustrated
in Figure 3.13.

Lemma 3.5.1. For fixed α, β > 0 such that α ≤ β and g, h such that (g, h)T ∈ RS(α, β),
let (P ′) be the parameterized linear program obtained from (P (α, β, g, h)) by replacing con-
straint (3.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles
RS1(τ bp11 ), RS2(τ̂2), and RS3(τ bp13 ). Then, the optimal value of (P ′) is greater than or equal
to

LBS(α, β, h) := 1− α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α + β)(1− h)
.
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Proof. Looking up the cuts in Appendix A and specializing for a = d = α and b = c = β,
the constraint matrix is

M(α, β, g, h) :=


(

1 + α
β(α+β)g

) (
1− α2

β(α+β)g

) (
1 + 1

(α+β)g

) (
1− α

(α+β)g

)(
1− α

(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

) (
1− α

(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

)(
1 + 1

(α+β)(1−g)

) (
1− α

(α+β)(1−g)

) (
1 + α

β(α+β)(1−g)

) (
1− α2

β(α+β)(1−g)

)
 .

v1

v2

v3

v4

f

v1

v2

v3

v4

f

v1

v2

v3

v4

f

Figure 3.13: Clockwise from top: RS2(τ̂2), RS3(τ bp13 ), and RS1(τ bp11 ) for α = 1
3
, β = 3

2
,

g = 1
2

and h = 1
6
.
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So, optimization problem (P ′) is given by

min s1 + s2 + s3 + s4

s. t.


(

1 + α
β(α+β)g

) (
1− α2

β(α+β)g

) (
1 + 1

(α+β)g

) (
1− α

(α+β)g

)(
1− α

(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

) (
1− α

(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

)(
1 + 1

(α+β)(1−g)

) (
1− α

(α+β)(1−g)

) (
1 + α

β(α+β)(1−g)

) (
1− α2

β(α+β)(1−g)

)


s1

s2

s3

s4

 ≥ 1l

s1, s2, s3, s4 ≥ 0.

The dual (D′) of (P ′) is given by

max v1 + v2 + v3

subject to



(
1 + α

β(α+β)g

) (
1− α

(α+β)(1−h)

) (
1 + 1

(α+β)(1−g)

)(
1− α2

β(α+β)g

) (
1 + αβ

(α+β)(1−h)

) (
1− α

(α+β)(1−g)

)(
1 + 1

(α+β)g

) (
1− α

(α+β)(1−h)

) (
1 + α

β(α+β)(1−g)

)(
1− α

(α+β)g

) (
1 + αβ

(α+β)(1−h)

) (
1− α2

β(α+β)(1−g)

)


v1

v2

v3

 ≤ 1l

v1, v2, v3 ≥ 0.

We will show that

v̂ :=


αβ(1+β)g

α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)
(1+α)(α+β)(1−h)

α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)
αβ(1+β)(1−g)

α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)


is feasible for (D′). Thus, the optimal value of (P ′) is bounded below by LBS(α, β, g, h)
because

1lT v̂ =
αβ(1 + β)g + (1 + α)(α+ β)(1− h) + αβ(1 + β)(1− g)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

=
αβ(1 + β) + (1 + α)(α+ β)(1− h)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

= 1− α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)
.

Now we show that v̂ is feasible for (D′). Each entry of v̂ is of the form C · 1
K

for some
constant C where

K := α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h) > 0
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for any fixed α, β > 0 with α ≤ β, and h ≤ α
α+β

. So, to verify v̂ ≥ O, we check that
the corresponding constant C is non-negative for each entry. To verify v̂1 ≥ 0, note that

αβ(1 + β)g ≥ 0 for any fixed α, β > 0, and g ∈
[

α
α+β

, β
α+β

]
. To verify v̂2 ≥ 0, note that

(1 +α)(α+ β)(1− h) ≥ 0 for any fixed α, β > 0, and h ≤ α
α+β

. To verify v̂3 ≥ 0, note that

αβ(1 + β)(1− g) ≥ 0 for any fixed α, β > 0, and g ∈
[

α
α+β

, β
α+β

]
.

Having shown v̂ is non-negative, we next verify that v̂ satisfies the constraints of (D′). As
each constraint is of the form (1lT + [k1, k2, k3])v ≤ 1, it suffices to check

k1v̂1 + k2v̂2 + k3v̂3 ≤
α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α + β)(1− h)
.

To verify v̂ satisfies the first constraint, we calculate

LHS =

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·

[(
α

β(α+ β)g

)
(αβ(1 + β)g) + . . .

−
(

α

(α+ β)(1− h)

)
((1 + α)(α+ β)(1− h)) +

(
1

(α+ β)(1− g)

)
(αβ(1 + β)(1− g))

]

=

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·
[(

α2(1 + β)

(α+ β)

)
− α(1 + α) +

(
αβ(1 + β)

(α+ β)

)]
=

(
α(1 + β)− α(1 + α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
=

α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

and conclude that v̂ satisfies the first constraint; moreover, it satisfies this constraint with
equality. To verify v̂ satisfies the second constraint, we calculate

LHS =

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·

[
−
(

α2

β(α+ β)g

)
(αβ(1 + β)g) + . . .

+

(
αβ

(α+ β)(1− h)

)
((1 + α)(α+ β)(1− h))−

(
α

(α+ β)(1− g)

)
(αβ(1 + β)(1− g))

]

=

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·
[
−
(
α3(1 + β)

(α+ β)

)
+ αβ(1 + α)−

(
α2β(1 + β)

(α+ β)

)]
=

−α2(1 + β) + αβ(1 + α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

=
α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)
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and conclude that v̂ satisfies the second constraint; moreover, it satisfies this constraint
with equality. To verify v̂ satisfies the third constraint, we calculate

LHS =

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·

[(
1

(α+ β)g

)
(αβ(1 + β)g) + . . .

−
(

α

(α+ β)(1− h)

)
((1 + α)(α+ β)(1− h)) +

(
α

β(α+ β)(1− g)

)
(αβ(1 + β)(1− g))

]

=

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·
[(

αβ(1 + β)

(α+ β)

)
− α(1 + α) +

(
α2(1 + β)

(α+ β)

)]
=

α(1 + β)− α(1 + α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

=
α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

and conclude that v̂ satisfies the third constraint; moreover, it satisfies this constraint with
equality. To verify v̂ satisfies the fourth constraint, we calculate

LHS =

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·

[
−
(

α

(α+ β)g

)
(αβ(1 + β)g) + . . .

+

(
αβ

(α+ β)(1− h)

)
((1 + α)(α+ β)(1− h))−

(
α2

β(α+ β)(1− g)

)
(αβ(1 + β)(1− g))

]

=

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·
[
−
(
α2β(1 + β)

(α+ β)

)
+ αβ(1 + α)−

(
α3(1 + β)

(α+ β)

)]
=

−α2(1 + β) + αβ(1 + α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

=
α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

and conclude that v̂ satisfies the fourth constraint; moreover, it satisfies this constraint
with equality. Therefore, v̂ is feasible for (D′) and thus the optimal value of (P ′) is at least
LBS(α, β, g, h).

Proposition 3.5.2. The optimal value of (P ′) in Lemma 3.5.1 is exactly LBS(α, β, g, h).

Proof. See Appendix B.2 where a primal feasible solution of objective function value
LBS(α, β, g, h) is provided.
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3.6 Proof of Theorem 1.3.21

We find the worst case bound on the optimal value of (P (α, β, g, h)) over all 0 < α ≤ β
and (g, h)T ∈ intQ2(α, β) to bound ρ[T2,Q2].

Figure 3.14: Contour plots of the lower bound on the optimal value of (P (1
2
, 2, g, h)) (top),

(P (1
3
, 2, g, h)) (left) and (P (2, 3, g, h)) (right) as a function of g and h. To obtain the bounds

outside of the South-West, South and Central Regions, the mapping in Remark 3.1.1 is
used.

Theorem 3.6.1 (Theorem 1.3.21). The optimal value of (P (α, β, g, h)) is at least 8
9

for
all α, β > 0 with α ≤ β and (g, h)T ∈ intQ2(α, β). Therefore ρ[T2,Q2] ≤ 9

8
.
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Proof. By Remark 3.1.1, it suffices to show that the optimal value of (P (α, β, g, h)) is
at least 8

9
for all α, β > 0 with α ≤ β and (g, h)T ∈ intQ2(α, β) where either: (1)

(g, h)T ∈ RCentral(α, β), (2) (g, h)T ∈ RSW (α, β), or (3) (g, h)T ∈ RS(α, β). If α = β, then
the bounds provided by Lemma 3.2.1, Lemma 3.4.1, and Lemma 3.5.1 are equal to 1 ≥ 8

9
.

Thus we may assume that α < β. We show that in all three cases the optimal value of
(P (α, β, g, h)) is lower-bounded by LBCentral(α, β).

Case 1: (g, h)T ∈ RCentral(α, β)
The optimal value of (P (α, β, g, h)) is lower-bounded by LBCentral(α, β) as provided by
Lemma 3.2.1.

Case 2: (g, h)T ∈ RSW (α, β)
By Lemma 3.4.1, the optimal value of (P (α, β, g, h)) is lower-bounded by

LBSW (α, β, g, h) = 1− α(β − α)

α(β − α) + α(1 + β)(α + β)(1− g) + (1 + α)(α + β)(1− h)
.

Now LBSW (α, β, g, h) = 1− 1
1+T (α,β,g,h)

where

T (α, β, g, h) :=

(
α(1 + β)(α + β)

α(β − α)

)
(1− g) +

(
(1 + α)(α + β)

α(β − α)

)
(1− h)

Since T (α, β, g, h) ≥ 0, LBSW is smallest whenever T is smallest by Lemma 2.1.4. Note
that the coefficients of g and h in T (α, β, g, h) are non-positive. Therefore

T (α, β, g, h) ≥ T

(
α, β,

α

α + β
,

α

α + β

)
=

(
αβ(1 + β)

α(β − α)

)
+

(
(1 + α)β

α(β − α)

)
and

LBSW (α, β, g, h) ≥ 1− α(β − α)

α(β − α) + αβ(1 + β) + β(1 + α)
= LBCentral(α, β).

Therefore the optimal value of (P (α, β, g, h)) is lower-bounded by LBCentral(α, β)

Case 3: (g, h)T ∈ RS(α, β)
By Lemma 3.5.1, the optimal value of (P (α, β, g, h)) is lower-bounded by

LBS(α, β, h) := 1− α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α + β)(1− h)
.

Now LBS(α, β, h) = 1− 1
1+T (α,β,h)

where

T (α, β, h) :=

(
αβ(1 + β)

α(β − α)

)
+

(
(1 + α)(α + β)

α(β − α)

)
(1− h)
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Since T (α, β, h) ≥ 0, LBSW is smallest whenever T is smallest by Lemma 2.1.4. Note that
the coefficient of h in T (α, β, h) is non-positive. Therefore

T (α, β, h) ≥ T

(
α, β,

α

α + β

)
=

(
αβ(1 + β)

α(β − α)

)
+

(
(1 + α)β

α(β − α)

)
and

LBS(α, β, g, h) ≥ 1− α(β − α)

α(β − α) + αβ(1 + β) + β(1 + α)
= LBCentral(α, β).

Therefore the optimal value of (P (α, β, g, h)) is lower-bounded by LBCentral(α, β) for all
α, β > 0 with α ≤ β and (g, h)T ∈ intQ2(α, β). Since LBCentral(α, β) ≥ 8

9
for all α, β > 0

with α ≤ β by Lemma 3.2.2, it follows that the optimal value of (S(T2,Q2)) is at least 8
9
.

The bound on ρ[T2,Q2] follows immediately from Theorem 2.1.1.

3.7 Observations and Summary

Together Theorem 3.6.1 and Lemma 2.3.1 imply that ρ[T2,Q2] = 9
8
. Hence we have proved

the main result in this chapter. Before moving on to general quadrilaterals, we note a
couple similarities in the proof that ρ[T2,Q2] ≤ 5

4
using fixed triangles (Theorem 2.2.8)

and the stronger bound proved here.

In both the analyses, finding the weakest lower bound relied on the lower bound being of
the form 1 + 1

1+T (α,β,g,h)
where T is an affine function of g and h. This is not an accident.

We choose τ values so that for T = RSi(τ) there is some A(g, h) ∈ {g, 1− g, h, 1− h} and
constants κj such that ψf ;T (rj) = 1 ± 1

κjA(g,h)
for all j ∈ {1, 2, 3, 4}. When the constraint

matrix is of the form in Lemma 2.1.3, matrix A can therefore be expressed as DA′ where
D is a diagonal matrix with each diagonal entry in {1

g
, 1

1−g ,
1
h
, 1

1−h}. The corresponding

objective function provided by Lemma 2.1.3 is 1+ 1
1+1lTA−11l

. Now A−1 is A′−1D−1 and D−1

is a diagonal matrix with each diagonal entry in {g, 1 − g, h, 1 − h}. From here it is easy
to see that the bound will be of the form 1 + 1

1+T (α,β,g,h)
where T is affine in g and h.

In both the analyses, if we fix α and β, the weakest lower bound occurs for f on the
boundary lines of the partition of intQ2(α, β). Using fixed triangles, this gave the weakest
bound occurring for f tending to the corners of [0, 1]2. The bound is constant across
[0, 1]2. Using ray-sliding triangles as described in this chapter, this gave the weakest bound
occurring for f tending towards the corners of RCentral(α, β). Interestingly, the bound is
constant across RCentral(α, β).

109



Chapter 4

Approximating General Quadrilateral
Cuts with Type 2 Triangle Cuts

v1

v2

v3

v4

f

v1

v2

v3

v4

f v1

v2

v3

v4

f

Figure 4.1: Quadrilaterals for parameters a = 1
5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2

(left) ; a = 1
3
, b = 6, c = 1

2
, d = 1, g = 1

3
, and h = 1

4
(center) ; and a = 1, b = 1

2
, c = 6,

d = 1, g = 1
10

, and h = 1
10

(right).

In this chapter we prove Theorem 1.3.19 showing that ρ[T2,Q] ≤ 5
4
. We follow the proof

strategy in Section 2.1. Per Section 2.1.1 the value of 1
ρ[T2,Q]

is equal to the optimal value
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of semi-infinite program (S(T2,Q)) in variables a, b, c, d, g, h, s1, s2, s3, and s4 given by

inf s1 + s2 + s3 + s4 (4.1)

s. t. s ∈ T2

( (
g
h

)
;

(
1 + 1

b+d − g
b
b+d − h

)
,

( b
a+b − g
−ab
a+b − h

)
,

( −1
a+c − g
a
a+c − h

)
,

( d
c+d − g

1 + cd
c+d − h

))
(4.2)(

g
h

)
∈ int

(
conv

{(
1 + 1

b+d
b
b+d

)
,

( b
a+b
−ab
a+b

)
,

( −1
a+c
a
a+c

)
,

( d
c+d

1 + cd
c+d

)})
(4.3)

a, b, c, d > 0 ; a, b, c, d ∈ Q ; ad ≤ bc (4.4)(
g
h

)
∈ Q2 \ Z2. (4.5)

Treating a, b, c, d > 0 with ad ≤ bc and (g, h)T ∈ intQ(a, b, c, d) as data in the optimization
problem above, we obtain a semi-infinite linear program in variables s1, s2, s3, and s4 given
by

inf s1 + s2 + s3 + s4 (4.6)

s. t. s ∈ T2

( (
g
h

)
;

(
1 + 1

b+d
− g

b
b+d
− h

)
,

(
b

a+b
− g

−ab
a+b
− h

)
,

( −1
a+c
− g

a
a+c
− h

)
,

(
d
c+d
− g

1 + cd
c+d
− h

))
. (4.7)

We will denote this program by (P (a, b, c, d, g, h)).

We will lower bound the optimal value of (P (a, b, c, d, g, h)) for all a, b, c, d > 0 with ad ≤ bc
and (g, h)T ∈ intQ(a, b, c, d). Following Section 3.1, we identify the following three sub-
regions of intQ(a, b, c, d):

1. South-West Region: RSW (a, b, c, d) :=
{

(g, h)T ∈ intQ(a, b, c, d) : g ≤ d
c+d

, h ≤ a
a+c

}
,

2. South Region: RS(a, b, c, d) :=
{

(g, h)T ∈ intQ(a, b, c, d) : g ∈
[

d
c+d

, b
a+b

]
, h ≤ a

a+c

}
,

3. and Central Region:
RCentral(a, b, c, d) :=

{
(g, h)T ∈ intQ(a, b, c, d) : g ∈

[
d
c+d

, b
a+b

]
, h ∈

[
a
a+c

, b
b+d

]}
.

The symmetry argument in Remark 3.1.1 shows it suffices to analyze (P (a, b, c, d, g, h)) for
given a, b, c, d > 0 with ad ≤ bc only for (g, h)T in one of these three regions.

In Section 4.1 we analyze the Central Region. We replace constraint (4.7) with the intersec-
tion cuts for four ray-sliding triangles at their unique ray breakpoint. Solving the resulting
parametric linear program exactly we obtain a lower bound LBCentral(a, b, c, d, g, h). Lower
bound LBCentral(a, b, c, d, g, h) is at least 4

5
for all a, b, c, d > 0 with ad ≤ bc and g, h such

that (g, h)T ∈ [0, 1]2.

In Section 4.2 we analyze the South-West Region. We replace constraint (4.7) with the
intersection cuts for four ray-sliding triangles: two ray-sliding triangles for each of rays
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2 and 3. For each ray i ∈ {2, 3} we choose the ray-sliding triangles for both ray break-
points. Solving the resulting parametric linear program exactly we obtain a lower bound
LBSW (a, b, c, d, g, h). For fixed a, b, c, d, the lower bound is affine in g and h and weakest

for (g, h)T =
(

d
c+d

, a
a+c

)T
= RCentral(a, b, c, d) ∩ RSW (a, b, c, d). Therefore a lower bound of

4
5

follows from the bound on LBCentral(a, b, c, d, g, h).

In Section 4.3 we analyze the South Region. We replace constraint (4.7) with the inter-
section cuts for four ray-sliding triangles: one ray-sliding triangle for each of rays 1 and 3
and two ray-sliding triangles for ray 2. For each ray i ∈ {1, 3} we choose the ray-sliding
triangle at its unique ray breakpoint. For ray 2, we choose the ray-sliding triangles for
both ray breakpoints. Solving the resulting parametric linear program exactly we obtain a
lower bound LBS(a, b, c, d, g, h). For fixed a, b, c, d, the lower bound is affine in g and h and
weakest for (g, h)T ∈ {(x, y)T ∈ RS(a, b, c, d) : y = a

a+c
} = RCentral(a, b, c, d)∩RS(a, b, c, d).

Therefore a lower bound of 4
5

follows from the bound on LBCentral(a, b, c, d, g, h).

We amalgamate the results for the Central, South-West and South Regions to conclude
ρ[T2,Q] ≤ 5

4
in Section 4.4.

4.1 Central Region

Focusing first on the Central Region, we use the intersection cuts for four ray-sliding
triangles at the first (unique) ray breakpoint, as illustrated in Figure 4.2.

Lemma 4.1.1. For fixed a, b, c, d > 0 with ad ≤ bc and g, h with (g, h)T ∈ RCentral(a, b, c, d),
let (P ′) be the parameterized linear program obtained from (P (a, b, c, d, g, h)) by replacing
constraint (4.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles
RS1(τ bp11 ), RS2(τ bp12 ), RS3(τ bp13 ), and RS4(τ bp14 ). Then, the optimal value of (P ′) is equal
to

LBCentral(a, b, c, d, g, h) := 1− bc− ad
bc− ad+ tC1 + tC2 + tC3 + tC4

where

tC1 = (b+ d)[bc(1− g) + ch] , tC2 =

(
a+ b

a

)
[ch+ acg],

tC3 = (a+ c)[bcg + b(1− h)] , and tC4 =

(
c+ d

d

)
[b(1− h) + bd(1− g)].
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Figure 4.2: Triangles
RS1(τ bp11 ) (middle left),
RS2(τ bp12 ) (top),
RS3(τ bp13 ) (middle right), and
RS4(τ bp14 ) (bottom)
for a = 1

5
, b = 2, c = 3, d = 1

2
,

g = 1
3
, and h = 1

2
.
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Proof. We order the cuts RS3(τ bp13 ), RS4(τ bp14 ), RS1(τ bp11 ), RS2(τ bp12 ) so the constraint
matrix is nicer to work with. Looking up the cuts in Appendix A, the constraint matrix is

(
1 + 1

(b+d)(1−g)

) (
1− a

(a+b)(1−g)

) (
1 + a

b(a+c)(1−g)

) (
1− ad

b(c+d)(1−g)

)(
1− ad

c(b+d)h

) (
1 + ab

(a+b)h

) (
1− a

(a+c)h

) (
1 + ad

(c+d)h

)(
1 + d

c(b+d)g

) (
1− ad

c(a+b)g

) (
1 + 1

(a+c)g

) (
1− d

(c+d)g

)(
1− d

(b+d)(1−h)

) (
1 + ad

(a+b)(1−h)

) (
1− ad

b(a+c)(1−h)

) (
1 + cd

(c+d)(1−h)

)

 .

So, optimization problem (P ′) is given by

min 1lT s

subject to
[
1l1lT + A

]
s ≥ 1l

s ≥ O

where

A :=


1

1−g 0 0 0

0 a
h 0 0

0 0 1
g 0

0 0 0 d
1−h




1 −1 a
b −a

b

−d
c

b
a −1 1

d
c −d

c 1 −1
−1 1 −a

b
c
d




1
b+d 0 0 0

0 a
a+b 0 0

0 0 1
a+c 0

0 0 0 d
c+d

 .

First we assume ad 6= bc. We compute

A−1 =

(
1

bc− ad

)
b+ d 0 0 0

0 a+b
a 0 0

0 0 a+ c 0

0 0 0 c+d
d



bc ac 0 0
0 ac ac 0
0 0 bc bd
bd 0 0 bd




1− g 0 0 0

0 h
a 0 0

0 0 g 0

0 0 0 1−h
d

 ,

A−11l =

(
1

bc− ad

)
(b+ d)[bc(1− g) + ch](

a+b
a

)
(ch+ acg)

(a+ c)[bcg + b(1− h)](
c+d
d

)
[b(1− h) + bd(1− g)]

 =

(
1

bc− ad

)
tC1
tC2
tC3
tC4

 , and

1lTA−11l =

(
1

bc− ad

)(
tC1 + tC2 + tC3 + tC4

)
.
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Note that the entries of A−1 are non-negative because a, b, c, d > 0, ad < bc, and (g, h)T ∈
RCentral(a, b, c, d) ⊆ (0, 1)2. Apply Lemma 2.1.3 to conclude the optimal value of (P ′) is

1− 1

1 + 1lTA−11l
= 1− bc− ad

bc− ad+ tC1 + tC2 + tC3 + tC4
= LBCentral(a, b, c, d, g, h)

whenever ad < bc.

If ad = bc, then A isn’t invertible. However, we can still construct primal and dual feasible
solutions with equal objective function value of 1 as required. We refer the reader to Ap-
pendix C where we reprove this lemma by explicitly constructing the solutions and checking
primal feasibility, dual feasibility and optimality, rather than relying on Lemma 2.1.3.

Lemma 4.1.2. For all a, b, c, d > 0 with ad ≤ bc and g, h with (g, h)T ∈ [0, 1]2,

LBCentral(a, b, c, d, g, h) ≥ 4

5
.

Proof. If ad = bc, then LBCentral(a, b, c, d, g, h) = 1 ≥ 4
5
. So, we may assume ad < bc. Now

LBCentral(a, b, c, d, g, h) = 1− 1
1+T (a,b,c,d,g,h)

where

T (a, b, c, d, g, h) :=
tC1 + tC2 + tC3 + tC4

bc− ad
.

Now tCi ≥ 0 for all i ∈ {1, 2, 3, 4} and bc − ad > 0. Therefore T (a, b, c, d, g, h) ≥ 0 and
LBCentral(a, b, c, d, g, h) is smallest whenever T (a, b, c, d, g, h) is smallest by Lemma 2.1.4.
Define T ′ : R++ → R by

T ′(ε) = inf

{
T (a, b, c, d, g, h) : (g, h)T ∈ [0, 1]2, a, b, c, d ∈

[
ε,

1

ε

]}
.

For fixed ε > 0, T ′(ε) is the infimum of a continuous function over a compact set. It
therefore attains its minimum at some fixed values for a, b, c, d, g, and h. For fixed a, b, c,
and d, T (a, b, c, d, g, h) is affine in g and h and therefore attains its minimum for g = 0 or
g = 1 and also h = 0 or h = 1.

Case 1 : (g, h)T = (0, 0)T

T (a, b, c, d, 0, 0) =
(b+ d)[bc] + (a+ c)[b] +

(
c+d
d

)
[b+ bd]

bc− ad

=
bc
(
b+ d+ 2 + 1

d

)
+ ab+ b+ bd

bc− ad

≥
bc(b+ d+ 2 + 1

d
)

bc
≥ 4
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where the last inequality holds because d+ 1
d
≥ 2 for d > 0.

Case 2 : (g, h)T = (0, 1)T

T (a, b, c, d, 0, 1) =
(b+ d)[bc+ c] +

(
a+b
a

)
[c] +

(
c+d
d

)
[bd]

bc− ad

=
bc(b+ d+ 2 + 1

b
+ 1

a
) + cd+ bd

bc− ad

≥
bc(b+ d+ 2 + 1

b
+ 1

a
)

bc
≥ 4

where the last inequality holds because b+ 1
b
≥ 2 for b > 0.

Case 3 : (g, h)T = (1, 0)T

T (a, b, c, d, 1, 0) =

(
a+b
a

)
[ac] + (a+ c)[bc+ b] +

(
c+d
d

)
[b]

bc− ad

=
bc
(
1 + a+ c+ 1 + 1

d
+ 1

c

)
+ ac+ ab

bc− ad

≥
bc
(
1 + a+ c+ 1 + 1

d
+ 1

c

)
bc

≥ 4

where the last inequality holds because c+ 1
c
≥ 2 for c > 0.

Case 4 : (g, h)T = (1, 1)T

T (a, b, c, d, 1, 1) =
(b+ d)[c] +

(
a+b
a

)
[c+ ac] + (a+ c)[bc]

bc− ad

=
bc(2 + 1

a
+ 1 + a+ c) + dc+ d+ ac

bc− ad

≥
bc(2 + 1

a
+ 1 + a+ c)

bc
≥ 4

where the last inequality holds because a+ 1
a
≥ 2 for a > 0.

Therefore T ′(ε) ≥ 4 for all ε > 0. It follows that T (a, b, c, d, g, h) ≥ 4 for all a, b, c, d > 0
such that ad ≤ bc and (g, h)T ∈ [0, 1]2. Therefore LBCentral(a, b, c, d, g, h) ≥ 1 − 1

1+4
=

4
5
.
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4.2 South-West Region

In the South-West Region, we use the intersection cuts for ray-sliding triangles for rays 2
and 3 at both ray breakpoints, as illustrated in Figure 4.3.

Lemma 4.2.1. For fixed a, b, c, d > 0 with ad ≤ bc and g, h with (g, h)T ∈ RSW (a, b, c, d),
let (P ′) be the parameterized linear program obtained from (P (a, b, c, d, g, h)) by replacing
constraint (4.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles
RS2(τ bp22 ), RS2(τ bp12 ), RS3(τ bp23 ), and RS3(τ bp13 ). Then, the optimal value of (P ′) is equal
to

LBSW (a, b, c, d, g, h) := 1− bc− ad
bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

where

tSW1 = (b+ d)[a(1− h) + bc(1− g)] , tSW2 = (a+ b)[(1− h) + d(1− g)],

tSW3 = (a+ c)[b(1− h) + bd(1− g)] , and tSW4 = (c+ d)

[
b(1− h)

d
+ b(1− g)

]
.

Proof. Looking up the cuts in Appendix A the constraint matrix is

(
1− d

(b+d)(1−h)

) (
1 + bc

(a+b)(1−h)

) (
1− c

(a+c)(1−h)

) (
1 + cd

(c+d)(1−h)

)(
1− d

(b+d)(1−h)

) (
1 + ad

(a+b)(1−h)

) (
1− ad

b(a+c)(1−h)

) (
1 + cd

(c+d)(1−h)

)(
1 + 1

(b+d)(1−g)

) (
1− a

(a+b)(1−g)

) (
1 + c

(a+c)d(1−g)

) (
1− c

(c+d)(1−g)

)(
1 + 1

(b+d)(1−g)

) (
1− a

(a+b)(1−g)

) (
1 + a

b(a+c)(1−g)

) (
1− ad

b(c+d)(1−g)

)


So, optimization problem (P ′) is given by

min 1lT s

subject to
[
1l1lT + A

]
s ≥ 1l

s ≥ O

where

A :=


1

1−h 0 0 0

0 1
1−h 0 0

0 0 1
1−g 0

0 0 0 1
1−g



−d bc −c cd

−d ad −ad
b cd

1 −a c
d −c

1 −a a
b −ad

b




1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d

 .
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Figure 4.3: Triangles
RS2(τ bp22 ) (top left),
RS2(τ bp12 ) (middle left),
RS3(τ bp23 ) (middle right), and
RS3(τ bp13 ) (bottom)
for a = 1

3
, b = 6, c = 1

2
, d = 1, g = 1

3
, and h = 1

4
.

To provide examples where the corresponding triangles fit

on the page at a reasonable scale, we use different param-

eters a, b, c, d, g and h for some examples. Ray-sliding tri-

angles tend to a split as τ approaches τmin, so its easy to

construct instances where some vertex of the triangle has

a very large coordinate.
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First we assume ad 6= bc. We compute

A−1 =

(
1

bc− ad

)
b+ d 0 0 0

0 a+ b 0 0
0 0 a+ c 0
0 0 0 c+ d



a 0 0 bc
1 0 d 0
0 b bd 0

0 b
d 0 b




1− h 0 0 0
0 1− h 0 0
0 0 1− g 0
0 0 0 1− g

 ,

A−11l =

(
1

bc− ad

)
(b+ d)[a(1− h) + bc(1− g)]
(a+ b)[(1− h) + d(1− g)]

(a+ c)[b(1− h) + bd(1− g)]

(c+ d)
[
b(1−h)
d + b(1− g)

]
 =

(
1

bc− ad

)
tSW1

tSW2

tSW3

tSW4

 , and

1lTA−11l =

(
1

bc− ad

)(
tSW1 + tSW2 + tSW3 + tSW4

)
.

Note that the entries of A−1 are non-negative because a, b, c, d > 0, ad < bc and (g, h)T ∈
RSW (a, b, c, d) ⊆ {(x, y)T ∈ R2 : x < 1, y < 1}. Apply Lemma 2.1.3 to conclude the
optimal value of (P ′) is

1− 1

1 + 1lTA−11l
= 1− bc− ad

bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

= LBSW (a, b, c, d, g, h)

whenever ad < bc.

If ad = bc, then A isn’t invertible. However, we can still construct primal and dual feasible
solutions with equal objective function value of 1 as required. We refer the reader to Ap-
pendix C where we reprove this lemma by explicitly constructing the solutions and checking
primal feasibility, dual feasibility and optimality, rather than relying on Lemma 2.1.3.

Lemma 4.2.2. For all a, b, c, d > 0 with ad ≤ bc and g, h with (g, h)T ∈ RSW (a, b, c, d),

LBSW (a, b, c, d, g, h) ≥ 4

5
.

Proof. Note that tSWi ≥ 0 for all i ∈ {1, 2, 3, 4} but the coefficients of g and h in tSWi are
negative for all i ∈ {1, 2, 3, 4}. Since bc ≥ ad we have

LBSW (a, b, c, d, g, h) ≥ LBSW

(
a, b, c, d,

d

c+ d
,

a

a+ c

)
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because g ≤ d
c+d

and h ≤ a
a+c

whenever (g, h)T ∈ RSW (a, b, c, d).

Note that LBCentral

(
a, b, c, d, d

c+d
, a
a+c

)
= 1− bc−ad

bc−ad+T
where

T = (b+ d)

[(
bc2

c+ d

)
+

(
ac

a+ c

)]
+

(
a+ b

a

)[(
ac

a+ c

)
+

(
acd

c+ d

)]
+ . . .

. . .+ (a+ c)

[(
bcd

c+ d

)
+

(
bc

a+ c

)]
+

(
c+ d

d

)[(
bc

a+ c

)
+

(
bcd

c+ d

)]
.

Note that LBSW (a, b, c, d, d
c+d

, a
a+c

) = 1− bc−ad
bc−ad+T

where

T = (b+ d)

[(
ac

a+ c

)
+

(
bc2

c+ d

)]
+ (a+ b)

[(
c

a+ c

)
+

(
cd

c+ d

)]
+ . . .

. . .+ (a+ c)

[(
bc

a+ c

)
+

(
bcd

c+ d

)]
+ (c+ d)

[(
bc

d(a+ c)

)
+

(
bc

c+ d

)]
.

So LBSW

(
a, b, c, d, d

c+d
, a
a+c

)
= LBCentral

(
a, b, c, d, d

c+d
, a
a+c

)
. As d

c+d
∈ [0, 1] and a

a+c
∈

[0, 1], it follows from Lemma 4.1.2 that LBSW

(
a, b, c, d, d

c+d
, a
a+c

)
≥ 4

5
and therefore

LBSW (a, b, c, d, g, h) ≥ 4
5
.

4.3 South Region

In the South Region, we use the intersection cuts for ray-sliding triangles for rays 1 and 3 at
their unique ray breakpoint and ray 2 at both ray breakpoints, as illustrated in Figure 4.4.

Lemma 4.3.1. For fixed a, b, c, d > 0 with ad ≤ bc and g, h with (g, h)T ∈ RS(a, b, c, d),
let (P ′) be the parameterized linear program obtained from (P (a, b, c, d, g, h)) by replacing
constraint (4.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles
RS1(τ bp11 ), RS2(τ bp22 ), RS2(τ bp12 ), and RS3(τ bp13 ). Then, the optimal value of (P ′) is equal
to

LBS(a, b, c, d, g, h) := 1− bc− ad
bc− ad+ tS1 + tS2 + tS3 + tS4

where

tS1 = (b+ d)[a(1− h) + bc(1− g)] , tS2 = (a+ b)[cg + (1− h)],

tS3 = (a+ c)[bcg + b(1− h)] , and tS4 = (c+ d)

[
b

d
(1− h) + b(1− g)

]
.
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Figure 4.4: Triangles RS1(τ bp11 ) (bottom left), RS2(τ bp22 ) (top), RS2(τ bp12 ) (middle), and
RS3(τ bp13 ) (bottom right) for a = 1

5
, b = 2, c = 3, d = 1

2
, g = 1

2
, and h = − 1

15
.
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Proof. Looking up the cuts in Appendix A the constraint matrix is

(
1 + d

c(b+d)g

) (
1− ad

c(a+b)g

) (
1 + 1

(a+c)g

) (
1− d

(c+d)g

)(
1− d

(b+d)(1−h)

) (
1 + bc

(a+b)(1−h)

) (
1− c

(a+c)(1−h)

) (
1 + cd

(c+d)(1−h)

)(
1− d

(b+d)(1−h)

) (
1 + ad

(a+b)(1−h)

) (
1− ad

b(a+c)(1−h)

) (
1 + cd

(c+d)(1−h)

)(
1 + 1

(b+d)(1−g)

) (
1− a

(a+b)(1−g)

) (
1 + a

b(a+c)(1−g)

) (
1− ad

b(c+d)(1−g)

)


So, optimization problem (P ′) is given by

min 1lT s

subject to
[
1l1lT + A

]
s ≥ 1l

s ≥ O

where

A :=


1
g 0 0 0

0 1
1−h 0 0

0 0 1
1−h 0

0 0 0 1
1−g




d
c −ad

c 1 −d
−d bc −c cd

−d ad −ad
b cd

1 −a a
b −ad

b




1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d

 .

First we assume ad 6= bc. We compute

A−1 =

(
1

bc− ad

)
b+ d 0 0 0

0 a+ b 0 0
0 0 a+ c 0
0 0 0 c+ d




0 a 0 bc
c 1 0 0
bc 0 b 0

0 0 b
d b



g 0 0 0
0 1− h 0 0
0 0 1− h 0
0 0 0 1− g

 ,

A−11l =

(
1

bc− ad

)
(b+ d)[a(1− h) + bc(1− g)]

(a+ b)[cg + (1− h)]
(a+ c)[bcg + b(1− h)]

(c+ d)[ bd(1− h) + b(1− g)]

 =

(
1

bc− ad

)
tS1
tS2
tS3
tS4

 , and

1lTA−11l =

(
1

bc− ad

)(
tS1 + tS2 + tS3 + tS4

)
.
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Note that the entries of A−1 are non-negative because a, b, c, d > 0, ad < bc, and (g, h)T ∈
RS(a, b, c, d) ⊆ {(x, y)T ∈ R2 : 0 < x < 1, y < 1}. Apply Lemma 2.1.3 to conclude the
optimal value of (P ′) is

1− 1

1 + 1lTA−11l
= 1− bc− ad

bc− ad+ tS1 + tS2 + tS3 + tS4
= LBS(a, b, c, d, g, h)

whenever ad < bc.

If ad = bc, then A isn’t invertible. However, we can still construct primal and dual feasible
solutions with equal objective function value of 1 as required. We refer the reader to Ap-
pendix C where we reprove this lemma by explicitly constructing the solutions and checking
primal feasibility, dual feasibility and optimality, rather than relying on Lemma 2.1.3.

Lemma 4.3.2. For all a, b, c, d > 0 with ad ≤ bc and g, h with (g, h)T ∈ RS(a, b, c, d),

LBS(a, b, c, d, g, h) ≥ 4

5
.

Proof. Note that tSi ≥ 0 for all i ∈ {1, 2, 3, 4} but the coefficient of h is negative for all
i ∈ {1, 2, 3, 4}. Since bc ≥ ad we have

LBS (a, b, c, d, g, h) ≥ LBS

(
a, b, c, d, g,

a

a+ c

)
because h ≤ a

a+c
whenever (g, h)T ∈ RS(a, b, c, d).

Note that LBCentral

(
a, b, c, d, g, a

a+c

)
= 1− bc−ad

bc−ad+T
where

T = (b+ d)

[
bc(1− g) +

(
ac

a+ c

)]
+

(
a+ b

a

)[(
ac

a+ c

)
+ acg

]
+ . . .

. . .+ (a+ c)

[
bcg +

(
bc

a+ c

)]
+

(
c+ d

d

)[(
bc

a+ c

)
+ bd(1− g)

]
.

Note that LBS

(
a, b, c, d, g, a

a+c

)
= 1− bc−ad

bc−ad+T
where

T = (b+ d)

[(
ac

a+ c

)
+ bc(1− g)

]
+ (a+ b)

[
cg +

(
c

a+ c

)]
+ . . .

. . .+ (a+ c)

[
bcg +

(
bc

a+ c

)]
+ (c+ d)

[(
bc

d(a+ c)

)
+ b(1− g)

]
.

So LBS

(
a, b, c, d, g, a

a+c

)
= LBCentral

(
a, b, c, d, g, a

a+c

)
. As

[
d
c+d

, b
a+b

]
⊂ [0, 1] and a

a+c
∈

[0, 1], it follows from Lemma 4.1.2 that LBS

(
a, b, c, d, g, a

a+c

)
≥ 4

5
and therefore

LBS (a, b, c, d, g, h) ≥ 4
5
.
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4.4 Proof of Theorem 1.3.19

We combine the lower bounds obtained in the preceding sections to quickly arrive at
Theorem 1.3.19.

Theorem 4.4.1 (Theorem 1.3.19). The optimal value of (P (a, b, c, d, g, h)) if at least 4
5

for
all a, b, c, d > 0 with ad ≤ bc such that (g, h)T ∈ intQ(a, b, c, d). Therefore ρ[T2,Q] ≤ 5

4
.

Proof. By Remark 3.1.1, it suffices to show that the optimal value of (P (a, b, c, d, g, h)) is
at least 4

5
for all a, b, c, d > 0 with ad ≤ bc and (g, h)T ∈ intQ(a, b, c, d) where either: (1)

(g, h)T ∈ RCentral(a, b, c, d), (2) (g, h)T ∈ RSW (a, b, c, d), or (3) (g, h)T ∈ RS(a, b, c, d). The
bound holds in case (1) by Lemma 4.1.2, in case (2) by Lemma 4.2.2, and in case (3) by
Lemma 4.3.2. It follows that the optimal value of (S(T2,Q)) is at least 4

5
. The bound on

ρ[T2,Q] follows immediately from Theorem 2.1.1.

4.5 Observations and Summary

We have proved the main result in this chapter, showing that ρ[T2,Q] ≤ 5
4
. See Section 6.3

for a broader discussion of these results and related open problems for 2-row intersection
cuts. The following observations, however, are best understood alongside the technicalities
in this chapter.

Unlike in the proofs of Theorem 2.2.4 and Theorem 1.3.21, the analysis we provide here
is not tight. The optimization problems in Lemma 4.1.1, Lemma 4.2.1 and Lemma 4.3.1
are solved to optimality. The bound provided in Lemma 4.1.2 is tight as stated: take
(a, b, c, d, g, h) := (ε2, 1, 1, 1

ε
, 1, 0) for ε → 0. However, we did not construct a family of

quadrilateral and fractional points pairs which demonstrate that the ray-sliding triangles
selected in this chapter do not achieve a better approximation than 4

5
. The gap here is

that creating an example with (g, h)T ∈ RCentral(a, b, c, d) would push the fractional point
away from {0, 1}2 where the bound in Lemma 4.1.2 is tight. Running some numerical
experiments, it is easy to construct instances where the bound in Lemma 4.1.1 is less than
8
9
. The weakest bound the experiment found was around 0.8284, but this provides little

analytical insight into a tight bound on LBCentral(a, b, c, d, g, h) over RCentral(a, b, c, d).

The optimal values calculated here can be specialized for the parallelogram case (i.e.
a = d = α and b = c = β) to recover those calculated in Chapter 3. Since the same
intersection cuts were used in the Central Region in both analyses (i.e. in Lemma 3.2.1
and Lemma 4.1.1), the optimal values obviously coincide. However, the optimal values in
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the South-West Region (i.e. Lemma 3.4.1 and Lemma 4.2.1) agree even though different
sets of ray-sliding triangles were used. In the parallelogram analysis, we used a total of two
ray-sliding triangles, each at a geometric average of their respective ray breakpoints. In the
general quadrilateral analysis, we used a total of four ray-sliding triangles: for the same
rays, we used the ray-sliding triangles for both ray breakpoints. Similarly, the optimal
values in the South Region (i.e. Lemma 3.5.1 and Lemma 4.3.1) also agree.

Finding the weakest lower bound in this chapter again relied on the lower bound being of
the form 1 + 1

1+T (a,b,c,d,g,h)
where T is an affine function of g and h. This phenomenon is

explained in Section 3.7. However, in contrast to the parallelogram case, the bound is not
constant across RCentral(a, b, c, d, g, h).
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Chapter 5

Extensions to d-Row Intersection
Cuts

We are interested in extending results to the mixed integer linear set

R(f ; Γ) := conv

{
s ∈ Rk

+ : f +
k∑
j=1

rjsj ∈ Zd
}

(5.1)

for d ≥ 3. As for d = 2, all minimal valid inequalities are intersection cuts generated by
maximal lattice-free convex sets. However, the structure of maximal lattice-free convex sets
in Rd is not well understood as it is in R2. Giving a classification of families of maximal
lattice-free convex sets in Rd has proven difficult. Even for d = 3, the classification is
complicated; see the discussion in Section 1.2.2.

Here we take a different tact that does not require a classification result; we try to prove
an analogue of Theorem 2.2.4 that holds for all dimensions d ≥ 2. First, we provide a
complete statement and proof of the proposed analogue in Section 5.1. We define two
families of maximal lattice-free convex sets in Rd, denoted Fd and Pd, and prove a theorem
upper-bounding ρ[Pd,Fd]. For d = 2, the theorem implies Theorem 2.2.4 from [11].

The families we choose are not arbitrary. Fd is a family of octahedra and its members
have the largest possible number of facets for a maximal lattice-free convex set in Rd. In
fact, this family has been studied before in computational experiments for d ∈ {2, . . . , 10}.
The experiments showed that adding an inequality from a specific canonical member of
Fd within a solver can have a positive impact on the branch and cut performance and the
closed gap at the root node. See [43] for more information on these experiments and [57]
for more information on measures of solver progress.
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The families Fd and Pd are chosen not just by facet structure but also so that certain
properties of maximal lattice-free quadrilaterals and type 2 triangles in R2 extend directly
to Rd. In Section 5.2, we discuss these properties in greater detail. In Section 5.3, we
discuss the limitations and strengths of the bound proved and provide a contrast to other
results known to hold for arbitrary dimension d.

5.1 Approximating Octahedra Cuts with Pyramid Cuts:

A Generalization of Theorem 2.2.4

Throughout we assume d ∈ Z+ is at least 2.

5.1.1 Families of Octahedra and Pyramids in Rd

The canonical octahedron Ôd in Rd is the polyhedron defined by

Ôd := {x ∈ Rd : σTx ≤ 1 ∀σ ∈ {−1,+1}d}.

For i ∈ {1, . . . , d}, let ei denote the i-th standard basis vector; i.e. the i-th entry of ei

is 1 and the other entries are 0. It is straightforward to check that Ôd is the convex hull
of {±e1,±e2, . . . ,±ed} and therefore that Ôd is a polytope (i.e. a bounded polyhedron).
The canonical octahedron Ôd is the polar of the d-dimensional hypercube with vertices
{+1,−1}d, where the polar of set A ⊆ Rd is defined by A0 := {y ∈ Rd : yTx ≤ 1 ∀ x ∈ A}.
Let P ⊆ Rd be a polytope. A linear inequality cTx ≤ k is valid for P if it is satisfied by
every x ∈ P . Recall that the set F ⊆ P is a face of P if F = {x ∈ P : cTx = k} for some
c ∈ Rd and k ∈ R such that cTx ≤ k is a valid inequality for P . Note that ∅ and P are
both faces of P . A face of dimension 0 is called a vertex of P , while a face of dimension
dim(P )− 1 is called a facet of P . For example, the vertices of Ôd are {±e1,±e2, . . . ,±ed}
and the facets of Ôd are {Fσ : σ ∈ {−1,+1}d} where Fσ := {x ∈ Ôd : σTx = 1}. Now,
ordering the faces of arbitrary polytope P by inclusion, we obtain a lattice1, which we call
the face lattice of P . Two lattices are the same if there is an order preserving bijection
between them.

A polytope O ⊆ Rd is an octahedron if O (is full-dimensional and) has the same face lattice
as the canonical octahedron Ôd. Per our usual convention, the family of maximal lattice

1A bounded partially ordered set where each pair of elements has a unique minimal upper bound and
a unique maximal lower bound. We refer the reader to [76, Chapter 2.2] for details.
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free octahedra in Rd is the set of all polytopes P ⊆ Rd such that P is an octahedron and
P is a maximal lattice-free convex set. We will denote this family by Od. The canonical
octahedron is not lattice-free, but scaling and translating we can obtain the maximal
lattice-free octahedron Õd = d

2
Ôd + 1

2
1l.

0 1 234 5

0 20 30 4 0 5 1 21 31 4 1 52 4 2 53 4 3 5

1 2 41 3 4 1 3 5 1 2 50 2 50 2 40 3 4 0 3 5

Figure 5.1: Canonical octahedron Ô3 (left) and its face lattice (right). Face lattice images
in this thesis were generated using polymake [46].

A polytope P ⊆ Rd is a parallelepiped if there exist c ∈ Rd and linearly independent
z1, . . . , zd ∈ Rd such that P = {x ∈ Rd : ∃λ ∈ [0, 1]d for which x = c +

∑d
i=1 λiz

i}. We

call such z1, . . . , zd the edges of P . The volume of P is given by
∏d

i=1 ||zi||2. Note that a
parallelepiped in Rd has 2d vertices and 2d facets. Its face lattice is the same as that of
the unit hypercube [0, 1]d.

A straightforward extension of Theorem 1.2.6 shows that any maximal lattice-free polyhe-
dron in Rd with 2d facets has exactly one integral point in the relative interior of each facet.
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We defer the proof to Section 5.2.2. Therefore |O ∩ Zd| = 2d for any maximal lattice-free
octahedron O ∈ Od. A maximal lattice-free octahedron O ∈ Od is a unit-core octahedron
if conv(O ∩ Zd) is a parallelepiped of volume one. Let Ud denote the set of all unit-core
octahedra in Rd. A unit-core octahedron O ∈ Ud is a normalized octahedron if conv(O∩Zd)
is the unit hypercube [0, 1]d.

Remark 5.1.1. Let U ∈ Ud be a unit-core octahedron. Then there exists an affine unimod-
ular transformation φ : Rd → Rd such that φ(U) = N where N is a normalized octahedron.

Figure 5.2: Normalized octahedron Õ3 with embedded hypercube [0, 1]3 illustrated on the
left and facet separation property illustrated on the right.

Let Ûd denote the set of all normalized octahedra in Rd. Let O ∈ Ûd be a normalized
octahedron with vertices {v1, . . . , v2d}. We say O has the facet separation property (or is
facet-separable) if there is a bijection b : {v1, . . . , v2d} → {1, . . . , d} × {0, 1} such that if
b(vi) = (j,4) then

1. 0 < vik < 1 for all k ∈ {1, . . . , d} \ {j}, and
2. if 4 = 0 then vij < 0 and if 4 = 1 then vij > 1.

That is, O ∈ Ûd has the facet separation property if and only if there is a unique facet
defining inequality of [0, 1]d separating each vertex of O from [0, 1]d. If O has this property
then we can label the vertices of O as v1, . . . , v2d so that for all i ∈ {1, . . . , d}:

1. vii < 0,
2. vd+i

i > 1, and
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3. 0 < vij, v
d+i
j < 1 for j ∈ {1, . . . , d} \ {i}.

Under such a labeling, we refer to vi and vd+i as an antipodal pair of vertices. Necessarily,
vi is contained in the 2d−1 facets of O that contain {x ∈ {0, 1}d : xi = 0} and vd+i is
contained in the 2d−1 facets of O that contain {x ∈ {0, 1}d : xi = 1}. In particular, there
is no facet of O that contains vi and vd+i.

We call an octahedron O ∈ Od a facet-separable unit-core octahedron if there exists an
affine unimodular transformation φ : Rd → Rd such that φ(O) is a normalized octahedron
with the facet separation property. Let Fd denote the set of all facet-separable unit-core
octahedra in Rd. By Remark 1.3.4, F2 is the family of all maximal lattice-free quadrilaterals
in R2. In dimension d ≥ 3, Fd is non-empty (it contains Õd), but it may not contain
all maximal lattice-free octahedra. See Section 5.2 for further discussion of this class of
octahedra.

Let V := {v1, . . . , vk} ⊆ Rd be a set of k ≥ d points such that dim(V ) = d− 1 and conv V
has k vertices. Let hyperplane H be the affine hull of V (i.e. the unique hyperplane
containing every element of V ). Let x ∈ Rd be some point not on H. Any polytope P
of the form conv{v1, . . . , vk, x} for some v1, . . . , vk and x as described is called a pyramid.
Pyramid P is of dimension d and has k + 1 vertices and k + 1 facets - one facet is defined
by H, and the remainder contain x. We call pyramid P a type 2 pyramid if

(i) P is lattice-free,
(ii) P has 2d−1 + 1 facets,

(iii) P contains one integer point in the relative interior of each facet that contains x, and
(iv) P contains at least 2d−1 integer points in the relative interior of the facet defined by

H.

It follows from Theorem 1.2.6 that any type 2 pyramid is a maximal lattice-free convex
set. Let Pd denote the family of type 2 pyramids in Rd. Observe that the family P2 is the
family of all type 2 triangles in R2.

We will prove the following theorem, bounding ρ[Pd,Fd].

Theorem 5.1.2. Let d ∈ Z+ be at least 2. Let Fd denote the family of facet-separable
unit-core octahedra in Rd. Let Pd denote the family of type 2 pyramids in Rd. Then
ρ[Pd,Fd] ≤ 2− 1

d
.

5.1.2 Proof of Theorem 5.1.2

Let F̂d denote the set of all facet-separable normalized octahedra in Rd. It follows from
Theorem 2.1.1 that 1

ρ[Pd,Fd]
is equal to the maximum of one and the optimal value of the
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optimization problem (S(Pd,Fd)) given by

inf
2d∑
i=1

si (5.2)

subject to s ∈ Pd(f ; r1, . . . , r2d) (5.3)

f + conv{r1, . . . , r2d} ∈ F̂d (5.4)

f ∈ Qd \ Zd (5.5)

r1, . . . r2d ∈ Qd \ {O} (5.6)

cone({r1, . . . , r2d}) = Rd. (5.7)

Now, we reparameterize this problem with respect to data v1, . . . , v2d ∈ Qd and f ∈ Qd\Zd
for which O := conv({v1, . . . , v2d}) ∈ F̂d and f ∈ intO. As discussed in Section 5.1.1, since
O is facet-separable, we may label vertices v1, . . . , v2d so that for all i ∈ {1, . . . , d}: vii < 0,
vd+i
i > 1, and 0 < vij, v

d+i
j < 1 for j ∈ {1, . . . , d} \ {i}. Under this labeling, (vi, vd+i) are

an antipodal pair. For all i ∈ {1, . . . , 2d}, let ri = vi − f . For given data v1, . . . , v2d and
f , consider the semi-infinite program

inf
2d∑
i=1

si (5.8)

subject to s ∈ Pd(f ; r1, . . . , r2d). (5.9)

Denoting this problem by (P (f, v1, . . . , v2d)), our goal is to lower bound its optimal value.
To do so, we will lower bound the optimal value of the parameterized linear program
obtained by replacing constraint (5.9) with the constraint s ≥ O and the intersection cuts
for a finite number of type 2 pyramids.

We will choose these type 2 pyramids to be fixed pyramids, which are defined with respect
to a given octahedron O = conv({v1, . . . , v2d}) as above. For i ∈ {1, . . . , 2d}, let Ci be the
cone with apex vi that is defined by the 2d−1 facets of O containing vi. For i ∈ {1, . . . , d},
fixed pyramid Ti is equal to Ci ∩ {x ∈ Rd : xi ≤ 1}. For i ∈ {d+ 1, . . . , 2d}, fixed pyramid
Ti is equal to Ci ∩ {x ∈ Rd : xi ≥ 0}. Note that Ti is a type 2 pyramid by construction.
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Figure 5.3: Fixed pyramid of normalized octahedron Õ3, from two points of view.

Proposition 5.1.3. Let i ∈ {1, . . . , 2d}. Suppose f ∈ int (Ti ∩O).

1. If i ∈ {1, . . . , d}, then
(a) ψf ;Ti(r

j) = 1 for all j ∈ {1, . . . , 2d} \ {i+ d}, and
(b) ψf ;Ti(r

i+d) = 1 + 1
ai+d

where ai+d := ai+d(f, v
i+d) = 1−fi

vi+di −1
.

2. If i ∈ {d+ 1, . . . , 2d}, then
(a) ψf ;Ti(r

j) = 1 for all j ∈ {1, . . . , 2d} \ {i− d}, and

(b) ψf ;Ti(r
i−d) = 1 + 1

ai−d
where ai−d := ai−d(f, v

i−d) = −fi−d
vi−di−d

.

Proof. We will prove 1. where i ∈ {1, . . . , d}. The proof of 2. is analogous.

Since O has the facet separation property, all the vertices of O except for vi+d are on the
boundary of Ti. As rj = vj − f , 1(a) follows.

As vi+d > 1 and by our choice of Ti, we know ψf ;Ti(r
i+d) is determined by the intersection

of {f + λri+d : λ ≥ 0} with {x ∈ Rd : xi = 1}. Hence ψf ;Ti(r
i+d) > 1 and therefore it

can be expressed as 1 + 1
ai+d

for ai+d > 0. So, by the definition of the gauge function,

to find ai+d so that ψf ;Ti(r
i+d) = 1 + 1

ai+d
we can find ai+d such that the xi-coordinate of
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f +
(

ai+d
1+ai+d

)
ri+d is equal to 1. Now[

f +

(
ai+d

1 + ai+d

)
ri+d

]
i

= 1⇔ fi +

(
ai+d

1 + ai+d

)
(vi+di − fi) = 1

⇔ (1 + ai+d)fi + ai+d(v
i+d
i − fi) = 1 + ai+d

⇔ ai+d(v
i+d
i − 1) = 1− fi

⇔ ai+d =
1− fi
vi+di − 1

.

By our assumption on the labelling of v1, . . . , v2d, since i ∈ {1, . . . , d} we have vi+di −1 > 0.
As f ∈ int(Ti ∩ O) and i ∈ {1, . . . , d} we have fi < 1. So we can see that ai+d > 0.
Therefore 1(b) follows.

Note that in 2. where i ∈ {d+ 1, . . . , 2d} we have vi−di−d < 0 and fi−d > 0 so it is clear that
ai−d > 0 in this case as well.

Observe that for all i ∈ {1, . . . , 2d}, the function ai(f, v
i) is affine in f . For f ∈ (0, 1)d, we

calculate the optimal value of the optimization problem obtained from (P (f, v1, . . . , v2d))
using the intersection cuts for fixed pyramids T1, . . . , T2d.

Lemma 5.1.4. Let v1, . . . , v2d ∈ Qd and f ∈ Qd \Zd be such that conv({v1, . . . , v2d}) ∈ F̂d
and f ∈ (0, 1)d. Let (P ′) be the linear program obtained from (P (f, v1, . . . , v2d)) by replacing
constraint (5.9) with the constraint s ≥ O and the intersection cuts for T1, . . . , T2d. Then,
the optimal value of (P ′) is equal to

LBd
0(f, v1, . . . , v2d) := 1− 1

1 +
∑2d

i=1 ai(f, v
i)

for ai as given in Proposition 5.1.3.

Proof. Using Proposition 5.1.3, the optimization problem (P ′) is given by

min s1 + s2 + . . .+ s2d

subject to


1 + 1

a1
1 1 . . . 1

1 1 + 1
a2

1 . . . 1

1 1 1 + 1
a3

. . . 1
...

...
...

. . .
...

1 1 1 . . . 1 + 1
a2d

 s ≥ 1l

s ≥ O.
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This optimization problem is of the form in Lemma 2.1.3 where A is the diagonal matrix
with diagonal entries 1

ai
for all i ∈ {1, . . . , 2d}. Note that A−1 is the diagonal matrix with

entries ai, and therefore A−1 is non-negative because ai > 0 for all i ∈ {1, . . . , 2d}. We can
therefore apply Lemma 2.1.3 to conclude that the optimal value of (P ′) is equal to

1− 1

1 + 1lTA−11l
= 1− 1

1 +
∑2d

i=1 ai

as required.

We vary f, v1, . . . , v2d to find the weakest bound.

Lemma 5.1.5. Let v1, . . . , v2d ∈ Qd and f ∈ Qd \Zd be such that conv({v1, . . . , v2d}) ∈ F̂d
and f ∈ [0, 1]d. Then LBd

0(f, v1, . . . , v2d) ≥ d
2d−1

.

Proof. Let T (f, v1, . . . , v2d) :=
∑2d

i=1 ai(f, v
i). By Lemma 2.1.4, we can lower bound

LBd
0(f, v1, . . . , v2d) over all f ∈ [0, 1]d and v1, . . . , v2d such that conv{v1, . . . , v2d} ∈ F̂d

by lower-bounding T (f, v1, . . . , v2d) over the same set. So, we want to lower bound the
optimal value of the optimization problem (P1) in variables f, v1, . . . , v2d given by

inf T (f, v1, . . . , v2d) (5.10)

subject to conv{v1, . . . , v2d} ∈ F̂d (5.11)

f ∈ [0, 1]d. (5.12)

Since F̂d 6= ∅, (P1) is feasible. Note that ai(f, v
i) ≥ 0 for all i ∈ {1, . . . , 2d} and therefore

the optimal value of (P1) is bounded below by 0. Suppose the optimal value is K ≥ 0 and
consider a sequence

{S(`)}`≥1 = {[f̂ (`), (v̂1, . . . , v̂2d)(`)]}`≥1

of feasible solutions with objective function value tending to K. Then for ` ≥ 1, we may fix
the assignment (v1, . . . , v2d) := (v̂1, . . . , v̂2d)(`) in (P1) to obtain a problem whose objective
function is affine in the variable f . Therefore there exists some f̃ (`) ∈ {0, 1}d such that
the objective function value of (f̃ (`), (v̂1, . . . , v̂2d)(`)) is less than or equal to the objective
function value of (f̂ (`), (v̂1, . . . , v̂2d)(`)). So we may construct a sequence

{S(`)
2 }`≥1 = {[f̃ (`), (v̂1, . . . , v̂2d)(`)]}`≥1

of feasible solutions whose objective function value tends to K such that f̃ (`) ∈ {0, 1}d for
all ` ≥ 1. In the sequence {f̃ (`)}`≥1 some f ∗ ∈ {0, 1}d occurs infinitely often. So, we can
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construct a subsequence of feasible solutions with objective function value tending to K
where the assignment of values to variable f is some fixed element of {0, 1}d. By symmetry,
we may assume that f = O.

Substituting f := O, we see that we can lower bound the optimal value of (P1) by calcu-
lating a lower bound on the optimal value of (P2) given by

inf
d∑
i=1

1

vi+di − 1
(5.13)

subject to conv{v1, . . . , v2d} ∈ F̂d. (5.14)

Relabeling the variables xi := vi+d for all i ∈ {1, . . . , d} and introducing additional variable
λ ∈ Rd, we consider the relaxation (P3) of (P2) given by

inf
d∑
i=1

1

xii − 1
(5.15)

subject to
d∑
i=1

λix
i = 1l (5.16)

1lTλ = 1 (5.17)

λ > O (5.18)

xii > 1 ∀i ∈ {1, . . . , d} (5.19)

0 ≤ xij < 1 ∀i ∈ {1, . . . , d}, j ∈ {1, . . . , d} \ {i}. (5.20)

Note that (P3) is indeed a relaxation of (P2) because it enforces three necessary conditions
for conv {v1, . . . , v2d} ∈ F̂d: vi+di > 1 for all i ∈ {1, . . . , d}, 0 ≤ vi+dj < 1 for all i ∈
{1, . . . , d}, j ∈ {1, . . . , d} \ {i} and 1l ∈ conv {vd+1, . . . , v2d}. We may restrict λi > 0
for all i ∈ {1, . . . , d} because only xi has i-th coordinate greater than or equal to one,
and therefore xi must have non-zero coefficient in any convex combination of {x1, . . . , xd}
summing to 1l.

Next, we show that restricting xi to be of the form xi = µie
i for µi > 0 for all i ∈ {1, . . . , d}

does not change the optimal value of (P3). Let (λ̂, x̂1, . . . , x̂d) be a feasible solution to (P3)
such that t > 0 entries x̂ij for j 6= i are non-zero. We construct a solution (λ̃, x̃1, . . . , x̃d)
such that t−1 such entries are non-zero and the objective function value is strictly smaller.
Given (λ̂, x̂1, . . . , x̂d), let ı̂ 6= ̂ ∈ {1, . . . , d} be such that x̂ı̂̂ = κ > 0. Define (λ̃, x̃1, . . . , x̃d)

135



as follows:

λ̃ := λ̂,

x̃i := x̂i ∀i ∈ {1, . . . , d} \ {ı̂, ̂},
x̃ı̂ := x̂ı̂ − κe̂, and

x̃̂ := x̂̂ + κ

(
λ̂ı̂

λ̂̂

)
e̂.

First we verify (λ̃, x̃1, . . . , x̃d) satisfies the constraints of (P3). Since λ̃ = λ̂, and λ̂ is
feasible for (P3), clearly 1lT λ̃ = 1 and λ̃ > O and so λ̃ satisfies (5.17) and (5.18). For
all i ∈ {1, . . . , d}, x̃ii ≥ x̂ii > 1 where the first inequality holds by construction and the
second inequality holds because (x̂1, . . . , x̂d) satisfies (5.19). Therefore (x̃1, . . . , x̃d) satisfies
(5.19). For all i ∈ {1, . . . , d} and j ∈ {1, . . . , d} \ {i}, 0 ≤ x̃ij ≤ x̂ij < 1 where the first
two inequalities hold by construction and the second inequality holds because (x̂1, . . . , x̂d)
satisfies (5.20). Therefore (x̃1, . . . , x̃d) satisfies (5.20). Lastly, we calculate

d∑
i=1

λ̃ix̃
i =

d∑
i=1

λ̂ix̂
i − λ̂ı̂κe̂ + λ̂̂κ

(
λ̂ı̂

λ̂̂

)
e̂ =

d∑
i=1

λ̂ix̂
i = 1

and therefore (λ̃, x̃1, . . . , x̃d) satisfies (5.16). The objective function value changed by
1

x̂ĵ
ĵ
+κ

λ̂ı̂
λ̂̂
−1
− 1

x̂ĵ
ĵ
−1

, a strict decrease. So we may restrict xi = µie
i for i ∈ {1, . . . , d} and

not change the optimal value of (P3).

Setting xi = µie
i, and solving constraint (5.16) gives µi = 1

λi
. We can substitute this

identity into the objective function and eliminate constraints (5.16), (5.19), and (5.20) to
obtain a new optimization problem. Thus we can lower bound the optimal value of (P1)
by lower-bounding the optimal value of (P4) with variable λ ∈ Rd given by

inf
d∑
i=1

λi
1− λi

(5.21)

subject to 1lTλ = 1 (5.22)

λ > O. (5.23)

Note that the constraints imply λ ∈ (0, 1)d for all feasible solutions of (P4). Let h(λ) =∑d
i=1

λi
1−λi . For i ∈ {1, . . . , d} we calculate ∂h

∂λi
= 1

(1−λi)2 and ∂2h
∂x2i

= 2
(1−λi)3 . Since h

is a separable function of the λi, its Hessian is the diagonal matrix with entries 2
(1−λi)3
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for i ∈ {1, . . . , d}. Since 2
(1−λi)3 > 0 for λi ∈ (0, 1) it follows that the Hessian of h is

positive definite on (0, 1)d and therefore h is strictly convex over (0, 1)d. Noting that the
constraints of (P4) are linear, we see that (P4) is a convex optimization problem whose
objective function is strictly convex on the feasible region.

We can solve (P4) exactly using standard tools from convex optimization. Noting that h
is a C1 function on (0, 1)d, we have λ̄ is a minimizer of h(λ) over {λ ∈ (0, 1)d : 1lTλ = 1} if
and only if ∇h(λ̄)T (λ− λ̄) ≥ 0 for all λ > 0 such that 1lTλ = 1. We claim λ∗ = 1

d
1l satisfies

this condition. Note that ∇h(λ∗) = d2

(d−1)2
1l. Then for any λ > O such that 1lTλ = 1

∇(h(λ∗))T (λ− λ∗) =

(
d2

(d− 1)2

) d∑
i=1

(
λ− 1

d

)

=

(
d2

(d− 1)2

)( d∑
i=1

λ−
d∑
i=1

1

d

)

=

(
d2

(d− 1)2

)
(1− 1)

= 0.

So λ∗ is an optimal solution to of (P5); its objective function value is d
d−1

. We conclude

that d
d−1

is a lower-bound on the optimal value of (P1). Thus

LBd
0(f, v1, . . . , v2d) ≥ 1− 1

1 + d
d−1

= 1− d− 1

2d− 1
=

d

2d− 1

as claimed.

For f 6∈ (0, 1)d with f1 < 0, we calculate the optimal value of the optimization problem
obtained from (P (f, v1, . . . , v2d)) using the intersection cuts for fixed pyramids T1, . . . , Td,
and Td+2, . . . , T2d.

Lemma 5.1.6. Let v1, . . . , v2d ∈ Qd and f ∈ Qd \Zd be such that conv({v1, . . . , v2d}) ∈ F̂d
and f ∈ conv({v1, . . . , v2d}) ∩ {x ∈ Rd : x1 ≤ 0}. Let (P ′) be the linear program obtained
from (P (f, v1, . . . , v2d)) by replacing constraint (5.9) with the constraint s ≥ O and the
intersection cuts for T1, . . . , Td and Td+2, . . . , T2d. Then, the optimal value of (P ′) is equal
to

LBd
1(f, v1, . . . , v2d) := 1− 1

1 +
∑2d

i=2 ai(f, v
i)

for ai as given in Proposition 5.1.3.
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Proof. The optimization problem (P ′) is given by

min s1 + s2 + . . .+ s2d

subject to
[
1l1lT + A

]
s ≥ 1l

s ≥ O

where

A :=


1 1 + 1

a2
1 . . . 1

1 1 1 + 1
a3

. . . 1
...

...
...

. . .
...

1 1 1 . . . 1 + 1
a2d

 .

Note that A is a row sub-matrix of the constraint matrix for Lemma 5.1.4. We denote the
dual of this linear program by (D′). It is given by

max s1 + s2 + . . .+ s2d

subject to
[
1l1lT + AT

]
v ≤ 1l

v ≥ O.

Consider the (possibly infeasible) solution ŝ obtained by setting the intersection cut con-
straints tight and setting s1 = 0. We can compute

ŝ2

ŝ3

. . .

ŝ2d

 =

(
1

1 +
∑2d

i=2 ai

)
a2

a3

. . .

a2d

 .
Since fi ∈ (0, 1) for all i ∈ {2, . . . , d} we have a2, . . . , ad, ad+2, . . . , a2d ≥ 0. Since f1 < 0 we
have ad+1 ≥ 0. Therefore ŝ ≥ O.

It is straightforward to check that v̂ :=


ŝ2

ŝ3

. . .

ŝ2d

 is feasible for (D′). The second through last

constraints hold at equality by construction. The first constraint holds because
∑2d
i=2 ai

1+
∑2d
i=2 ai

<
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1. So (ŝ, v̂) are a pair of primal-dual feasible solutions satisfying complementary slackness
and therefore ŝ is optimal for (P ′) and v̂ is optimal for (D′). The optimal value of (P ′) is

1lT ŝ =

∑2d
i=2 ai

1 +
∑2d

i=2 ai
= 1− 1

1 +
∑2d

i=2 ai

as required.

Theorem 5.1.2 follows quickly from the above lemmas.

Theorem 5.1.7 (Theorem 5.1.2). The optimal value of (P (f, v1, . . . , v2d)) is at least d
2d−1

for all v1, . . . , v2d ∈ Qd and f ∈ Qd \ Zd such that O := conv({v1, . . . , v2d}) ∈ F̂d and
f ∈ intO. Therefore ρ[Pd,Fd] ≤ 2− 1

d
.

Proof. Since we vary over all possible v1, . . . , v2d we may use rotational symmetry to con-
sider two cases: (1) f ∈ (0, 1)d and (2) f ∈ conv({v1, . . . , v2d}) ∩ {x ∈ Rd : x1 ≤ 0}. The
bound holds in case (1) by Lemma 5.1.5. For (2), consider the bound LBd

1(f, v1, . . . , v2d)
provided by Lemma 5.1.6. Note that f1 only appears in

∑2d
i=2 ai in the term ad+1 where it

has negative coefficient −1

vd+1
1 −1

. Given f , let f ′ be the vector obtained from f by setting

the first coordinate to 0. Then

LBd
1(f, v1, . . . , v2d) ≥ LBd

1(f ′, v1, . . . , v2d) ≥ d

2d− 1

where the second inequality holds by Lemma 5.1.5 since f ′ ∈ [0, 1]d.

It follows that the optimal value of (S(Pd,Fd)) is at least d
2d−1

. The bound on ρ[Pd,Fd]
follows immediately from Theorem 2.1.1.

5.2 Octahedra as a Generalization of Quadrilaterals

The family of all maximal lattice-free octahedra in R2 is exactly the family of all maximal
lattice-free quadrilaterals. Every maximal lattice-free octahedron in R2 is a unit-core oc-
tahedron. Every normalized octahedron in R2 has the facet separation property. Here we
investigate if these characterizations extend to Rd.

In Section 5.2.1, we provide additional definitions. Notably, we define the family of symmet-
ric octahedra in Rd, which generalizes the family of parallelograms in R2. In Section 5.2.2
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we investigate the question: are all maximal lattice-free octahedra in Rd unit-core octahe-
dra? In Section 5.2.3 we investigate the question: do all normalized octahedra in Rd have
the facet separation property? We investigate these questions for general octahedra in Rd,
as well as the restrictions to symmetric octahedra and to octahedra in R3; not to bury the
lede, the answers to these questions remain open.

5.2.1 Antipodal Facets and Vertices, Symmetric Octahedra

As in Section 5.1.1, let Ôd denote the canonical octahedron in Rd.

The vertices of Ôd are {±e1,±e2, . . . ,±ed}. For i ∈ {1, . . . , d}, let Fi and Gi, respectively,
denote the facets of Ôd containing ei and −ei, respectively. It is easy to verify that (Fi, Gi)
is a partition of the facets of Ôd. We call ei and −ei antipodal vertices of Ôd. Since any
octahedron O has the same face lattice as Ôd, for each vertex v of O there exists a unique
vertex v̂ of O such that the facets containing v and v̂ are a partition of the facets of O. In
this case we call v and v̂ antipodal vertices of O. For example, in Figure 5.1, the vertices
labeled 4 and 5 in the face lattice image are antipodal vertices.

The facets of Ôd are {Fσ : σ ∈ {−1,+1}d} where Fσ := {x ∈ Ôd : σTx = 1}. For
σ ∈ {−1,+1}d, let Vσ and V−σ, respectively, denote the vertices of Ôd contained in Fσ and
F−σ. It is easy to verify that (Vσ, V−σ) is a partition of the vertices of Ôd. We call Fσ and
F−σ antipodal facets of Ôd. Since any octahedron O has the same face lattice as Ôd, for
each facet F of O there exists a unique facet F̂ of O such that the vertices in F and the
vertices in F̂ are a partition of the vertices of O. In this case we call F and F̂ antipodal
facets of O. For example, in Figure 5.1, the facets labeled 034 and 125 in the face lattice
image are antipodal facets.

Polytope O ⊆ Rd is a symmetric octahedron if there exists an affine invertible map L such
that O = L(Ôd). Note that symmetric octahedra are indeed octahedra because a polytope
and its image under an affine invertible map have the same face lattice. For i ∈ {1, . . . , d},
L(ei) and L(−ei) are antipodal vertices of O. For σ ∈ {−1,+1}d, L(Fσ) and L(F−σ) are
antipodal facets of O. The family of all (maximal lattice-free) symmetric octahedra in R2

is exactly the family of all (maximal lattice-free) parallelograms.

5.2.2 Unit-Core Octahedra in Rd

Let B be a lattice-free convex set. The lattice core of B is the convex hull of the integral
points in B; i.e. conv(B ∩ Zd). This is typically called the integer hull of B. We use
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different terminology here to highlight one distinction - the integer hull of an arbitrary
convex set may contain integral points in its interior, but the lattice core of a lattice-free
convex set will never contain integral points in its interior. Using this terminology, an
octahedron in Rd is a unit-core octahedron if its lattice core is a parallelepiped of volume
one.

By Theorem 1.2.8 the lattice core of a maximal lattice-free octahedron in R2 is a paral-
lelogram of area (i.e. volume) one. One way to prove this characterization holds in R2 is
using parity bases as an intermediate object. The parity function parity : Zd → {−,+}d is
given by

[parity(w)]j =

{
+, if wj is even

−, if wj is odd.

A finite set W ⊆ Zd is a parity basis if

(i) |W | = 2d,
(ii) {parity(w) : w ∈ W} = {−,+}d, and

(iii) conv(W ) ∩ Zd = W .

It is straightforward to show that parity bases are closed under affine unimodular trans-
formation. The set of integral points in a maximal lattice-free octahedron form a parity
basis.

Proposition 5.2.1. Let P ⊆ Rd be a maximal lattice-free polyhedron with 2d facets. Then
W := P ∩ Zd is a parity basis.

Proof. Let F1 and F2 be any two distinct facets of P . By Theorem 1.2.6, there exist integral
points w1 ∈ relintF1 and w2 ∈ relintF2. If parity(w1) = parity(w2) then 1

2
w1 + 1

2
w2 is an

integral point in the interior of P . This contradicts the fact P is lattice-free. Since P has
2d facets it follows by the Pigeonhole Principle that all the integral points in a given facet
of P have the same parity.

Let F be a facet of P . All the elements of F ∩ Zd have the same parity. Next we show
that |F ∩Zd| = 1. For a contradiction, suppose |F ∩Zd| ≥ 2. Pick z1 ∈ F ∩Zd arbitrarily.
Then we can choose z2 6= z1 ∈ F ∩ Zd such that ||z1 − z2|| is smallest (breaking a tie
arbitrarily). Since every element of F ∩ Zd has the same parity, parity(z1) = parity(z2).
Let z := 1

2
z1 + 1

2
z2. Now z ∈ F ∩Zd and ||z1− z|| < ||z1− z2||. This contradicts our choice

of z2. We conclude |F ∩ Zd| = 1.

Now P has 2d facets and each facet of P contains exactly one integral point; thus |W | = 2d.
Moreover, since the integral point in each facet has a different parity, {parity(w) : w ∈

141



W} = {−,+}d. Lastly we note that since P is lattice-free, there are no integral points
in the interior of conv(W ). Thus, conv(W ) ∩ Zd = W . We conclude that W is indeed a
parity basis.

Corollary 5.2.2. Let O ∈ Od be a maximal lattice-free octahedron. Then W := O ∩Zd is
a parity basis and therefore |W | = 2d.

The following argument shows that if O ⊆ R2 is a maximal lattice-free quadrilateral, then
its lattice core is a parallelogram of area one.

1. By Corollary 5.2.2, O contain four integral points {v1, v2, v3, v4} - one in the relative
interior of each of its facets. Moreover, {v1, v2, v3, v4} form a parity basis.

2. For any parity basis {w1, w2, w3, w4} in R2, the set conv({w1, w2, w3, w4}) is a par-
allelogram of area one (follows from Pick’s Theorem, for example).

3. Therefore, the lattice core of O, which is conv({v1, v2, v3, v4}), is a parallelogram of
area one.

This argument does not directly generalize to d dimensions. Although 1. holds, 2. does
not hold even in R3.

Howe’s Theorem and Parity Bases in Higher Dimensions

Let {w1, w2, . . . , w8} be a parity basis in R3. Note that conv({w1, w2, . . . , w8}) is a full-
dimensional polytope with integral vertices and no integral points in its interior. The
following theorem can be used to construct examples where conv({w1, w2, . . . , w8}) is not
a parallelepiped of volume one.

Theorem 5.2.3 (Howe’s Theorem [67]). Let P ⊆ R3 be a full dimensional polytope that
has integral vertices and no integral points in its interior. If P has eight vertices, then
there is a unimodular transformation from P to a polytope B with vertices0

0
0

 ,

0
1
0

 ,

0
0
1

 ,

0
1
1

 ,

1
0
0

 ,

 1
β1

α1

 ,

 1
β2

α2

 , and

 1
β1 + β2

α1 + α2


where β1, β2, α1, α2 ∈ Z+, β1(α1 + α2) − α1(β1 + β2) = 1, and β1 + β2 and α1 + α2 are
relatively prime.

Let B be the polytope with vertices as given in Howe’s Theorem. Note that the vertices
of B form a parity basis. Restricting to the vertices on the x1 = 0 hyperplane, we get an
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0123 4 56 7

0 10 2 0 41 3 1 51 72 3 2 42 63 7 4 54 6 5 76 7

2 3 6 7 4 5 6 70 1 2 3 0 2 42 4 6 0 1 4 51 5 71 3 7

Figure 5.4: Polytope B as in Howe’s Theorem for (β1, α1, β2, α2) = (1, 0, 1, 1) (left) and its
face lattice (right).

embedding of the square [0, 1]2. Restricting to the vertices on the x1 = 1 hyperplane, we
get an embedding of a parallelogram with edges (β1, α1)T and (β2, α2)T . Thinking of B as
the convex hull of these two-dimensional parallelograms embedded at distance one in three
space, we see that polytope B is not a parallelepiped for many choices of β1, α1, β2, and
α2. For example, we can choose (β1, α1, β2, α2) ∈ {(1, 0, 1, 1), (1, 1, 5, 3)}. See Figure 5.4
and Figure 5.5.

Now, polytope B contains the simplex S with vertices (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T and
(1, β1, α1)T . As noted in [67], S has volume 1

6
(β1 + α1). Choosing (β1, α1, β2, α2) =

(3, 5, 13, 22) satisfying the hypotheses of Howe’s Theorem, S has volume 4
3
> 1 and there-

fore B has volume greater than one.

Now suppose W is a parity basis and P = conv(W ) is a parallelepiped. The image of
W under any invertible map is a parallelepiped and therefore the image of W under the
unimodular transformation provided by Howe’s Theorem is a parallelepiped. Since poly-
tope B in Howe’s Theorem is a parallelepiped only when (β1, α1, β2, α2) = (1, 0, 0, 1) and
unimodular transformations preserve volume, it follows that conv(W ) must have volume
one. To summarize: if W is a parity basis in R3, then conv(W ) needn’t be a parallelepiped
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0 12 34 5 67

0 10 20 4 1 31 4 1 6 1 72 32 4 2 5 2 7 3 74 5 4 65 7 6 7

4 5 6 70 2 4 0 1 42 4 5 0 1 2 3 1 4 6 1 6 71 3 72 3 72 5 7

Figure 5.5: Polytope B as in Howe’s Theorem for (β1, α1, β2, α2) = (1, 1, 5, 3) (left) and its
face lattice (right).

and conv(W ) needn’t have volume one, but if conv(W ) is a parallelepiped then it must
have volume one.

The construction in Howe’s Theorem can be extended to d > 3. For d = 4, take two
arbitrary parity bases C1 and C2 for Z3. Let C := conv({(c1, 0) : c1 ∈ C1} ∪ {(c2, 1) :
c2 ∈ C2}). Then, it is easy to check C is a parity basis in Z4 and we can make sure
convC is not a parallelepiped and volume(convC) >> 1. We can recursively construct
more complicated parity bases for larger d. However, not all parity bases in Rd for d ≥ 4
can be constructed in this way. There exist parity bases in R4 whose members do not lie
on two adjacent lattice planes; for more information see [67].

Are All Maximal Lattice-Free Octahedra Unit-Core Octahedra?

The above discussion shows that we can’t generalize the R2 argument presented after
Corollary 5.2.2 to Rd. However, it does not answer the question at hand.

Open Question 5.2.4. Is every maximal lattice-free octahedron in Rd a unit-core octa-
hedron? Is every maximal lattice-free octahedron in R3 a unit-core octahedron? Is every
symmetric maximal lattice-free octahedron a unit-core octahedron?

For symmetric octahedra in R3, one strategy we used to approach this question was to
parameterize the problem and try to determine if the underlying system was consistent.
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Parameterize a symmetric octahedron by (C, b) ∈ R3×3 × R3 with C non-singular so that

O(C,b) := {x ∈ R3 : (Cσ)Tx ≤ 1 + σT b ∀σ ∈ {−1,+1}3}.

Then, Open Question 5.2.4 can be posed as follows: for which β1, α1, β2, α2 ∈ Z≥0 with
β1(α1 +α2)−α1(β1 +β2) = 1 does there exist C ∈ R3×3 non-singular and b ∈ R3 such that
O(C,b) is a maximal lattice-free octahedron with

O(C,b) ∩ Z3 =


0

0
0

 ,

0
1
0

 ,

0
0
1

 ,

0
1
1

 ,

1
0
0

 ,

 1
β1

α1

 ,

 1
β2

α2

 ,

 1
β1 + β2

α1 + α2

︸ ︷︷ ︸
Q(β1,α1,β2,α2)=:Q

?

For σ ∈ {−1,+1}3, let Fσ := {x ∈ O(C,b) : (Cσ)Tx = 1 + σT b}; the facets of O(C,b) are
exactly {Fσ : σ ∈ {−1,+1}3}. If

C :=

c1 c2 c3

c4 c5 c6

c7 c8 c9

 , b :=

b1

b2

b3

 , and σ :=

σ1

σ2

σ3

 ,

the inequality (Cσ)Tx ≤ 1 + σT b defining facet Fσ can be expressed as

x1(σ1c1+σ2c2+σ3c3)+x2(σ1c4+σ2c5+σ3c6)+x3(σ1c7+σ2c8+σ3c9)−(σ1b1+σ2b2+σ3b3) ≤ 1.

If O(C,b) ∩Z3 = Q, then there exists φ : Q→ {−1,+1}3 such that q is on facet Fφ(q) for all
q ∈ Q. Suppose without loss of generality that φ((0, 0, 0)T ) = (−1,−1,−1). Then

1. b1 + b2 + b3 = 1, and
2. σ1b1 + σ2b2 + σ3b3 < 1 for all σ ∈ {−1,+1}3 \ {(−1,−1,−1)}.

Here 1. is obtained by substituting (0, 0, 0)T into the constraint defining facet F(−1,−1,−1).
We obtain 2. since (0, 0, 0)T is on none of the facets Fσ for σ ∈ {−1,+1}3 \{(−1,−1,−1)}
but (0, 0, 0)T ∈ O(C,b). More generally, we can derive such equations and inequalities for all
q ∈ Q. Let q = (q1, q2, q3)T ∈ Q and suppose φ(q) = σ for σ = (σ1, σ2, σ3)T ∈ {−1,+1}3.
Then the equation

q1(σ1c1+σ2c2+σ3c3)+q2(σ1c4+σ2c5+σ3c6)+q3(σ1c7+σ2c8+σ3c9)−(σ1b1+σ2b2+σ3b3) = 1

must hold. Moreover, for all r = (r1, r2, r3)T ∈ Q \ {q}, the strict inequality

r1(σ1c1+σ2c2+σ3c3)+r2(σ1c4+σ2c5+σ3c6)+r3(σ1c7+σ2c8+σ3c9) −(σ1b1+σ2b2+σ3b3) < 1
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must hold. To determine candidate β1, α1, β2, α2 ∈ Z≥0, we can first determine candidate
bijections φ : Q → {−1,+1}3 such that the implied equations and strict inequalities
could be consistent. When the resulting system must be inconsistent, a version of Farkas’
Lemma can be used to provide a certificate of inconsistency. Many of these bijections
can be discarded, providing information about the way in which Q must be embedded in
O(C,b). We won’t be specific; most of the information can be described (and justified) in a
geometric way as well. For example, one may limit the pairs of vertices of Q that may be
embedded into antipodal facets of O.

Such an approach doesn’t generalize directly to Rd because no simple characterization of
parity bases is known. It also doesn’t generalize directly to general octahedra in R3 since
the normals of the facets cannot be described with so few parameters. Some candidate
bijections may be discarded in this way using the underlying geometric characterization
directly. However, restricting possible bijections of elements of Q to facets of O is only the
first step in this approach.

Lastly we remark that we require unit core octahedra in Section 5.1 because a set of
representatives (with respect to unimodular transformation) for the family of maximal
lattice-free octahedra is required. Alternatively, we could construct a different set of rep-
resentatives. If so, the definition of fixed pyramid would need to be modified; in R3 this
might be possible since Howe’s Theorem gives a good description of the embedded lattice
polytope. In higher dimensions this seems less tractable.

5.2.3 The Facet Separation Property in Rd

We are interested in the facet separation property in Rd and specifically the answer to the
following question.

Open Question 5.2.5. Is every unit-core octahedron in Rd facet-separable? Is every
unit-core octahedron in R3 facet-separable? Is every symmetric unit-core octahedron facet-
separable?

The following counterexample shows that enforcing the local structure of an octahedron
at one vertex does not suffice to obtain the facet separation property.

Untruth 5.2.6. Let w ∈ Rd. Let D = {1}×{0, 1}d−1. Let P = {w}+C be the Minkowski
sum of {w} and some polyhedral cone C with 2d−1 facets. Let the facets of P be denoted
F1, . . . , F2d−1. Let φ : D → {Fi : i ∈ {1, . . . , 2d−1}} be a bijection such that g ∈ relint(φ(g))
for all g ∈ D. If [0, 1]d ⊆ P , then w1 > 1 and 0 < wj < 1 for all j ∈ {2, . . . d}.
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Counterexample 5.2.7. Let

1. a1 = (6,−3,−1), b1 = 6,
2. a2 = (1,−3, 2), b2 = 3,
3. a3 = (6, 3,−1), b3 = 9, and
4. a4 = (1, 2, 1), b4 = 4.

Let P = {x ∈ R3 : aix ≤ bi ∀i ∈ {1, 2, 3, 4}}. Now P = {w} + C for w = (3
2
, 1

2
, 3

2
)T and

C = {x ∈ R3 : aTi x ≤ 0 ∀i ∈ {1, 2, 3, 4}} (a polyhedral cone with 4 = 23−1 facets). Let
F1 = (P ∩ {x ∈ R3 : aT1 x = b1}). Then F1 ∩ {0, 1}3 = {(1, 0, 0)T}. Let F2 = (P ∩ {x ∈
R3 : aT2 x = b2}). Then F2 ∩ {0, 1}3 = {(1, 0, 1)T}. Let F3 = (P ∩ {x ∈ R3 : aT3 x = b3}).
Then F3 ∩ {0, 1}3 = {(1, 1, 0)T}. Let F4 = (P ∩ {x ∈ R3 : aT4 x = b4}). Then F4 ∩ {0, 1}3 =
{(1, 1, 1)T}. The unit cube [0, 1]3 ⊆ P . However, w3 > 1, showing that this is indeed a
counterexample.

If a normalized octahedron has the facet separation property, then the following (weaker)
property holds. Let O ⊆ Rd be a normalized octahedron with vertices v1, . . . , v2d. Let
f ∈ (0, 1)d. Let Li be the line segment joining f to vi for all i ∈ {1, . . . , 2d}. Let
G1, . . . , G2d denote the facets of [0, 1]d. We say O has the ray-piercing property if there is a
bijection φ : {L1, . . . , L2d} → {G1, . . . , G2d} such that Li∩φ(Li) 6= ∅ for all i ∈ {1, . . . , 2d}
and Li ∩ φ(Lj) = ∅ for all i 6= j ∈ {1, . . . , 2d}. This property is, in fact, sufficient for
the proof in Section 5.1 to work. Either proving the ray-piercing property holds for all
unit core octahedra, or showing the ray-piercing property and facet separation property
are equivalent would provide more insight into the family Fd.

5.2.4 The Unit-Core and Facet Separation Properties for Other
Polyhedra

Both the unit-core and facet separation properties are not unique to octahedra and can be
defined more generally.

The unit-core property can be generalized to maximal lattice-free convex sets in Rd with
exactly 2d facets. Although quadrilaterals are the only maximal lattice-free polyhedra in
R2 with exactly four facets, octahedra are not the only maximal lattice-free polyhedra in
R3 with exactly eight facets. One example is provided in Figure 5.6. For more examples
see [18]. As per Proposition 5.2.1, the set of integral points in a maximal lattice-free
polyhedron P with 2d facets is a parity basis. For any such P , we again ask if conv(P ∩Zd)
is a parallelepiped of volume one (i.e. if P is unit-core).
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Figure 5.6: The polytope on the left has 8 facets, is maximally lattice-free, and unit core.
It is not an octahedron; its face lattice is provided on the right.

Open Question 5.2.8. Is every maximal lattice-free convex set in Rd with 2d facets unit-
core? Is every maximal lattice-free convex set in R3 with 8 facets unit-core? Is every
symmetric maximal lattice-free convex set in Rd with 2d facets unit-core?

The facet separation property is not specific to polyhedra which are maximally lattice-free,
but rather applies more generally to any polyhedron and its embedded dual. Let P ⊆ Rd

be a polytope with face lattice F(P ). We say polytope Q ⊆ Rd is a combinatorial dual of
P if its face lattice F(Q) is the opposite lattice to F(P ); that is, if F(Q) is isomorphic
to F(P )op. Suppose the facets of P are F1, . . . , Fk and the vertices of its combinatorial
dual Q are v1, . . . , vk. Let φ : F(P )op → F(Q) be the bijection between F(Q) and F(P )op

showing Q is a combinatorial dual of P . Note that φ maps facets of P to vertices of Q. By
relabelling, we may assume φ(Fi) = vi for all i ∈ {1, . . . , k}. We say Q is combinatorially
embedded in P if vi ∈ Fi for all i ∈ {1, . . . , k}. We say the facet separation property holds
for (P,Q) if there is a unique facet defining inequality of Q separating each vertex of P
from Q.

Open Question 5.2.9. When does the facet-separation property hold for polytopes and
their embedded combinatorial duals?

5.3 Observations and Summary

Theorem 5.1.2 serves as an analogue to Theorem 2.2.4 in many ways:
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1. we consider octahedra, which are maximal lattice-free convex sets in Rd with the
maximum number of facets;

2. to approximate a given octahedron cut, we pick one type 2 pyramid for each vertex
of the octahedron; and

3. we obtain an approximation factor which is constant (bounded above by 2 for any
d).

One shortcoming, however, is that the expressiveness of the sets involved is not clear.
Besides questions regarding the structural requirements on Fd captured in Section 5.2, it
is also unclear how well the Fd-closure approximates the the corner polyhedron.

We mention two existing d-dimensional inapproximability results to put this constant factor
approximation in context. The work in [8] compares the i-hedral closures for various
i ∈ {1, . . . , 2d}. Here the i-hedral closure is obtained from all intersection cuts for lattice-
free polyhedra with at most i facets.

Theorem 5.3.1 ([8, Theorem 2]). For i ∈ {1, . . . , 2d} let Ldi denote the family of lattice-free
(not necessarily maximal) polyhedra in Rd with at most i facets. Let Ld∗ denote the family of
all lattice-free (not necessarily maximal) polyhedra in Rd. If i ≤ 2d−1 then ρ[Ldi ,Ldi+1] =∞.

If i ≥ 2d−1 + 1 then ρ[Ldi ,Ld∗] ≤ 4d
5
2 .2

The results in [3] also compare the closures for different families of intersection cuts in
Rd for d ≥ 3. Colloquially, the main inapproximability result shows that one must use
lattice-free convex sets that do not contain a line to obtain a good approximation of the
corner polyhedron. Both the families we consider (Pd and Fd) have at least 2d−1 + 1 facets
and are bounded.

2Or more accurately 4Flt(d) were Flt(d) denotes the flatness constant, the maximum lattice-width of
a lattice-free set.
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Chapter 6

Conclusions and Future Work

In the first two sections we provide some additional information and open questions about
comparing intersection cuts generated by parallelograms and type 3 triangles to other
families of cuts. Thereafter, we turn to questions of a broader scope.

6.1 Parallelograms

The results in this thesis show that ρ[T2,Q2] = ρ[T3,Q2] = ρ[T ,Q2] = 9
8
. Clearly

ρ[Q,Q2] = 1 by Remark 1.3.5. The values of ρ[L,Q2] for the remainder of the families
discussed in Section 1.3.1 follow quickly from existing results.

Remark 6.1.1. Let Q2 denote the family of maximal lattice-free parallelograms in R2. Let
S denote the family of splits in R2. Let T1 denote the family of type 1 triangles in R2.
Then: (1) ρ[Q2,S] = 1, (2) ρ[T1,Q2] =∞, and (3) ρ[S,Q2] =∞.

Proof. The right image of Figure 1.7 illustrates that a vertical split can be approximated
by a normalized parallelogram with two opposite vertices as close, and equally close, to
(0, 1

2
)T and (1, 1

2
)T as necessary. Therefore (1) holds. Then (2) follows by transitivity of

bounds on ρ: if ρ[T1,Q2] < ∞ then ρ[T1,S] < ∞ but we have ρ[T1,S] = ∞ by Proposi-
tion 1.3.12. The construction of quadrilaterals which are “hard to approximate by a split”
described following Theorem 1.3.11 does not yield a family of parallelograms. However, the
techniques in [15] can be extended in a straightforward way to provide such an example,
showing (3) holds.
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Other than ρ[Q2,S], however, we cannot immediately obtain ρ[Q2,L] for other families of
maximal lattice-free convex sets in R2 via a straightforward extension of existing techniques.
We are particularly interested in these values to understand the strength of the simpler
family Q2 in approximating the corner polyhedron.

Open Question 6.1.2. Calculate or bound ρ[Q2,L] for L ∈ {T1, T2, T3,Q}.

6.2 Type 3 Triangles

To tighten the upper bound ρ[T2, C] ≤ 3
2
, it would suffice to prove ρ[T2, T3] ≤ K for some

K < 3
2
. One approach to doing so is to use the proof strategy in Section 2.1 and try

to define an analogue of ray-sliding triangles with respect to a given normalized type 3
triangle. Any normalized type 3 triangle can be described by the slopes of its edges as
illustrated in Figure 6.1.

v1

v2

v3

f −b
−a

d

Figure 6.1: A type 3 triangle may be parameterized with respect to the slopes of its edges
−a,−b, d for a, b, d > 0 with a < 1 and b > 1 as illustrated here for a = 1

2
, b = 2, and

d = 1. A fractional point in its interior f = (g, h)T for g = 1
3

and h = 1
3

is also shown.

A ray-sliding triangle can be defined with respect to a normalized type 3 triangle in a
straightforward way. Only three families of ray-sliding triangles are defined: one for each
ray direction ri = vi − f . Figure 6.2 illustrates two members of the family of ray-sliding
triangles for ray 1. One vertex of such a triangle is f + τ1r

1 for τ1 within appropriate
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bounds and the opposite edge is defined by {(x, y)T ∈ R2 : x + y = 0}. A ray-sliding
triangle for ray 2 has one vertex equal to f + τ2r

2 for τ2 within appropriate bounds and the
opposite edge defined by {(x, y)T ∈ R2 : x = 1}. A ray-sliding triangle for ray 3 has one
vertex equal to f + τ3r

3 for τ3 within appropriate bounds and the opposite edge defined
by {(x, y)T ∈ R2 : y = 1}.

v1

v2

v3

f

v1

v2

v3

f

Figure 6.2: Examples of fixed triangle (left) and ray-sliding triangle (right) for ray 1 defined
with respect to the base type 3 triangle and fractional point in Figure 6.1.

The next step in the proof strategy is to select the ray-sliding triangles whose intersection
cuts will replace the type 2 triangle closure constraint. In the quadrilateral case, the ray-
sliding triangles chosen gave a worse intersection cut coefficient on the one sliding-ray to
obtain better cut coefficients on two off-rays (i.e. choosing τ < 1). No analogous choice can
be made for type 3 triangles: weakening the coefficient on the one sliding-ray strengthens
the coefficient on the one off-ray. In fact, if we define natural geometric ray breakpoints
for these ray-sliding triangles then one such breakpoint corresponds to τ > 1. One ray
breakpoint is obtained from decreasing τ < 1 until there is no gain on the coefficient for
the unique off-ray. The other ray breakpoint is obtained from increasing τ > 1 until the
coefficient for the base-ray is no longer determined by its intersection with the base of the
type 2 triangle. See Figure 6.3.
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v1

v2

v3

f

v1

v2

v3

f

Figure 6.3: Examples of ray-sliding triangles for ray 1 at the breakpoint for τ < 1 (left)
and τ > 1 (right). The base type 3 triangle is given in Figure 6.1 and the fractional point
is f = (1

2
, 1

2
)T .

Computational experiments suggest that choosing the ray-sliding triangles for each ray
at the geometric breakpoint for τ > 1 might provide a stronger bound than for τ < 1.
However, experience has shown that choosing “close to the right set of type 2 triangles, but
not quite the right set” based on computational results is easy to do. When experimenting
with quadrilateral cuts, there were frequently many choices of ray-sliding triangle cuts that
approximate a given quadrilateral cut within a target bound. We expect the same is true
for type 3 triangle cuts as well.

Open Question 6.2.1. Show ρ[T2, T3] ≤ K for some K < 3
2
.

6.3 2-Row Intersection Cuts

One appeal of type 2 triangle cuts is that the previously established bounds on ρ[T2, C]
equalled those for ρ[T3, C] and ρ[Q, C]. However, the proof ρ[T2,Q] ≤ 5

4
breaks this symme-
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try. The bound ρ[T3,Q] ≤ 5
4

follows since ρ[T3, T2] = 1, ρ[T2,Q] ≤ 5
4

and the transitivity of
the upper bounds. An argument analogous to Proposition 1.3.17 gives that ρ[T3, C] ≤ 5

4
.

Now, all the established bounds on ρ[T3,Q] and ρ[Q, T3] are calculated using type 2 tri-
angles as an intermediary, but it’s not clear if the best possible bound can be calculated
in this way. Answering this question would be a good next step in capturing the relative
strength of intersection cuts from a single family in {T2, T3,Q} in approximating R(f ; Γ).

Open Question 6.3.1. Does ρ[T3,Q] = ρ[T2,Q]? Does ρ[Q, T3] = ρ[T2, T3]?

The example in Figure 6.4 gives some insight into approaching this question. It provides a
quadrilateral such that for ri = vi−f , there exists a type 3 triangle cut that is stronger than
any one ray-sliding triangle cut. For this example, however, there may be some combination
of ray-sliding triangle cuts or other type 2 triangle cuts that do as well as the type 3 triangle
cut. Moreover, the values ρ[T2,Q] and ρ[T3,Q] take the worst case over all (f ; Γ). It may
be the case that there exists (f ; Γ) such that θ[T2(f ; Γ),Q(f ; Γ)] 6= θ[T3(f ; Γ),Q(f ; Γ)] but
ρ[T2,Q] and ρ[T3,Q] coincide.

v1

v2

v3

v4

f

Figure 6.4: Suppose we want to construct a ray-sliding triangle with the same cut coefficient
or smaller on each ray as the dotted type 3 triangle. For the base {(x, y)T ∈ R2 : x = 0}
the cut coefficient for r3 is weaker. For the base {(x, y)T ∈ R2 : y = 0} the cut coefficient
for r2 is weaker. For the base {(x, y)T ∈ R2 : y = 1} the cut coefficient for r4 is weaker.
For the base {(x, y)T ∈ R2 : x = 1} the cut coefficient for r2 is weaker. Since we cannot
select a base for the ray-sliding triangle it cannot be constructed.
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One nice property of proofs here is that they prescribe a set of at most four ray-sliding
triangle cuts to approximate a given quadrilateral cut. So, even though ρ[T2,Q] is a worst
case bound, the techniques capture the behaviour of the bound on θ[T2(f ; Γ),Q(f ; Γ)] as
we vary parameters. In fact, we calculate the value of θ[T2(f ; Γ),Q2(f ; Γ)] exactly in the
Central Region. For the practical problem of cut generation, exactly providing the triangles
might prove useful.

From a mathematical point of view, however, it might be interesting to give a less construc-
tive proof. The proofs used (a great deal of) algebra to derive some global properties of the
semi-infinite programs (S(T2,Q2)) and (S(T2,Q)). For example, the bound as a function
of parameters a, b, c, and d is affine in f in each region of the partition of Q(a, b, c, d).
Moreover, the value of f in the worst case bound tended to the “center” of the underlying
quadrilateral - to (1

2
, 1

2
)T in the parallelogram case and to the Central Region in the gen-

eral quadrilateral case. It would be interesting to try to exploit these properties to provide
a global proof that does not rely so heavily on solving the underlying low dimensional
optimization problems.

Open Question 6.3.2. Can we bound ρ[T2,Q] by characterizing directly the instances
achieving the supremum?

We point to Chapter 5 as motivation, where abstracting out the key properties of the
bound using fixed triangles led to a generalization to d-row cuts.

Lastly, the values for ρ[T2,Q] and ρ[T2,Q2] were bounded by considering only the intersec-
tion cuts generated by ray-sliding triangles. Since we know ρ[T2,Q2] exactly, this shows we
can achieve the best bound using ray-sliding triangles. In fact, Chapter 3 and Chapter 4
provided two different sets of ray-sliding triangles that work to prove the bound for the
South-West and South Regions. However, we do not know if the same is true for bounding
ρ[T2,Q].

Open Question 6.3.3. Can the exact value of ρ[T2,Q] be obtained using intersection cuts
from ray-sliding triangles?

Proving a lower bound of ρ[T2,Q] ≥ 5
4

would suffice to answer “yes”; however, this lower
bound seems doubtful given the analysis in Lemma 4.1.2 is not tight. To prove a tighter
lower bound, an instance where the corresponding quadrilateral is not a parallelogram is
required.
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6.4 d-Row Intersection Cuts

Section 5.2.2 and Section 5.2.3 provided some open problems related to the structure
of maximal lattice-free octahedra. Section 5.2.4 provided generalizations of these open
problems to arbitrary polyhedra. More general questions relating to a classification of
maximal lattice-free convex sets in Rd also remain open.

However, Theorem 5.1.2 provides techniques for proving constant factor approximations
in Rd absent such a classification. Although the result in [8] shows that lattice-free convex
sets with at least 2d−1 + 1 facets are required to obtain a finite approximation of the
corner polyhedron in general, a refined list of the lattice-free convex sets required would
be interesting.

Open Question 6.4.1. Let F2d be the family of maximal lattice-free convex sets in Rd

with 2d facets. Let Od be the family of maximal lattice-free octahedra in Rd. Is ρ[Od,F2d ]
constant?

Colloquially, we’d like to understand how rich a family of maximal lattice-free convex sets
is required to obtain a finite approximation of the corner polyhedron. For example, a
polytope P ⊆ Rd is centrally symmetric if it has a center : a point x0 ∈ Rd such that
x0 + x ∈ P holds if and only if x0 − x ∈ P . The family of centrally symmetric octahedra
in R2 is exactly the family Q2. The problem of bounding ρ[Q2,Q] naturally extends to Rd

via centrally symmetric octahedra.

Open Question 6.4.2. Let Od be the family of maximal lattice-free octahedra in Rd. Let
SOd be the family of maximal lattice-free centrally symmetric octahedra in Rd. Bound
ρ[SOd,Od].

These theoretical questions may be amenable to using tools from convex geometry to move
past comparisons based only on facet count.

6.5 Other Comparison Measures

To upper-bound ρ[L1,L2] for various families L1 and L2 appearing in this thesis, we often
explicitly give a small number of cuts generated by members of L1 with which to ap-
proximate a given cut from L2. With this in mind, we propose an alternative theoretical
measure of the relative strength of the intersection cuts generated by members of L1 and
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L2. It is designed with the intent of capturing the effect of limiting the number of cuts we
may choose from the second family to g. Let L1 and L2 be families of lattice-free convex
sets in Rd. Suppose L2 is a family of polytopes with exactly ` extreme points. Define

1

ρg[L1,L2]
:= inf

f,r1,...r`∈Rd:

f+conv(r1,...,r`)∈L̂2,
f∈int (f+conv(r1,...,r`))

 sup
F⊆L1:|F|=g
f∈intB ∀B∈F

 min∑`
i=1 ψf ;B(ri)si≥1 ∀B∈F

s≥O

∑̀
i=1

si


 .

The infimum captures choosing a “hard to approximate” member of L2; the supremum
captures choosing the “best” g members of L1 with which to approximate the given cut;
and the inner-most optimization problem computes the corresponding bound. This min-
max relationship can be viewed as a “game” of sorts with the following rules:

1. The “L2 player” chooses f, r1, . . . , r` such that f + conv {r1, . . . , r`} ∈ L̂2.
2. The “L1 player” chooses F1, . . . , Fg ∈ L1 attempting to achieve the highest possible

value of

min
∑̀
i=1

si subject to
∑̀
i=1

ψf ;Fj(r
i)si ≥ 1 ∀j ∈ {1, . . . , g}.

This measure can be applied to our analysis of approximating parallelogram cuts with type
2 triangle cuts. The proof of Theorem 1.3.21 shows that ρ4[T2,Q2] ≤ 9

8
. In the South-West

Region, we only required two cuts in Lemma 3.4.1. However, we can compute the same
bound using four cuts as in Lemma 4.2.1. Hence, for given (f,Γ) (or a, b, c, d, g, h depending
on your parameterization), the same bounds can be obtained using different numbers of
cuts. The value of ρ3[T2,Q2] is not given by the results in this thesis - are exactly four cuts
needed to obtain a bound of 9

8
in the Central Region? In general, it would be interesting

to investigate instances where ρ[L1,L2] is not big, but ρg[L1,L2] is big for small g.

Alternative theoretical constraint measures that move away from the gauge measure have
been proposed in other work. These measures include depth of cut, volume cut off, and
change in objective function value, among others. Many of the measures of “goodness”
are amenable to questions related to limiting the number of cuts used (“if you can only
pick at most k cuts, which ones?”) as well as limiting the number of rounds of cuts added
(“you may only generate one round of cuts at the root node, which ones?”, “you may not
generate cuts recursively, which ones?”). For more details see, for example, [39] [55] and
[65].

157



6.6 Connections to Computational Results

With the families of intersection cuts of interest firmly in hand, we return to computational
work on the strength of multi-row cuts. As far as 2-row cuts are concerned, [38] and [14]
are most applicable. Both papers consider the strength of 2-row cuts generated by type
2 triangles relative to 1-row cuts and split cuts. The type 2 triangle cuts are computed
using (different) greedy heuristics and also strengthened via lifting where applicable. Both
papers report mixed results and highlight the sensitivity of the conclusions to the instances
used (ex. 2-row cuts perform better on instances that look like a continuous relaxation,
versus arbitrary MIPLIB instances) and the need for careful experimental design. The
authors of [59] provide more computational information on the relative strength of the
underlying multi-row models - for example, they speak to the impact of dropping variable
bounds and integrality restrictions.

The cost of generating the cut and lifting [44] may also degrade the usefulness of multi-
row cuts in practice. Accordingly, theoretical bounds on the richness of cuts from simple
families of lattice-free convex sets can provide guidance. Good approximations allow that
experiments based on “easy to generate” d-row cuts may speak to the strength of all d-row
cuts. The discussion in this thesis suggests further experiments based on type 2 triangles
and parallelograms, as well as d-row cuts based on type 2 pyramids or symmetric octahedra
as in [43].
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[19] Amitabh Basu, Gérard Cornuéjols, and Marco Molinaro. A probabilistic analysis of
the strength of the split and triangle closures. In International Conference on Integer
Programming and Combinatorial Optimization, pages 27–38. Springer, 2011.

160



[20] Amitabh Basu, Robert Hildebrand, and Matthias Köppe. The triangle closure is a
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Appendix A

Cut Coefficient Formulae for
Approximating Given Quadrilateral
Cut

v1

v2

v3

v4

f

y = −dx+ d+ 1y = cx+ 1

y = −ax y = bx− b

Figure A.1: Base quadrilateral for parameters a = 1
5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and

h = 1
2
.
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Consider the normalized quadrilateral Q(a, b, c, d) parameterized by a, b, c, d > 0 as de-
scribed in Section 2.1.2. Assume that ad ≤ bc. The vertices of Q(a, b, c, d) are:

v1 := (v1
x, v

1
y)
T =

(
1 +

1

b+ d
,

b

b+ d

)T
, v2 := (v2

x, v
2
y)
T =

(
b

a+ b
,
−ab
a+ b

)T
,

v3 := (v3
x, v

3
y)
T =

(
−1

a+ c
,

a

a+ c

)T
, and v4 := (v4

x, v
4
y)
T =

(
d

c+ d
, 1 +

cd

c+ d

)T
.

Note that v4
x ≤ v2

x and v3
y ≤ v1

y because ad ≤ bc. Also consider fractional point f = (g, h)T

in the interior of Q(a, b, c, d).

Define ray direction ri by ri = vi−f for i ∈ {1, 2, 3, 4} and Γ := {r1, r2, r3, r4}. We refer to
ray i as the ray {f+λri : λ ≥ 0}. For B as a vertical split, horizontal split, or τ -ray-sliding
triangle, we calculate the intersection cut ψf,B(r1)s1+ψf,B(r2)s2+ψf,B(r3)s3+ψf,B(r4)s4 ≥
1 where the coefficients ψf,B(ri) are given by functions of a, b, c, d, g, h, and τ .

A.1 Vertical Split

Let VS denote the split {(x, y) ∈ R2 : 0 ≤ x ≤ 1}. Note that VS generates a valid cut
for R(f ; Γ) whenever f ∈ intVS - that is, whenever 0 < g < 1. The intersection cut
coefficient formulae for VS depend on the directions of r2 and r4, which in turn depend on
the x-coordinate of f , relative to those of v2 and v4.

Case 1: 0 < g ≤ v4
x: The intersection cut for VS is(

1 +
1

(b+ d)(1− g)

)
s1 +

(
1− a

(a+ b)(1− g)

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− c

(c+ d)(1− g)

)
s4 ≥ 1.

Case 2: v4
x ≤ g ≤ v2

x: The intersection cut for VS is(
1 +

1

(b+ d)(1− g)

)
s1 +

(
1− a

(a+ b)(1− g)

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− d

(c+ d)g

)
s4 ≥ 1.

Case 3: v2
x ≤ g < 1: The intersection cut for VS is(

1 +
1

(b+ d)(1− g)

)
s1 +

(
1− b

(a+ b)g

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− d

(c+ d)g

)
s4 ≥ 1.

Note that when g = v4
x or g = v2

x, two of the above cut formulas apply. A straightforward
substitution shows that the two formulas agree on these boundary points. When g = v4

x

the coefficient for s4 is 0 and when g = v2
x the coefficient for s2 is 0, as expected.
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Figure A.2: Vertical split for parameters a = 1
5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.

A.2 Horizontal Split

Let HS denote the split {(x, y) ∈ R2 : 0 ≤ y ≤ 1}. Note that HS generates a valid cut
for R(f ; Γ) whenever f ∈ intHS - that is, whenever 0 < h < 1. The intersection cut
coefficient formulae for HS depend on the directions of r1 and r3, which in turn depend on
the y-coordinate of f , relative to those of v1 and v3.

Case 1: 0 < h ≤ v3
y: The intersection cut for HS is(

1− d

(b+ d)(1− h)

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− c

(a+ c)(1− h)

)
s3 +

(
1 +

cd

(c+ d)(1− h)

)
s4 ≥ 1.

Case 2: v3
y ≤ h ≤ v1

y : The intersection cut for HS is(
1− d

(b+ d)(1− h)

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− a

(a+ c)h

)
s3 +

(
1 +

cd

(c+ d)(1− h)

)
s4 ≥ 1.
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Case 3: v1
y ≤ h < 1: The intersection cut for HS is(

1− b

(b+ d)h

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− a

(a+ c)h

)
s3 +

(
1 +

cd

(c+ d)(1− h)

)
s4 ≥ 1.

Note that when h = v3
y or h = v1

y, two of the above cut formulas apply. A straightforward
substitution shows that the two formulas agree on these boundary points. When h = v3

y

the coefficient for s3 is 0 and when h = v1
y the coefficient for s1 is 0, as expected.
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v2

v3

v4

f

Figure A.3: Horizontal split for parameters a = 1
5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.

A.3 τ-Ray-Sliding Triangle for Ray 1

Let F = {(x, y) ∈ R2 : x = 0}. Fix τ ∈ R+ such that the x-coordinate of f + τr1 is at
least 1. Let L(1,0)(τ) be the line through f + τr1 and (1, 0)T . Let L(1,1)(τ) be the line
through f + τr1 and (1, 1)T . Suppose F,L(1,0)(τ), and L(1,1)(τ) bound a triangle T with
points (0, 0)T , (0, 1)T , (1, 0)T , and (1, 1)T on its boundary. Then T is RS1(τ) as defined in
Section 2.4. There are three, four, or five standard breakpoints; the number of breakpoints
depends on the directions of r2 and r4, which in turn depend on the x-coordinate of f ,
relative to those of v2 and v4. In all cases, the following three breakpoints apply.

1. If g < 1, the smallest τ value for which RS1(τ) is defined is τmin1 := 1− 1
(1−g)(b+d)+1

.

Note that this corresponds to a vertical split. If g ≥ 1, triangle RS1(τ) is defined
for all τ ∈ (0, 1]. We define τmin1 = 0 in this case for convenience, but note that
f 6∈ intRS1(τ) for τ = 0.
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2. The value of τ corresponding to not sliding along ray 1 is τ fixed1 := 1. The corre-
sponding intersection cut for fixed triangle F1 is

s1 + s2 +

(
1 +

1

(a+ c)g

)
s3 + s4 ≥ 1.

3. The largest τ value for whichRS1(τ) is defined is either determined by the intersection
of ray 1 with y = 0 or the intersection of ray 1 with y = 1, depending on the direction
r1. Accordingly we define:

τmax1 :=


1 + b

h(b+d)−b if h > v1y

1 + d
(1−h)(b+d)−d if h < v1y

∞ otherwise

.

Note that RS1(τ) generates a valid cut for R(f ; Γ) whenever f ∈ intRS1(τ).

1. For g ∈ (0, 1] and h ∈ [0, 1], RS1(τ) generates a valid cut for all τ ∈ [τmin1 , τmax1 ].
2. For g > 1, RS1(τ) generates a valid cut for all τ ∈ (0, τmax1 ].
3. For g ≤ 0, RS1(τ) never generates a valid cut.
4. For h > 1, RS1(τ) generates a valid cut whenever τ ≤ 1 (and for some τ ≥ 1, though

these values aren’t required for our purposes).
5. For h < 0, RS1(τ) generates a valid cut whenever τ ≤ 1 (and again for some τ ≥ 1).

v1

v2

v3

v4

f
v1

v2

v3

v4

f

Figure A.4: (left) τ -Ray-Sliding Triangle for Ray 1 RS1(τ) for τ = 11
10

and (right) Fixed
Triangle F1 for parameters a = 1

5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.
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Case 1: 0 < g ≤ v4
x: There are three standard breakpoints: τmin1 ≤ τ fixed1 ≤ τmax1 . For all

τ ∈ [τmin1 , τmax1 ], the intersection cut for ray-sliding triangle RS1(τ) is(
1

τ

)
s1 +

(
1− a(b+ d)(1− τ)

(a+ b)τ

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− c(b+ d)(1− τ)

(c+ d)τ

)
s4 ≥ 1.

Case 2: v4
x ≤ g ≤ v2

x: There are four standard breakpoints: τmin1 ≤ τ bp11 ≤ τ fixed1 ≤ τmax1

where
τ bp11 := 1− d

c(b+ d)g + d
.

For all τ ∈ [τmin1 , τ bp11 ], the intersection cut for ray-sliding triangle RS1(τ) is(
1

τ

)
s1 +

(
1− a(b+ d)(1− τ)

(a+ b)τ

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− d

(c+ d)g

)
s4 ≥ 1.

For all τ ∈ [τ bp11 , τmax1 ], the intersection cut for ray-sliding triangle RS1(τ) is(
1

τ

)
s1 +

(
1− a(b+ d)(1− τ)

(a+ b)τ

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− c(b+ d)(1− τ)

(c+ d)τ

)
s4 ≥ 1.

Note that when τ = τ bp11 , two of the above cut formulas apply. A straightforward substi-
tution shows that the two formulas agree on this boundary point and the corresponding
intersection cut for ray-sliding triangle RS1(τ bp11 ) is(

1 +
d

c(b+ d)g

)
s1 +

(
1− ad

c(a+ b)g

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− d

(c+ d)g

)
s4 ≥ 1.

Case 3: v2
x ≤ g: There are five standard breakpoints: τmin1 ≤ τ bp21 ≤ τ bp11 ≤ τ fixed1 ≤ τmax1

where
τ bp21 := 1− b

a(b+ d)g + b
, and τ bp11 := 1− d

c(b+ d)g + d
.

For all τ ∈ [τmin1 , τ bp21 ], the intersection cut for ray-sliding triangle RS1(τ) is(
1

τ

)
s1 +

(
1− b

(a+ b)g

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− d

(c+ d)g

)
s4 ≥ 1.

For all τ ∈ [τ bp21 , τ bp11 ], the intersection cut for ray-sliding triangle RS1(τ) is(
1

τ

)
s1 +

(
1− a(b+ d)(1− τ)

(a+ b)τ

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− d

(c+ d)g

)
s4 ≥ 1.
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Figure A.5: (left) τ bp21 -Ray-Sliding Triangle for Ray 1 where τ bp21 = 15
19

and parameters

a = 4, b = 2, c = 3, d = 1
2
, g = 3

4
, and h = 1

4
and (right) τ bp11 -Ray-Sliding Triangle for Ray

1 for τ bp11 = 5
6

and parameters a = 1
5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.

For all τ ∈ [τ bp11 , τmax1 ], the intersection cut for ray-sliding triangle RS1(τ) is(
1

τ

)
s1 +

(
1− a(b+ d)(1− τ)

(a+ b)τ

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− c(b+ d)(1− τ)

(c+ d)τ

)
s4 ≥ 1.

Note that when τ = τ bp21 , two of the above cut formulas apply. A straightforward substi-
tution shows that the two formulas agree on this boundary point and the corresponding
intersection cut for ray-sliding triangle RS1(τ bp21 ) is(

1 +
b

a(b+ d)g

)
s1 +

(
1− b

(a+ b)g

)
s2 +

(
1 +

1

(a+ c)g

)
s3 +

(
1− d

(c+ d)g

)
s4 ≥ 1.
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Note that when τ = τ bp11 , two of the above cut formulas apply. A straightforward substi-
tution shows that the two formulas agree on this boundary point and the corresponding
intersection cut for ray-sliding triangle RS1(τ bp11 ) is the same as in Case 2.

Checking Consistency for g = v4
x and g = v2

x: Note that when g = v4
x, both Case 1 and

Case 2 apply. The formulas are consistent because τmin1 = τ bp11 . Note that when g = v2
x,

both Case 2 and Case 3 apply. The formulas are consistent because τmin1 = τ bp21 .

A.4 τ-Ray-Sliding Triangle for Ray 2

Let F = {(x, y) ∈ R2 : y = 1}. Fix τ ∈ R+ such that the y-coordinate of f + τr2 is at
most 0. Let L(0,0)(τ) be the line through f + τr2 and (0, 0)T . Let L(1,0)(τ) be the line
through f + τr2 and (1, 0)T . Suppose F,L(0,0)(τ), and L(1,0)(τ) bound a triangle T with
points (0, 0)T , (0, 1)T , (1, 0)T , and (1, 1)T on its boundary. Then T is RS2(τ) as defined in
Section 2.4. There are three, four, or five standard breakpoints; the number of breakpoints
depends on the directions of r1 and r3, which in turn depend on the y-coordinate of f ,
relative to those of v1 and v3. In all cases, the following three breakpoints apply.

1. If h > 0, the smallest τ value for which RS2(τ) is defined is τmin2 := 1 − ab
(a+b)h+ab

.

Note that this corresponds to a horizontal split. If h ≤ 0, triangle RS2(τ) is defined
for all τ ∈ (0, 1]. We define τmin2 = 0 in this case for convenience, but note that
f 6∈ intRS2(τ) for τ = 0.

2. The value of τ corresponding to not sliding along ray 2 is τ fixed2 := 1. The corre-
sponding intersection cut for fixed triangle F2 is

s1 + s2 + s3 +

(
1 +

cd

(c+ d)(1− h)

)
s4 ≥ 1.

3. The largest τ value for whichRS2(τ) is defined is either determined by the intersection
of ray 2 with x = 0 or the intersection of ray 2 with x = 1, depending on the direction
r2. Accordingly we define:

τmax2 :=


1 + b

(a+b)g−b if g > v2x

1 + a
b−(a+b)g if g < v2x

∞ otherwise

.

Note that RS2(τ) generates a valid cut for R(f ; Γ) whenever f ∈ intRS2(τ).

1. For g ∈ [0, 1] and h ∈ [0, 1), RS2(τ) generates a valid cut for all τ ∈ [τmin2 , τmax2 ].
2. For h < 0, RS2(τ) generates a valid cut for all τ ∈ (0, τmax2 ].
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3. For h ≥ 1, RS2(τ) never generates a valid cut.
4. For g > 1, RS2(τ) generates a valid cut whenever τ ≤ 1 (and for some τ ≥ 1, though

these values aren’t required for our purposes).
5. For g < 0, RS2(τ) generates a valid cut whenever τ ≤ 1 (and again for some τ ≥ 1).
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Figure A.6: (top) τ -Ray-Sliding Triangle for Ray 2 RS2(τ) for τ = 11
10

and (bottom) Fixed
Triangle F2 for parameters a = 1

5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.

Case 1: h ≤ v3
y: There are five standard breakpoints: τmin2 ≤ τ bp22 ≤ τ bp12 ≤ τ fixed2 ≤ τmax2

where
τ bp22 := 1− bc

(a+ b)(1− h) + bc
, and τ bp12 := 1− ad

(a+ b)(1− h) + ad
.
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For all τ ∈ [τmin2 , τ bp22 ], the intersection cut for ray-sliding triangle RS2(τ) is(
1− d

(b+ d)(1− h)

)
s1 +

(
1

τ

)
s2 +

(
1− c

(a+ c)(1− h)

)
s3 +

(
1 +

cd

(c+ d)(1− h)

)
s4 ≥ 1.

For all τ ∈ [τ bp22 , τ bp12 ], the intersection cut for ray-sliding triangle RS2(τ) is(
1− d

(b+ d)(1− h)

)
s1 +

(
1

τ

)
s2 +

(
1− (a+ b)(1− τ)

b(a+ c)τ

)
s3 +

(
1 +

cd

(c+ d)(1− h)

)
s4 ≥ 1.

For all τ ∈ [τ bp12 , τmax2 ], the intersection cut for ray-sliding triangle RS2(τ) is(
1− (a+ b)(1− τ)

a(b+ d)τ

)
s1 +

(
1

τ

)
s2 +

(
1− (a+ b)(1− τ)

b(a+ c)τ

)
s3 +

(
1 +

cd

(c+ d)(1− h)

)
s4 ≥ 1.

Note that when τ = τ bp22 , two of the above cut formulas apply. A straightforward substitu-
tion shows that the two formulas agree on this boundary point and that the corresponding
intersection cut for ray-sliding triangle RS2(τ bp22 ) is(

1− d
(b+d)(1−h)

)
s1 +

(
1 + bc

(a+b)(1−h)

)
s2 +

(
1− c

(a+c)(1−h)

)
s3 +

(
1 + cd

(c+d)(1−h)

)
s4 ≥ 1.

Note that when τ = τ bp12 , two of the above cut formulas apply. A straightforward substitu-
tion shows that the two formulas agree on this boundary point and that the corresponding
intersection cut for ray-sliding triangle RS2(τ bp12 ) is(

1− d
(b+d)(1−h)

)
s1 +

(
1 + ad

(a+b)(1−h)

)
s2 +

(
1− ad

b(a+c)(1−h)

)
s3 +

(
1 + cd

(c+d)(1−h)

)
s4 ≥ 1.

Case 2: v3
y ≤ h ≤ v1

y : There are four standard breakpoints: τmin2 ≤ τ bp12 ≤ τ fixed2 ≤ τmax2

where
τ bp12 := 1− ad

(a+ b)(1− h) + ad
.

For all τ ∈ [τmin2 , τ bp12 ], the intersection cut for ray-sliding triangle RS2(τ) is(
1− d

(b+ d)(1− h)

)
s1 +

(
1

τ

)
s2 +

(
1− (a+ b)(1− τ)

b(a+ c)τ

)
s3 +

(
1 +

cd

(c+ d)(1− h)

)
s4 ≥ 1.

For all τ ∈ [τ bp12 , τmax2 ], the intersection cut for ray-sliding triangle RS2(τ) is(
1− (a+ b)(1− τ)

a(b+ d)τ

)
s1 +

(
1

τ

)
s2 +

(
1− (a+ b)(1− τ)

b(a+ c)τ

)
s3 +

(
1 +

cd

(c+ d)(1− h)

)
s4 ≥ 1.

Note that when τ = τ bp12 , two of the above cut formulas apply. A straightforward substitu-
tion shows that the two formulas agree on this boundary point and that the corresponding
intersection cut for ray-sliding triangle RS2(τ bp12 ) is the same as Case 1.
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Case 3: v1
y ≤ h < 1: There are three standard breakpoints: τmin2 ≤ τ fixed2 ≤ τmax2 . For all

τ ∈ [τmin2 , τmax2 ], the intersection cut for ray-sliding triangle RS2(τ) is(
1− (a+ b)(1− τ)

a(b+ d)τ

)
s1 +

(
1

τ

)
s2 +

(
1− (a+ b)(1− τ)

b(a+ c)τ

)
s3 +

(
1 +

cd

(c+ d)(1− h)

)
s4 ≥ 1.

Checking Consistency for h = v3
y and h = v1

y : Note that when h = v3
y, both Case 1 and

Case 2 apply. The formulas are consistent because τmin2 = τ bp22 . Note that when g = v1
y,

both Case 2 and Case 3 apply. The formulas are consistent because τmin2 = τ bp12 .
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Figure A.7: (top) τ bp12 -Ray-Sliding
Triangle for Ray 2 for τ bp12 = 11

12
and

parameters a = 1
5
, b = 2, c = 3,

d = 1
2
, g = 1

3
, and h = 1

2
, and

(left) τ bp22 -Ray-Sliding Triangle for
Ray 2 for τ bp22 = 2

3
and parameters

a = 2, b = 2, c = 1
2
, d = 1

3
, g = 1

3
,

and h = 1
2
.

A.5 τ-Ray-Sliding Triangle for Ray 3

Let F = {(x, y) ∈ R2 : x = 1}. Fix τ ∈ R+ such that the x-coordinate of f + τr3 is at
most 0. Let L(0,0)(τ) be the line through f + τr3 and (0, 0)T . Let L(0,1)(τ) be the line
through f + τr3 and (0, 1)T . Suppose F,L(0,0)(τ), and L(0,1)(τ) bound a triangle T with
points (0, 0)T , (0, 1)T , (1, 0)T , and (1, 1)T on its boundary. Then T is RS3(τ) as defined in
Section 2.4. There are three, four, or five standard breakpoints; the number of breakpoints
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depends on the directions of r2 and r4, which in turn depend on the x-coordinate of f ,
relative to those of v2 and v4. In all cases, the following three breakpoints apply.

1. If g > 0, the smallest τ value for which RS3(τ) is defined is τmin3 := 1 − 1
(a+c)g+1

.

Note that this corresponds to a vertical split. If g ≤ 0, triangle RS3(τ) is defined
for all τ ∈ (0, 1]. We define τmin3 = 0 in this case for convenience, but note that
f 6∈ intRS3(τ) for τ = 0.

2. The value of τ corresponding to not sliding along ray 3 is τ fixed3 := 1. The corre-
sponding intersection cut for fixed triangle F3 is(

1 +
1

(b+ d)(1− g)

)
s1 + s2 + s3 + s4 ≥ 1.

3. The largest τ value for whichRS3(τ) is defined is either determined by the intersection
of ray 3 with y = 0 or the intersection of ray 3 with y = 1, depending on the direction
r3. Accordingly we define:

τmax3 :=


1 + a

(a+c)h−a if h > v3y

1 + c
(a+c)(1−h)−c if h < v3y

∞ otherwise

.

Note that RS3(τ) generates a valid cut for R(f ; Γ) whenever f ∈ intRS3(τ).

1. For g ∈ [0, 1) and h ∈ [0, 1], RS3(τ) generates a valid cut for all τ ∈ [τmin3 , τmax3 ].
2. For g < 0, RS3(τ) generates a valid cut for all τ ∈ (0, τmax3 ].
3. For g ≥ 1, RS3(τ) never generates a valid cut.
4. For h > 1, RS3(τ) generates a valid cut whenever τ ≤ 1 (and for some τ ≥ 1, though

these values aren’t required for our purposes).
5. For h < 0, RS3(τ) generates a valid cut whenever τ ≤ 1 (and again for some τ ≥ 1).

Case 1: g ≤ v4
x: There are five standard breakpoints: τmin3 ≤ τ bp23 ≤ τ bp13 ≤ τ fixed3 ≤ τmax3

where
τ bp23 := 1− c

d(a+ c)(1− g) + c
and τ bp13 := 1− a

b(a+ c)(1− g) + a
.

For all τ ∈ [τmin3 , τ bp23 ] the intersection cut for ray-sliding triangle RS3(τ) is(
1 +

1

(b+ d)(1− g)

)
s1 +

(
1− a

(a+ b)(1− g)

)
s2 +

(
1

τ

)
s3 +

(
1− c

(c+ d)(1− g)

)
s4 ≥ 1.

For all τ ∈ [τ bp23 , τ bp13 ] the intersection cut for ray-sliding triangle RS3(τ) is(
1 +

1

(b+ d)(1− g)

)
s1 +

(
1− a

(a+ b)(1− g)

)
s2 +

(
1

τ

)
s3 +

(
1− (a+ c)d(1− τ)

(c+ d)τ

)
s4 ≥ 1.
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Figure A.8: (left) τ -Ray-Sliding Triangle for Ray 3 RS3(τ) for τ = 11
10

and (right) Fixed
Triangle F3 for parameters a = 1

5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.

For all τ ∈ [τ bp13 , τmax3 ] the intersection cut for ray-sliding triangle RS3(τ) is(
1 +

1

(b+ d)(1− g)

)
s1 +

(
1− b(a+ c)(1− τ)

(a+ b)τ

)
s2 +

(
1

τ

)
s3 +

(
1− (a+ c)d(1− τ)

(c+ d)τ

)
s4 ≥ 1.

Note that when τ = τ bp23 , two of the above cut formulas apply. A straightforward substi-
tution shows that the two formulas agree on this boundary point and the corresponding
intersection cut for ray-sliding triangle RS3(τ bp23 ) is(

1 + 1
(b+d)(1−g)

)
s1 +

(
1− a

(a+b)(1−g)

)
s2 +

(
1 + c

(a+c)d(1−g)

)
s3 +

(
1− c

(c+d)(1−g)

)
s4 ≥ 1.

Note that when τ = τ bp13 , two of the above cut formulas apply. A straightforward substi-
tution shows that the two formulas agree on this boundary point and the corresponding
intersection cut for ray-sliding triangle RS3(τ bp13 ) is(

1 + 1
(b+d)(1−g)

)
s1 +

(
1− a

(a+b)(1−g)

)
s2 +

(
1 + a

b(a+c)(1−g)

)
s3 +

(
1− ad

b(c+d)(1−g)

)
s4 ≥ 1.

Case 2: v4
x ≤ g ≤ v2

x: There are four standard breakpoints: τmin3 ≤ τ bp13 ≤ τ fixed3 ≤ τmax3
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where
τ bp13 := 1− a

b(a+ c)(1− g) + a
.

For all τ ∈ [τmin3 , τ bp13 ] the intersection cut for ray-sliding triangle RS3(τ) is(
1 +

1

(b+ d)(1− g)

)
s1 +

(
1− a

(a+ b)(1− g)

)
s2 +

(
1

τ

)
s3 +

(
1− (a+ c)d(1− τ)

(c+ d)τ

)
s4 ≥ 1.

For all τ ∈ [τ bp13 , τmax3 ] the intersection cut for ray-sliding triangle RS3(τ) is(
1 +

1

(b+ d)(1− g)

)
s1 +

(
1− b(a+ c)(1− τ)

(a+ b)τ

)
s2 +

(
1

τ

)
s3 +

(
1− (a+ c)d(1− τ)

(c+ d)τ

)
s4 ≥ 1.

Note that when τ = τ bp13 , two of the above cut formulas apply. A straightforward substi-
tution shows that the two formulas agree on this boundary point and the corresponding
intersection cut for ray-sliding triangle RS3(τ bp13 ) is the same as in Case 1.
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Figure A.9: (left) τ bp13 -Ray-Sliding Triangle for Ray 3 for τ bp13 = 64
67

and parameters a = 1
5
,

b = 2, c = 3, d = 1
2
, g = 1

3
, and h = 1

2
and (right) τ bp23 -Ray-Sliding Triangle for Ray 3 for

τ bp23 = 8
13

and parameters a = 1
5
, b = 2, c = 1, d = 2, g = 1

3
, and h = 1

2
.
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Case 3: v2
x ≤ g < 1: There are three standard breakpoints: τmin3 ≤ τ fixed3 ≤ τmax3 . For all

τ ∈ [τmin3 , τmax3 ] the intersection cut for ray-sliding triangle RS3(τ) is(
1 +

1

(b+ d)(1− g)

)
s1 +

(
1− b(a+ c)(1− τ)

(a+ b)τ

)
s2 +

(
1

τ

)
s3 +

(
1− (a+ c)d(1− τ)

(c+ d)τ

)
s4 ≥ 1.

Checking Consistency for g = v4
x and g = v2

x: Note that when g = v4
x, both Case 1 and

Case 2 apply. The formulas are consistent because τmin3 = τ bp23 . Note that when g = v2
x,

both Case 2 and Case 3 apply. The formulas are consistent because τmin3 = τ bp13 .

A.6 τ-Ray Sliding Triangle for Ray 4

Let F = {(x, y) ∈ R2 : y = 0}. Fix τ ∈ R+ such that the y-coordinate of f + τr4 is at
least 1. Let L(0,1)(τ) be the line through f + τr4 and (0, 1)T . Let L(1,1)(τ) be the line
through f + τr4 and (1, 1)T . Suppose F,L(0,1)(τ), and L(1,1)(τ) bound a triangle T with
points (0, 0)T , (0, 1)T , (1, 0)T , and (1, 1)T on its boundary. Then T is RS4(τ) as defined in
Section 2.4. There are three, four, or five standard breakpoints; the number of breakpoints
depends on the directions of r1 and r3, which in turn depend on the y-coordinate of f ,
relative to those of v1 and v3. In all cases, the following three breakpoints apply.

1. If h < 1, the smallest τ value for which RS4(τ) is defined is τmin4 := 1− cd
(c+d)(1−h)+cd

.

Note that this corresponds to a horizontal split. If h ≥ 1, triangle RS4(τ) is defined
for all τ ∈ (0, 1]. We define τmin4 = 0 in this case for convenience, but note that
f 6∈ intRS4(τ) for τ = 0.

2. The value of τ corresponding to not sliding along ray 4 is τ fixed4 := 1. The corre-
sponding intersection cut for fixed triangle F4 is

s1 +

(
1 +

ab

(a+ b)h

)
s2 + s3 + s4 ≥ 1.

3. The largest τ value for whichRS4(τ) is defined is either determined by the intersection
of ray 4 with x = 0 or the intersection of ray 4 with x = 1. Accordingly we define:

τmax4 :=


1 + d

g(c+d)−d if g > v4x

1 + c
(1−g)(c+d)−c if g < v4x

∞ otherwise

.
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v1

v2

v3

v4

f
v1

v2

v3

v4

f

Figure A.10: (left) τ -Ray-Sliding Triangle for Ray 4 RS4(τ) for τ = 11
10

and (right) Fixed
Triangle F4 for parameters a = 1

5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.

Note that RS4(τ) generates a valid cut for R(f ; Γ) whenever f ∈ intRS4(τ).

1. For g ∈ [0, 1] and h ∈ (0, 1], RS4(τ) generates a valid cut for all τ ∈ [τmin4 , τmax4 ].
2. For h > 1, RS4(τ) generates a valid cut for all τ ∈ (0, τmax4 ].
3. For h ≤ 0, RS4(τ) never generates a valid cut.
4. For g > 1, RS4(τ) generates a valid cut whenever τ ≤ 1 (and for some τ ≥ 1, though

these values aren’t required for our purposes).
5. For g < 0, RS4(τ) generates a valid cut whenever τ ≤ 1 (and again for some τ ≥ 1).

Case 1: 0 < h ≤ v3
y: There are three standard breakpoints: τmin4 ≤ τ fixed4 ≤ τmax4 . For all

τ ∈ [τmin4 , τmax4 ], the intersection cut for ray-sliding triangle RS4(τ) is(
1− (c+ d)(1− τ)

c(b+ d)τ

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− (c+ d)(1− τ)

(a+ c)dτ

)
s3 +

(
1

τ

)
s4 ≥ 1.

Case 2: v3
y ≤ h ≤ v1

y: There are four standard breakpoints: τmin4 ≤ τ bp14 ≤ τ fixed4 ≤ τmax4

where
τ bp14 := 1− ad

(c+ d)h+ ad
.

For all τ ∈ [τmin4 , τ bp14 ], the intersection cut for ray-sliding triangle RS4(τ) is(
1− (c+ d)(1− τ)

c(b+ d)τ

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− a

(a+ c)h

)
s3 +

(
1

τ

)
s4 ≥ 1.
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For all τ ∈ [τ bp14 , τmax4 ], the intersection cut for ray-sliding triangle RS4(τ) is(
1− (c+ d)(1− τ)

c(b+ d)τ

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− (c+ d)(1− τ)

(a+ c)dτ

)
s3 +

(
1

τ

)
s4 ≥ 1.

Note that when τ = τ bp14 , two of the above cut formulas apply. A straightforward substitu-
tion shows that the two formulas agree on this boundary point and that the corresponding
intersection cut for ray-sliding triangle RS4(τ bp14 ) is(

1− ad

c(b+ d)h

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− a

(a+ c)h

)
s3 +

(
1 +

ad

(c+ d)h

)
s4 ≥ 1.

Case 3: v1
y ≤ h: There are five standard breakpoints: τmin4 ≤ τ bp24 ≤ τ bp14 ≤ τ fixed4 ≤ τmax4

where
τ bp24 := 1− bc

(c+ d)h+ bc
, and τ bp14 := 1− ad

(c+ d)h+ ad
.

For all τ ∈ [τmin4 , τ bp24 ], the intersection cut for ray-sliding triangle RS4(τ) is(
1− b

(b+ d)h

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− a

(a+ c)h

)
s3 +

(
1

τ

)
s4 ≥ 1.

For all τ ∈ [τ bp24 , τ bp14 ], the intersection cut for ray-sliding triangle RS4(τ) is(
1− (c+ d)(1− τ)

c(b+ d)τ

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− a

(a+ c)h

)
s3 +

(
1

τ

)
s4 ≥ 1.

For all τ ∈ [τ bp14 , τmax4 ], the intersection cut for ray-sliding triangle RS4(τ) is(
1− (c+ d)(1− τ)

c(b+ d)τ

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− (c+ d)(1− τ)

(a+ c)dτ

)
s3 +

(
1

τ

)
s4 ≥ 1.

Note that when τ = τ bp24 , two of the above cut formulas apply. A straightforward substitu-
tion shows that the two formulas agree on this boundary point and that the corresponding
intersection cut for ray-sliding triangle RS4(τ bp24 ) is(

1− b

(b+ d)h

)
s1 +

(
1 +

ab

(a+ b)h

)
s2 +

(
1− a

(a+ c)h

)
s3 +

(
1 +

bc

(c+ d)h

)
s4 ≥ 1.

Note that when τ = τ bp14 , two of the above cut formulas apply. A straightforward substitu-
tion shows that the two formulas agree on this boundary point and that the corresponding
intersection cut for ray-sliding triangle RS4(τ bp14 ) is the same as Case 2.
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v1

v2

v3

v4
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v3

v4
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Figure A.11: (left) τ bp24 -Ray-Sliding Triangle for Ray 4 for τ bp24 = 9
11

and parameters a = 1
5
,

b = 1
2
, c = 1, d = 2, g = 1

3
, and h = 3

4
and (right) τ bp14 -Ray-Sliding Triangle for Ray 4 for

τ bp14 = 35
37

and parameters a = 1
5
, b = 2, c = 3, d = 1

2
, g = 1

3
, and h = 1

2
.

Checking Consistency for h = v3
y and h = v1

y : Note that when h = v3
y, both Case 1 and

Case 2 apply. The formulas are consistent because τmin4 = τ bp14 . Note that when g = v1
y,

both Case 2 and Case 3 apply. The formulas are consistent because τmin4 = τ bp24 .
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Appendix B

Proofs of Proposition 3.4.2 and
Proposition 3.5.2

B.1 Proof of Proposition 3.4.2.

We prove Proposition 3.4.2, the statement of which is reproduced below for convenience.

Proposition 3.4.2. The optimal value of (P ′) in Lemma 3.4.1 is exactly LBSW (α, β, g, h).

Proof. For fixed α, β > 0 such that α ≤ β and g, h such that (g, h)T ∈ RSW (α, β), the
optimization problem (P ′) is given by

min s1 + s2 + s3 + s4

s. t.

(1− α
(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

) (
1− α

(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

)(
1 + 1

(α+β)(1−g)

) (
1− α

(α+β)(1−g)

) (
1 + 1

(α+β)(1−g)

) (
1− α

(α+β)(1−g)

)

s1

s2

s3

s4

 ≥ 1l

s1, s2, s3, s4 ≥ 0.

By Lemma 3.4.1, LBSW (α, β, g, h) is a lower bound on the optimal value of (P ′). Here we
find a feasible solution to (P ′) of objective function value LBSW (α, β, g, h) and conclude
the optimal value is exactly LBSW (α, β, g, h) as claimed. Our choice for feasible solution
to (P ′) depends on the sign of g and h. There are three cases: (1) g ≥ 0, h ≥ 0, (2)
g < 0, h > 0 and (3) g > 0, h < 0.
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Case 1: g ≥ 0, h ≥ 0

Note that since (g, h)T ∈ RSW (α, β) we have g ∈ [0 , α
α+β

] and h ∈ [0 , α
α+β

]. We will show
that

ŝ :=


α(α+β)[β(1−g)+(1−h)+(α−β)g]

α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)
(β2−α2)h

β[α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)]
α(β2−α2)g

α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)
(α+β)[αβ(1−g)+β(1−h)+(α−β)h]

β[α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)]


is a feasible solution of (P ′) with objective function value LBSW (α, β, g, h). The solution
ŝ can be constructed by adding the constraints for fixed triangles F1 and F4 to (P ′) and
then solving the linear system obtained by setting all four constraints tight. First we check
the corresponding objective function value by calculating

1lT ŝ =
α(α+ β)[β(1− g) + (1− h) + (α− β)g] + (β2−α2)h

β + α(β2 − α2)g + (α+β)[αβ(1−g)+β(1−h)+(α−β)h]
β

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

=
α(α+ β)[β(1− g) + (1− h)] + (α+β)[αβ(1−g)+β(1−h)]

β

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

=
α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

= 1− α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)
.

To check ŝ is feasible for (P ′), first we show that ŝ is non-negative. Each entry of ŝ is of
the form C · 1

K
for some constant C where

K := α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h) > 0

for any fixed α, β > 0 with α ≤ β, g ∈
[
0 , α

α+β

]
, and h ∈

[
0 , α

α+β

]
. So, to verify

ŝ ≥ O, we check that the corresponding constant C is non-negative for each entry. To
verify ŝ1 ≥ 0, note that

α(α+ β)[β(1− g) + (1− h) + (α− β)g] = α(α+ β)[1 + β − h+ (α− 2β)g]

≥ α[(1 + β)(α+ β)− α+ (α− 2β)α]

= α[α+ β + αβ + β2 − α+ α2 − 2αβ]

= α[β + β2 + α2 − αβ]

= α[β + β(β − α) + α2]

≥ 0
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for any fixed α, β > 0 with α ≤ β, g ∈
[
0 , α

α+β

]
, and h ∈

[
0 , α

α+β

]
. To verify ŝ2 ≥ 0,

note that (β2−α2)h
β

≥ 0 for any fixed α, β > 0 with α ≤ β, and h ∈
[
0 , α

α+β

]
. To verify

ŝ3 ≥ 0, note that α(β2 − α2)g ≥ 0 for any fixed α, β > 0 with α ≤ β, and g ∈
[
0 , α

α+β

]
.

To verify ŝ4 ≥ 0, note that

(α+ β)[αβ(1− g) + β(1− h) + (α− β)h]

β
=

(α+ β)[β + αβ − αβg + (α− 2β)h]

β

≥ (α+ β)(β + αβ)− α2β + (α− 2β)α

β

=
αβ + α2β + β2 + αβ2 − α2β + (α− 2β)α

β

=
β2 + αβ2 + α2 − αβ

β

=
αβ2 + α2 + β(β − α)

β

≥ 0

for any fixed α, β > 0 with α ≤ β, g ∈
[
0 , α

α+β

]
, and h ∈

[
0 , α

α+β

]
.

Having shown ŝ is non-negative, we next verify that ŝ satisfies the constraints of (P ′).
Note that each constraint is of the form (1lT + [k1, k2, k3, k4])s ≥ 1. Since we know 1lT ŝ =

1− α(β−α)
α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)

, we only need to check k1ŝ1 +k2ŝ2 +k3ŝ3 +k4ŝ4 ≥
α(β−α)

α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)
. To verify ŝ satisfies the first constraint, we calculate

LHS =

(
1

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

)
·[

−
(

α

(α+ β)(1− h)

)
(α(α+ β)[β(1− g) + (1− h) + (α− β)g]) +

(
αβ

(α+ β)(1− h)

)(
(β2 − α2)h

β

)
+ . . .

. . .−
(

α

(α+ β)(1− h)

)(
α(β2 − α2)g

)
+

(
αβ

(α+ β)(1− h)

)(
(α+ β)[αβ(1− g) + β(1− h) + (α− β)h]

β

)]

=

(
1

(1− h)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
·[

−α2[β(1− g) + (1− h) + (α− β)g] + α(β − α)h− α2(β − α)g + α[αβ(1− g) + β(1− h) + (α− β)h]
]

=

(
−α2(1− h) + α(β − α)h+ α[β(1− h) + (α− β)h]

(1− h)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
=

(
(1− h)α(β − α)

(1− h)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
=

α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)
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and conclude that ŝ satisfies the first constraint of (P ′); moreover, it satisfies this constraint
with equality. To verify ŝ satisfies the second constraint, we calculate

LHS =

(
1

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

)
·[(

1

(α+ β)(1− g)

)
(α(α+ β)[β(1− g) + (1− h) + (α− β)g])−

(
α

(α+ β)(1− g)

)(
(β2 − α2)h

β

)
+ . . .

. . .+

(
1

(α+ β)(1− g)

)(
α(β2 − α2)g

)
−
(

α

(α+ β)(1− g)

)(
(α+ β)[αβ(1− g) + β(1− h) + (α− β)h]

β

)]

=

(
1

(1− g)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
·[

(α[β(1− g) + (1− h) + (α− β)g])−
(
α(β − α)h

β

)
+ α(β − α)g −

(
α[αβ(1− g) + β(1− h) + (α− β)h]

β

)]
=

(
αβ(1− g)− α2(1− g)

(1− g)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
=

α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the second constraint of (P ′); moreover, it satisfies this con-
straint with equality. Thus ŝ is a feasible solution of (P ′) with objective function value
LBSW (α, β, g, h) as required.

Case 2: g < 0, h > 0

Note that since (g, h)T ∈ RSW (α, β) we have h ∈
(

0 , α
α+β

]
and g ∈

[
− h
α
, 0
)
. We will

show that

ŝ :=


α(α+β)[β(1−g)+(1−h)]

α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)
(β2−α2)h

β[α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)]

0
(α+β)[αβ(1−g)+β(1−h)+(α−β)h]

β[α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)]


is a feasible solution of (P ′) with objective function value LBSW (α, β, g, h). The solution ŝ
can be constructed by adding the constraint for fixed triangle F4 to (P ′) and then solving
the linear system obtained by setting all three constraints tight and restricting s3 to be 0.
First we check the corresponding objective function value by calculating

1lT ŝ =
αβ(α+ β)[β(1− g) + (1− h)] + (β2 − α2)h+ (α+ β)[αβ(1− g) + β(1− h) + (α− β)h]

β[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

=
β[α(α+ β)(1 + β)(1− g) + (α+ β)(1 + α)(1− h)]

β[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

= 1− α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)
.
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To check ŝ is feasible for (P ′), first we show that ŝ is non-negative. Each entry of ŝ is of
the form C · 1

K
for some constant C where

K := α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h) > 0

for any fixed α, β > 0 with α ≤ β, h ∈
(

0 , α
α+β

]
, and g ∈

[
− h
α
, 0
)
. So, to verify ŝ ≥ O, we

check that the corresponding constant C is non-negative for each entry. To verify ŝ1 ≥ 0,

note that α(α+β)[β(1−g)+(1−h)] ≥ 0 for any fixed α, β > 0 with α ≤ β, h ∈
(

0 , α
α+β

]
,

and g ∈
[
− h
α
, 0
)
. To verify ŝ2 ≥ 0, note that (β2−α2)h

β
≥ 0 for any fixed α, β > 0 with

α ≤ β, and h ∈
(

0 , α
α+β

]
. Clearly ŝ3 ≥ 0 because ŝ3 = 0. To verify ŝ4 ≥ 0, note that

(α+ β)[αβ(1− g) + β(1− h) + (α− β)h]

β
=

(α+ β)[β + αβ − αβg + (α− 2β)h]

β

≥ (α+ β)(β + αβ) + (α− 2β)α

β

=
αβ + α2β + β2 + αβ2 + α2 − 2αβ

β

=
α2β + β(β − α) + αβ2 + α2

β

≥ 0

for any fixed α, β > 0 with α ≤ β, h ∈
(

0 , α
α+β

]
, and g ∈

[
− h
α
, 0
)
.

Having shown ŝ is non-negative, we next verify that ŝ satisfies the constraints of (P ′).
Note that each constraint is of the form (1lT + [k1, k2, k3, k4])s ≥ 1. Since we know 1lT ŝ =

1− α(β−α)
α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)

, we only need to check k1ŝ1 +k2ŝ2 +k3ŝ3 +k4ŝ4 ≥
α(β−α)

α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)
. To verify ŝ satisfies the first constraint, we calculate

LHS =

(
1

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

)
·[

−
(

α

(α+ β)(1− h)

)
(α(α+ β)[β(1− g) + (1− h)]) +

(
αβ

(α+ β)(1− h)

)(
(β2 − α2)h

β

)
+ . . .

. . .+

(
αβ

(α+ β)(1− h)

)(
(α+ β)[αβ(1− g) + β(1− h) + (α− β)h]

β

)]

=

(
−α2[β(1− g) + (1− h)] + α(β − α)h+ α[αβ(1− g) + β(1− h) + (α− β)h]

(1− h)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
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=

(
α(β − α)(1− h)

(1− h)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
=

α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the first constraint of (P ′); moreover, it satisfies this constraint
with equality. To verify ŝ satisfies the second constraint, we calculate

LHS =

(
1

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

)
·[(

1

(α+ β)(1− g)

)
(α(α+ β)[β(1− g) + (1− h)])−

(
α

(α+ β)(1− g)

)(
(β2 − α2)h

β

)
+ . . .

. . .−
(

α

(α+ β)(1− g)

)(
(α+ β)[αβ(1− g) + β(1− h) + (α− β)h]

β

)]

=

(
αβ[β(1− g) + (1− h)]− α(β − α)h− α[αβ(1− g) + β(1− h) + (α− β)h]

β(1− g)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
=

(
αβ(β − α)(1− g)

β(1− g)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
=

α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the second constraint of (P ′); moreover, it satisfies this con-
straint with equality. Thus ŝ is a feasible solution of (P ′) with objective function value
LBSW (α, β, g, h) as required.

Case 3: g > 0, h < 0

Note that since (g, h)T ∈ RSW (α, β) we have g ∈
(

0 , α
α+β

]
and h ∈ [−αg , 0). We will

show that

ŝ :=


α(α+β)[β(1−g)+(1−h)+(α−β)g]

α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)

0
α(β2−α2)g

α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)
(α+β)[α(1−g)+(1−h)]

α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)


is a feasible solution of (P ′) with objective function value LBSW (α, β, g, h). The solution ŝ
can be constructed by adding the constraint for fixed triangle F1 to (P ′) and then solving
the linear system obtained by setting all three constraints tight and restricting s2 to be 0.
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First we check the corresponding objective function value by calculating

1lT ŝ =
α(α+ β)[β(1− g) + (1− h) + (α− β)g] + α(β2 − α2)g + (α+ β)[α(1− g) + (1− h)]

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

=
α(α+ β)(1 + β)(1− g) + (α+ β)(1 + α)(1− h)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

= 1− α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)
.

To check ŝ is feasible for (P ′), first we show that ŝ is non-negative. Each entry of ŝ is of
the form C · 1

K
for some constant C where

K := α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h) > 0

for any fixed α, β > 0 with α ≤ β, g ∈
(

0 , α
α+β

]
, and h ∈ [−αg , 0). So, to verify

ŝ ≥ O, we check that the corresponding constant C is non-negative for each entry. To
verify ŝ1 ≥ 0, note that

α(α + β)[β(1− g) + (1− h) + (α− β)g] = α(α + β)[1 + β − h+ (α− 2β)g]

≥ α[(α + β)(1 + β) + (α− 2β)α]

= α(α + β + β(β − α) + α2)

≥ 0

for any fixed α, β > 0 with α ≤ β, g ∈
(

0 , α
α+β

]
, and h ∈ [−αg , 0). Clearly ŝ2 ≥ 0

because ŝ2 = 0. To verify ŝ3 ≥ 0, note that α(β2 − α2)g ≥ 0 for any fixed α, β > 0 with

α ≤ β, and g ∈
(

0 , α
α+β

]
. To verify ŝ4 ≥ 0, note that (α+ β)[α(1− g) + (1− h)] ≥ 0 for

any fixed α, β > 0 with α ≤ β, g ∈
(

0 , α
α+β

]
, and h ∈ [−αg , 0).

Having shown ŝ is non-negative, we next verify that ŝ the constraints of (P ′). Note that
each constraint is of the form (1lT + [k1, k2, k3, k4])s ≥ 1. Since we know 1lT ŝ = 1 −

α(β−α)
α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)

, we only need to check k1ŝ1 + k2ŝ2 + k3ŝ3 + k4ŝ4 ≥
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α(β−α)
α(β−α)+α(1+β)(α+β)(1−g)+(1+α)(α+β)(1−h)

. To verify ŝ satisfies the first constraint, we calculate

LHS =

(
1

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

)
·[

−
(

α

(α+ β)(1− h)

)
(α(α+ β)[β(1− g) + (1− h) + (α− β)g]) + . . .

. . .−
(

α

(α+ β)(1− h)

)(
α(β2 − α2)g

)
+

(
αβ

(α+ β)(1− h)

)
((α+ β)[α(1− g) + (1− h)])

]

=

(
−α2[β(1− g) + (1− h) + (α− β)g]− α2(β − α)g + αβ[α(1− g) + (1− h)]

(1− h)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
=

(
α(β − α)(1− h)

(1− h)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
=

α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the first constraint of (P ′); moreover, it satisfies this constraint
with equality. To verify ŝ satisfies the second constraint, we calculate

LHS =

(
1

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

)
·[(

1

(α+ β)(1− g)

)
(α(α+ β)[β(1− g) + (1− h) + (α− β)g]) + . . .

. . .+

(
1

(α+ β)(1− g)

)(
α(β2 − α2)g

)
−
(

α

(α+ β)(1− g)

)
((α+ β)[α(1− g) + (1− h)])

]

=

(
α[β(1− g) + (1− h) + (α− β)g] + α(β − α)g − α[α(1− g) + (1− h)]

(1− g)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
=

(
α(β − α)(1− g)

(1− g)[α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)]

)
=

α(β − α)

α(β − α) + α(1 + β)(α+ β)(1− g) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the second constraint of (P ′); moreover, it satisfies this con-
straint with equality. Thus ŝ is a feasible solution of (P ′) with objective function value
LBSW (α, β, g, h) as required.
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B.2 Proof of Proposition 3.5.2

We prove Proposition 3.5.2, the statement of which is reproduced below for convenience.

Proposition 3.5.2. The optimal value of (P ′) in Lemma 3.5.1 is exactly LBS(α, β, g, h).

Proof. For fixed α, β > 0 such that α ≤ β and g, h such that (g, h)T ∈ RS(α, β), the
optimization problem (P ′) is given by

min s1 + s2 + s3 + s4

s. t.


(

1 + α
β(α+β)g

) (
1− α2

β(α+β)g

) (
1 + 1

(α+β)g

) (
1− α

(α+β)g

)(
1− α

(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

) (
1− α

(α+β)(1−h)

) (
1 + αβ

(α+β)(1−h)

)(
1 + 1

(α+β)(1−g)

) (
1− α

(α+β)(1−g)

) (
1 + α

β(α+β)(1−g)

) (
1− α2

β(α+β)(1−g)

)


s1

s2

s3

s4

 ≥ 1l

s1, s2, s3, s4 ≥ 0.

By Lemma 3.5.1, LBS(α, β, g, h) is a lower bound on the optimal value of (P ′). Here we
find a feasible solution to (P ′) of objective function value LBS(α, β, g, h) and conclude the
optimal value is exactly LBS(α, β, g, h) as claimed. Our choice for feasible solution to (P ′)
depends on the sign of h. There are two cases: (1) h ≥ 0, and (2) h < 0.

Case 1: h ≥ 0

Note that since (g, h)T ∈ RS(α, β) we have g ∈
[

α
α+β

, β
α+β

]
and h ∈

[
0 , α

α+β

]
. We will

show that

ŝ :=


α[β3−β2(α+β)g+(β2−α2)h]

β[α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)]
(β2−α2)h

β[α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)]
α(α+β)[β+β2g+(α−2β)h]

β[α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)]
αβ2+αβ+β2+(α+β)(α−2β)h

β[α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)]


is a feasible solution of (P ′) with objective function value LBS(α, β, g, h). The solution
ŝ can be constructed by adding the constraint for fixed triangle F4 to (P ′) and then
solving the linear system obtained by setting all four constraints tight. First we check the
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corresponding objective function value by calculating

1lT ŝ =

α[β3 − β2(α+ β)g + (β2 − α2)h] + (β2 − α2)h+ α(α+ β)[β + β2g + (α− 2β)h] + . . .
. . .+ αβ2 + αβ + β2 + (α+ β)(α− 2β)h

β[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
α[β3 + (β2 − α2)h] + (β2 − α2)h+ α(α+ β)[β + (α− 2β)h] + αβ2 + αβ + β2 + (α+ β)(α− 2β)h

β[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
αβ3 + (1 + α)(β2 − α2)h+ αβ(α+ β) + αβ2 + αβ + β2 + (1 + α)(α+ β)(α− 2β)h

β[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
αβ3 + α2β + αβ2 + αβ2 + αβ + β2 − β(1 + α)(α+ β)h

β[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
αβ3 + αβ2 + β(1 + α)(α+ β)(1− h)

β[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

= 1− α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)
.

To check ŝ is feasible for (P ′), first we show that ŝ is non-negative. Each entry of ŝ is of
the form C · 1

D
for some constant C where

D = β[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)] > 0

for any fixed α, β > 0 with α ≤ β, and h ∈
[
0 , α

α+β

]
. So, to verify ŝ ≥ O, we check that

the corresponding constant C is non-negative for each entry. To verify ŝ1 ≥ 0, note that
α[β3 − β2(α + β)g + (β2 − α2)h] ≥ α[β3 − β3] = 0 for any fixed α, β > 0 with α ≤ β,

g ∈
[

α
α+β

, β
α+β

]
, and h ∈

[
0 , α

α+β

]
. To verify ŝ2 ≥ 0, note that (β2 − α2)h ≥ 0 for any

fixed α, β > 0 with α ≤ β, and h ∈
[
0 , α

α+β

]
. To verify ŝ3 ≥ 0, note that

α(α+ β)[β + β2g + (α− 2β)h] ≥ α[β(α+ β) + αβ2 + (α− 2β)α]

= α[αβ2 + β(β − α) + α2]

≥ 0

for any fixed α, β > 0 with α ≤ β, g ∈
[

α
α+β

, β
α+β

]
, and h ∈

[
0 , α

α+β

]
. To verify ŝ4 ≥ 0,

note that

αβ2 + αβ + β2 + (α+ β)(α− 2β)h ≥ αβ2 + αβ + β2 + (α− 2β)α

= αβ2 + β(β − α) + α2

≥ 0
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for any fixed α, β > 0, and h ∈
[
0 , α

α+β

]
.

Having shown ŝ is non-negative, we next verify that ŝ satisfies the constraints of (P ′).
Note that each constraint is of the form (1lT + [k1, k2, k3, k4])s ≥ 1. Since we know

1lT ŝ = 1− α(β−α)
α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)

, we only need to check k1ŝ1 + k2ŝ2 + k3ŝ3 + k4ŝ4 ≥
α(β−α)

α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)
. To verify ŝ satisfies the first constraint, we calculate

LHS =

(
1

β[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
·[(

α

β(α+ β)g

)(
α[β3 − β2(α+ β)g + (β2 − α2)h]

)
−
(

α2

β(α+ β)g

)(
(β2 − α2)h

)
+ . . .

. . .+

(
1

(α+ β)g

)(
α(α+ β)[β + β2g + (α− 2β)h]

)
−
(

α

(α+ β)g

)(
αβ2 + αβ + β2 + (α+ β)(α− 2β)h

) ]

=

(
1

β2(α+ β)g[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
·[ (

α2[β3 − β2(α+ β)g + (β2 − α2)h]
)
− α2(β2 − α2)h+ . . .

. . .+ αβ(α+ β)[β + β2g + (α− 2β)h]− αβ[αβ2 + αβ + β2 + (α+ β)(α− 2β)h]

]

=

(
−α2β2(α+ β)g + αβ3(α+ β)g

β2(α+ β)g[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
=

α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the first constraint of (P ′); moreover, it satisfies this constraint
with equality. To verify ŝ satisfies the second constraint, we calculate

LHS =

(
1

β[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
·[

−
(

α

(α+ β)(1− h)

)(
α[β3 − β2(α+ β)g + (β2 − α2)h]

)
+

(
αβ

(α+ β)(1− h)

)(
(β2 − α2)h

)
+ . . .

. . .−
(

α

(α+ β)(1− h)

)(
α(α+ β)[β + β2g + (α− 2β)h]

)
+

(
αβ

(α+ β)(1− h)

)(
αβ2 + αβ + β2 + (α+ β)(α− 2β)h

) ]

=

(
1

β(α+ β)(1− h)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
·[

− α2[β3 − β2(α+ β)g + (β2 − α2)h] + αβ(β2 − α2)h+ . . .

. . .− α2(α+ β)[β + β2g + (α− 2β)h] + αβ[αβ2 + αβ + β2 + (α+ β)(α− 2β)h]

]

196



=

(
1

β(α+ β)(1− h)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
·[

− α2(β2 − α2)h+ αβ(β2 − α2)h− α2(α+ β)[β + (α− 2β)h+ αβ[αβ + β2 + (α+ β)(α− 2β)h]

]

=

(
1

β(α+ β)(1− h)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
·[

α(β − α)(β2 − α2)h− α2(α+ β)(α− 2β)h+ αβ(α+ β)(α− 2β)h− α2β(α+ β) + αβ2(α+ β)

]

=
α(β − α)2(α+ β)h+ α(α− 2β)(β − α)(α+ β)h+ αβ(β − α)(α+ β)

β(α+ β)(1− h)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
αβ(β − α)(α+ β)(1− h)

β(α+ β)(1− h)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the second constraint of (P ′); moreover, it satisfies this con-
straint with equality. To verify ŝ satisfies the third constraint, we calculate

LHS =

(
1

β[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
·[(

1

(α+ β)(1− g)

)(
α[β3 − β2(α+ β)g + (β2 − α2)h]

)
−
(

α

(α+ β)(1− g)

)(
(β2 − α2)h

)
+ . . .

. . .+

(
α

β(α+ β)(1− g)

)(
α(α+ β)[β + β2g + (α− 2β)h]

)
−
(

α2

β(α+ β)(1− g)

)(
αβ2 + αβ + β2 + (α+ β)(α− 2β)h

) ]

=

(
1

β2(α+ β)(1− g)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
·[

αβ[β3 − β2(α+ β)g + (β2 − α2)h]− αβ(β2 − α2)h+ . . .

. . .+ α2(α+ β)[β + β2g + (α− 2β)h]− α2[αβ2 + αβ + β2 + (α+ β)(α− 2β)h]

]

=
αβ[β3 − β2(α+ β)g] + α2(α+ β)[β + β2g]− α2[αβ2 + αβ + β2]

β2(α+ β)(1− g)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
αβ4 − αβ3(α+ β)g + α2β2(α+ β)g − α3β2

β2(α+ β)(1− g)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
αβ2(α+ β)(β − α)(1− g)

β2(α+ β)(1− g)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the third constraint of (P ′); moreover, it satisfies this con-
straint with equality. Thus ŝ is a feasible solution of (P ′) with objective function value
LBS(α, β, g, h) as required.
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Case 2: h < 0

Note that since (g, h)T ∈ RS(α, β) we have g ∈
[

α
α+β

, β
α+β

]
and h ∈ [−αg, 0). We will

show that

ŝ :=


αβ2−αβ(α+β)g

α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)

0
α(α+β)[(1−h)+βg]

α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)
αβ+(α+β)(1−h)

α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)


is a feasible solution of (P ′) with objective function value LBS(α, β, g, h). The solution ŝ
can be constructed by solving the linear system obtained by setting all three constraints of
(P ′) tight and restricting s2 to be 0. First we check the corresponding objective function
value by calculating

1lT ŝ =
αβ2 − αβ(α+ β)g + α(α+ β)[(1− h) + βg] + αβ + (α+ β)(1− h)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

=
αβ(1 + β) + (1 + α)(α+ β)(1− h)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

= 1− α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)
.

To check ŝ is feasible for (P ′), first we show that ŝ is non-negative. Each entry of ŝ is of
the form C · 1

D
for some constant C where

D = α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h) > 0

for any fixed α, β > 0 with α ≤ β, and h < 0. So, to verify ŝ ≥ O, we check that
the corresponding constant C is non-negative for each entry. To verify ŝ1 ≥ 0, note that

αβ2−αβ(α+β)g ≥ αβ2−αβ2 = 0 for any fixed α, β > 0 with α ≤ β, and g ∈
[

α
α+β

, β
α+β

]
.

Clearly ŝ2 ≥ 0 because ŝ2 = 0. To verify ŝ3 ≥ 0, note that α(α + β)[(1 − h) + βg] ≥ 0

for any fixed α, β > 0, g ∈
[

α
α+β

, β
α+β

]
, and h ∈ [−αg , 0). To verify ŝ4 ≥ 0, note that

αβ + (α + β)(1− h) ≥ 0 for any fixed α, β > 0, and h < 0.

Having shown ŝ is non-negative, we next verify that ŝ satisfies the constraints of (P ′).
Note that each constraint is of the form (1lT + [k1, k2, k3, k4])s ≥ 1. Since we know

1lT ŝ = 1− α(β−α)
α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)

, we only need to check k1ŝ1 + k2ŝ2 + k3ŝ3 + k4ŝ4 ≥
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α(β−α)
α(β−α)+αβ(1+β)+(1+α)(α+β)(1−h)

. To verify ŝ satisfies the first constraint, we calculate

LHS =

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·

[(
α

β(α+ β)g

)(
αβ2 − αβ(α+ β)g

)
+ . . .

. . .+

(
1

(α+ β)g

)
(α(α+ β)[(1− h) + βg])−

(
α

(α+ β)g

)
(αβ + (α+ β)(1− h))

]

=

(
α2β − α2(α+ β)g + α(α+ β)(1− h) + αβ(α+ β)g − α2β − α(α+ β)(1− h)

(α+ β)g[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
=

(
α(β − α)(α+ β)g

(α+ β)g[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

)
=

α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the first constraint of (P ′); moreover, it satisfies this constraint
with equality. To verify ŝ satisfies the second constraint, we calculate

LHS =

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·

[
−
(

α

(α+ β)(1− h)

)(
αβ2 − αβ(α+ β)g

)
+ . . .

. . .−
(

α

(α+ β)(1− h)

)
(α(α+ β)[(1− h) + βg]) +

(
αβ

(α+ β)(1− h)

)
(αβ + (α+ β)(1− h))

]

=
−α2β2 + α2β(α+ β)g − α2(α+ β)[(1− h) + βg] + α2β2 + αβ(α+ β)(1− h)

(α+ β)(1− h)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
α(β − α)(α+ β)(1− h)

(α+ β)(1− h)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the second constraint of (P ′); moreover, it satisfies this con-
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straint with equality. To verify ŝ satisfies the third constraint, we calculate

LHS =

(
1

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

)
·

[(
1

(α+ β)(1− g)

)(
αβ2 − αβ(α+ β)g

)
+ . . .

. . .+

(
α

β(α+ β)(1− g)

)
(α(α+ β)[(1− h) + βg])−

(
α2

β(α+ β)(1− g)

)
(αβ + (α+ β)(1− h))

]

=
αβ3 − αβ2(α+ β)g + α2(α+ β)[(1− h) + βg]− α3β − α2(α+ β)(1− h)

β(α+ β)(1− g)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
αβ3 − αβ2(α+ β)g + α2β(α+ β)g − α3β

β(α+ β)(1− g)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
αβ(α+ β)(β − α)(1− g)

β(α+ β)(1− g)[α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)]

=
α(β − α)

α(β − α) + αβ(1 + β) + (1 + α)(α+ β)(1− h)

and conclude that ŝ satisfies the third constraint of (P ′); moreover, it satisfies this con-
straint with equality. Thus ŝ is a feasible solution of (P ′) with objective function value
LBS(α, β, g, h) as required.
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Appendix C

Proofs of Lemma 4.1.1, Lemma 4.2.1
and Lemma 4.3.1 Covering ad = bc
Case

We prove Lemma 4.1.1, Lemma 4.2.1, and Lemma 4.3.1, the statements of which are
reproduced below for convenience.

Lemma 4.1.1. For fixed a, b, c, d > 0 with ad ≤ bc and g, h with (g, h)T ∈ RCentral(a, b, c, d),
let (P ′) be the parameterized linear program obtained from (P (a, b, c, d, g, h)) by replacing
constraint (4.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles
RS1(τ bp11 ), RS2(τ bp12 ), RS3(τ bp13 ), and RS4(τ bp14 ). Then, the optimal value of (P ′) is equal
to

LBCentral(a, b, c, d, g, h) := 1− bc− ad
bc− ad+ tC1 + tC2 + tC3 + tC4

where

tC1 = (b+ d)[bc(1− g) + ch] , tC2 =

(
a+ b

a

)
[ch+ acg],

tC3 = (a+ c)[bcg + b(1− h)] , and tC4 =

(
c+ d

d

)
[b(1− h) + bd(1− g)].
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Proof. Optimization problem (P ′) is given by

min 1lT s

subject to
[
1l1lT + A

]
s ≥ 1l

s ≥ O

where

A :=


1

1−g 0 0 0

0 a
h 0 0

0 0 1
g 0

0 0 0 d
1−h




1 −1 a
b −a

b

−d
c

b
a −1 1

d
c −d

c 1 −1
−1 1 −a

b
c
d




1
b+d 0 0 0

0 a
a+b 0 0

0 0 1
a+c 0

0 0 0 d
c+d

 .

The dual (D′) of (P ′) is given by

max 1lTv

subject to
[
1l1lT + AT

]
v ≤ 1l

v ≥ O.

Let

ŝ :=

(
1

bc− ad+ tC1 + tC2 + tC3 + tC4

)
tC1
tC2
tC3
tC4


and

v̂ :=

(
1

bc− ad+ tC1 + tC2 + tC3 + tC4

)
u1

u2

u3

u4



:=

(
1

bc− ad+ tC1 + tC2 + tC3 + tC4

)
(1− g)[bc(b+ d) + b(c+ d)]

h[c(b+ d) + c
(
a+b
a

)
]

g[c(a+ b) + bc(a+ c)]
(1− h)[b

(
c+d
d

)
+ b(a+ c)]

 .
We claim that ŝ and v̂ are a pair of primal and dual optimal solutions for (P ′) and (D′).

First we show that ŝ is feasible for (P ′). Note that for all i ∈ {1, 2, 3, 4}, we have tCi > 0
because a, b, c, d > 0 and (g, h)T ∈ RCentral(a, b, c, d) ⊆ (0, 1)2. Thus ŝ ≥ O because
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bc− ad ≥ 0. To check ŝ satisfies the four intersection cut constraints we calculate

(
1l1lT +A

)
ŝ =

1l1lT +


1

1−g 0 0 0

0 a
h 0 0

0 0 1
g 0

0 0 0 d
1−h




1 −1 a
b −a

b

−d
c

b
a −1 1

d
c −d

c 1 −1
−1 1 −a

b
c
d




1
b+d 0 0 0

0 a
a+b 0 0

0 0 1
a+c 0

0 0 0 d
c+d


 ŝ

=

(
1

bc− ad+ tC1 + tC2 + tC3 + tC4

)(
ŝ1 + ŝ2

)
where

ŝ1 := 1l1lT


tC1
tC2
tC3
tC4


= (tC1 + tC2 + tC3 + tC4 )1l

and

ŝ2 :=


1

1−g 0 0 0

0 a
h 0 0

0 0 1
g 0

0 0 0 d
1−h




1 −1 a
b −a

b

−d
c

b
a −1 1

d
c −d

c 1 −1
−1 1 −a

b
c
d




1
b+d 0 0 0

0 a
a+b 0 0

0 0 1
a+c 0

0 0 0 d
c+d



tC1
tC2
tC3
tC4



=


1

1−g 0 0 0

0 a
h 0 0

0 0 1
g 0

0 0 0 d
1−h




1 −1 a
b −a

b

−d
c

b
a −1 1

d
c −d

c 1 −1
−1 1 −a

b
c
d




bc(1− g) + ch
ch+ acg

bcg + b(1− h)
b(1− h) + bd(1− g)



=


1

1−g 0 0 0

0 a
h 0 0

0 0 1
g 0

0 0 0 d
1−h




(bc− ad)(1− g)

(bc− ad)
[
h
a

]
(bc− ad)g

(bc− ad)
[

(1−h)
d

]


= (bc− ad)1l.

Thus (
1l1lT +A

)
ŝ =

(
1

bc− ad+ tC1 + tC2 + tC3 + tC4

)(
tC1 + tC2 + tC3 + tC4 + bc− ad

)
1l

= 1l
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and so ŝ satisfies all the primal constraints. Moreover, it satisfies these constraints with
equality. The objective function value of ŝ is

1lT ŝ =
tC1 + tC2 + tC3 + tC4

bc− ad+ tC1 + tC2 + tC3 + tC4
= 1− bc− ad

bc− ad+ tC1 + tC2 + tC3 + tC4
.

Next we show that v̂ is feasible for (D′). As we noted before bc − ad ≥ 0 and tCi > 0 for
all i ∈ {1, 2, 3, 4}. It is clear that u1, u2, u3, and u4 are non-negative because a, b, c, d > 0
and (g, h)T ∈ RCentral(a, b, c, d) ⊆ (0, 1)2. Thus v̂ ≥ O. To check v̂ satisfies the four dual
constraints we calculate

(
1l1lT +AT

)
v̂ =

1l1lT +


1
b+d 0 0 0

0 a
a+b 0 0

0 0 1
a+c 0

0 0 0 d
c+d




1 −d
c

d
c −1

−1 b
a −d

c 1
a
b −1 1 −a

b
−a
b 1 −1 c

d




1
1−g 0 0 0

0 a
h 0 0

0 0 1
g 0

0 0 0 d
1−h


 v̂

=

(
1

bc− ad+ tC1 + tC2 + tC3 + tC4

)(
v̂1 + v̂2

)
where

v̂1 = 1l1lT


(1− g)[bc(b+ d) + b(c+ d)]

h[c(b+ d) + c
(
a+b
a

)
]

g[c(a+ b) + bc(a+ c)]

(1− h)[b
(
c+d
d

)
+ b(a+ c)]


= (tC1 + tC2 + tC3 + tC4 )1l

and

v̂2 =


1
b+d 0 0 0

0 a
a+b 0 0

0 0 1
a+c 0

0 0 0 d
c+d




1 −d
c

d
c −1

−1 b
a −d

c 1
a
b −1 1 −a

b
−a
b 1 −1 c

d




1
1−g 0 0 0

0 a
h 0 0

0 0 1
g 0

0 0 0 d
1−h



u1

u2

u3

u4



=


1
b+d 0 0 0

0 a
a+b 0 0

0 0 1
a+c 0

0 0 0 d
c+d




1 −d
c

d
c −1

−1 b
a −d

c 1
a
b −1 1 −a

b
−a
b 1 −1 c

d



bc(b+ d) + b(c+ d)
ac(b+ d) + c(a+ b)
c(a+ b) + bc(a+ c)
b(c+ d) + bd(a+ c)



=


1
b+d 0 0 0

0 a
a+b 0 0

0 0 1
a+c 0

0 0 0 d
c+d




(bc− ad)(b+ d)

(bc− ad)
[
a+b
a

]
(bc− ad)(a+ c)

(bc− ad)
[
c+d
d

]


= (bc− ad)1l.
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Thus (
1l1lT +AT

)
v̂ =

(
1

bc− ad+ tC1 + tC2 + tC3 + tC4

)(
tC1 + tC2 + tC3 + tC4 + bc− ad

)
1l = 1l

and so v̂ satisfies all the dual constraints. Moreover, it satisfies these constraints with
equality.

So ŝ and v̂ are a pair of primal and dual feasible solutions satisfying complementary slack-
ness. Therefore, ŝ is an optimal solution for (P ′). So the optimal value of (P ′) is exactly
1− bc−ad

bc−ad+tC1 +tC2 +tC3 +tC4
= LBCentral(a, b, c, d, g, h).

Lemma 4.2.1. For fixed a, b, c, d > 0 with ad ≤ bc and g, h with (g, h)T ∈ RSW (a, b, c, d),
let (P ′) be the parameterized linear program obtained from (P (a, b, c, d, g, h)) by replacing
constraint (4.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles
RS2(τ bp22 ), RS2(τ bp12 ), RS3(τ bp23 ), and RS3(τ bp13 ). Then, the optimal value of (P ′) is equal
to

LBSW (a, b, c, d, g, h) := 1− bc− ad
bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

where

tSW1 = (b+ d)[a(1− h) + bc(1− g)] , tSW2 = (a+ b)[(1− h) + d(1− g)],

tSW3 = (a+ c)[b(1− h) + bd(1− g)] , and tSW4 = (c+ d)

[
b(1− h)

d
+ b(1− g)

]
.

Proof. Optimization problem (P ′) is given by

min 1lT s

subject to
[
1l1lT + A

]
s ≥ 1l

s ≥ O

where

A :=


1

1−h 0 0 0

0 1
1−h 0 0

0 0 1
1−g 0

0 0 0 1
1−g



−d bc −c cd

−d ad −ad
b cd

1 −a c
d −c

1 −a a
b −ad

b




1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d

 .
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The dual (D′) of (P ′) is given by

max 1lTv

subject to
[
1l1lT + AT

]
v ≤ 1l

v ≥ O.

Let

ŝ :=

(
1

bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

)
tSW1

tSW2

tSW3

tSW4


and

v̂ :=

(
1

bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

)
u1

u2

u3

u4



:=

(
1

bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

)
(1− h)[a(b+ d) + (a+ b)]
(1− h)[b(a+ c) + b

d
(c+ d)]

(1− g)[d(a+ b) + bd(a+ c)]
(1− g)[bc(b+ d) + b(c+ d)]

 .
We claim that ŝ and v̂ are a pair of primal and dual optimal solutions for (P ′) and (D′).

First we show that ŝ is feasible for (P ′). Note that for all i ∈ {1, 2, 3, 4}, we have tSWi > 0
for all a, b, c, d > 0 and (g, h)T ∈ RSW (a, b, c, d) ⊆ {(x, y)T ∈ R2 : x < 1, y < 1}. Thus
ŝ ≥ O because bc − ad ≥ 0. To check ŝ satisfies the four intersection cut constraints we
calculate

(
1l1lT +A

)
ŝ =

1l1lT +


1

1−h 0 0 0

0 1
1−h 0 0

0 0 1
1−g 0

0 0 0 1
1−g



−d bc −c cd
−d ad −adb cd
1 −a c

d −c
1 −a a

b −adb




1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d


 ŝ

=

(
1

bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

)(
ŝ1 + ŝ2

)
where

ŝ1 := 1l1lT


tSW1

tSW2

tSW3

tSW4

 = (tSW1 + tSW2 + tSW3 + tSW4 )1l
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and

ŝ2 =


1

1−h 0 0 0

0 1
1−h 0 0

0 0 1
1−g 0

0 0 0 1
1−g



−d bc −c cd

−d ad −ad
b cd

1 −a c
d −c

1 −a a
b −ad

b




1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d



tSW1

tSW2

tSW3

tSW4



=


1

1−h 0 0 0

0 1
1−h 0 0

0 0 1
1−g 0

0 0 0 1
1−g



−d bc −c cd

−d ad −ad
b cd

1 −a c
d −c

1 −a a
b −ad

b



a(1− h) + bc(1− g)
(1− h) + d(1− g)
b(1− h) + bd(1− g)
b(1−h)
d + b(1− g)



=


1

1−h 0 0 0

0 1
1−h 0 0

0 0 1
1−g 0

0 0 0 1
1−g




(bc− ad)(1− h)
(bc− ad)(1− h)
(bc− ad)(1− g)
(bc− ad)(1− g)


= (bc− ad)1l.

Thus(
1l1lT +A

)
ŝ =

(
1

bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

)(
tSW1 + tSW2 + tSW3 + tSW4 + bc− ad

)
1l

= 1l

and so ŝ satisfies all the primal constraints. Moreover, it satisfies these constraints with
equality. The objective function value of ŝ is

1lT ŝ =
tSW1 + tSW2 + tSW3 + tSW4

bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

= 1− bc− ad
bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

.

Next we show that v̂ is feasible for (D′). As we noted before bc− ad ≥ 0 and tSWi > 0 for
all i ∈ {1, 2, 3, 4}. It is clear that u1, u2, u3, and u4 are non-negative because a, b, c, d > 0
and (g, h)T ∈ RSW (a, b, c, d) ⊆ {(x, y)T ∈ R2 : x < 1, y < 1}. Thus v̂ ≥ O. To check v̂
satisfies the four dual constraints we calculate

(
1l1lT +AT

)
v̂ =

1l1lT +


1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d



−d −d 1 1
bc ad −a −a
−c −ad

b
c
d

a
b

cd cd −c −ad
b




1
1−h 0 0 0

0 1
1−h 0 0

0 0 1
1−g 0

0 0 0 1
1−g


 v̂

=

(
1

bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

)(
v̂1 + v̂2

)
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where

v̂1 = 1l1lT


(1− h)[a(b+ d) + (a+ b)]

(1− h)[b(a+ c) + b
d(c+ d)]

(1− g)[d(a+ b) + bd(a+ c)]
(1− g)[bc(b+ d) + b(c+ d)]


= (tSW1 + tSW2 + tSW3 + tSW4 )1l

and

v̂2 =


1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d



−d −d 1 1
bc ad −a −a
−c −ad

b
c
d

a
b

cd cd −c −ad
b




1
1−h 0 0 0

0 1
1−h 0 0

0 0 1
1−g 0

0 0 0 1
1−g



u1

u2

u3

u4



=


1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d



−d −d 1 1
bc ad −a −a
−c −ad

b
c
d

a
b

cd cd −c −ad
b



a(b+ d) + (a+ b)

b(a+ c) + b
d(c+ d)

d(a+ b) + bd(a+ c)
bc(b+ d) + b(c+ d)



=


1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d




(bc− ad)(b+ d)
(bc− ad)(a+ b)
(bc− ad)(a+ c)
(bc− ad)(c+ d)


= (bc− ad)1l

Thus(
1l1lT +AT

)
v̂ =

(
1

bc− ad+ tSW1 + tSW2 + tSW3 + tSW4

)(
tSW1 + tSW2 + tSW3 + tSW4 + bc− ad

)
1l = 1l

and so v̂ satisfies all the dual constraints. Moreover, it satisfies these constraints with
equality.

So ŝ and v̂ are a pair of primal and dual feasible solutions satisfying complementary slack-
ness. Therefore, ŝ is an optimal solution for (P ′). So the optimal value of (P ′) is exactly
1− bc−ad

bc−ad+tSW1 +tSW2 +tSW3 +tSW4
= LBSW (a, b, c, d, g, h).

Lemma 4.3.1. For fixed a, b, c, d > 0 with ad ≤ bc and g, h with (g, h)T ∈ RS(a, b, c, d),
let (P ′) be the parameterized linear program obtained from (P (a, b, c, d, g, h)) by replacing
constraint (4.7) with the constraint s ≥ O and the intersection cuts for ray-sliding triangles
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RS1(τ bp11 ), RS2(τ bp22 ), RS2(τ bp12 ), and RS3(τ bp13 ). Then, the optimal value of (P ′) is equal
to

LBS(a, b, c, d, g, h) := 1− bc− ad
bc− ad+ tS1 + tS2 + tS3 + tS4

where

tS1 = (b+ d)[a(1− h) + bc(1− g)] , tS2 = (a+ b)[cg + (1− h)],

tS3 = (a+ c)[bcg + b(1− h)] , and tS4 = (c+ d)

[
b

d
(1− h) + b(1− g)

]
.

Proof. Optimization problem (P ′) is given by

min 1lT s

subject to
[
1l1lT + A

]
s ≥ 1l

s ≥ O

where

A :=


1
g 0 0 0

0 1
1−h 0 0

0 0 1
1−h 0

0 0 0 1
1−g




d
c −ad

c 1 −d
−d bc −c cd

−d ad −ad
b cd

1 −a a
b −ad

b




1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d

 .

The dual (D′) of (P ′) is given by

max 1lTv

subject to
[
1l1lT + AT

]
v ≤ 1l

v ≥ O.

Let

ŝ :=

(
1

bc− ad+ tS1 + tS2 + tS3 + tS4

)
tS1
tS2
tS3
tS4


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and

v̂ :=

(
1

bc− ad+ tS1 + tS2 + tS3 + tS4

)
u1

u2

u3

u4



:=

(
1

bc− ad+ tS1 + tS2 + tS3 + tS4

)
g[c(a+ b) + bc(a+ c)]

(1− h)[a(b+ d) + (a+ b)]
(1− h)[b(a+ c) + b

d
(c+ d)]

(1− g)[bc(b+ d) + b(c+ d)]

 .
We claim that ŝ and v̂ are a pair of primal and dual optimal solutions for (P ′) and (D′).

First we show that ŝ is feasible for (P ′). Note that for all i ∈ {1, 2, 3, 4}, we have tSi > 0
for all a, b, c, d > 0 and (g, h)T ∈ RS(a, b, c, d) ⊆ {(x, y)T ∈ R2 : 0 < x < 1, y < 1}. Thus
ŝ ≥ O because bc − ad ≥ 0. To check ŝ satisfies the four intersection cut constraints we
calculate

(
1l1lT +A

)
ŝ =

1l1lT +


1
g 0 0 0

0 1
1−h 0 0

0 0 1
1−h 0

0 0 0 1
1−g




d
c −adc 1 −d
−d bc −c cd
−d ad −adb cd
1 −a a

b −adb




1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d


 ŝ

=

(
1

bc− ad+ tS1 + tS2 + tS3 + tS4

)(
ŝ1 + ŝ2

)
where

ŝ1 := 1l1lT


tS1
tS2
tS3
tS4

 = (tS1 + tS2 + tS3 + tS4 )1l

and

ŝ2 =


1
g 0 0 0

0 1
1−h 0 0

0 0 1
1−h 0

0 0 0 1
1−g




d
c −ad

c 1 −d
−d bc −c cd

−d ad −ad
b cd

1 −a a
b −ad

b




1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d



tS1
tS2
tS3
tS4



=


1
g 0 0 0

0 1
1−h 0 0

0 0 1
1−h 0

0 0 0 1
1−g




d
c −ad

c 1 −d
−d bc −c cd

−d ad −ad
b cd

1 −a a
b −ad

b



a(1− h) + bc(1− g)

cg + (1− h)
bcg + b(1− h)

b
d(1− h) + b(1− g)


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=


1
g 0 0 0

0 1
1−h 0 0

0 0 1
1−h 0

0 0 0 1
1−g




(bc− ad)g
(bc− ad)(1− h)
(bc− ad)(1− h)
(bc− ad)(1− g)


= (bc− ad)1l.

Thus (
1l1lT +A

)
ŝ =

(
1

bc− ad+ tS1 + tS2 + tS3 + tS4

)(
tS1 + tS2 + tS3 + tS4 + bc− ad

)
1l

= 1l

and so ŝ satisfies all the primal constraints. Moreover, it satisfies these constraints with
equality. The objective function value of ŝ is

1lT ŝ =
tS1 + tS2 + tS3 + tS4

bc− ad+ tS1 + tS2 + tS3 + tS4
= 1− bc− ad

bc− ad+ tS1 + tS2 + tS3 + tS4
.

Next we show that v̂ is feasible for (D′). As we noted before bc − ad ≥ 0 and tSi > 0 for
all i ∈ {1, 2, 3, 4}. It is clear that u1, u2, u3, and u4 are non-negative because a, b, c, d > 0
and (g, h)T ∈ RS(a, b, c, d) ⊆ {(x, y)T ∈ R2 : 0 < x < 1, y < 1}. Thus v̂ ≥ O. To check v̂
satisfies the four dual constraints we calculate

(
1l1lT +AT

)
v̂ =

1l1lT +


1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d




d
c −d −d 1
−adc bc ad −a

1 −c −adb
a
b

−d cd cd −adb




1
g 0 0 0

0 1
1−h 0 0

0 0 1
1−h 0

0 0 0 1
1−g


 v̂

=

(
1

bc− ad+ tS1 + tS2 + tS3 + tS4

)(
v̂1 + v̂2

)
where

v̂1 = 1l1lT


g[c(a+ b) + bc(a+ c)]

(1− h)[a(b+ d) + (a+ b)]

(1− h)[b(a+ c) + b
d(c+ d)]

(1− g)[bc(b+ d) + b(c+ d)]


= (tS1 + tS2 + tS3 + tS4 )1l
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and

v̂2 =


1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d




d
c −d −d 1

−ad
c bc ad −a

1 −c −ad
b

a
b

−d cd cd −ad
b




1
g 0 0 0

0 1
1−h 0 0

0 0 1
1−h 0

0 0 0 1
1−g



u1

u2

u3

u4



=


1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d




d
c −d −d 1

−ad
c bc ad −a

1 −c −ad
b

a
b

−d cd cd −ad
b



c(a+ b) + bc(a+ c)
a(b+ d) + (a+ b)

b(a+ c) + b
d(c+ d)

bc(b+ d) + b(c+ d)



=


1
b+d 0 0 0

0 1
a+b 0 0

0 0 1
a+c 0

0 0 0 1
c+d




(bc− ad)(b+ d)
(bc− ad)(a+ b)
(bc− ad)(a+ c)
(bc− ad)(c+ d)


= (bc− ad)1l

Thus (
1l1lT +AT

)
v̂ =

(
1

bc− ad+ tS1 + tS2 + tS3 + tS4

)(
tS1 + tS2 + tS3 + tS4 + bc− ad

)
1l = 1l

and so v̂ satisfies all the dual constraints. Moreover, it satisfies these constraints with
equality.

So ŝ and v̂ are a pair of primal and dual feasible solutions satisfying complementary slack-
ness. Therefore, ŝ is an optimal solution for (P ′). So the optimal value of (P ′) is exactly
1− bc−ad

bc−ad+tS1 +tS2 +tS3 +tS4
= LBS(a, b, c, d, g, h).
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