
ALDB: Debugging Alloy Models
of Behavioural Requirements

Aman Dureja, Aditya Keerthi, Andrew Liang, Paul Zhang, and Nancy A. Day
David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, Canada N2L 3G1

Email: {adureja, a2keerth, a29liang, jl5zhang, nday} @uwaterloo.ca

Abstract—Declarative modelling languages, such as Alloy, are
becoming popular for describing behavioural requirements very
early in system development because automated analysis of these
models provides valuable feedback. Typically, these languages
are supported by constraint solvers (SAT, SMT) for providing
instances or model checking properties. However, a user can
quickly find simple bugs and gain confidence in their model by
concretely simulating steps of the transition system. We present
ALDB: a debugger for models of transition systems written in
the Alloy language. It provides a familiar debugging interface
to walk around in the behaviour of the model, enabling users
to quickly explore scenarios, find errors via concrete simulation,
and incrementally build up to bounded model checking.

I. INTRODUCTION

Model-driven engineering (MDE) [1] seeks to conquer

complexity through the use of more abstract descriptions of

a system than code. While MDE approaches generally centre

around the Unified Modelling Languages (UML) [2], there

is a growing area of research surrounding declarative formal

modelling languages. These languages, such as Alloy [3],

TLA+ [4], and Event-B [5], are well-suited for describing

behavioural requirements because they allow users to write for-

mal models very early in the development process to explore

designs and catch errors before going to the effort of creating

a UML model or coding. These models are precise, but not

necessarily detailed, through the use of uninterpreted functions

and constraints rather than operational language constructs.

For example, an Alloy model consists of constraints over sets

and relations where the constraints are written in terms of

set operators plus the transitive closure operator. There are

several examples of the effective use of declarative modelling

languages, such as using Alloy to find bugs in the CHORD

protocol [6] and using TLA+ to find bugs in concurrency

designs at Amazon [7]. In this paper, we focus on declarative

behavioural models (transition systems).

Generally, declarative modelling languages are supported by

automated formal analysis tools that search for instances or

counterexamples over a finite scope of values for each set.

Limiting the search to a finite scope makes it tractable, but

such analysis may take time, and it can be harder to debug

a model from static feedback such as a model instance or

an entire counterexample trace. In particular, for the popular

Alloy Analyzer, an instance of a behavioural model is a

static representation of either a path or the entire transition

system. Techniques for temporal logic model checking of

Alloy models are being developed (e.g., [8], [9]), but users

might like to explore the behaviour of an abstract model of

a transition system through debugging/simulation first to find

simple bugs and to understand the behaviour prior to waiting

for a solver to complete.

Driven by the goal of providing quicker, more interactive

feedback to Alloy users, we have created a debugger for

Alloy models of transition systems. The idea is to provide

a modeller with the functions needed to explore an Alloy

model of a transition system by stepping through it in the

fashion of a typical debugger. Currently, iterating through a

relation must be done by including facts in the Alloy model

that either create a path by explicitly iterating the relation a

fixed number of times (as in bounded model checking [10]) or

writing formulas in the Alloy Analyzer’s interactive evaluator

component. What is missing is a tool that focuses particularly

on transition systems and provides the commonly-understood

interactive debugging interface.

Providing debugging functionality for declarative modelling

languages has different challenges than creating a debugger for

code. Declarative models are abstract (e.g., sets/relations/func-

tions) and the transition relation can be non-deterministic. The

next step cannot be “computed” directly, but rather interaction

with a solver is needed to determine the possible next states.

Because of the non-determinism, the choice of a particular

next state may eliminate some future paths of interest for

exploration. Debugging needs both functions for step-by-

step and backtracking interaction, and goal-based functions

to find paths that reach or follow states based on user-chosen

constraints. Debugging a declarative model is an incremental

process that goes from local exploration all the way to bounded

model checking.

Existing tools for declarative modelling provide some of

these debugging/simulation features, although we are not

aware of any such tool for Alloy. TLC [11], the model checker

for TLA+ can generate a randomly chosen path through the

model. ProB [12] provides users with the ability to take

individual steps of the model. NuSMV [13] and NuXMV [14]

provide interactive simulation functions that allow both step-

ping through a model and finding paths that satisfy constraints

but their modelling languages are less abstract than Alloy.

In this paper, we describe a set of functions for our new tool

ALDB, which is a debugger for Alloy models of transition

systems. ALDB provides a command-line interface but is

21

2020 IEEE Tenth International Model-Driven Requirements Engineering (MoDRE)

978-1-7281-8356-5/20/$31.00 ©2020 IEEE
DOI 10.1109/MoDRE51215.2020.00009

Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 17:13:10 UTC from IEEE Xplore. Restrictions apply.

Dureja, A., Keerthi, A., Liang, A., Zhang, P., & Day, N. (2020). ALDB: Debugging Alloy Models of Behavioural Requirements.
2020 IEEE Tenth International Model-Driven Requirements Engineering (MoDRE), 21–30. https://doi.org/10.1109/
MoDRE51215.2020.00009

integrated with the code base of the Alloy Analyzer through

the use of debugging function templates. ALDB is available for

download at: HTTPS://GITHUB.COM/WATFORM/ALDB. We

also describe how ALDB can be used in a case study.

Declarative modelling languages provide users with the

ability to write even more abstract models than those of UML

and thus provide a stepping stone in conquering complexity

between requirements and design. A familiar debugging-like

interface for Alloy models will support modellers in transition-

ing to this new modelling paradigm by immediately providing

feedback on their models. We believe ALDB provides valuable

functionality to both novice and advanced Alloy users. For

novice users, it helps them learn the effects of Alloy language

structures. For advanced users, it helps them zero in quickly

on modelling mistakes or problematic cases in the model.

II. BACKGROUND

Alloy is a declarative language based on relational logic and

models system components as sets. A user can create a set as

a signature, declare relations between sets, and write facts,

which are invariants about the relations and sets. Predicates

(similar to macros) are used to define formulas, and may be

parametrized. Alloy’s graphical tool - the Alloy Analyzer -

produces satisfying instances of a model and exposes invariant

violations by generating counterexamples. Finite scopes (sizes)

for each set are required, which restrict the universe that the

Analyzer explores.

The focus of our work is on Alloy models of transition

systems. A transition system consist of a set of states and

a transition relation that operates on them. In Alloy, there

are two idioms for defining a transition system, which we

will call implicit and explicit state. Implicit state transition

system models encode the changing behaviour in relations

from an object to a state or time [3]. Explicit state systems

utilize a dedicated state signature and the transition relation is

a binary relation between states [15]. Additionally, there are

relations from the states to the dynamic elements of the model

(similar to treating the state as a record/structure). Sullivan et

al. compare these styles of modelling in Alloy [16]. ALDB

assumes explicit state models since it localizes the definition

of the state and it has only one transition relation (rather than

multiple relations that together form the transition relation).

In detail, ALDB assumes that state models consist of a

State signature, an init predicate, and a next predicate,

as follows:

1 sig State { ... }
2 pred init [s: State] { ... }
3 pred next [s, s’: State] { ... }

The names of these elements are configurable. The State
signature contains the elements of the state that change value

with transitions. There can be other non-dynamic elements in

the model that do not need to be part of the State signature.

The init predicate contains constraints on the initial state

of the system. The next predicate is the transition relation,

and relates s and s′ where s is the current state and s′ is

the next state. As it is common, we assume that the user

has defined a unique (although possibly non-deterministic)

transition relation.

As an illustrative example of an Alloy transition system, we

use the classic River Crossing Problem (RCP). In the RCP,

there exists a farmer, a fox, a chicken, a bag of grain, and

a small boat. There is a river dividing two sides of land: the

near side and the far side. Every entity starts on the near side.

The goal is to use the boat to transport all entities to the far

side of the river. There are some restrictions:

• The boat can only hold two entities at any time. One of

the entities must be the farmer, as only they can operate

the boat.

• If left together without the farmer, the fox will eat the

chicken.

• If left together without the farmer, the chicken will eat

the bag of grain.

Listing 1 is an explicit state Alloy model representing the

RCP1 [17].

Currently, in the Alloy Analyzer, if a user wishes to inves-

tigate what happens in two steps of their model, in addition

to the above model, they must perform the following process:

1) Load the model into the Analyzer.

2) Optionally (but commonly), import the util/ordering

module to create a path via a total ordering on states.

3) Define a fact that constrains the first state in the total

order to satisfy the init predicate.

4) Define a fact that constrains the linear order to respect

the transition relation, meaning a state can follow an-

other in the order only if it is related by the next
predicate.

5) Add a line to the end of the model that searches for an

instance of the linear order of a certain length.

6) Observe the entire path in the Analyzer visualizer.

The facts mentioned above could be written in the evaluator

and the visualizer can be configured to isolate parts of the

model or show the states in different views.

But this process either requires non-trivial manual model

instrumentation which bloats the model with debugging

specifics, or requires the modeller to type in long formulas

in the evaluator. If the user desires to see a path that reaches

a state where a certain condition is true, as in bounded model

checking, then they must further instrument the model.

Activities such as stepping and running a system until

specific constraints are satisfied (breakpoints) are commonly

performed when designing programs (which are transition

systems), in order to debug incorrect behaviour or to observe

system execution. Manual model instrumentation as previ-

ously mentioned is fragile and opens the model up to more

faults. The process also requires the user to always load the

graphical Analyzer tool, which can be undesirable for those

who work primarily in command-line environments, disrupting

1The model presented here very closely matches the Alloy of RCP
found in https://github.com/AlloyTools/org.alloytools.alloy/blob/master/org.
alloytools.alloy.extra/extra/models/examples/tutorial/farmer.als .

22

Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 17:13:10 UTC from IEEE Xplore. Restrictions apply.

1 /* Farmer and his possessions are objects. */
2 abstract sig Object {
3 /* eats is a binary relation on Objects */
4 eats: set Object
5 }
6 /* Particular objects of the model */
7 one sig Farmer, Fox, Chicken, Grain
8 extends Object {}
9

10 /* Define what eats what
11 when the farmer is not around. */
12 fact { eats = Fox->Chicken + Chicken->Grain }
13
14 /* States of the transition relation consist of:
15 1) a set of Objects on the near side
16 2) a set of Objects on the far side
17 */
18 sig State { near, far: set Object }
19
20 /* In the initial state, all objects
21 are on the near side. */
22 pred init [s: State] {
23 (s.near = Object) && (no s.far)
24 }
25
26 /* At most one item to move from
27 ’from’ to ’to’; eating occurs if possible. */
28 pred crossRiver
29 [from, from’, to, to’: set Object] {
30 one x: from | {
31 from’ = from - x - Farmer - from’.eats
32 to’ = to + x + Farmer
33 }
34 }
35
36 /* Transition Relation */
37 pred next [s, s’: State] {
38 Farmer in s.near =>
39 /* cross from near to far */
40 crossRiver [s.near, s’.near, s.far, s’.far]
41 else
42 /* cross from far to near */
43 crossRiver [s.far, s’.far, s.near, s’.near]
44 }

Listing 1. Alloy model of River Crossing Problem (RCP)

their workflow. Hence, there is a need for a command-line

tool that performs desired debugging functions on transition

systems.

III. ILLUSTRATIVE EXAMPLE

In order to demonstrate its functionality, in this section we

show the use of ALDB to explore and find a solution to the

RCP that was introduced earlier.

We begin by loading the model into ALDB:

1 (aldb) load river_crossing.als
2 Reading model from river_crossing.als...done.
3 (aldb) current
4
5 S1
6 ----
7 far: { }
8 near: { Chicken, Farmer, Fox, Grain }

The changing state in the RCP Alloy model is the set of objects

that are on the near and far sides. There is only one initial

state that satisfies the init constraint: everything is on the

near side and nothing is on the far side. The river can only be

crossed starting from where the farmer currently is, and ending

on the opposite side. When crossing the river, the farmer has

the option to take any one of the other objects with them,

with the consequence that some object may be eaten if left

unattended.

Using ALDB, a modeller can incrementally explore the

model’s state space by stepping (continuing the example run

from above):

1 (aldb) step
2
3 S2
4 ----
5 far: { Farmer, Grain }
6 near: { Fox }

The reached state in this step does not contain all the objects.

The chicken is missing because in this specific execution path,

the farmer took the grain and left the fox to eat the chicken.

This behaviour is undesired. The reverse-step function

can be used to go back to the initial state, or using the alt
command we can explore other states that could have been

reached (continuing the example run above):

1 (aldb) alt
2
3 S3
4 ----
5 far: { Farmer, Fox }
6 near: { Chicken }
7
8 (aldb) alt
9
10 S4
11 ----
12 far: { Chicken, Farmer }
13 near: { Fox, Grain }

In the first alternate state, the farmer takes the fox, leaving

the chicken to eat the grain. The second alternate state from

the initial state may lead to a valid solution to the puzzle as all

objects are still present. If the user wishes to see only steps that

lead to states where all entities exist, then they can leverage

constrained stepping with a formula alias. We begin by using

the init command to return to the model’s initial state, as

follows:

1 (aldb) init
2
3 S1
4 ----
5 far: { }
6 near: { Chicken, Farmer, Fox, Grain }
7
8 (aldb) alias myFormula "near + far = Object"
9 (aldb) step [myFormula]
10
11 S2
12 ----
13 far: { Chicken, Farmer }
14 near: { Fox, Grain }

Here, the user specifies a formula where the union of the near

and far sets is equal to the Object set (i.e., all entities). The

23

Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 17:13:10 UTC from IEEE Xplore. Restrictions apply.

formula is aliased as myFormula for convenience. When the

step is performed, ALDB takes one step in the transition system

that has a destination state that satisfies myFormula.

The question that we want to answer in this puzzle is: what

sequence of events – if any – results in every entity safely

reaching the far side of the river? Since the desired end state

of the puzzle is known, using ALDB’s until command with

a breakpoint is the quickest method to get a solution to the

puzzle. The breakpoint is set to a constraint where the far side

contains all the objects, and there is nothing on the near side,

as follows:

1 (aldb) init
2
3 S1
4 ----
5 far: { }
6 near: { Chicken, Farmer, Fox, Grain }
7
8 (aldb) break "far = Object && no near"
9 (aldb) until
10
11 S8
12 ----
13 far: { Chicken, Farmer, Fox, Grain }
14 near: { }

The desired state has been reached. By default the until
function takes up to 10 steps, but a user can choose an

alternative number of steps. We can use the history function

to show the sequence of transitions that resulted in this end

state as shown in Listing 2. From this history, we know that

the desired end state can be reached in seven transitions.

The process of manually exploring the state space exposes

execution states that a user might not see in an instance

produced by the Alloy Visualizer. Looking at concrete states

allows the user to quickly find errors in the model.

IV. DEBUGGING FUNCTIONS

Inspired by common code debugging tools, we created the

functions described in this section for Alloy debugging. We

describe how these functions are customized for a declarative

model. For any of our functions that require constraint solving,

a template is populated to pass to the Alloy Analyzer’s solver.

ALDB then interprets the solver’s result to display the concrete

states of the model as needed for the output of the function.

The template instantiation uses information stored internally

to ALDB about the explored states. This method is easily

extensible to add more functionality to ALDB.

In order to understand the function descriptions, we first

introduce the internal data structures that ALDB uses to keep

track of states and execution traces. StateGraph is a directed

graph that represents the parts of the transition system that

the user has explored so far in the debugging session. Each

node represents a concrete state (with unique values for its

state elements), and each edge represents a transition. We build

StateGraph incrementally as the user steps through a transition

system and explores its state space. Two states are equivalent

1 (aldb) history 10
2
3 S1 (-7)
4 ---------
5 far: { }
6 near: { Farmer, Fox, Chicken, Grain }
7
8 S2 (-6)
9 ---------
10 far: { Chicken, Farmer }
11 near: { Fox, Grain }
12
13 S3 (-5)
14 ---------
15 far: { Chicken }
16 near: { Farmer, Fox, Grain }
17
18 S4 (-4)
19 ---------
20 far: { Chicken, Farmer, Fox }
21 near: { Grain }
22
23 S5 (-3)
24 ---------
25 far: { Fox }
26 near: { Chicken, Farmer, Grain }
27
28 S6 (-2)
29 ---------
30 far: { Farmer, Fox, Grain }
31 near: { Chicken }
32
33 S7 (-1)
34 ---------
35 far: { Fox, Grain }
36 near: { Chicken, Farmer }

Listing 2. Output of History for RCP Debugging Interaction

if they have same values for their state elements2. Thus, the

StateGraph may contain loops. While this graph may grow

large, because it is based on interactive use, we do not expect

state space explosion problems. StatePath is a subgraph of

StateGraph, and represents the path of the transition system

currently being followed in this debugging session.

Next, we describe the functions of ALDB, how they match

to constraint problems in Alloy, and how they change the

StateGraph and StatePath.

A. Configuration

ALDB operates on transition systems modelled using the

explicit state modelling idiom. The names of the expected

signatures and predicates can be set in a custom configuration.

The configuration is defined in YAML. It can be

specified within a comment block in the model file,

or set via a separate YAML file using the set conf
[path/to/config/file] function. Listing 3 shows an

example of a configuration block within an Alloy model. It

has the following parts:

• stateSigName is the name of the signature that rep-

resents the state set.

2Alloy allows different atoms of the state set to relate to the same values
for state elements, which gives the appearance of two different state names
for the same state. In ALDB, we collapse these differences for the user.

24

Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 17:13:10 UTC from IEEE Xplore. Restrictions apply.

1 /* BEGIN_ALDB_CONF
2 *
3 * stateSigName: State
4 * transitionRelationName: next
5 * initPredicateName: init
6 * additionalSigScopes:
7 * Team: 4
8 * Runner: 15
9
10 * END_ALDB_CONF
11 */
12
13 sig State { ... }
14 pred init[s: State] { ... }
15 pred next[s,s’:State] { ... }

Listing 3. ALDB Configuration File

• transitionRelationName is the name of the tran-

sition relation predicate.

• initPredicateName is the name of the predicate that

constrains the initial states of the transition system.

• additionalSigScopes is an optional map of

(String, Integer) pairs that define specific scopes for

signatures (other than the State signature) within the

model. These override any choice of scopes included in

the model. The scope of a set cannot be changed in

the middle of a debugging session without reloading the

model and restarting execution.

When a model is loaded, the session begins with ALDB

choosing an initial state by asking the Alloy solver to return a

state that satisfies the init predicate. This initial state forms

the first node of the internal StateGraph and StatePath data

structures.

B. Step and Reverse-Step Functions

Input to the step function is the number of steps to take.

The template for the step function is shown in Listing 4.

A temporary Alloy file is created from this template. In the

template, ALDB creates a new init predicate based on the

current state, which is maintained in an internal data structure.

The util/ordering module is imported to create a path

of states via imposing a total ordering on the State set. The

ordering module reserves the names first and next (as in

s.next) to be the first element in the order and the function

to get the next element in the order respectively. The first

state must satisfy the new init predicate (line 19). Then, we

must tell Alloy that all consecutive states are related by the

next predicate of the transition system (lines 21–23). Finally,

Alloy must actually run the system for the given number of

steps. We set the scope of the State set to one more than

the desired number of steps to account for states at both ends

of the path (line 25).

The Alloy solver returns an instance of the appropriate

length path. ALDB displays the last of the states in the path to

the user, but also updates the internal StateGraph structure

to keep track of visited states. If Alloy returns two states

with identical values for their state elements, internally, this

1 open util/ordering[State]
2
3 // Information about current state
4 // Example:
5 // field1 -> {}
6 // field2 -> {a, b}
7 // ...
8
9 < all of original model (except init predicate) >
10
11 // Generated init predicate
12 pred init[s: State] {
13 // Example:
14 s.field1 = none
15 s.field2 = a + b
16 ...
17 }
18
19 fact { init[first] }
20
21 fact {
22 all s: State, s’: s.next { next[s, s’] }
23 }
24
25 run {} for exactly <1 + inputNumStates> State

Listing 4. Template for Step Function

is represented as a loop in StateGraph3. The step function

output shows only the fields that have changed in the step.

The reverse-step function returns the previous step

on the path and does not require interaction with the solver

because of the internal StatePath data structure.

C. Alt Function

The alt function allows users to explore alternate states

that are reachable from the previous state as was shown in

Section III. Using the alt function the user can incrementally

explore the complete state space of a transition system. It can

also be used at the initial state to view the set of all possible

initial states.

Using the StateGraph, ALDB first looks to see if there

are any previously discovered alternative states that have not

yet been displayed to the user (at this time) to choose an

alternative state. If not, rather than using a template, it is more

efficient to leverage the previous solver run by asking the Alloy

solver for its “next” solution.

D. Until and Break Functions

The until function is used together with breakpoints. The

user can add any number of formulas that are breakpoints to

halt continued exploration of a path in the model. The formula

of a breakpoint is entered via the break function (possibly

using a formula alias for convenience).

The input to the until function is the maximum number

of steps to explore. ALDB generates a path from the current

3The ordering module will not present a path with a loop in it (because
then the states are not in a total order), thus it is appropriate to allow Alloy
to have multiple states related to the same state values. A modeller should
avoid including a fact that two states cannot contain the same values for their
state elements.

25

Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 17:13:10 UTC from IEEE Xplore. Restrictions apply.

state that is either as long as this maximum number of steps

or reaches a state where one of the breakpoints is true.

To instantiate the template for the until function, the

formulas entered as breakpoints are disjuncted together to

create a predicate in Alloy. There are two different stopping

points for the until function: when the breakpoint is reached

or when the maximum path length is checked. We sequentially

run the Alloy solver for every path length between one and the

specified maximum number of steps. For each of these runs

we use a template similar to the one for the step, except that

the break predicate must be true in the last state of the run,

as in:

1 // User-specified breakpoint formulas:
2 // Example
3 // breakpoint1 = "field1 = a"
4 // breakpoint2 = "field1 + field2 = a + b"
5
6 // Generated break predicate:
7 pred break[s: State] {
8 (s.field1 = a) or
9 (s.field1 + s.field2 = a + b)
10 }
11
12 fact {
13 break[last]
14 }
15
16 run { } for exactly <numSteps + 1 > State

If the solver finds a solution that satisfies the break predicate

at a certain path length, then we do not check longer path

lengths. If we execute the solver with the maximum number of

steps and it still returns no satisfiable solution, then we inform

the user that the breakpoint could not be satisfied within the

specified maximum path length. This iteration over path length

ensures that less solver time will be taken when shorter paths

(than the maximum) satisfy the breakpoint.

Our function until is bounded model checking but

phrased in terms of common debugging functions for the user.

For example, model checking that an invariant is true for all

paths of lengths up to k can be done using a breakpoint on the

negation of the invariant and running ALDB’s until function

for k steps.

E. Step Function with Path Constraints

As an alternative to providing the number of steps as input to

the step function, users can provide a comma-separated list

of formulas to be satisfied at each state in a path. This function

can be used to simulate inputs for the transition system by

setting a constraint that includes a formula containing a value

for an input. Also, using formula aliases, it is easy to constain

a path where every step satisfies an invariant. For a list of

length n, the function will execute n steps, and each state i
in the path will satisfy the formula at position i in the list.

In order to perform the path-constrained step, we instantiate

an Alloy model template with predicates to represent the

constraint at each step in the path and apply these constraints

to the appropriate state in the ordering of the State set

(lines 22– 26) as shown in Listing 5. If no such execution path

exists, then the user is informed that the constrained step could

1 // User specified formula aliases:
2 // Example:
3 // f1 = "field1 = a"
4 // f2 = "field1 + field2 = a + b"
5
6 // User enters: step [f1, f2, f1]
7
8 // Generated Alloy code:
9

10 pred path_s1[s: State] {
11 s.field1 = a
12 }
13
14 pred path_s2[s: State] {
15 s.field1 + s.field2 = a + b
16 }
17
18 pred path_s3[s: State] {
19 s.field1 = a
20 }
21
22 pred path[s: State] {
23 path_s1[s.next] and
24 path_s2[s.next.next] and
25 path_s3[s.next.next.next]
26 }
27
28 fact {
29 init[first]
30 path[first]
31 }
32
33 run { } for
34 exactly <length of constraint list> State

Listing 5. Template for Step with Path Constraints

not be completed. Otherwise, it is guaranteed to find a path if

one exists. Note that this is unlike other simulation methods

that do not ‘look ahead’ to ensure that the state chosen in the

next step has a future path that satisfies all the constraints.

F. Trace Mode

The Alloy Analyzer is able to generate counterexample

paths when inconsistencies are found during bounded model

checking. A counterexample can be exported from the An-

alyzer as an XML file that encodes a specific erroneous

execution trace. ALDB is able to load a counterexample file,

parse the XML, and convert it to an internal representation for

user exploration. Loading a counterexample does not require

the user to load the original Alloy model from which the

counterexample was derived. As such, a limitation is that

ALDB cannot find alternate states, nor step beyond the final

state of the counterexample. Trace mode is useful however to

highlight what state elements change in each step.

G. Session Log

Every execution of ALDB is considered to be a unique

session. When ALDB is started, a session log is created in a

temporary file. This file records every full, completed function

executed in the current session. If a session is terminated, it can

be recovered up to the point of the last completed command

by starting ALDB with the --restore flag and the file path

26

Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 17:13:10 UTC from IEEE Xplore. Restrictions apply.

of the desired session log to restore from. A new session log

with the contents of the previous session’s log - and any further

commands - will be created for the new session. This file can

also be used for scripting a debugging session.

H. Additional Functions

ALDB implements a number of additional functions such as:

• alias: label a formula. As shown in the example

in Section III, to avoid having to type large formulas

multiple times, a label can be given to a formula and

reused in any function that has formulas as arguments.

• init: return to an initial state. This function returns to

the first initial state selected by ALDB in this session.

Multiple initial states can be explored by using the alt
function when an initial state is the current state.

• scope: show the elements in the scope of a set. This

function is useful to learn what values are possible for a

state element.

• dot: output a graph of the state space explored so far in

the DOT graph description language [18] where it can be

visualized using packages such as graphviz [19].

V. IMPLEMENTATION

In order to implement ALDB functions, we leverage the

public Alloy Analyzer code4. Interfacing directly with the

Alloy API maximizes compatibility between Alloy and ALDB.

Whenever Alloy introduces new features or better solvers, the

changes will be immediately reflected in ALDB when it is

updated to use the latest Alloy JAR.

We use the Alloy Analyzer’s existing code to parse models

and use the Alloy API to call its solvers to find satisfying

instances of Alloy models created using our template.

A key Alloy data structure we rely on is the one containing

the instances returned from the solver. This object contains

information about the system state at every step. Furthermore,

the instance data structure exposes a “next” method which

returns another instance with an alternate path. This method

allows us to show the user alternate states at each step, and

build a complete StateGraph for the model.

We are currently considering how ALDB might be integrated

directly into the Alloy evaluator, which is part of its graphical

user interface, but there is value in continuing to have ALDB’s

functionality at the command-line.

VI. EVALUATION

Beyond testing for correctness, to evaluate the effectiveness

of ALDB as a debugger for Alloy models of transition systems,

we tackled creating a new model using ALDB to help with

the debugging process. Our goal in this section is to provide

readers with a sense of how ALDB can be used in their

workflow.

We received an informal written specification of a program

called FastFeet (FF) [20], which had been previously used

as formal specification exercise in a second year course at

4https://github.com/AlloyTools/org.alloytools.alloy

the University of Waterloo. From this informal description,

we wrote a formal Alloy model5 FF manages a running race.

There are multiple teams of runners, and a runner can belong

only to a single team. A team consists of a maximum of

five runners, and a minimum of one. When a race is over,

FF returns the result: a list of runners in the order that they

finished in the race. Initially, nobody is entered in a race and

no result exists. The following are the system operations:

• Register Team: Add a team and its runners to the race.

• Substitute Runner: Replace a runner on a particular team

with another runner.

• Run Race: Obtain an ordered list of finishing runners.

Some runners may not have finished.

• Disqualify Team: Remove all runners from a particular

team from the results.

• Compute Score: For each team that has a full set of

runners that finished, obtain the sum of finishing positions

for the team.

When writing the Alloy model for FF, we began by encod-

ing information about the changing entities into a State sig-

nature. We wrote a predicate that encapsulates the behaviour

of each system operation (sys op). Then we defined an init

predicate to specify initial conditions, and a next predicate as

the transition relation. In each step, one of the FF operations

is taken.

We utilized ALDB to incrementally test and build

a correct model. Within the ALDB config, we used

additionalSigScopes to set the scope of the Team and

Runner signatures. For simplicity, we used four teams and

fifteen runners.

Our primary debugging strategy was to leverage

ALDB’s constrained step functionality. The various

system operations were tested using the command: step
["operation=SYS_OP_NAME"]. The debugging method

allowed us to examine individually the effects of each

operation. We then verified that the output corresponded

to what we expected. If the output was surprising, then it

signalled that the sys op predicate was erroneous, particularly

the statements that referenced the state elements with

unexpected results.

Next, we wanted to inspect how a race would progress once

it began, so we used ALDB’s until function to get to a

state where the race has started, and then manually stepped

to observe transitions. Listing 6 shows an unexpected state

transition. The operation in S4 is “SUBSTITUTE RUNNER”.

According to the informal specification, it does not make sense

for a team to substitute a runner during a race. As such, ALDB

exposed a flaw in the model where we neglected to ensure

that the “SUBSITUTE RUNNER” operation should only be

possible if the current mode is “REGISTRATION”, meaning

that it occurs before a race begins.

ALDB’s until functionality allowed us to test reachability

of the end of the race. We set a breakpoint for the existence

5Our complete model in Alloy is available at: https://github.com/WatForm/
aldb/blob/master/models/river crossing.als .

27

Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 17:13:10 UTC from IEEE Xplore. Restrictions apply.

1 (aldb) load fast_feet.als
2 Reading model from fast_feet.als...done.
3 (aldb) break "mode=RACE"
4 (aldb) until
5
6 S3
7 ----
8 mode: { RACE }
9 operation: { RUN_RACE }
10 results: { }
11 roster: { Team_3->Runner_1, Team_3->Runner_10 }
12 runners: { Runner_1, Runner_10 }
13 scores: { }
14 teams: { Team_3 }
15
16 (aldb) step
17
18 S4
19 ----
20 operation: { SUBSTITUTE_RUNNER }
21 roster: { Team_3->Runner_1, Team_3->Runner_14 }
22 runners: { Runner_1, Runner_14 }

Listing 6. Unexpected State Transition Discovered using Step Function

of results and scores and used the until function to check

if such a state was reachable. This use of ALDB is essentially

bounded model checking. The history function showed us how

the system reached the desired state in Listing 7. This output

shows a simple path of state transitions that can be manually

examined for errors.

Once we had a correct model, one member of our team

seeded three bugs in it and tasked another member to discover

and fix the bugs. We will now discuss how ALDB was used to

discover the bugs. Listing 8 shows the output from ALDB that

helped us find the first seeded bug. After stepping through team

registration operations, we see that no state can be reached

where all runners have completed the race – a situation that

obviously should be possible. The issue here was a scope

problem. The seq (sequence) relation used for the list of

results had been set to five in the model configuration, meaning

that the results set could not contain more than five elements,

hence the #(results)=#(runners) constraint could not

be satisfied. The appropriate fix is to set the scope of seq to

match the scope of the set of runners.

Listing 9 shows a series of states during team registration,

from which we discovered the second seeded bug. After each

step during the team registration, teams and rosters are updated

but the set of runners is not updated correctly. The set of

runners only contains the new added runners and not the

previously registered runners. The cause of this bug was an

omission in the operation for registering teams to ensure that

the next state keeps all the runners of the existing state.

Listing 10 shows the ALDB output that helped us discover

the third seeded bug. The teams that did not participate in

the race were unexpectedly assigned scores. The fix was to

ensure that scores are only assigned to registered teams in the

operation that computes the scores.

It was sufficient to use ALDB to discover the bugs discussed

above rather than the full Alloy Analzyer. ALDB has a familiar

1 (aldb) load fast_feet.als
2 Reading model from fast_feet.als...done.
3 (aldb) break "#(results) > 0 and #(scores) > 0

and mode=RESULTS"
4 (aldb) until
5
6 S4
7 ----
8 mode: { RESULTS }
9 operation: { COMPUTE_SCORES }
10 results: { 0->Runner_0, 1->Runner_14 }
11 roster: { Team_3->Runner_0, Team_3->Runner_14 }
12 runners: { Runner_0, Runner_14 }
13 scores: { Team_3->1 }
14 teams: { Team_3 }
15
16 (aldb) history
17
18 S1 (-3)
19 ---------
20 mode: { REGISTRATION }
21 operation: { }
22 results: { }
23 roster: { }
24 runners: { }
25 scores: { }
26 teams: { }
27
28 S2 (-2)
29 ---------
30 mode: { REGISTRATION }
31 operation: { REGISTER_TEAM }
32 results: { }
33 roster: { Team_3->Runner_0, Team_3->Runner_14 }
34 runners: { Runner_0, Runner_14 }
35 scores: { }
36 teams: { Team_3 }
37
38 S3 (-1)
39 ---------
40 mode: { RACE }
41 operation: { RUN_RACE }
42 results: { 0->Runner_0, 1->Runner_14 }
43 roster: { Team_3->Runner_0, Team_3->Runner_14 }
44 runners: { Runner_0, Runner_14 }
45 scores: { }
46 teams: { Team_3 }

Listing 7. History Function shows Path to Reach End of Race

interface for programmers and gives quick results making it

possible to fix these simple bugs right away while developing

the model.

VII. RELATED WORK

Various forms of simulation of transition systems are avail-

able in the tools supporting the formal specification languages

TLA+ and B.

TLC is a model checker for a subclass of TLA+ spec-

ifications and it has a graphical user interface [11]. TLC’s

main usage modality is model checking: it generates a finite

state space and checks for invariant violations within it.

TLC can generate a random path of finite-length through the

model [21], which is conceptually similar to systematically

stepping through a model. TLC does not allow for incremental

debugging and stepping to gradually build the state space. If

28

Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 17:13:10 UTC from IEEE Xplore. Restrictions apply.

1 (aldb) load fast_feet.als
2 Reading model from fast_feet.als...done.
3 (aldb) step ["operation=REGISTER_TEAM"]
4
5 S2
6 ----
7 mode: { REGISTRATION }
8 operation: { REGISTER_TEAM }
9 results: { }
10 roster: { Team_0->Runner_0, Team_0->Runner_14 }
11 runners: { Runner_0, Runner_14 }
12 scores: { }
13 teams: { Team_0 }
14
15 (aldb) step ["operation=REGISTER_TEAM"]
16
17 S3
18 ----
19 roster: { Team_0->Runner_0, Team_0->Runner_14,

Team_3->Runner_1, Team_3->Runner_2 }
20 runners: { Runner_0, Runner_1, Runner_14,

Runner_2 }
21 teams: { Team_0, Team_3 }
22
23 (aldb) step ["operation=REGISTER_TEAM"]
24
25 S4
26 ----
27 roster: { Team_0->Runner_0, Team_0->Runner_14,

Team_2->Runner_3, Team_2->Runner_4, Team_3->
Runner_1, Team_3->Runner_2 }

28 runners: { Runner_0, Runner_1, Runner_14,
Runner_2, Runner_3, Runner_4 }

29 teams: { Team_0, Team_2, Team_3 }
30
31 (aldb) step ["operation=RACE and #(results)=#(

runners)"]
32 Cannot perform step. Transition constraint is

unsatisfiable.

Listing 8. Discovery of First Seeded Bug

TLC finds an erroneous trace that violates model invariants,

then users can step through that trace using the error-trace

explorer, which is part of the TLA+ Toolbox [22].

The ProB Animator simulates the execution of specifications

written in the B modelling language. It is available as both

graphical and command-line tools. The animator allows users

to step through a model’s state space but we could not find

a command similar to our until or constrained stepping

commands. ProB has been extended to load Alloy models

and translate them into B models for analysis with ProB [23],

however this work is still experimental. Our tool allows users

to write constraints directly in the Alloy language while

debugging.

NuSMV [13] and NuXMV [14] provide lower-level lan-

guages for specifications, but they do provide some simu-

lation capabilities. For example, in both tool sets, there is

a command-line interactive tool called simulate. Within it

the user can choose an initial state based on constraints,

and generate a finite-length trace from the current state that

satisfies constraints by using the next state temporal operator

for different constraints over each step.

The Alloy Analyzer contains various method of customizing

1
2 S5
3 ----
4 mode: { REGISTRATION }
5 operation: { REGISTER_TEAM }
6 results: { }
7 roster: { Team_0->Runner_0, Team_0->Runner_14 }
8 runners: { Runner_0, Runner_14 }
9 scores: { }
10 teams: { Team_0 }
11
12 (aldb) step
13
14 S6
15 ----
16 roster: { Team_0->Runner_0, Team_0->Runner_14,

Team_3->Runner_1, Team_3->Runner_2 }
17 runners: { Runner_1, Runner_2 }
18 teams: { Team_0, Team_3 }
19
20 (aldb) step
21
22 S7
23 ----
24 roster: { Team_0->Runner_0, Team_0->Runner_14,

Team_2->Runner_3, Team_2->Runner_4, Team_3->
Runner_1, Team_3->Runner_2 }

25 runners: { Runner_3, Runner_4 }
26 teams: { Team_0, Team_2, Team_3 }

Listing 9. Step Function shows Runners are Missing

1 (aldb) load fast_feet.als
2 Reading model from fast_feet.als...done.
3 (aldb) break "mode=RESULTS"
4 (aldb) until
5
6 S4
7 ----
8 mode: { RESULTS }
9 operation: { COMPUTE_SCORES }
10 results: { }
11 roster: { Team_0->Runner_11, Team_0->Runner_13,

Team_0->Runner_14 }
12 runners: { Runner_11, Runner_13, Runner_14 }
13 scores: { Team_1->0, Team_2->0, Team_3->0 }
14 teams: { Team_0 }

Listing 10. Last State in Path has Unexpected Scores

the layout of an instance. For example, Rayside et al. [24]

describes using inferred properties of a model to customize its

visualization, including views of projections of the instance to

show individual states and their relations to illustrate steps in a

dynamic execution. Sterling is a new visualizer for Alloy [25]

under development. However, none of these methods are

customized for transition systems or support the common code

debugging steps such as breakpoints.

VIII. CONCLUSION

We have presented ALDB, a debugger for Alloy models

of transition systems. Our debugger supports users in locally

exploring concrete steps of their model and incrementally

building up all the way to bounded model checking. It

provides an alternative interface to the Alloy Analyzer that

29

Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 17:13:10 UTC from IEEE Xplore. Restrictions apply.

is customized for interactive analysis of transition systems.

ALDB uses the existing Alloy solver via templates, which is

an example for how additional functionality can be provided

for creating and exploring Alloy models.

We envision a variety of uses for ALDB. First, it can be

used in a basic exploratory model just after the user has

initially composed a model. Many errors are likely to be

found just walking around in the graph. Second, it can be

used in a what-if exploratory mode, where the user follows

particular paths via the constrained stepping function. For

example, asking questions such as “what if this input occurs?”

Third, the user might want to investigate coverage by looking

at all the alternative paths. Fourth, ALDB can be used in a

diagnostic mode where the user is either using the until
command to do bounded model checking, or the user is

reviewing a counterexample XML file previously found by the

Alloy Analyzer. In these cases, the user is trying to diagnose

the error in the model. However, a user case study is needed to

determine the utility of ALDB in an Alloy modellers’ workflow.

ACKNOWLEDGMENTS

We thank Amin Bandali for his help with learning Alloy.

This research was supported in part by the Natural Sciences

and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 25–31, 2006.

[2] “OMG unified modeling language,” http://www.omg.org/spec/UML/2.5/
PDF/, 2015, [Online; accessed 16 May 2020].

[3] D. Jackson, Software abstractions: logic, language, and analysis, rev.
ed ed. MIT Press, 2012.

[4] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Boston: Addison-Wesley, 2002.

[5] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
New York, NY, USA: Cambridge University Press, 2010.

[6] P. Zave, “Using lightweight modeling to understand Chord,” in ACM
SIGCOMM Computer Communication Review, vol. 2, no. 42, 4 2012,
pp. 50–57.

[7] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How Amazon web services uses formal methods,”
Communications of the ACM, vol. 58, no. 4, 2015.

[8] N. Macedo, J. Brunel, D. Chemouil, A. Cunha, and D. Kuperberg,
“Lightweight specification and analysis of dynamic systems with rich
configurations,” in Foundations of Software Engineering (FSE). ACM,
2016, pp. 373–383.

[9] S. Farheen, N. A. Day, A. Vakili, and A. Abbassi, “Transitive-closure-
based model checking in Alloy,” Journal of Software and Systems
Modelling, vol. 19, p. 721–740, 2020.

[10] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” ser. Advances in Computers. Elsevier, 2003, vol. 58,
no. Supplement C, pp. 117 – 148.

[11] Y. Yu, P. Manolios, and L. Lamport, “Model checking TLA+ spec-
ifications,” in Correct Hardware Design and Verification Methods
(CHARME), ser. Lecture Notes In Computer Science, no. 1703.
Springer, 1999, pp. 54–66.

[12] M. Leuschel and M. Butler, “ProB: A Model Checker for B,” in
FME 2003: Formal Methods, ser. Lecture Notes In Computer Science.
Springer, 2003, vol. 2805, pp. 855–874.

[13] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren et al., NuSMV
2.6 User Manual, 2010 (accessed May 11, 2020). [Online]. Available:
http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf

[14] M. Bozzano, R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio
et al., nuXmv 2.0.0 User Manual, 2019 (accessed May 11,
2020). [Online]. Available: https://es.fbk.eu/tools/nuxmv/downloads/
nuxmv-user-manual.pdf

[15] D. Jackson and A. Fekete, “Lightweight analysis of object interactions,”
in Theoretical Aspects of Computer Software. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 492–513.

[16] A. Sullivan, K. Wang, and S. Khurshid, “Evaluating State Modeling
Techniques in Alloy,” SQAMIA 2017 - Proc. 6th Work. Softw. Qual.
Anal. Monit. Improv. Appl., pp. 11–13, 2017.

[17] “River crossing problem in Alloy,” Accessed 11 May 2020.
[Online]. Available: https://github.com/AlloyTools/org.alloytools.alloy/
blob/master/org.alloytools.alloy.extra/extra/models/examples/tutorial/
farmer.als

[18] “The dot language,” Accessed 11 May 2020. [Online]. Available:
https://www.graphviz.org/doc/info/lang.html

[19] “Graphviz - graph visualization software,” Accessed 11 May 2020.
[Online]. Available: http://graphviz.org

[20] N. A. Day, “University of Waterloo SE212 Assignment 7,” 2018.
[21] L. Lamport, J. Matthews, M. Tuttle, and Y. Yu, “Specifying and veri-

fying systems with TLA+,” Proc. 10th Work. ACM SIGOPS European
Workshop – EW10, p. 45, 2002.

[22] TLA+ Toolbox User’s Guide, Accessed May 16 2020. [Online].
Available: https://tla.msr-inria.inria.fr/tlatoolbox/doc/contents.html

[23] The ProB Animator and Model Checker, 2020 (Accessed May 11
2020). [Online]. Available: https://www3.hhu.de/stups/prob/index.php/
Main Page

[24] D. Rayside, F. S. Chang, G. Dennis, R. Seater, and D. Jackson,
“Automatic visualization of relational logic models,” Electronic Com-
munications of the EASST, vol. 7, 2007.

[25] T. Dyer, “Sterling,” Accessed May 22 2020. [Online]. Available:
https://sterling-js.github.io

30

Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 17:13:10 UTC from IEEE Xplore. Restrictions apply.

