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Static Profiling of Alloy Models
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Abstract—Modeling of software-intensive systems using formal declarative modeling languages offers a means of managing software
complexity through the use of abstraction and early identification of correctness issues by formal analysis. Alloy is one such language
used for modeling systems early in the development process. Little work has been done to study the styles and techniques commonly
used in Alloy models. We present the first static analysis study of Alloy models. We investigate research questions that examine a large
corpus of 1,652 Alloy models. To evaluate these research questions, we create a methodology that leverages the power of ANTLR
pattern matching and the query language XPath. Our research questions are split into two categories depending on their purpose. The
Model Characteristics category aims to identify what language constructs are used commonly. Modeling Practices questions are
considerably more complex and identify how modelers are using Alloy’s constructs. We also evaluate our research questions on a
subset of models from our corpus written by expert modelers. We compare the results of the expert corpus to the results obtained from
the general corpus to gain insight into how expert modelers use the Alloy language. We draw conclusions from the findings of our
research questions and present actionable items for educators, language and environment designers, and tool developers. Actionable
items for educators are intended to highlight underutilized language constructs and features, and help student modelers avoid
discouraged practices. Actionable items aimed at language designers present ways to improve the Alloy language by adding constructs
or removing unused ones based on trends identified in our corpus of models. The actionable items aimed at environment designers
address features to facilitate model creation. Actionable items for tool developers provide suggestions for back-end optimizations.

Index Terms—Declarative modeling, Alloy, Static analysis

1 INTRODUCTION

Software modeling is becoming an important part of the
software development process in order to manage com-
plexity and reduce development effort. Formal declarative
modeling languages, such as Alloy [1], TLA+ [2], B [3],
Event-B [4], Z [5], VDM [6], and Abstract State Machines [7]],
are suitable for capturing structural and behavioral descrip-
tions formally and abstractly in terms of sets, relations,
and logical formulas. Automated search and proof-based
techniques provide feedback regarding the correctness of
the model early in the development process. Examples of the
use of declarative modeling are: Zave’s work using Alloy
to discover problems in the Chord protocol [8]; Newcombe
et al’s work with TLA+ at Amazon [9]; and Huynh et
al.’s work with B on describing a healthcare access control
model [10].

The distinguishing feature of declarative modeling is
that the system is described using constraints on abstract
data usually expressed in first-order logic (FOL) and/or
set theory. The models are not necessarily executable, but
because they are formal, solvers can bring the models to life
by finding instances and proving properties of the model.
The sizes (scopes) of the sets are not fixed in the model but
rather chosen for analysis. Many declarative languages have
impressive texts and literature to learn the language (e.g.,
[20, 130, 141, 5], (6], [11]], [12]) and there are conferences dedi-
cated to the paradigm (e.g., the ABZ conference series [13]).
There are also compilations of case studies or comparisons
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of modeling practices using these and related languages
(e.g., [14], [15], [16], [17]) and university courses that teach
some of these languages (e.g., [18], [19], [20], [21]]). Ball and
Zorn [22] advocate for the importance of teaching software
engineering students to model at this level of description.
But little has been done to study empirically the state-of-
the-practice in modeling using these languages.

Our work aims to understand how people write Alloy
models. In this article, we provide the first deep analysis of a
general corpus of Alloy models (1,652 models) and a smaller
expert corpus (75 models). We present a variety of research
questions to investigate these models. We determined these
research questions from 1) existing literature on measures in
programming and modeling (e.g., [23], [24], [25]); 2) Alloy
teaching material and discussions (e.g., Jackson’s Alloy
book [11]], Alloy Discourse [26]], Stack Overflow [27]), and 3)
interactions with others in our research group investigating
Alloy modeling and tools (e.g., [28], [29], [30]).

We divide our research questions into two categories:
1) model characteristics; and 2) modeling practices. Model
characteristics cover “surface-level” research questions that
aim to identify what language constructs are used frequently.
This includes the use of model features that may impact
analysis complexity and solving time. Modeling practices
research questions attempt to identify how the language
constructs are used and consequently are significantly more
involved than the questions in the model characteristics
section. For each research question, we provide motivation,
our approach to answering the question, a series of findings
(stated in italics) that produce actionable items (prefixed
with Action item) aimed at educators, language and en-
vironment designers, and tool developers.

Researching the characteristics and practices of models
written in Alloy has a significant impact on pedagogy. As

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httf://www.ieeeor /publicationsﬁstandards/ﬁublications/rights_/indexhtml for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on April O

,2022 at 16:37:26 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3162985, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

declarative modeling becomes more popular and useful, it
is important to examine how modelers use these languages
in order to help educators promote good practices, acknowl-
edge bad modeling practices and create teaching materials.
Our work also benefits language designers who can use our
results to add new features to the Alloy language. Designers
of model development environments can also can use our
findings to create new software applications to facilitate
model creation. We refer to designers of model development
environments as “environment designers” throughout this
article. We also offer suggestions for tool developers who
can incorporate back-end analysis optimizations that would
be valuable because of common model features.

2 BACKGROUND: ALLOY

Alloy is a modeling language that can express the funda-
mental structure and behavior of a system as constraints on
sets and relations [1f], [11]], [31]. The Alloy language com-
bines relational calculus and first-order logic with transitive
closure and set cardinality operators and limited support
for arithmetic. It contains a relatively small number of
constructs making it an easy language to learn and analyze.
The Alloy language is composed of the following constructs:

1) Signature declarations: introduce a new set of
atoms. We use the term signature to refer to the
unary set introduced by a signature declaration.
Signatures may be declared with a multiplicity such
as one, some and lone (i.e., at most one) to specify
the size of a signature. Signature declarations may
contain fields. Fields are written in the body of
signature declarations and are relations showing
how signatures are connected to each other. Signa-
ture declarations may include a block known as a
signature fact block containing formulas associated
with the declared set.

2) Formulas: denote constraints on sets and fields ex-
pressed in Alloy’s logic, thus limiting the possible
values of the sets and fields of the model. Formulas
can be grouped within a fact block (including signa-
ture fact blocks), an assertion block, a predicate, or
a function.

3) Predicates: are a group of formulas that can be
referred to elsewhere in the model. Predicates may
be parametrized, i.e., they can include zero or more
arguments.

4) Functions: are named expressions that return a
value. Functions may be parametrized. Functions
can be called in formulas.

5) Assertions: are a set of constraints that should fol-
low from the facts of the model and can be checked
in a command. Unlike predicates and functions,
assertions do not take parameters.

6) Commands (also called queries or command
queries): denote questions that a user asks about the
model. run commands check whether there is an
instance of the model that satisfies all the formulas.
check commands search for a counterexample to
a formula. run commands can be used with predi-
cates and functions whereas check commands can
be used with predicates, functions and assertions.
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Commands can be supplemented with scopes that
limit the size of the signature sets in instances or
counterexamples that will be considered.

An Alloy model may be partitioned into multiple files.
The subfiles of a model are usually called modules and can
be imported into a model using an open statement. The
Alloy Analyzer [32] is used to edit and analyze Alloy models
via its Kodkod engine [33]] and SAT solvers. The Analyzer
checks the queries of the model for finite sizes of the sets.
We will explain the constructs of the Alloy language in more
detail with examples as needed in the sections that follow.

3 CORPUS OF MODELS

Our goal is to survey a diverse set of Alloy models to answer
our research questions. To build our corpus of Alloy models,
we use Catalyst, a tool developed by our research group [34]
for scraping Alloy models from github repositories. The tool
uses standard techniques to gather all publicly available
Alloy models it can find, including the ones available with
the Alloy Analyzer, ones scraped from public github repos-
itories and other sources (e.g., the 56 models provided in
Jackson’s book on Alloy [11]]). We ensure there are no files
that are exact duplicates of each other in this corpus, which
includes removing replicas of the models in Jackson’s book
on Alloy that could have been created by student modelers
attempting to learn the language. We also remove an
library files that are part of the Alloy language/ Analyzerﬁ
We exclude files that do not parse correctly with the Alloy
Analyzer version 5, which ensures that all models conform
to the Alloy well-formedness constraints.

Next, we filter this corpus to ensure diversity of models
because multiple versions of the same model may appear in
a repository. For repositories that contain iterative versions
of the same model, we choose the “highest” version of mod-
els to represent the most advanced model when possible. We
follow the import statements (excluding those for library
imports) to determine the user-created Alloy model from a
set of files. In total, our corpus contains 1,652 Alloy models
(containing 1,845 files), which includes models drawn from
504 different github repositories. Within these, there are 31
models created by our research group prior to this work. We
refer to this corpus of models as the “general corpus”.

We identify a subset in our corpus consisting of Alloy
models written by expert modelers. These hand-selected
models were either used in industry or in peer-reviewed
publications to model real-world complex systems. The sub-
set of expert models consists of 75 Alloy models (containing
92 files) drawn from 10 different github repositories. We use
the term “expert corpus” to refer to the subset of expert
models. A comprehensive list of these expert models and
their sources can be found in [35].

In our corpus, we assume that the models are in a
mostly complete state. We do not know how many distinct
modelers are the authors of these models. We also do not
know the purpose of these models. Our corpus may con-
tain automatically generated models which means that one
person’s modeling style and preferences could be affecting
many models.

1. Alloy library (or util) files have a distinct syntax.
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4 METHODOLOGY

To answer our research questions, we statically analyze
textual Alloy models. Each Alloy model is composed of
one or more files. For each research question, we create
a query, search for instances of the query in the models,
and then collate the results across the models. For multi-file
Alloy models, the result of a count query is the summation
of the counts obtained from each file in the model. If a
parametrized file is imported more than once (for different
parameter values) it is included in our tallies multiple times.

To search for instances of a pattern in an Alloy model, we
use the query language XPath (and its libraries) in addition
to ANTLR'’s built-in parse tree matching to create queries
and extract information from the Alloy models. Originally,
XPath was a query language for XML documents. Support
for XPath was added to the parser-generator ANTLR [36]
with its version 4. Thus, first we created and tested an
ANTLR grammar for Alloy. Our ANTLR parser accepts
models that are written in the input languages for the
Alloy Analyzer versions 3 - SEI The differences between
these versions are very small. We examine the parse tree
of the model (rather than the abstract syntax tree) because
it contains all the information from the model including
the whole string associated with each non-terminal and
terminal, and it allows for seamless extraction of subtrees
and nodes.

An XPath hierarchy path is a sequence of expressions
describing a hierarchy in the parse tree. Each expression
is a non-terminal or terminal node in the grammar or
a combination of expressions and separators. XPath can
extract subtrees from the model’s parse tree. Subtrees can
consist of any number of nodes. A subtree containing only
one node corresponds to a terminal rule in the grammar. A
subtree with two or more nodes always has a root node
that corresponds to a non-terminal rule in the grammar.
An XPath hierarchy path is sufficient when the research
question requires extracting one kind of subtree from the
parse tree.

When a research question requires extracting a subset
of a node kind or a subtree that conforms to a particular
pattern that cannot be expressed in an XPath hierarchy path,
we additionally use ANTLR’s built-in parse tree matching.
A parse tree pattern is a string that describes what we
want to match in the model. It can contain terminals, non-
terminals and strings from the grammar. Strings from the
grammar correspond to the literal value of certain terminal
rules.

After instances of the pattern have been extracted, some
queries require a post-processing step to refine the data,
such as handling multiple elements within one string and
any calculations per model. Sometimes, the parse tree must
be traversed multiple times to determine correctly the an-
swer to the query (e.g., integer variables have to be identified
before we can determine how they are used). For some
research questions, the count of a particular construct in
a model is scaled according to the number of calls made
to predicates and functions containing instances of this
construct. We discuss scaling construct counts in more depth

2. There are no syntactic changes in the language between versions 4
and 5 [37].
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as needed in the research questions. By leveraging the
flexibility of XPath and the profuseness of parse tree data,
we create a versatile methodology for identifying various
patterns in Alloy models.

The data resulting from multiple Alloy models is com-
bined using an R script [38]. For each research question, we
find some or all of the following data summary criteria to
be of interest:

e Predominant Use (PU): The mode per model identi-
fies the most recurrent value in the collected values
and thus identifies the most frequent form/use of
each pattern.

o Typical Use (TU): The median per model provides
the middle value in the sorted list of data points.
We opted for the median as a measure of central
tendency as opposed to the mean because our gen-
erated data is often heavily skewed and contains
several outliers. The typical use criterion provides
an aggregated value that summarizes the data set
without running the risk of being skewed by outliers.

e Distribution (D): The percentage distribution as
measured across all models or occurrences is used
when the goal of the research question is to identify
the partition of a data set into a number of categories.

o Percentile Distribution: A percentile is a value be-
low which a percentage of values in the data set fall.
We provide a percentile distribution that includes the
12.5%, 25t 50t 75t and 87.5™ percentiles.

o Common Range (CR): We define the common range
as the range that encompasses 75% of values in the
data set, i.e., the values that fall between the 12.5%
percentile and the 87.5% percentile.

In our results, values with an asterisk (*) indicate a non-
zero criterion, i.e., zeros were eliminated from the data
before computing the value. We report the results of each
research for the general corpus and for the expert corpus
separately. The expert results shown in the tables are
enclosed in parentheses. In the following sections, we only
discuss the results of the expert corpus in detail if they
differ significantly from the ones obtained from the general
corpus. The scripts used to perform our profiling of Alloy
models are available on github [35].

5 MoODEL CHARACTERISTICS

In this section, we explore the “surface-level” characteristics
of Alloy models. We present the data summary criteria for a
number of Alloy language constructs and features and draw
a series of findings and action items from the results.

RQ# 1: What are the characteristics of an Alloy model?
Motivation: The Alloy language contains a relatively small
number of constructs. Certain constructs are used more
frequently than others. By learning about the basic charac-
teristics of Alloy models and the constructs most commonly
used, educators can focus their attention on teaching more
commonly-used constructs. Language and environment de-
signers can determine where to concentrate their efforts on
improving the language and its model creation software
support. Tool developers can use these results to determine
which constructs to target when creating optimizations.
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TABLE 1
Model Characteristics
(An asterisk * indicates a non-zero criterion)

[ Measure | Predominant Use | Typical Use | Percentage Distribution [ Common Range |
Model Length 52 (73) 63 (76) - [17,204] ([26,253])
Model Span 1 (1) 1 (1) - [1,2] ([1,2])
Signature Count 2 (3) 8 7 - [2,25] ([3,28])
Top-level Signatures 3 (3) 4 (3) 22.6% (32.5%) 2,9] ([2,6])
Subset Signatures T (1 0 (0) 1.5% ( 0.3%) $ =100% 0,0] (]o,0])
Subsignature Extensions 2 (45 3 (3) 73.9%  (60.5%) [0,15] ([0, 16])
Signatures with Multiplicity one 1 (19 1 (1 26.4%  (41.5%) (i [0,10] ([0, 10])
enums ¥ (&) 0 (0 1.9% ( 6.7%) [ ' 58S [0,0] ([0, 0])
abstract Signatures > (1% 1 (1 10.3% (14.8%) of sigs 0,4] ([0, 6])
Fields I (D 2 (2 - 1,4] ([1,3])
Signatures with Fields - - 17.8% (29.1%) | _ 100% -
Signatures without Fields - - 82.2% (70.9%) [ — ° -

[ Formulas [ 5% (10) [ 20 (349 ] - [ 13,93 ([6,227]) |

. " " 47.6% ( 9.5%) of sigs

Signature Facts 1 (1% 0 (0) 41.0% (15.3%) of facts [0,3] ([0, 3])
Facts 1 (1) 2 (3) - [0,13] ([0, 11])
Predicate Declarations 1 (1) 4 ( 5) T7.4% (63.1%) | _ 100% [0,13] ([1,21])
Function Declarations T (1% 0 (@) 22.6% (36.9%) ([ — ° [0,4] (][0, 4])
Predicate Calls (as commands) 1 (1% 1 (0) 8.4% ( 4.3%) | _ 100% [0,3] ([0, 3])
Predicate Calls (within formulas) 44 (1) 3 (0) 91.6% (95.7%) ( — 0 [0,20] (]0,52])
Function Calls (as commands) 1 (19 0 (0 0.1% ( 0.1%)\ _ 100% [0,0] ([0, 0])
Function Calls (within formulas) 2F (19 0 [@ED) 99.9%  (99.9%) ( — 0 [0,9] ([0,9])
Assertion Declarations > (1% 2% (2% - -

Assertion Uses 1* (1% 2% (2% - -

run Commands 1 (1 1 (1 47.6% (63.6%) | _ 100% [0,4] ([0, 5])
check Commands ™ (1 0 (0 52.4% (36.4%) ( — 0 10, 4] (]0,2])
Set Cardinality Operator (#) 2 (1) 6% (49 - [2,27] ([1,20])
Transitive Closure Operators (* and ) 1 (2% 6* (99 - [0,9] ([0, 25])

1 1 * * 0, 0,

Partial Fum.:tlons 1* ( 1*) 0 (0) 12.30/0 (16.00/0) of all fields [0,2] ([0, 2])
Total Functions 1 (3% 2 (2 53.6% (34.0%) [0,10] (]0,5])

Approach & Findings: The results of this research questions
are shown in Table[lland we describe them below.

MODEL LENGTH: The simplest characteristic of any
model is its length. We count lines in each Alloy model
(not including blank lines and comments) and report the
predominant and typical use criteria, which represent the
most frequent model length and the central tendency of the
model length respectively. For multi-file models, we count
the number of lines across all user-created files that make
up each multi-file model. We find that the predominant
value (i.e., mode) for model length in the general corpus
is 52 lines, whereas the typical value (i.e., median) is 63.
The expert predominant and typical use values are slightly
higher coming in at 73 and 76 lines respectively. Similarly,
the common range for expert model length is also higher
than its general corpus counterpart. We conclude that expert
modelers tend to write longer Alloy models. Overall, Alloy models
are fairly short especially when compared to programs.

MODEL SPAN: We also compute the span of Alloy mod-
els by counting the number of user-created files that make
up each model. We report the predominant and typical
use criteria, which represent the most frequent number of
files in a model and the central tendency of the model
span respectively. We find that the predominant and typical

values for model span are both one. Hence, Alloy models are
typically made up of one file only.

SIGNATURES AND FIELDS: We present a number of
data summary criteria related to signatures in Alloy models
including the signature count per model and the distribu-
tion among top-level, subset and extension signatures. Our
results indicate that a typical Alloy model contains eight
signatures, although the predominant use value is two. The
signature count in Alloy models exhibits a great deal of variation
as shown by common range (]2, 25]). Examining expert mod-
els yields similar results, which shows that expert models
conform to this trend of variation in signature counts.

Top-level signatures create mutually disjoint sets that
are not subsets of another set. Subset signatures are de-
clared as subsets of another signature using the keyword
in. Subset signatures are not necessarily mutually disjoint
unless they are explicitly constrained to be in a formula.
Subsignature extensions create mutually disjoint subsets
of a set and are declared using the keyword extends.
Signature extensions can also be introduced using enum .

We find that top-level signatures account for 22.6% of all
signatures in the general corpus. Subsignature extensions
are the most prominent kind of signatures coming in at
73.9%. Subset signatures are quite sparse in Alloy models
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(1.5% of all signatures). The typical Alloy model contains
four top-level signatures and three subsignature extensions
but no subset signatures. The disparity between the typical
use values and percentage distribution for top-level and
subsignature extensions is due to the skewness of the pro-
duced data set of signature counts. The percentage distri-
bution of signatures by level in the expert corpus shows
a relatively similar trend. Top-level signatures account for
32.5% of all signatures in the expert corpus, whereas subset
signatures and subsignature extensions constitute 0.3% and
60.5% of all signatures respectively. Therefore, subsignature
extensions (partitions of the universe) are used abundantly and
subset signatures are not often used. We conclude that the most
common use of set hierarchy is to partition the universe.
Action item: Tool developers may want to create optimiza-
tions centered around the common use of set hierarchy to
partition the universe.

Alloy has no construct for scalars. Instead, modelers
declare signatures that have multiplicity one (a set of size
one) or alternatively, they use the enum construct, which
is syntactic sugar for declaring each listed element as a
subsignature extension with multiplicity one. While the
keyword one can be used to instantiate any kind of sig-
nature with multiplicity one (i.e., top-level, subset or sub-
signature extension), enums can only be used create ordered
subsignature extensions with multiplicity one. Sets of size
one are used to represent scalars to simplify the language
so that only operators over sets are needed. But this can be
confusing to novice modelers because most other languages
provide scalars. We count signatures declared with the key-
word one and enums. The typical Alloy model contains one
signature declared with multiplicity one. Signatures with
multiplicity one account for 26.4% of all signatures declared
across all the models in the general corpus. Signatures with
multiplicity one account for a significantly higher share
of all signatures in the expert corpus coming in at 41.5%.
The significant use of scalars in Alloy models is evident. Action
item: Tool developers should ensure that they utilize any
optimizations for sets that are scalars (such as converting
them to scalars in an SMT solver).

We find that enums account for 1.9% of all signatures
in the general corpus. The typical use criterion for enums
is zero, which means that the typical Alloy model does
not contain an enum declaration. We find that enums ac-
count for 6.7% of all signatures in the expert corpus, which
shows that expert modelers tend to use enums significantly more
often. Nevertheless, scalars declared using signatures with
multiplicity one far outnumber the ones declared using
enums in both corpora. enums are an underutilized construct
in Alloy. Action item: Educators are encouraged to highlight
the use of enums to concisely instantiate multiple ordered
subsignature extensions with multiplicity one.

An abstract signature has no elements except those
belonging to its extensions or subsets. We find that
abstract signatures are fairly uncommon in Alloy model. The
typical Alloy model contains only one abstract signature.
We also find that abstract signatures account for 10.3%
of the total number of signatures across all models in the
general corpus. The use of abstract signatures in the
expert corpus does not differ significantly from their use
in the general corpus.

5

We find that in a typical Alloy model, signatures with
field declarations typically have two fields. We also find that
that signatures commonly have between one and four fields
which shows that modelers are not aggregating fields under one
signature but spreading them over multiple signatures. The vast
majority of signatures in the general corpus do not have
fields (82.2%) while only 17.8% of signatures have fields as-
sociated with them. Expert models tend to have significantly
more signatures with fields (29.1% of all signatures). We
also examine the use of fields among the different signature
kinds. We find that 57.8% of top-level signature have fields
(compared to 56.4% in the expert corpus). We find that 27.7%
of subset signatures have fields in the general corpus, but
none of the subset signatures in the expert corpus have
fields. Only 7.2% of signatures with multiplicity one (com-
pared to 4.1% in the expert corpus) have fields (whether
they are top-level of not). Similarly, we find that only 5.9%
of subsignature extensions have fields in the general corpus.
This percentage increases significantly for the expert corpus
where 16.6% of subsignature extensions have fields. Given
that there are relatively few subset signatures, it is clear
that most fields are declared with top-level (non-multiplicity-one)
signatures.

FORMULAS: Next, we quantify formula use in Alloy
models by counting top-level formulas, i.e., formulas that
are not part of any other larger formula. Our results indicate
that a typical Alloy model contains 20 top-level formulas.
Akin to the signature count, formula use in Alloy differs sig-
nificantly from one model to another as shown by the common
range [3,93]. Our results indicate that expert models have
considerably higher formula counts with the predominant
and typical use values coming in at 10 and 34 respectively.
The common range for the formula count in the expert corpus
([6,227]) shows the same variation observed in the general corpus
albeit with considerably higher lower and upper bounds.

FACTS: We assess the use of fact blocks and (non-
empty) signature fact blocks. Jackson [11]] states that the
use of signature facts should be limited since the implicit
quantification can lead to unexpected consequences. We find
that in the general corpus, 47.6% of signatures have a fact
block associated with them and 41.0% of all fact blocks are
signature fact blocks. The common range of [0, 3] indicates
that in 75% of models the number of signatures with fact
blocks is between zero and three. Signature facts are used
extensively in Alloy models in the general corpus. Only 9.5% of
signatures in the expert corpus have a fact block associated
with them and signature facts in these models account
for 15.3% of fact blocks only. These results are in sharp
contrast to the ones obtained when examining the general
corpus and show that expert modelers tend to avoid using
signature fact blocks. We hypothesize that expert modelers
are more familiar with the implicit quantification associated
with signature facts and thus use them sparsely to avoid
erroneous results. Action items: Educators are encouraged
to ensure that student modelers are using signature facts
correctly to avoid erroneous results. Alternatively, educators
may want to discourage the use of signature facts.

FORMULA CONTAINERS: We present a number of data
summary criteria pertaining to the use of formula containers
in Alloy models including predicate, function and assertion
declarations and calls. When a function is used with a run
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command, Alloy finds an instance that makes the formula
within the command true [39]. In this case, the instance con-
sists of a collection of arguments for the function, the values
of signatures and fields, and the function result. The dis-
tribution of predicate and function calls across commands
and formulas is particularly interesting because it gives
us an insight into how modelers are using these formula
containers. Predicates and functions used with command
queries are utilized for model verification whereas the ones
called in formulas are used for model description.

We find that 86.3% of all models in our general corpus
contain predicate declarations compared to 35.4% of models
that contain function declarations. The predominant and
typical use values show a greater use of predicates than
functions among Alloy modelers in the general corpus.
We find that modelers declare and call predicates significantly
more often than functions. A typical Alloy model contains
four predicate declarations and four predicate calls but
no function declarations or calls. This trend of predicate
prevalence is also reflected in the percentage distribution
where 77.4% of these parametrized declarations are pred-
icates while the remaining 22.6% are functions. Similarly,
predicate calls account for 75.0% of the total parametrized
expression calls, with function calls accounting for the
remaining 25.0%. We find that predicate use in formulas
(91.6%) greatly outnumbers predicate use in commands
(8.4%). Functions are almost exclusively used in formulas.
Predicate prevalence is still observed in the expert corpus
albeit to a considerably lesser extent. 89.3% of expert models
have predicate declarations whereas 60% of expert models
contain function declarations which is a significant increase
over the general corpus. Thus, expert modelers are more likely
to create and use functions in their models. We find that 63.1%
of parametrized declarations in expert models are predicates
while the remaining 36.9% are functions. Similarly, predicate
calls account for 57.0% of the total parametrized expres-
sion calls, with function calls accounting for the remaining
43.0%. We conclude that predicates and functions are used more
frequently for model description as opposed to model verification
given that the majority of predicate and function calls occur in
formulas and not in commands in both corpora. We also find
that using functions with a run command is an underutilized
functionality of the Alloy language. Action item: Educators are
encouraged to highlight this functionality and explain to
student modelers how it can be used to obtain a collection
of values for the arguments of a function, the values of
signatures and fields, and the function result.

We find that 40.7% of Alloy models in the general
corpus contain assertion declarations compared to 37.3%
in the expert one. We present the non-zero predominant
and typical use values given that the all-inclusive values
were all zero. Alloy models that make use of the assertion
construct typically contain two assertion declarations and
two assertion uses. Assertions are remnants of an older
version of Alloy and can be essentially thought of as un-
parametrized predicates [40]. We conclude that assertions are
used in Alloy models even though they are a remnant of an older
version of the language. Action item: Language designers may
wish to discuss whether the keyword assert is useful to
distinguish a particular kind of predicate or whether it has
become a redundant construct and should be removed.

6

COMMANDS: We investigate the number of command
queries (run and check) in a model. Depending on how the
model is arranged into facts and predicates, and the purpose
of the model (verification vs. synthesis) one or the other type
of query may be more useful. The typical use criterion per
model for check commands in the general corpus is zero
whereas its run counterpart is one. A typical Alloy model
contains one run command but no check commands.
The percentage distribution is near-equal between run and
check with 47.6% of queries being run commands while
the remaining 52.4% of queries are check commands in
the general corpus. Therefore, run and check commands are
equally valuable to modelers. The expert corpus results deviate
significantly from the general corpus results and show a clear
preference for run commands over check commands among
expert modelers given that 63.6% of commands in the expert
corpus are run commands wheres the remaining 36.4% are
check commands.

ADVANCED OPERATORS: We explore the use of set car-
dinality and transitive closure in Alloy models. The use of
these advanced operators involves extensive expansion of
formulas and thus can affect analysis complexity and solv-
ing time. The set cardinality operator (#) allows modelers
to specify the size of a set consisting of a signature, field
or set expression. We extract from the model all uses of
the set cardinality operator. We scale the number of set
cardinality operators in a predicate or function according
to the number of calls corresponding to that predicate or
function. We find that 44.2% of all models in our general
corpus (and 42.6% of models in the expert corpus) have at
least one use of the set cardinality operator. Alloy models
that uses set cardinality in the general corpus contain six
uses of this operator. We find that expert models have a
slightly lower use frequency for the set cardinality operator.
Owerall, the set cardinality operator count can vary significantly
among models that make use of it since the non-zero common
range in the general corpus is [2,27]| and [1,20] in the expert
corpus. Action item: Tool developers are encouraged to
create solvers and optimizations that address the abundant
use of the set cardinality operator in Alloy.

We repeat this process for the transitive closure oper-
ators in Alloy (~ and ). We find that 35.8% of models in
the general corpus (and 33.3% of expert models) contain
at least one transitive closure operator. Models that make
use of transitive closure operators in the general corpus
typically contain six uses of these operators (scaled by
function and predicate calls). Expert models that make use
of transitive closure have a slightly higher use frequency for
these advanced operators. Thus, transitive closure operators are
used abundantly in models that require them. Action item: We
encourage tool developers to explore developing optimiza-
tions centered around the transitive closure operators.

PARTIAL AND TOTAL FUNCTIONS: We explore the use
of total and partial functions in Alloy models. A function
(compared to a relation) can be handled differently by
different solvers. For example, KodKod [33]] represents total
functions as relations with additional constraints, whereas
Portus [30] (an SMT-based finite model finder for Alloy)
represents total functions as total functions for SMT solving.
Partial functions in Alloy are declared as fields under signa-
tures (e.g., £: el —> lone e2 and f£: lone e). The set
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multiplicity keyword lone indicates that the each element
in the domain is mapped to zero or one element in the range,
which makes the field a partial function. Note el can be
a larger set expression that includes multiple sets. A total
function is a field that maps every element in the domain to
some element in the range (e.g., £: e, £: one eand f:
el -> one e2). The set multiplicity keyword one is used
to indicate that every element in the domain is mapped to
exactly one element in the range.

We find that partial functions account for 12.3% of all
fields whereas total functions account for 53.6% of all fields.
However, user-introduced total functions over subsets are
really partial functions. Hence, optimizations that target
total functions may be limited to user-introduced total func-
tions over top-level signatures. We find that 58.60% of all
user-introduced total functions (i.e., 31.1% of all fields) are
over top-level signatures. Total functions are clearly prevalent
in Alloy models. Partial functions are not as abundant as total
functions but still account for a considerable portion of all fields.
It is likely that these percentages would be higher if we
included functions in library modules. Action item: It is
worthwhile for tool developers to work on improving the
analysis methods with a focus on total functions.

RQ# 2: Is model length correlated with the number of
sets or the number of formulas?

Motivation: We have previously established that Alloy mod-
els tend be relatively short. Nevertheless, there is quite a
lot of variation in the length of Alloy models as shown by
the common range. In this research question, we attempt
to identify if model length is affected by the number of
sets or the number of formulas. Our findings can help
language and tool designers get a better understanding of
the structure of longer models.

Approach: For each model in the general corpus, we compute
and record the length (excluding blank lines and comments),
the set count and the top-level formula count. The set count
includes all signatures and fields declared in the model. The
number of top-level formulas in the body of predicates and
functions is scaled according to the number of calls made
to the formula holder (predicate, efc. ). We filter out models
that have a set or top-level formula count of zero to ensure
that the logarithmic transformation can be applied. This
procedure limits our general corpus size to 1,561 models out
of 1,652 models. We perform linear regression to produce
the best fit line for Model Length vs. Number of Sets and
Model Length vs. Number of Formulas. We also produce
all four residual plots (Residuals vs. Fitted, Normal Q-Q,
Scale-Location and Residuals vs. Leverage) for each linear
regression model (which can be found in Eid [41]]). We
repeat this process for the expert corpus.

Findings: Fig. (1| shows best fit line for the Model Length vs.
the Number of Sets in the models of the general corpus.
The r value of 0.77 suggests a high positive correlation
between the set count and the model length. However, with
a conservative goodness of fit (R? = 0.59), this correlation
only explains 59% of the variation in the data. The residual
plots conform to the established characteristics of a good
linear regression model fit which indicates that the fit cannot
be significantly improved beyond R? = 0.59. Since the
coefficient of determination R? is relatively conservative,

R* =059
r=077
2+ =205
£=08225
p=156303

log(Sets)

Fig. 1. Model Length vs. Number of Sets in log scale

log(Formulas)

Fig. 2. Model Length vs. Number of Formulas in log scale

we conclude that the high correlation between set count
and model length is not applicable to a large portion (41%)
of the subset of models used in this research question. The
best fit line obtained from the expert corpus shows an even
lower correlation between model length and the number of
sets (r = 0.67) and is coupled with lower goodness of fit
R? = 0.45. Therefore, set count is not a good predictor for model
length.

We attempted to correlate model length with the number
of top-level signatures in the model, but the produced
linear regression models indicated a negligible correlation
between these two characteristics.

Fig.[2| shows the best fit line for the Model Length vs. the
Number of formulas in the general corpus models. We find
that » = 0.91 which indicates a strong positive correlation
between formula count and model length that is applicable
to 82% of data points (R? = 0.82). All the residual plots
indicate that the fit cannot be significantly improved. The
best fit line for the expert corpus produces similar results
(r = 0.88 and R? = 0.77). Hence, formula count is a good
predictor for model length (and better than set count). Longer
Alloy models will probably have more formulas but not necessarily
more sets.

6 MODELING PRACTICES

This section investigates research questions that have to do
with how modelers use the language’s constructs and how
they express descriptions in Alloy. These research questions
are far more intricate and require multiple complex queries
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and several traversals through the parse tree. These “deeper-
level” questions often require considerable post-processing
and utilize several external data structures.

RQ# 3: How commonplace is the use of modules in Alloy?
Motivation: We explore the use of open statements to in-
clude user-created modules and library modules to get a
better understanding of the file structure of Alloy models.
The Alloy Analyzer provides modelers with eleven library
(util) modules for common operations. It is possible to
describe the needed sets/fields/formulas from the library
modules directly in a custom manner in one’s model. How-
ever, reusable components are generally considered a good
practice. Does the Alloy community buy into reusability?

Approach: We count the uses of open commands in a model
and classify modules as user-created (i.e., they do not con-
tain the string util) and standard library modules (i.e.,
they contain the string util). If a library is parametrized,
each instance of the use of a library is countecﬂ The use
of integers in Alloy (Int set or numeric constants) does
not require opening the integer library unless arithmetic
operators are used. Using the arithmetic functions of the in-
teger module is the main reason modelers import the integer
module. Therefore, we separate the use of integers into uses
by importing the library and uses without importing the
library. We present the distribution over open (if applicable)
and over models. A multi-file model imports a ut i1 module
if at least one file in the model imports that module.

TABLE 2
Usage of User-Created and Library Modules

Library module Distribution over Distribution over
open Statements Models
user-created 31.4% (34.8%) 15.1% (17.3%)
ordering 41.2% (45.2%) 31.0% (52.0%)
integer 14.2% ( 0.0%) 14.6% ( 0.0%)
integer w/o import - 52.1% (38.7%)
boolean 8.1% ( 4.5%) 7.6% ( 9.3%)
relation 2.8% ( 7.1%) 2.7% (10.7%)
ternary 0.7% ( 0.0%) 0.7% ( 0.0%)
graph 0.7% ( 3.9%) 0.6% ( 6.7%)
naturals 0.5% ( 4.5%) 0.5% ( 9.3%)
seq 0.2% ( 0.00/0) 0.2% ( 0.00/0)
time 0.2% ( 0.0%) 0.2% ( 0.0%)
seqrel 0.0% ( 0.0%) 0.0% ( 0.0%)
sequence 0.0% ( 0.0%) 0.0% ( 0.0%)

Findings: Table 2] shows the distribution of user-created and
library modules over open statements and over models.
User-created modules account for 31.4% of all open state-
ments in the general corpus. We also find that 15.1% of
all models in the general corpus contain open statements
that import user-created modules i.e., 15.1% of models in the
general corpus are multi-file models. The ordering module,
which constrains a set to be a linear order, is the most
frequently opened library by a large margin being used
in 41.2% of open statements and 31.0% of models in the
general corpus. The integer and boolean modules come
in second and third place respectively. We found no uses
of the seqrel and sequence modules. Integers are used

3. Implicit imports of the ordering module via the use of enum
declarations are also counted.
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abundantly in ways that do not involve importing the
integer module. In total, 66.7% of all models use integers
but only 14.2% of models import the integer library module
explicitly. We find that 17.3% of expert models include an
open statement that imports a user-created module i.e.,
17.3% of expert models are multi-file models. The ordering
module accounts for 45.2% of open statements in expert
models and is used in 52.0% of models in the expert corpus.
We did not find any expert model that explicitly imports
integers even though 38.7% of expert models use integers.
The expert results show a greater use frequency for most library
modules. However, expert modelers are less likely to import the
integer module and use integers in their models. Overall, we
find that open statements for user-created modules are relatively
prevalent in Alloy models and that some library modules such as
the ordering module and integers are used extensively whereas
others are rarely used. Action items:

o Environment designers should consider adding
multi-file model management features to their IDEs.

o Educators can better highlight the value of underuti-
lized library modules.

e Optimizations (such as symmetry breaking con-
straints) exist for the ordering module, however,
given its prevalent use, tool developers are encour-
aged to continue to investigate optimizations for the
ordering module and for integers in Alloy.

RQ# 4: How are integers used in Alloy models?
Motivation: Integer use is often discouraged in Alloy. Ac-
cording to Jackson [11], most problems with integer values
do not require integers to be modeled and would benefit
from more abstract descriptions and constraints. Integers in
Alloy fall into two categories: integer constants and integers
used in fields. Integer constants are often used to express
constraints (e.g., set cardinality constraints, division of sets
into subgroups based on number of elements, etc.). Alloy
provides rudimentary support for arithmetic operations
through the integer module. Modelers also turn to integers
as a way of modeling a linear order. The use of integers in
Alloy generally takes more time in analysis because they
are represented as bit vectors with bit vector operations.
We examine the use of integers in Alloy to help educators
determine how much to emphasize alternative modeling
techniques that can replace integers.

Approach: We tally the number of different integer constants
and the number of times the integer set (Int) is used as
an argument in a field declaration within each model to
determine the typical use and predominant use per model.
For the distribution, we partition the sums of these values
over all models into the field arguments that are declared
as integers and the number of different integer constants.
For example, the constant ‘1" is counted once for each file
that it is used within. We then examine the uses of each
constant and each field (within one file) to determine if it
is used exclusively with relational operators (meaning no
arithmetic operations and no set cardinality). If it is, then
the constant/field could be replaced in that model with an
element from an ordered set rather than using the set of
integers. This substitution is not possible for integer fields/-
constants used with arithmetic operators. We also determine
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if the constant/field is used only with relational operators
and set cardinality. We revisit what can be done with the
integer fields/constants that are used with set cardinality
(and not arithmetic) in the next research question.

TABLE 3
Integers in a Model (Non-Zero Values)
(PU = Predominant Use, TU = Typical Use)

[ Use [ PU [ TU | Percentage Distribution |
Fields 1 (1) 2 (1) 29.8% (10.3%)
w/ only
</<=/=</= 1 (1) 1 () 54.9 (60)
/>/>=/=>
w/ set car-
dinality 1.0) 1) 14 (0) = 100%
w arith
ops 1(1) 1 (1) 221 (10)
other 21.6 (30)
Constants 1 (1) 2 (2) 70.2% (89.7%)
w/ only
</<=/=</= 1 (1) 2 (2) 26.6 (22.2)
/> />=/=>
w/ set car-
dinality 1 (1) 2 (1) 50.7 (58.0) — 100%
w/ arith
ops or other 1) 2 (1) 22.7 (19.8)
uses

Findings: Table [3| shows the data summary criteria for in-
tegers in Alloy models. We find that constants account for
the overwhelming majority of integers (70.2%) in the general
corpus, whereas integers in field declarations constitute only
29.8% of integers across all models. This percentage distri-
bution differs significantly in the expert corpus with fields
accounting for 10.3% of integer use only with the remaining
89.7% of integers being constants. We find that 54.9% of all
integers used as arguments in fields in the general corpus do
not need to be integers (meaning they are used exclusively
with relational operators) and could be a set with a linear
ordering. This optimization is not possible for 23.5% of all
integer fields since they are used with the set cardinality
operator or with arithmetic operators. The remaining 21.6%
of integer fields were not used with relational or arithmetic
operators in the model post declaration. We did not find
any instances where expert modelers were using integer
fields with the set cardinality operator. The next research
question examines the use of set cardinality in more detail.
With respect to the use of the constant integers in the
general corpus, 26.6% are use exclusively with relational
operators, 50.7% are used with the relational operators
and set cardinality, and the remaining 22.7% account for
integer constants used in macros, with arithmetic operators
or passed as arguments. The ones used exclusively with
relational operators can be replaced with constants of a
set with a linear ordering. The percentage distribution of
integer constants use in the expert corpus is similar to the
one produced by examining the general corpus. We conclude
that Alloy modelers are using integers in many places where they
could be using the ordering module. Action items: This finding
means that there are opportunities to improve Alloy models
to make their analysis more efficient, for example:

o Language designers could add a built-in set and
identifiers that model numeric constants that are a
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linear order (e.g., One, Two, etc. ) to provide the in-
tuition of using integers as a linear ordering without
actually using integers for analysis.

o Educators can promote the use of the ordering mod-
ule.

o Environment designers can modify the Alloy Ana-
lyzer to allow it to warn users about integer con-
stants/fields that are only used as a linear order.

e Tool developers can create optimizations to convert
many integer uses to an application of the ordering
module before analysis.

RQ# 5: Is the set cardinality operator used with integer
constants to specify the size of sets in Alloy?

Motivation: The set cardinality operator (#) in Alloy allows
modelers to specify the size of a sete.g., #A = 2 constrains
the size of the signature A to be two. The set cardinality
operator can also be applied to fields and expressions that
denote sets. Uses of the set cardinality operator that serve
to specify the size of a signature can be replaced by either
command query scopes or multiplicity keywords in the
signature declarations. Setting set sizes using the cardinality
operator often results in slower solving times [42]. Jackson
also discourages the use of the set cardinality operator with
integers to designate the size of a signature set [11]].

Approach: We extract from the model all expressions where
the set cardinality operator is used with a relational binary
operator and an integer constant. We split these expressions
into two categories: 1) expressions that can be turned into
scope limitations and 2) expressions that can be turned into
formulas.

Expressions that can be turned into scopes consist of the
set cardinality operator applied to a signature set with the
equality operator (=) or the less than or equal operators
(=<or<=)(ie, # <sig> = <num>, # <sig> =< <num> or
# <sig> <= <num>) and compared with a constant num-
ber.

The set cardinality operator
nature set with the operators </>/>= or the set
cardinality operator applied a set expression with
any relational operator (ie, # <sig> </>/>= <num>
or # <set expression> </>/>=/ =/<=/=> <num>) and
compared with a constant number can be turned into formu-
las. For instance, if A_member is a predicate used to denote
set membership in set A, then the expression # A = 2 can
be replaced by an internal optimization with the following
formula:
some x: A | some y: A | set_member[x] and

set_member[y] and x != y and all z: A |
set_member[z] implies z =
as shown in [30].

Next, we classify these applications accordingly and
extract the integer constants to produce a percentile distri-
bution and a common range for these numeric values. We
present the percentage of set cardinality uses pertaining to
each category.

applied to a sig-

X Or z =Yy

Findings: The results of this research question are presented
in Tables [4] and 5} We find that 72.1% of all set cardinality
operators in the general corpus are either used with numeric
operators or with a combination of numeric and relational
operators and thus cannot be converted to scope limitations

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httf://www.ieeeor /publicationsﬁstandards/ﬁublications/rights_/indexhtml for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on April O

,2022 at 16:37:26 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3162985, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 4
Uses of Set Cardinality

[ Expression [ Percentage Distribution |
Set Cardinality without Relational Operators 72.1%  (95.8%)
Set Cardinality with Relational Operators o o,
(broken down below) 27.9% - ( 4.2%)
# <sig> =/=</<= <num> 12.9% ( 2.9%)
# <sig> </>/>= <num> 3.8% ( 0.3%)
# <set expr> </>/>=/=/<=/=> <num> 11.2% ( 1.0%)

TABLE 5
Percentile Distribution of Integer Constants in Set Cardinality Uses

[ Construct [ 125 25 50 75t 875t ]
Integers - General 1 1 2 2 4
Integers - Expert 1 1 3 3 5

Common Range - General : [1, 4]
Common Range - Expert :[1,5]

or formulas. Set cardinality uses that specify the size of a set
using constant integers account for 27.9% of all set cardinal-
ity uses. Almost half of these expressions can be turned into
command queries with scopes (12.9% of all set cardinality
applications). Expressions that can be turned into formulas
account for 15% of all set cardinality applications in the
general corpus. Table [5| shows the percentile distribution
of the integer constant values in set cardinality uses. We
find that 75% of all integer constants fall in the range [1, 4]
which shows that the integer values used with the set
cardinality operator are quite low and converting them to
formulas is reasonable. Our results show that the use of set
cardinality to specify the size of a set instead of using multiplicity
keywords, command queries, or formulas is considerable, but not
abundant. The use of set cardinality in the expert corpus
differs significantly compared to the entire corpus. We find
that expert modelers are significantly less likely to specify the size
of a set using the set cardinality operator. The vast majority
of set cardinality operators in the expert corpus are used
with numeric operators or with a combination of numeric
and relational operator with only 4.2% of set cardinality
operators being used to specify the size of a set. Thus,
only 3.2% of set cardinality applications in expert models
are expressions that can be turned into formulas. Action
items: Environment designers can include a warning that
discourages the use of set cardinality to set the size of
sets. Educators can highlight the proper use of multiplicity
keywords and setting scopes in command queries. Tool
developers can create optimizations to internally transform
these uses of set cardinality into signature declarations
with a multiplicity keyword, into command queries, or into
formulas.

RQ# 6: How often do modelers use the different styles of
writing formulas?

Motivation: We consider the three styles for writing for-
mulas described at the beginning of Jackson’s book on
Alloy [11]. In the predicate calculus style (shown on line
of Fig. [3), quantifiers over variables are used along with
Boolean operators (but no set operators). The same formula
can be written in the relational calculus style (shown on
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line [2) where expressions denote relations, and multiplicity
operators on relations are used to accomplish quantifica-
tion. The third style is called the navigation expression
style (shown on line [3) where expressions denote sets and
quantification can be used. Predicate calculus is commonly
used in comprehension expressions to create a set or relation
from a constraint. It is also used for subtle constraints since
it often matches the formulation of the constraint in natural
language. The relational calculus style has the advantage of
conciseness. The three styles do not have equivalent expres-
sive power. The navigational style is the most expressive
amongst them because the predicate and relational calculus
styles lack transitive closure and quantifiers respectively. By
answering this question, we help educators determine how
much to emphasize the distinction between the different
styles in teaching. Some formulas written in Alloy may
not fit into any of the three modeling styles. By answering
this question, we help educators determine how much to
emphasize the distinction between the different styles in
teaching.

1 all al,a2:A| al->a2 in f2 implies al != a2 //
predicate calculus
2 no iden & f2 // relational calculus

3 no a: A | a = a.f2 //navigation expression

Fig. 3. Three Formula Modeling Styles

TABLE 6
Model Classification by Formula Style

[ Model Classification [ Distribution |
Pure Relational Calculus 18.6%  (24.0%)
Dominant Relational Calculus 52.9% (68.0%)
Pure Navigation Expression 6.1% ( 0.0%)
Dominant Navigation Expression 21.7% ( 8.0%)
Pure Predicate Calculus 0.3% ( 0.0%)
Dominant Predicate Calculus 0.4% ( 0.0%)

Approach: We extract formulas contained within the body of
facts, predicates, functions, assertions and macros. Formulas
containing a quantified variable and field names without
any occurrences of set operators fall under the predicate
calculus style category. If a formula does not contain a
quantified variable but references a relation name with or
without set operators, then it is classified as a relational
calculus formula. If an expression contains a quantified
variable and set operators, then it falls under the navigation
expression style. Predicate and function calls in a formula
are ignored for this classification. We count the number
of formulas belonging to each formula style in a model
(including multiple files where applicable). After processing
all the formulas in a modeﬂ we classify the model as one of
the following six categories: pure predicate calculus, pure
relational calculus, pure navigation expression, dominant
predicate calculus, dominant relational calculus, or domi-
nant navigation expression. If all the formulas in a model
fall under one modeling style, then the model will have a
pure label corresponding to that formula style. Otherwise,

4. In this case, we do not scale for use in predicates/functions.
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the model gets labeled with the dominant writing style, i.e.,
the style matching the largest number of formulas in that
model.

Findings: Table @ shows that in the general corpus, the re-
lational calculus formula style is the most-used style across
the pure and dominant categories whereas predicate calcu-
lus is the least common style. We conclude that Alloy mod-
elers prefer relational calculus and tend to avoid predicate
calculus. Navigation expression is a popular formula style
with modelers likely when the constraint is too complex to
be expressed with relational calculus. Relational calculus is
by far the most prominent formula style in the expert corpus
given that 68.0% of expert models fall in the dominant
relational calculus category and 24.0% of expert models
pertain to the pure relational calculus category. The remain-
ing 8.0% of expert models fall in the dominant navigation
expression category. We did not find any expert models that
belong in the predicate calculus categories. We conclude that
expert modelers have a clear preference for relational calculus. The
ubiquity of the relational calculus style highlights the usual
goal of overall simplicity in Alloy modeling because the vast
majority of formulas are expressed with the most concise style.
Action item: Educators should consider the frequency of
use of the different formula modeling styles when deciding
which modeling style to teach first or emphasize.

RQ# 7: How deep/wide are the set hierarchy graphs in
Alloy models?

Motivation: Subsignature extensions allow modelers to in-
troduce subsets of the parent signature declared using the
keyword extends. The parent-children relationships be-
tween subsignature extensions create a set hierarchy that
can be modeled as a graph where each parent signature
is denoted as a node with one or more child nodes that
represent its subsignature extensions. Subset signatures, us-
ing the keyword in, allow modelers to introduce inclusive
subsets, i.e., an element belonging to the parent signature
may or may not also belong to the subset signature. The
superset of a subset signature can be a union of signatures.
In this case, elements in the subset signature may belong to
either one of the parent signatures in the union. By building
and exploring the characteristics of extension and subset
hierarchy graphs (depth and width), we can get a better
understanding of how modelers create sets and extend
them.

Approach: We build the extension hierarchy graph itera-
tively over multiple steps. If a model consists of multiple
files, we include all signature declarations across all files
that make up a single model when building the hierarchy
graphs. We build the hierarchy graph by adding nodes
corresponding to each parent signature and its extensions
(including those declared using enum) and creating edges
between them. We also add to the graph any remaining top-
level signatures that correspond to signatures that are not
extended after being declared. Once the hierarchy graph is
built, we compute its depth and width. The depth of an
extension hierarchy graph is the number of edges on the
longest downward path between a top-level parent node
and a leaf node. The width of an extension hierarchy graph
is the number of extension leaf nodes (i.e., excluding leaf
nodes that correspond to top-level signatures).
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The subset hierarchy graph is an augmentation of the
extension hierarchy graph obtained by adding subset nodes
to the existing graph. Alloy does not allow the creation of
subsignature extensions that extend a subset. Hence, we do
not need to account for any additional extension nodes.
Once the subset hierarchy graph is built, we compute its
depth defined as the longest downward path between a
superset and a subset leaf node. We do not compute the
width of the subset hierarchy graph because subsets can
overlap.

TABLE 7
Depth and Width of Extension Hierarchy Graphs
(An asterisk * indicates a non-zero criterion)

[ Measure | Predominant Use (Mode) [ Typical Use (Median) |

Depth 1 (1) 1 (1)
Width 2% (4%) 3 (4)
TABLE 8
Percentile Distribution of Extension Hierarchy Graph Depth and Width
[ Measure [ 125% 25" 50 75 g75M [ CR |

Depth - General 0 0 1 1 2 0,2
Depth - Expert 0 0 1 2 2 0,2
Width - General 0 0 3 8 15 0,15
Width - Expert 0 0 4 8 21 0,21

Findings: Tables [7] and [§| show the predominant and typical
use values and percentile distribution of the extension graph
depth and width respectively in both corpora. We find that
the predominant and typical value for the depth of the
extension hierarchy graph are one in both corpora. Hence, in
a typical Alloy model, signatures are not extended beyond
a single level. The common range of extension hierarchy
graph depth is [0, 2] which means that 75% of depth values
are either zero, one or two and more specifically 62.5% of
depth values are zero or one. Ouverall, extension hierarchy
graphs in Alloy models are very shallow. The non-zero pre-
dominant use value for the width of the extension hierarchy
graphs is two whereas the typical use value is three. The
percentile distribution of the width exhibits a significant
amount of variability with the common range being [0, 15].
We conclude that 75% of all width values fall between zero
and fifteen. The expert common range for width is relatively
similar to the general one albeit with a higher upper bound
of twenty-one. The extension hierarchy graphs in the expert
corpus are comparable in depth to the ones generated from the
general corpus but they are slightly wider.

Tables [9] and [I0] show the predominant and typical use
values and percentile distribution of the subset hierarchy
graph depth respectively. We present the non-zero crite-
ria and percentile distribution given that the all-inclusive
values were zeros due to the scarcity of subset signatures
in Alloy models. The non-zero predominant and typical
values for the depth of subset hierarchy graphs are both
one in the general and expert corpora, which indicates that
typical Alloy models rarely use subset signature hierarchies
that span over more than one level. The non-zero common
range for the depth of subset hierarchy graphs is [1, 1] which
indicates that 75% of all non-zero depth values are one. Thus,
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TABLE 9
Depth of Subset Hierarchy Graphs
(An asterisk * indicates a non-zero criterion)

[ Measure | Predominant Use (Mode) | Typical Use (Median) |

[ Depth | ™ (1 [ ™ (1 ]
TABLE 10
Percentile Distribution of Non-Zero Subset Hierarchy Graph Depth
[ Measure [ 125 25 50 75 g75M T CR ]
Depth - General 1 1 1 1 1 1,1
Depth - Expert 1 1 1 1 1 1,1

creating subsets of a subset are rare occurrences in Alloy models.
Action items:

e Tool developers do not need to ensure that their
optimizations scale favorably for deep extension hi-
erarchies.

e Optimizations for the language do not necessarily
need to account for subsets of subsets.

o Optimizations for encoding sets for solving may be
able to take advantage of the fact that the set hierar-
chies in Alloy models are mostly shallow.

RQ# 8: How connected are the sets in Alloy models?
Motivation: Signatures in Alloy can be connected through
signature declarations, fields, relations and formulas. The
object-oriented community coined the term cohesion to
measure the degree of connectedness between the compo-
nents of a program [43] using metrics such as the Lack
of Cohesion of Methods (LCOM) metric [25]. Inspired by
the LCOM metric, we develop the Signature Connectedness
Graph (SCG), a construct that measures the degree of con-
nectedness of signatures in an Alloy model. The SCG metric
allows us to measure the cohesion of an Alloy model. We
define the cohesion of an Alloy model as the degree of
connectedness between its components.

Approach: The Signature Connectedness Graph or SCG is
a measure of the number of strongly connected components
of a model’s signature graph. This graph shows how often a
signature references another signature. In a signature graph,
two signatures are connected if:

e A signature extends another one.

e A signature is a subset of another one.

o A signature’s field uses another signature

e The formulas within a signature make reference to
another signature or another signature’s fields.

We assess the number of strongly connected components in
the graph as the value of the SCG metric. An SCG of one
indicates that every signature is connected in some way to
all other signatures. An SCG of zero occurs when there are
no signatures in a model, which can be characterized as a
bad modeling practice. A SCG>1 indicates that there exists
a number of signature sub-graphs that are not connected.
If a model consists of multiple files, the SCG of that model
includes all signatures declared in all the files that make up
that model as well as any connections that exist between
them.
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1 sig A {
2 f1 : Bl
3}
4 sig Al, A2 extends A {}
5 sig B {}
6 one sig Bl in B {}
7 sig C {} {no iden & f1}

Fig. 4. Example of Alloy Signature Declarations

Subsignature
Extension

Subset

Signature
<>

Field
Connection

Al A2 B1
Formula

Connection

<>

Fig. 5. SCG for Fig. [d]with SCG = 1

Fig. ] shows a number of signature declarations. A (on
line [I) is a top-level signature with a field £1 on line ]2
that references the signature B1 declared as a subset of B
on line 6| The signature B is a top-level signature declared
on line |5l A1 and A2 are subsignature extensions of A
declared on line [d] The signature fact block associated with
C contains a reference to the field £1 of A. Fig. |5 contains the
SCG corresponding to the signature declarations in Fig. [
The graph contains six vertices: A, A1, A2, B, Bl and C.
The colored bidirectional arrows indicate the four types of
connections that can exist between two signatures. The edge
that connects A to A1 and A2 indicates that A1 and A2 are
subsignature extensions of A. A is also connected to B1 with
a field connection arrow since the f£1 field of A references
B1. Additionally, B1 is connected to B with subset signature
connection. Lastly, the formula connection arrow between A
and C exists due to the £1 (which is a field of 2) reference
in the facts block of C. When examining the SCG in Fig.
we immediately notice that there exists a path between any
two signature vertices in the graph, i.e., there is only one
strongly connected component that spans the entire graph.
Hence, the SCG metric value is one.

If we remove the formula no iden & f1 from the
signature fact body of C then the C node in the graph will no
longer be connected to A. The resulting graph would contain
two distinct strongly connected components: the first one
consists of a single vertex (C) and the second one consists of
the group of vertices A, A1, A2, B and B1. Consequently, the
SCG metric value of that graph would be two.

Findings: Tables [11] and [12] show the use criteria values and
percentile distribution of the SCG metric respectively. The
predominant and typical use values for the SCG metric
are both one. The percentile distribution shows that 62.5%
of SCG values are exactly one. The common range [1,2]
indicates that 75% of all SCG values are either one or two.
Examining the SCG metric results for expert models yields
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identical results. Our results indicate that Alloy models are
highly cohesive given that the overwhelming majority of models
in our corpus had an SCG metric value of one. We believe that
modelers may benefit from having access to the SCG to
understand their models. Action items: Environment de-
signers may want to consider creating a tool that generates
the SCG graph and metric for Alloy models and warn users
if their SCG is not equal to one.

TABLE 11
SCG Metric Value

[ Computation | Predominant Use (Mode) [ Typical Use (Median) |

[ SCG [ 1 (1) [ 1 1) |
TABLE 12
Percentile Distribution of SCG Metric Values
[ Computation | 12.5% 25 50™ 75% 87.5% |
SCG - General 1 1 1 1 2
SCG - Expert 1 1 1 1 2

Common Range - General : [1, 2]
Common Range - Expert :[1,2]

RQ# 9: How often are signatures used as structures?
Motivation: Alloy does not provide a syntax for structures
that are just containers (records). Instead, a separate set
can be introduced to act as a mapping to the elements
contained in the structure. An alternative way to mimic
structures in Alloy is to use relations of high arity (ie.,
large tuples), which would reduce the number of sets in
the model. However, relations of high arity generally cause
poor performance in analysis. Also, it is not possible to use
the transitive closure operator on relations of arity greater
than two. If signatures are often used as structures, then
Alloy language designers might consider providing support
(in syntax and analysis) for structures as is found in other
declarative modeling languages such as TLA+.

Approach: A set is being used as a structure if it is only used
as an index to the elements of the structure and never used
by itself. We identify sets that are only used to access fields
via a join operator in formulas. We start by extracting all sig-
nature names and then we identify whether each signature
name is only used with box or dot join expressions involving
one of its fields. We ignore the use of a signature by itself
as a parameter type in a predicate or function (because
these signatures are used within formulas). Expressions that
contain an application of the transitive closure operators
(e.g., A."f1l or A.x£1) are excluded from this count. For
multi-file models, we examine the use of each signature in
all files that make up a single model to determine if that
signature is being used as a structure. We report the total
number of signatures used as structures for each model.

Findings: We find that 10.3% of all signatures with fields in
the general corpus are used only as structures. We also find
that 28.1% of models in the general corpus contain at least
one signature that is used as a structure. In expert models,
6.9% of signatures with fields are used as structures and
18.6% of expert models contain at least one signature used
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as a structure. While not abundant, signatures used as structures
are still present in a considerable portion of Alloy models. Action
item: Language designers may want to consider adding
support for structures in the Alloy language.

RQ# 10: How are scopes chosen in Alloy models?
Motivation: For analysis, the Alloy Analyzer chooses a de-
fault scope for sets that have not been assigned a scope in a
query. If a modeler does not include a scope, it can indicate
either that the default scope is adequate for their analysis
or that they do not know how to choose a reasonable scope.
We also examine how often exact scopes are used (rather
than all scopes less than or equal to the set scope). An
exact scope limits the number of instances that need to
be checked. Hence, an exact scope is likely to reduce the
analysis time, but produces a less general result if the model
is unsatisfiable. But there are some sets that are inherently
of an exact scope (e.g., colors of a traffic light). We also
explore the use of the ordering module with a non-exact
scope. The ordering module forces the signature on which
it was instantiated to be exact [11]. The Alloy Analyzer
does not explicitly warn modelers against using a non-
exact scope with an ordered signature. The implicit exact
constraint can lead to unexpected and erroneous results.
An illustrative example of the problematic implications of
using ordered sets with non-exact scopes can be found on
Stack Overflow [44]. Lastly, we examine how integer scopes
are set in Alloy. Integer scope specifications determine the
maximum bit-width for integers. For instance, a command
containing the scope 6 Int assigns to the signature Int
the range of integers from -32 to + 31. The default integer
scope in Alloy is 4 so only integers in the range [—8,7]
are considered during the instance generation. Setting an
integer scope that is too low may result in an overflow that
causes valid counterexamples to be missed by the analyzer.
Setting a scope that is too high may negatively affect solving
time. We seek to determine what scope values modelers
assign to integers.

Approach: The answer to this research question is compli-
cated by the fact that the scope of a signature may be derived
from the scope of another signature. Scope derivation stems
from the set hierarchy. For instance, if a top-level signature
with a set scope has multiple child subsets with no scopes
associated with them, the scopes of the subsets are derived
to be equal to that of the parent signature. Similarly, if a
top-level signature has a set scope and all its signature
extensions (mutually disjoint) except for one have scopes
associated with them, then the missing scope of the subset
can be derived. On the other hand, if the top-level signature
does not have a set scope, but its child signature extensions
have scopes associated with them, then the parent signature
has a derived scope equal to the sum of the scopes of its
child signatures. We devise six distinct categories for the
scope of a signature:

e Set exact: The scope is explicitly set in the
run/check command using the keyword exactly.

e Set non-exact: The scope is set in the run/check
command without using the exact 1y keyword.

e Derived exact: The scope is not explicitly set, but
derived to be exact.
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o Derived non-exact: The scope is not explicitly set,
but derived to be non-exact.

e Model Exact: The scope is not explicitly set, but
required to be an exact value by the model (e.g., the
use of one in a signature declaration).

¢ Default non-exact: The scope is not explicitly set and
cannot be derived so it is assigned a default non-
exact scope.

The Alloy Analyzer sets the scopes for all sets using ex-
plicitly set scopes, derived scopes, and default values for
scopes. We extract and classify the scopes for all signatures
in individual run and check commands in all the models.

Next, we identify ordered signature sets that are used
with non-exact scopes. If a signature set is used in multiple
command queries and thus falls under multiple scope cat-
egories it is counted once for the total number of ordered
sets with a non-exact scope. However, we count duplicates
multiple times when computing the percentage distribution
across commands in all models. We also extract and tally up
all command queries containing an integer scope specifica-
tion.

TABLE 13
Scope Categories Across All Commands and All Models

[ Scope Category |  Distribution |
Default Non-Exact 55.2% ( 2.1%)
Set Non-Exact 15.8%  (51.7%)
Model Exact 11.6% (12.8%)
Set Exact 10.6% (10.8%)
Derived Non-Exact 4.9% (18.5%)
Derived Exact 1.9% ( 4.1%)

Findings: Table [13| shows that a little over half of all run
and check commands in the general corpus fall in the
default non-exact category. Set non-exact is the second most
populous category in the general corpus coming in at 15.8%.
The scarcity of exact scopes compared to non-exact scopes
is evident when examining the results. We hypothesize that
modelers may not be familiar with the exactly keyword
and consequently are not using it abundantly. Overall, most
Alloy modelers formulate queries without specifying scopes in
them. We also find that modelers prefer setting an upper bound
for sets as opposed to dictating an exact size. The distribution of
commands across the scope categories differs significantly
in expert models compared to the general corpus. We find
that 51.7% of commands in the expert corpus fall in the
set non-exact category. The derived non-exact category is
the second most populous category for commands in expert
models. Thus, expert models are more likely to specify set scopes
in run and check commands. Expert modelers are also signif-
icantly more likely to take advantage of Alloy’s scope derivation.
Action item: Educators should discuss when/how to set
scopes and explain when exact scopes are appropriate.

We find that modelers are frequently applying the order-
ing module to a set with a non-exact scope given that 52.4%
of all ordered sets in the general corpus have a non-exact
scope (compared to 55.5% in the expert corpus). Table
shows the distribution of ordered sets across the non-exact
scope categories. The vast majority of ordered sets with a
non-exact scope in the general corpus fall under the set
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TABLE 14
Scope Category Distribution Among Ordered Sets
[ Scope Category | Percentage Distribution |
Set Non-Exact 81.4%  (55.5%)
Default Non-Exact 17.9% ( 0.0%) 3 of the 52.4% (55.5%)
Derived Non-Exact 0.7% ( 0.0%)

non-exact scope category (81.4%) followed by the default
non-exact scope category (17.9%). Only 0.7% of ordered
sets with a non-exact scope fall under the derived non-
exact category. All the ordered sets with a non-exact scope
in the expert corpus fall under the default non-exact cate-
gory. Thus, modelers are explicitly setting non-exact scopes for
ordered sets. Given that commenting out command queries
is a fairly common practice among Alloy modelers, we
hypothesize that these results are an underestimate of the
actual frequency of occurrence of this practice. Action items:
Educators are encouraged to highlight this bad modeling
practice and explain its repercussions on the command
results. Environment designers may want to update the
Alloy Analyzer to allow it to generate a warning when the
ordering module is applied to a set with a non-exact scope.

We find that integer scope specifications account for 7.2%
of the total number of scoped sets in commands in the
general corpus. In expert models, integer scope specification
constitute only 2.9% of scoped sets in commands. A typical
Alloy model in the general corpus sets the scope of integers
to 5, whereas a typical expert model sets the integer scope
to 6. The most common integer scope value is 5 in the
general corpus and 6 the expert corpus. We find that the
common range for integer scopes in the general corpus is
[3,8], ie., 75% of integer scope values fall in that range.
Expert models tend to use even higher integer scopes given that
the expert common range for integer scopes is [5,8]. We
find that modelers often specify higher integer scopes than the
default scope. Given that the default scope for integers in
Alloy is 4, some modelers may be making their problems
too large by specifying integer scopes that are higher than
needed. Action items: Environment designers may want to
reconsider the default scope for integers in Alloy. Educators
should familiarize students with proper integer scope use
and help them find alternative ways of modeling problems
with numeric constants without using integers.

7 THREATS TO VALIDITY

Our results in evaluating a set of research questions on a
corpus of Alloy models allow us to make claims regarding
common characteristics and patterns in Alloy modeling. In
this section, we consider the threats to the validity of our
results.

External Validity: The results of this study were derived
by examining a corpus of scraped Alloy models in addition
to a number of models provided by Jackson’s book on
Alloy and previous studies. While the randomized nature
of the model selection process improves the generality and
applicability of the results, we cannot ignore the possibility
of obtaining different results when running our scripts on
another corpus of models. We acknowledge that the subset
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of expert models used in this study was selected by hand
and thus the conclusions drawn from examining expert
models may not be applicable to all expert modelers. We
note that we did not categorize models by size or date. By
aggregating the analyses over the whole corpus, the results
presented in this work may mask the fact the results might
be different for certain subgroups of the corpus (e.g., large
vs. small, old vs. new, complete vs. incomplete, etc. ). We
also acknowledge that some models in our corpus may be
automatically generated for testing analysis techniques and
thus the scopes used in some commands may be artificially
inflated to test if these analysis techniques scale to larger
scopes.

Internal Validity: A purely syntactic static analysis of
Alloy models is used to derive our results. We acknowl-
edge that incorrect expressions, commented-out text, and
unfinished models could skew our results. Our parser was
tested extensively to ensure that it can properly parse any
syntactically correct model written in Alloy versions 3-5.
The individual scripts used to answer the research questions
were thoroughly tested with a number of unit tests to ensure
that all variations of a particular query can be detected
and extracted successfully. For some research questions, we
present the non-zero data summary criteria since the all-
inclusive values are all zeros and do not provide any mean-
ingful insights. We acknowledge that the non-zero data
summary criteria may present an inflated use frequency for
some constructs. We also acknowledge that our results do
not include counting the constructs within a library module,
which may alter our results.

Construct Validity: Some research questions in this work
are inspired by concepts used to assess object-oriented
programs (e.g., set hierarchy graphs, signature connected-
ness graph (S5CG), etc.). Alloy is a modeling language and
differs significantly from programming languages, which
may affect the applicability and relevance of these research
questions. We also acknowledge that other research ques-
tions could be devised to assess different aspects of Alloy
models. The observations and inferences made in this study
could change significantly if additional measures or Alloy
constructs are considered for each research question.

8 RELATED WORK

Wang et al. [45] correlate Alloy model features with analysis
time. They examine a number of static features of Alloy
models at three different levels: an Alloy model, its Kodkod
model, and its propositional logic (SAT) model. The tally
of these features on 119 Alloy models plus analysis of
these models at varying scopes is used to train a machine
learning component to predicate the best SAT solver from
the characteristics of the problem. They found the features
extracted from the Kodkod model to be the most valuable
for predicting the solver with the lowest analysis time. In
comparison with our work, the 123 features Wang ef al.
extracted at the Alloy model level are based on counting the
number of occurrences of types of nodes (e.g., particular
operators) in the abstract syntax tree (AST), and include
properties of the entire AST such as how many nodes are
in the tree. Erata [46] profiled some syntactic characteristics
(e.g., arity, use of transitive closure, use of integers) of a
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set of 109 Alloy models for discussion on the Alloy mailing
list. Compared to these efforts, our work aims to understand
how people write Alloy models (rather than solver perfor-
mance). We look at a more general set of Alloy models (1,652
models) and draw conclusions from larger patterns within
the model’s syntax. We provide actionable items based on
our findings.

Zheng et al. [47] created a corpus of auto-generated Alloy
models used to evaluate the performance of Platinum, an ex-
tension of the Alloy Analyzer that supports efficient analysis
of evolving Alloy specifications. These models were created
by applying a series of mutation operators to existing Alloy
models in order to generate multiple modified versions of
these specifications used for performance analysis. Because
these auto-generated models do not represent a typical
Alloy model and disproportionally represent one modelling
style, we did not include them in our corpus.

Chowdhury and Zulkernine [25] use complexity, cohe-
sion and coupling metrics as a means to predicate software
vulnerability in programs. We have drawn inspiration from
Chowdhury and Zulkernine’s work when formulating some
of our research questions and metrics (e.g., SCG, Extension/-
Subset Hierarchy Graphs). Nevertheless, our work does not
aim to assess the quality of Alloy models or uncover safety
vulnerabilities in them. We have also drawn inspiration
from object-oriented programming and UML modeling met-
rics such as those described in Briand and Jiist [23] and
SDMetrics [24].

Lopes and Ossher [48] conducted a quantitative study on
a large corpus of 30,911 Java projects of different sizes using
linear regression and found that certain characteristics of
programs differ significantly with program size and scale
and these measures have significant implications on object-
oriented software metrics that do not currently account
for differences in program size and scale. Our work takes
inspiration from Lopes and Ossher’s study given that we
correlate certain Alloy model features using linear regres-
sion. However, our findings do not have any implications
on metrics given that no previous studies have devised such
metrics for Alloy models.

9 CONCLUSIONS

This work presents a methodology to profile a large corpus
of Alloy models and identify patterns in them using an
ANTLR parser, and a combination of XPath and parse tree
matching to extract patterns from the parse trees of models.
We devise a number of research questions that differ in
purpose and complexity. In the “Characteristics of Models”
section we assess the “surface-level” features of models.
The “Modeling Practices” questions use complex patterns
to investigate the use of the Alloy language constructs. We
also compare the results obtained by examining the general
corpus to the ones obtained by running our queries on
a subset of expert models. More research questions and
findings about our corpus of Alloy models can be found
in Eid [41].

Some of our most interesting findings from this study,
which result in actionable items, are:

o Although the results obtained from the general and
expert corpora are fairly similar for most research
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questions, expert models are far less likely to contain
bad modeling practices.

e Scalars are used extensively in Alloy models.

o Alloy modelers use functions abundantly, presenting
an opportunity for optimizations in analysis.

o The length of an Alloy model is correlated to the
number of formulas rather than the number of sets.

e The ordering module is commonly used, but many
places integers are being used by modelers to repre-
sent an ordered set.

e The vast majority of formulas are written in the
relational calculus style.

o Expert modelers have a clear preference for relational
calculus over the other formula writing styles.

o The set hierarchy typically used in Alloy is wide
and partitioned meaning that tool developers may
be able to create optimizations that address this
particular structure of set hierarchy.

o Half of all Alloy queries use the default scopes for
sets.

o Expert modelers tend to explicitly set scopes in com-
mands and take advantage of scope derivation.

We believe that our study presents a good assessment of
the current state of Alloy modeling. However, a disaggre-
gation of models by timestamps or date (i.e., old vs. new)
could help us determine if the use of language features and
modeling idioms have changed over time. Future work can
evaluate the models more qualitatively, perhaps looking for
common modeling idioms and patterns, which could lead
to tools that provide warnings (e.g., Lint [49] for Alloy) and
guidance for modelers.

Our work pioneers the direction of studying the use of
declarative modeling languages. Our long-term goal is to
better understand the best practices and value of declarative
modeling languages in software engineering.

ACKNOWLEDGMENTS

We thank Amin Bandali, Tamjid Hossain, Joseph Poremba,
and Khadija Tariq, for discussions regarding this study. This
research was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES

[1] D.Jackson, “Alloy: a lightweight object modelling notation,” ACM
Transactions on Software Engineering Methodology, vol. 11, no. 2, pp.
256-290, 2002.

[2] L. Lamport, Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[3] J. Abrial, The B-book - assigning programs to meanings. Cambridge
University Press, 1996.

[4] ——, Modeling in Event-B - System and Software Engineering. Cam-
bridge University Press, 2010.

[5] J. M. Spivey, Z Notation - a reference manual, 2nd ed. Prentice Hall,
1992.

[6] C. B. Jones, Systematic software development using VDM, 2nd ed.
Prentice Hall, 1991.

[7] E. Borger and R. F. Stark, Abstract State Machines. A Method for
High-Level System Design and Analysis. Springer, 2003.

[8] P. Zave, “Using Lightweight Modeling to Understand Chord,”
ACM SIGCOMM Computer Communication Review, vol. 42, no. 2,
pp. 49-57, 2012.

[9] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How Amazon Web Services Uses Formal Meth-
ods,” Communications of the ACM, vol. 58, no. 4, pp. 66-73, 2015.

16

[10] N. Huynh, M. Frappier, H. Pooda, A. Mammar, and R. Laleau,
“SGAC: A multi-layered access control model with conflict reso-
lution strategy,” Computer Journal, vol. 62, no. 12, pp. 1707-1733,
2019.

[11] D. Jackson, Software abstractions: logic, language, and analysis,
2nd ed. Cambridge, Mass: MIT Press, 2012.

[12] H. Wayne, Practical TLA+: Planning Driven Development.
2018.

[13] (2021) ABZ 2021 - 8th International Conference on Rigorous State
Based Methods. [Online]. Available: https://abz2021.uni-ulm.de

[14] E Boniol and V. Wiels, “The landing gear system case study,” in
International Conference on Abstract State Machines, Alloy, B, VDM,
and Z (ABZ), 2014, pp. 1-18.

[15] D. de Azevedo Oliveira and M. Frappier, “Verifying SGAC access
control policies: A comparison of ProB, Alloy and Z3,” in Rigorous
State-Based Methods. Springer, 2020, pp. 223-229.

[16] A. Sree-Kumar, E. Planas, and R. Claris6, “Analysis of feature
models using Alloy: A survey,” Electronic Proceedings in Theoretical
Computer Science, vol. 206, pp. 46-60, 03 2016.

[17] A. Sullivan, K. Wang, S. Khurshid, and D. Marinov, “Evaluating
state modeling techniques in Alloy,” in Proceedings of the Sixth
Workshop on Software Quality Analysis, Monitoring, Improvement, and
Applications, Belgrade, Serbia, September 11-13, 2017, 2017.

[18] T. Nelson. (2022) Logic for Systems. Brown University. [Online].
Available: https:/ /cscil710.github.io/2022/

[19] A. Cunha. (2021) Métodos Formais de Programacao. University
of Minho. [Online]. Available: https:/ /haslab.github.io/MFP/

[20] S.Nakajima, “Using Alloy in introductory courses of formal meth-
ods,” in Structured Object-Oriented Formal Language and Method.
Springer International Publishing, 2015, pp. 97-110.

[21] J. Noble, D. J. Pearce, and L. Groves, “Introducing Alloy in a
software modelling course,” in Formal Methods in Computer Science
Education Workshop, 2008.

[22] T. Ball and B. Zorn, “Teach foundational language principles,”
Communications of the ACM, vol. 58, no. 5, pp. 30-31, May 2015.

[23] L. C. Briand and J. Wiist, “Empirical studies of quality models
in object-oriented systems,” ser. Advances in Computers, M. V.
Zelkowitz, Ed. Elsevier, 2002, vol. 56, pp. 97-166.

[24] J. Wiist. (2021) SDMetrics. [Online]. Available: https://www.
sdmetrics.com/

[25] 1. Chowdhury and M. Zulkernine, “Using complexity, coupling,
and cohesion metrics as early indicators of vulnerabilities,” Journal
of systems architecture, vol. 57, no. 3, pp. 294-313, 2011.

[26] (2021) Welcome to Alloytools. [Online]. Available:
/ /alloytools.discourse.group

[27] (2021) Questions tagged [alloy]. [Online]. Available: https:
/ /stackoverflow.com/tags/alloy

[28] S. Farheen, N. A. Day, A. Vakili, and A. Abbassi, “Transitive-
closure-based model checking in Alloy,” Journal of Software and
Systems Modelling, vol. 19, pp. 721-740, 2020.

[29] Amin Bandali, “A comprehensive study of declarative modelling
languages,” MMath thesis, University of Waterloo, David R.
Cheriton School of Computer Science, 2020.

[30] Khadija Tariq, “Linking Alloy with SMT-based finite model find-
ing,” MMath thesis, University of Waterloo, David R. Cheriton
School of Computer Science, 2021.

[31] D. Jackson, “Alloy: A language and tool for exploring software
designs,” Communications of the ACM, vol. 62, no. 9, pp. 66-76,
Sep. 2019.

[32] (2021) org.alloytools.alloy. [Online]. Available: https://alloytools.
org

[33] E. Torlak and D. Jackson, “Kodkod: A relational model finder,”
in Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2007, pp. 632-647.

[34] R. Yan, A. Bandali, and N. Day. (2021) Catalyst. [Online].
Available: https:/ / github.com/WatForm/alloy-model-sets

[35] E.Eid. (2022) Static Profiling of Alloy Models. [Online]. Available:
https://github.com/WatForm /static-profiling-of-alloy-models

[36] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed.  Pragmatic
Bookshelf, 2013.

[37] (2018, Mar.) 5.0.0 change list. [Online]. Available: https://github.
com/AlloyTools/org.alloytools.alloy /wiki/5.0.0-Change-List

[38] (2021) The R Project for Statistical Computing. [Online]. Available:
https:/ /www.r-project.org

[39] (2021, Jun) What does it mean to “run” a function in Alloy? [On-
line]. Available: https:/ /stackoverflow.com/questions/68146285/
what-does-it-mean-to-run-a-function-in-alloy;

Apress,

https:

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httf://www.ieeeor /publicationsﬁstandards/ﬁublications/rights_/indexhtml for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on April O

,2022 at 16:37:26 UTC from IEEE Xplore. Restrictions apply.


https://abz2021.uni-ulm.de
https://csci1710.github.io/2022/
https://haslab.github.io/MFP/
https://www.sdmetrics.com/
https://www.sdmetrics.com/
https://alloytools.discourse.group
https://alloytools.discourse.group
https://stackoverflow.com/tags/alloy
https://stackoverflow.com/tags/alloy
https://alloytools.org
https://alloytools.org
https://github.com/WatForm/alloy-model-sets
https://github.com/WatForm/static-profiling-of-alloy-models
https://github.com/AlloyTools/org.alloytools.alloy/wiki/5.0.0-Change-List
https://github.com/AlloyTools/org.alloytools.alloy/wiki/5.0.0-Change-List
https://www.r-project.org
https://stackoverflow.com/questions/68146285/what-does-it-mean-to-run-a-function-in-alloy
https://stackoverflow.com/questions/68146285/what-does-it-mean-to-run-a-function-in-alloy

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3162985, IEEE
Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[40] (2021, Jun) What is the difference between assertions and
unparameterized predicates in Alloy? [Online]. Available:
https:/ /stackoverflow.com/questions /68076177 /what-is-the-
difference-between-assertions-and-unparameterized-predicates-
in-allo

[41] E. Eid, “Profiling Alloy models,” MMath thesis, University of
Waterloo, David R. Cheriton School of Computer Science, 2021.

[42] T. Hossain and N. A. Day, “Dash+: Extending Alloy with hier-
archical states and replicated processes for modelling transition
systems,” in International Workshop on Model-Driven Requirements
Engineering (MoDRE) @ IEEE International Requirements Engineering
Conference (RE). 1EEE, 2021.

[43] B. Henderson-Sellers, L. L. Constantine, and I. M. Graham, “Cou-
pling and cohesion (towards a valid metrics suite for object-
oriented analysis and design),” Object Oriented Systems, vol. 3, pp.
143-158, 1996.

[44] (2013, Jun.) The util/ordering module and ordered subsigna-
tures. [Online]. Available: https://stackoverflow.com/questions/
17308778 / the-util-ordering-module-and-ordered-subsignatures

[45] W. Wang, K. Wang, M. Zhang, and S. Khurshid, “Learning to
Optimize the Alloy Analyzer.” 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST), 2019, pp. 228-
239.

[46] F Erata. (2018) Alloy/kodkod benchmarks. [Online]. Available:
https:/ /tinyurl.com/alloy-benchmarks

[47]1 G. Zheng, H. Bagheri, G. Rothermel, and J. Wang, “Platinum:
Reusing constraint solutions in bounded analysis of relational
logic,” in International Conference on Fundamental Approaches to
Software Engineering (FASE). ~Springer, 2020, pp. 29-52.

[48] C. V. Lopes and ]. Ossher, “How scale affects structure in java
programs,” SIGPLAN notices, vol. 50, no. 10, pp. 675-694, 2015.

[49] S. C. Johnson, “Lint, a C Program Checker,” 1978.

Elias Eid received the MMath degree at the
University of Waterloo in 2021. He received a
BSc in Computer Science from Minnesota State
University Moorhead in 2019. His research in-
terests include declarative modeling languages,
static analysis and empirical studies.

Nancy A. Day is an Associate Professor in the

David R. Cheriton School of Computer Science

at the University of Waterloo in Canada. She
received her PhD and MSc degrees at the Uni-

J versity of British Columbia and her BSc at the
' University of Western Ontario. Her research in-
terests include modelling languages and model-

driven engineering, formal specification and au-
tomated analysis, and verification methods to

ensure the safety of software-intensive systems.

She is a member of the IEEE Computer Society.

-

i

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httf://www.ieeeor /publicationsﬁstandards/ﬁublications/rights_/indexhtml for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on April 01,2022 at 16:37:26 UTC from IEEE Xplore. Restrictions apply.


https://stackoverflow.com/questions/68076177/what-is-the-difference-between-assertions-and-unparameterized-predicates-in-allo
https://stackoverflow.com/questions/68076177/what-is-the-difference-between-assertions-and-unparameterized-predicates-in-allo
https://stackoverflow.com/questions/68076177/what-is-the-difference-between-assertions-and-unparameterized-predicates-in-allo
https://stackoverflow.com/questions/17308778/the-util-ordering-module-and-ordered-subsignatures
https://stackoverflow.com/questions/17308778/the-util-ordering-module-and-ordered-subsignatures
https://tinyurl.com/alloy-benchmarks

