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Abstract

The capability of deep learning (DL) techniques for dealing with non-linear, dynamic

and correlated data has paved the way for developing DL-based solutions for real-world

problems. Among them, anomaly detection has been received increasing attention due

to its wide applications from process safety to video surveillance. Anomaly detection is

the task to detect deviations and outliers from normal data, and can be divided into two

groups: supervised and unsupervised techniques. In unsupervised techniques, the training

data consists of normal data (with or without a small proportion of anomalies), while in

supervised techniques it is assumed that labelled data from normal samples and anomalies

is available. In this thesis, we propose two techniques for unsupervised and supervised

anomaly detection, respectively.

Self-adversarial autoencoding classifier (SAAC) is proposed for unsupervised anomaly

detection with an end-to-end training phase. SAAC employs an adversarial autoencoder

(AAE) as an anomaly generator without having access to real anomalous samples. An

autoencoding binary classifier (ABC) is trained to differentiate between the generated

anomalous samples by the AAE and the normal samples. AAE and ABC are trained in an

adversarial way, and three datasets, namely the Tennessee-Eastman process, Credit Card,

and CIFAR10, are utilized to demonstrate its superiority over other existing techniques in

terms of anomaly detection.

As a supervised technique, a two-step technique for fault detection and diagnosis (FDD)

is proposed. A source-aware autoencoder (SAAE) is proposed as an extension of autoen-

coders to incorporate faulty samples in their training stage. In SAAE, flexibility in tuning

recall and precision trade-off, ability to detect unseen faults and applicability in imbal-

anced data sets are achieved. Bidirectional long short-term memory (BiLSTM) with skip

connections is designed as the structure of the fault detection network in SAAE. Further,

a deep network with BiLSTM and residual neural network (ResNet) is proposed for the

subsequent fault diagnosis step to avoid randomness imposed by the order of the input

features. A framework for combining fault detection and fault diagnosis networks is also
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presented without the assumption of having a perfect fault detection network. A compre-

hensive comparison among relevant existing techniques in the literature and SAAE-ResNet

is also conducted on the Tennessee-Eastman process, which shows the superiority of the

proposed FDD method.
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Chapter 1

Introduction

1.1 Overview of Anomaly detection and Classification

An anomaly is considered as a deviation from a normal notion, and the task to differentiate

anomalies is referred to as anomaly detection. The effective design of anomaly detection

techniques has been received increasing importance by the research community, and these

techniques have wide applications in a variety of fields such as process monitoring, spam

detection, intrusion detection and video surveillance [1, 2, 3, 4, 5].

Anomaly detection and classification, also known as fault detection and diagnosis

(FDD) in chemical engineering, plays an essential role in industry to avoid frequent shut-

downs and maintenance, damages to the environment and equipment, and disastrous ac-

cidents. In FDD, fault detection aims to differentiate between normal and faulty samples,

while fault diagnosis is to locate the root causes of faulty samples to reduce economic

losses and improve process safety. An illustration of the effects and tasks involved in FDD

is presented in Figure 1.1. It is noted that precise labelling is important for efficient and

accurate FDD. On one hand, mistakenly labeling normal samples as faults could result
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in unnecessary operation disruptions, and lead to unnecessary extra labor costs. On the

other hand, regarding faulty samples as normal ones may also lead to severe consequences

such as exposing equipment to detrimental operating conditions. Therefore, the accurate

and robust design of FDD algorithms is highly demanded.

Figure 1.1: Steps and objectives in FDD.

Several series of techniques are developed for FDD purposes, namely knowledge-based

ones and data-driven ones. Knowledge-based approaches, which require in-depth under-

standing of the process, have been proposed in the literature [6, 7, 8]. However, their

applications are limited due to their strong dependence on domain-specific knowledge and

complexities of the system.

Nowadays, with the continual increase in the computation power of computers and the

amount of the acquired high-dimensional data, data-driven techniques serve as an alter-

native for knowledge-based techniques. Among them, multivariate statistical methods are

widely studied due to their effectiveness to process high-dimensional data. For instance,

principal component analysis (PCA) is an unsupervised method that converts highly cor-

related data into linearly uncorrelated features by successively maximizing the variance

[9, 10]. Several variants of PCA such as dynamic PCA, nonlinear PCA and batch PCA

were proposed in the literature to model different process characteristics [11, 12, 13, 14]. In-
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dependent component analysis (ICA), as another unsupervised method, extracts mutually

independent components with the utilization of higher-order statistics, and it is applica-

ble for non-Gaussian process monitoring [15, 16]. Dynamic ICA, robust ICA, and hybrid

ICA are also developed for process monitoring [16, 17, 18]. Different from PCA and ICA,

partial least squares (PLS) works as a supervised learning method, and it projects process

and quality spaces into a new subspace through maximizing their covariance [19, 20, 21].

Other machine learning-based algorithms are also widely applied for FDD, including Fisher

discriminant analysis, support vector machines, canonical variate analysis, and latent vari-

able regression [22, 23, 2, 11, 24, 1]. A comparison study of some data-driven methods is

conducted by Yin et al. [25].

In the past decades, neural network (NN) based soft sensors have been received in-

creasing attention due to their strong capability to process tremendous volume of high-

dimensional data. The history of employing NNs in chemical engineering processes for

FDD is back to the late 80s by Hoskins and Himmelblau [26] and Venkatasubramanian

and Chan [27]. Other NN-based models are also proposed for FDD, such as fuzzy NN,

hierarchical artificial NN (ANN) and recurrent NN (RNN) [28, 29, 30]. Eslamloueyan [31]

proposed a duty-oriented hierarchical ANN (DOHANN) method for fault diagnosis. In

DOHANN, a new subspace is formed for each fault pattern with fuzzy C-means clustering

algorithm, and then NNs are trained in each sub-space for fault diagnosis, where the NNs

are activated through a supervisory Network. Rad and Yazdanpanah [32] utilized an ICA

model for differentiating between faulty and normal samples and another ICA model to

detect unseen faults. Then expectation maximization clustering technique assigns samples

with known fault classes to clusters, whose labels are determined by their corresponding

local multi-layer perceptron. Jiang et al. [33] designed an active learning criterion together

with stacked denoising auto-encoder (AE) for fault diagnosis, and it is declared that the

method shows superior results with less labeled data. Wu and Zhao [34] proposed a fault

diagnosis method based on convolutional NNs (CNNs). Park et al. [35] proposed a com-

bination of AE as fault detection network and long short-term memory (LSTM) as fault

diagnosis network. Bidirectional RNNs and LSTM are studied in the work of Zhang et al.
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[36] and Chadha et al. [37]. Wang et al. [38] proposed an extended deep belief network to

fully exploit valuable information in data for FDD. Agarwal et al. [39] proposed a FDD

approach based on the fusion of supervised deep recurrent AE NN and pseudo-random

binary signal.

AE has demonstrated its advantages for fault detection, and various AE-based tech-

niques are developed. Malhotra et al. [40] employed LSTM-based AE for anomaly detection

for time series data. Yan et al. [41] applied denoising AE (DAE) and contractive AE (CAE)

for process monitoring, and concluded that both DAE and CAE obtain more sensitive and

robust monitoring performance over PCA. Variational recurrent AE is proposed by Cheng

et al. [42] for process monitoring to account for nonlinearity and dynamics in probability

space. Yu and Zhang [43] proposed manifold regularized SAE for fault detection to cap-

ture geometric information of the data. Yu et al. [44] proposed convolutional LSTM-AE

to extract more effective features and applied it for fault detection.

A common feature of these AE-based fault detection techniques is that labeled faulty

data cannot be exploited, and they are trained only with the data under normal operating

condition. Since only the pattern of normal samples is observed during the training phase,

AE-based fault detection techniques are prone to misclassify faulty samples. To address

this issue, Munawar et al. [45] applied a negative learning phase, but its training phase

is unstable. Yamanaka et al. [46] proposed an autoencoding binary classifiers (ABC),

which assumes that the conditional probability of label given input follows the Bernoulli

distribution. Ruff et al. [47] proposed a deep semi-supervised anomaly detection (Deep

SAD) that tries to diverge anomalies from a predetermined center, which is determined

without the information from auxiliary anomalous data set. Additionally, Deep SAD is not

suitable to be used together with bounded activation functions. Kim et al. [48] proposed

an anomaly detection technique based on generative adversarial network (GAN) and AE by

employing two discriminators for normal and anomaly samples. However, this technique is

not suitable for re-training existing AEs that have already been applied for fault detection.

In addition to AE-based unsupervised anomaly detection techniques, other techniques
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are also available, such as the deep one class techniques [49, 50, 51], and self-supervised

approaches [52, 53, 54, 55, 56]. Generative deep learning models, such as variational

AE (VAE) [57] and generative adversarial net (GAN) [58], are also adopted for anomaly

detection purpose. The generative power of VAE enabled An and Cho [59] to employ

reconstruction probability for anomaly detection. In AnoGAN developed by Schlegl et al.

[60], a GAN is trained to learn the distribution of normal data, and in the testing phase,

samples are mapped to the latent space and their fitness to the learned distribution specifies

their anomaly scores. Adversarially learned anomaly detection (ALAD) was proposed by

Zenati et al. [61] to adversarially learn features according to bi-directional GANs, which

shows lower inference cost compared to AnoGAN. Another fast mapping technique for

GAN-based anomaly detection was proposed in the work of Schlegl et al. [62]. GANomaly

was designed by Akcay et al. [63] that leverages an encoder-decoder-encoder architecture

for anomaly detection.

Along with employing generative models as feature extractor or re-constructor, an

alternative approach is to generate instances based on the notion of normal instances only.

Minimum likelihood GAN was designed by Wang et al. [64] to enhance the anomaly

generation ability in GAN’s generator. However, it is prone to instability, which is not

desirable for anomaly detection. Ngo et al. [65] proposed a Fence GAN (FenceGAN) to

generate samples at the boundaries of the normal data distribution by modifying GAN

loss, and its discriminator is employed as the anomaly detector. The dispersion loss in

FenceGAN, which is designed to stimulate generating samples far from its center of mass,

can be sub-optimal since generated samples may be grouped around more than one center.

Schulze et al. [66] proposed double-adversarial activation anomaly detection (DA3D) to

generate anomalous data using the decoder of a trained adversarial autoencoder (AAE)

by training an anomaly generator network. The anomaly generator in DA3D has to fool

two different networks in its training phase to produce effective anomalies, which may

not be straightforward in some cases and require an exhaustive hyper-parameter selection.

Furthermore, the performance of DA3D is influenced by the ability of the trained AAE in

producing realistic data samples.
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1.2 Research Outcomes

In order to adjust the aforementioned issues in existing techniques, in this work we first

propose a self-adversarial autoencoding classifier (SAAC) for anomaly detection with an

end-to-end training phase. SAAC takes advantage of generative models as anomaly gener-

ators before their convergence, and adversarially trains a network to differentiate between

the generated samples and real data. Specifically, the decoder of an AAE is used as the

anomaly generator network and the AAE is trained together with an autoencoding binary

classifier (ABC) in an adversarial manner. In the testing phase, the trained ABC can be

utilized as the anomaly detector. In contrast to previous works, SAAC does not make

any modifications to the loss functions of generative models, and it tries to exploit them

before their convergence. Besides, SAAC works in an unsupervised manner, and it does

not require the access to anomalous samples for training ABC.

As we discussed, labels are hard and time-consuming to obtain. However, once the

labelling information is available, it is important to fully exploit it. Thus, in addition

to the unsupervised SAAC, we also proposed a supervised technique to employ faulty

samples for fault detection. In this work, an extension of AE, referred to as source-aware

autoencoder (SAAE), is proposed. SAAE is a type of AEs that is aware of both faulty and

normal samples and employs them in its training phase in such a way that it can handle

the imbalanced number of normal and faulty samples. Similar to other conventional AEs,

the trade-off between precision and recall, as a process-specific decision, can be addressed

by employing SAAE as the fault detection network. Moreover, SAAE is capable to detect

unseen fault classes. Bidirectional LSTM (BiLSTM) equipped with skip connections is

selected for the architecture of SAAEs as the fault detection network. For fault diagnosis,

a BiLSTM layer followed by a residual neural work (ResNet) network is designed to avoid

the randomness caused by the order of features in CNNs. A sequential framework for

combining the fault detection and the fault diagnosis networks is also presented, where the

fault diagnosis network takes the results of the fault detection network as its input.
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1.3 Thesis Outline

The rest of the thesis is organized as follows. Background information including some

relevant techniques is reviewed in Chapter 2. Details and experimental evaluations of the

proposed methods for unsupervised anomaly detection and supervised FDD are presented

in Chapters 3 and 4, respectively. These sections also summarize the results of comprehen-

sive comparisons between existing approaches in the literature and the proposed methods.

Finally, major conclusions are wrapped up in Chapter 5.
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Chapter 2

Preliminaries

In this chapter, some important techniques that are relevant to the proposed methods are

briefly reviewed.

2.1 Artificial Neural Network

Artificial neural networks (ANNs) are designed to mimic nervous systems, and they con-

sist of learnable parameters to produce predictions through linear and nonlinear functions.

The parameters of ANNs are usually acquired by optimizing a cost function, which varies

considerably task-to-task. Each neuron in an ANN can be divided into a linear transfor-

mation and an activation function. The output of the neuron is the result of applying the

activation function to the linear transformation of the inputs in the neuron. Figure 2.1

shows an illustration of a neuron with 2-dimensional inputs and its components.

It is observed that the decision rule, which is performed by a single neuron, is ineffective

in dealing with complex tasks, and several neurons and layers are designed in ANNs. In

this way, each layer consists of several neurons, and the layers can be stacked one after

8



Figure 2.1: Schematic of a neuron in ANNs.

another in such a way that the outputs of the previous layer become the inputs of the next

layer, and the input layer is generally the data points. Each neuron in the ANN can have

a specific activation function. However, it is more common to have the same activation

function for neurons in each particular layer.

Linear activation function is a linear transformation with known weight a and bias b,

and can be expressed as follows:

ϕlinear(z) = az + b (2.1)

In most cases, linear activation function is the identity map with a = 1 and b = 0. In

order to account for non-linearities, Tanh and Sigmoid functions, which are S-shaped, can

be utilized. The outputs of Tanh and Sigmoid functions are between -1 to 1 and 0 to 1,

respectively, and their expressions are

ϕTanh(z) =
ez − e−z

ez + e−z
(2.2)

ϕ(z)Sigmoid = S(z) =
1

1 + e−z
(2.3)

The derivative of Tanh and Sigmoid functions for small and large values are close to 0,

which can deteriorate the learning process of the ANNs. Alternatively, rectified linear unit

(ReLU) [67] and scaled exponential linear units (SELU) [68] are introduced to address the
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vanishing and exploding gradient problems. ReLU and SELU functions are formulated as

follows:

ϕReLU(z) = max(0, z) (2.4)

ϕSELU(z) = λSELU × (max(0, z) + min(0, αSELU × (ez − 1))) (2.5)

where λSELU ≈ 1.05070 and αSELU ≈ 1.67326.

2.2 Long Short-Term Memory

In contrast to feedforward NNs, previously stored information in RNNs can be used to

calculate the next outputs. Thus, RNNs can deal with time-series data by considering the

time dependencies deep-rooted in the data. Long short-term memory (LSTM) is a variation

of RNNs that aims to address gradient vanishing and gradient explosion problems arising

during the training of traditional RNNs [69]. LSTMs are effective in many applications such

as language modeling and translation, audio analysis, and traffic forecasting [70, 71, 72].

Each LSTM cell consists of input x[t] ∈ Rp, cell state c[t] ∈ Rn, hidden state h[t] ∈ Rn,

forget gate f[t], input gate i[t], and output gate o[t], where p and n denote the number of

input features and the number of neurons in the LSTM cell, respectively. c[t] allows the

network to extract long- and short-term time dependencies. The nonlinear gates f[t], i[t]

and o[t] control the flow of information, and decide what information should be kept from

the previous memory once a new input vector x[t] and the preceding hidden state h[t−1] is

observed. The mathematical formulation of these gates are presented as

f[t] = S(Wg,fx[t] +Wh,fh[t−1] + bf ) (2.6)

i[t] = S(Wg,ix[t] +Wh,ih[t−1] + bi) (2.7)

o[t] = S(Wg,ox[t] +Wh,oh[t−1] + bo) (2.8)

where S(·) is the element-wise sigmoid function. With Eqs. (2.6) - (2.8), c[t] and h[t] can
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Figure 2.2: Schematic of many to many design of a LSTM layer.

be calculated as follows:

c[t] = c[t−1] ⊙ f[t] + tanh(Wc,cx[t] +Wh,ch[t−1] + bc)⊙ i[t] (2.9)

h[t] = tanh(c[t])⊙ o[t] (2.10)

where Wg,f ,Wg,i,Wg,o,Wc,c ∈ Rn×p and Wh,f ,Wh,i,Wh,o,Wh,c ∈ Rn×n are the weights

of the cell, bf ,bi,bo,bc ∈ Rn are symbolized biases of the the cell, ⊙ indicates element-

wise product and tanh denotes element-wise hyperbolic tangent function. c[t] and h[t]

are then fed into the next cell. The structure of one LSTM layer with many to many

design is shown in Figure 2.2, where the initial hidden state h[0] and cell state c[0] are

set to zero vectors. Output’s activation function and forget gate are considered as the

most essential component of a LSTM cell, and removal of them will noticeably deteriorate

model’s performance [73].
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2.3 Bidirectional Long Short-Term Memory

A unidirectional LSTM unit takes the previous hidden state, cell state, and current variable

vector as inputs and returns current hidden and cell states. That is, it only takes inputs in

a chronological order, and thus the output of each LSTM cell depends only on its preceding

cells. However, data in reverse chronological order also contribute to the extraction of more

relevant features in some applications.

Schuster and Paliwal [74] extended RNNs to bidirectional RNNs, where two RNNs are

trained with the right to left and left to right sequence data, and thus the resulting out-

puts contain information from both time directions. The effectiveness of the bidirectional

networks has been proven in many applications [75, 76, 77, 78].

For a bidirectional LSTM network (BiLSTM), two hidden states and two cell states in

both time directions can be connected through several operations such as addition, linear

combination, average and merge. In this work, concatenation is selected. The hidden

states that are calculated from forward and backward time directions are denoted by h[t],f ,

and h[t],b. In this way, the hidden state of this cell (h[t]) can be computed as follows:

h⊤
[t] = [h⊤

[t],f ,h
⊤
[t],b] (2.11)

where superscript ⊤ denotes transpose operation. Initial hidden and cell state in both time

directions are the same and equal to zero matrices.

2.4 Autoencoder

Autoencoder (AE), as a type of NNs, consists of an encoder and a decoder, where the

encoder learns a nonlinear transformation to a latent space while the decoder tries to

reconstruct the inputs from the latent space [79]. The structure of an AE is demonstrated

in Figure 2.3, in which each neuron is connected to all neurons in its previous and next
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Figure 2.3: The structure of an AE with fully connected layers.

layers. AEs have gained great attention and applied for many tasks such as feature learning,

information retrieval and anomaly detection [80, 81, 82].

In terms of anomaly detection, AEs have superior attributes over their counterpart

technique called binary classification. The network that is trained with normal data (with

or without a small proportion of anomalies) captures normal behaviors, and it is assumed

that unseen anomaly patterns are different from normal ones [83]. AEs are effective without

faulty data, and thus they are inherently capable of detecting unseen fault types to some

extend. This attribute is more precious when no or a few faulty data are available or faulty

data are expensive to achieve or an imbalance data set is available. Moreover, handling

the trade-off between precision and recall, which could be a key to avoid disastrous events
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and economic losses due to the nature of the process, is also feasible with AEs. The details

of evaluation metrics such as precision and recall are reviewed in Section 2.14.

Figure 2.4: Comparison of (a) supervised, (b) unsupervised and (c) ABC in detecting

unseen and known anomalies. The decision boundaries are shown by red lines. White

circles, black circles, and red stars represent normal data points, known anomalies, and

unseen anomalies, respectively.

2.5 Autoencoding Binary Classifier

AEs have demonstrated their potential for unsupervised anomaly detection, and thus they

are effective to detect unseen anomaly types that are not available in the training phase.

A common way for AE-based anomaly detection methods is to train an AE for the recon-

struction of the normal samples. It is expected that the trained AE fails to reconstruct the

anomalous data samples well. However, it is observed that trained AEs can reconstruct

anomalous data samples that share similar patterns with the normal ones. Besides, it is

declared that having access to anomalies in the training phase contributes to detecting

anomalies [84]. Thus, designing AEs that can work in unsupervised settings and simulta-

neously exploit the information from the labelled anomaly samples is desired.

ABC is a supervised AE with the assumption of Bernoulli distribution for the condi-

tional probability of the label variable given a data point. Figure 2.4 from the work of
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Yamanaka et al. [46] compares the traditional supervised and unsupervised techniques

with ABC. ABC is designed to form the boundaries of known normal samples with both

unseen and known anomalies. Assume that a data set D = {(x(i), y(i))}ni=1 is given, where

n is the number of data points, and x(i) ∈ Rm and y(i) ∈ {0, 1} denote the ith data point

and its corresponding label. Abnormal and normal data points are labelled as 0 and 1,

respectively. Let fθ(xi) : Rm → [0, 1] be an approximation for the conditional probability

of xi belonging to the normal class given xi, where fθ(xi) ≈ p(yi = 1|xi). The loss function
for ABC can be expressed as

L(xi, yi) = −yi log fθ(xi)− (1− yi) log(1− fθ(xi)) (2.12)

fθ can be defined in various ways as a function of AE’s parameters. One common choice

for fθ(x) is fθ(x) = e
−Lrec(x)

λscale , where Lrec(x) denotes the reconstruction error for x in the

AE, and λscale is a normalization hyperparameter to account for the scale of Lrec(x). In

this case, Eq. (2.12) can be written as

L(xi, yi) =
1

λscale
yiLrec(xi)︸ ︷︷ ︸

for normal samples

− (1− yi) log(1− e
−Lrec(xi)

λscale )︸ ︷︷ ︸
for anomalies

(2.13)

The ABC is trained to minimize Eq. (2.13). The first term in the equation is for

reducing reconstruction error for normal samples, while the second term stimulates the

ABC to increase the reconstruction error for anomalies. In the special case when no

anomalies are available, ABC is equivalent to the traditional AE.

It is worth pointing out that λscale is newly designed in our work, which is observed to

improve SAAC model’s performance, and it was not introduced in the work of Yamanaka

et al. [46].
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2.6 Generative Adversarial Network

Generating samples that resemble a data distribution could help in enriching data sets. One

way is to train a generator to generate samples based on random noise, and a classifier

(discriminator network) to decide on the quality of the generated and real samples. This

is the underlying idea of the generative adversarial networks (GANs) [58], in which the

discriminator and generator networks are trained to compete with each other and gradually

become stronger in this competition.

Assume that a data set D = {x(i)}ni=1 is given, where n is the number of data points,

and x(i) ∈ Rm denotes the ith data point. Random noise z ∈ Rpnoise is the input of

generator (G), and output m-dimensional samples. Assume data distrubution and random

noise distribution are denoted as follows: x ∼ pdata(x), z ∼ pz(z). The objective of GAN

is to generate samples x̂ similar to real samples x from z. The discriminator (D) in GAN

is a binary classifier that decides on the similarity of x and x̂. That is, D : x → [0, 1]

classifies generated and real samples, and output 1 for real samples and 0 for generated

ones as follows:

D(x) :=

1 for real sample x

0 for fake (generated) sample x
(2.14)

In the case that D classifies fake samples as fakes (output 0) and real samples as

real (output 1), a perfect D is obtained. However, this indicates the poor performance

of G in generating samples similar to real ones. G and D are trained adversarially to

compete with each other and gradually improve themselves. That is, G tries to fool D by

generating realistic samples while D differentiates between the generated and real samples.

The structure of GAN is provided in Figure 2.5 from the work of Ghojogh et al. [85]. G

generates samples merely based on the random noise z without having access to real data

x. In this way, G receives feedbacks from D, while D updates itself by taking both x and

x̂ as its inputs. The loss function for training a GAN can be expressed as

min
G

max
D

Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (2.15)
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Figure 2.5: The combination of different networks in GAN.

where E[.] denotes the expectation operation. In Eq. (2.15), the first term is for the dis-

criminator only, and it tries to increase the output of D for real data since real data samples

have the label 1. In the second term of Eq. (2.15), the output of the discriminator from

the generated samples from the random noise is calculated as D(G(z)). The discriminator

tries to maximize Ez∼pz(z)[log(1 − D(G(z)))] to assign labels closer to 0 to the generated

samples. On the other hand, the generator tries to minimize Ez∼pz(z)[log(1−D(G(z)))] to

fool the discriminator, and generates samples which look realistic by the discriminator. D

and G can be trained iteratively by employing mini-batches of real and generated data.

In general, two deep neural networks can be designed as the architecture of the generator

and discriminator. The last layer of the discriminator can be activated with a Sigmoid

function, and these networks can be trained by backpropagation in deep learning. In

practical scenarios, the distribution of the random noise z is selected to be Gaussian.

Several extensions of GAN are proposed in the literature. Conditional GAN [86] is

designed to generate samples by conditioning both generator and discriminator on label

information. In particular, the label information is provided as additional inputs to both

networks. Assume that the additional label information is provided as D = {(x(i),y(i))}ni=1,

where y(i) denotes the ith data point one-hot encoded label vector. The loss function of
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conditional GAN can be formulated as follows:

min
G

max
D

Ex∼pdata(x)[log(D(x | y))] + Ez∼pz(z)[log(1−D(G(z | y)))] (2.16)

Deep convolutional GAN (DCGAN) [87] enabled training deeper GANs for generating

images with higher resolution. Strided convolutions are used instead of pooling layers in

DCGAN, and layers are convolutional networks and no fully-connected layer is employed.

Batch normalization, which is introduced in Section 2.11, is applied to all layers except the

last layer of the generator and the first layer of the discriminator. In DCGAN, LeakyReLU

[88] is the activation function for the layers in the discriminator, and the output layer of

the generator is activated by Tanh and its other layers have ReLU activation function.

A common limitation in GANs is that they are prone to the problem of mode collapse

[89] in cases that the data distributions pdata(x) has several modes. As an example, a GAN

that is trained on all 10 digits of the MNIST data set, may fail to generate samples of some

digits. Wasserstein GAN [90] employs Earth-Mover distance to introduce an alternative to

GANs. WGAN avoids the problem of mode collapse and has interpretable learning curves.

WGAN replaces the discriminator of GANs by a critic network, and imposes Lipschitz

constraint on the critic. However, poor sample generation or failure to converge are the

issues of WGAN. As the further step, WGAN with gradient penalty [91] is designed, which

provides an alternative method to weight clipping in WGAN, and it stabilizes the training

phase of WGAN.

2.7 Adversarial Autoencoder

Makhzani et al. [92] augmented reconstruction-based autoencoders by an adversarial train-

ing procedure, and referred to it as adversarial autoencoders (AAE). Motivated by the

adversarial training of GANs, AAE tries to match its code layer with an arbitrary prior

distribution, and as shown in the structure of AAE in Figure 2.6, a discriminator network

is integrated on top of the code vector of the autoencoder. The encoder of AAE transforms
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the input to the code layer and the decoder learns a transformation to the data distribu-

tion. The discriminator in AAE matches the code layer and prior distribution through

adversarial training while its encoder and decoder attempt to minimize the reconstruction

error. The training of an AAE model consists of three phases: i. updating the parameters

of its encoder and decoder to minimize the reconstruction error; ii. updating the parame-

ters of the discriminator to differentiate between the code layer and the prior distribution;

and iii. updating the parameters of the encoder to fool the discriminator.

Figure 2.6: The integrated structure of encoder, decoder and discriminator in an AAE.

AAE has been employed for a variety of tasks such as video anomaly detection and

localization [93], group anomaly detection [94], and generation of new molecules [95]. While

it is used for supervised anomaly detection [96], AAE is also employed in an unsupervised

way. For instance, Jang et al. [97] employed AAE for unsupervised fault detection due to

its effectiveness in extracting features that represent the data manifold well.
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2.8 Generate to Detect

As previously discussed, GANs are generally known for their ability to generate realistic

data points with respect to a target class. The training of a GAN is based on a min-

max game between competing networks in an adversarial manner. During the training,

the generator (G), one component of the GAN, gradually learns the distribution of real

samples, to achieve tasks such as augmenting the target class data. After convergence,

G is expected to generate samples with a distribution close to the distribution of the

target class. Nevertheless, before the convergence, G tends to generate irregularities due

to the fact that it has not learned the distribution of the target class yet. Alternatively,

generate to detect (G2D) model [98] regards these as anomalies. When G fails to generate

normal samples, it is referred to as an irregularity generator. Then a binary classification

network is trained to differentiate between normal samples and anomalies using the normal

data and the constructed anomaly sets by irregularity generators, through minimizing the

binary cross-entropy loss. The output of this binary classification network is defined as

the anomaly score of G2D. WGAN is employed due to its more stable training phase and

interpretable learning curves compared to conventional GANs in G2D. Figure 2.7 from [98]

shows the loss values during the training of a WGAN on the MNIST data set. This figure

shows the distinction between random irregularities, irregularities close to boundaries, and

inliers.

2.9 Skip Connection

Deep neural networks have demonstrated superior results over their shallower counterparts

in various areas such as image classification and object detection [99, 100]. However,

training deep NNs are susceptible to gradient vanishing issue, and different methods are

proposed to address this issue, such as ResNet [99], highway network [101], stochastic depth

[102], FractalNet [103] and DenseNet [104].
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Figure 2.7: The loss values of a WGAN, which is trained on the MNIST data set, during

its training phase.

Skip connections (also known as residual connection) is an efficient method to address

the gradient vanishing problem. A skip connection skips some nonlinear layers in NN,

and provides another path for the backpropagation of gradient. Assume that the input

ω undertakes a nonlinear transformation through a function Φ. The output resulting

from a skip function between ω and Φ(ω) is depicted in Figure 2.8. A skip connections

links the top layer to the bottom layer, and thus facilitates the transmission of gradient and

information throughout the network [105]. It is noted that proper usage of skip connections

not only alleviates the difficulties of training very deep NNs, but also can improve their

generalization [106]. Orhan and Pitkow [107] also indicated that singularity elimination is

a beneficial attribute of skip connection for training deep NNs.
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Figure 2.8: Skip connection between input and output layers.

2.10 Dropout

Over-fitting occurs when the performance of NNs differs noticeably between training and

testing samples. An indication of over-fitting in FDD is that a divergence is displayed in

the precision and recall values for training and testing sets. Srivastava et al. [108] proposed

dropout to overcome the over-fitting issue, where each unit and its connections are removed

from the NN with the probability of pdrop at each training iteration. Moreover, outputs are

also scaled by 1
1−pdrop

for training the network. It is noted that dropout is only applied for

the training phase while for the testing phase it is ignored. Dropout technique is illustrated

in Figure 2.9.
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Figure 2.9: A NN with and without dropout is illustrated in subfigures a and b, respectively.

2.11 Batch Normalization

Batch normalization that aims to accelerate network training is proposed by Ioffe and

Szegedy [109]. In this method, incoming batch of inputs are scaled and shifted to have zero-

mean and univariance. Then, they undergo two re-scaling and re-shifting transformations.

For a batch of input B = {x(i)}nb
i=1, its mean and variance are calculated by

µB =
1

nb

nb∑
i=1

x(i), σ2
B =

1

nb

nb∑
i=1

(x(i) − µB)
2 (2.17)

Then, elements of B are normalized to have zero-mean and univariance.

x̄(i) =
x(i) − µB√
σ2
B + ϵ

(2.18)

where ϵ is a constant designed for numerical stability. Further, two learnable parameters

γ and ψ are employed in Ioffe and Szegedy [109] to scale and shift the normalized values

as follows:

ŷ(i) = γx̄(i) + ψ (2.19)

During the training phase, general mean and variance are estimated through exponen-

tially weighted moving average with momentum value of mBN , which are used for the
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normalization in the testing phase. Layers or neurons of NNs can be equipped with batch

normalization.

2.12 Softmax Activation Function and Cross-Entropy

Loss

Softmax activation function can be employed to represent the probability distribution of the

predicted classes, which is widely adopted in multi-class classification tasks. It converts an

n dimensional vector to another n dimensional exponentialized vector, which is normalized

by the sum of elements of the elementwise exponentialized vector. Mathematically, the

softmax activation function σ : Rn → [0, 1]n is expressed as

σ(z, i) =
exp (zi)

Σn
j=1 exp (zj)

(2.20)

where z ∈ Rn denotes the input vector, and zi is the ith variable of z.

Weighted categorical cross-entropy loss can be employed in various multi-class classifi-

cation algorithm, and it is formulated as follows:

loss(y,p,w) = −Σn
c=1wc × yc × log(pc) (2.21)

where w ∈ [0,∞)n is the weight vector, and y and p are lable and probability vectors.

Eq. (2.20) is usually served as the activation function of the last layer of a multi-class

classification NN, which is often trained to minimize Eq. (2.21). During the testing phase,

each data sample is assigned to the class that has the highest corresponding probability.

2.13 Adam Optimizer

Gradient descent is a computationally effective method for minimizing or maximizing ob-

jective functions since it requires first-order partial derivatives. In dealing with large data
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sets, the objective function can be optimized with subsets of the data set, and this leads to

leveraging stochastic gradient descent (SGD) for optimization problems. It is common to

have high dimensional parameters space, and large data sets in the field of deep learning,

and Kingman and Ba [110] proposed Adam as a memory-efficient stochastic optimization

technique, which is suitable to be employed together with mini-batches, by combining

the potentials of AdaGrad [111] and RMSProp [112] to deal with sparse gradients and

non-stationary objectives.

Assume that the function f(θ) is differentiable with respect to parameter θ for a min-

imization optimization problem. Let fi(θ) denote the stochastic function at time-step i.

Adam requires three hyper-parameters: αAdam as the step size, and β1 and β2 as the expo-

nential decay rates for the 1st and 2nd raw moments. Exponential moving averages of the

gradient (mt) and squared gradient (vt) are initialized as 0’s vectors, and β1 and β2 are

used to determine their updated values. At each iteration, parameter θt can be updated

through the following steps:

gt ← ∇θft(θt−1) (2.22)

mt ← β1 ·mt−1 + (1− β1) · gt (2.23)

gt ← β2 · gt−1 + (1− β2) · g2t (2.24)

m̂t ← mt/(1− βt
1) (2.25)

v̂t ← vt/(1− βt
2) (2.26)

θt ← θt−1 − αAdam · m̂t/(v̂
0.5
t + ϵ) (2.27)

where ϵ is a parameter for stabilization. As default values, β1 = 0.9, β2 = 0.999 and

ϵ = 10−8. The experimental results in the work of Kingman and Ba [110] show the success

of Adam in the optimization of deep learning models.
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2.14 Evaluation Metrics

In order to make a fair comparison of different algorithms, recall, precision and Fβ-score

are selected as evaluation metrics, which are formulated as

recall =
TP

TP + FN
(2.28)

precision =
TP

TP + FP
(2.29)

Fβ = (1 + β2)
recall× precision

β2 × recall + precision
(2.30)

where TP and TN denote the number of correctly classified samples with positive and

negative labels, respectively. FP and FN refer to misclassified samples with actual negative

and positive labels. Fβ is a weighted F measure, and β is a non-negative real constant,

where F1 (β = 1) is chosen in this work. F1 together with recall and precision provide a

reasonable set of metrics for evaluating the classification performance.

For the comparison between unsupervised anomaly detection techniques, area under

the receiver operating characteristics curve (AUC-ROC) and maximum balanced accuracy

(mBA) can be adopted as the evaluation metrics. In ROC curve, each data point illustrates

true positive and false positive rates at a fixed threshold, and AUC-ROC represents a

summary of the ROC curve. On the other hand, mBA displays the performance at a

threshold where the arithmetic mean between sensitivity and specificity is maximum. A

perfect anomaly detection technique has AUC-ROC and mBA of 1.
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Chapter 3

SAAC for Unsupervised Anomaly

Detection

Anomaly detection models are developed with a collected training data set, which contains

normal samples only or a mixture of normal and faulty ones. These models can obtain

satisfactory detection results when the test samples share the same anomaly classes as in

the training data. However, in some practical scenarios, the existence of unseen anoma-

lies in the test phase is common, since it is hard to exhaust all types of anomalies, and

unexpected failures may happen. Thus, unsupervised anomaly detection techniques are

proposed to account for unseen anomalies, which are generally trained using data collected

under normal conditions (with or without a small proportion of anomalies). On the other

hand, supervised AEs exploit both normal and anomalous samples, and demonstrate that

unseen anomalies can be more detectable if the auxiliary data set of anomalous samples are

given. Thus, considering the fact that acquiring a data set containing anomalous samples

is an expensive task in some cases, in this chapter we focus on the design of unsupervised

anomaly detection methods from a different perspective.
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Figure 3.1: The required steps in training SAAC for 1 iteration.

3.1 The Proposed Methods

In our proposed self-adversarial autoencoding classifier (SAAC) model, fake anomalies are

generated by only observing normal samples, and an anomaly detector network is trained

to leverage both normal samples and fake anomalies. SAAC includes two main parts, i.e.,

anomaly generator and anomaly detector. The objective of the anomaly generator is to

generate fake anomalies from the normal data while the anomaly detector differentiates

them from normal data. AAE is selected as the anomaly generator in SAAC, since it can

generate anomalies before convergence, and ABC is selected as the anomaly detector. The

details of AAE and ABC are described in sections 2.7 and 2.5 respectively, and they are
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Figure 3.2: The overall architecture of SAAC. SAAC consists of an AAE as the anomaly

generator and an ABC as the anomaly detector, which are trained in an adversarial manner.

trained in an adversarial manner. In our work, the deterministic encoder is selected in

AAE, in which the data distribution is considered as the source of stochasticity, and the

prior distribution is chosen as a Gaussian distribution with zero-mean and unit-variance.

In each iteration, the AAE is trained to learn the distribution of the normal samples,

and fake anomalies are generated using the decoder of the AAE from its prior, and the

ABC is trained on the generated samples (for anomalies) and normal data to distinguish

them. Then, new samples are generated again by the decoder of the AAE, which are used

to update the parameters of the decoder of the AAE to minimize their reconstruction errors

by the ABC as the adversarial training phase. The details of one iteration in SAAC are

summarized in Figure 3.1, and the whole architecture of SAAC is depicted in Figure 3.2.

During the training phase of SAAC, the AAE generates fake anomalies, which are used

to assist the ABC to learn the decision boundary to classify normal and anomalous samples.

For the first training iteration, the AAE generates random samples, and as the training

evolves, the AAE learns to generate samples more similar to real ones which are however
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Figure 3.3: t-SNE visualization of generated samples by a simple AAE in different training

epochs. This AAE is trained on digit “0” of MNIST data set.

still anomalies. After the convergence is achieved, the AAE has learned the distribution of

the normal samples and can generate samples following the same distribution. It is noted

that for all iterations, the fake anomalies are utilized to train the ABC anomaly detector,

and the training of the ABC model stops before the convergence of AAE. In the testing

phase, the reconstruction error by the trained ABC is considered as the anomaly score for

a test sample.

The adversarial training between the AAE and ABC is designed to prevent finding

shortcut solutions by the ABC for the task of anomaly detection. In this way, the ABC is

trained based on the updated AAE, which tries to minimize the reconstruction error of its

outputs by the ABC in the adversarial training step, and thus, should continuously update

its decision rules during the training phase. Another attribute of the adversarial training

is to generate samples by the decoder of the AAE according to the prior distribution and

update the decoder according to the feedback of the ABC. Consequently, blind spots of

the prior distribution in the decoder of the AAE can be avoided, and this attribute makes
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the decoder more effective.

Remark 1. In general, a complex structure of the AAE is not required in SAAC since the

AAE does not need to converge to generate realistic samples. In our experiments, simpler

AAE architectures are designed, which are incapable of generating realistic samples. Figure

3.3 illustrates t-SNE [113] visualization of generated sample by a simple AAE, which was

trained on digit ’0’ of MNIST data set. From this figure, it is observed that the generated

samples by the AAE and real normal data can be differentiated even after 4000 training

epochs.

Remark 2. Prior to the proposed work of SAAC, ABC was employed in supervised settings,

in which both anomalies and normal samples were accessible. Even though ABC shows

superior performance in detecting unseen anomalies, its applicability was limited since it

requires real anomalies. Moreover, AAE was primarily utilized for data augmentation for

anomalies or unsupervised anomaly detection. Anomalies are required in the former one.

For the latter one, AAE is trained to learn the distribution of the normal samples and

this task is not anomaly detection-oriented, which makes its performance sub-optimal. In

contrast to previous works related to ABC and AAE, SAAC is a novel anomaly detec-

tion technique that removes the necessity of having access to anomalies in ABC and it is

particularly trained for the task of anomaly detection.
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3.2 Experimental Results and Discussions

In order to evaluate the performance of the proposed SAAC, three benchmark data sets

are chosen, namely the Tennessee-Eastman Process (TEP) [114], Credit Card (CC) [115]

and CIFAR10 data [116], which range from chemical process data to image data. These

data sets differ in the number of features, existence of class imbalance, and variability in

their domains, which can provide more insights for the comparison.

For each data set, SAAC is compared to several competing techniques from the litera-

ture. In the cases that we use different data preparation steps in our experiments to the

corresponding literature, those techniques are re-implemented. Hence, in the subsequent

subsections, the results are generally based on our experiments unless it is explicitly stated.

For the TEP and CC data sets, training and testing data sets are transformed into

the range of [−1, 1] by MinMax transformation based on the normal training data. The

details of the hyper-parameters and training settings are provided in the corresponding

subsections. To be consistent with the previous works, similar pre-processing steps to the

work of Massoli et al. [117] are applied for CIFAR10.

3.2.1 The Tennessee-Eastman Process

In TEP, four reactants and an inert are fed into the process, and two liquid products and a

byproduct are formed through four exothermic reactions. The five main unit operators

involved in TEP are reactor, condenser, compressor, separator, and stripper, and the

schematic of TEP is presented in Figure 3.4. This process contains 41 measured variables

and 11 manipulated variables. The description of manipulated and measured variables are

provided in Tables 3.1 and 3.2, respectively.
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Table 3.1: Manipulated variables in TEP.

Description Label

D feed flow XMV(1)

E feed flow XMV(2)

A feed flow XMV(3)

A and C feed flow XMV(4)

Compressor recycle valve XMV(5)

Purge valve XMV(6)

Separator pot liquid flow XMV(7)

Stripper liquid product flow XMV(8)

Stripper steam valve XMV(9)

Reactor cooling water flow XMV(10)

Condenser cooling water flow XMV(11)

In this work, publicly available “additional data set” for TEP1 is used, in which samples

from 500 simulation runs with different random seeds are presented. 20 classes of faults

are employed in this work, and their types are summarized in Table 3.3 (more details

are accessible in the work of Downs and Vogel [118]). Each simulation run contains 500

faulty/normal training samples and 960 faulty/normal testing samples that are sampled

every 3 minutes during the sampling period. For faulty cases, faults are introduced after 1

and 8 hours for training and testing runs, respectively.

In our experiments, 20 normal training simulation runs are selected as training data

with in total 20× 500 normal training samples, and 10 testing simulation runs are selected

from both the normal and faulty test data sets, which consists of 10× 960 normal samples

and 10× 800× 20 faulty samples.

The ABC and AAE in SAAC for the TEP experiments are symmetric AEs with the

encoder architectures of (50, 48, 40, 36, 30), and (40, 30, 20, 15, 10, 5). The layers are acti-

1https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
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Table 3.2: Measured variables in TEP.

Description Label Description Label

A feed XMEAS(1) Separator cooling water outlet temperature XMEAS(22)

D feed XMEAS(2) Reactor feed analysis of A XMEAS(23)

E feed XMEAS(3) Reactor feed analysis of B XMEAS(24)

A and C feed XMEAS(4) Reactor feed analysis of C XMEAS(25)

Recycle flow XMEAS(5) Reactor feed analysis of D XMEAS(26)

Reactor feed rate XMEAS(6) Reactor feed analysis of E XMEAS(27)

Reactor pressure XMEAS(7) Reactor feed analysis of F XMEAS(28)

Reactor level XMEAS(8) Purge gas analysis of A XMEAS(29)

Reactor temperature XMEAS(9) Purge gas analysis of B XMEAS(30)

Purge rate XMEAS(10) Purge gas analysis of C XMEAS(31)

Product separator temperature XMEAS(11) Purge gas analysis of D XMEAS(32)

Product separator level XMEAS(12) Purge gas analysis of E XMEAS(33)

Product separator pressure XMEAS(13) Purge gas analysis of F XMEAS(34)

Product separator underflow XMEAS(14) Purge gas analysis of G XMEAS(35)

Stripper level XMEAS(15) Purge gas analysis of H XMEAS(36)

Stripper pressure XMEAS(16) Product analysis of D XMEAS(37)

Stripper underflow XMEAS(17) Product analysis of E XMEAS(38)

Stripper temperature XMEAS(18) Product analysis of F XMEAS(39)

Stripper steam flow XMEAS(19) Product analysis of G XMEAS(40)

Compressor work XMEAS(20) Product analysis of H XMEAS(41)

Reactor cooling water outlet temperature XMEAS(21)

vated with SELU (except the last layer of the encoders and decoders), and batch size is

set to 128. No dropout or batch normalization is applied.

To compare the performance of SAAC with other existing anomaly detection tech-

niques, isolation forest (IF) [119], GANomaly [63], VAE [59], VAE-based deep SVDD

(VAE-SVDD) [120], AnoGAN [60], FenceGAN [65] and AAE [97] are selected. The ar-

chitecture of the GANomaly, VAE, VAE-SVDD and AAE are similar to the SAAC. For

IF, the number of estimators is set to 120. Generator and discriminator of AnoGAN have

the architecture of (60, 36, 40, 48, 50, 52) and (300, 150, 50, 1), respectively. For FenceGAN,

feed-forward neural networks with (80, 80, 52) and (120, 100, 80, 50, 1) neurons are selected

for the architecture of its generator and discriminator, respectively.
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Table 3.3: Fault types in TEP.

Description Disturbance Type

A/C feed ratio, B composition constant IDV(1) Step

B composition, A/C ratio constant IDV(2) Step

D feed temperature IDV(3) Step

Reactor cooling water inlet temperature IDV(4) Step

Condenser cooling water inlet temperature IDV(5) Step

A feed loss IDV(6) Step

C header pressure loss-reduced availability IDV(7) Step

A, B, C feed composition IDV(8) Random variations

D feed temperature IDV(9) Random variations

C feed temperature IDV(10) Random variations

Reactor cooling water inlet temperature IDV(11) Random variations

Condenser cooling water inlet temperature IDV(12) Random variations

Reaction kinetics IDV(13) Slow drift

Reactor cooling water valve IDV(14) Sticking

Condenser cooling water valve IDV(15) Sticking

Unknown IDV(16) Unknown

Unknown IDV(17) Unknown

Unknown IDV(18) Unknown

Unknown IDV(19) Unknown

Unknown IDV(20) Unknown

Table 3.4 demonstrates the AUC-ROC results for different techniques on the TEP,

where the normal and faulty classes are provided in the data set. As summarized from

the table, SAAC shows the highest average AUC-ROC among them. For Fault 5, SAAC

achieves AUC-ROC of 100.0%, while the highest AUC-ROC for the other techniques is

81.6% by GANomaly. For Faults 3, 9 and 15, all the techniques show comparable and

relatively low AUC-ROC, which is expected since these faults are considered as hard-to-
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Table 3.4: The AUC-ROC comparison results of various anomaly detection techniques for

20 faults in TEP.

Status Index IF GANomaly VAE VAE-SVDD AnoGAN FenceGAN AAE SAAC

Fault 1 99.6% 99.8% 99.9% 99.8% 99.9% 99.9% 99.9% 99.9%

Fault 2 99.4% 99.1% 99.4% 99.4% 99.4% 99.5% 99.5% 99.5%

Fault 3 51.8% 51.6% 50.4% 50.5% 50.5% 51.6% 50.2% 50.5%

Fault 4 63.9% 68.7% 100.0% 88.2% 94.7% 95.5% 99.9% 99.8%

Fault 5 68.8% 81.6% 75.4% 66.5% 59.5% 76.4% 70.1% 100.0%

Fault 6 99.9% 100.0% 100.0% 99.7% 100.0% 100.0% 100.0% 100.0%

Fault 7 81.1% 96.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Fault 8 98.6% 98.0% 98.7% 98.7% 98.6% 98.6% 98.8% 98.8%

Fault 9 52.3% 51.4% 50.6% 50.9% 50.9% 52.1% 50.5% 50.8%

Fault 10 80.2% 94.8% 79.9% 72.9% 69.4% 84.1% 77.1% 87.4%

Fault 11 74.6% 68.3% 92.6% 81.8% 86.1% 86.7% 92.3% 92.2%

Fault 12 99.5% 99.4% 99.6% 99.5% 99.4% 99.5% 99.5% 99.7%

Fault 13 97.8% 97.0% 97.6% 97.6% 97.6% 97.8% 97.6% 97.7%

Fault 14 89.5% 98.5% 100.0% 99.7% 100.0% 100.0% 100.0% 100.0%

Fault 15 53.7% 52.5% 51.1% 52.2% 51.7% 53.5% 51.2% 52.2%

Fault 16 69.7% 92.1% 76.2% 62.6% 59.3% 76.3% 71.5% 82.0%

Fault 17 87.9% 92.7% 97.2% 89.9% 94.2% 95.0% 96.5% 96.8%

Fault 18 96.9% 96.4% 97.1% 96.8% 97.0% 97.1% 97.0% 97.2%

Fault 19 67.6% 88.8% 73.6% 69.6% 64.0% 70.5% 80.3% 74.9%

Fault 20 76.5% 83.0% 84.4% 72.5% 75.4% 81.2% 81.7% 89.5%

Average 80.5% 85.5% 86.2% 82.4% 82.4% 85.8% 85.7% 88.4%

detect faults [121, 122]. As another performance metric, the average mBAs for Faults 1-20

of TEP are presented in Figure 3.5. It is observed that IF and SAAC have the lowest and

highest average mBA, respectively.

The true positive rates (TPRs) of various techniques for Faults 1-20 are presented in

Figure 3.6 and Table 3.5. These results are acquired in the case that their true negative

rate (TNR) is chosen as 90.0%, as a practical scenario. TPRs of SAAC for Faults 5 and

20 are 40.3% and 19.6% higher than the best of the other techniques. GANomaly shows
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Table 3.5: TPRs on TEP in the case that TNR is set to 90.0% for different techniques.

Fault Index IF GANomaly VAE VAE-SVDD AnoGAN FenceGAN AAE SAAC

Fault 1 99.6% 99.5% 99.9% 99.5% 99.2% 99.6% 99.8% 99.8%

Fault 2 98.8% 98.0% 98.9% 99.0% 97.7% 98.9% 99.1% 99.0%

Fault 3 10.9% 10.8% 10.2% 10.6% 1.0% 11.1% 10.1% 10.3%

Fault 4 18.1% 24.7% 100.0% 65.2% 26.8% 87.9% 100.0% 100.0%

Fault 5 38.0% 59.7% 40.0% 36.0% 18.7% 44.4% 36.5% 100.0%

Fault 6 99.7% 100.0% 100.0% 99.3% 99.5% 100.0% 100.0% 100.0%

Fault 7 54.8% 89.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Fault 8 97.1% 95.5% 97.4% 97.2% 94.9% 97.2% 97.5% 97.4%

Fault 9 11.9% 10.8% 10.5% 10.6% 1.1% 11.7% 10.3% 10.4%

Fault 10 51.7% 88.2% 52.1% 40.5% 9.0% 61.0% 47.1% 75.7%

Fault 11 31.6% 29.2% 82.4% 61.1% 37.2% 68.4% 81.8% 81.3%

Fault 12 98.8% 98.5% 99.1% 98.9% 95.8% 99.1% 99.0% 99.4%

Fault 13 95.6% 93.9% 95.5% 95.3% 92.9% 95.7% 95.6% 95.5%

Fault 14 63.5% 95.9% 99.9% 99.0% 99.8% 99.9% 100.0% 99.9%

Fault 15 13.0% 11.7% 10.9% 11.7% 1.2% 12.9% 10.8% 12.0%

Fault 16 30.3% 82.6% 43.2% 23.1% 1.9% 42.8% 34.5% 63.7%

Fault 17 63.4% 82.5% 93.9% 77.7% 72.5% 88.1% 92.3% 93.2%

Fault 18 93.6% 93.1% 94.6% 93.7% 92.6% 94.3% 94.4% 94.7%

Fault 19 24.5% 72.5% 34.2% 31.9% 2.8% 29.2% 49.4% 40.0%

Fault 20 43.6% 62.2% 64.8% 41.7% 22.4% 58.2% 59.7% 84.4%

Table 3.6: Average TPRs for 20 faults of TEP for different techniques when TNR is 90.0%.

Technique IF GANomaly VAE VAE-SVDD AnoGAN FenceGAN AAE SAAC

Average TPRs 56.9% 70.0% 71.4% 64.6% 53.3% 70.0% 70.9% 77.8%

superior results in Faults 10, 16, and 19, and SAAC shows slightly better or equivalent

results to the best of other techniques for other faults. The average TPRs of these models

are provided in Table 3.6 for all faults in the case that their TNR is set to 90.0%. It

is observed that SAAC shows the average TPR of 77.8%, which is 6.4% higher than the
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Figure 3.5: Average mBA for different techniques using all 20 faults in TEP.

second-best technique. In the light of these results, SAAC outperforms the aforementioned

techniques in terms of average AUC-ROC, average mBA and average TPR for TEP.
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3.2.2 Credit Card Dataset

This data set contains 284,315 normal and 492 fraudulent transactions from credit card

transactions, which is considered as a highly imbalanced data set. In our work, 80% of the

normal samples are selected randomly for training while the rest are used as the testing

set. For this experiment, the architecture of SAAC, AE, GANomaly [63], MOCCA [117],

VAE [59], VAE-SVDD [120], and AAE [97] are similar to the ones described in Subsection

3.2.1.

The comparison results between SAAC and other techniques are presented in Table 3.7.

In the light of these results, Soft MOCCA and IF show the lowest AUC-ROC and mBA,

respectively, and SAAC is superior to other techniques in terms of average AUC-ROC and

mBA.

Table 3.7: Average AUC-ROC and mBA (%) for different techniques averaged from 10

independent runs on Credit Card data set.

AE IF GANomaly VAE VAE-SVDD Soft MOCCA AAE SAAC

AUC-ROC 95.3 94.7 95.4 95.5 95.0 92.1 94.7 96.2

mBA 91.3 90.0 91.2 91.3 91.4 90.1 90.7 92.1

3.2.3 CIFAR10

The CIFAR10 data set contains 32× 32 color images from 10 classes with 5000 and 1000

images per class for training and testing, respectively. The classes in CIFAR10 are mutually

exclusive, and there is no overlap between them. An illustration of images in CIFAR10 is

provided in Figure 3.72. For the anomaly detection task, one class from the training set is

regarded as normal, and all the classes are employed to evaluate the models’ performance

in the testing phase. This procedure is repeated for all the 10 classes in the data set.

2This image is available online at the following link: https://www.cs.toronto.edu/ kriz/cifar.html.
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Similar architecture (without batch normalization layers) and pre-processing steps to the

work of Massoli et al. [117] are implemented in this case study.

Figure 3.7: Sample images in CIFAR10 for different classes.

Table 3.8 shows the experimental results of SAAC and other techniques in terms of

AUC-ROC. To capture the stochasticity caused by weight initialization and random num-

ber generation, averages and standard deviations from 10 independent runs are reported

in this table for SAAC. For DCAE [123, 124], AnoGAN and OC Deep SVDD [50], values

are reported from the work of [50]. For LSA [125], Soft and Hard MOCCA [117], OC-GAN

[126], PIADE [127], DAGPR [128], and DOC3 [129] values are taken from their original

article. From this table, it can be noted that SAAC shows the highest average AUC-ROC

compared with other existing techniques on CIFAR-10. Moreover, SAAC achieves the

best performance for classes Automobile, Horse, and Truck. Since similar architecture as
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MOCCA [117] is employed, it is concluded that the better performance achieved by SAAC

is due to the improvements of the technique, and it is not because more complex archi-

tecture is utilized. It is also worth noting that SAAC demonstrates better performance

compared to LSA, which employs larger models compared to SAAC.
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Chapter 4

SAAE for Supervised Fault Detection

and Fault Diagnosis Methodology

4.1 The Proposed Methods

As we discussed earlier, labels are hard and costly to achieve. However, as the process

proceed faulty samples may emerge. Thus, in addition to the unsupervised SAAC, we also

proposed a supervised technique to employ faulty samples in FDD with the assumption of

having a labelled data set.

4.1.1 Fault Detection

AE-based fault detection is an effective approach for detecting faulty samples that display

distinguishable behaviors from normal samples. However, some faulty samples that exhibit

similar patterns to normal ones can be misclassified by AEs. Furthermore, normal samples

often dominate in the collected training data since faults occur infrequently in normal
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operating conditions. Thus, utilizing all samples for training could lead to the imbalanced

data issue in a binary classification NN. Additionally, faulty samples may be costly to

obtain, which will bring severe consequences to real-world industrial processes. In these

cases, designing an effective method capable of producing reasonable results without faulty

samples and reusable once faulty samples become accessible is crucial.

In this subsection, a new fault detection method, referred to as source-aware autoen-

coder (SAAE), is proposed. SAAE shares the following characteristics: i. tuning precision

and recall trade-off, ii. training without faulty samples and fine-tuning once faulty sam-

ples emerge, iii. working effectively for the data sets with imbalanced number of normal

and faulty data, iv. detecting unseen fault types, and v. exploiting all normal and faulty

samples. Additionally, the proposed approach is effective for fine-tuning existing AEs uti-

lized for fault detection tasks. In contrast to unsupervised AEs, SAAE is designed to

extract fault-relevant information in a supervised manner to differentiate between normal

and faulty samples. It is noted that the applications of SAAE are not limited to FDD and

it can be used for any kinds of two-class classification tasks.

Assume that normalized normal and faulty data are denoted as DN = {x(i)
N }

n1
i=1 and

DF = {x(i)
F }

n2
i=1, where xN ,xF ∈ Rp, p is the number of variables, and n1 and n2 are

number of normal and faulty samples, respectively. The superscript (i) is the index of

the sample. DN and DF are transformed into the following matrices with the aid of time

window transformation.

X
(i)
N = [x

(i−q+1)
N ,x

(i−q+2)
N , . . . ,x

(i)
N ]⊤, (i = q, q + 1, . . . , n1)

X
(i)
F = [x

(i−q+1)
F ,x

(i−q+2)
F , . . . ,x

(i)
F ]⊤, (i = q, q + 1, . . . , n2)

XN = {X(i)
N }

n2
i=q

XF = {X(i)
F }

n2
i=q

where q is the size of the sliding window. An SAAE with a pre-designed architecture is

trained with normal data by minimizing the mean squared error (MSE) between training
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data and their reconstructed values with the following cost function:

CN =
1

n1 − q + 1

n1∑
i=q

LN

(
X

(i)
N , X̂

(i)
N

)
(4.1)

where

LN

(
X

(i)
N , X̂

(i)
N

)
= MSE

(
X

(i)
N , X̂

(i)
N

)
(4.2)

X̂N is the predicted value of XN by the SAAE. After this training step, the obtained

network is called pre-trained network.

Define mean(tk) and std(tk) as the mean and standard deviation of LN for normal

training data at iteration tk, respectively, and denote MSEF as the MSE for faulty samples.

Now, the goal is to define a limit in such a way that LN gets values lower than the limit and

MSEF returns values higher than the limit. This limit changes as the number of iterations

increases, and it is connected to its previous states by adding momentum. The limit is

symbolized by limit(tk) at iteration tk, and it is formulated as follows:

limit(tk) = m× (mean(tk) + β × std(tk)) + (1−m)× limit(tk−1) for tk > 1 (4.3)

limit(t1) = mean(t1) + β × std(t1) for t1 = 1 (4.4)

where β and m are constants. The loss function for faulty samples can be formulated as

follows:

LF,tk

(
X

(i)
F , X̂

(i)
F

)
= max

(
0, α× limit(tk)−MSEF

(
X

(i)
F , X̂

(i)
F

))
(4.5)

where α is a constant, and LF,tk

(
X

(i)
F , X̂

(i)
F

)
is the loss function at iteration tk. The max

function in Eq. (4.5) penalizes faulty data that has lower reconstruction errors than α ×
limit(tk). When MSEF

(
X

(i)
F , X̂

(i)
F

)
increases, LF,tk

(
X

(i)
F , X̂

(i)
F

)
decreases. It also indicates

that Eq. (4.5) does not encourage the network to produce a very high reconstruction error

for faulty data, and thus does not stimulate the network to get high weights and biases.

In other words, if MSEF reaches values lower than α× limit, the network is encouraged to

increase their MSEs.
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After defining LF,tk , the overall cost function is defined to minimize the MSEs for

normal samples and to impose the penalty for the faulty samples simultaneously:

C(tk) =
1

n1 − q + 1

n1∑
i=q

LN

(
X

(i)
N , X̂

(i)
N

)
+

λ

n2 − q + 1

n2∑
i=q

LF,tk

(
X

(i)
F , X̂

(i)
F

)
(4.6)

where C(tk) denotes the cost function at iteration tk. λ is a non-negative real number that

serves as the trade-off parameter between LN and LF,tk . When λ is large, the network pays

more attention to reduce LF,tk , which may lead to a high reconstruction error for normal

data and the network may become ineffective. On the other hand, small λ encourages the

network to focus more on the reconstruction of normal samples, leaving the faulty samples

unexploited. Parameters of the pre-trained network are kept. Then, this network is trained

to minimize Eq. (4.6).

Once training of the SAAE is completed, assume that the ratio of normal data that

must be classified as normal is determined as pr. Then l∗ is the value that corresponds

to the objective that (1 − pr) × 100% of members of F get values higher that l∗, where

F = {MSE(X
(i)
N , X̂

(i)
N )}n1

i=q. It is recommended that the value of l∗ be determined from

validation normal set.

The overall steps for training an SAAE and obtaining l∗ are described in Algorithm 1.

In this work, BiLSTM SAAE with skip connection is selected for fault detection network.

Remark 3. In this work, α, β and m are predefined values, and generally, λ is the only

tuning hyper-parameter, whose value depends on the characteristics of input data and the

value of pr. β is set to 3, and the intuition behind it is as follows. If MSE for normal

samples follows a normal distribution, 99.7% of them lie between (mean − 3 × std) and

(mean + 3 × std). The momentum coefficient m makes the limit(tk) dependent on its

previous values. Its range is [0, 1], and it determines how much the value of limit(tk) is

related with its previous values. Greater the momentum coefficient m in Eq. (4.3) is,

less dependency between limit(tk) and limit(tk−1) exists. The value for α is determined

heuristically, which is calculated by

α =
r

mean(t0) + β × std(t0)
(4.7)
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Algorithm 1: Algorithm for Training SAAE

Input: Normalized normal and faulty sample matrices denoted by DN and DF ,

SAAE with pre-designed architecture, λ, m, β and pr

Output: Trained SAAE, l∗

1 Transform DN and DF using time window transformation (if applicable), and

construct normalized normal and faulty sample matrices XN and XF ;

2 Initialize parameters of the SAAE;

3 for i = 1, 2, . . . , i1 do

4 Train SAAE through minimizing Eq. (4.1) for 1 iteration

5 Calculate mean(t0) and std(t0)

6 α ← r
mean(t0)+β×std(t0)

, where r is calculated from pr

7 for j = 1, 2, . . . , i2 do

8 Calculate

9 mean(tj) ← mean
(
LN

(
X

(q)
N , X̂

(q)
N

)
, · · · ,LN

(
X

(n1)
N , X̂

(n1)
N

))
10 std(tj) ← std

(
LN

(
X

(q)
N , X̂

(q)
N

)
, · · · ,LN

(
X

(n1)
N , X̂

(n1)
N

))
11 if j = 1 then

12 limit(tj) ← mean(tj) + β × std(tj)

13 else

14 Update limit(tj) with m× (mean(tj) + β × std(tj)) + (1−m)× limit(tj−1)

15 Calculate C(tj) with Eqs. (4.5) and (4.6)

16 Train SAAE through minimizing Eq. (4.6) for 1 iteration

17 Output the trained SAAE model

18 Calculate F = {MSE(X
(i)
N , X̂

(i)
N )}n1

i=q

19 Determine l∗ in such a way that pr percent of members of F are lower or equal to

l∗.

where r is the corresponding l∗ for pr in the pre-trained network.

Remark 4. Even though that the training step of SAAE is explained by employing full
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data sets, it can be used together with mini-batches of training data.

4.1.2 Fault Diagnosis

The objective of the fault diagnosis network is to determine the classes of faulty samples

that are detected in the fault detection network, and in this work, fault diagnosis is regarded

as a multi-class classification task. Assume that the number of fault classes is denoted by nc.

Denote FDRi as the fault detection rate (FDR) obtained from the fault detection network

for fault class i (i = 1, · · · , nc), and FDR of the normal class is denoted by FDR0. Then,

a deep NN is designed for the classification task. The last layer of the NN model contains

nc +1 neurons, and the softmax function defined in Eq. (2.20) is adopted as its activation

function. This network is trained to minimize the weighted categorical cross-entropy loss

in Eq. (2.21) where the weight vector w is defined as

w =


θ × (1− FDR0)

θ × (1 + FDR1)
...

θ × (1 + FDRNc)

 (4.8)

where θ ≥ 1 is a constant dependant on the data and fault diagnosis network. It is noted

from Eq. (4.8) that the outputs of the fault detection network will affect the training of

the fault diagnosis network. If a fault is detected with a higher FDR, a higher weight

will be attached to this class in the diagnosis network. Thus the fault detection results

are incorporated into the fault diagnosis network. It is also worth noting that the fault

diagnosis network is trained on both normal and faulty training data. Nevertheless, the

weight for the normal class is lower compared to fault classes, which implies that the main

focus of the fault diagnosis network is to classify fault classes correctly.

In this work, the architecture of the fault diagnosis network is designed as a combina-

tion of BiLSTM and ResNet, and it aims to prevent the randomness caused by the random

proximity of input features in CNNs. BiLSTM has two recurrent components, a forward re-
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current component and a backward one. The forward component computes the hidden and

cell states similar to a standard unidirectional LSTM, whereas the backward component

computes them by taking the input sequence in reverse-chronological order (i.e. starting

from time step T to 1). The intuition of using a backward component is that the network

is set up in a way where it sees future data and learns its weights accordingly, which helps

the network to capture some dependencies which otherwise wouldn’t have been captured

by the standard (forward) LSTM. In addition to the importance of modeling bidirectional

time dependence, the order of features also plays an important role, which cannot be guar-

anteed in CNNs (except 1D-CNNs) due to the local operations. However, the outputs

of BiLSTM are not based on local operations, and all features are employed. Therefore,

BiLSTM is employed in our work to avoid the randomness caused by the feature order.

It has been observed that NNs with a high number of parameters can demonstrate

superior results. For instance, 110-layer Res-Net with 1.7 million parameters outperforms

20-layers Res-Net with 0.27 million parameters on CIFAR10 in the work of He et al. [99].

A similar pattern has been reported in the work of Huang et al. [104]. Motivated by these

works, a deep NN is designed for the fault diagnosis task, and its details are described in

Subsection 4.2.2.

4.1.3 Fault Detection and Diagnosis

In this subsection, the fault detection and fault diagnosis approaches in Subsections 4.1.1

and 4.1.2 are integrated. The FDD framework contains two phases, offline and online

phases, which are depicted in Figure 4.1. Its main steps are summarized as follows:

• Offline phase:

1. Separate the collected samples into normal and faulty sets, and normalize them;

2. Transform normal and faulty sets with a time window of size q, which produces

sample matrices with the dimension of q × p;
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3. Construct training, validation and testing sets from sample matrices;

4. Design SAAE architecture and select its parameters m and β with the methods

described in Subsection 4.1.1; Choose the value of pr and λ ;

5. Train the SAAE fault detection network with Algorithm 1 using faulty and

normal training samples;

6. Determine l∗ as the value that pr percent of validation (or training) normal

samples can be classified correctly;

7. Calculate weights for weighted categorical cross-entropy loss w after selecting θ

from Eq. 4.8 and the trained SAAE;

8. After designing fault diagnosis network, train the fault diagnosis network by

minimizing weighted categorical cross-entropy loss with normal and faulty train-

ing samples.

• Online phase:

1. Collect online data (or samples from the testing set), and normalize them with

the same procedure as in the offline step;

2. Convert the online data to sample matrices with the size of q× p with the time

window q;

3. If the sample class is known, update the offline model by going to Step 5 in the

offline phase; otherwise continue to Step 4 in the online phase;

4. Compute the MSE for online data with the trained SAAE-based fault detection

model;

5. Classify the sample as a faulty one if its MSE is higher than l∗; otherwise label

it as a normal sample;

6. Determine the class of the detected sample with the fault diagnosis network.

In this work, a BiLSTM-based SAAE with skip connections is selected for fault detection

network, and the combination of BiLSTM and ResNet is chosen as the fault diagnosis
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Figure 4.1: Flowchart of fault detection and diagnosis in online and offline phases.
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network, and the integration of these two networks through the steps described in this

subsection is named as SAAE-ResNet.

Remark 5. In the online phase, a sample that is detected as fault in the fault detection

network may still be classified as a normal sample by the fault diagnosis network.
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4.2 Experimental Results and Discussions

TEP has been regarded as a benchmark for comparing various fault detection and fault

diagnosis approaches. Relying only on a data set from one simulation run for training and

testing could lead to biased results, since random noises with different order of magnitudes

will affect industrial processes, and the results achieved from various simulation runs could

vary considerably [130]. To overcome these problems, training and testing data sets are

enriched with data from independent simulation runs. 100 and 30 simulation runs from the

training data set are utilized as training and validation data, and 40 simulation runs from

the testing data set are chosen as testing data. Further, samples under normal operating

conditions are discarded for faulty data sets. A time window of 40 is also introduced to

reshape the data, leading to 46100, 13830 and 36840 normal samples and 44100, 13230 and

30440 faulty samples (for each fault) for training, validation and testing data, respectively.

It is noted that for each fault, 10% of faulty samples are selected randomly from each

simulation run to reduce computation cost. This is a common situation in many real-

world industrial data since faulty data are not always available from the beginning of their

introduction. Therefore, for each fault class 4400 training samples are employed while the

testing set contains 30440 faulty samples.

Then the following transformation is applied for the jth variable of ith sample, x
(i)
j , to

ensure that the value of the normal samples is in the range of [−1, 1].

x̄
(i)
j = 2×

x
(i)
j −minn1

i=1 x
(i)
N,j

maxn1
i=1 x

(i)
N,j −minn1

i=1 x
(i)
N,j

− 1 (4.9)

In this study, the experiments are performed in Python 3.8 on a desktop computer

with Intel Core i7-6700HQ (2.60GHz, 12GB RAM) under 64Bit Windows 10 operating

system. NumPy [131], scikit-learn [132], and PyTorch [133] are used for implementation

of the experiments. Throughout this work, Adam [110] is chosen as the optimizer.
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Figure 4.2: Architecture of SAAEs for the fault detection networks with (a) 4, (b) 6, (c)

8, (d) 12 layers.

4.2.1 Fault Detection Results

In this section, the proposed SAAE is tested on TEP for fault detection, and its structure

is chosen based on BiLSTM layers with skip connections. To assess its performance, 4

SAAEs with 4, 6, 8 and 12 layers are designed and depicted in Figure 4.2. For instance,

in the SAAE with 8 layers, normalized input matrices with the dimension of 40 × 52 are

fed into an LSTM layer with 120 hidden size. Then, its output serves as the input of a

BiLSTM layer with 40 hidden neurons. Then, the output of this layer, which has the size

of 40 × 80 is added to the output of the third layer and makes the input of the fourth

layer. This pattern repeats for layers 4, 5 and 6. Next, the output of the last BiLSTM

layer with 40 hidden neurons (after applying skip connection) is fed to a BiLSTM layer and

results in output matrices with the size of 40×120. Then, an LSTM layer produces output

matrices with the identical size as the model’s input matrices. Based on the described

normalization technique in Eq. (4.9), the output values of the normalized normal samples

still lie in [−1, 1]. However, normalized faulty samples can fall out of [−1, 1], which is

compatible with the objective of SAAEs.

The parameters of SAAEs are set as m = 0.7, β = 3, and the range of λ is [4, 20]. pr,
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as a user-defined parameter, provides the flexibility for SAAEs to account for the precision

and recall trade-off, and its value is highly interwoven with process specifications. Batch

size for normal and faulty samples are set to 128 and 244 respectively. In Algorithm 1,

SAAE is trained for 5 epochs (i1 = 5) with learning rate of 0.001. In the second training

loop of this algorithm, training epochs is increased to 60 (i2 = 60), and the learning rate

is reduced to 0.0001.

Figure 4.3 shows FDRs of the pre-designed 4 SAAEs with pr = 0.995. As shown from

the figure, FDRs for Faults 1, 2, 4-8, 11, 12, 14 and 19 are 100.0% in all 4 SAAEs. All the

models show relatively low FDR for Fault 15, which may be related to the high user-defined

value for pr. It is observed that increasing the depth of SAAEs does not noticeably change

FDRs for Faults 10, 13, 16, 17 and 20. But for Faults 3, 9 and 18, FDRs are improved

by 1.7%, 10.1% and 0.6% from 4 to 8 layers SAAEs. Moreover, FDRs for Faults 3, 9 and

18 are decreased from 8 to 12 layers SAAEs, which indicates that increasing the number

of layers in SAAEs does not necessarily enhance FDRs. Faults 3, 9 and 15 are identified

to be difficult to detect [121, 134, 122]. However, it is observed that Faults 3 and 9 are

detectable with SAAE even in the case that FDR for normal samples is set to 0.995. The

average FDRs for all fault classes and normal validation set are 93.3%, 93.7%, 93.9% and

93.7% for SAAEs with 4, 6, 8 and 12 layers respectively, and SAAE with 8 layers is chosen

as the fault detection network for subsequent analysis since it shows superior results in

terms of the average FDR.

The comparison between AE and SAAE with 8 layers is illustrated in Figure 4.4. The

AE with 8 layers showed relatively low FDRs for Faults 3, 9 and 15, which reveals that

AEs are prone to misclassifying faults that behave similarly to normal samples. On the

other hand, FDRs for Faults 3 and 9 are improved considerably in the SAAE with 8 layers.

Average FDRs for all faults are improved from 84.2% in the AE to 93.6% in the SAAE.

Therefore, it is experimentally observed that the SAAE performs better than the AE in

terms of fault detection. Hence, the auxilary faulty training data set can contribute to the

anomaly detection task.
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Table 4.1: FDRs of SAAE, AE and binary classification for unseen fault groups on testing

set.

FDR for normal class
Average FDR of unseen faults

SAAE AE Binary classification

Unseen Faults 1-5 89.8% 99.4% 82.3% 82.2%

Unseen Faults 6-10 92.5% 96.0% 81.7% 86.5%

Unseen Faults 11-15 98.6% 80.3% 80.0% 80.1%

Unseen Faults 16-20 86.7% 99.4% 99.3% 86.0%

Average 93.8% 85.8% 83.7%

Figures 4.5 and 4.6 show the monitoring results using SAAE and AE for one simulation

run on the testing data. From the results, SAAE shows superior monitoring performance

compared to AE, and it is more sensitive to faults than AE, especially for Faults 3 and 9.

For Fault 15, the MSEs of SAAE are closer to its limit compared to AE. Since the FDRs

are affected by the control limit, whose value is determined by pr, it is hypothesized that

low FDR for Fault 15 in the SAAE is related to the high value of pr.

Another important feature of a fault detection technique is its ability to detect unseen

(new) fault classes. To evaluate the performance of SAAE, AE and binary classification

NN, 5 fault classes are held out and the networks are trained on the remaining fault classes.

The architecture of the binary classification NN is similar to the encoder part of the SAAE

with 8 layers with one additional fully connected (FC) layer with 2 neurons and softmax

activation function. Average FDRs for unseen fault classes for four groups of unseen faults

(Faults 1-5, Faults 6-10, Faults 11-15 and Faults 16-20) are presented in Table 4.1. For each

group, FDRs for the normal class are the same in all three networks. It can be observed that

the SAAE possesses a higher average FDR of unseen faults in all fault groups, and the AE

has a higher FDR for unseen faults compared to the binary classification NN on average.

Therefore, it is concluded that SAAE demonstrates better fault detection performance for

unseen faults compared to both AE and binary classification NN.
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Table 4.2: Performance of the SAAE and binary classification NN for fault detection with

imbalanced number of normal and faulty samples.

# of faulty samples
# of normal samples

FDR for normal class
Average FDR for faults

SAAE Binary classification

19.1% 98.9% 93.4% 92.6%

9.5% 99.5% 92.5% 83.5%

4.8% 99.9% 90.8% 82.9%

2.4% 100.0% 90.4% 76.2%

Average 91.8% 83.8%

Table 4.2 summarizes the results of the SAAE and binary classification NN for data sets

with imbalanced number of training normal and faulty samples matrices. 4 experiments

with different values for the ratio of normal to faulty samples are conducted. It is observed

that decreasing this ratio reduces the average FDR in the binary classification network, but

it decreases less noticeably in the SAAE. Further, SAAE shows 8% higher average FDR

in comparison to the binary classification network. Thus, SAAE is less sensitive to the

ratio of the number of faulty to normal data samples compared to the binary classification

network.
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Figure 4.3: Fault detection rates for normal and faulty validation samples using 4, 6, 8 and

12 layer SAAEs (pr = 0.995).

Figure 4.4: Radar plot of FDRs for fault detection AE and SAAE with 8 layers (pr = 0.995).
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Figure 4.5: Process monitoring using SAAE and AE (pr = 0.995) for Faults 1-10.
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Figure 4.6: Process monitoring using SAAE and AE (pr = 0.995) for Faults 11-20.

62



F
ig
u
re

4.
7:

A
rc
h
it
ec
tu
re

of
B
iL
S
T
M
-R

es
N
et

fo
r
fa
u
lt
d
ia
gn

os
is
.

63



4.2.2 Fault Diagnosis Results

In this work, a combination of BiLSTM and ResNet is used as the fault diagnosis network.

The BiLSTM layer aims to provide inputs to the ResNet in such a way that proximity of

the features could reveal relevant information and avoid randomness caused by the order

of features. Then, ResNet is used for the classification of samples. This architecture is

referred to as BiLSTM-ResNet, which is shown in Figure 4.7. It is noted that the BiLSTM-

ResNet is a very deep network with 52 layers, trained with both normal and faulty samples.

Each conv block consists of a convolution, batch normalization and activation function.

Residual connections are applied before the activation function of the corresponding conv

layers. BiLSTM layer provides 3D inputs to conv blocks. The output of the last conv block

is flattened and fed into a FC layer. The flatten operation and FC layer are equipped with

Dropout. The output layer, which is activated with softmax function, determines the

output of the BiLSTM-ResNet. Rectified linear unit (ReLU) is selected as the activation

function in the conv blocks and FC layer. Dotted lines in Figure 4.7 indicate that 1 × 1

convolution with the stride of 2 is added to the input for applying residual connection

operation.

For training the BiLSTM-ResNet, number of epochs, learning rate, batch size, mBN

and ϵ are set to 15, 0.001, 128, 0.1 and 10−5, respectively. In this subsection, categorical

cross-entropy loss is selected to make the results of the fault diagnosis network independent

from the fault detection network. Results of BiLSTM-ResNet are presented in Figure 4.8.

FDRs for all the faults (except Fault 15) are high and close in both training and testing

sets. Average FDRs on training and testing sets are 96.5% and 94.3%, which reflects the

good generalization ability of BiLSTM-ResNet. Moreover, testing FDRs for Faults 3, 9

and 15 are 95.8%, 81.2% and 34.9%, respectively, which implies that BiLSTM-ResNet is

able to diagnose Faults 3 and 9 to some extend.
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Figure 4.8: Fault diagnosis results of BiLSTM-ResNet on training and testing sets.

4.2.3 Fault Detection and Diagnosis Results

In the FDD framework, 8 layer SAAE and BiLSTM-ResNet are selected for fault detection

and fault diagnosis respectively, which is referred to as SAAE-ResNet. Results are ac-

quired for pr = 0.995, 0.93 and 0.905. Parameters of the 8 layer SAAE for pr = 0.995

are discussed in Subsection 4.2.1. For pr = 0.93 and 0.905, λ and i2 are set to 110

and 40, respectively. Once SAAEs are trained, 3 BiLSTM-ResNets are trained to min-

imize the corresponding weighed categorical cross-entropy loss (Eqs. (2.21) and (4.8)) for

pr = 0.995, 0.93 and 0.905. The results of the SAAE-ResNet are discussed in the next

subsection together with other existing fault diagnosis methods.
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4.2.4 Comparison Study

Several articles have reported the comparison results between deep learning and traditional

machine learning methods. Heo and Lee [135] pointed out that ANN outperforms modified

PLS by 10.5% lower false alarm rate. Wang et al. [136] compared stacked supervised auto-

encoder (SSAE) with SVM, and the results show the superiority of SSAE by 4.2% on

hydrocracking process and 39.6% on TEP in terms of classification accuracy. The analysis

reported by Zhang et al. [137] showed that stacked LSTM obtains higher FDR over PCA,

dynamic PCA, ICA, and dynamic ICA. According to these results, we mainly focus on

the discussion and comparison of deep learning-based techniques in this thesis. To further

illustrate the advantages of the proposed method over some traditional machine learning

methods, FDRs of the proposed SAAE, linear discriminant analysis (LDA) and kernel

SVM (K-SVM) for fault detection are reported in Table 4.3. It is noted that LDA and

K-SVM utilize both normal and faulty data for process modeling. As shown in the table,

the proposed SAAE achieves higher FDRs than LDA and K-SVM.

In the remaining of this subsection, a comprehensive comparison between SAAE-ResNet

and other deep learning-based approaches is conducted. Instead of reporting the numbers

in the corresponding papers, all the selected FDD models are re-simulated on the same

data set for the following reasons.

• Several articles excluded some fault classes or just considered the fault diagnosis

problem.

• The way that existing articles account for the dynamics of the TEP data (e.g., length

of the time window) may be different.

• The total number of samples used for training and testing is not consistent in the

literature.

• Some models are tested on limited number of data which may lead to biased results.
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Table 4.3: FDRs of LDA, K-SVM, and SAAE for fault detection.

Status index LDA K-SVM SAAE

Normal 40.4% 98.9% 99.5%

Fault 1 100.0% 100.0% 100.0%

Fault 2 100.0% 100.0% 100.0%

Fault 3 63.0% 2.1% 98.1%

Fault 4 64.9% 100.0% 100.0%

Fault 5 79.7% 100.0% 100.0%

Fault 6 95.4% 100.0% 100.0%

Fault 7 100.0% 100.0% 100.0%

Fault 8 91.3% 99.6% 100.0%

Fault 9 60.2% 1.6% 80.2%

Fault 10 63.8% 52.7% 99.9%

Fault 11 59.6% 81.6% 100.0%

Fault 12 92.0% 100.0% 100.0%

Fault 13 97.0% 97.6% 99.5%

Fault 14 60.8% 100.0% 100.0%

Fault 15 60.3% 1.8% 1.9%

Fault 16 60.1% 27.4% 100.0%

Fault 17 99.6% 99.1% 99.6%

Fault 18 91.9% 96.9% 97.9%

Fault 19 59.7% 5.4% 100.0%

Fault 20 99.7% 97.9% 99.3%

Average FDR for faults 80.0% 73.2% 93.8%

• Fault detection time, as an important aspect of a FDD model, is not reported fre-

quently in the literature.

In order to make a fair comparison between various approaches, both FDR and F1 are
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taken into account, and the testing set is enriched with samples from different simulation

runs. For comparing the proposed approach with existing approaches, their FDR on the

normal data is tuned to comparable values, and multiple comparisons with different FDRs

on the normal class are conducted if possible. Suggesting specific procedures for conducting

a fair comparison is inevitable, which are demonstrated in the following.

In a work by Wu and Zhao [34], 12 different architectures of CNNs were tested. For

making the comparison, the architecture that showed the highest testing average FDR is

selected. This architecture encompasses 3 convolutional layers with a 3 × 3 kernel size, 1

max pooling layer with a 2 × 2 kernel size, and 2 fully-connected layers. The output of

these convolutional layers is flattened, and the FC layer with 300 neurons and a dropout

rate of 0.5 produces the input of the next layer. In the next layer, an FC layer with the

softmax activation function produces the output of the network. The number of neurons

in this layer is set to 21. 2 networks with nf equals to 128 and 150 are trained, where nf

is an integer denoting the number of filters in the convolutional layers. Each network is

trained for 50 epochs. Batch size and learning rate are set to 128 and 0.001, respectively.

The comparison between unidirectional and bidirectional RNN showed the superiority

of the later one by Zhang et al. [36]. Table 4.4 describes two architectures based on

bidirectional gated recurrent unit (BiGRU), called BiGRU 1 and BiGRU 2, which are

used for the comparison in this subsection. It is notable that linear transformation is

selected to connect outputs from both time directions in BiGRU 1 and BiGRU 2. Dropout

rate, number of epochs, batch size and learning rate are set to 0.5, 50, 100 and 0.0004,

respectively.

The work of Heo and Lee [135] is selected for ANN comparison, and two architectures of

(102-50-40-21) and (400-200-200-21) are selected for ANNs. The number of epochs, batch

size and learning rate are set to 70, 100 and 0.001, respectively.

Wang et al. [136] proposed SSAE to extract relevant features for classification task, and

declared that it outperforms stacked AE (SAE). Three stacked layers with 660, 330 and

165 neurons that are activated by tanh together with a softmax activated output layer with
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Table 4.4: Structures of NNs for comparing with BiGRU.

Layer Type Dropout rate Architectures

BiGRU 1 BiGRU 2

1 BiGRU 0.5 40× 40 40× 48

2 BiGRU 0.5 40× 30 40× 36

3 BiGRU 0.5 40× 21 40× 21

Averaging 21 21

Softmax 21 21

21 neurons are selected to test the effectiveness of SSAE and SAE. For training both SSAE

and SAE networks, learning rate and batch size are set to 0.0001 and 64, respectively. For

the pre-training step, the number of epochs is set to 30, and it is increased to 70 for the

fine-tuning step.

Wu and Zhao [138] proposed process topology convolutional network (PTCN) to take

advantage of the process flowchart information. Three stacked graph convolutional layers

with the hidden dimension of 40 followed by an FC layer with 300 neurons equipped with

the dropout rate of 0.5 and an output layer with softmax activation function and 21 neurons

is selected to evaluate the performance of PTCN. Learning rate, batch size, and the number

of epochs are set to 0.001, 128 and 50, respectively. Unobserved variables are initialized to

zero and the adjacency matrix for TEP is transposed.

Multiblock temporal convolution network (MBTCN) was proposed by He et al. [139]

for fault diagnosis. The comparison is made by using the official implementation, which is

provided by the authors. The architecture and parameters of MBTCN are identical to the

original MBTCN except for the batch size, number of epochs and learning rate. For the

first 33 epochs, batch size equals 24, and it is increased to 64 for the next 7 epochs. The

learning rate is reduced to 0.0001 from 0.001 in the last 2 epochs.

The results of the aforementioned techniques are summarized in Table 4.5. As shown in
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Table 4.5: Comparison results of fault detection and diagnosis between different methods

based on the testing set for TEP.

Status index

Proposed

BiRNN MBTCN ANN PTCN SAE SSAE CNNSAAE-ResNet

pr=0.905 pr=0.93 pr=0.995

FDR FDR FDR FDR FDR FDR FDR FDR FDR FDR

Normal 94.7% 96.0% 99.2% 93.1% 97.6% 91.9% 97.8% 93.5% 95.2% 91.5%

Fault 1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Fault 2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Fault 3 97.6% 97.0% 97.6% 96.8% 85.4% 90.4% 83.5% 87.8% 94.6% 50.1%

Fault 4 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Fault 5 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.8% 100.0% 99.9%

Fault 6 100.0% 100.0% 100.0% 98.5% 100.0% 100.0% 100.0% 99.2% 100.0% 100.0%

Fault 7 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Fault 8 99.4% 99.4% 99.4% 98.6% 99.4% 99.0% 99.6% 97.9% 97.9% 98.6%

Fault 9 78.7% 76.3% 72.7% 74.4% 57.7% 30.8% 17.7% 40.3% 21.7% 2.5%

Fault 10 98.6% 98.6% 98.6% 97.7% 98.8% 95.2% 94.3% 96.2% 94.0% 94.6%

Fault 11 99.9% 99.9% 99.9% 99.4% 99.9% 99.6% 99.7% 96.8% 98.5% 99.6%

Fault 12 93.4% 93.4% 93.4% 85.0% 96.0% 92.4% 93.7% 86.2% 85.5% 94.4%

Fault 13 96.7% 96.7% 96.7% 95.8% 96.2% 97.0% 96.8% 96.2% 95.6% 96.3%

Fault 14 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.9% 99.9% 100.0%

Fault 15 25.7% 21.2% 1.3% 28.1% 0.2% 9.9% 4.3% 8.7% 5.0% 8.0%

Fault 16 99.5% 99.5% 99.5% 99.1% 99.7% 95.4% 95.6% 94.5% 92.7% 88.5%

Fault 17 99.5% 99.5% 99.5% 99.4% 99.5% 99.3% 99.3% 99.3% 99.3% 99.3%

Fault 18 97.4% 97.4% 97.0% 97.8% 98.1% 97.9% 98.1% 97.9% 97.5% 97.7%

Fault 19 99.6% 99.6% 99.6% 97.3% 100.0% 81.3% 98.4% 74.7% 67.8% 99.8%

Fault 20 99.3% 99.3% 99.3% 99.3% 99.2% 99.1% 98.9% 99.0% 99.1% 98.6%

Average FDR for faults 94.3% 93.9% 92.7% 93.4% 91.5% 89.4% 89.0% 88.7% 87.5% 86.4%

Average FDR 94.3% 94.0% 93.0% 93.3% 91.8% 89.5% 89.4% 89.0% 87.8% 86.6%

Average F1 94.1% 93.7% 92.0% 93.3% 90.8% 89.1% 88.5% 88.5% 87.2% 85.8%
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the table, the CNN shows the lowest FDR on normal class, average FDR and F1, and it has

a lower FDR for Faults 3, 9, 15 and 16 compared to other techniques. The inferior FDD

performance of CNN may be related to the randomness brought by the order of features.

To address this defect, MBTCN uses 1D convolutions which eliminates the influence of the

proximity of features in CNNs. In SAAE-ResNet, a BiLSTM layer is placed before the

CNN layers to assist the network to provide proximity-relevant inputs for CNN layers.

The pre-training step in the training of SAEs tries to extract features in an unsupervised

manner, and SSAE is an extension of SAE in which the labels of inputs are used in the pre-

training step. FDR for Fault 3 is higher in the SSAE, but it is lower in Fault 9 compared

to the SAE. The average of FDRs for faults and F1s are higher in the SAE but FDR for

the normal class is higher in the SAE. This indicates that the results do not support the

superiority of SAE or SSAE over each other for FDD in our experiment.

The PTCN takes into account the adjacency information from the process flowchart.

It outperforms both SAE and SSAE since the FDR for normal class, average FDRs for

faults and F1s are higher in the PTCN. However, FDR for Fault 9 is much higher in the

SAE compared to the PTCN.

The ANN obtains a lower FDR for the normal class and higher average FDRs and F1

compared to the PTCN, SAE and SSAE. Thus, the performance of the ANN does not

necessarily surpass the performance of the PTCN, SAE and SSAE. It is notable to point

out that the SAE and SSAE, which are based on ANNs, and the ANN present lower FDRs

for Fault 19 compared to other techniques.

The MBTCN takes use of the process flowchart to make its blocks and 1D convolutions

to avoid the randomness caused by the order of features. The MBTCN shows a higher

FDR for the normal class and average FDR and F1 compared to the ANN, SAE and SSAE,

which shows that the MBTCN outperforms them. Also, FDR for Fault 9 is much higher

in the MBTCN compared to the PTCN.

In a classification task, BiRNNs make the decision on the classes of the inputs by
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extracting information from both time directions, and it achieves a higher FDR for incipient

Fault 15.

Figure 4.9: The details of FDD results on testing set for SAAE-ResNet with pr = 0.905.

The performance of the proposed method is evaluated in three levels of FDR for the

normal class. It is observed that the proposed method with pr = 0.995 outperforms the

MBTCN, ANN, PTCN, SAE, SSAE and CNN. For pr = 0.93 or pr = 0.905, FDR on

normal class and average FDR and F1 are higher for the proposed method compared to

the BiRNN. Hence, SAAE-ResNet outperforms the other existing techniques in terms of

average FDR. Moreover, the average FDR for incipient Faults 3, 9 and 15 is the highest in

SAAE-ResNet with pr = 0.905. The results of this network is further elaborated in Figure
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4.9. From this figure, it is observed that samples with actual class of Fault 15 are mainly

predicted as normal by the SAAE.

Figure 4.10: Average fault detection time for different techniques on testing set for TEP.

Another important metric of an FDD technique is how fast it can detect faults, since

faster response is highly demanded in actual industrial processes. In this work, the criterion

for calculating fault detection time is that the model detect 3 consecutive samples as fault.

Average fault detection time is calculated as the average time required for a model to meet

this criterion from the introduction of faults for all fault types. Figure 4.10 shows the

average fault detection time for different FDD techniques. For pr = 0.995, the FDR for

the normal class is higher and the average fault detection time is lower in SAAE-ResNet,

compared to the MBTCN and PTCN, indicating its superiority over the MBTCN and

PTCN in terms of average fault detection time. Similarly, SAAE-ResNet outperforms the

SSAE for pr = 0.93 and the BiRNN, SAE, ANN, CNN for pr = 0.905. Hence, SAAE-

ResNet has a lower average fault detection time compared to other techniques.

Figure 4.11 shows the performance of various FDD techniques on training and testing

data sets. The difference in average FDR on training and testing sets is considered as a

metric of generalization ability. It is noted that to avoid overfitting issue, MBTCN and

PTCN use knowledge from the process flowchart, and BiRNN and CNN employ dropout

technique. From Figure 4.11, the difference between average FDR on training and testing

sets in MBTCN and SAAE-ResNet with pr = 0.995 are 1.2% and 0.7%, which indicates

the superior generalization ability of SAAE-ResNet over MBTCN.
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Figure 4.11: Average FDR from different techniques on training and testing sets.

Based on the discussions, SAAE-ResNet shows superior results in terms of the average

FDR and F1, generalization ability, average fault detection time, and average FDR for

incipient faults. This technique also provides a framework for handling precision and recall

trade-offs.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this work, an unsupervised anomaly detection technique, referred to as self-adversarial

autoencoding classifier (SAAC), is proposed, and it is trained on normal samples in an end-

to-end manner. The ability of adversarial autoencoders (AAE) for irregularity generation

before convergence is coupled with the competence of the autoencoding binary classifier

(ABC) to detect unseen anomalies, which enable utilizing ABC in an unsupervised manner.

In this thesis, ABC is improved by introducing a new hyper-parameter, and the AAE is

employed as an irregularity generator. Moreover, a framework to adversarially train these

two networks is also proposed in this work. The superior anomaly detection performance

of SAAC is demonstrated through the comparison with other strong techniques on three

benchmark data sets.

To fully exploit the labelling information once it becomes available, a two-step and

supervised fault detection and diagnosis method is proposed. For fault detection, autoen-

coders are extended to source-aware autoencoder, which has the following advantages:
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providing the flexibility to adjust precision and recall trade-off, being able to work with

and without faulty samples, being convenient for imbalanced data sets in terms of number

of faulty and normal samples, and being re-trainable once a new fault type emerges or

more faulty samples become accessible. Bidirectional long short-term memory with skip

connections is designed for fault detection. Integration of BiLSTM and ResNet is designed

for the fault diagnosis task, and the BiLSTM layer is designed to address the issue of

randomness caused by the order of features. A FDD framework is also discussed, where

the fault diagnosis network is stimulated to be trained based on the results of the fault

detection network. Thus, the assumption of employing fault detection and fault diagnosis

techniques separately is removed in the SAAE-ResNet.

Tennessee-Eastman process is selected to investigate the efficacy of the proposed FDD

methods. SAAE shows better performance in terms of the average FDR compared to

AE, and it is more competent than the AE and binary classification networks for detect-

ing unseen fault classes, and is less sensitive to imbalance data sets. The results of the

comprehensive comparison between different techniques on TEP not only show that SAAE-

ResNet is capable of addressing the problem of tuning precision and recall trade-offs, but

also demonstrate its superiority with lower fault detection time, higher average FDR and

F1, and generalization ability.

5.2 Future works

The proposed SAAE shows superior fault detection results with imbalanced data sets.

However, imbalanced data sets could exist in the subsequent fault diagnosis step as well.

One approach to account for the imbalanced number of fault-fault samples is to employ

GANs for data generation. In this way, the class that has fewer samples can be enriched.

Several promising research directions include i. exploitation of data from different modes

of a process in the design of GANs, and ii. incorporation of process knowledge into GANs.

Furthermore, evaluating the quality of generated samples from GANs is still an open
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research topic.

It is common to encounter a chemical process working in different operating conditions

(modes) to achieve certain output specifications. To develop FDD techniques for each

mode, having access to an enriched data set is a must. To fully exploit the data acquired

from the process, it is important to take advantage of the data gathered from other modes of

the process in the FDD technique of a specific mode. In these scenarios, transfer learning is

a solution to transfer knowledge from a source task (in this case other modes of the process)

to a target task (in this case the selected mode of the process). In this research direction,

proposing combinations of GANs with the concept of transfer learning to generate samples

from one mode of the process with employing the data from other modes is demanded.

Furthermore, self-supervised techniques have received increasing attention during re-

cent years due to their generalization ability, in which the data is used as the source of

supervision to itself. Thus, the expensive work of data labeling can be abandoned in self-

supervised approaches compared to supervised ones. In the pre-text task of self-supervised

learning, a model is trained with the unlabeled data, and the acquired knowledge is trans-

ferred in the down-stream step. Even though self-supervised learning shows a considerable

improvement in the field of natural language processing and computer vision there exists a

few works regarding time-series anomaly detection with self-supervised approaches, namely

the works of Liu et al. [140] and Bailly et al. [52]. Designing novel pre-text tasks suitable

for time-series chemical process data, employing the process knowledge in the pre-text

step, and utilizing GANs, before and after convergence like SAAC, for self-labeling in the

pre-text step can be explored as the future directions.
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