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Abstract

Modelling human generated text, i.e., natural language data, is an important challenge
in artificial intelligence. A good AI program should be able to understand and analyze
natural language, and generate fluent and accurate responses. This standard is seen in
applications of AI for natural language like machine translation, summarization, and dialog
generation, all of which require the above ability. This work examines the application of
deep neural networks for natural language generation. We explore how graph convolutional
networks (GCNs) can be paired with recurrent neural networks (RNNs) for text generation.

GCNs have the advantage of being able to leverage the inherent graphical nature of
text. Sentences can be expressed as dependency trees, and GCNs can incorporate this
information to generate sentences in a syntax-aware manner. Modelling sentences with
both dependency trees and word representations allows us to disentangle the syntactic
components of sentences and generate sentences while fusing parts of speech from multiple
sentences. Our methodology combines the sentence representations from an RNN with
that of a GCN to allow a decoder to gain syntactic information while reconstructing a
sentence. We explore different ways of separating the syntax components in a sentence
and inspect how the generation operates.

We report BLEU and perplexity scores to evaluate how well the model incorporates the
content based on its syntax from multiple sentences. We also observe, qualitatively, how
the model generates fluent and coherent sentences while assimilating syntactic components
from multiple sentences.
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Chapter 1

Introduction

1.1 Background

Artificial intelligence (AI) has been responsible for some of the most striking breakthroughs
in all of science and technology in recent times. A relatively recent form of AI called
deep learning has been the driving force behind these breakthroughs. Since 2012, when
Alexnet achieved the best scores in the Imagenet Competition ([GE, 2019]), deep learn-
ing has been setting new benchmarks and achieving superhuman performance in various
tasks in computer vision and natural language processing (NLP), among others. In 2016,
deep learning captured the world’s attention with Deepmind’s remarkable victory at the
complex game of Go ([Silver et al., 2016]), and later in December 2020, with AlphaFold
([Evans et al., 2021]), which made improvements to the extremely difficult problem of pro-
tein folding ([AlphaFold, 2020]). AlphaGo evolved to become AlphaZero ([Silver et al., 2018]),
which became the best player in the world in Shogi, Chess, and Go. AlphaZero, in turn,
has been refined into MuZero ([Schrittwieser et al., 2020]) which is also an expert on sev-
eral visually complex Atari games. We now have self driving cars that can travel fully
autonomously on highways ([Zon and Ditta, 2016]), conversational agents that can under-
stand complex spoken information ([Hussain et al., 2019]), and AI-powered medical and
legal assistants ([TMF, 2021], [Sobowale, 2016]).

In the domain of natural language, again in 2020, OpenAI released their third version
of Generative Pretraining with Transformers, or GPT-3 ([Brown et al., 2020]). This model
could write fluent paragraphs on both general and specialized topics and perform aston-
ishingly well on a diverse set of natural language tasks. GPT-3 received plenty of media
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attention for how close it seemed to a human as it wrote poems on Elon Musk, breaking
news stories, and explained medical symptoms ([Piper, 2020]).

All of these successes are underpinned by a seemingly simple yet powerful mechanism:
machine learning (ML), and, more specifically, deep learning. The paradigm of machine
learning is based on learning the rules of making a prediction from data, rather than
explicitly programming the rules. Machine learning algorithms extract patterns from data
belonging to a certain distribution and use those patterns to make predictions on novel
data from the same distribution. For example, an ML algorithm can be fed factors relevant
to house prices in a city like square feet, location, number of rooms, etc. Using this data
and the corresponding prices, the algorithm can predict house prices for a new set of
factors. Deep learning improves this ability by scaling to significantly larger amounts of
data and boosting its performance as the data increases ([Copeland, 2016]). It uses an
architecture called neural networks to approximate a function, or fit a curve, to the data
distribution. While this approach was computationally very expensive historically, since
Alexnet in 2012, we have been able to leverage improvements in computer hardware, i.e.,
graphical processing units (GPUs), to make deep learning on large datasets feasible.

This work is in the sphere of applying deep neural networks to natural language data,
or human-generated text. Modelling natural language is a unique and important challenge
in AI due to the nature of the data. It is unstructured data, in that it does not conform
to a pre-defined format and varies in the content and number of words. Natural Language
Processing or NLP is the field of using computers to process and analyze text. Deep
learning has proven to be an effective means of understanding and generating text data
and has been implemented with great success to NLP tasks involving text generation like
machine translation, dialogue generation, summarization, and question answering.

We use two architectures that have been used for NLP tasks; sequence models, or
recurrent neural networks (RNNs), and graph convolutional networks (GCNs), for the task
of sentence generation. We use the encoding and decoding abilities of RNNs with the
capacity of GCNs to capture the syntactic information in sentences. We combine these
two architectures to generate fluent sentences while incorporating informaton from more
than one sentence.

1.2 Motivation and Problem Definition

Graph Convolutional Networks (GCNs) are a recent class of neural networks that have
been used in the domain of natural language. First proposed in [Kipf and Welling, 2016],
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they have the advantage of being able to leverage the graphical information inherent in
natural language. This makes them an architecture worth considering alongside others in
vogue during these times like Transformers ([Vaswani et al., 2017]).

Disentanglement is a current research problem in deep learning where the goal is to
separate two or more latent spaces in the data so as to be able to use them for downstream
tasks. This work explores disentangling the syntactic components of sentences. This lets us
generate sentences while controlling its syntactic components and allows us to manipulate
text at the level of granularity of syntax. Figure 1.1 shows an example of a sentence
from the dataset we used in our experiments. Each word is labelled with its dependency
grammar with the arrow going from the head word to the dependent word as well as
whether it belongs to Subject-Verb-Object category of words, or SVO, or not, denoted by
NonSVO.

Figure 1.1: An example of splitting a sentence into SVO and NonSVO

1.3 Contributions

The contributions of this work are listed below:

• We explore different ways of separating syntactic components in sentences and how
they can be used in natural language generation.

• We investigate how combining graph convolutional networks (GCNs) with RNNs
impacts text generation.

• We conduct experiments on the sentence generation task and evaluate the generated
sentences both with quantitative metrics and qualitatively.
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1.4 Chapter Outline

The remainder of this thesis is organized as follows:

• Chapter 2 provides an overview of the deep learning methods and architectures used
in this work

• Chapter 3 describes the proposed model and the training process

• Chapter 4 explains the different experiments performed and the results of the quali-
tative and quantitative evaluations.

• Chapter 5 gives a summary of the work, the conclusions we reach, and future direc-
tions of work.

4



Chapter 2

Background and Related Work

In this chapter, we first describe machine learning, and two of its widely used versions,
supervised and unsupervised learning. We then focus on deep learning, and how it applies
to NLP. To this end, we outline, recurrent neural networks (RNNs), and its two versions,
Long Short Term Memory (LSTM) networks and Gated Recurrent Units (GRUs). Follow-
ing this, we go over word embeddings, a foundational component of deep learning in NLP,
and then sequence to sequence (Seq2Seq) models and autoencoders, which are used to
learn representations and for text generation. We then review dependency trees and graph
convolutional networks which form the second component of the proposed methodology
for text generation. Finally, we briefly go over the task of sentence generation, with which
we evaluate the proposed model.

2.1 Machine Learning

Machine learning (ML) has seen tremendous success by learning from example data. An
ML algorithm goes over data points and learns a function to approximate the data. Using
backpropagation ([Rumelhart et al., 1986]), and certain optimization techniques and acti-
vation functions, the algorithm starts with a random set of parameters for the objective
function and eventually converges to a function that best estimates the data. The algo-
rithm can be thought of as a function representing a curve and the data consisting of data
points lying in some n-dimensional space. The algorithm wants to converge to a curve that
manages to fit the data points as accurately as possible.

This technique now forms a significant part of our everyday lives. From the spam filter
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in our email inboxes, to the voice assistants on our phones, and from the recommenda-
tions on our online shopping and social media apps, to the fraud prevention alert in our
banking apps, ML is versatile and reliable enough to deliver effective predictions in a wide
variety of contexts and scenarios. ML has successfully integrated itself into technology by
being able to scale to billions and trillions of data points and being faster than humans
in processing this volume of data, while being at times more accurate than humans at
making complex predictions. We can describe ML in two ways as either using supervised
learning or unsupervised learning. ML can also take the form of semi-supervised learning
and reinforcement learning, but they will not be covered in this work.

2.1.1 Supervised Learning

In supervised learning, the algorithm, or model, is given the data points with the correct
predictions that it is supposed to make from the data. These correct predictions are called
labels or ground truth data. The algorithm starts off with a random set of parameters and
makes a prediction. It then compares its predictions to the labels and makes adjustments
to itself to better predict the label. It keeps repeating this process to improve its estimation
of all the labels. Once it has been trained in this way for long enough, it can accept some
new data and make a prediction based on the data it has seen so far.

For example, image classifier can be trained to recognize pictures with cats and those
without. We would label all images with cats as 1 and those without as 0. The learning
algorithm would be fed the pixel information of all the images and would then make a
prediction. It would then compare its predictions with the labels and make adjustments to
itself to be able to better predict which pictures have cats and which don’t. With a good
model architecture and the right amount of data, this method can lead to models that can
make extremely accurate predictions, especially on highly specialized tasks.

2.1.2 Unsupervised Learning

In unsupervised learning, we give the model data as before but without giving it any
explicitly annotated labels. The model learns the patterns in the data without making any
prediction about a specific data point for a label. This method can be used for clustering
algorithms to separate the data into different groups and assign new data points to those
groups. This is useful in fraud and anomaly detection systems to see if incoming data
points are outliers.
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In some cases, even without labels, we can designate a part of the data as the label the
model needs to predict. In NLP, for example, a model can be trained as a language model
by teaching it to predict the next word after certain intervals in a dataset of documents.
This method and others similar to it were applied with great success to build very pow-
erful language models like the transformer ([Vaswani et al., 2017]), and its variants like
BERT([Devlin et al., 2018]) and GPT([Brown et al., 2020]). In other NLP tasks like topic
modelling, an unsupervised algorithm can learn which words occur in which documents,
and group documents by the words, and therefore, by the topics that occur in those doc-
uments. Thus, a collection of documents can be divided into the topics it represents like
technology, politics, medical, sports, entertainment, etc.

2.2 Deep Learning

One variety of machine learning involves the use of Artificial Neural Networks (ANNs).
Inspired by the neurons in our brains, a neuron in an ANN is a function that processes
some input passing through it. An ANN consists of multiple such functions or nodes
connected to each other by edges, which form the weights for the operations in the nodes.
The process of input data passing through multiple such neurons as part of a network
is intended to evoke the idea of information signals passing through the neurons in the
human brain. With the advent of powerful GPUs and the availability of massive amounts
of data as a result of our increasingly digitized lives, architectures based on using neural
networks have enjoyed great success and have become the most prominent and effective
form of machine learning in the last decade. The paradigm of using neural networks has
been termed as deep learning and model architectures using dense configurations of these
neural networks are called deep neural networks [LeCun et al., 2015].

Multiple forms of neural networks exist and some are more suited to certain use cases
and problems. For example, feed-forward neural networks can handle structured data like
data from sensors, etc., while image data benefits from being processed with convolutional
neural networks (CNNs) [Bengio and Lecun, 1997]. RNNs [Williams and Zipser, 1989],
[Elman, 1990] are suited for sequential data like time series (stock ticker data), and text
data.
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2.2.1 Introduction to Neural Networks

Figure 2.1: Perceptron from [Arc, 2018]

At the heart of all the extraordinary achievements of neural networks lies the perceptron
[Rosenblatt, 1958], as shown in figure 2.1. In its simple form, it is a binary classifier that
accepts multiple inputs x1, x2, x3... and gives an output y that either belongs to one of two
categories that the output can belong to. Each input xm has a weight wm assigned to it;
they are multiplied and added to a bias term b, in order to better fit the function curve
lying in the data space the model is trying to learn. Depending on whether the result of
this calculation falls above or below a certain threshold, the output is either class 0 or 1.

In modern neural networks, this binary classifier is replaced with a special type of
mathematical function called an activation function, and the inputs are said to be fed
to neurons rather than perceptrons. Activation functions like the Rectified Linear Unit
(ReLU), sigmoid and tanh are the most popular functions used in deep learning. These
functions are necessary to introduce non-linear transformations in the data, to capture
complex functions like which subset of pixel values among all possible pixel permutations
indicate cat pictures. The deep in deep learning refers to multiple such sets of neurons
stacked in literal ‘deep’ layers, like in figure 2.2, to perform numerous computations on the
inputs being fed to them. The multiple layers between the input and output layers are
referred to as hidden layers.
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Figure 2.2: Feed-forward neural network

Initially, the weights for the inputs are randomly assigned, and thus the prediction of
the network will be distant from the correct prediction, or ground truth. The weights are
then adjusted, which forms the learning part of the algorithm. Knowing how much to
adjust the weights is crucial to the ability of deep neural nets to fit a high-dimensional
function to data points in an even higher-dimensional space. This ‘distance’ between the
prediction and the target is determined by something called a loss function like mean-
squared error or cross-entropy depending on the task. The loss function is also called the
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objective function or the cost function. The adjustment to the weights happens through a
process called gradient descent.

A deep neural net can be thought of as attempting to model a curve. This curve will lie
in the high-dimensional space that encompasses all possible data points. The data in the
training set, or the ground truth is lying somewhere in this space. The goal of the neural
net is to learn a curve that fits this data. Hence, a deep model is often said to be trying
to learn a latent representation of the data presented to it. Gradient descent takes the
derivative of this function representing the curve to get its slope. This indicates whether
the slope is approaching the global optimum, say the global minimum in this case, since
we are trying to reduce the distance between the ground truth and the prediction. This
slope, or gradient, then lets us perform backpropagation [Rumelhart et al., 1986], to use
the error in the prediction to update the weights of the network or model.

More concretely, the weight update can be described as:

wn+1 = wn − α∇f(wn) (2.1)

where wn+1 is the updated weight and wn is the current weight. α denotes the learning
rate and indicates how big the adjustments to the weights or steps should be along the
gradient.

With every data point that the model uses its weights to make a prediction on, gradient
descent with backpropagation updates the weights in order to decrease the score from the
loss function, i.e., the error. This process repeats for the entirety of the dataset, and
multiple passes over the full dataset, called training epochs, until it makes as accurate
predictions as it can; the loss value cannot be reduced any more. We then say that our
network or model is trained.

10



2.2.2 Recurrent Neural Networks

Figure 2.3: Recurrent Neural Network from [Olah, 2015]

When it comes to natural language processing, the data have dependencies with each
other. Words are part of a sequence, with the sequence being a sentence or a document.
Feed-forward neural networks however, are designed in such a way that all the data are
processed independently of each other. In natural language, the occurrence of a word in a
sentence is contingent on the word that appeared previous to it. In order to build systems
that can process this information, it is important that model architectures are able to
preserve information that appeared previously in a sequence to inform the computation
and decision making for the current data point. RNNs are suited for this case because
they contain loops that carry information from previous tokens in a sequence to the next,
as shown in figure 2.3. Each loop deals with a token in the sequence while carrying over
information from the previous loops.

Tokens in a sequence, such as words in a sentence, or characters of words in a sentence,
are fed in sequentially, one by one, or in each timestep to the RNN. As shown in figure
2.4, the input to the network is denoted by xt at timestep t. The RNN computes a hidden
representation for the input ht, which is sent as input to the step t + 1. A hidden weight
also exists for the previous timestep t− 1. This ht−1 also goes as an input. The RNN uses
these inputs to compute the output ot. yt is the target at step t, Lt is the loss, while V , W
and U are the learned weight matrices for the output, hidden, and input states respectively.
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Figure 2.4: Unfolded RNN from [Goodfellow et al., 2016]

12



2.2.3 Long Short Term Memory

Figure 2.5: LSTM from [Xu et al., 2015]

While RNNs facilitate taking information from the previous token to the next one, the
basic version or vanilla forms of the RNN are not suited for capturing very long-term
dependencies. For example, in a reading comprehension task, the information in a sentence
near the beginning of a paragraph may be needed to infer or understand information a
considerable number of words later near the end of the paragraph. This is because RNNs,
just like other neural networks, are trained with backpropagation, and suffer from the
vanishing and exploding gradient problems [Pascanu et al., 2012]. In the case of RNNs,
backpropagating a signal over a long distance in a sequence causes the gradient values to
become too small, leading to numerical underflow [Pascanu et al., 2013].

While exploding gradients can be solved by techniques like gradient clipping
([Pascanu et al., 2012]), some modifications have been proposed to vanilla RNNs to im-
prove their ability to retain information over longer distances in a sequence. The two
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widely used architectures in this instance are Long-Short Term Memory Networks (LSTMs)
[Williams and Zipser, 1989] and Gated Recurrent Units (GRUs) [Cho et al., 2014].

In LSTMs, in addition to a hidden state. there is a cell state at time step t, ct, to
retain information over longer distances. In the same way as an RNN, there is an input
xt and the previous hidden state ht−1. The previous cell state ct−1 learns the long-term
information needed and sends it to the next step. How much information is to be carried
by the cell state is determined by three gates, the input gate it, the forget gate ft and the
output gate ot

The equations of the gates are:

it = σ(Wi · xt + Ui · ht−1 + bi) (2.2)

ft = σ(Wf · xt + Uf · ht−1 + bf ) (2.3)

ot = σ(Wo · xt + Uo · ht−1 + bo) (2.4)

σ is the sigmoid activation function. A candidate cell state C̃t is computed to determine
whether to replace the previous cell state should be replaced or carried forward to the next
time step.

C̃t = tanh(WC · [ht−1, xt] + bC) (2.5)

The cell state for the current time step can then be computed as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.6)

The forget gate can thus be seen as learning how much of the information from previous
time steps to be carried forward with Ct−1 and the input gate it determines how much of
the current word should be incorporated into the cell state.

ht = ot ∗ tanh(Ct) (2.7)

The final latent representation at that time step is then computed with the output gate
as above.
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Bidirectional LSTMs

In some cases, this architecture can be made more powerful by allowing it to look ‘ahead’
in time and use information from further ahead in a sequence. In the description above,
the LSTM is able to ‘see’ and retain information from the start of a sequence and then
further up at each timestep. In the bidirectional case, another LSTM takes in information
from the reverse direction from the end of a sequence. This LSTM is stacked with the first
‘unidirectional’ one and both outputs are concatenated at the end.

2.2.4 Gated Recurrent Units

Figure 2.6: GRU from [Zhao et al., 2019]

In GRUs, there are two gates zt and rt that take over the function of the gates in an LSTM.
This architecture combines the input and forget gates and outputs only a single hidden
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state instead of both ht and the cell state ct. The rt gate is used to compute the candidate
hidden state h̃t at time step t and zt determines how much of the current hidden state to
incorporate in the final output hidden.

zt = σ(Wz · [ht−1, xt]) (2.8)

rt = σ(Wr · [ht−1, xt]) (2.9)

h̃t = tanh(W · [rt ∗ ht−1, xt]) (2.10)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (2.11)

We use GRUs in our experiments for simplicity as there are fewer hidden states to deal
with.

2.2.5 Word Embeddings

Machines have no conception of words and language as we know it. We have to represent
words as numbers; indices in a dictionary or vocabulary. Each word in the vocabulary,
could, for e.g., be represented as a one-hot vector. The size of the vector would be the
size of the vocabulary and it would be populated by zeros except at the position where the
word occurs in the vocabulary, which would be a 1. This leads to one-hot vectors being
very sparse representations of words as most of the values are 0. The vectors are also
very high dimensional, as they are of the same size as the vocabulary, and this size can be
values like 20000, depending on the task and the dataset. This makes one-hot vectors less
efficient and thus more compute-intensive representations.

More fundamentally, choosing a certain way to represent words means making an as-
sumption about how the input features to the model are structured in the feature space.
With one-hot vectors, the assumption becomes that all the features, i.e., the words, are
independent of each other in the space. This is because each one-hot vector of a word is
orthogonal to all the other ones. However, as we know from our everyday usage of lan-
guage, that is clearly not the case. Words are very much related to each other, and thus
should ideally be represented in a similar way in a feature space. For example, ‘house’,
‘apartment’, ‘building’, ‘condo’, ‘home’ are all closely related and can be swapped with
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each other in a lot of contexts. Words are semantically related and should be represented
as such.

This is where word embeddings come in. They capture the similarities between seman-
tically related words through the distance between them in the vector space, as measured
through a metric like cosine similarity. In addition to that, they are also much more dense,
lower dimensional vectors than one-hot encodings. In modern neural nets, word embedding
sizes commonly used are 256, 300, 768, etc as opposed to in the tens of thousands in the
case of one-hot vectors.

Figure 2.7: 2D projection of 300 dimensional GloVe word embeddings from
[Caliskan et al., 2017]
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Not only are word embeddings dense, they are also structured, which imparts very
useful properties to them. The structure enables semantically related word embeddings
to be placed close to each other in the embedding space. For example, in figure 2.7, we
can see the embedding vectors for several words placed in a 2D space. We can see the
words ‘niece’, ‘aunt’ and ‘sister’ are close together whereas ‘nephew’, ‘uncle’, and ‘brother’
are grouped closer to each other. Additionally, the distance between ‘sister’ and ‘brother’
is comparable to ‘aunt’ and ‘uncle’ and so on. Figure 2.7 shows words used to identify
female and male people in different contexts. The distance between each female term and
the corresponding male term is similar between different types of words, like ‘woman’ and
‘man’ and ‘queen’ and ‘king’. Subtracting the vector from, say, ‘queen’, to get to ‘king’ can
then be thought of as the gender vector, and representing the gender attribute or dimension
of words. Correspondingly, other dimensions representing ‘color’, ‘occupation’, ‘location’,
etc are captured in the embedding vectors of the words. In practice, vector sizes like 300
in the case of Word2Vec have empirically been seen to capture a good number of useful
attributes of words. Thus, 300 numbers for the word ‘apple’ can be seen as containing the
necessary attributes like its color, that it’s a food and a fruit and so on.

Pre-trained word embeddings

Word embeddings can be either learned jointly with the task that the model is being
trained for or using a separate task and then included in the model. In the first case, the
embedding vectors are initialized randomly, just like the model weights, and learned along
with the model as it trains. In the latter, a model is trained on a large dataset of text, also
called a corpus, with a task that enables it to learn good embeddings for the words in the
vocabulary for the text. For example, one task that is used is to predict the words within
a certain window around the word whose embedding we are trying to learn.

The idea behind pre-training, is that training a big model on a large text dataset
helps it learn a lot of generic useful properties of the language. Training the model on a
general simple task gives it a lot of useful information that is applicable across a number of
other NLP tasks, because the knowledge it has gained is transferable. This idea has been
validated through strong empirical results. For example, the idea behind BERT is that we
learn a general purpose language model and then fine-tune it on specific NLP tasks like
translation, question answering, sentiment prediction etc. Pre-training using the BERT
architecture has been shown to be very effective for this.

The idea of learning these word embeddings was first proposed in [Bengio et al., 2000],
but just as with the rest of deep learning, the method received widespread attention af-
ter improvements in hardware and availability of data. The first widely used success-
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ful implementation was in Word2Vec [Mikolov et al., 2013a], [Mikolov et al., 2013b], fol-
lowed rapidly by GloVe [Pennington et al., 2014], which stands for Global Vectors. In
[Mikolov et al., 2013a], they train embeddings in two ways as shown in figure 2.8. Both of
these ways are simple, yet highly effective techniques to learn good embeddings. The first
is the Continuous Bag of Words or CBOW approach. In CBOW, the word index for the
word we are trying to learn the embedding for is hidden from the model, and the model
has to predict it using the words around it within a certain range. The surrounding words
are also called context words. In the second way, called skip-gram, the opposite strategy
is used: given the target word, the model has to predict the context words in a certain
window span. For example, in the sentence ‘I want a glass of orange juice’, let’s say we
are trying to learn the word vector for ‘glass’. In CBOW, the model would try to predict
the word ‘glass’, while in skip-gram, it would try to predict the context words like ‘orange’
and ‘juice’. After training for several iterations, the weight matrix that the model would
update would form the embedding vectors for the word. For our work, we use pre-trained
Word2Vec embeddings trained with the skip-gram method with a window size of 5.

Figure 2.8: The CBOW and skipgram models from [Mikolov et al., 2013a]
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2.2.6 Sequence to Sequence Models

In text generation scenarios like dialogue generation in conversational agents, machine
comprehension, question answering, and machine translation, it’s necessary to encode a
sequence of words in one RNN and then using a decoder, generate the desired output
sentence, which will be of a different length than the input sentence.

The encoder processes the input sentence with an architecture like the LSTM or GRU
and emits a hidden state vector at the final time step. This vector can be thought of as
the representation of the input capturing the most salient information for the entire input
sentence. It is often called the context C as shown in the figure below. The context vector
is then fed to the decoder RNN which generates the output sentence, token by token, at
each time step.

This approach was first featured in [Sutskever et al., 2014], which showed the benefits
of this architecture in generating sequences with sequences as input without having to
worry about the nature of the sequence. Since then, they have formed the basis of several
works instrumental in the development of NLP for a wide variety of generation tasks like
in transformers [Vaswani et al., 2017]. Since our work involves the generation of sentences,
the architecture of our proposed approach uses this type of Seq2Seq model.
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Figure 2.9: Seq2Seq model from [Goodfellow et al., 2016]

2.2.7 Auto-encoders

In a Seq2Seq model, instead of using the decoder to generate a different output sequence
like a translated sentence in another language, or a response sentence to a question asked
of a chatbot, we can instead use the hidden context vector to reconstruct the provided
input, as accurately as possible. The architecture then emphasises learning a good latent
or intermediate representation that captures the most important information to reproduce
the input. This hidden vector is of a lower dimensionality than the input representation
and is thus a more efficient way of encoding the input and using it for further downstream
applications.

For example, as shown in the figure below, let’s say that the input is an image of a
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handwritten digit, 4. We encode this using a neural network into a latent representation
z, and then attempt to reconstruct the input representation of the image using a decoder.
After training the model to do this well enough, the learned z can then be used for an
application like learning a model to classify handwritten images of digits. This learning
method is called auto-encoding

This same approach applies to text data in NLP, and the neural networks used are usu-
ally RNNs. Autoencoders can be used to learn how to reconstruct sentences, or paragraphs
[Li et al., 2015a] and then these useful representations can be used in tasks like sentiment
analysis and recommender systems [Li et al., 2015b], [Hewlett et al., 2017].

Figure 2.10: Autoencoder from [Weng, 2018]

2.2.8 Dependency Trees

A sentence can be modelled as a set of directed binary grammatical relations between the
words in it. In the sentence in the figure 2.11, each word can be thought of as either the
head or the dependent in the relationship. The arrows indicate the dependency grammar
of the relationship going from the heads to the dependents. One of the arrows does not
connect to any of the words and indicates that the word in the sentence, in this case
‘prefer’, is the root word and forms the root of the dependency tree for this sentence.
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Figure 2.11: A dependency tree from [Jurafsky and Martin, 2009]

These head-dependent relations also have a useful characteristic of approximating the
semantic information of the words and thus can be used in downstream NLP tasks
[Jurafsky and Martin, 2009]. As shown in the figure, the relations between the words are
captured using Universal Dependency (UD) relations [Jurafsky and Martin, 2009]. For ex-
ample, the subject and direct object of the VERB word prefer are I and flight respectively.
Dependency trees, expressed through adjacency matrices, are necessary to feed as the input
to Graph Convolutional Networks (GCNs), as we will see below. This helps us assimilate
the syntactic knowledge of the dependency trees into the representation learned from the
encoder, and provide this combined information to the decoder to generate a sentence.
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2.2.9 Graph Convolutional Networks

Figure 2.12: A multilayer GCN from [Kipf, 2016]

GCNs are a variant of convolutional neural networks (CNNs) [Lecun et al., 1998] first
proposed in [Kipf and Welling, 2016]. They operate on graph data by using the features
in nodes of some data represented as a graph. As shown in 2.12, the nodes in the graph
would be represented as an adjacency matrix, taking the place of a feature matrix for a
feed-forward net.

Let’s say we have a graph G = (V,E), where V(|V | = n) is the set of nodes and E
denotes the set of edges. We can then define a matrix X εRm×n containing the features
of the nodes, with each column xv εRm (v εV) encoding the features of the node. The
representation of a node is then computed as:

hv = ReLU

 ∑
uεN (v)

(Wxu + b)

 (2.12)

where W εRm×m and b εRm are the weight matrix and bias. N (ν) are neighbors of ν
and ReLU is the Rectified Linear Unit. By stacking more GCNs like in RNNs, it’s possible
to gather information from further nodes in the graph.
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h(k+1)
v = ReLU

 ∑
uεN (v)

W (k)h(k)u + b(k)

 (2.13)

k is the layer number and h
(1)
v = xv

Complementarity of RNNs and GCNs

As explained in [Marcheggiani and Titov, 2017], RNNs like GRUs and LSTMs are very
good at capturing long-term dependencies for different NLP tasks. Instead of feeding a
GCN word embeddings as we would in a neural network, we feed them to an RNN and
then give the RNN embeddings, such as the final state of an LSTM, as input. While
LSTMs capture syntactic information too without explicitly modelling it, GCNs explicitly
enable them to integrate this information and reduce the number of steps over which an
LSTM has to retain information, by taking in the syntactic information of the neighbouring
nodes/words. This makes LSTMs and GCNs complementary to each other and improves
the ability of a model on tasks like text generation, which we will look at in more detail in
the next section.

2.2.10 Natural Language Generation

Natural Language Generation or NLG is a branch of NLP that deals with the generation
of text that attempts to emulate the way humans write and speak. This is an important
research area within NLP because in addition to understanding and processing text, a
powerful and ideal natural language system should be able to generate text that is fluent,
coherent, diverse, and which humans can engage with in a meaningful and complete way.
Before the era of deep generative learning, NLG attempts were based on pre-defined gram-
mar rules [Reiter and Dale, 2000] or statistical approaches [Cambria and White, 2014].

In the current stage of NLG, deep learning has led to meaningful progress in several
tasks:

Neural Machine Translation

Since notable deep learning attempts on machine translation using different architectures
[Sutskever et al., 2014], [Cho et al., 2014], [Bahdanau et al., 2016], Neural Machine Trans-
lation or NMT has become the most effective method of automated translation and powers

25



widely used tools like Google Translate. NMT is defined where a target text has to be
generated with the same content, i.e., with the same semantic composition as the source
sentence, and the target and source are different languages, such as Hindi and English.
Transformer-based architectures are currently the best NMT methods for the English to
German and English to French benchmarks, which are two standard evaluation datasets
[Ruder, 2022].

Stylized Text Generation

A sentence or text can be thought as possessing some content information and style infor-
mation, i.e., some content written in a particular style. Given a source text and tar-
get text with differing content and styles, it is then possible to generate a text with
the content of the source and style of the target. This has applications in generating
a document in a certain author’s style or a style of writing adhering to that of a sci-
entific or news publication. Recent progress in this field has leveraged Variational Au-
toencoders (VAEs) [Kingma and Welling, 2014], [Rezende et al., 2014], adversarial learn-
ing, RL, edit-based techniques and a host of different architectures specific to the task
[Mou and Vechtomova, 2020].

Dialogue Response Generation

This is an important research problem to develop automated systems that can hold con-
versations and respond to queries from humans on a wide range of topics. Applications of
this field include travel assistants, general purpose voice assistants like Siri and Alexa as
well as specialized medical and legal assistants. In this task, the text generated needs to
be conditioned on the previous text or ‘utterance’ in the conversation. Thus, the target
is conditioned on the source and this continues throughout the entire conversation his-
tory. Using a mix of approaches containing attention [Bahdanau et al., 2016], RNNs, and
other task specific modifications have set the current state-of-the-art in dialogue generation
[Ruder, 2022].

Text Summarization

This task involves producing a fluent, coherent, relevant, and accurate summary of an
original longer document. The subset of the task that uses a generative model to truly
generate the summary is called abstractive summarization. Reinforcement learning tech-
niques, graph-based approaches, and architectures using Generative Adversarial Networks
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(GANs) [Goodfellow et al., 2014] have been successful for popular benchmarks for this
task, like the CNN / Daily Mail dataset [Ruder, 2022].

This work focuses more on the importance of syntax in NLG, specifically for sentence
generation, such as that seen in dialogue response generation and style transfer. Along the
lines of this work, efforts have been made to explicitly incorporate syntax information in
deep learning models for different purposes. [He et al., 2020] have explicitly leveraged syn-
tax to enhance the generalization of deep models like BERT. [Bai et al., 2021] incorporate
syntax trees into checkpoints in models based on the transformer architecture and demon-
strate improvement on multiple such models. [Kuncoro et al., 2019] have used knowledge
distillation to transfer knowledge from a syntactic language model to an LSTM to enable
it to generate more structurally coherent sentences. In [Hu et al., 2021], syntax is used
to improve performance on a downstream application task of style transfer. For further
information, [Zhao et al., 2021] have surveyed the progress in both modelling syntax as an
end goal in itself and using it in different tasks.
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Chapter 3

Approach

3.1 Model architectures

3.1.1 Deterministic Autoencoder (DAE)

For our approach, we start things off by implementing a baseline we can use to compare our
later models with. In this case, we have a deterministic autoencoder (DAE) to reconstruct
the input sentences. The function of the DAE is exactly like that as described in section
2.2.7 and its architecture is as described in section 2.2.6. The model consists of an encoder
GRU to form a representation of the sentences and then a decoder GRU to reconstruct the
sentences.

The input are the word embeddings of the sentences acquired from Word2Vec. The
embedding size is 300. A batch size of 250 is used to process 250 sentences at a time. The
input is thus a (batch-size, sequence-length, embedding-size) tensor. Tensors are essentially
a generalization of matrices to any number of dimensions and are the data types used by
deep learning frameworks like PyTorch [Paszke et al., 2019] to compute data. The reader
is referred to [Goodfellow et al., 2016] or [Chollet, 2017] for further reference on data rep-
resentations for deep learning. The encoder is a bidirectional 2-layer GRU. Bidirectionality
helps the encoder learn as good representations as it can for the decoder. We found two
layers gave the model enough capacity to encode the input well. The hidden or latent size
is set to 200, so we get a (batch-size, sequence-length, 2 * hidden size) hidden state. This
is then compressed to a size of (batch-size, 1, embedding-size) with a fully-connected dense
network. The idea is to have a single vector that represents the entire sentence and that
would form the latent information that would be carried forward to the decoder.
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This hidden vector for each sentence for each batch is appended to the original embed-
ding of all the words in the sentence. This concatenated representation of the first word
in the sequence, which is a ‘start of sentence’ or ‘< SOS >’ token, is fed as the first input
to the decoder. The decoder is a single layer unidirectional GRU. We want the GRU to
learn how to reconstruct the input without making it too easy for it. The GRU decoder
makes a prediction from this input picking the highest probability word from a softmax
layer. Once the loss is calculated, we replace the prediction with the ground truth target
to train the model with teacher forcing. The embedding vector for this token undergoes
the same appending operation as above and is fed to the decoder to generate a token at
each time step.

3.1.2 DAE with GCN

In this model, we sandwich a GCN between the encoder and decoder to incorporate syntac-
tic information in the learning pipeline. The goal of the model is reconstruction as before,
but the hidden representation contains information from the GCN. The encoder output
is fed to the GCN with the adjacency matrix of the sentence. The output of the GCN
is of the same dimensions as the encoder output, but having undergone the operations
described in section 2.2.9. As with the DAE, this output is then fed to the decoder at the
first time step to start the reconstruction. Figure 3.1 shows how the input is processed in
the model.
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Figure 3.1: Reconstructing a sentence with GCN
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3.1.3 Dependency graph construction

In the subsequent models, we split the syntactic components of a sentence and feed them
into separate GCNs to capture the information from the separated sets independently.
We try two different sets of parts of speech to perform the splitting. In each way, or
configuration, we split the words in the sentence into two sets. The first set contains words
belonging to either the subject, object, or verb parts of speech, and the second set contains
words with all other parts of speech and dependency relations like conjunctions, auxiliaries,
adpositions, etc.

Configuration 1

Figure 3.2: An example of SVO and NonSVO split using configuration 2

In the first way, words that have nsubj, dobj, and VERB or ROOT are included as SVO
with the remaining tokens in the sentence as NonSVO. Figure 3.2 shows an example of
producing the splits in this way with the dependency relations of the words.
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Configuration 2

Figure 3.3: An example of SVO and NonSVO split using configuration 1

In the second way, we split the sentence with the following as SVO:

1. Dependents of NOUN that has nsubj relation with VERB.

2. AUX verb that has VERB as head.

3. Dependents of NOUN that has dobj relation with VERB.

The remaining tokens are considered part of NonSVO. Figure 3.3 shows an example of
producing the splits from a sentence using the above rules.

In the experiments, we will refer to these two ways of splitting the components, as
described above, as configuration 1 and configuration 2. The words belonging to the SVO
set are termed split 1 and the ones in the NonSVO set are termed split 2.
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Figure 3.4: Splitting and reconstructing a sentence
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3.1.4 Splitting a sentence and reconstructing it with a GCN

Next, to teach the model to construct sentences with different syntactic components, a
sentence is split into its SVO and NonSVO components using either configuration 1 or 2
before feeding it to the decoder. The word embeddings of the sentence are encoded as be-
fore. However, there are two different GCNs to accept the dependency trees corresponding
the SVO and NonSVO words. The representations from the two GCNs are concatenated
and then compressed as before. Figure 3.4 shows this model. We will call this model
GCN-split in the experiments.

3.1.5 Splitting and combining syntactic information from multi-
ple sentences

Finally, we split two sentences into their SVO and NonSVO components and examine the
generation when we mix components from different sentences. Specifically, we take the
SVO parts from the first sentence and the NonSVO parts from the second sentence and
feed them to two different GCNs as in the model before. Their output is concatenated
and the generation thus merges syntax information from both sentences. The process is
repeated for the SVO parts from the second sentence and the NonSVO parts from the
first sentence. Figure 3.5 shows this model. We call this model GCN-multi-split in the
experiments.
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Figure 3.5: Combining SVO and NonSVO from two different sentences
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Chapter 4

Experiments

4.1 Dataset

We perform our experiments on the Stanford Natural Language Inference (SNLI) dataset
[Bowman et al., 2015]. SNLI 1 is a popular and widely used dataset and can be used for
testing NLP models in different contexts. It serves as a benchmark dataset to evaluate
representation learning systems. It was introduced in 2015 to fill the gap between increas-
ingly powerful and larger models that would benefit from large datasets and the lack of
general-purpose large datasets for evaluating NLP representation learning systems. The
sentences are written by humans describing image captions, and are generally short and
declarative in nature. They serve as a good testbed to validate generating sentences while
separating their syntax components.

4.2 Data Preprocessing

A standard preprocessing pipeline is used.

1. All sentences are converted to lowercase and all trailing and leading whitespaces are
removed.

2. All symbols that are not part of the alphabet are removed.

1https://nlp.stanford.edu/projects/snli/
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Sentences
a dog is with a stick.
a child is in the cold.

a camel is being used to carry things.
a woman is near some water.

a man boxing with an opponent.
a kid shovels his driveway.

there are children leaning against the wall.
dogs gathering outside.

construction workers have started to do work somewhere.
a person in a red helmet riding a bike.

women are walking to their etiquette class.
a man mows a small lawn with a push mower.

two friends are at a diner eating lunch.

Table 4.1: Sentences from SNLI dataset

3. A word2vec model is generated for every word in the dataset with a CBOW model
(see section 2.2.5). The embedding dimension is set to 300 with a window size of 5.

4. 90% of the dataset is used for training with 5% for validation and testing each. This
yields 566408/31467/31468 sentences for the train/val/test split.

5. Each sentence is appended with a start of sentence or SOS token and end of sentence
or EOS token.

6. Each sentence is also appended with a list of padding tokens based on the longest
sentence in the dataset.

7. The words in each sentence are tokenized with the spaCy library
([Honnibal and Montani, 2017]).

4.3 Training details

For all the different types of models, we use the following same set of parameters and
hyper-parameters. Although some of them have been mentioned before, we place them
together here:
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We used a batch size of 250. The encoder had 2 layers and was bi-directional. The de-
coder was single layer and unidirectional. We used the Adam optimizer [Kingma and Ba, 2017],
with a learning rate of 0.0001 given the large size of the dataset. The hidden size for the
GRUs and GCNs are 200 and the word embedding dimension is 300. The gradients are
also clipped at a threshold of 50 to prevent them from exploding 2.

4.4 Results

For quantitative evaluation, we use Bilingual Evaluation Understudy or BLEU scores
([Papineni et al., 2002]) and perplexity. Table 4.2 shows the reconstruction performance
for the first three models described in section 3.1. The last two rows are for the model
in section 3.1.4 with the two different configurations in section 3.1.3. Table 4.3 shows the
perplexity for the GCN-split model.

4.4.1 Sentence Reconstruction

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4

DAE 93.8 91.2 89.3 87.6
GCN 79.9 70.2 62.8 56.2

GCN config 1 87.8 81.1 75.7 70.8
GCN config 2 81.8 72.7 65.6 59.2

Table 4.2: Sentence reconstruction performance of the various models

Model Perplexity
GCN config 1 75.447
GCN config 2 87.245

Table 4.3: Perplexity for reconstruction

2The implementation is available at: https://github.com/dasUtsav/graph-gen
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4.4.2 Sentence construction with syntactic components from mul-
tiple sentences

The tables below show the BLEU 1 and perplexity scores for the multi-split models from
section 3.1.5 for both dependency configurations.

Model BLEU 1
SVO 1 30.8
SVO 2 30.3

NonSVO 1 52.7
NonSVO 2 52.6

Table 4.4: BLEU 1 scores for dependency configuration 1

Model BLEU 1
SVO 1 21.6
SVO 2 21.7

NonSVO 1 75.3
NonSVO 2 75.2

Table 4.5: BLEU 1 scores for dependency configuration 2

Model Perplexity
Split 1 87.632
Split 2 88.978

Table 4.6: Perplexity scores for dependency configuration 1

Model Perplexity
Split 1 88.342
Split 2 88.396

Table 4.7: Perplexity scores for dependency configuration 2
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4.4.3 Qualitative Evaluation

With a 5% validation and test split on the dataset, there are 31467 sentences in the test
set. We divide this collection in two and drop the last batch of sentences to make sure
the two sets are aligned. This yields 15500 sentences in each split. to take one sentence
from each set and split each one into two with both of the configurations described in the
previous section. With these four components of words in total, we cross-match two from
each set. More concretely, we take the SVO part from the first group and the NonSVO
part from the second, and feed them as input to the multi-split model described in 3.1.5.
We randomly take 50 sentences in each split from the test set, and report some of them
from each set here.

In each of the tables below, the first sentence is the text created by the model. The
second and third sentence are the ground truth sentences from the first and second splits
respectively.

Table 4.8 shows the sentences produced from the first split using configuration 1 de-
scribed in section 3.1.3. The model takes the SVO parts from the first split and NonSVO
parts from the second split.

40



Source and Generated Sentences
Generated sentence: the young girl is at a summer area.

Source of SVO: the small girl is at the playground
Source of NonSVO: the couple is in very private area.

Generated sentence: two men standing are standing near rocks holding a flag.
Source of SVO: two men wearing hats and holding pipes are standing against a tree

to the side.
Source of NonSVO: three children are playing with balls near a flag.
Generated sentence: a man is sitting on a ramp with a large shot.

Source of SVO: a man is sitting on the floor with a burger in front of him.
Source of NonSVO: a competition snowmobiler is on a large jump.

Generated sentence: the woman in snow.
Source of SVO: woman moving in.

Source of NonSVO: the snow is packed down in the driveway.
Generated sentence: a crowd of people is going at a river.

Source of SVO: a group of diverse people around a memorial.
Source of NonSVO: the street performer is going home.

Generated sentence: the snowboarder has has gone in his kitchen.
Source of SVO: the snowboarder has gotten great air.

Source of NonSVO: an adult is making hot chocolate in his kitchen.
Generated sentence: a girl is trying to two kids from a green surface.

Source of SVO: a girl is trying to lift and put her luggage on the weigh scale.
Source of NonSVO: two girls swing over a red patterned surface.

Generated sentence: a child in blue pants runs away from a woman at a camera.
Source of SVO: a child running away from the ocean.

Source of NonSVO: a man in blue and red face paint poses for a picture with a
woman.

Table 4.8: Sentences for split 1 from configuration 1. In each example, the first sentence
is the model prediction. The model takes SVO components from the second sentence and
NonSVO components from the third sentence. The SVO words in the SVO source sentence
are underlined.

Table 4.9 takes the SVO parts from the second split and the NonSVO parts from the
first split.
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Source and Generated Sentences
Generated sentence: people in a school bikes and is carrying a variety of plants.

Source of NonSVO: a child with a collection of roses.
Source of SVO: people on atvs and dirt bikes are going through an ice plateau.

Generated sentence: the man is trying to get a dog.
Source of NonSVO: a dog sitting.

Source of SVO: the man is trying to get the toy away.

Generated sentence: a child is holding a hand and holding a pink umbrella.
Source of NonSVO: the guy is wearing red and black.

Source of SVO: a child is holding their hand over their mouth wearing a birthday
hat

Generated sentence: some asian girls are looking at a woman in water.
Source of NonSVO: a group of men standing around with a woman in japan.

Source of SVO: some girls are looking at fish in the water.

Generated sentence: a person is creating a display of paper in a blue window.
Source of NonSVO: a hunt for the home plate by the blue catcher.

Source of SVO: a person is viewing a piece of jewelry in a display case.

Generated sentence: a man is competing in a bicycle behind a sign.
Source of NonSVO: a man wearing a cowboy hat holding a protest sign.

Source of SVO: a man is competing against others on a bike course.

Generated sentence: a boy in a sweater sleeps on her head.
Source of NonSVO: the girl with dark hair holding her head.

Source of SVO: a dog in a superman shirt sleeps on a blanket.

Generated sentence: people look away from a picture.
Source of NonSVO: a girl in a blue shirt is painting a picture.

Source of SVO: people face away from a camera.

Table 4.9: Sentences for split 2 from configuration 1. In each example, the first sentence
is the model prediction. The model takes NonSVO components from the second sentence
and SVO components from the third sentence. The SVO words in the SVO source sentence
are underlined.

Table 4.10 takes the SVO parts from the first split and the NonSVO parts from the
second split using configuration 2 described in section 3.1.3.
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Source and Generated Sentences
Generated sentence: a man is putting all colored food.

Source of SVO: a man is putting cats onto a cart.
Source of NonSVO: the man is wearing all white clothing.
Generated sentence: a person is wearing a suit and tie.

Source of SVO: a person is riding on some dirt.
Source of NonSVO: a man is wearing a suit and tie.

Generated sentence: the animals are in the desert in the countryside.
Source of SVO: the animal is holding something in its mouth.

Source of NonSVO: the runners are in the countryside.
Generated sentence: an old man is sleeping in a tent.

Source of SVO: an old man in sleeping in bed.
Source of NonSVO: football players are sleeping in a tent.

Generated sentence: A group of girls are on the playground.
Source of SVO: A group of people are close together.

Source of NonSVO: The girls are playing on the playground.
Generated sentence: three people in the background doing a dangerous trick at a

show.
Source of SVO: two women on the patio having drinks

Source of NonSVO: the stunt riders are performing a dangerous trick at a show.
Generated sentence: an elderly girl is holding a flag.

Source of SVO: an older woman is eating at a gathering.
Source of NonSVO: the girl is holding a flag.

Generated sentence: two musicians on stage playing by the microphone.
Source of SVO: two ladies are running away from a dog.

Source of NonSVO: a female singer on stage playing the guitar and singing.

Table 4.10: Sentences for split 1 from configuration 2. In each example, the first sentence
is the model prediction. The model takes SVO components from the second sentence and
NonSVO components from the third sentence. The SVO words in the SVO source sentence
are underlined.

Table 4.11 takes the SVO parts from the second split and the NonSVO parts from the
first split.
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Source and Generated Sentences
Generated sentence: the people are buying from the market.

Source of NonSVO: men buying things from the market.
Source of SVO: the people are in the basement drinking.

Generated sentence: some men are advertising a sign a protest.
Source of NonSVO: a boy makes a peace sign at a protest.

Source of SVO: some men are talking in front of some graffiti.

Generated sentence: four people are walking on on a sidewalk on a sunny day.
Source of NonSVO: there are people walking on the sidewalk on a beautiful day.

Source of SVO: six young women are playing string instruments such as cellos and
violins in a room with wood panelling.

Generated sentence: a couple are walking down the street in a city.
Source of NonSVO: some people are walking down the sidewalk in a city.

Source of SVO: a couple are in a house.

Generated sentence: the two girls are playing with a baby.
Source of NonSVO: a smiling man plays with a baby.

Source of SVO: the ducks are following the girl to the pond.

Generated sentence: the person is laying around grass sitting on a hill.
Source of NonSVO: a brown dog is sniffing around green grass on a hill.

Source of SVO: the person is sitting indoors

Generated sentence: a girl was watching her favourite sandwich.
Source of NonSVO: a woman enjoys her favourite novel.

Source of SVO: a girl was watching television on the swing.

Generated sentence: man in a baseball cap while playing an instrument.
Source of NonSVO: someone giving a concert while playing an instrument.

Source of SVO: the man in the brown t shirt is sleeping

Table 4.11: Sentences for split 2 from configuration 2. In each example, the first sentence
is the model prediction. The model takes NonSVO components from the second sentence
and SVO components from the third sentence. The SVO words in the SVO source sentence
are underlined.

Table 4.12 shows some examples of imperfect generation. In example 1, the model
adds some words of its own and mainly takes information from the second sentence. This
is also seen in example 3. In example 2, the model replaces ‘race car’ with the semantically
related ‘motorcycle’ but the sentence is absurd and doesn’t have any sensible meaning. In
example 4 too, the model replaces some words while retaining the semantic context such
as ‘sword’ with ‘gun’ and ‘camouflage color outfit’ with ‘blue shirt’. This shows that the
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model sometimes isolates the syntax components well enough with the relevant semantic
context but the generated sentence doesn’t do an exact replacement from the ground truth.

Source and Generated Sentences
Generated sentence: a young girl runs in a creek is filled with snow.

a man presenting a plate of spaghetti.
a blond dog walks in a creek with banks filled with snow.

Generated sentence: a motorcycle in a hat smiles.
a race car sparks.

a man in a hat stands and smiles.
Generated sentence: a group of people standing on a large sign near a lot.

a woman on vacation photographs a fancy red car.
a large group of people some holding red signs near a bunch of buildings.

Generated sentence: a woman in a blue shirt and glasses is holding a sword and
swinging at his target.

a man dressed in a camouflage color outfit is holding a gun and aiming it at his
target.

an asian woman and her children sit on stools at a table doing arts and crafts.
Generated sentence: two women are out down a street walk.

the woman is out of a walk.
two dogs are going down a trail outside.

Table 4.12: Examples of generation with errors
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Chapter 5

Summary and Conclusions

5.1 Summary of Research Work

In this work we see how we can split text into its syntactic components and generate
sentences from them. While RNNs have been demonstrated to be effective for generating
text, integrating them with GCNs lets the combined model mix representations of the
sentence from the encoder and the syntax components that we choose from the GCN. This
lets us influence the model to generate words corresponding to specific syntax elements.

We show with a GCN and RNN model that text reconstruction quality is maintained
as opposed to vanilla RNNs. The GCN-RNN model is capable of reconstituting a sentence
from its syntax and encoder representations once it has been split into two groups based
on its syntax. Finally, the model is able to mix the syntax representations from multiple
sentences and create sentences blending the components from them.

5.2 Conclusions

We see how RNNs and GCNs complement each other to generate sentences and control
the generation at a syntax level. GCNs are able to capture the relationships between the
different heads and dependents and provide them to the RNN to use while producing the
sentences. Using GCNs, we can control which syntax components the RNN will be fed
while the RNN decoder itself does the work of generating a coherent, fluent sentence with
the syntax components provided to it.
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5.3 Future Work

The SNLI dataset provides a very specific type of text in the form of simple declarative
sentences that act as captions for images. Future work can investigate how to separate
syntax components with longer, more complex sentences or even entire paragraphs of
text. Additionally, this approach combines the two architectures of RNNs and CNNs,
for text generation. We can see how combining GCNs with another architecture, like the
transformer, can impact the model’s performance across several metrics. Furthermore, we
can investigate across what different parts-of-speech or dependency relations can we split
a sentence using datasets in different genres.
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