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Abstract 

Due to competitiveness in the chemical industrial sector, methodologies must be developed 

for an optimal programming of activities of a plant and a safe operation of its equipment. The 

formulation of a problem that involves the scheduling layer and control layer of the hierarchical 

manufacturing process results in a very complex model as each layer aims to satisfy different 

objectives and has specific constraints. Historically, in order to reduce the complexity of the 

model, each layer was considered as an individual problem, with assumptions that neglected 

phenomena that was observed in real processes. Thus, the solutions would seem economically 

attractive at first glance, but very difficult to implement in the practice due to a high level of 

information incoherence between the inter-phase variables. Consequently, methodologies that 

integrate the scheduling layer and the control layer need to be developed while considering 

aspects that may emerge during operation such as model uncertainty or plant-model mismatch. 

In this work, two back-off methodologies are presented to address Mixed Integer Dynamic 

Optimization (MIDO) formulations that arise when modeling the scheduling and control of 

flow-shop batch plants under stochastic parametric uncertainty. The core idea of the 

methodologies is to generate scheduling decisions, find control decisions and determine unit 

operation times that offer dynamic feasibility in the presence of stochastic parametric 

uncertainty. The MIDO problem is decomposed into a set of problems, with the aim to reduce 

the required computational time necessary to solve a full fletched MIDO formulation. The set 

of problems is then solved iteratively. The first methodology (Algorithm A) decomposes the 

MIDO problem into a scheduling problem, a dynamic optimization problem, a set of dynamic 

feasibility problems (dynamic feasibility test) and a unit time operation minimization problem. 

Since Algorithm A is limited by the sequential calculation of control decisions and unit 
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operation times and that the scheduling does not accurately reflect the back-off dynamics of the 

system, a second algorithm (Algorithm B) was developed to address these issues. This 

algorithm decomposes the MIDO problem into a parametric sensitivity analysis, a scheduling 

problem, a dynamic optimization problem and a set of dynamic feasibility problems (dynamic 

feasibility test). The parametric sensitivity analysis is performed to create correlations that will 

allow the scheduling problem to consider the back-off dynamics of the system. Back-off terms 

are introduced in the model constraints of the dynamic optimization problem to represent the 

variability of the system caused by the uncertainty. Stochastic uncertainty is modeled using 

statistical distribution functions and are embedded in the set of dynamic feasibility problems to 

test the dynamic feasibility of the optimal control actions under random realizations in the 

uncertain parameters. The variability in the observed variables caused by the uncertain 

parameters while performing the dynamic feasibility test are used to calculate the back-off 

terms. To appreciate and evaluate the effect of the variations in the unit operations times caused 

by the back-off effect, in the scheduling problem, a continuous-time formulation has been 

considered and implemented.  

A case study featuring a flow-shop batch plant consisting of two dynamic reaction processes 

and two steady state separation processes is used to illustrate the benefits and limitations of the 

proposed back-off methodologies. An scenario consisting of a one unit available per process 

was use to compare Algorithm A with the methodology developed by Yael-Alvarez & 

Ricardez-Sandoval1. The results show that considering varying unit operation times in the back-

off methodology increments the computational effort, but the economics of the are improved 

up to a 42%. Algorithm B was evaluated using scenarios to measure the effects of varying the 

value of variability considered in the back-off terms and the effects of having multiple available 

units with different processing capacities. The results show that the amount of variability 

considered in a back-off term may improve the profits up to a 22% per scheduled job compared 
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to a nominal case (no back-off terms). Due to the stochastic nature of the uncertainty 

propagation models, only solutions that offer dynamic feasibility under uncertainty are assured. 

In general, unit operation times chosen from optimization are better suited to accommodate 

stochastic parametric uncertainty while the control actions enforce process operational and 

product quality constraints at reasonable economic costs. Hence, the two methods proposed in 

this work have the potential of addressing optimal scheduling and control problems under 

stochastic realizations in flow-shop batch plants. 

The first method (Algorithm A) was presented at the 11th International Federation of 

Automatic Control (IFAC) Symposium on Advanced Control of Chemical Processes 

(ADCHEM) 20212. The second method (Algorithm B) has been submitted for publication to 

Industrial & Engineering Chemistry Research (I&EC)3.  
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Chapter I. Introduction 

raditionally, chemical processes are modelled and optimized as non-interactive 

problems for each of the different decision-making layers that conform the hierarchical 

manufacturing process4–6. More than often, the assumption of perfect (ideal) conditions of 

operation is made to allow for a simplification of the mathematical complexity of the model for 

each layer. While this approach may yield economically attractive solutions for each one of 

decision layers, the solutions often face multiple complications when an attempt of 

implementation into real systems is considered. This is mainly due to information mismatch 

occurring in the intermediary states between the layers, which may eventually result in 

suboptimal or infeasible solutions that cannot be implemented.  

Due to the elevated pressure for high performance and the continuous search for optimal 

process operation, significant efforts have been made to develop robust strategies that can 

accommodate the most typical conditions found in chemical manufacturing systems. 

Enterprise-wide optimization and smart manufacturing advocate for a higher integration of the 

information by the implementation of Information Technologies (IT), expecting that such 

procedure will lead into better decision-making processes7–9. Numerous methodologies for the 

integration of different sets of decision-making layers have already been reported in the 

literature4–6,10 with a demonstrated improvement in the performance of the studied systems with 

a varying level of success11–14. Integration approaches are performed with the aim of reducing 

process infeasibility and sub-optimal solutions, while taking advantage of the natural 

interconnection between the decision-making layers11,15.  

Multi-unit, multi-product chemical batch plants are of great importance for the chemical 

industry. A batch operation allows for a highly controlled operation and production of highly 

valued chemical, while remaining quite adaptable to changing market trends. Thus, a multi-
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unit, multi-product chemical batch plant is a plant consisting of multiple units that can perform 

different tasks, with units that can be easily rearranged for the manufacturing of various 

products. The pharmaceutical industry is a prime example of this type of production plants, as 

some drugs are seasonal, where production must be designed to account for maximum 

efficiency, as materials and products tend to be quite expensive and require significant energy. 

Scheduling is key in manufacturing systems as it aims to allocate resources to tasks that 

need to be performed to meet process goals and market demands. On the other hand, process 

control aims to manipulate the available process variables in real time to achieve satisfaction of 

quality requirements while maintaining the operation stable and within their feasibility limits.  

A simultaneous approach of scheduling and control is often set to solve complex, large-

scale MIDO problems that operate in multiple time horizons and that are required to ensure 

stability and dynamic feasibility on the various processes conforming the system. Since MIDO 

problems are often difficult to solve explicitly, discretization and decomposition techniques are 

often employed16. After a discretization of the differential-algebraic process model equations, 

a MIDO problem becomes a large-scale Mixed-Integer Non-Linear Programming (MINLP) 

problem that may become computationally intractable due to model inflation and increase in 

the complexity of the model. Thus, it is usual to find methodologies in the literature that further 

decompose MINLP problems involving scheduling and control decisions into sets of Mixed-

Integer Linear Programming (MILP) problems and Non-Linear Programming (NLP) problems. 

The solutions of the subset of problems are then reconciliated by an iterative procedure. A few 

approaches for integration of scheduling and control that follow this general framework have 

been proposed in the literature17–21. Studies addressing the integration of planning, scheduling 

and control22,23 and the integration of design and control24–32 are also available. 

Uncertainty may be inherent to the model (mathematical representation), the process 

(dynamics and online measurements), external variables (environment) or discrete events (like 
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equipment availability)33. Typically, the assumption of the presence of uncertainty in the 

methodologies for the integration of scheduling and control is omitted or quite often simplified 

using deterministic assumptions to significantly reduce the computational burden. Nonetheless, 

scheduling and control studies implementing stochastic parametric uncertainty have been 

conducted using a two-stage stochastic programming approach20 and earlier versions of the 

back-off methodology developed within our group1. In those previous works, the optimization 

of unit processing times and its implications on the scheduling have not been explored. This 

condition is of great interest as it might lead to an improvement on the efficiency of a system 

that is subject to stochastic realizations in the uncertain parameters. 

In the back-off approach, the key idea is to move away from a highly attractive economic 

solution which in practice, may be infeasible or sub-optimal due to the presence of uncertainty, 

into a competitive economic solution that remains dynamically feasible under stochastic 

realizations in the uncertain parameters. Back-off methodologies have already been previously 

implemented for control structure selection34,35; integration of design, scheduling and control18; 

integration of control and design31,36; and integration of scheduling and control for batch 

systems1. In the latter, the performance of the methodology was compared, for multiple 

scenarios, with the resolution of the MINLP formulation.  
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I.1. Research Objectives 

This work presents two novel decomposition methodologies for the integration of 

scheduling and control under stochastic parametric uncertainty based on the back-off approach 

for multi-unit, multi-product chemical batch plants. This study is performed to show that 

varying unit operation times improve scheduling decisions, control profiles and the overall plant 

economics. The back-off approach was selected because back-off terms can capture the 

variability of a system when it is subjected to stochastic parametric uncertainty. Also, back-off 

terms can be introduced into the formulation of the constraints as parameters to help guide the 

system into finding a feasible solution that is economically attractive. Uncertainty is assumed 

to be stochastic because it allows for a better representation of the phenomena occurring in 

actual chemical batch processes. Uncertainty can be represented by implementing Probabilistic 

Density Functions (PDF), or a combination of PDFs, that best fits the observed behavior. 

The specific objectives of the current thesis are as follows: 

 Propose a new back-off methodology for the integration of scheduling and control that 

can address the simultaneous scheduling and control of multi-unit, multi-product 

chemical batch plants under the presence of stochastic parametric uncertainty. The 

MIDO formulation of the integrated problem will be decomposed into a set of NLP and 

MILP problems that will be solved sequentially and iteratively until a dynamically 

feasible solution that can accommodate a user-defined level of process variability is 

found. Back-off terms are used to represent the deviation of a system caused by 

uncertain realizations in the process parameters. 

 Study the impact of varying the unit operation times while implementing back-off terms 

and measure the corresponding economic benefits. 

 Implement a continuous-time formulation for the scheduling formulation that may offer 

improvements over a discretized time grid. Furthermore, it opens the possibility of 

implementing correlations that can translate the effects of the back-off terms on the 

dynamics of the model into the scheduling problem. 
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 Inspect the effect of multiple units with different processing capacities under the effect 

of multiple uncertain parameters, which are propagated through the processing units 

considered in the chemical batch plant. 

By performing this thesis work, it is expected to demonstrate the importance of the 

simultaneous optimization of unit operations times and unit control profiles in the presence of 

stochastic parametric uncertainty, while the scheduling decisions account for the optimal 

regimes of operation.  
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I.2. Thesis Structure 

The thesis is structured as follows: 

 Chapter II: In this section a discussion and review of the general state of the art of the 

field of the integration of scheduling and control that takes into consideration 

uncertainty is performed. Necessary background concepts are explained in this chapter 

to facilitate comprehension of the key topics covered in this research. 

 Chapter III: This chapter presents the general problem statement of the integrated 

scheduling and control problem that was considered for the development of the back-

off methodologies presented in this thesis. Then, the chapter continues with the 

presentation of the back-off Algorithm A, the case study used to evaluate its 

performance and the results. Algorithm A was presented in the 11th International 

Federation of Automatic Control (IFAC) Symposium on Advanced Control of Chemical 

Processes (ADCHEM) 20212.  

 Chapter IV: Algorithm B is an improved version of Algorithm A and is presented in this 

section. The same case study used for algorithm A is used in this section; in addition, a 

larger case study involving more processing units are also considered here. This work 

is currently under review in Industrial & Engineering Chemistry Research3. 

 Chapter V: This chapter presents the conclusions and suggestions for future lines of 

research. 
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Chapter II. Literature Review 

his chapter presents the current state-of-the-art involving the integration of scheduling 

and control and the methods used to consider uncertainty into the model. These aspects 

are key since the difficulty in finding an optimal solution of an integrated scheduling and control 

problem resides in the inherent interactions between scheduling and control and the complexity 

associated with the process model. Also, the difficulty is related to the mathematical 

representation and the numerical approach used to search for an optimal solution. Each of the 

different scheduling and control approaches reported in the literature comes with assumptions 

that lead into advantages and restrictions that differentiates them from each other and that need 

to be weighted before their implementation4.  

This literature review has been performed to clarify the scope of the present work and to 

better outline their contributions to this emerging area in process systems engineering. This 

chapter begins with a discussion of the main aspects and challenges faced in process integration 

for chemical manufacturing systems. Generalities on Scheduling and Dynamic Optimization, 

the layers of interest for this work, are then discussed. Methodologies available for the 

integration of scheduling and control is reviewed next. Uncertainty is discussed, and the back-

off approach is introduced as method to deal with model uncertainty. The chapter concludes 

with a summary. 
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II.1. Enterprise-Wide Optimization and Smart Manufacture 

Due to the evolving nature of the markets, continuous efforts are made for the development 

of robust strategies that can lead to optimal operation and management of chemical industrial 

plants. Enterprise-Wide Optimization (EWO) suggests that it is possible to achieve an optimal 

decision-making process and exchange of information through the implementation of IT 

technologies8. EWO seeks the full integration of the hierarchical manufacturing decision layers 

without compromising the mathematical modeling of each layer. Subsequently, EWO leads to 

Smart Manufacturing, which envisions a disruptive reorganization and integration of the 

complete model by allowing an intelligent generate-plan-apply process that fully involves all 

the stakeholders7. Figure 1 exhibits the decision-making hierarchy of the manufacturing layers. 

The hierarchy describes the typical flow of information and the time frequency at which 

decisions are made at each stage4,10,37,38.  

 

 
Figure 1. Hierarchy of the Layers of Enterprise Management. 
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As described by Shobrys and White37, the decision layers include the following operational 

aspects: 

 Supply Chain Management. This layer corresponds to the Business 

Management/Logistics of an enterprise. It includes strategic decisions that have long 

lasting effects (in the order of months) and that affect wide geographical areas. This 

layer is often related with arrangements in the acquisition of material and logistics. The 

decisions made at this layer are strategic. Reacting to sudden changes is very difficult 

at this stage, as it would imply a change of strategy that may result in monetary losses 

due to changes in planned activities that may require to pause the general operations 

until a new strategy is idealized (e.g., start-up/shut-down units). 

 Planning (Production Management). It involves tactical decisions as their time span is 

shorter (in the order of weeks) and the range of effect is more limited. The decisions 

taken in this layer are usually limited to one facility while following the operational 

strategies defined in the previous layer. The decisions made at this layer may adapt to 

seasonal market trends and forecasts, but it is still quite difficult to react to sudden 

drastic market changes. This layer must account for the decisions made at the Supply 

Chain Layer. 

 Scheduling (Production Management). This layer establishes the distribution of 

materials and times for activities necessary to perform a specific process, task or realize 

a product within the facility. A scheduling plan is usually made to account for the 

activities of a day of operation; thus, the duration of a decision is usually measured in 

hours. This layer offers more flexibility of reaction to market trends and external 

perturbations, e.g., rush orders or changes in product demands. Though a schedule 

accounts for a short amount of time, it has as objective to meet the production goals 

decided at the Planning layer. 

 Control (Production). This layer makes a real time observation of a process and makes 

use of interventive actions in the process. The actions made at this layer seek to 

minimize the effects of disturbances in the process, ensuring a smooth plant operation 

while achieving the economic goals and objectives set in previous layers. Control 

actions in chemical plants are usually implemented in the order of minutes or seconds 

after a change of conditions has been detected.  

 Process (Production). The activity or task taking place at the present (real time).  
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The traditional approach for the modeling and optimization of the decision-making layers 

in the chemical industry is to consider each as separate problems that must be solved 

sequentally4–8. While this approach may yield economically attractive solutions, the solutions 

obtained from this approach often face multiple complications when they are implemented into 

real systems. This is mainly due to information mismatch occurring in the intermediary states 

between the layers, which eventually results in suboptimal or infeasible solutions that cannot 

be implemented online. To address this issue, numerous efforts have been made to develop 

frameworks for the integration of different layers4,5,10,12,39.  

Integrative approaches have been gradually developed and adopted as the technological 

progress has made it possible37. The core concept behind the integrated approach is the 

formulation of a single mathematical model that fully describes the decisions of multiple layers. 

Integration approaches are performed with the aim of reducing process infeasibility and sub-

optimal solutions, while taking advantage of the natural interconnection between the decision-

making layers11,15. In an integrated problem, each hierarchical layer still operates in a different 

time horizon and has their own set of objectives, making it a very complex problem. In addition, 

the size of an industrial problem adds a high level of dimensionality to the model plus the fact 

that enterprises vary in complexity depending on its business category. Furthermore, the 

difficulty of integrating layers aggravates as general framework to do so still does not exist. 

Nonetheless, numerous methodologies for the integration of different sets of decision-making 

layers have already been reported in the literature4–6,10 with a demonstrated improvement in the 

performance of the studied systems with a varying level of success11–14.   

Another important activity that is also taken into consideration in the area of process 

integration is Process Design, which consists in the mathematical conceptualization of the 

phenomena (physical and/or chemical) that describes the transformation of raw materials 

(ingredients) into products. This aspect involves the design of the equipment where the 
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transformation processes will be performed, defining the mode of operation and recipes of 

production. Process Design is not often presented in the hierarchy of the layers of enterprise 

management as it is an activity of project management. Nevertheless, process design decisions 

also impacts the design of control schemes, which refers to the actions that are taken during 

operation to ensure that production objectives are met. The typical approach has been to first 

design the operation units and then adapting control schemes to the process. As this is not 

optimal, since process designs may impose constraints on the dynamic performance in closed-

loop, integrated design and control schemes are also considered10,22,23,28,40,41. The present thesis 

focuses on the integration of the scheduling and the control layers since it deals with the 

improvement of the operation of chemical plants that have already been designed and are 

operational. The following sections will therefore discuss some generalities about these two 

layers and their integration. 
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II.2. Scheduling 

This section serves to provide a general background on scheduling, which is one of the 

layers of interest in this thesis work. As stated in the previous section, scheduling is a decision-

making process, which is key for the industry on the planification of daily plant activities. In 

general, scheduling aims to determine the optimal allocation of finite resources available to the 

tasks (processes) that need to be performed to meet the demands of the market and satisfy the 

economic objectives of the plant.  

II.2.1. Time Representation 

Scheduling formulations can be mainly classified into two types of categories accordingly 

to the way time is mathematically represented in the model39,42–44: 

 Discrete-Time Formulations: This approach divides the time horizon into a finite 

number of uniform intervals, thus defining a time grid for the variables and constraints 

of the model. An event may only take place at the boundaries of these time periods. 

Processing times are assumed to be constant and integer multiples of the ∆𝑡 used for the 

intervals. This representation offers ease of modelling and interoperability. 

Furthermore, a high degree of flexibility can be achieved with a finer time discretization. 

However, a small discretization may incur in larger number of variables causing 

intractability for large-scale applications or minute discretization periods.  

 Continuous-Time Formulations: This approach introduces a time grid where events may 

take place at arbitrary time points in the given time horizon. The concept of variable 

event times, which can be defined globally or for each unit, is also introduced. Variables 

are required to determine the timings of events. Since the duration of events, start time 

and finish time are not defined a priori, the mathematical model tends to be small, 

compared to discrete-time formulations, especially because no inactive time intervals 

must be modeled. However, the scheduling process is overall more challenging to model 

and complex structures might be needed. 

Figure 2 shows the graphical representations of a scheduling plan according to their time 

representation. 



 

13 

 

 
Figure 2. Scheduling Representations. 

(a) Discrete-Time Representation, (b) Continuous-Time Representtation. 

 

II.2.2. Process Representation 

According to the complexity of the process, processes can be described as follows43,44: 

 Sequential Processes: Multiple products are manufactured following the very same 

processing sequence. Processing stages may be defined. Since batches are the 

representation of production, it is not necessary to consider mass balances explicitly. 

 Network Processes: This type of networks is used to represented complex production 

sequences where the flow of material merges or splits from batch to batch. Material 

balances must be considered explicitly. 

Furthermore, there are two types of network representations39,42–44: 

 State-Task Network (STN): Introduced by Kondili et al.45, the STN of a chemical 

process is diagram constituted by two types of nodes: State Nodes (circles), which 

represent raw materials, intermediary materials or final products; and Task Nodes 

(rectangles), representing a task/subprocess. Fractions of material incoming and 

outgoing from a task is given near the corresponding linking line (except if it is 1). No 

unit is preassigned on the model and batches are of variable size. 

 Resource-Task Network (RTN): Introduced by Pantelides et al.46 as an extension of the 

STN, has as main feature the unified representation of processing equipment, storage, 

material transfers and utilities. 
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Figure 3 shows the graphical representations of a general sequential process, a general 

network process, a general STN and a general RTN, as previously described. The advantages 

and disadvantages of each representation are thoroughly discussed elsewhere47. The two back-

off methodologies presented in this work make use of STN representations since it is able to 

capture the main features of the case studies used to evaluate the back-off algorithms. 

 

 
Figure 3. Process Representations. 

(a) Sequential Process, (b) Network Process, (c) State-Task Network, (d) Resource-Task 

Network. 
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II.3. Dynamic Optimization 

In the two back-off decomposition algorithms presented in this work, manipulated variables 

are treated as decision variables when the dynamic model of the system (Problem 1, section 

III.1) is optimized. This section serves to introduce Dynamic Optimization, which refers to the 

optimization and control of a process in open loop, i.e., no feedback strategy is considered. 

Dynamic optimization encompasses a wide area of applications such as design of distributed 

systems, online and offline control applications, trajectory optimization, batch plant 

optimization and parameter estimation. A dynamic optimization problem may be that which is 

described by an implicit set of differential-algebraic equations (i.e., conservation laws) with 

initial conditions or boundary conditions and algebraic equations (i.e., constitutive equations 

and equilibrium conditions). The decision variables (degrees of freedom) are control variables 

(manipulated variables) and time-independent variables (i.e., parameters, initial conditions, 

etc.). 

The process of finding a solution for dynamic optimization problems may rely on concepts 

from optimal control theory for the simpler problems and numerical methods for more complex 

problems. The numerical methods can be divided on 2 approaches: (1) First optimize then 

discretize (indirect approaches) and (2) First discretize then optimize (Sequential and 

Simultaneous approaches). The direct transcription approach is utilized for the development of 

the methodologies described in this thesis. Direct transcription approaches are fully 

simultaneous approaches, meaning that there is a full discretization of all the system variables 

(states, control profiles and state equations). The typical discretization methodology is 

orthogonal collocation on finite elements because of its usefulness in problems whose solution 

has steep gradients, bacuese it can be applied to time-dependent problems and because it is 

numerically stable on stiff problems (A-stable). The resulting large nonlinear problem may be 

addressed with the usage of NLP solvers48,49.  
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II.4. Integration of Scheduling and Control 

According to Engell & Harjunkoski12 scheduling and control share a certain number of 

similarities that can be exploited for their integration. For instance, both are “real-time” 

decision-making layers, as they operate in the lower time scales (vs. the other layers) and need 

to quickly adapt to sudden changes in the plant. Also, both layers must deal with uncertainties, 

unit operation times, product yields and material consumption. Engell & Harjunkoski12 also 

note some advantages while performing the integration of scheduling and control: 

 Reduction in maintenance requirements and improvement in equipment life-time 

expectancy. 

 Smarter exploitation of the degrees of freedom. 

 Information more readily and timely available in scheduling, thus, scheduling decisions 

are less prone to errors or infeasibilities. 

 Reduction in profit losses related to set-ups, changeovers and transitions. 

A complex large-scale MIDO problem often arises when a simultaneous approach for 

scheduling and control is considered. A MIDO problem operates in multiple time horizons, and 

it is required that stability and dynamic feasibility is ensured for every system or unit included 

in the operation. Discretization and decomposition methods are often used on MIDO problem 

formulations due to their inherent difficulty to be solved explicitly16. Once the differential-

algebraic and control equations of a MIDO problem have been discretized, it becomes a large-

scale MINLP problem. A MINLP problem may be computationally intractable due to the 

elevated number of equations. Consequently, it is usual to further decompose MINLP problems 

into sets of MILP problems and NLP problems. The individual solutions of these problems are 

then reconciliated by an iterative procedure. Numerous methodologies to deal with the 
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integration of scheduling and control can be found on the literature. In a chronological order 

the contributions to the field will be revised next.  

As the importance of integrate solutions attracted more interest, at the end of the last century 

Bhatia & Biegler50 showed the importance to include dynamic models that describe batch 

processes when plant activities are being scheduled and the economic benefits of doing so. 

Then, Mishra et al.51 compared the standard recipe approach with the overall optimization 

approach and demonstrated the challenges associated with a MINLP formulation for batch 

processes and the advantages when these problems are solved using commercial solvers. 

Nyström et al.52 then introduced an Iterative Decomposition Algorithm for MIDO problems 

with the possibility of online implementation for non-large non-complex processes, which later 

was generalized for multiple units53. Flores-Tlacuahuac & Grossmann54 proposed a 

methodology for MIDO formulations where the dynamic modeling is directly embedded in the 

scheduling formulation. The procedure relies in discretization by using orthogonal collocation 

points. The methodology was implemented for the optimization of the operation of a CSTR. 

Later, Flores-Tlacuahuac & Grossmann55 expanded the methodology for multiple parallel 

production lines and by making the assumption that the system dynamics are represented in 

terms of lumped parameters systems. Their method was successfully implemented for the 

operation of tubular reactors. Chu & You21 developed a decomposition methodology using a 

General Benders Decomposition  (GBD) algorithm framework for a batch plant. Touretzky & 

Baldea56,57 then introduced the MPC to the area by developing an Economic MPC (E-MPC) for 

the control of building Heating, Ventilation and Air Conditioning (HVAC). The results show 

and excellent control performance and fast computational times, which provide potential for 

online implementations. Zhuge & Ierapetritou58 introduced a multi-parametric MPC (mp-MPC) 

for online implementation in batch processes. The results suggest that a trade-off needs to be 

done for online implementations: a simplification of the model results into a suboptimal 
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solution. Du et al.59 presented a robust Scale-Bridging Model (SBM) framework for continuous 

processes. The results show that this framework has comparable performance to approaches 

using a perfect process model. Zhuge & Ierapetritou60 developed a decomposition approach for 

MIDO problems where the scheduling problem and the dynamic optimization problem can be 

solved independently from the other. With the implementation of this methodology to a CSTR 

it was proven that simpler systems do not need to update to satisfy varying market demands. 

Beal et al.17 proposed a nonlinear discrete-time formulation aided by with sample pseudo-binary 

variable functions for a CSTR. The implementation returned favorable results. Dias & 

Ierapetritou10 implemented a methodology for an air separation unit and obtained results with 

an improved performance on the unit’s operation, but uncertainty was not considered during 

the unit operation optimization. Kelley et al.61 introduced a MILP framework based on deriving 

data-driven surrogate models of closed-loop process dynamics (SBMs) and linearizations of 

Hammerstein–Wiener and Finite Step Response (FSR) model forms in the scheduling 

formulation. The results showed low computational times and similar (or improved) economic 

results when compared to other methodologies reported in literature. Caspari et al.62 compared 

the performance of top-down and bottom-up approaches. While a discussion in depth of the 

advantages and disadvantages of each approach is made, top-down approaches offer lower 

computational times at the expense of reduced economic profits compared to bottom-down 

approaches. Simkoff & Baldea63 developed a MPC framework where the Karush-Kuhn-Tucker 

(KKT) conditions of the controlled are embedded in a NLP scheduling formulation. Their 

results show that implementing this methodology decreases the information mismatch between 

the scheduling plan and the actual performance of the process. More recently, Andréz-Martínez 

and Ricardez-Sandoval15 presented a switched system formulation for multi-product continuous 

processes. The methodology avoids the use of integer variables by employing an NLP 

formulation. Their results show that it offers to similar solutions than those obtained with a 
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MIDO formulation at lower computational costs and without the need of solving integer 

decisions thus making it a more efficient framework compared to studies reported in the 

literature. The modeling of the scheduling problem may rely on discrete-time 

formulations10,50,52,53, continuous-time formulations17,20,21,51,56–59 or cyclic 

scheduling15,19,54,55,60,64.  

It is important to account for the uncertainty and disturbances when performing the 

optimization of a model because there is the potential of rendering optimal solutions sub-

optimal, unfeasible or even making a plant to operate under undesirable (e.g., unstable) 

conditions. Very few studies have considered the presence disturbances19,64,65 or 

uncertainty1,13,14,18,20,65 in their formulations. Zhuge & Ierapetritou19 presented a closed-loop 

implementation for chemical processes subject to disturbances. In their methodology, the 

integrated MIDO problem is discretized using the implicit Runge-Kutta method. The 

implementation of the methodology into their case studies effectively rejected most of the 

disturbances. Chu & You20 considered parametric uncertainty in the kinetics and a scheduling 

with varying processing times in their two-stage stochastic programming and GBD approach, 

though interaction between units affected by uncertainties were not accounted for. Zhuge & 

Ierapetritou64 proposed a fast MPC framework for online implementation in batch processes 

subject to disturbances. The results from implementation of the methodology suggest that it is 

faster than a previous work58 and that it is better suited for economic objectives. The 

methodology uses cyclic scheduling. The back-off approach1,13,14,18, which will be discussed in 

more detail in the following sections, has been implemented with iterative decomposition 

algorithms to account for uncertainty. Simkoff & Baldea42 developed a data driven NLP 

methodology applied to the operation of a Chlor-Alkali plant in which uncertainty is accounted 

for with the capacity of offering solutions in seconds or minutes. Nonetheless, machine learning 

algorithms rely on historical data of operation which might not always be readily available or 
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insufficient. More recently, Santander & Baldea65 considered bounded disturbances and 

uncertainties when developing a two-stage  stochastic programming scheduling formulation 

with processing time relationships from historical data which offers robust solutions.  

The effects that parametric uncertainty might have on the total time of operation of the 

processing units are not directly explored on most of the previous studies. This is also very 

important, since the operation time is usually set to be a fixed parameter when, due to 

uncertainty, it might need to be varied to account for the variations in these parameters. This 

thesis focuses on the effects that stochastic parametric uncertainty may pose when performing 

the optimization of operation times for each scheduled unit operation, and how this affects 

scheduling and control decisions for chemical batch plants. Given that uncertainty is a central 

topic in this thesis, this concept is reviewed next.  
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II.5. Uncertainty 

According to Pistikopoulos33, uncertainty may be classified into 4 categories: (I) Model 

inherent uncertainty (mathematical representation), (II) Process inherent uncertainty (dynamics 

and online measurements), (III) Uncertainty inherent to external variables (environment) or 

(IV) Uncertainty inherent to discrete events (like equipment availability). The quantification of 

uncertainty may be deterministic (finite number of possible scenarios known a priori) or 

stochastic (uncertainty is a random variable) and uncertainty can be dealt by reacting to its 

appearance or by preventing its effects on the system4,39. Furthermore, uncertainty may be 

modeled by a bounded description (lack of sufficient information to accurately describe the 

uncertainty), a probabilistic description (described by probability density functions) or a fuzzy 

description (use of fuzzy sets)39.  

Although the importance of accounting for uncertainty was recognized in the second half 

of the past century29, as its presence has important effect on the operation of processes, it still 

remains a challenge4,37,44. Uncertainty becomes even more important when there is an exchange 

of information between different layers, as each layer has different sources of uncertainty, 

causing a more nuanced information mismatch as it propagates from one layer to another, 

leading to highly suboptimal or infeasible solutions. The importance of uncertainty is 

exacerbated when constraint violations rise safety and environmental concerns4. In addition to 

this, the propagation of uncertainty, performed through numerous simulations to quantify its 

effects on the operation of a given system, quickly becomes a computationally expensive stage 

in many methodologies66. To address the problematic that uncertainty impose in real system’s 

operation, two main types of approaches are often considered, i.e., reactive and preventive 

approaches67.  

Reactive approaches first look to obtain the solution of the integrated problem at nominal 

conditions (no uncertainty). Then, as uncertainty occurs, the solutions are updated. These 
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approaches are computationally expensive and are unable to ensure feasibility on all the time 

horizons of operation. Decomposition and parametric programing are usual techniques 

employed in integration of scheduling and control39,67.  

Preventive approaches integrate uncertainty when the solution of the integrated problem is 

being calculated. These approaches aim to generate solutions that remain feasible for most of 

the range of uncertainty considered. Stochastic programming, fuzzy programming, robust 

optimization and sensitivity analysis are techniques used in these approaches39,67.  

Another methodology that has been used to deal with uncertainty is the back-off approach. 

The key idea behind the back-off approach is to perform a systematic iterative movement from 

a nominal point of operation, which is highly economically attractive, but dynamically 

infeasible in the presence of uncertainty, to another point of operation that remains feasible. 

This is possible through the implementation of back-off terms, which are the representation of 

the deviation of the system under the presence of uncertainty. An important feature of this 

approach is that it can deal with stochastic uncertainty and the level of robustness of the 

implementation can be specified, avoiding the need to explore for the worst-case scenario1,18. 

The framework of the back-off method was first proposed by Perkins et al.68 for simultaneous 

design and control, and it was later expanded by69 Kookos et al.31,35,36,44. More recently, our 

research group has developed other implementations of the back-off method. Mehta & 

Ricardez-Sandoval70 and Rafiei & Ricardez-Sandoval24,26 developed a framework using Power 

Series Expansions (PSE) for the integration of design and control under uncertainty. Palma-

Flores et al.27 proposed a NLMPC implementation for the integration of design and control. 

Koller & Ricardez-Sandoval18 successfully implemented the back-off method for the 

integration of design, scheduling and control under stochastic uncertainty of a multipurpose 

CSTR. Valdez-Navarro & Ricardez-Sandoval1 implemented the back-off method for the 

integration of scheduling and control under stochastic uncertainty of a multiproduct reactor-



 

23 

 

filter-distillation system. Palma-Flores & Ricardez-Sandoval proposed a methodology based on 

PSE to simplify NLMPC implementations for the integration of design and control71. 

The work presented in this thesis expands upon these previous works by implementing the 

back-off approach for the integration of scheduling and control under stochastic parametric 

uncertainty, described by probabilistic density functions, for multi-unit, multi-process batch 

plants. The goal is to offer a methodology that finds optimal operation times and control 

profiles, for all the scheduled unit operations, that offer a feasible and economically attractive 

operation of chemical batch plants.  
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II.6. Summary 

Numerous methodologies have been developed for the integration of scheduling and control 

with the objective of reducing the computational burden that represents the search of optimal 

solutions for complex operations in chemical batch plants. Although it has been shown that it 

is possible to find an optimal solution for simple case studies, most of the methods involve the 

use of decomposition techniques for the MIDO formulation of the scheduling and control 

problem. It is still quite difficult to solve a full MIDO problem formulation of a complex 

chemical plant in relatively low computational times. Moreover, scheduling formulations that 

account for varying unit operation times can be found on the literature. Nevertheless, none of 

the procedures seem to implement a feedback procedure where the parameters used to calculate 

the operation times are updated through the implementation. In addition, the application of data 

driven models has already been explored and reported in the literature for optimization 

procedures of chemical plants. Recent publications account for the presence of disturbances 

and uncertainties in the model, while returning solutions that do show robustness and an 

improved operation regimen. Despite these efforts, these methodologies rely on extensive sets 

of historical data of the operation of the chemical plant.   

Based on the above, there is the need to develop a methodology for the integration of 

scheduling and control that can offer a more accurate scheduling plan of the process and 

operating policies that remain dynamically feasible in the presence of stochastic parametric 

uncertainty.   
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Chapter III. Back-Off Decomposition Algorithm A 

n this chapter, the general problem formulation for the integration of scheduling and 

control is presented, followed by the first Back-Off Decomposition Algorithm developed 

in this study (Algorithm A). 

The general formulation of an integration problem for scheduling and control under 

stochastic parametric uncertainty is introduced in section III.1 to show the mathematical 

complexities involved when solving integrated scheduling and control problems. Algorithm A 

was developed to address the issues that arise from solving the full MIDO problem introduced 

in section III.1 while still providing a feasible attractive solution in acceptable computational 

times. A case study is used to analyze the performance of this algorithm, and the results are 

presented in this chapter. The information regarding Algorithm A has been presented at the 11th 

IFAC on ADCHEM 20212. 

  

I 
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III.1. Problem Statement 

Batch processes are very important to the industry since they are employed in a wide range 

of industries, ranging from the pharmaceutical industry to the food industry, where flexibility 

to sudden market changes is important and where quick product reformulations must be 

performed. Solving an integrated problem of large-scale multi-unit, multi-product batch plants 

is very difficult due to the high quantity of variables and equations. 

The mathematical conceptual basis for the general formulation of the optimization problem, 

which is also considered for the back-off frameworks presented in this thesis, is established in 

this section. The considerations that will be stated next, define the scope of the integration of 

scheduling and control problem. 

Given: 

 A flow-shop multi-unit multi-product batch plant that is composed by 𝑁𝑃𝑟 set of tasks, 

with 𝑁𝐸 set of equipment that rely on 𝑁𝑅 set of recipes.  

 A chemical process (task) described by mechanistic dynamic functions 𝑓 for the 𝑁𝑝 

states of the system and expressions ℎ that encompasses the set of 𝑁𝑞 environmental, 

safety, product quality and/or operational constraints.  

 The plant is described by a set of parameters Ψ, composed by deterministic model 

parameters defined a priori (𝜓𝑁𝑜𝑚) and uncertain stochastic parameters (𝜓𝑈𝑛𝑐). The 

latter can be characterized by probability density functions, assumed to be known a 

priori.  

 A set 𝐶 that considers the cost information of all raw materials, waste, by-products, and 

the price information of the products. 

 The plant is assumed to operate under a finite timespan (𝐻) specified a priori, from an 

initial time 𝑡𝑠 to a final time 𝑡𝑓, with a finite number of event points (𝐸) that can be 

estimated using the procedure described in the literature42. 

 A set of unit operation times (Τ), comprised of a subset for tasks that are assumed to 

operate at steady-state (𝜏𝐹𝑖𝑥) and tasks that are driven by their transient operation (𝜏𝐷𝑦𝑛).  
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 An economic function (𝑍𝑀𝐼𝐷𝑂) that considers associated costs determined by 

operational costs related to regime and unit assignment, unit operational times, material 

costs, product profits and penalties incurred during operation (e.g., by products/waste 

generation).  

An optimization problem that leads to an improvement in the process economics of the 

batch plant described above can be formulated. This problem is expected to search for an 

optimal scheduling plan (𝑆𝐶), optimal control profiles (𝑢) and optimal unit operation times 

(𝜏𝐷𝑦𝑛), which under a set of uncertain (stochastic) parameters (𝜓𝑈𝑛𝑐), are ought to hold 

dynamic feasibility of the flow-shop batch plant. This problem can be mathematically 

formulated as follows: 

min
𝑢𝑘,𝑗(𝑡),𝜏𝐷𝑦𝑛𝑘,𝑗

,𝑠𝐶𝑒,𝑘,𝑗

𝑍𝑀𝐼𝐷𝑂 (𝑥(𝑡)𝑘,𝑗 , 𝑢(𝑡)𝑘,𝑗, 𝜓, 𝜏𝐷𝑦𝑛𝑘,𝑗
, 𝑠𝐶𝑒,𝑘,𝑗

, 𝑐)    (1) 

𝑠. 𝑡.  

𝑓𝑝 (𝑥(𝑡)𝑘,𝑗, 𝑥̇(𝑡)𝑘,𝑗 , 𝑢(𝑡)𝑘,𝑗, 𝜓, 𝑡, 𝜏𝐷𝑦𝑛𝑘,𝑗
, 𝑠𝐶𝑒,𝑘,𝑗

) = 0, ∀ 𝑡, 𝑒 ∈ 𝐸, 𝑝 ∈ 𝑁𝑝, 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸 

ℎ𝑞 (𝑥(𝑡)𝑘,𝑗, 𝑥̇(𝑡)𝑘,𝑗, 𝑢(𝑡)𝑘,𝑗, 𝜓, 𝑡, 𝜏𝐷𝑦𝑛𝑘,𝑗
, 𝑠𝐶𝑒,𝑘,𝑗

) ≤ 0, ∀ 𝑡, 𝑒 ∈ 𝐸, , 𝑞 ∈ 𝑁𝑞 , 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸 

𝑢𝑚𝑖𝑛𝑘
≤ 𝑢𝑘,𝑗(𝑡) ≤ 𝑢𝑚𝑎𝑥𝑘

, ∀ 𝑡, 𝑗 ∈ 𝑁𝐸𝑘
, 𝑘 ∈ 𝑁𝑃𝑟   

𝜏𝑚𝑖𝑛𝑘
≤ 𝜏𝐷𝑦𝑛𝑘,𝑗

≤ 𝜏𝑚𝑎𝑥𝑘
, ∀ 𝑒, 𝑗 ∈ 𝑁𝐸𝑘

, 𝑘 ∈ 𝑁𝑃𝑟    

𝜏𝐷𝑦𝑛𝑘,𝑗
∈ 𝜏𝐷𝑦𝑛, ∀ 𝑗 ∈ 𝑁𝐸𝑘

, 𝑘 ∈ 𝑁𝑃𝑟  

𝑥 ∈ 𝑋 ⊆ ℝ1×𝑁𝑥×𝑁𝐸×𝑁𝑃𝑟 , 𝑢 ∈ 𝑈 ⊆ ℝ1×𝑁𝑢×𝑁𝐸×𝑁𝑃𝑟 , 𝑐 ∈ 𝐶 ⊆ ℝ1×𝑁𝐶  

𝜓𝑁𝑜𝑚, 𝜓𝑈𝑛𝑐 ∈ 𝛹 ⊆ ℝ1×𝑁𝜓 , 𝜏𝐹𝑖𝑥, 𝜏𝐷𝑦𝑛 ∈ 𝛵 ⊆ ℝ1×𝑁𝜏  

𝑠𝐶𝑒,𝑘,𝑗
∈ {0,1}, ∀ 𝑒 ∈ 𝐸, 𝑗 ∈ 𝑁𝐸𝑘

, 𝑘 ∈ 𝑁𝑃𝑟  

𝑡 ∈ [𝑡𝑠, 𝑡𝑓], 𝐻 = 𝑡𝑓 − 𝑡𝑠  

 

where 𝑓𝑝 represents the 𝑝𝑡ℎ  differential-algebraic equation (DAEs) of the system’s model. ℎ𝑞 

represents the 𝑞𝑡ℎ model constraint. 𝑥(𝑡)𝑘,𝑗 represents a state variable of the system for task 𝑘 

taking place in unit 𝑗 and 𝑥̇(𝑡)𝑘,𝑗 represents its time derivative. 𝑢𝑘,𝑗(𝑡) represents the time-

dependent control decisions necessary for unit 𝑗 to operate while carrying out task 𝑘. This 

variable considers a pre-specified upper (𝑢𝑚𝑎𝑥𝑘
) and lower (𝑢𝑚𝑖𝑛𝑘

) saturation limits. 𝜏𝐷𝑦𝑛𝑘,𝑗
 

represents the unit operation time of unit 𝑗 necessary to carry out task 𝑘 and is delimited by a 

maximum (𝜏𝑚𝑎𝑥𝑘
) and a minimum (𝜏𝑚𝑖𝑛𝑘

) allowed time defined a priori. 𝑠𝐶𝑒,𝑘,𝑗
 represents the 
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set of integer and continuous scheduling decisions that specify the production schedule for the 

batch plant at event 𝑒 for each unit 𝑗 and task 𝑘. An event point 𝑒 represents a time instance 

allocation of a task being realized and/or the utilization of a unit43. Note that sharing an event 

point does not mean collusion, as the usage of a unit or the realization of a task may happen at 

different points in the time domain. 

Problem 1 can be casted as an infinite-dimensional stochastic MIDO problem, which is 

often difficult to solve explicitly, particularly for systems involving multiple processing units. 

To circumvent this issue and find optimal solutions in reasonable computational times, 

decomposition techniques leading to MILP/NLP problem formulations have been suggested. 

In those decomposition methods, each problem defines a simplified specific sub scenario of 

interest from the main problem.  

In this work, two back-off decomposition methodologies are presented to obtain a feasible, 

approximated solution of Problem 1.  

A key novelty of the methods presented in this work is the consideration of unit operation 

times as decision variables while optimal control profiles are optimized for the tasks to be 

implemented during plant operation. Each methodology will be explained in their 

corresponding chapter. The key idea of the back-off approach is to make use of back-off terms, 

which aim to represent the variability of the system under the effect of stochastic (random) 

realizations in the uncertain parameters (𝜓𝑈𝑛𝑐). Back-off terms are implemented into the 

constraints of the dynamic system and then utilized to drive the system to a new dynamically 

feasible and attractive economic solution that can accommodate stochastic parametric 

uncertainty.  In addition, back-off terms are relatively easy to implement. Other methodologies 

have been previously implemented to deal with similar formulations to Problem 1, which either 

solve the problem using a direct approach, decompose the MIDO problem and then solve the 

resulting subset of problems or make assumptions in order to simplify Problem 1. Those 
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previous methodologies had been limited by the reduction of the possible values for the 

uncertainty, not considering a continuous-time representation in the scheduling problem or by 

not correctly portraying how the uncertainty that affects one unit carries to the next processing 

units. Also, the new back-off algorithms were developed because previous back-off approaches 

considered fixed unit operation times in the scheduling problem and in the dynamic 

optimization formulation (i.e., unit operation times were considered as model parameters along 

all the methodology1).  

The methodology of the first attempt at giving a solution to Problem 1, i.e., Algorithm A, 

is presented next. 
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III.2. Methodology 

The key novelty of Algorithm A consists in the optimization of unit operation times while 

implementing back-off terms into the model constraints. The back-off terms represent the 

variability observed in the controlled variables due to parametric uncertainty. The calculated 

scheduling plan and control decisions will be capable of accommodating stochastic parametric 

uncertainty, which in combination with optimal unit operation times, results in dynamically 

feasible and economically attractive solution to Problem 1 (section III.1). 

In the back-off decomposition approach A, the MIDO Problem 1 is decomposed as follows: 

(1) A scheduling problem, performed to obtain scheduling decisions for the plant that 

determines material transfer between units. (2) A dynamic optimization problem, which 

determines the optimal control regimes of the process in the presence of the back-off terms 

imposed on the process constraints. (3) Monte Carlo simulations, used to generate sufficient 

statistical data to update the calculation of the back-off terms. (4) A set of optimization 

problems aimed to obtain the minimal time values at which each unit can operate, dictated by 

the back-off terms and control profiles determined by step (2) and (3). The set of the four 

problems is solved in an iterative fashion until a feasible scheduling and control solution that 

can accommodate the uncertainty in the system is identified. An illustration of the algorithm is 

shown in Figure 4. Each of the steps in this algorithm are presented next. 

 

III.2.1. Initialization 

To initiate the algorithm, the sets Τ and Ψ must be defined; also, initial values are needed 

for the specification of the State-Task Network (STN) for the scheduling problem (i.e., 𝐸, 𝐻, 

𝜌0, 𝑃, 𝐶0). Moreover, it is necessary to define the probabilistic distribution function (PDF) and 

their corresponding parameters (𝜂) that will describe each parameter conforming 𝜓𝑈𝑛𝑐 (i.e., for 
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an element 𝑤: 𝜓𝑈𝑛𝑐𝑤
= 𝑃𝐷𝐹𝑤(𝜂𝑤). This data could be obtained from process heuristics, a 

sensitivity analysis or from historical data. Tolerance criteria (𝑇𝑜𝑙𝑆𝑆 & 𝑇𝑜𝑙𝐵𝑂) is also required 

for initialization. The iteration index for the algorithm is also set, i.e., 𝑖 = 0. 

 

 
Figure 4. Back-off Decomposition Algorithm A Diagram. 

 

III.2.2. Scheduling Problem 

A continuous-time formulation and the State-Task- Network (STN) are used as basis for the 

formulation of the scheduling problem. The solution from this problem will determine the 

Dynamic Cost Optimization Problem 

(Problem 3) 

Scheduling Problem (Problem 2) 

Initialization 

Stochastic Simulations (Problem 4) 

Back-off Term Calculation  

(Eq. 8) 

(Criterion I, Eq. 5)? 

(Criterion 2, Eq. 7)? 

 

Unit Time Operation Optimization 

(Problem 6) 

 

Optimal Solution 

Τ,Ψ, 𝜆, 𝑆𝑇𝑁, 𝑇𝑜𝑙′𝑠  

𝜆, 𝜏𝑖 , 𝛽𝑆𝑐ℎ𝑖
, 𝜓𝑁𝑜𝑚 , 𝑏𝑖−1,𝑘,𝑗,𝑞,𝑡  

 𝜏𝑖 , 𝛽𝑆𝑐ℎ𝑖
, 𝜓𝑈𝑛𝑐 , 𝑢𝐷𝑦𝑛,𝑖,𝑘,𝑗  

𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚, 𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚−1  

𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛 , 𝑚  

 𝑚+= 1,  
𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚  

  𝑖+= 1,  
𝜏𝑖+1,  
𝑏𝑖,𝑘,𝑗,𝑞,𝑡   

 𝜆, 𝜏𝑖 , 𝛽𝑆𝑐ℎ𝑖
, 𝜓𝑁𝑜𝑚 , 𝑏𝑖,𝑘,𝑗,𝑞,𝑡  

 𝜏𝑖 , 𝜏𝑖+1  

𝜏𝑖+1, 𝛽𝑆𝑐ℎ𝑖
, 𝑢𝐷𝑦𝑛,𝑖,𝑘,𝑗 , 𝑏𝑖,𝑘,𝑗,𝑞,𝑡  

𝑍∗ 

Y 

N 

N 
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sequence of unit operation and the quantity of material processed per unit. The scheduling 

formulation is represented by the following MILP problem: 

max
𝑊𝑖,𝑘,𝑒,𝑌𝑖,𝑗,𝑒,𝐵𝑖,𝑘,𝑗,𝑒

𝑍𝑆𝑐ℎ(𝑐𝑖,𝑘,𝑗, 𝑝𝑠, 𝜌𝑖,𝑘,𝑠
𝑖𝑛 , 𝜌𝑖,𝑘,𝑠

𝑜𝑢𝑡 , 𝑑𝑖,𝑠,𝑒 , 𝐸𝑖 , 𝐻)    (2) 

𝑠. 𝑡.   

∑ 𝑊𝑖,𝑘,𝑒 ≤ 𝑌𝑖,𝑗,𝑒
 
𝑘∈𝑁𝑃𝑟𝑗

, ∀ 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2a) 

𝑊𝑖,𝑘,𝑒𝐵𝑀𝑖𝑛𝑘,𝑗
≤ 𝐵𝑖,𝑘,𝑗,𝑒 ≤ 𝑊𝑖,𝑘,𝑒𝐵𝑀𝑎𝑥𝑘,𝑗

, ∀ 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸𝑘
, 𝑒 ∈ 𝐸 (2b) 

𝑆𝑇𝑖,𝑠,𝑒 = 𝑆𝑇𝑖,𝑠,𝑒−1 − 𝑑𝑖,𝑠,𝑒 + ∑ ∑ (𝜌𝑖,𝑘,𝑠
𝑂𝑢𝑡𝐵𝑖,𝑘,𝑗,𝑒−1 − 𝜌𝑖,𝑘,𝑠

𝐼𝑛 𝐵𝑖,𝑘,𝑗,𝑒)
 
𝑗∈𝑁𝐸𝑘

 
𝑘∈𝑁𝑃𝑟𝑠

, (2c) 

∀ 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸  

𝑆𝑇𝑖,𝑠,𝑒 ≤ 𝑂𝑠, ∀ 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸 (2d) 

𝑄𝑖,𝑗,𝑒 = 𝑄𝑖,𝑗,𝑒−1 + ∑ 𝐵𝑖,𝑘,𝑗,𝑒
 
𝑘∈𝑁𝑃𝑟𝑗

 − ∑ ∑ 𝜌𝑖,𝑘,𝑠
𝑜𝑢𝑡 𝐵𝑖,𝑘,𝑗,𝑒−1

 
𝑠∈𝑆𝑘

𝑜𝑢𝑡
 
𝑘∈𝑁𝑃𝑟𝑗

,  

𝑄𝑖,𝑗,𝑒𝑓
= 0, ∀ 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  

(2e) 

∑ 𝑑𝑖,𝑠,𝑒
 
𝑒∈𝐸 ≥ 𝑟𝑠  ∀ 𝑠 ∈ 𝑆  (2f) 

𝑇𝑖,𝑘,𝑗,𝑒
𝐹 = 𝑇𝑖,𝑘,𝑗,𝑒

𝑆 + 𝜏𝑖,𝑘𝑊𝑖,𝑘,𝑒 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2g) 

𝑇𝑖,𝑘,𝑗,𝑒
𝐹 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝑆 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2h) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝑆 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝐹 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2i) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝐹 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝐹 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2j) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝑆 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝑆 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2k) 

𝑇𝑖,𝑘,𝑗,𝑒
𝐹 ≤ 𝐻, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗

, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2l) 

𝑇𝑖,𝑘,𝑗,𝑒
𝑆 ≤ 𝐻, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗

, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2m) 

𝑇𝑖,𝑘,𝑗,𝑒𝑓

𝐹 = 𝐻, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2n) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝑆 ≥ 𝑇𝑖,𝑙,𝑗,𝑒

𝐹 − 𝐻(1 − 𝑊𝑖,𝑙,𝑒)  (2o) 

∀ 𝑗 ∈ 𝑁𝐸 , 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑙 ∈ 𝑁𝑃𝑟𝑗

, 𝑘 ≠ 𝑙, 𝑒 ∈ 𝐸, 𝑒 ≠ 𝑒𝑓  

𝑤ℎ𝑒𝑟𝑒   

𝑐𝑖,𝑘,𝑗 ∈ 𝐶𝑖, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸  

𝑝𝑠 ∈ 𝑃, 𝑟𝑠 ∈ 𝑅, ∀ 𝑠 ∈ 𝑆  
𝜌𝑖,𝑘,𝑠 ∈ 𝜌𝑖 , ∀ 𝑘 ∈ 𝑁𝑃𝑟 , 𝑠 ∈ 𝑆  

 

 

In Problem 2 the objective is to maximize the profit from producing a variety of products 

by implementing their recipes. Note that other objective functions can be implemented. 𝑐𝑖,𝑘,𝑗 

represents the cost of task 𝑘 in unit 𝑗 at the 𝑖𝑡ℎ iteration, 𝑃𝑠 is the sale price of state 𝑠, 𝐸 is the 

number of event points. Eq. (2a) represents the allocation constraints where 𝑊𝑖,𝑘,𝑒 is set to zero 

unless task 𝑘 at event 𝑒 is taking place in unit 𝑗 at the 𝑖𝑡ℎ iteration, also, this constraint  depends 

on the value of 𝑌𝑖,𝑗,𝑒, which represents the assignment of unit 𝑗 at event 𝑒 at the 𝑖𝑡ℎ iteration 

(with a value of 1). Eq. (2b) represents the capacity constraint, where 𝐵𝑖,𝑘,𝑗,𝑒 is the material 
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holdup of unit 𝑗 while processing task 𝑘 at event 𝑒.. Eq. (2c) represents the state material 

balances. 𝑆𝑇𝑖,𝑠,𝑒 is the total quantity of state 𝑠 at event 𝑒 whereas 𝜌𝑖,𝑘,𝑠
𝐼𝑛  and 𝜌𝑖,𝑘,𝑠

𝑂𝑢𝑡  represent the 

proportion of state 𝑠 that is consumed or produced by task 𝑘, respectively. Eq. (2d) ensures that 

the quantity produced by each state is not greater than its capacity 𝑂𝑠. Eq. (2e) is the material 

balance inside each unit 𝑗 with the condition that at the end of the last event 𝑒𝑓, must be equal 

to zero as all units must be emptied (no remaining material inside the processing units is 

allowed). Eq. (2f) represents the market demand constraints, where 𝑟𝑠 is the total demand of 

state 𝑠 and 𝑑𝑖,𝑠,𝑒 is the demand satisfied of such state at event 𝑒. 𝑟𝑠 is the market demand that 

has to be satisfied according to the decisions made at the planning level.  Eq. (2g) to Eq. (2n) 

are time logic constraints, i.e., they represent the time at which a task 𝑘 starts to take place at 

unit 𝑗 and in which event 𝑒 takes place; they also enforce that no unit can be operated beyond 

the time horizon 𝐻. Eq. (2o) ensures the consecutiveness in the occurrence of two tasks sharing 

the same unit. Note that in problem (2), the parameters in the sets 𝐶𝑖 and 𝜌𝑖 change at each 

iteration 𝑖 in accordance with the information gathered from the previous iteration(s).  

 

III.2.3. Dynamic Cost Optimization Problem 

The set of scheduling decisions 𝛽𝑆𝑐ℎ𝑖
 (𝑊𝑖,𝑘,𝑒 and 𝑌𝑖,𝑗,𝑒) can be obtained from the solution of 

Problem (2) (𝑍𝑆𝑐ℎ
∗

𝑖
). This represents the key inputs required for the formulation of the dynamic 

cost optimization problem. In particular, the nonlinear dynamic optimization Problem 3 aims 

to find the control actions 𝑢𝑖,𝑘,𝑗,𝑡 for each unit 𝑗 at time 𝑡 in the 𝑖𝑡ℎ iteration that maximize the 

profit while the order of operation is specified by the scheduling decisions 𝛽𝑆𝑐ℎ𝑖
 found from 

Problem 2. The formulation of this problem is as follows: 
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max
𝑢𝑖,𝑘,𝑗,𝑡

𝑍𝐷𝑦𝑛 (𝑥(𝑡)𝑖,𝑘,𝑗, 𝑥̇(𝑡)𝑖,𝑘,𝑗, 𝑢(𝑡)𝑖,𝑘,𝑗 , Ψ, 𝑡, 𝜏𝑖,𝑘,𝑗, 𝐶𝑖, 𝛽𝑆𝑐ℎ𝑖,𝑘,𝑗
)    (3) 

𝑠. 𝑡.   

𝑓𝑝 (𝑥(𝑡)𝑖,𝑘,𝑗 , 𝑥̇(𝑡)𝑖,𝑘,𝑗, 𝑢(𝑡)𝑖,𝑘,𝑗, 𝜓𝑁𝑜𝑚, 𝑡, 𝜏𝑖,𝑘,𝑗 , 𝛽𝑆𝑐ℎ𝑖,𝑘,𝑗
) = 0,  

∀ 𝑡, 𝑝 ∈ 𝑁𝑝, 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸 

(3a) 

ℎ𝑞 (𝑥(𝑡)𝑖,𝑘,𝑗 , 𝑥̇(𝑡)𝑖,𝑘,𝑗, 𝑢(𝑡)𝑖,𝑘,𝑗, 𝜓𝑁𝑜𝑚, 𝑡, 𝜏𝑖,𝑘,𝑗 , 𝛽𝑆𝑐ℎ𝑖,𝑘,𝑗
) ± 𝜆𝑏𝑖−1,𝑘,𝑗,𝑞,𝑡 ≤ 0,   

∀ 𝑡, 𝑞 ∈ 𝑁𝑞 , 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸 

(3b) 

where  

𝜓𝑁𝑜𝑚 ∈ Ψ , 𝜏𝑖,𝑘,𝑗 ∈ 𝜏𝑖, 𝜏𝑖 ∈ Τ   

 

In Problem 3, the back-off terms 𝜆𝑏𝑖−1,𝑘,𝑗,𝑞,𝑡 represent the deviation of system from the 

nominal point under realizations in uncertain model parameters at the inequality constraint 𝑞 of 

unit 𝑗 performing task 𝑘 at time 𝑡 at the 𝑖𝑡ℎ iteration. More details about the back-off terms are 

provided in section III.2.5. Eq. (3a) represents the mechanistic model of the processes 

performed by the units of the plant. Eq. (3b) represents the constraints of the model. 

Consideration of the back-off terms in Eq. (3b) forces the system to find control decisions that 

will account for this back-off while ensuring dynamic feasibility. Note that back-off terms at 

the initial iteration (𝑖 = 0) have a value equal to zero. As shown in Eq. (3b), the back-off terms 

are preceded by a multiplier-factor 𝜆, which can be thought as the level confidence given to 

each of the back-off terms. To obtain a coherent solution between the scheduling and control 

layer, both problems should consider objective functions with similar purposes (i.e., increase 

the overall profit). 

 

III.2.4. Stochastic Simulations 

By solving Problem 3 the optimal control profiles (𝑢𝐷𝑦𝑛𝑖,𝑘,𝑗
) are obtained under the effects 

of back-off terms identified from the previous iteration. Hence, such control actions are not 

guaranteed to remain feasible under uncertainty.  
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In this step, the resilience of 𝑢𝐷𝑦𝑛𝑖,𝑘,𝑗
 to drive the system to feasible solutions is evaluated 

under a set of 𝑛 stochastic realizations in the uncertain parameters (𝜓𝑈𝑛𝑐𝑖,𝑛
), i.e., the value of 

𝜓𝑈𝑛𝑐 changes at each realization 𝑛. The realization in 𝜓𝑈𝑛𝑐 are taken from their corresponding 

probability function (PDF) for each uncertain parameter and specified in the initialization step. 

This step is needed to generate statistical data that will allow for the recalculation of back-off 

terms at the current iteration. The problem under consideration is as follows: 

𝑚𝑎𝑥  𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛 = ℎ𝑞 (𝑥(𝑡)𝑖,𝑘,𝑗, 𝑥̇(𝑡)𝑖,𝑘,𝑗, 𝑢𝐷𝑦𝑛𝑖,𝑘,𝑗
, 𝜓𝑈𝑛𝑐𝑖,𝑛

, 𝑡, 𝜏𝑖,𝑘,𝑗)  (4) 

𝑠. 𝑡.   

𝑓𝑝 (𝑥(𝑡)𝑖,𝑘,𝑗,𝑛,𝑚, 𝑥̇(𝑡)𝑖,𝑘,𝑗,𝑛,𝑚, 𝑢𝐷𝑦𝑛𝑖,𝑘,𝑗
, 𝜓𝑈𝑛𝑐𝑖,𝑛

, 𝑡, 𝜏𝑖,𝑘,𝑗) = 0,    

∀ 𝑡, 𝑝 ∈ 𝑁𝑝, 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸 

(4a) 

where  

𝜓𝑈𝑛𝑐𝑖,𝑛
∈ Ψ, 𝜏𝑖,𝑘,𝑗 ∈ 𝜏𝑖, 𝜏𝑖 ∈ Τ   

 

The considerations required for Problem 4 are as follows: i) only the mechanistic models 

(𝑓𝑝𝑛) are enforced; ii) control variables (𝑢𝐷𝑦𝑛𝑖,𝑘,𝑗
) remain fixated; iii) only the feasibility of the 

system is assessed under different realizations in the uncertain parameters; iv) each uncertain 

parameter in 𝜓𝑈𝑛𝑐𝑖,𝑛
 is described by a PDF, thus, the values used while solving Problem 4 are 

selected from Monte Carlo (MC) sampling techniques. Problem 4 is solved a total of 𝑁𝑀𝐶 times, 

which is the total of stochastic realizations considered. 𝑁𝑀𝐶 is unknown a priori as Problem 4 

must be solved in batches of 𝑛 realizations of 𝜓𝑈𝑛𝑐𝑖,𝑛
 until the user-defined Criterion 1 (Eq. 5) 

is met. 

Criterion 1 (Eq. 5) quantifies the deviations in the back-off term between the 𝑚𝑡ℎ and 

𝑚 − 1𝑡ℎ data populations. Note that each population 𝑚 is composed of 𝑛 ∗ 𝑚 realizations in 

the uncertain parameters. This criterion makes this step repeat until the errors between the back-

off terms in the actual data set (i.e., population 𝑚) and the previous data collected (i.e., 

population 𝑚 − 1) is below a user defined tolerance. Note that population 𝑚 includes the 
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information of previous populations and that 𝑁𝑀𝐶 is equal to the number of data points in the 

last 𝑚𝑡ℎ population. Also, note that Criterion (5) can only be enforced when 𝑚 ≥ 2. The 

specific procedure to estimate the back-off terms shown in Criterion 1 (Eq. 5) is presented in 

the next section (III.2.5).  

|1 − 𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚−1/𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚| ≤ 𝑇𝑜𝑙𝑆𝑆 ∀ t, 𝑘 ∈ 𝑁𝑃𝑟 , j ∈ 𝑁𝐸 , q ∈ 𝑁𝑞  (5) 

 

III.2.5. Back-Off Term Calculation 

A back-off term (𝑏𝑖,𝑘,𝑗,𝑞,𝑡) is the representation of the deviation in the 𝑞𝑡ℎ constraint function 

(𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛) at a time 𝑡 for a unit 𝑗 performing task 𝑘 at the 𝑖𝑡ℎ iteration for each stochastic 

simulation 𝑛 in the uncertain parameters. The introduction of 𝑏𝑖,𝑘,𝑗,𝑞,𝑡 into constraints ℎ𝑞 is to 

search for a solution capable of accommodating uncertainty, backed off from the optimal 

solution at nominal model parameters18. Note that there may be a back-off term for each 

inequality 𝑞 at each time point 𝑡, i.e.: 

𝑏𝑖,𝑘,𝑗,𝑞,𝑡 = √ 1

𝑁𝑀𝐶
∑ [𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛 −

1

𝑁𝑀𝐶
∑ 𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛

𝑁𝑀𝐶
𝑛=1  ]

2
𝑁𝑀𝐶
𝑛=1   

(6) 

∀  𝑡, 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸𝑖,𝑞
, 𝑞 ∈ 𝑁𝑞𝑖

  

 

Eq. (6) represents the calculation of the normal standard deviation for discrete random 

variables, which is used for the calculation of the back-off terms in this work. Eq. (6) may vary 

correspondingly to the statistical distribution of  𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛. Note that it is Eq. (6) that is used to 

calculate the back-off terms at each 𝑚 population in the procedure described in section III.2.4. 

Also, note that the iteration index 𝑖 has been updated in Eq. (6) to indicate that these back-off 

terms have been updated and may be used in subsequent calculations. In this work, it is assumed 

that the data used for the back-off terms calculation, 𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛, follows a statistical distribution 

that can be approximated to a normal distribution.  
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III.2.6. Unit Operation Time Optimization Problem 

Since the back-off terms represent the degree of variability that the constraints need to 

accommodate using an optimal control profile, in this step, such variability is used to determine 

the optimal operation times for each unit 𝑗. Problem 7 aims to determine the minimum time 

required for each scheduled unit operation to achieve their corresponding production goals 

under parameter uncertainty, which is expressed through the back-off terms.  

min
𝜏𝐷𝑦𝑛𝑖+1,𝑘,𝑗

𝑍𝑈𝑂𝑇 (𝑥(𝑡)𝑖,𝑘,𝑗, 𝑥̇(𝑡)𝑖,𝑘,𝑗 , 𝑢(𝑡)𝑖,𝑘,𝑗, Ψ, 𝑡, 𝜏𝐷𝑦𝑛𝑖+1,𝑘,𝑗
, 𝐶𝑖)  (7) 

𝑠. 𝑡.   

𝑓𝑝 (𝑥(𝑡)𝑖,𝑘,𝑗 , 𝑥̇(𝑡)𝑖,𝑘,𝑗, 𝑢(𝑡)𝑖,𝑘,𝑗, 𝜓𝑁𝑜𝑚, 𝑡, 𝜏𝐷𝑦𝑛𝑖+1,𝑘,𝑗
) = 0, ∀ 𝑡, 𝑝 ∈ 𝑁𝑝𝑖

  (7a) 

ℎ𝑞 (𝑥(𝑡)𝑖,𝑘,𝑗 , 𝑥̇(𝑡)𝑖,𝑘,𝑗, 𝑢(𝑡)𝑖,𝑘,𝑗, 𝜓𝑁𝑜𝑚, 𝑡, 𝜏𝐷𝑦𝑛𝑖+1,𝑘,𝑗
) ± 𝜆𝑏𝑖+1,k,𝑗,𝑞,𝑡 ≤ 0,  

 ∀ 𝑡,   𝑗 ∈ 𝑁𝐸𝑖
,   𝑞 ∈ 𝑁𝑞𝑖

 

(7b) 

𝜏𝑀𝑖𝑛𝑗
≤ 𝜏𝐷𝑦𝑛𝑖+1,𝑘,𝑗

≤ 𝜏𝑀𝑎𝑥𝑗
, 𝜏𝐷𝑦𝑛𝑖+1,𝑘,𝑗

∈ 𝜏𝑖+1, ∀  𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸𝑖
   

𝑤ℎ𝑒𝑟𝑒   

 𝜓𝑁𝑜𝑚 ∈ Ψ, 𝜏𝑖+1 ∈ Τ   

 

From Problem 7, 𝜏𝑖+1 is the set of all the unit operation times under model parameter 

uncertainty. Once the optimization of the unit operation time has been performed, the variation 

between the back of terms used in the 𝑖𝑡ℎ iteration (𝑏𝑖,𝑘,𝑗,𝑞,𝑡), and those calculated in the current 

iteration (𝑏𝑖+1,𝑘,𝑗,𝑞,𝑡) is used as Criterion 2 (Eq. 8) which terminates the algorithm if such 

deviation is lesser than a user-defined tolerance (𝑇𝑜𝑙𝐵𝑂); otherwise, the algorithm proceeds with 

the next iteration, as shown in Figure 4. Criterion 2 is defined as follows: 

|1 − 𝑏𝑖−1,𝑘,𝑗,𝑞,𝑡/𝑏𝑖,𝑘,𝑗,𝑞,𝑡| ≤ 𝑇𝑜𝑙𝐵𝑂, ∀ t, 𝑘 ∈ 𝑁𝑃𝑟 , j ∈ 𝑁𝐸 , q ∈ 𝑁𝑞  (8) 

 

If Criterion 2 (Eq. 8) is met, a solution 𝑍∗ that is composed by the control decisions 𝑢𝐷𝑦𝑛, 

unit operation times 𝜏𝐷𝑦𝑛 and process scheduling decisions 𝛽𝑆𝑐ℎ, that accommodates the 

variability (𝜆) in the uncertain model parameters (𝜓𝑈𝑛𝑐), has been found. 
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III.3. Case Study 

The performance of the methodology presented in the previous section has been evaluated 

using a case study adapted from the literature that involves a chemical batch plant20. As shown 

in Figure 5, the chemical batch plant is composed by 4 batch processes: a first set of chemical 

reactions (𝑅𝐼), a filtration process (𝐹𝐼), a second set of chemical reactions (𝑅𝐼𝐼) and a separation 

process (𝑆𝐼), hence,  𝑁𝑃𝑟 = {𝑅𝐼, 𝑅𝐼𝐼, 𝐹𝐼, 𝑆𝐼} and they follow a sequential path. The plant is 

allowed to operate in a time horizon (𝐻) set to 13 h.  

 

The process model consists of substance A transforming into an intermediate product B in 

process 𝑅𝐼, taking place in a jacketed non-isothermal batch reactor where the temperature is 

controlled by valves regulating the flow of the cold or hot auxiliary services passing through 

the jacket.  The resulting mixture, which contains substance B, is filtered in process 𝐹𝐼 to obtain 

pure substance B. The intermediate species B is then stored inside the semi-batch reactor where 

process 𝑅𝐼𝐼 will take place. 𝑅𝐼𝐼 initiates when substance D is fed in a controlled fashion to 

regulate the production of species E and F. The mix containing species B and E (where E is the 

desired product) is separated from the mix of species D and F in the separation process 𝑆𝐼. 

Processes 𝐹𝐼 and 𝑆𝐼 are stationary and assumed to achieve a perfect separation of substances 

within a fixed operation time defined a priori. 𝐹1 filters perfectly substance B, which is fed 

pure to process 𝑅𝐼𝐼. 𝑆𝐼 is capable of perfectly separating E from the mixture exiting 𝑅𝐼𝐼. On 

the other hand, 𝑅𝐼 and 𝑅𝐼𝐼 are time dependent dynamic processes; thus, the operation times for 

these units (𝜏𝐷𝑦𝑛
𝑅𝐼  & 𝜏𝐷𝑦𝑛

𝑅𝐼𝐼 ) need to be obtained from optimization. The present model assumes 

 
Figure 5. Case Study – Process Scheme. 
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that there are storage units between each batch process that can hold the outgoing materials 

until the following unit that will process such material is available. 

The Set of Equations (9), which describe the dynamic process RI are reported in Table 1. 

Table 1. Process Dynamics of set of reactions 𝑹𝑰 

Chemical Reaction(s)  (9) 

𝑨
𝒓𝟏
→ 𝑩

𝒓𝟐
→ 𝑪  

Mass Balance(s)  
𝒅𝑪𝑨

𝒅𝒕
= −𝒓𝟏,

𝒅𝑪𝑩

𝒅𝒕
= 𝒓𝟏 − 𝒓𝟐  

Energy Balance(s):  Reactor  
𝒅𝑻𝑹

𝒅𝒕
= −

∆𝑯𝟏𝒓𝟏+∆𝑯𝟐𝒓𝟐

𝝆𝑹𝒄𝑹
+

𝑼𝑨𝒋(𝑻𝑱−𝑻𝑹)

𝑽𝑹𝝆𝑹𝒄𝑹
  

Energy Balance(s): Reactor’s Jacket  
𝒅𝑻𝑱

𝒅𝒕
=

𝑭𝑯𝒐𝒕(𝑻𝑯𝒐𝒕−𝑻𝑱)

𝑽𝑱
+

𝑭𝑪𝒐𝒍𝒅(𝑻𝑪𝒐𝒍𝒅−𝑻𝑱)

𝑽𝑱
 +

𝑼𝑨𝒋(𝑻𝑹−𝑻𝑱)

𝑽𝑹𝝆𝑹𝒄𝑹
  

Rate(s) of Reaction  

𝒓𝟏 = 𝒌𝟏𝒆
−𝑬𝟏/𝑻𝑹𝑪𝑨, 𝒓𝟐 = 𝒌𝟐𝒆

−𝑬𝟐/𝑻𝑹𝑪𝑩  

Innitial Condition(s)  

𝑪𝑨(𝟎) = 𝑪𝑨𝟎
, 𝑪𝑩(𝟎) = 𝑪𝑩𝟎

, 𝑻𝑹(𝟎) = 𝑻𝑹𝟎
, 𝑻𝑱(𝟎) = 𝑻𝑱𝟎

  

Constraint(s)  

𝑪𝑩(𝒕𝒇) ≥ 𝑪𝑩𝑭𝒊𝒙
, 𝑻𝑹(𝒕𝒇) ≤ 𝑻𝑹𝑭𝒊𝒙

  

Manipulated Variable(s)  

𝒖(𝒕) = [𝑭𝑯𝒐𝒕  𝑭𝑪𝒐𝒍𝒅]  
 

Similarly, the Set of Equations (10), corresponding to process 𝑅𝐼𝐼, is reported in Table 2. 

Table 2. Process Dynamics of set of reactions 𝑹𝑰𝑰 

Chemical Reaction(s)  (10) 

𝑩 + 𝑫
𝒓𝟑
→ 𝑬,𝟐𝑫

𝒓𝟒
→ 𝑭  

Mass Balance(s)  
𝒅𝑪𝑩

𝒅𝒕
= −𝒓𝟑 −

𝑭𝑭𝒆𝒆𝒅

𝑽𝑹
𝑪𝑩  

𝒅𝑪𝑫

𝒅𝒕
= −𝒓𝟑 − 𝟐𝒓𝟒 +

𝑭𝑭𝒆𝒆𝒅

𝑽𝑹
(𝑪𝑫𝑭𝒆𝒆𝒅

− 𝑪𝑫)  

𝒅𝑪𝑬

𝒅𝒕
= 𝒓𝟑 −

𝑭𝑭𝒆𝒆𝒅

𝑽𝑹
𝑪𝑬  

𝒅𝑪𝑭

𝒅𝒕
= 𝒓𝟑 −

𝑭𝑭𝒆𝒆𝒅

𝑽𝑹
𝑪𝑭  

Volume Balance(s)  
𝒅𝑽𝑹

𝒅𝒕
= 𝑭𝑭𝒆𝒆𝒅  

Rate(s) of Reaction  

𝒓𝟑 = 𝒌𝟑𝑪𝑩𝑪𝑫, 𝒓𝟒 = 𝒌𝟒𝑪𝑫
𝟐   

Innitial Condition(s)  

𝑽𝑹(𝟎) = 𝑽𝑹𝟎
, 𝑪𝑩(𝟎) = 𝑪𝑩𝑹𝑰

, 𝑪𝑫(𝟎) = 𝑪𝑫𝟎
, 𝑪𝑬(𝟎) = 𝑪𝑬𝟎

, 𝑪𝑭(𝟎) = 𝑪𝑭𝟎
  

Constraint(s)  
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𝑽𝑹(𝒕𝒇)𝑪𝑬(𝒕𝒇) ≥ 𝑽𝑭𝒊𝒙𝑪𝑬𝑭𝒊𝒙
, 𝑽𝑹(𝒕𝒇) ≤ 𝑽𝑹𝑭𝒊𝒙

, 𝑽𝑹(𝒕𝒇)𝑪𝑭(𝒕𝒇) ≤ 𝑽𝑭𝒊𝒙𝑪𝑭𝑭𝒊𝒙
 

Manipulated Variable(s)  

𝒖(𝒕) = [𝑭𝑭𝒆𝒆𝒅]  
 

On Table 3 are listed the chemical reaction parameters and the process specifications and 

parameters for the reactors used for the processes 𝑅𝐼 and 𝑅𝐼𝐼. For this case study it is assumed 

that 𝑘𝐴𝐵 and 𝑘𝐵𝐶 are the uncertain parameters in the system that follow a normal distribution 

with a standard deviation equivalent to 5% of their expected (nominal) values (reported in Table 

3). Concentration values for species A, B, C, D, E and F are: A) For process RI, at the start of 

operation only species A is present with a concentration of 1 𝑘𝑚𝑜𝑙/𝑚3 and the process stops 

when a concentration of 0.7 𝑘𝑚𝑜𝑙/𝑚3 for species B is achieved. B) For process RII, at the start 

of operation only species B is present with a concentration of 1 𝑘𝑚𝑜𝑙/𝑚3; species D is injected 

with a concentration of 10 𝑘𝑚𝑜𝑙/𝑚3; species F is monitored to never surpass the 0.15 

𝑘𝑚𝑜𝑙/𝑚3 and the process operation finalizes when E reaches a concentration above 0.5 

𝑘𝑚𝑜𝑙/𝑚3. 

Table 3. Case Study – Chemical reaction parameters and reactor specifications. 

Variable Name Value Description 

𝑬𝑨→𝑩 [𝑲]  4500 Activation Energy 

𝑬𝑩→𝑪 [𝑲]  8250 Activation Energy 

∆𝑯𝑨𝑩
𝑹𝑿 [𝑲𝑱/𝒎𝒐𝒍]  -1E4 Enthalpy of Reaction in RI 

∆𝑯𝑩𝑪
𝑹𝑿 [𝑲𝑱/𝒎𝒐𝒍]  -1E6 Enthalpy of Reaction in RI 

𝒌𝑨𝑩 [𝒉
−𝟏]  1E7 Kinetic Velocity in RI 

𝒌𝑩𝑪 [𝒉
−𝟏]  1E10 Kinetic Velocity in RI 

𝒌𝑩𝑫𝑬 [𝒎
𝟑/𝑲𝒎𝒐𝒍/𝒉]  2 Kinetic Velocity in RII 

𝒌𝟐𝑫𝑭 [𝒎
𝟑/𝑲𝒎𝒐𝒍/𝒉]  1 Kinetic Velocity in RII 

𝑻𝑹𝑰,𝑰𝒏𝒊𝒕𝒊𝒂𝒍
𝑹𝒆𝒂𝒄𝒕𝒐𝒓  [𝑲]  294 Reactor’s Temperature 

𝑻𝑹𝑰,𝑰𝒏𝒊𝒕𝒊𝒂𝒍
𝑱𝒂𝒄𝒌𝒆𝒕  [𝑲]  294 Jacket’s Temperature 

𝑻𝑹𝑰,𝑭𝒊𝒏𝒂𝒍
𝑹𝒆𝒂𝒄𝒕𝒐𝒓  [𝑲]  300 Reactor’s Temperature 

𝑻𝑪𝒐𝒍𝒅
𝑨𝒖𝒙.𝑺𝒆𝒓𝒗.[𝑲]  294 Aux. Serv. Temperature 

𝑻𝑯𝒐𝒕
𝑨𝒖𝒙.𝑺𝒆𝒓𝒗.[𝑲]  350 Aux. Serv. Temperature 

𝝊̇𝑯𝒐𝒕
𝑨𝒖𝒙.𝑺𝒆𝒓𝒗.[𝒎𝟑/𝒉]  15 Aux. Serv. Flow 

𝝊̇𝑪𝒐𝒍𝒅
𝑨𝒖𝒙.𝑺𝒆𝒓𝒗.[𝒎𝟑/𝒉]  15 Aux. Serv. Flow 

𝝊̇𝑹𝑰𝑰,𝑫
𝑭𝒆𝒆𝒅.[𝒎𝟑/𝒉]  5 Species D Feed Flow 

𝑽𝑹𝑰𝑰,𝑴𝒂𝒙
𝑹𝒆𝒂𝒄𝒕𝒐𝒓[𝒎𝟑]  10 Reactor’s Volume 

𝝆𝑹𝑰
𝑹𝒆𝒂𝒄𝒕𝒐𝒓[𝒌𝒈/𝒎𝟑]  1E3 Reactor’s Density 
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𝝆𝑹𝑰
𝑱𝒂𝒄𝒌𝒆𝒕[𝒌𝒈/𝒎𝟑]  1E3 Jacket’s Density 

𝑪𝒑𝑹𝑰
𝑹𝒆𝒂𝒄𝒕𝒐𝒓[𝒌𝑱/𝒌𝒈/𝑲]  2.5  Reactor’s Heat Capacity 

𝑪𝒑𝑹𝑰
𝑱𝒂𝒄𝒌𝒆𝒕[𝒌𝑱/𝒌𝒈/𝑲]  2.5 Jacket’s Heat Capacity 

𝑼𝑨𝑹𝑰[𝒌𝑱/𝒎𝟐/𝑲/𝒉]  8E4 Heat Transfer Coeff. 

 

Table 4 presents the costs and prices of the material incomes and outcomes and the auxiliary 

services. Note that for the scheduling problem, the associated costs and prices are defined from 

data obtained from sensitivity analysis of the operation of the plant. 

Table 4. Case Study – Prices and Costs of species, mixtures, and auxiliary services. 

Variable Name Value Description 

𝒑𝑭𝑪𝒐𝒐𝒍
 [𝒎. 𝒖/𝒎𝟑]  0.5 Aux. Serv. Price 

𝒑𝑭𝑯𝒐𝒕
 [𝒎. 𝒖/𝒎𝟑]  0.5 Aux. Serv. Price 

𝒑𝑭𝑭𝒆𝒆𝒅
[𝒎. 𝒖./𝒌𝒎𝒐𝒍]  50 Raw Feed Price 

𝒑𝑨[𝒎. 𝒖./𝒌𝒎𝒐𝒍]  100 Raw Material Price 

𝒑𝑾𝒂𝒔𝒕𝒆[𝒎.𝒖./𝒌𝒎𝒐𝒍]  1000 Waste Cost 

𝒑𝑷𝒖𝒓𝒆[𝒎.𝒖./𝒌𝒎𝒐𝒍]  10000 Product Price 

𝒑𝑰𝒎𝒑𝒖𝒓𝒆[𝒎.𝒖./𝒌𝒎𝒐𝒍]  1000 Sub-product Cost 

 

The profit function for Problem 3, i.e., the dynamic optimization problem, is as follows:  

𝑍𝐷𝑦𝑛 = −𝑐𝑅𝐼 − 𝑐𝐴𝑅𝐼
− 𝑐𝐹𝐼 − 𝑐𝑅𝐼𝐼 + 𝑐𝑆𝐼1 − 𝑐𝑆𝐼2  (9) 

𝑐𝑅𝐼 = ∑ (𝑝𝐹𝐻𝑜𝑡 ∫ 𝐹𝐻𝑜𝑡𝑗
(𝑡)𝑑𝑡

𝜏𝐷𝑦𝑛𝑖,𝑗
𝑅𝐼

0
+ 𝑝𝐹𝐶𝑜𝑜𝑙 ∫ 𝐹𝐶𝑜𝑜𝑙𝑗

(𝑡)𝑑𝑡
𝜏𝐷𝑦𝑛𝑖,𝑗
𝑅𝐼

0
)

𝑁𝐸𝑅𝐼

𝑗
  

(10) 

𝑐𝐴𝑅𝐼
= 𝑝𝐴 ∑ 𝑛𝐴𝑖,𝑗

(𝑡)|𝑡=0

𝑁𝐸𝑅𝐼

𝑗
  (11) 

𝑐𝐹𝐼 = 𝑝𝑊𝑎𝑠𝑡𝑒 ∑ (𝑛𝐴𝑖,𝑗
(𝑡) + 𝑛𝐶𝑖,𝑗

(𝑡)) |
𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑅𝐼
𝑁𝐸𝐹𝐼

𝑗
  

(12) 

𝑐𝑅𝐼𝐼 = 𝑝𝐹𝐹𝑒𝑒𝑑
∑ ∫ 𝑉𝑅𝑖,𝑗

(𝑡)𝐶𝐹𝑖,𝑗
(𝑡)𝑑𝑡

𝜏𝐷𝑦𝑛𝑖,𝑗
𝑅𝐼𝐼

0

𝑁𝐸𝑅𝐼𝐼

𝑗
  

(13) 

𝑐𝑆𝐼1 = 𝑝𝑃𝑢𝑟𝑒 ∑ 𝑛𝐸𝑖,𝑗
(𝑡)|𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑅𝐼𝐼
𝑁𝐸𝑅𝐼𝐼

𝑗
  (14) 

𝑐𝑆𝐼2 = 𝑝𝐼𝑚𝑝𝑢𝑟𝑒 ∑ (𝑛𝐷𝑖,𝑗
(𝑡) + 𝑛𝐹𝑖,𝑗

(𝑡)) |
𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑅𝐼𝐼
𝑁𝐸𝑅𝐼𝐼

𝑗
  

(15) 

 

where Eq. (9) involves the cost of auxiliary services for 𝑅𝐼 (Eq. 10), the cost for raw species A 

at the beginning of process 𝑅𝐼 (Eq. 11), the cost for the waste generated in 𝐹𝐼 (Eq. 12), the cost 

for species D fed into process 𝑅𝐼𝐼 (Eq. 13), the revenues for selling pure E (Eq. 14) and the cost 

for having unreacted D and generated F in the product (Eq. 15). 
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The profit function used in the scheduling Problem 2 is:  

𝑍𝑆𝑐ℎ = 𝑐𝑆𝑇 − 𝑐𝑂𝑝  (16) 

𝑐𝑂𝑝 = ∑ ∑ ∑ 𝑊𝑘,𝑒𝜏𝑗𝑐𝑘,𝑗
𝑁𝐸𝑘

𝑗
𝑁𝑃𝑟
𝑘

𝐸
𝑒   (17) 

𝑐𝑆𝑇 = ∑ ∑ 𝑑𝑠,𝑒
𝑆
𝑠

𝐸
𝑒 𝑝𝑠  (18) 

 

Eq. (16) involves the costs associated with the operation (𝑐𝑘,𝑗) of unit 𝑗 to realize task 𝑘 at 

event 𝑒 (Eq. 17) and the cost or revenue caused by the consumption or generation of the state 𝑠 

(Eq. 18), i.e., 𝑝𝑠 < 0 for costs and 𝑝𝑠 > 0 for revenues). Additional details can be found 

elsewhere20. 

The objective of this case study is to identify a scheduling and control strategy that can 

maximize the batch plant profits in the presence of stochastic uncertainty in the model 

parameters. 
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III.4. Results 

The case study was implemented using Pyomo optimization suite within Python 3.7. The 

Interior Point algorithm IPOPT™ with ma57 HSL linear solver was used to solve Problems 3, 

Problem 4 and Problem 7. CPLEX was used to solve the MILP Problem 2. The model was 

solved in a PC with an Intel® Core™ i7-8700 CPU @ 3.2 GHz and 16 GB of RAM. The 

Differential-Algebraic Equations (DAE)72 module from Pyomo was utilized for the 

discretization of the differential equations. Orthogonal collocation on finite elements was 

chosen as the discretization method. For the present case study, 40 finite elements and 3 

collocation points for the problems solved with ipopt were considered. These parameter values 

returned acceptable solutions in an average CPU time of ~1 s per simulation. 

 

 
Figure 6. Algorithm A – Scheduling Plans:  

(a) Algorithm A (𝜆 = 2), (b) Valdez-Navarro’s algorithm (𝜆 = 2). Each unit allocation is 

portrayed with their corresponding material processing quantity in 𝑚3. 

 

a) 

b) 
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For comparison purposes, the present case study was solved using the Algorithm A and that 

proposed by Valdez-Navarro and Ricardez-Sandoval1 where unit operations times remain fixed 

during the calculations. In this scenario the effects of varying the unit operation times were 

studied. Uncertainty was considered only to be present on the kinetic velocities of the first set 

of reactions (𝑅𝐼). Note that Valdez-Navarro and Ricardez-Sandoval1 showed the advantages 

and limitations of performing an integrated approach against a non-iterative sequential 

approach for scheduling and control. 

As shown in Figure 6, the proposed algorithm can accommodate another batch sequence 

by finding new unit operations times that increase plant production (material processing batch 

size is depicted inside each unit assignment in the figure). While all the unit operation times 

were set to 2h for Valdez-Navarro’s algorithm (Figure 6b), it can be observed that the values 

𝜏𝐷𝑦𝑛
𝑅𝐼   and 𝜏𝐷𝑦𝑛

𝑅𝐼𝐼  for the present approach (Figure 6a) are 0.436h and 2.017h.  

 

The operation regimes found by Algorithm A are more economically expensive, as more 

control actions are required to maintain the dynamic feasibility (the control profiles are not 

shown for brevity). Nevertheless, as it can be seen in Figure 6a, due to the addition of another 

job and the increased production in task 𝑅𝐼𝐼 (as shown in Figure 7a, compared to Figure 7b, 

where the concentration of E is higher at the end of operation) the profits grow a 42% with 

  
Figure 7. Algorithm A – Concentration profiles of species B, D and E for 𝑅𝐼𝐼. 

(a) Algorithm A (𝜆 = 2), (b) Valdez-Navarro’s algorithm (𝜆 = 2). In each graph’s legend, 

r2 represents task 𝑅𝐼𝐼. Only the operation of one unit is shown, as the rest are identical. 

a) b) 
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respect to the case where no unit time operation is performed (a total of 90,386 m.u. of profit 

for Algorithm A compared to 63,369 m.u. of profit obtained from Valdez-Navarro’s algorithm). 

The increase in production of species E shown in Figure 7a, is due to the back-off effect caused 

by the methodology in the model constraints to mitigate the effects of the uncertainty in the 

kinetic velocities 𝑘𝐴𝐵 and 𝑘𝐵𝐶. 

Regarding the CPU times, each iteration of the present algorithm takes on average 8 h, with 

3 iterations required to solve the present case study. On the other hand, 2 iterations and 4 h per 

iteration were required by Valdez-Navarro’s algorithm. Note that the selection of the tolerance 

parameters (𝑇𝑜𝑙𝑆𝑆 & 𝑇𝑜𝑙𝐵𝑂) is problem-specific and will impact the algorithm’s computational 

effort. In this work, both 𝑇𝑜𝑙𝑆𝑆 & 𝑇𝑜𝑙𝐵𝑂 were set to 0.0025, which seemed to be adequate as 

they returned acceptable results in reasonable CPU times. 
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III.5. Summary 

This chapter presented the back-off decomposition algorithm A for the integration of 

scheduling and control. The proposed methodology is an iterative approach developed to 

address the computational burden that represents the full resolution of a MIDO problem. In this 

methodology, parametric uncertainty is approximated through Monte Carlo sampling 

techniques. The effects of the uncertainty on the system are analyzed and used to calculate back-

off terms. Back-off terms are introduced in the formulation to force the system find control 

profiles, unit operation times and scheduling decisions that significantly diverge from those of 

an economically attractive but dynamically infeasible point under the presence of uncertainty. 

A case study illustrating the performance of the algorithm is presented. The results show that 

the methodology can generate a new operation policy that deals with parametric uncertainty in 

the model with a degree of probability satisfaction (level of confidence) that is defined by the 

user through the PDFs and the convergence tolerance criterion considered in the algorithm. 

Nonetheless, Algorithm A presents some limitations in its calculations. The unit operation times 

are optimized in a sequential fashion once the control decisions have been estimated from the 

dynamic cost optimization problem (section III.2.3). Since the unit operation times and control 

decisions are not optimized sequentially, a better solution may exist if both decisions are 

explored simultaneously. Also, the scheduling decisions present slight discrepancies in the 

estimations of key production metrics (e.g., total production, total costs), when compared to the 

estimations obtained from the dynamic optimization problems. This issue is due to the inability 

of the current scheduling formulation to estimate certain parameters that are dependent on the 

quantity of material being processed (unit operation times, unit operation costs, material ratios). 

The algorithm presented in the next chapter aims to address the issues mentioned above with 

Algorithm A.  



 

47 

 

Chapter IV. Back-off Decomposition Algorithm B 

n this chapter, the Back-off Decomposition Algorithm B is presented. This algorithm was 

developed to address the issues of solving the full implementation of the MIDO Problem 

1 (section III.1) and the limitations of Algorithm A discussed in the summary of the last chapter 

(section III.5). One of the key differences between Algorithm A and B is that the optimization 

of unit operation times and control profiles is performed simultaneously in the latter. Back-off 

terms are added into the constraints of the dynamic system and utilized to drive the system to a 

new dynamically feasible and attractive economic solution that can accommodate stochastic 

parametric uncertainty. Another key difference is the introduction of correlations into the 

scheduling formulation that allow for a dynamic calculation of unit operation times, unit 

operation costs and better estimations for the material transfer ratios between units. The 

scheduling plan is thus expected to offer more accurate estimations for the dynamic operation 

of the process, i.e., it captures better the dynamic operation of the process. The case study and 

instances used to analyse the performance of the algorithm are presented and their results 

discussed in this chapter. The information presented in this chapter has been submitted for 

publication and is currently under review3. 

  

I 
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IV.1. Methodology 

In the back-off decomposition Algorithm B, the MIDO Problem 1 (section III.1) is 

decomposed and reformulated as follows: (1) A parametric sensitivity analysis that generates 

the correlations needed to construct the scheduling problem. The correlations are used to 

capture the effects of the back-off terms on the dynamics of the process into a formulation that 

the scheduling problem can accept. (2) A scheduling problem, performed to obtain scheduling 

decisions for the plant and which can determine unit operation times and material transfer 

between units under the consideration of stochastic events (accounted for through the 

correlations developed in step 1). (3) A dynamic optimization problem, which determines the 

optimal control regimes and unit operation times of the process in the presence of the back-off 

terms imposed on the process constraints. (4) Monte Carlo simulations, which are used to 

generate sufficient statistical data to update the calculation of the back-off terms. The set of 

problems is solved in an iterative fashion until an optimal and feasible scheduling and control 

solution that can accommodate the uncertainty in the system is identified. The graphical 

representation of the algorithm is shown in Figure 8. 

In the new proposed algorithmic framework both unit operation times and control decisions 

are now are obtained from a single dynamic optimization formulation, which is an innovation 

with respect to previous studies published in the literature1,2,13. The simultaneous approach 

proposed here for the dynamic optimization of the process allows the system to search for unit 

operation times and control actions that can accommodate stochastic parametric uncertainty, 

while improving the economics of the system. In addition, the effects of the back-off terms 

were not taken into consideration by the scheduling decisions in previous methods. To make 

our proposed approach more effective, a parametric sensitivity analysis is performed to generate 

correlations, which are key inputs for the scheduling problem to determine the sensitivity of the 
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back-off terms to the scheduling decisions. Each of the steps considered in the present back-off 

framework is described next. 

 

 
Figure 8. Back-off Decomposition Algorithm B Diagram. 

 

IV.1.1. Initialization 

As shown in Figure 8, the algorithm starts with the definition of the sets Τ (Unit Operation 

Times set) and Ψ (Parameters set). The probabilistic distribution functions (PDF) and their 

corresponding parameters (𝜂) that describes each parameter included in 𝜓𝑈𝑛𝑐 must be defined, 

Initialization 

Dynamic Optimization Problem 

(Problem 21) 

Scheduling Problem (Problem 20) 

Stochastic Simulations (Problem 22) 

Back-off Term Calculation (Equation 

25) 

(Criterion 3, Eq. 23)? 

(Criterion 4, Eq. 24)? 

Parametric Sensitivity Analysis 

(Problem 19) 

 

Optimal Solution 

𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛 , 𝑚  

N 

𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚, 𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚−1  

 𝑚+= 1,  
𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚  

  𝑖+= 1,  
𝑏𝑖,𝑘,𝑗,𝑞,𝑡   

 𝑏𝑖,𝑘,𝑗,𝑞,𝑡  

Τ,Ψ, 𝜆, 𝑆𝑇𝑁, 𝜅, 𝐶, 𝑇𝑜𝑙′𝑠  

𝜆, 𝜏𝑖 , 𝛽𝑆𝑐ℎ𝑖
, 𝜓𝑁𝑜𝑚 , 𝑏𝑖−1,𝑘,𝑗,𝑞,𝑡  

 𝜏𝐹𝑖𝑥 , 𝐶, 𝛽𝑆𝑐ℎ𝑖
, 𝜓𝑈𝑛𝑐 , 𝑢𝐷𝑦𝑛,𝑖,𝑘,𝑗 , 𝜏𝐷𝑦𝑛,𝑖,𝑘

 𝑆𝑇𝑁𝑖 , 𝑰𝑖,𝑘,𝑗, 𝜦𝑖,𝑘,𝑗 , 𝜞𝑖,𝑘,𝑗    
  

𝜏𝑖 , 𝛽𝑆𝑐ℎ𝑖
, 𝑢𝐷𝑦𝑛,𝑖,𝑘,𝑗, 𝑏𝑖,𝑘,𝑗,𝑞,𝑡  

𝑍∗ 

Y 

N 

Y 
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i.e., for an uncertain parameter 𝑤: 𝜓𝑈𝑛𝑐𝑤
= 𝑃𝐷𝐹𝑤(𝜂𝑤). Also, parameters needed for the 

specification of the State-Task Network (STN) must be provided (i.e., tasks, states and their 

characteristics). Similarly, basic parameters used in the formulation of the scheduling problem 

(i.e., 𝐸, 𝐻, 𝑃) also need to be defined. Moreover, the tolerance (stopping) criteria used in the 

framework must be defined, i.e., 𝑇𝑜𝑙𝑆𝑆 for Criterion 3 (Eq. 23) in section IV.1.5 & 𝑇𝑜𝑙𝐵𝑂, for 

Criterion 4 (Eq. 24) in section IV.1.6. Also, fixed costs (𝐶) should be defined by the user. The 

iteration index for the algorithm is initialized, i.e., 𝑖 = 0. Furthermore, the set 𝜅 used in the 

parametric sensitivity analysis must be defined a priori. This set provides the range of operating 

conditions and processing material quantities that can be used as degrees of freedom to improve 

the dynamic operation of each task assigned to a processing unit.  

 

IV.1.2.  Parametric Sensitivity Analysis 

The parametric sensitivity analysis step is performed to generate and process the data of the 

operation of each unit individually for the set of operating conditions specified in the set 𝜅. This 

analysis is performed under consideration of stochastic parametric uncertainty, which is 

represented through the back-off terms. This step enables the construction of explicit 

correlations that are used in the scheduling formulation at each 𝑖𝑡ℎ iteration. Accounting for the 

explicit relations between the set 𝜅 and the correlated variables, i.e., unit operation costs, unit 

operation times and the incoming/outgoing material relations, would often result in nonlinear 

functions that may lead to MINLP formulations in the scheduling problem. To circumvent this 

issue, linear correlations are considered in this work to reduce the complexity of the scheduling 

formulation; these correlations capture the sensitivity of these variables under uncertainty for 

each unit considered in the scheduling problem.  

Figure 9 presents a summary of the parametric sensitivity analysis and its relationship with 

the scheduling problem. As shown in this figure, a parametric sensitivity analysis is performed 
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on each individual unit to generate data on the behavior of the unit operation times, unit 

operation costs and the variations in material inputs and outputs as a function of the set 𝜅. Linear 

correlations are then constructed and used as input parameters to the scheduling formulation.  

 
Figure 9. Parametric Sensitivity Analysis and Scheduling Relation Diagram. 

 

As shown in Figure 8, the key inputs to perform the parametric sensitivity analysis step are 

the back-off terms (𝜆𝑏𝑖,𝑘,𝑗,𝑞,𝑡), the set of nominal model parameters (𝜓𝑁𝑜𝑚) and the mechanistic 

model of the each unit and process (task) of the chemical plant. In the case 𝑖 = 0 (initial iteration 

step), the back-off terms (𝜆𝑏𝑖,𝑘,𝑗,𝑞,𝑡) are set to 0, i.e., the system is analyzed at nominal 

conditions. Each parametric analysis involves the solution of a series of optimization problems 

that aim to find the optimal control actions and the operation times that minimize the operating 

costs of each unit 𝑗, while realizing task 𝑘, for the condition 𝜅𝑘,𝑗,𝑜, where 𝜅𝑘,𝑗,𝑜 ∈ 𝜅𝑘,𝑗. The set 

𝜅 should include values uniformly distributed between 𝜅𝑀𝑎𝑥 and 𝜅𝑀𝑖𝑛 with a user-selected 

number of elements. Note that the number of elements has a direct impact on the computational 

cost and the accuracy of the correlations. The optimization problem considered for this step is 

as follows: 

 

𝑼𝒏𝒊𝒕 𝒋, 𝑻𝒂𝒔𝒌 𝒌 

𝑼𝒏𝒊𝒕  𝒑𝒕𝒊𝒎𝒊 𝒂𝒕𝒊𝒐𝒏 

𝑰. 𝑪.   𝒌,𝒋,𝒐 

 

𝜆𝑏𝑖,𝑗,𝑞,𝑡 

𝑩𝒂𝒄𝒌 − 𝒐𝒇𝒇 𝑻𝒆𝒓𝒎 

𝑰𝒊,𝒌,𝒋 = 𝜦𝒊,𝒌,𝒋𝑩𝒊,𝒌,𝒋 + 𝜞𝒊,𝒌,𝒋   

𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔 

 𝒌,𝒋 

  𝑫 𝒏𝒊,𝒌,𝒋
 

 𝒌,𝒋 

𝑱 𝒊,𝒌,𝒋 

 𝒌,𝒋 

 𝝆𝒊,𝒌,𝒋 

𝑺𝒕𝒂𝒕𝒆 − 𝑻𝒂𝒔𝒌  𝒆𝒕 𝒐𝒓𝒌 

𝑗 

𝑠 

𝑠 
𝑻𝒂𝒔𝒌  

𝑱 𝒊,𝒌,𝒋(𝑩𝒊,𝒌,𝒋) 

𝑺𝒕𝒂𝒕𝒆 − 𝑻𝒂𝒔𝒌  

𝝆𝒊,𝒌,𝒔
𝑰𝒏 (𝑩𝒊,𝒌,𝒋) 

𝑻𝒂𝒔𝒌 − 𝑺𝒕𝒂𝒕𝒆  

  𝑫 𝒏𝒊,𝒌,𝒋
(𝑩𝒊,𝒌,𝒋) 

𝝆𝒊,𝒌,𝒔
 𝒖𝒕 (𝑩𝒊,𝒌,𝒋) 

𝒌  

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒓𝒊𝒄 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕  𝑨𝒏𝒂𝒍 𝒔𝒊𝒔 𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈 𝑭𝒐𝒓𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 
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max
𝑢𝑖,𝑘,𝑗,𝑡,𝑜,𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗,𝑜

𝑍𝑆𝐴 (𝑥(𝑡)𝑖,𝑘,𝑗,𝑜 , 𝑥̇(𝑡)𝑖,𝑘,𝑗,𝑜 , 𝑢(𝑡)𝑖,𝑘,𝑗,𝑜 , Ψ, 𝜅𝑘,𝑗,𝑜 , 𝑡, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗,𝑜
, 𝐶, 𝐽𝑖,𝑘,𝑗,𝑜)    (19) 

𝑠. 𝑡.   

𝑓𝑝 (𝑥(𝑡)𝑖,𝑘,𝑗,𝑜, 𝑥̇(𝑡)𝑖,𝑘,𝑗,𝑜, 𝑢(𝑡)𝑖,𝑘,𝑗,𝑜, 𝜅𝑘,𝑗,𝑜 , 𝜓𝑁𝑜𝑚, 𝑡, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗,𝑜
) = 0,  

∀ 𝑡, 𝑝 ∈ 𝑁𝑝, 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸 

(19a) 

ℎ𝑞 (𝑥(𝑡)𝑖,𝑘,𝑗,𝑜, 𝑥̇(𝑡)𝑖,𝑘,𝑗,𝑜 , 𝑢(𝑡)𝑖,𝑘,𝑗,𝑜, 𝜅𝑘,𝑗,𝑜 , 𝜓𝑁𝑜𝑚, 𝑡, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗,𝑜
)  

±𝜆𝑏𝑖−1,𝑘,𝑗,𝑞,𝑡 ≤ 0, ∀ 𝑡, 𝑞 ∈ 𝑁𝑞 , 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸 

(19b) 

𝜌𝑖,𝑘,𝑗,𝑜
𝐼𝑛 = 𝑔𝐼𝑛(𝑥(𝑡)𝑖,𝑘,𝑗,𝑜|𝑡=0) ∀ 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸   (19c) 

𝜌𝑖,𝑘,𝑗,𝑜
𝑜𝑢𝑡 = 𝑔𝑂𝑢𝑡 (𝑥(𝑡)𝑖,𝑘,𝑗,𝑜|𝑡=𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗

)∀ 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸   (19d) 

𝐽𝑖,𝑘,𝑗,𝑜 = 𝑔𝐶𝑜𝑠𝑡 (𝑥(𝑡)𝑖,𝑘,𝑗,𝑜 , 𝑢(𝑡)𝑖,𝑘,𝑗,𝑜 , 𝑡, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗,𝑜
) ∀ 𝑡, 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸  (19e) 

𝜏𝑀𝑖𝑛𝑘,𝑗
≤ 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗,𝑜

≤ 𝜏𝑀𝑎𝑥𝑘,𝑗
, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗,𝑜

∈ 𝜏𝑖
∗, ∀𝑗 ∈ 𝑁𝐸𝑘

, 𝑘 ∈ 𝑁𝑃𝑟  (19f) 

where  

𝜓𝑁𝑜𝑚 ∈ Ψ, 𝜏𝑖
∗ ∈ Τ, 𝜅𝑘,𝑗,𝑜 ∈ 𝜅𝑘,𝑗   

 

Note that problem 19 and problem 21 must share similar objectives, e.g., maximize profits 

or minimize makespan.  

For each task (𝑘) and unit (𝑗), the result from each optimization problem describes a 

particular combination between the unit operation times (𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗,𝑜
), unit operation costs (𝐽𝑖,𝑘,𝑗,𝑜) 

and the variations in material inputs (𝜌𝑖,𝑘,𝑗,𝑜
𝐼𝑛 ) and outputs (𝜌𝑖,𝑘,𝑗,𝑜

𝑜𝑢𝑡 ) with respect to a discrete 

realization in the set 𝜅𝑘,𝑗 (i.e., 𝜅𝑘,𝑗,𝑜, where 𝜅𝑘,𝑗,𝑜 ∈ 𝜅𝑘,𝑗) under stochastic parametric 

uncertainty, which is represented through the back-off terms (𝑏𝑖−1,𝑘,𝑗,𝑞,𝑡), as shown in Eq 191b). 

Note that 𝜅𝑘,𝑗,𝑜 represents a user-defined realization in the range of values to be considered for 

the set 𝜅 for unit j and task k. Eq. (19a) represents the mechanistic process model. Eq. (19b) 

represents the process constraints of the unit, and they involve production goals, safety 

requirements, quality concerns and/or feasibility limitations. Note that Eq. (19b) enforces the 

system to find the control decisions and unit operation times backed-off from the nominal 

values. A more detailed discussion on the back-off terms and their calculation is provided in 

section IV.1.7. Eq. (19c) and Eq. (19d) represent the calculation of the relations of material that 

enters or leaves the unit, which is fractional (mass, volume, mol) and is user-specified. Eq. (19e) 
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represents the calculations of the cost to operate the unit 𝑗 to realize task 𝑘. Eq. (19f) represents 

the bounds on the processing unit times (𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗,𝑜
). The data gathered from the solution of these 

optimization problems for each 𝜅𝑘,𝑗,𝑜 in 𝜅𝑘,𝑗 (i.e., 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗,𝑜
, 𝐽𝑖,𝑘,𝑗,𝑜, 𝜌𝑖,𝑘,𝑗,𝑜

𝐼𝑛  and 𝜌𝑖,𝑘,𝑗,𝑜
𝑜𝑢𝑡 ) is used 

to identify linear correlations between these variables and 𝜅𝑘,𝑗. These correlations can be 

represented as follows: 

𝑰𝑖,𝑘,𝑗 = 𝚲𝑖,𝑘,𝑗𝜅𝑘,𝑗 + 𝚪𝑖,𝑘,𝑗   (19g) 

 

where 𝑰𝑖,𝑘,𝑗 = [𝐽𝑖,𝑘,𝑗 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗
 𝜌𝑖,𝑘,𝑗

𝐼𝑛  𝜌𝑖,𝑘,𝑗
𝑜𝑢𝑡 ]

𝑇

 is the vector of the variables of interest for each unit 

𝑗 performing task 𝑘; 𝚲𝑖,𝑘,𝑗 = [Λ𝑖,𝑘,𝑗
𝐶  Λ𝑖,𝑘,𝑗

𝜏  Λ𝑖,𝑘,𝑗
𝜌𝐼𝑛

 Λ𝑖,𝑘,𝑗
𝜌𝑜𝑢𝑡

]
𝑇

 is the vector of the correlation slopes 

for each unit 𝑗 realizing task 𝑘 whereas 𝚪𝑖,𝑘,𝑗 = [Γ𝑖,𝑘,𝑗
𝐶  Γ𝑖,𝑘,𝑗

𝜏  Γ𝑖,𝑘,𝑗
𝜌𝐼𝑛

 Γ𝑖,𝑘,𝑗
𝜌𝑜𝑢𝑡

]
𝑇

 is the vector of the 

correlation  intercepts for each unit 𝑗 realizing task  𝑘. Note that the relations of incoming and 

outgoing material in the scheduling problem are calculated at the midpoint between the 

maximum and minimal load, i.e., (𝜅𝑀𝑖𝑛𝑘,𝑗
+ 𝜅𝑀𝑎𝑥𝑘,𝑗

) /2. This is performed to avoid the need 

to solve complex (nonlinear) scheduling formulations, thus becoming input parameters. The 

resulting values of these ratios, i.e., 𝛿𝑖,𝑘,𝑗,𝑠
𝐼𝑛  and 𝛿𝑖,𝑘,𝑗,𝑠

𝑂𝑢𝑡 , are then used in the state-task network 

representation considered in the scheduling formulation, as shown in Figure 9. 𝛿𝑖,𝑘,𝑗,𝑠
𝐼𝑛  

represents the state-task relation (i.e., inputs of a task) for each state 𝑠 feeding unit 𝑗 that will 

realize task 𝑘. 𝛿𝑖,𝑘,𝑗,𝑠
𝑂𝑢𝑡  represents the task-state relation (i.e., outputs of a task) for each state 𝑠 

exiting unit 𝑗 that realized task 𝑘. 

 

IV.1.3. Scheduling Problem 

The continuous-time formulation and the State-Task Network (STN) are used in this work 

to formulate a scheduling problem for chemical batch plants. The parametric sensitivity analysis 
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described above allows the scheduling model to consider the unit operation costs (𝐽𝑖,𝑘,𝑗) and 

unit operation times (𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗
) based on the set 𝜅. In particular, the set 𝜅 is often represented as 

the quantity of material processed (𝐵𝑖,𝑘,𝑗,𝑒) by a unit 𝑗 realizing task 𝑘 at event 𝑒 in the 

scheduling problem. The continuous-time scheduling formulation proposed in this work is 

represented in the following MILP problem: 

max
𝑊𝑖,𝑘,𝑒,𝑌𝑖,𝑗,𝑒,𝐵𝑖,𝑘,𝑗,𝑒,𝑑𝑖,𝑠,𝑒

𝑍𝑆𝑐ℎ(𝑝𝑠, 𝑑𝑖,𝑠,𝑒 , 𝛿𝑖,𝑘,𝑗,𝑠
𝐼𝑛 , 𝛿𝑖,𝑘,𝑗,𝑠

𝑂𝑢𝑡 , 𝐸𝑖, Γ𝑖 , Λi, 𝐻, 𝐽𝑖,𝑘,𝑗,𝑒)     (20) 

𝑠. 𝑡.   

∑ 𝑊𝑖,𝑘,𝑒 ≤ 𝑌𝑖,𝑗,𝑒
 
𝑘∈𝑁𝑃𝑟𝑗

, ∀ 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20a) 

𝑊𝑖,𝑘,𝑒𝐵𝑀𝑖𝑛𝑘,𝑗
≤ 𝐵𝑖,𝑘,𝑗,𝑒 ≤ 𝑊𝑖,𝑘,𝑒𝐵𝑀𝑎𝑥𝑘,𝑗

, ∀ 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸𝑘
, 𝑒 ∈ 𝐸  (20b) 

𝑆𝑇𝑖,𝑠,𝑒 = 𝑆𝑇𝑖,𝑠,𝑒−1 − 𝑑𝑖,𝑠,𝑒 + ∑ ∑ (𝛿𝑖,𝑘,𝑗,𝑠
𝑂𝑢𝑡 𝐵𝑖,𝑘,𝑗,𝑒−1 − 𝛿𝑖,𝑘,𝑗,𝑠

𝐼𝑛 𝐵𝑖,𝑘,𝑗,𝑒)
 
𝑗∈𝑁𝐸𝑘

 
𝑘∈𝑁𝑃𝑟𝑠

,  

∀ 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸 

(20c) 

𝑆𝑇𝑖,𝑠,𝑒 ≤ 𝑂𝑠, ∀ 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸 (20d) 

𝑄𝑖,𝑗,𝑒 = 𝑄𝑖,𝑗,𝑒−1 + ∑ 𝐵𝑖,𝑘,𝑗,𝑒
 
𝑘∈𝑁𝑃𝑟𝑗

− ∑ ∑ 𝛿𝑖,𝑘,𝑗,𝑠
𝑂𝑢𝑡 𝐵𝑖,𝑘,𝑗,𝑒−1

 
𝑠∈𝑆𝑘

𝑜𝑢𝑡
 
𝑘∈𝑁𝑃𝑟𝑗

,  

∀ 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸 

(20e) 

𝑄𝑖,𝑗,𝑒𝑓
= 0, ∀ 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20f) 

∑ 𝑑𝑖,𝑠,𝑒
 
𝑒∈𝐸 ≥ 𝑟𝑠  ∀ 𝑠 ∈ 𝑆  (20g) 

𝑇𝑖,𝑘,𝑗,𝑒
𝐹 = 𝑇𝑖,𝑘,𝑗,𝑒

𝑆 + Λ𝑖,𝑘,𝑗
𝜏 𝐵𝑖,𝑘,𝑗,𝑒 + Γ𝑖,𝑘,𝑗

𝜏 𝑊𝑖,𝑘,𝑒 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20h) 

𝑇𝑖,𝑘,𝑗,𝑒
𝐹 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝑆 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20i) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝑆 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝐹 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20j) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝐹 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝐹 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20k) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝑆 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝑆 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20l) 

𝑇𝑖,𝑘,𝑗,𝑒
𝐹 ≤ 𝐻, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗

, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20m) 

𝑇𝑖,𝑘,𝑗,𝑒
𝑆 ≤ 𝐻, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗

, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20n) 

𝑇𝑖,𝑘,𝑗,𝑒𝑓

𝐹 = 𝐻, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20o) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝑆 ≥ 𝑇𝑖,𝑙,𝑗,𝑒

𝐹 − 𝐻(1 − 𝑊𝑖,𝑙,𝑒)  (20p) 

∀ 𝑗 ∈ 𝑁𝐸 , 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑙 ∈ 𝑁𝑃𝑟𝑗

, 𝑘 ≠ 𝑙, 𝑒 ∈ 𝐸, 𝑒 ≠ 𝑒𝑓  

𝐽𝑖,𝑘,𝑗,𝑒 = 𝑊𝑖,𝑘,𝑒Γ𝑖,𝑘,𝑗
𝐶 + 𝐵𝑖,𝑘,𝑗,𝑒Λ𝑖,𝑘,𝑗

𝐶 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (20q) 

𝐽𝑇 = ∑ ∑ ∑ 𝐽𝑖,𝑘,𝑗,𝑒
𝑁𝐸𝑘

𝑗
𝑁𝑃𝑟
𝑘

𝐸
𝑒   (20r) 

𝑤ℎ𝑒𝑟𝑒   

𝛿𝑖,𝑘,𝑗,𝑠
𝐼𝑛 ∈ 𝛿𝑖

𝐼𝑛, 𝛿𝑖,𝑘,𝑗,𝑠
𝑂𝑢𝑡 ∈ 𝛿𝑖

𝑂𝑢𝑡, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , ∀ 𝑠 ∈ 𝑆  

Γ𝑖,𝑘,𝑗
𝜏 , Γ𝑖,𝑘,𝑗

𝐶 ∈ Γ𝑖, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸   

Λ𝑖,𝑘,𝑗
𝜏 , Λ𝑖,𝑘,𝑗

𝐶 ∈ Λ𝑖, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸  

𝑝𝑠 ∈ 𝑃, 𝑟𝑠 ∈ 𝑅, ∀ 𝑠 ∈ 𝑆  
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where the objective function may be set to maximize the profits obtained from producing a 

variety of products by the implementation their corresponding recipes into a given chemical 

batch plant. Note that other types of objective functions can be used in this framework (e.g., 

minimization of turnaround time). Note that Problem 3 and Problem 4 should consider objective 

functions with the same objective to achieve coherent solutions (e.g., minimize costs, maximize 

profits, etc.). 𝑝𝑠 is the sale price of state 𝑠 and 𝐸 is the number of event points utilized in the 

scheduling formulation. 𝐸 is user defined and can be determined iteratively by starting with a 

small number and adding increments until no more improvements on the objective function are 

detected42,43. Eq. (20a) represents the allocation constraints where 𝑊𝑖,𝑘,𝑒 is set to zero unless 

task 𝑘 at event 𝑒 is taking place in unit 𝑗 at the 𝑖𝑡ℎ iteration; also, this constraint depends on the 

value of 𝑌𝑖,𝑗,𝑒, which can be either 0 or 1 and represents the assignment of unit 𝑗 at event 𝑒 at 

the 𝑖𝑡ℎ iteration. Eq. (20b) represents the capacity constraint, where 𝐵𝑖,𝑘,𝑗,𝑒 is the material 

holdup of unit 𝑗 while processing task 𝑘 at event 𝑒. Eq. (20c) represents the state material 

balances. 𝑆𝑇𝑖,𝑠,𝑒 is the total quantity of state 𝑠 at event 𝑒 whereas 𝛿𝑖,𝑘,𝑗,𝑠
𝐼𝑛  and 𝛿𝑖,𝑘,𝑗,𝑠

𝑂𝑢𝑡  represent the 

fraction of state 𝑠 that enters or leaves task 𝑘, respectively. Both 𝛿𝑖,𝑘,𝑗,𝑠
𝐼𝑛  and 𝛿𝑖,𝑘,𝑗,𝑠

𝑂𝑢𝑡  are obtained 

from the parametric sensitivity analysis and represent inputs (i.e., model parameters) to the 

scheduling formation, as described in section IV.1.2. Eq. (20d) ensures that the material 

quantity of state 𝑠 at event 𝑒 is no greater than its capacity 𝑂𝑠. Eq. (20e) is the material balance 

inside each unit 𝑗 at each event 𝑒, where 𝑄𝑖,𝑗,𝑒 is the quantity of material inside the unit. This 

balance is conditioned by Eq. (20f) on the last event point, 𝑒𝑓, which sets the material balance 

equal to zero: no remaining material inside any of the processing units is allowed at the end of 

the operation. Eq. (20g) represents the market demand constraints, where 𝑟𝑠 is the total demand 

of state 𝑠 and 𝑑𝑖,𝑠,𝑒 is the demand satisfied of such state at event 𝑒. Note that Eq. (20g) enforces 

that market requirements 𝑟𝑠 provided by the user must be met by the present scheduling 

formulation. Eq. (20h) represents the time at which unit 𝑗 stops whichever task it is realizing, 
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and is based on the time unit 𝑗 needs to realize task 𝑘 at event 𝑒, depending on the linear 

correlations with the parameters Λ𝑖,𝑘,𝑗
𝜏  (slope) and Γ𝑖,𝑘,𝑗

𝜏  (intercept) and the quantity of material 

processed (𝐵𝑖,𝑘,𝑗,𝑒) under the condition of the utilization of the unit (𝑊𝑖,𝑘,𝑒). Eq. (20h) to Eq. 

(20o) are time logic constraints, i.e., they enforce that the realization of task 𝑘 in unit 𝑗 at event 

𝑒 does not overlap with another task, following the sequence of processes as specified, while 

delimiting and specifying the time of realization (specifying a start and an end) through the time 

axis and enforcing that no unit can be operated beyond the time horizon 𝐻. Eq. (20p) ensures 

that a unit that can perform multiple tasks is only used to perform a task at a time. Eq. (20q) is 

used to calculate the dynamic unit operating costs, which depend on the linear correlations 

obtained from the parametric sensitivity analysis with the parameters Λ𝑖,𝑘,𝑗
𝐶  (slope) and Γ𝑖,𝑘,𝑗

𝐶  

(intercept) and the quantity of material processed (𝐵𝑖,𝑘,𝑗,𝑒) under the condition of the utilization 

of the unit (𝑊𝑖,𝑘,𝑒). Eq. (20r) determines the total operating cost of the plant. 

 

IV.1.4. Dynamic Optimization Problem 

The solution to Problem 20 (Z𝑆𝑐ℎ
∗ ) returns the set of scheduling decisions 𝛽𝑆𝑐ℎ𝑖

 (𝐵𝑖,𝑘,𝑗,𝑒, 

𝑊𝑖,𝑘,𝑒 and 𝑌𝑖,𝑗,𝑒) obtained at the 𝑖𝑡ℎ iteration step. The set 𝛽𝑆𝑐ℎ𝑖
 represents the key inputs 

required for the formulation of the dynamic optimization problem that aims to find the control 

actions and unit operation times that optimize the economics of the batch plant. This problem 

is formulated as follows: 

max
𝑢𝑖,𝑘,𝑗,𝑡,𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗

𝑍𝐷𝑦𝑛 (𝑥(𝑡)𝑖,𝑘,𝑗, 𝑥̇(𝑡)𝑖,𝑘,𝑗, 𝑢(𝑡)𝑖,𝑘,𝑗, Ψ, 𝑡, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗
, 𝐶, 𝛽𝑆𝑐ℎ𝑖,𝑘,𝑗

)    (21) 

𝑠. 𝑡.   

𝑓𝑝 (𝑥(𝑡)𝑖,𝑘,𝑗 , 𝑥̇(𝑡)𝑖,𝑘,𝑗, 𝑢(𝑡)𝑖,𝑘,𝑗, 𝜓𝑁𝑜𝑚, 𝑡, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗
, 𝛽𝑆𝑐ℎ𝑖,𝑘,𝑗

) = 0,  

∀ 𝑡, 𝑝 ∈ 𝑁𝑝, 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸 

(21a) 

ℎ𝑞 (𝑥(𝑡)𝑖,𝑘,𝑗 , 𝑥̇(𝑡)𝑖,𝑘,𝑗, 𝑢(𝑡)𝑖,𝑘,𝑗, 𝜓𝑁𝑜𝑚, 𝑡, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗
, 𝛽𝑆𝑐ℎ𝑖,𝑘,𝑗

) ± 𝜆𝑏𝑖−1,𝑘,𝑗,𝑞,𝑡 ≤ 0,   

∀ 𝑡, 𝑞 ∈ 𝑁𝑞 , 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸  

(21b) 

𝜏𝑀𝑖𝑛𝑘,𝑗
≤ 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗

≤ 𝜏𝑀𝑎𝑥𝑘,𝑗
, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗

∈ 𝜏𝑖, ∀, 𝑘 ∈ 𝑁𝑃𝑟 , 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸  (21c) 
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where  

𝜓𝑁𝑜𝑚 ∈ Ψ, 𝜏𝐷𝑦𝑛𝑖
∈ 𝜏𝑖 , 𝜏𝑖 ∈ Τ   

 

where 𝑍𝐷𝑦𝑛 represents an objective function that considers the transient operation of each task 

in the plant; 𝛽𝑆𝑐ℎ𝑖,𝑘,𝑗
 are the scheduling decisions for unit 𝑗 performing task 𝑘 and 𝛽𝑆𝑐ℎ𝑖,𝑘,𝑗

∈

𝛽𝑆𝑐ℎ𝑖
 ∀ 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸. Eq. (21a) represents the mechanistic model of the processes included 

in the batch plant. The introduction of the back-off terms in Eq. (21b) enforces the optimization 

to find control decisions and unit operation times backed-off from the nominal values that 

ensure dynamic feasibility. The back-off terms 𝜆𝑏𝑖,𝑘,𝑗,𝑞,𝑡 represent the deviation of the system 

from the nominal point under stochastic realizations in the uncertain model parameters at the 

inequality constraint 𝑞 of unit 𝑗 performing task 𝑘 at time 𝑡 at the 𝑖𝑡ℎ iteration. Note that the 

back-off terms include a multiplier-factor 𝜆, which can be thought as the level confidence given 

to each of the back-off terms (i.e., the amount of output variability that needs to be 

accommodated due to uncertainty). A more detailed discussion on the back-off terms and their 

calculation is provided in section IV.1.7. Note that back-off terms at 𝑖 = 0 are set to zero (as 

there is no information from the plant that could be used for their calculation). Eq. (21b) 

represents the process constraints for each unit, and they involve production goals, safety 

requirements, quality concerns and/or feasibility limitations. Eq. (21c) represents the bounds 

on the processing unit times (𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗
). 𝐵𝑖,𝑘,𝑗,𝑒 is an input to problem (4) and represents the 

initial amount of material that needs to be processed. Problem (4) aims to find optimal control 

profiles and unit operation times that can process 𝐵𝑖,𝑘,𝑗,𝑒 in the presence of uncertainty. Note 

that 𝐵𝑖,𝑘,𝑗,𝑒 may differ at the end of operation for some specific processes depending on the 

nature of their own operation, e.g., semi-batch processes involving inlet streams that may 

continuously feed material into the unit. 
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IV.1.5. Stochastic Simulations 

The solution from Problem 21, 𝑍𝐷𝑦𝑛
∗ , returns the optimal control profiles (𝑢𝐷𝑦𝑛𝑖,𝑘,𝑗

) and unit 

operation times (𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗
) in the presence of back-off terms that were estimated in a preceding 

iteration. At this step, both 𝑢𝐷𝑦𝑛𝑖,𝑘,𝑗
 and 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗

 are defined as model parameters (i.e., fixed in 

the calculations) and used to evaluate the system under the influence of 𝑛 stochastic realizations 

in the uncertain parameters (𝜓𝑈𝑛𝑐𝑖,𝑛
). The quantity of material to be processed on each unit 

(𝐵𝑖,𝑘,𝑗,𝑒) depend on the performance of preceding tasks under uncertainty using fixed control 

profiles and processing times obtained from problem (21). Accordingly, 𝐵𝑖,𝑘,𝑗,𝑒 are only used 

to initialize problem (22) since it is not known a priori the quantity of material that would be 

transferred from preceding tasks due to uncertainty in the model parameters. The probability 

functions that were used to describe 𝜓𝑈𝑛𝑐 in the initialization step (section IV.1.1) are used to 

generate the random values of each realization in the uncertain parameter set using Monte Carlo 

sampling techniques. The statistical data generated from this step is used to compute the back-

off terms, as described in the next section. The problem considered for this step is as follows: 

max  𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛,𝑚 = ℎ𝑞 (𝑥(𝑡)𝑖,𝑘,𝑗,𝑛,𝑚, 𝑥̇(𝑡)𝑖,𝑘,𝑗,𝑛,𝑚, 𝑢𝐷𝑦𝑛𝑖,𝑘,𝑗
, 𝜓𝑈𝑛𝑐𝑖,𝑛

, 𝑡, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗
)  (22) 

𝑠. 𝑡.   

𝑓𝑝 (𝑥(𝑡)𝑖,𝑘,𝑗,𝑛,𝑚, 𝑥̇(𝑡)𝑖,𝑘,𝑗,𝑛,𝑚, 𝑢𝐷𝑦𝑛𝑖,𝑘,𝑗
, 𝜓𝑈𝑛𝑐𝑖,𝑛

, 𝑡, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗
) = 0,   

∀ 𝑡, 𝑝 ∈ 𝑁𝑝, 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸  

(22a) 

where  

𝜓𝑈𝑛𝑐𝑖,𝑛,𝑚 
∈ Ψ, 𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗

∈ 𝜏𝑖, 𝜏𝐷𝑦𝑛𝑖
∈ 𝜏𝑖 , τi ∈ Τ   

 

Problem 22 is solved 𝑛 times where 𝑛 represents a specific random realization in the set of 

uncertain parameters 𝜓𝑈𝑛𝑐. As shown in Figure 8, this problem is solved in batches of size 𝐿 

(i.e., 𝑛 ∈ [0, 𝐿)) until a user-defined criterion (Eq. 23) is met. The total number of iterations 

(𝑁𝑀𝐶) necessary to satisfy criterion I (Eq. 23) is unknown a priori. Hence, the index 𝑚 is 

introduced here to keep track of the number of iterations needed to satisfy criterion I (Eq. 23), 
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i.e., 𝑚 ∈ [0,𝑁𝑀𝐶). Note that problem 22 is solved for 𝐿𝑁𝑀𝐶  times. Note that problem 22 is a 

feasibility problem, i.e., only the mechanistic process model constraint (22a) is enforced 

whereas the maximum deviation in the process constraints (ℎ𝑞) is assessed (𝜁) under random 

realizations in the uncertain parameters.  

 
Figure 10. Stochastic Simulations and Back-off Term Calculation Diagram. 

 

A graphical representation of a single iteration in 𝑚 is shown in Figure 10. In the Monte 

Carlo Sampling section, the uncertain parameters are described by their corresponding PDF’s. 

Random realizations of the uncertain parameters are selected and used to evaluate the dynamic 

feasibility of the system under those conditions, i.e., solving an instance of Problem 22. The 

values of the observed system variables (𝜁) are then stored after each solution of Problem 22. 

The back-off term calculation is performed with the gathered information at the end of each 𝑚 

iteration (considering the information of previous batches).  

Criterion 3 (Eq. 23) quantifies the deviations in the back-off terms between the 𝑚𝑡ℎ and 

𝑚 − 1𝑡ℎ data populations. Each population 𝑚 is composed of 𝐿 ∗ 𝑚 realizations in the uncertain 

parameters, i.e., population 𝑚 contains the information generated at the 𝑚𝑡ℎ iteration and the 

information generated in previous iterations. This criterion terminates the back-off calculation 

 

𝑴𝒐𝒏𝒕𝒆 𝑪𝒂𝒓𝒍𝒐 𝑺𝒂𝒎𝒑𝒍𝒊𝒏𝒈 𝑫 𝒏𝒂𝒎𝒊𝒄 𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝑩𝒂𝒄𝒌 − 𝒐𝒇𝒇 𝑻𝒆𝒓𝒎 𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏 

𝜓𝑈𝑛𝑐𝑤
= 𝑃𝐷𝐹𝑤(𝜂𝑤) 

𝜓𝑁𝑜𝑚  𝜓𝑛 

𝜓2 

𝜓1 

  

𝑈𝑛𝑖𝑡 𝑗, 𝑇𝑎𝑠𝑘 𝑘 

𝑢 

𝜏𝐷𝑦𝑛𝑖,𝑘,𝑗
 

𝑡 

𝑏 

𝜁 

𝜁𝑁𝑜𝑚  

𝑏 
  

𝜁𝑛  

𝜁2 

𝜁1 
𝑢𝐷𝑦𝑛𝑖,𝑘,𝑗

 

𝑏 =  𝑓(𝜁)/𝑛(𝜁) 
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loop (inner loop in Figure 8) when the errors between back-off terms for iteration 𝑚 and those 

for iteration 𝑚 − 1 satisfy a user defined tolerance (𝑇𝑜𝑙𝑆𝑆).  

Criterion 3 (Eq. 23) is only active for 𝑚 ≥ 2. Note that this criterion must be satisfied for 

all the back-off terms considered in the formulation. The specific procedure to estimate the 

back-off terms is presented in section IV.1.7.  

|1 − 𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚−1/𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚| ≤ 𝑇𝑜𝑙𝑆𝑆 ∀ t, 𝑘 ∈ 𝑁𝑃𝑟 , j ∈ 𝑁𝐸 , q ∈ 𝑁𝑞  (23) 

 

where 𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚 is the back-off term calculated at the 𝑚𝑡ℎ iteration of the back-off calculation. 

Note that index 𝑚 is dropped from the notation of the back-off terms outside of the inner loop 

shown in Figure 8 since it is only used to distinguish the back-off terms calculated in between 

batches of size 𝐿, i.e., 𝑏𝑖,𝑘,𝑗,𝑞,𝑡,𝑚 → 𝑏𝑖,𝑘,𝑗,𝑞,𝑡 when Criterion 3 (Eq. 23) has been satisfied. Note 

that Eq. (23) is only active for 𝑚 ≥ 2. Also, this criterion must be satisfied for all the back-off 

terms considered in the formulation. Additional information on this step and the specific 

procedure to estimate the back-off terms are provided in section III.2.5. 

 

IV.1.6. Algorithm Termination 

The algorithm is terminated when the difference between successive back-off terms 

calculated at the current and previous iteration is below a user-defined tolerance (𝑇𝑜𝑙𝐵𝑂), i.e.,                                                                                                                                  

|1 − 𝑏𝑖−1,𝑘,𝑗,𝑞,𝑡/𝑏𝑖,𝑘,𝑗,𝑞,𝑡| ≤ 𝑇𝑜𝑙𝐵𝑂, ∀ t, 𝑘 ∈ 𝑁𝑃𝑟 , j ∈ 𝑁𝐸 , q ∈ 𝑁𝑞  (24) 

 

Otherwise, the algorithm proceeds to the next iteration (as shown in Figure 8). Due to the 

iterative nature of the back-off approach, and its dependence on the random statistical 

parameters, local solutions are not guaranteed while using this method. However, the 

methodology provides a scheduling and control scheme that exhibits dynamic feasibility thus 
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providing higher satisfaction of the process constraints in the presence of stochastic realizations 

in the system parameters. 

 

IV.1.7. Back-Off Term Calculation 

In this work, a back-off term (𝜆𝑏𝑖,𝑘,𝑗,𝑞,𝑡) is the representation of the deviation of the system 

in the values of the observed variables of the of the 𝑞𝑡ℎ constraint function at a time 𝑡 for a unit 

𝑗 performing task 𝑘 at the 𝑖𝑡ℎ iteration for stochastic realizations in the uncertain parameters. A 

back-off term is composed by the amount of variability (𝜆) considered in the qth constraint and 

the deviation of the system caused by uncertainty (𝑏𝑖,𝑘,𝑗,𝑞,𝑡). 𝜆 is a user-defined parameter and 

it could have different values for each 𝑞 constraint, i.e.,  𝜆𝑞. 

The introduction of 𝜆𝑏𝑖,𝑘,𝑗,𝑞,𝑡 into the constraints ℎ𝑞 is expected to drive the process to 

search for a solution capable of accommodating a 𝜆 level of uncertainty, backed off from the 

optimal solution using nominal values in the uncertain model parameters18. Note that there is a 

back-off term for each inequality ℎ𝑞 at each time point 𝑡. The standard deviation on the back-

off terms is calculated as follows:  

𝑏𝑖,𝑘,𝑗,𝑞,𝑡 = √ 1

𝑁𝑀𝐶
∑ [𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛 −

1

𝑁𝑀𝐶
∑ 𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛

𝑁𝑀𝐶
𝑛=1  ]

2
𝑁𝑀𝐶
𝑛=1   

(25) 

∀  𝑡, 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸𝑖,𝑞
, 𝑞 ∈ 𝑁𝑞𝑖

  

 

where 𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛 are obtained from the solution of problem 22. This expression assumes that 

the data used for the back-off terms calculation, a set of 𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛, follow a statistical distribution 

that can be represented by a normal distribution. Eq. (25) represents the calculation of the 

normal standard deviation for discrete random variables and is used for the calculation of the 

deviation of a process subjected to stochastic uncertainty for the back-off terms calculations in 
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this work at each iteration 𝑚. Note that Eq. (25) may need to be adapted in case that the data 

set of 𝜁𝑖,𝑘,𝑗,𝑞,𝑡,𝑛 does not follow a normal distribution. 
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IV.2. Case Study 

The performance of the methodology of Algorithm B has been evaluated using a slightly 

modified version of the case study described in the previous chapter (section III.3). Table 5 

lists the chemical reaction parameters that were modified. For this case study, it is assumed that 

𝑘𝐴𝐵, 𝑘𝐵𝐶, 𝑘𝐵𝐷𝐸 and 𝑘2𝐷𝐹 are the uncertain parameters in the system that follow a normal 

distribution with a standard deviation equivalent to 5% of their expected (nominal) values 

(reported in Table 4).  

Table 5. Case Study – Modified chemical reaction parameters. 

Variable Value Description 

𝑬𝑨→𝑩 [𝑲] 5000 Activation Energy in RI 

𝑬𝑩→𝑪 [𝑲] 8000 Activation Energy in RI 

 

The profit function for the dynamic optimization problem considered for this case study is 

as follows: 

𝑍𝐷𝑦𝑛 = ∑ 𝑐̂𝑝
𝑁𝑃𝑟
𝑝 + 𝑐̌𝑂𝑃𝑐𝑜𝑠𝑡𝑠;  𝑁𝑃𝑟 = {𝑅𝐼, 𝑅𝐼𝐼, 𝐹𝐼, 𝑆𝐼}  (28) 

 

where 𝑐̌𝑅𝐼, 𝑐̌𝑅𝐼𝐼, 𝑐̌𝐹𝐼 & 𝑐̌𝑆𝐼 represent the operation costs and revenues generated (if any) by each 

of the processes (tasks). 𝑐̌𝑂𝑃𝑐𝑜𝑠𝑡𝑠 is a cost function that evaluates possible losses in production 

due to changes in the unit operation times. That is, Eq. (28) represent the calculations of the 

chemical plant profits. The overall cost of the process 𝑅𝐼 is: 

𝑐̌𝑅𝐼 = 𝑐̌𝑅𝐼𝐴 + 𝑐̌𝑅𝐼𝐴𝑢𝑥
  (29) 

 

where 𝑐̌𝑅𝐼𝐴𝑢𝑥,
 represents the total cost of the auxiliary services utilized to perform 𝑅𝐼, which is 

directly related to the valve opening fractions (𝐹𝐻𝑜𝑡𝑗
(𝑡) & 𝐹𝐶𝑜𝑜𝑙𝑗

(𝑡)): 

𝑐̌𝑅𝐼𝐴𝑢𝑥
= ∑ (𝑝𝐹𝐻𝑜𝑡 ∫ 𝐹𝐻𝑜𝑡𝑗

(𝑡)𝑑𝑡
𝜏𝐷𝑦𝑛𝑖,𝑗
𝑅𝐼

0
+ 𝑝𝐹𝐶𝑜𝑜𝑙 ∫ 𝐹𝐶𝑜𝑜𝑙𝑗

(𝑡)𝑑𝑡
𝜏𝐷𝑦𝑛𝑖,𝑗
𝑅𝐼

0
)

𝑁𝐸𝑅𝐼

𝑗
  

(30) 
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where 𝑝𝐹𝐻𝑜𝑡
 and 𝑝𝐹𝐶𝑜𝑜𝑙

 are the price of using the heating or the cooling lines, respectively. 

Likewise, 𝑐̌𝑅𝐼𝐴 is the total cost of the quantity of raw species A loaded to perform 𝑅𝐼: 

𝑐̌𝑅𝐼𝐴 = 𝑝𝐴 ∑ 𝑛𝐴𝑖,𝑗
(𝑡)|𝑡=0

𝑁𝐸𝑅𝐼

𝑗
  (31) 

 

where 𝑝𝐴 is the cost per unit of species A,  𝑛𝐴𝑖,𝑗
(𝑡)|𝑡=0 is the initial quantity of species A in unit 

𝑗 that performs 𝑅𝐼. The overall cost of the process 𝐹𝐼 is described by a penalization of waste 

generated in this unit (i.e., the amounts of unreacted A and the by-product C), i.e.: 

𝑐̌𝐹𝐼 = 𝑝𝑊𝑎𝑠𝑡𝑒 ∑ (𝑛𝐴𝑖,𝑗
(𝑡) + 𝑛𝐶𝑖,𝑗

(𝑡)) |
𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑅𝐼
𝑁𝐸𝐹𝐼

𝑗
  

(32) 

 

where 𝑝𝑊𝑎𝑠𝑡𝑒 is the penalty cost, 𝑛𝐴𝑖,𝑗
(𝑡)|𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑅𝐼  and 𝑛𝐶𝑖,𝑗
(𝑡)|𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑅𝐼 are the quantity of A and 

C, respectively, at the end of operation of unit 𝑗 that performed 𝑅𝐼. The overall cost of process 

𝑅𝐼𝐼, which is the cost of feeding species D into the reactor through, is: 

𝑐̌𝑅𝐼𝐼 = 𝑐̌𝑅𝐼𝐼𝐷 = 𝑝𝐹𝐹𝑒𝑒𝑑
∑ ∫ 𝑉𝑅𝑖,𝑗

(𝑡)𝐶𝐹𝑖,𝑗
(𝑡)𝑑𝑡

𝜏𝐷𝑦𝑛𝑖,𝑗
𝑅𝐼𝐼

0

𝑁𝐸𝑅𝐼𝐼

𝑗
  

(33) 

 

where 𝑝𝐹𝐹𝑒𝑒𝑑
 is the unitary cost of species D, 𝑉𝑅𝑖,𝑗

(𝑡) is the volumetric flow of the feeding of 

unit 𝑗 at time 𝑡 and  𝐶𝐹𝑖,𝑗
(𝑡) is the concentration of feed of D. The overall cost of process 𝑆𝐼 ias 

as follows: 

𝑐̌𝑆𝐼 = 𝑐̌𝑆𝐼𝑀𝑖𝑥𝑖
− 𝑐̌𝑆𝐼𝐸  (34) 

 

In Eq. (34) 𝑐̌𝑆𝐼𝐸 represents the revenues for selling species E, i.e.: 

𝑐̌𝑆𝐼𝐸 = 𝑝𝑃𝑢𝑟𝑒 ∑ 𝑛𝐸𝑖,𝑗
(𝑡)|𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑅𝐼𝐼
𝑁𝐸𝑅𝐼𝐼

𝑗
  (35) 
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where 𝑝𝑃𝑢𝑟𝑒 is the unitary price of E and 𝑛𝐸𝑖,𝑗
(𝑡)|𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑅𝐼𝐼 is the quantity of E in unit 𝑗 at the end 

of operation. 𝑐̌𝑆𝐼𝑀𝑖𝑥
 is a penalty cost for the quantity produced of the mixture of D and F in 

process 𝑆𝐼: 

𝑐̌𝑆𝐼𝑀𝑖𝑥
= 𝑝𝐼𝑚𝑝𝑢𝑟𝑒 ∑ (𝑛𝐷𝑖,𝑗

(𝑡) + 𝑛𝐹𝑖,𝑗
(𝑡)) |

𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗
𝑅𝐼𝐼

𝑁𝐸𝑅𝐼𝐼

𝑗
  

(36) 

 

where 𝑝𝐼𝑚𝑝𝑢𝑟𝑒 is the unitary penalty cost of the mixture and 𝑛𝐷𝑖,𝑗
(𝑡) and 𝑛𝐹𝑖,𝑗

(𝑡) is the 

quantity of D and F in unit 𝑗 at time 𝑡, respectively. 

The objective function (Eq. 28) which includes the penalty cost 𝑐̌𝑂𝑃𝑐𝑜𝑠𝑡𝑠 of possible losses 

in production, based on unit operation times, 𝑐̌𝑂𝑃𝑐𝑜𝑠𝑡𝑠 (Eq. 37), which compares the unit 

operation times calculated in the current iteration with those calculated in the previous iteration. 

This function penalizes the unit operation times and is mainly used as an incentive to find 

optimal unit operation times. 

𝑐̌𝑂𝑃𝑐𝑜𝑠𝑡𝑠 = (∑ ∑ ∑ 𝑝𝑎𝐷𝑎𝑖,𝑗
(𝑡)|𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑘
𝑁𝑃𝑟𝑜𝑑
𝑎

𝑁𝐸𝑘

𝑗

𝑁𝑃𝑟
𝐷𝑦𝑛

𝑘
)  

                                     ∗ (𝜉(𝑁𝑃𝑟
𝐷𝑦𝑛

) − ∑ (
∑ 𝜏𝐷𝑦𝑛𝑖,𝑗

𝑘
𝑁𝐸𝑘
𝑗

∑ 𝜏𝐷𝑦𝑛𝑖−1,𝑗
𝑘

𝑁𝐸𝑘
𝑗

)
𝑁𝑃𝑟

𝐷𝑦𝑛

𝑘
)  

(37) 

 

where 𝑁𝑃𝑟
𝐷𝑦𝑛

 represents the set of processes that consider the dynamic operation (i.e., their unit 

operations times are optimized); 𝜉(𝐴) is the cardinal number of a set (cardinality). 𝑁𝑃𝑟𝑜𝑑 is the 

set of substances that are sold generate a revenue, where 𝑎 is an element of said set. 

𝐷𝑎𝑖,𝑗
(𝑡)|𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑘  is the quantity of substance 𝑎 produced at unit 𝑗 performing task 𝑘 at the end 

of operation. 𝑝𝑎 is the selling price of substance 𝑎. The arrange for this case study as follows: 

𝑐̌𝑂𝑃𝑐𝑜𝑠𝑡𝑠 = 𝑝𝑃𝑢𝑟𝑒 ∑ 𝐷𝐸𝑖,𝑗
(𝑡)|𝑡=𝜏𝐷𝑦𝑛𝑖,𝑗

𝑅𝐼𝐼
𝑁𝐸𝑅𝐼𝐼

𝑗
(𝜉(𝑁𝑃𝑟

𝐷𝑦𝑛
) − ∑ (

∑ 𝜏𝐷𝑦𝑛𝑖,𝑗
𝑘

𝑁𝐸𝑘
𝑗

∑ 𝜏𝐷𝑦𝑛𝑖−1,𝑗
𝑘

𝑁𝐸𝑘
𝑗

)
𝑁𝑃𝑟

𝐷𝑦𝑛

𝑘
)  

(38) 
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where  𝑁𝑃𝑟
𝐷𝑦𝑛

 represents the set of processes that consider the dynamic operation (i.e., their unit 

operations times are optimized), whereas 𝜉(𝐴) is the cardinal number of a set (cardinality). 

Substance E is the only one that produces an income. 

Note that the scheduling formulation uses a similar profit function to guide the optimization:  

𝑍𝑆𝑐ℎ = 𝑐̌𝑆𝑇 − 𝐽𝑇  (39) 

 

where 𝑐̌𝑆𝑇 represents the overall sum of costs and revenues for the flow of material in the plant 

(states) and 𝐽𝑇 is the total operation costs (as described in section IV.1.3). The term 𝑐̌𝑆𝑇 

represents the overall sum of costs and revenues for the flow of material in the plant (states): 

𝑐̌𝑆𝑇 = ∑ ∑ 𝑑𝑖,𝑠,𝑒
𝑆
𝑠

𝐸
𝑒 𝑝𝑠  (40) 

 

where 𝑝𝑠 represents the cost or profit for each state 𝑠, where 𝑝𝑠 < 0 is for the consumed 

materials and wastes, 𝑝𝑠 > 0 is for the final products and 𝑝𝑠 = 0 is for intermediary states (𝑝𝑠 

is a user-defined parameter); 𝑑𝑖,𝑠,𝑒 is the market demand of materials at each event point 𝑒. 

The objective of this case study is to identify a scheduling and control strategy that can 

maximize the batch plant profits in the presence of uncertainty in the model parameters. 
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IV.3. Results 

The decomposition back-off algorithm B has been implemented to address the optimal 

scheduling and control of the batch plant presented in Figure 5¡Error! No se encuentra el 

origen de la referencia.. Pyomo 5.6.673, running in Python 3.7, was used to solve the scenarios 

presented in this work. A computer with an Intel® Core™ i7-8700 CPU @ 3.2 GHz and 16 GB 

of RAM was employed. CPLEX was used for the MILP scheduling problem and ipopt with 

ma57 HSL linear solver, for the dynamic optimization problem and the stochastic simulations. 

The Differential-Algebraic Equations (DAE)72 module from Pyomo was utilized for the 

discretization of the differential equations. Orthogonal collocation on finite elements was 

chosen as the discretization method. For the present case study, 40 finite elements and 3 

collocation points for each dynamic process were considered. Note that these parameter values 

returned acceptable solutions in an average CPU time of ~2 s per simulation. 

 

IV.3.1. Scenario 1: Effect of Constraint Variability Limits. 

The purpose of this scenario is to assess scheduling and control decisions using different 

variability limits on the process constraints (i.e., different values of 𝜆). In the present scenario, 

only one unit is available per process, i.e., one unit for 𝑅𝐼, 𝑅𝐼𝐼, 𝐹𝐼 and 𝑆𝐼, respectively. Three 

instances were considered for this scenario: A) Nominal Case – no back-off term 

implementation (𝜆 = 0); B) Uncertainty in the reaction kinetic parameters, i.e., 𝑘𝐴𝐵, 𝑘𝐵𝐶, 𝑘𝐵𝐷𝐸 

and 𝑘2𝐷𝐹 (see supplementary material) using 𝜆 = 2; C) Similar to B) but setting 𝜆 = 3. Note 

that the solution at the iteration zero (𝑖 = 0) corresponds to the solution of the optimization of 

the system at the nominal conditions in the operation, i.e., the nominal solution is the solution 

of the Problem 19, Problem 20 and Problem 21 when all the back-off terms are equal to zero. 
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This nominal solution is used as a benchmark to compare the solutions of instances B and C 

described above. 

 

Figure 11 shows the scheduling solutions for each of the instances considered for the 

present scenario. As shown in this figure, the main difference between the scheduling decisions 

 

 

 
Figure 11. Algorithm B – Scheduling Plans 

(a) Nominal solution (𝜆 = 0), (b) back-off method (𝜆 = 2) and (c) back-off method (𝜆 = 3).  

Each unit allocation is portrayed with their corresponding material processing quantity in 𝑚3. 

b) 

a) 

c) 
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is the number of total allotted jobs, i.e., 3 jobs per process for the nominal condition (instance 

A) and 2 jobs per process for the backed-off solutions (i.e., instances B and C). A job in this 

scenario consists in the allocation of one unit per task where the material follows the sequence 

portrayed in Figure 11¡Error! No se encuentra el origen de la referencia., i.e., when the 

material completes the basic processing sequence. This difference is mainly due to the influence 

of the back-off terms over the unit operation times for 𝑅𝐼𝐼 since larger unit operation times are 

needed in this unit to accommodate increasing values of 𝜆 (as shown in Table 6). This is 

because the system is required to satisfy the backed-off constraints (i.e., uncertainty in the 

reaction kinetic parameters) which makes the system slightly more constrained, by demanding 

a higher quality of the product, while the system aims for a regime that maximizes the plant 

profits. Note that the unit operation times for 𝑅𝐼 follow a similar trend, i.e., their unit operation 

times increases with increasing values of  𝜆. 

Note that the scheduling solutions reported in Figure 11 are not unique; it can be visually 

checked that some process allocations allow different permutations that yield the same 

performance and profits (i.e., the instant at which certain operations may take place could be 

slightly different as there are gaps along the time axis that the time horizon allows). As shown 

in Table 6, there is a reduction in the total profits when comparing the nominal case (A) with 

the other instances (B and C) as the value of 𝜆 increases. Nonetheless, when the average profits 

per scheduled job (Total Net Profit/# of Jobs) are compared, an increase can be observed. Since 

larger values of 𝜆 force the process constraints to slightly modify the production; that is, to 

accommodate the stochastic uncertainty in the reaction kinetic parameters, product quality 

constraints are required to ensure a higher product quality (with reduced wastes). This results 

in a slight increase in the averaged net profits. 

Regarding the plant operational costs, the dominant terms in Eq. (30) are the auxiliary 

service fees for reaction 𝑅𝐼 (the cost 𝑐̌𝑅𝐼) and the reactant feeding in 𝑅𝐼𝐼 ( 𝑐̌𝑅𝐼𝐼) since they 
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directly depend on the control profiles and the corresponding unit operation time. Consequently, 

the operation costs calculated through the linear correlations developed for the scheduling 

formulation (see section IV.1.2 & IV.1.3) impact the plant profits. As shown in Table 6, the 

current back-off formulation can maintain the average operational costs (Total Operation Cost/# 

of jobs) at similar values but with a very slight decrease as 𝜆 increases. 

Table 6. Algorithm B – Results for the First Scenario. 

Case 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 (𝜆 = 0) 𝐵𝑎𝑐𝑘 − 𝑂𝑓𝑓 (𝜆 = 2) 𝐵𝑎𝑐𝑘 − 𝑂𝑓𝑓 (𝜆 = 3) 
𝑹𝑰 UOT ( 𝑹𝑰) 1.56 ℎ 1.66 ℎ 1.72 ℎ 

𝑹𝑰𝑰 UOT ( 𝑹𝑰𝑰) 2.02 ℎ 2.5 ℎ 2.74 ℎ 

Avg. CPU Time per 

iteration 
~8.01 ℎ ~10.4 ℎ ~11.86 ℎ 

Total Operation Cost 32,336.04 𝑚. 𝑢. 21,226.84 𝑚. 𝑢. 21,082.34 𝑚. 𝑢. 
Avg. Cost per job 10,778.68 𝑚. 𝑢. 10,613.42 𝑚. 𝑢. 10,541.17 𝑚. 𝑢. 
Total Net Profit 54,095.58 𝑚. 𝑢. 41,613.42 𝑚. 𝑢. 44,129.72 𝑚. 𝑢. 
Avg. Profit per job 18,031.86 𝑚. 𝑢 20,806.71 𝑚. 𝑢. 22,064.86 𝑚. 𝑢. 
Jobs 3 2 2 

Total Iterations 1 8 7 

 

Figure 12 shows the profiles of the controlled (temperature) and manipulated (auxiliary 

services valve opening) variables for process 𝑅𝐼, whereas Figure 13 illustrates the profiles of 

the controlled variables (species D feed) and manipulated variables (inlet valve opening) for 

𝑅𝐼𝐼. Note that the unit operation times are different depending on the level of variability (𝜆) 

considered in the analysis. Also, the control profiles are non-trivial and exhibit significant 

differences that are necessary to achieve the backed-off production constraints under different 

levels of constraint satisfaction. The differences observed in the control profiles, combined with 

the corresponding unit operation times, are the main factors that cause the increments in the 

average net profits and the decrease in the average costs. Note that the temperature constraint 

in Figure 12 refers to the final temperature value constraint of the reactor’s temperature for 𝑅𝐼. 
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Figure 13. Algorithm B – Controlled variable (Species D inflow) and control decisions 

(Inlet valve) for 𝑅𝐼𝐼 in the first scenario. 

(a) Nominal solution (𝜆 = 0), (b) back-off method (𝜆 = 2) and (c) back-off method (𝜆 = 3). 

𝑐𝑣𝐹𝑒𝑒𝑑 corresponds to the feeding stream valve opening. 

 

As shown in Figure 12, increasing the value of 𝜆 implies that auxiliary services must be 

used for an extended period of time to achieve the corresponding production goals. 

Consequently, a slight increase in the operation costs for process RI is observed as the value of 

𝜆 is increased. This behaviour is compensated by a slight decrease in the costs of process RII 

when large values of λ are considered. This is because the overall consumption of species D in 

   
Figure 12. Algorithm B – Controlled variable (Reactor Temperature) and control decisions 

(Aux. Serv. Valves) for 𝑅𝐼 in the first scenario. 

(a) Nominal solution (𝜆 = 0), (b) back-off method (𝜆 = 2) and (c) back-off method (𝜆 = 3). 

𝑐𝑣𝐻𝑜𝑡 and 𝑐𝑣𝐶𝑜𝑙𝑑 represent the valve’s opening of the hot and cold auxiliary service, 

correspondingly. 

a) b) c) 

a) b) c) 
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process RII (which is fed to the reactor to realize the reaction) is slightly lower as λ increases 

(compared to 𝜆 = 0). This combination of events drives down the total operation cost per job 

by approximately 1.5% (𝜆 = 2) and 2% (𝜆 = 3) when compared to the nominal case (𝜆 = 0). 

While the average costs per job remain at somewhat similar values, the production of species E 

increases as 𝜆 increases, as the back-off production constraint demands a higher quantity of E, 

thus yielding higher profits: 15.4% for 𝜆 = 2 and 22.4% for 𝜆 = 3 when compared to 𝜆 = 0. As 

shown in Table 6, more CPU time per iteration is needed: closer to a 30% for 𝜆 = 2 and almost 

50% for 𝜆 = 3. In summary, as the value of 𝜆 increases, an increase in the performance per job 

is observed (measured by average per job): there is an increment in the net profits while slightly 

decreasing operation costs. The downside is the loss of 1 job when uncertainty is considered. 

Nonetheless, the main benefit of implementing this back-off methodology is the that the batch 

plant can obtain a reliable quality of the product under stochastic parametric uncertainty at the 

expense of larger unit operation times. 

 

IV.3.2. Scenario 2: The Effect of Multiple Units. 

This scenario aims to assess the performance of the back-off methodology B under a more 

complex scenario involving more than one available processing unit for the dynamic processes 

involved in the chemical batch plant. The considerations made for this scenario are as follows: 

I) The plant consists of two reactors with different capacities for 𝑅𝐼, two reactors with different 

capacities for 𝑅𝐼𝐼, one filter for 𝐹𝐼 and one separator for 𝑆𝐼. II) Uncertainty in the parameters 

𝑘𝐴𝐵, 𝑘𝐵𝐶, 𝑘𝐵𝐷𝐸 and 𝑘2𝐷𝐹 (see supplementary material), with 𝜆 = 2. The capacities for the 

processes with multiple units (𝑅𝐼 & 𝑅𝐼𝐼), are presented in Table 7.  Note that the unit capacities 

for RI and RII are different than those considered for scenario 1. 

Table 7. Algorithm B – Reactor material capacities for the second scenario. 

Unit 𝑹𝑰_𝟏 𝑹𝑰_𝟐 𝑹𝑰𝑰_𝟏 𝑹𝑰𝑰_𝟐 

Capacity [𝒎𝟑] 4 5 5 6 
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Figure 14 shows the scheduling obtained for this scenario. Compared to scenario 1 of 

section IV.3.1, instance B), the scheduling for this scenario presents 2 jobs that exchange 

processing material: First job consists of the first unit allocations of R1_1 and RI_2, the first 

allotment of FI and SI, and the unique allotment of RII_1. The second job consists of the 

remaining unit allocations. Another key difference is that certain units are not operating at their 

full capacity. Because the unit operation costs are assumed to follow a linear behavior, the 

system perceives the same performance by either allocating the units with a full or partial loads. 

Similarly to scenario 1 (instance B), the scheduling decisions are not unique for the present 

scenario. Note that the time required to achieve the production constraints in both reactions 

slightly decreases as the total mass of reactants increases, as seen for RII_1 and RII_2 in Figure 

14, where both reactors perform process RII with different processing quantities. 

 

Table 8 reports the results obtained for the present scenario. Comparing the average job 

cost of this scenario with the total job cost of instance B) in scenario 1, there is an increase of 

an 8.26%. The increase in costs is due to the variation in operation costs between both units 

available for each reaction process: one unit is slightly more expensive to operate when the 

operation of both units is compared when processing same quantities of material. Also, the 

 
Figure 14. Algorithm B – Scheduling solution for the back-off method (𝜆 = 2) – multi unit 

case.  

Each unit allocation is portrayed with their corresponding material processing quantity in 𝑚3. 
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increase in costs is due to the units not operating at their full capacity since there is no incentive 

to process material that will not result in a desired product. Note that a larger Time Horizon 

may allow to operate more units at full capacity that may result in more profitable operation. 

On the other hand, the net profits decreased by 6.1% compared to instance B) in scenario 1, for 

the same reasons that caused the cost increment.  

Table 8. Algorithm B – Results for the Second Scenario.  

Case 𝑩  (𝝀 = 𝟐) − 𝑴𝒖𝒍𝒕𝒊 𝑼𝒏𝒊𝒕. 

Unit 𝟏 𝟐 

𝑹𝑰 UOT ( 𝑹𝑰) 1st: 1.39 ℎ 

2nd: 1.35 ℎ 

1st: 1.39 ℎ 

2nd: 1.43 ℎ 

𝑹𝑰𝑰 UOT ( 𝑹𝑰𝑰) 2.6 ℎ 2.24 ℎ 

Avg. CPU Time per iteration ~35.74 ℎ 

Total Operation Cost 22,980.84 𝑚. 𝑢. 
Avg. Cost per job 11,490.42 𝑚. 𝑢. 
Total Net Profit 39,074.22 𝑚. 𝑢. 
Avg. Profit per job 19,537.11 𝑚. 𝑢 

Jobs 2 

Total Iterations 7 

 

Compared to the solutions obtained for scenario 1 (instance B), the second scenario needs 

at least twice the CPU time per iteration to arrive to a solution, which is due to the increase in 

the interactions between units under uncertainty. That is, this scenario considers 6 units that 

interact among themselves and that are subject to stochastic uncertainty (4 𝑅𝐼 reactors feeding 

2 𝑅𝐼𝐼 reactors). This implies that the propagation of uncertainty occurs among a larger number 

of processing units thus leading to a significant increase in the number of random realizations 

needed to estimate the back-off terms (see sections IV.1.5 and IV.1.7). Hence, more CPU time 

is needed to compute the corresponding back-off terms at each iteration step. Note that in 

scenario 1 only one unit is considered for RI and RII. 

As shown in Table 8, the total net profit for the present scenario is 6.1% lower than that 

obtained from scenario 1 (instance B). The number of available units, the variations in unit 

capacities, the number of stochastic parameters and the level of stochastic uncertainty 
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considered, collectively, make the present scenario a complex and challenging problem to 

solve. In this particular case, the problem aims to find an optimal scheduling and control 

strategy that can accommodate a large number of stochastic realizations in the parameters 

involving a relatively large number of processing units. Hence, the consideration of the 

availability of multiple units capable of realizing the same task have resulted in a more 

conversative scheduling and control solution than that obtained from scenario 1 (instance B). 

However, this is problem-specific and directly depends on the way that uncertainty manifests 

within the system. 
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IV.4. Summary 

This chapter presented an extended and improved version of the decomposition back-off 

algorithm presented in Chapter III for integration of scheduling and control. The proposed 

methodology implements correlations that allow for a search of scheduling decisions that better 

reflect the effects that the back-off terms have on the dynamics of the system. Parametric 

uncertainty is still approximated through Monte Carlo sampling techniques. The effects of the 

uncertainty on the system are analyzed and used to calculate back-off terms. Back-off terms are 

introduced in the formulation to force the system to find control profiles, unit operation times 

and scheduling decisions that are dynamically feasible under the presence of uncertainty. A 

case study illustrating the performance of the algorithm is presented. The results show how 

uncertainty has a strong effect on the solutions and how having multiple units with uncertain 

parameters interacting quickly becomes computationally expensive. Nonetheless, the 

scheduling decisions make better estimations of the dynamic operation of the plant thanks to 

the linear correlations considered in the present framework in the presence of stochastic 

realizations in the uncertain parameters. 

  



 

77 

 

Chapter V. Conclusions & Recommendations 

his chapter summarizes the contributions reported in this thesis. Several points 

regarding improvements to the proposed methodologies and future research 

opportunities are also presented. 

Two new back-off decomposition algorithms for the integration of scheduling and control 

of multi-unit, multi-product chemical batch plants under stochastic uncertainty were presented. 

The key idea in both algorithms is to introduce a formulation that seeks for the optimal unit 

processing times and control decisions using back-off terms, which reflect process variability 

under uncertainty. In Algorithm B, correlations are introduced to allow the scheduling decisions 

to account for the backed-off dynamics of the system. It was shown that uncertainty in the 

model does significantly affect the scheduling plan and the control decisions, i.e., the backed-

off solutions differ from the nominal solution. 

Both algorithms possess a certain degree of freedom as many parameters are user-defined 

and can be tuned to allow the algorithm to search for dynamically feasible solutions. Due to the 

stochastic nature of the process, certain realizations and combinations of the uncertain 

parameters may never yield a dynamically feasible solution with the current plant design. A 

sensitivity analysis can be used to help define the zones of unfeasibility, so that an appropriate 

course of action can be taken to prevent most of the unfeasible scenarios from happening (e.g., 

change design parameters, add extra constraints, redesign a unit, etc.). The stochastic simulation 

step represents the current bottleneck of the proposed algorithms due to the high number of 

scenarios that need to be explored for the generation of data for the calculation of the back-off 

terms. Improvements on the propagation of uncertainty must be explored to reduce the total 

CPU time, especially as the issue aggravates as the number of uncertain elements increases. 

Although the fact that the convergence criterion of the stochastic simulation step can be relaxed, 

T 
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a negative impact in the quality of the back-off terms to correctly represent the uncertainty of 

the system should be expected. 

The introduction of the back-off terms causes a decrease in the overall process economics 

when the backed-off case is compared to the nominal case. However, the backed-off scheduling 

plan and backed-off control decisions can accommodate uncertainty. Moreover, as the level of 

variability considered (𝜆) in the back-off terms increases, the overall process revenue also 

increases but remains lower than the revenue obtained for the nominal case. Also, because of 

the presence of the back-off terms the quality of the product increases in order to offset the 

effects of the parametric uncertainty. The implementation of the operation regimes found by 

the proposed approach would allow for specification of products with a quality equal or slightly 

higher than that is required by the market to accommodate parametric uncertainty. Note that the 

maximum value 𝜆 can take is problem specific. The present methodology can be used by the 

enterprise management to decide if the potential loss in profits due to the production of an over 

specified quality product who needs to be produced to accommodate parametric uncertainty is 

acceptable or if costly and time-consuming laboratory testing may be need to be performed to 

determine better estimates for the uncertain parameters thereby reducing the uncertainty effects 

in the batch plant. 

The results from the case studies show that the present methodologies remain 

computationally attractive and can improve the profits of chemical batch plants. This is due to 

the optimization of unit operation times that can generate control decisions able to deal with 

stochastic parametric uncertainty, while obtaining a scheduling plant that is able to 

accommodate the corresponding process dynamics. In particular, the results of Algorithm B 

show that it does become quite computationally taxing and returns conservative solutions when: 

I) the number of uncertain parameters considered is considerably increased, II) a larger number 

of units (each with a different capacity) available per process are considered, and III) there is a 
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high degree of interaction among the units considered in the batch plant configuration (i.e., a 

unit allocation is between 2 or more jobs). To decrease the computational time required to 

achieve a solution, the convergence criterions can be relaxed at the expense of a loss in the 

quality of the solution.  

The main advantage that the second methodology (Algorithm B) has over the first 

methodology (Algorithm A) is that its scheduling decisions better reflect the dynamics of 

chemical processes of the plant under uncertainty thanks to the introduction of linear 

correlations that allow the calculation of unit operation times and costs as a function of the 

quantity of processed material. Thus, the information exchange between layers is more 

coherent, at the expense of increased CPU costs. Another advantage is that control decisions 

and unit operation time are obtained simultaneously (Algorithm A does this task sequentially). 

Overall, both methodologies offer trade-offs in terms of the size of the problem and the 

available computational resources. 
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V.1. Future research opportunities 

The research findings from this thesis also led to new potential research avenues. 

Improvements over the current proposed methodologies and future research paths are listed as 

follows: 

 Extend the present approaches to chemical plants operating in a continuous domain or 

plants that are constituted by a mixture of batch and continuous processes. This may 

require a reformulation of certain aspects and change of certain considerations (i.e., a 

scheduling formulation that can accommodate continuous, batch and semi-batch 

operations). The ideas developed by Andrés-Martínez & Ricardez-Sandoval15 about a 

switched system could be taken as the basis to deal with the dynamics of the system 

when determining optimal control profiles and a dynamic scheduling. 

 In this work, back-off term calculations assume that the parametric uncertainty can be 

described using Gaussian probabilistic density distributions. It would be interesting to 

see how the quality of the solution is affected by considering different probabilistic 

density distributions. The case of mixed distributions would also be interesting to 

analyze (i.e., each parameter is described by a different function). The study of Kimaev 

& Ricardez-Sandoval66 suggests that the implementation of polynomial chaos 

expansions may be an alternative way to simulate the propagation of uncertainty in the 

model. 

 Currently, linear correlations are used on the second proposed algorithm (algorithm B), 

as linear equations portrayed very well the behavior of the variables of interest of the 

case study. Future research can consider non-linear correlations; while this may improve 

the accuracy in the scheduling decisions, this addition may also increase the complexity 

in the calculations since the scheduling problem becomes an MINLP.  

 The consideration of another hierarchical layer of management in integration 

methodologies would allow the development of better solutions for chemical systems. 

With the addition of the Planning layer, plans can be made such that the plant operation 

can account for the uncertainties that exist in long time periods. Integrating the Design 

layer would allow for the conception of technologies that can deal with known process 

uncertainties (proactive actions). Nonetheless, problem formulations will have to 

account for the challenges that each layer faces individually (e.g., optimal equipment 
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sizing) and for the challenges caused by considering multiple layers (e.g., decisions that 

need to respond to many time horizons that may greatly differ in time scales). 

 Machine learning methods have been successfully implemented into a wide range of 

applications involving the discovery of new functional materials74–76; conventional and 

emerging chemical and energy systems76–80; process scheduling81–84 and process 

control85–87. The application of these methods to address the optimal integration of 

scheduling and control decisions is still lacking. Thus, it is recommended for future 

work to investigate the potential application of these methods to perform optimal 

scheduling and control of systems under stochastic uncertainty. 

 While scheduling and control strategies have been implemented for a wide variety of 

chemical engineering applications, there are still a lack of studies involving emerging 

systems such as CO2 capture88–91, chemical looping combustion92,93 and process 

intensification systems9 such as catalytic distillation columns41. Scheduling and control 

studies can therefore provide new insights into the optimal operation of those systems. 

Therefore, this work recommends this subject as a potential area of future research. 
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