
A Design of Electronic Medical
Record System based on
Permissioned Blockchain

by

Aiden Feng

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical & Computer Engineering

Waterloo, Ontario, Canada, 2022

c© Aiden Feng 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Blockchain, due to its decentralized, verifiable, and security features, is increasingly
used in more and more scenarios, but the original public chain cannot meet the needs
of some enterprise or group financial scenarios or medical scenarios, and these more seg-
mented special application scenarios have added many requirements for security, identity
and role definition to the blockchain system, so people have launched a lot of research on
permissioned blockchain. However, the Practical Byzantine Fault-Tolerant (PBFT) based
permissioned chain is no longer able to meet the increasing demand of nodes in today’s
healthcare system due to the shortcomings such as high communication volume and poor
scalability. In this thesis, we will explore the application of permissioned blockchain in
medical scenario, and try to optimize the communication volume of PBFT by cascading
network, optimize its communication complexity from O(n2) to O(n), and add credit mech-
anism to reduce the probability of key nodes becoming Byzantine nodes. We also add a
series of scalability mechanisms and new node verification addition and removal mecha-
nisms to compensate for the disadvantage of non-dynamic number of nodes in the original
PBFT.

iii

Acknowledgements

I would like to thank Prof. Gong for her supervision of my thesis. Over the past two
years, I have been constantly inspired by her to study and research, and she has always been
able to patiently lead me to overcome them whenever I encountered difficulties. What I
have felt from her is not only the guidance and expertise as a professor, but also the
courageous attitude to explore the unknown.

iv

Dedication

This is dedicated to my parents and my friends for their endless love and support.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Background and Related Works 3

2.1 Blockchain . 3

2.1.1 Blockchain Structure . 4

2.1.2 Types of Blockchain . 5

2.1.3 Healthcare with Hyperledger Fabric Blockchain 7

2.2 Core Technologies in Distributed Systems 8

2.2.1 Consistency Problem . 8

2.2.2 Consensus Protocol . 10

2.2.3 FLP Impossibility Principle . 10

2.2.4 CAP . 10

2.2.5 Consensus Algorithms . 11

2.3 Review of Related Works . 14

2.3.1 Medical Blockchain Projects . 15

2.3.2 Other BFT-Based Consensus Models 17

vi

3 Blockchain Healthcare Model 20

3.1 System Model . 20

3.1.1 System Architecture Design . 20

3.1.2 Data Structure Design . 21

3.1.3 System Flow Design . 23

4 Analysis for the Original PBFT 26

4.1 Background Knowledge . 26

4.1.1 Practical Byzantine Fault Tolerance 26

4.1.2 The Two Generals Problem . 26

4.1.3 The Byzantine Problem . 27

4.1.4 Preliminary Ideas . 27

4.1.5 Types of Byzantine Failures . 28

4.2 PBFT Protocols . 29

4.2.1 Consistency Protocol . 29

4.2.2 View-Change Protocol . 30

4.2.3 Checkpoint Protocol . 31

4.3 Advantages of PBFT . 31

4.4 Bottleneck of PBFT Performance . 31

5 Potential Optimizations for PBFT 33

5.1 Optimization by Role Grouping . 33

5.2 m-ary Tree Structure Optimization . 35

5.2.1 Consensus Protocol under m-ary Tree Structure 37

5.3 Node Rating Mechanism . 39

5.3.1 View Switching Protocol . 41

5.4 Improving the Scalability and Dynamic Registration of Nodes 44

5.4.1 Random Forest for m-ary PBFT . 45

5.4.2 Dynamic Join Protocol . 45

vii

6 Performance and Discussion 48

6.1 Proof of Safety Property . 48

6.2 Proof of Liveness Property . 49

6.3 Fault Tolerance . 50

6.4 Implementations and Performance . 52

6.4.1 Comparison of Blockchain-based Medical Platforms 53

6.4.2 Transaction for a Single Consensus 53

6.4.3 Performance Comparison . 53

6.4.4 Design of Blockchain-Based Vaccination Clearance Platform 54

7 Conclusion and Future 62

7.1 Conclusions . 62

7.2 Future Work . 63

References 64

viii

List of Tables

2.1 Comparison of Different Types of Blockchain 5

2.2 Consensus Algorithm Comparison . 13

3.1 Patient Data Structure . 22

3.2 Medical Record Data Structure . 22

4.1 Relationship between Transaction Volume and Rounds 28

6.1 Comparsion of Blockchain-based Medical System Designs 53

ix

List of Figures

2.1 Example of the Basic Blockchain Structure 4

2.2 Summary of Consensus Algorithms and its Applied Scenarios 12

3.1 Blockchain Healthcare Model . 21

3.2 Structure Diagram for Medical Data Storage 23

3.3 Flowchart of Storing Medical Data to the Chain 24

3.4 Flowchart of Retrieving Medical Data from the Chain 25

4.1 Practical Byzantine Fault Tolerance Communication Graph 30

5.1 Grouped Network for Medical Example . 34

5.2 A m-ary tree structured PBFT . 36

5.3 Sigmoid Function [47] . 40

5.4 m-ary PBFT before Heapify . 43

5.5 m-ary PBFT after Heapify . 43

5.6 Random Forest for PBFT . 46

5.7 New Node Adding Protocol . 47

6.1 m-ary Tree Structure Example . 50

6.2 Minimum Faults Case in Groups to Provide a Faulty Result 51

6.3 Transaction Volume for a Single Consensus 54

6.4 Comparison of the Consensus Protocol Performance 55

x

6.5 Design of the Vaccination Clearance Platform 56

6.6 Generation of Patient Vaccination Information 57

6.7 Back-end Vaccination Information Record (View of Vaccination Station Ad-
ministrator) . 58

6.8 Vaccine Record System Backend . 60

6.9 QR Code Uploaded by the User of Medical Clearance System 61

6.10 Parsed QR Code Context for Medical Record 61

xi

Chapter 1

Introduction

With the development of modern science and communication technology, people have grad-
ually and progressively replaced the original paper-based text file system with a digital
data system [71]. As the coronavirus COVID-19 has affected people’s lives for nearly two
years, the need for digital health systems and smart healthcare has become more and more
urgent. The healthcare industry and medical research are increasingly demanding interop-
erability, compliance, verifiability, privacy and traceability of patient records and medical
information [25].

In addition, in 2021, there were more than 1,500 drug quality and counterfeit incidents
in North America alone [52]. In fact, since a long time ago we have experienced the iterative
change of data-based healthcare systems, and healthcare data is now mostly converted from
paper to digital healthcare records (EMR) [37], and healthcare data is slowly becoming
compliant, systematic, secure and efficient with electronic integration.

Besides, many digital-based health applications have emerged, such as the Apple Health
personal medical information monitoring system, or the Keep’s personal health manage-
ment software that targets users who are keen to share their exercise status, as if everyone’s
medical and health information can be easily shared and analyzed [38, 69]. But also because
of this, sensitive personal health information is constantly at risk of information leakage,
and the difficulty of government regulation has greatly increased due to the proliferation
of health management software [67].

In the case of hospitals, most of the current medical information systems are central-
ized, and each medical institution has its own relatively mature set of electronic medical
record system [62]. Although the learning time cost of internal training is avoided to some
extent, the information between the various systems is not very efficient, interoperable and

1

compatible, which creates a potential problem of isolated data island. For the management
of sensitive medical data, the ownership of the data should belong to the individual, but
because of the wide range of medical and health applications, users do not know which
software or organizations their medical data is shared with, nor can they control the access
rights of third parties to the data [74]. Moreover, with the increasing convenience of trans-
portation, patients are likely to visit different medical institutions in different systems far
away from each other, and medical records may be fragmented and incomplete [15].

For these reasons, we need a new medical information system to make up for these
shortcomings. In this thesis, we will talk about how to use blockchain to store, share
and verify medical information, and we will focus on the core of blockchain, its consen-
sus algorithm. We will optimize the original consensus algorithm in terms of expanding
functionalities and performance for the large number of nodes and dynamic nature of the
medical scenario.

2

Chapter 2

Background and Related Works

We introduce some basics about blockchain in Section 2.1, including some introduction
to its basic structure, basic kinds and application scenarios. Then we provide a detailed
introduction to distributed systems in Section 2.2, introducing the concepts of Consistency
problem and consensus protocol, and introducing and comparing some common consensus
algorithms and their application scopes. Finally, we introduce some previous medical
blockchain projects and BFT-based consensus models in Section 2.3, respectively, and
further discuss and compare their design differences and advantages and disadvantages.

2.1 Blockchain

In a simple sense, blockchain can be described as a database shared among multiple dis-
tributed nodes, and the data stored on it is highly unforgeable, verifiable, access traceable,
and transparent, without the need for a public trusted authority [56]. The implementation
of blockchain technology is based on peer-to-peer transmission, consensus mechanisms, and
cryptographic algorithms, and is widely used in various scenarios to solve the collaboration
problems among multi-parties through its shared ledger due to its transparency charac-
teristics [1]. The basic components of blockchain can be broken down into three parts:
distributed ledger, consensus algorithm, and smart contracts [34].

The earliest conception of blockchain applications can be traced back to a well-known
paper “Bitcoin: A Peer-to-Peer Electronic Cash System” [54], in which blockchain is a dis-
tributed ledger-style data structure for digital currency scenarios. It describes blockchain
as a distributed bookkeeping technology that uses a chained data structure to provide a

3

tamper-proof record of data using digital digests. But in fact, the use of chained structures
and the comparison of hash values and timestamps to ensure data security has been pro-
posed as early as 1990 in an article called “How to Time-Stamp a Digital Document” [31]
by Stuart Haber and W. Scott Stornetta.

2.1.1 Blockchain Structure

First of all, there are three basic components in the blockchain structure:

• Transaction: refers to all operations on the ledger.

• Block: It is used to record all the transactions and states within a specified time
interval, and can be considered as a consensus result for the current state of the
ledger.

• Chain: A set of blocks which are listed in chronological order, and can be considered
as a historical log of all the time nodes of the whole ledger.

The simple structure of a blockchain is shown in the Figure 2.1 below, where the later
blocks are linked into a chain by recording the hash value of the previous blocks. The
blockchain is designed to pack and add a new block every once in a while, and this block
is generated through the consensus protocol that we will mention later.

Figure 2.1: Example of the Basic Blockchain Structure

In the article “Bitcoin: A Peer-to-Peer Electronic Cash System” [54], the user first
initiates a transaction request through the client, which is propagated to the network and
awaits confirmation. The node in the network will pack multiple transaction requests and
add hash values and other information to form a block structure. Then the node will try
to find a nonce random string through computation so that its hash result meets a specific
requirement, this whole process is often referred to as “mining”. When a node finds a

4

Table 2.1: Comparison of Different Types of Blockchain
Type Ledger-keeping rights Degree of decentralization Performance

Public all high low
Consortium partial medium medium
Private private low high

nonce that satisfies the requirement, it submits a block that is broadcast to the network,
and when other nodes receive this block, they verify it and add it to the local ledger.

It is important to note that once a block is submitted to the local chain, it cannot be
deleted, which means that the length of the chain only increases and does not decrease,
which is why the blockchain can provide the feature of no tampering, but it also limits the
scalability of the whole system. This consensus mechanism is called Proof of Work (PoW),
which can prevent malicious nodes from affecting the system to a certain extent, but it
also wastes a lot of energy. We will include this concept in the later introduction of various
consensus mechanisms.

2.1.2 Types of Blockchain

As shown in Table 2.1, the types of blockchain are divided into Public chain, Private
chain and Consortium chain [2]. The core difference between them is the read and write
access and the degree of decentralization. Public chains are open to everyone, private
chains are open to individuals who meet certain conditions, and consortium chains are
open to authorized organizations or institutions. In essence, consortium chains also belong
to private chains, but the degree of privatization is different. Generally speaking, the
higher the degree of decentralization, the higher the trustworthiness, and the lower the
transaction efficiency.

Public Blockchain

The Public blockchain refers to a blockchain in which anyone in the world can access the
system at any time to read data, send confirmable transactions, and compete for billing.
A public chain is often considered “completely decentralized” because no single person or
organization can control or tamper with the reading or writing of the data. The public
chain generally encourages participants to compete for billing through a token mechanism
to ensure data security. Bitcoin and Ethereum are typical public chains.

5

Private Blockchain

Private blockchain refers to a Blockchain in which write access is controlled by an organi-
zation or institution, and the eligibility of participating nodes is severely limited. Since the
participating nodes are limited and controllable, the private chain can often have extremely
fast transaction speed, better privacy protection, lower transaction costs, less vulnerable to
malicious attacks, and can meet the requirements necessary in the financial industry such
as identity authentication. In contrast to a centralized database, a private chain prevents
a single node in an organization from deliberately concealing or tampering with data, and
allows the source to be discovered quickly even if errors occur. Therefore, many large
financial institutions are more inclined to use private chain technology at present.

Permissioned Blockchain

Permissioned Blockchain refers to the fact that every node participating in a Blockchain
system is licensed. Unlicensed nodes cannot be connected to the system, so both private
and consortium chains are licensed. Some license chains have no token mechanism because
there is no need for tokens to encourage nodes to compete for billing.

Consortium Blockchain

Consortium Blockchain refers to a group of organizations that operate on one or more
nodes, each of which contains data that is only allowed to be read, written, sent and
recorded by different organizations within the system. A consortium chain is actually
a concept between a public and private chain, which to some extent allows various or-
ganizational structures to cooperate and maintain the blockchain together. Consortium
chains are usually permissioned blockchain, for example, hyperfabric introduced additional
permission management mechanism, which is a typical example of consortium blockchain
structure.

In blockchain medical applications, it is clear that hospitals and medical institutions
can be entities in the system, while these institutions have to collaborate with insurance
companies and scientific institutions, in addition it may be regulated by government de-
partments, and this system needs very strict access control and hierarchical system. In
addition, medical data, as sensitive data, must be strictly controlled in terms of access
permissions. Therefore, we believe that the blockchain application in the medical scenario
is well suited to adopt the above mentioned Consortium chain design [39].

6

2.1.3 Healthcare with Hyperledger Fabric Blockchain

In keeping with the times, blockchain could help healthcare organizations ease the financial
pressures they face during the coronavirus COVID-19. J.P. Morgan cites a survey by the
Healthcare Advisory Council that there is about 40 million to 44 million dollars in annual
O&M costs for nonprofit healthcare systems, which, if saved, could significantly reduce
the financial strain on healthcare organizations during an pandemic and provide long-
term stable revenue [53]. Also, JPMorgan estimates that blockchain could save as much
as 80% of the cost and time currently spent in authenticating medical information [53].
Often the authentication of medical information is complex and error-free, and some, such
as the authentication of physician credentials, can be time-consuming because it involves
collaboration between multiple organizations or systems. However, if we can use blockchain
technology, hospitals can verify the authenticity of a proof in a very short period of time.

Hyperledger Fabric [5] is an open source permissioned blockchain framework. Hyper-
ledger Fabric implements a PBFT consensus, which has decent performance compared to
ethereum’s blockchain, but since it is not a public blockchain, all participants must be au-
thenticated [55]. The Hyperledger fabric blockchain network consists of different channels,
and specific members can build subnets to ensure the security and privacy of their infor-
mation communication. For example, if we set up a medical platform on the hyperledger
fabric, it would enable collaboration between hospitals, patients, research institutions, in-
surance companies, and the healthcare logistics chain, e.g., patients could provide data to
research institutions by filling out surveys or actively sharing medical information. Insur-
ance companies can also submit requests to hospitals to verify the authenticity of insurance
declarations. In the recent example of the coronavirus COVID-19, if we find a problem
with a batch of vaccine, we can use the blockchain to trace the logistics information to
determine which batch of goods is faulty and notify the patients who received the corre-
sponding batch of vaccine. Hyperledger fabric provides an additional access control layer,
where every transaction on the network is executed on a channel, and each party must
be authenticated and authorized to conduct transactions on this channel. For example, if
medical institutions and insurance agencies want to access patient information, they will
notify the patient and apply for authorization. This ensures that patients have a com-
plete control over access to their information, thus changing the hospital-centric model to
a patient-centric healthcare delivery system is approachable in this case.

7

2.2 Core Technologies in Distributed Systems

In the book “Distributed Systems Concepts and Design” [17], a distributed system is de-
fined as a system in which hardware or software components are distributed across different
network nodes, they communicate and coordinate with each other only through message
passing. With the increasing complexity of network systems, most system designs have
shifted from monolithic to distributed architectures, and non-traditional distributed sys-
tems led by blockchain have gained even more popularity in the past few years. Technolo-
gies such as blockchain, which are based on distributed technologies, are highly dependent
on data consistency and consensus mechanisms, and in this section we will introduce each
of these concepts.

2.2.1 Consistency Problem

The consistency problem is the top priority of distributed systems and the first problem
to be solved in blockchain. In the blockchain world, with an increasingly large number
of nodes, the complexity of the system is increasing with the volume of the nodes, but in
order to ensure the consistency of each node’s pace, we have to meet the requirements of
the whole system in terms of scalability and fault-tolerance [63].

Definition of Consistency

For multiple nodes in a distributed system, given a set of instructions, we need to make
the entire system reach a certain degree of agreement on the outcome of the instruction
processing through fulfilling the consensus protocol [70].

It may seem that all that is needed to get consistent results from distributed nodes is
to ensure the serialized execution of instructions, but in reality it is difficult, for example:

• Network communication may be blocked and there may be time delays, which can
cause disorder, delay or even loss of messages.

• The computing power and processing latency of each node and the results are not
guaranteed, thus there may be a failed node at any time

• As the number of nodes increases, the complexity of communication between nodes
may increase exponentially, making the system suffer from the trade-off between
throughput and scalability.

8

Consistency Requirements

In Leslie Lamport’s 1978 paper “Time, Clocks and the Ordering of Events in a Distributed
System” [43], it is pointed out that for an asynchronous system to determine a consistent
result, it is required that systems with different clocks to execute commands in the same
order. However, since each node in an asynchronous system has its own clock and there
are time delays in communication, this event order has to be reasonably ordered in order
to achieve a correct common outcome.

According to [3], a distributed system must achieve the following 3 requirements.

• Termination: The system must be able to get the result in a limited time frame.

• Agreement: Each node must agree on the final outcome of the instruction.

• Validity: The decision must be generated in a compliant manner, even though there
may be processing and communication delays among the nodes in the distributed
system, if all nodes have the same initial value, then they must get the same result
after executing the instruction.

In fact, there is a trade-off between the overall performance and consistency and scal-
ability of an asynchronous system. So depending on the performance requirements of the
system, one classifies the consistency requirements into different categories [9, 23].

Sequential Consistency and Linearizability Consistency [7] are the more common Strong
Consistency systems. The former is mentioned in Leslie Lamport’s [41] in 1979, where the
problem of consistency between local order and global order is addressed. That is, if
there is a sequential order of execution between two processes in the vision of a process,
then this order needs to be guaranteed in the global order as well. The latter concept of
Linearizability Consistency [32] is always mentioned in operating system-related concepts,
and it allows a certain degree of flexibility in the global ordering between processes, but it
is very difficult to implement because it relies heavily on global clocks or mutual exclusion
locks.

In reality, systems with strong consistency are often not as easy to implement. Most
systems that do not require a high level of consistency but have a very high volume of
transactions, such as in some designs of online shopping systems, tend to require only
eventual consistency [10], which means that the user is always allowed to add items to the
shopping cart, but will be eventually prompted with “inventory not available” when he is
ready to pay. If we take the blockchain as an example, we can easily find that most of the

9

time the ledger of each node may be inconsistent at different time periods, but every once
in a while the consensus protocol will be used to achieve the ultimate consistency of the
whole chain.

2.2.2 Consensus Protocol

Consensus algorithm in a distributed system refers to the process adopted by individual
nodes to pursue certain levels of consistent results. In other words, consensus algorithm
is: a process by which a distributed system exchanges information among nodes to make
most of them agree on a proposal made by a leading node [64, 73, 75, 13].

For distributed individual nodes can be thought of as State-Machine Replication, where
each node starts from the same initial state, and by operating the same instructions, they
are all guaranteed to reach the same result state according to the previously mentioned
validity principle of distributed systems. Therefore, the most critical thing for multiple
nodes in the system is to agree on the order of multiple events.

As mentioned before, due to the presence of network state and physical delays, and the
risk of having adversary in the system, we have to consider fault-tolerance in the consensus
algorithm. In general, we will classify those faulty unresponsive nodes as Non-Byzantine
Fault; and those nodes that deliberately spread false consensus information in order to
interfere with consensus reaching In general, we will classify those faulty non-responsive
nodes as Non-Byzantine Fault; and those nodes that deliberately spread false consensus
information in order to interfere with the consensus, we will call them Byzantine Node.

2.2.3 FLP Impossibility Principle

FLP(Fischer, Lynch, and Paterson) impossibility principle is considered to be one of the
most important principles in distributed systems. Fischer, Lynch and Patterson concluded
in [24] that in asynchronous model systems with reliable networks but with the possibility
of node failure, there is no deterministic consensus algorithm to solve the consistency
problem.

2.2.4 CAP

Distributed computing systems cannot guarantee the following three characteristics at
the same time: strong consistency, high availability, and partitioning. Therefore, in the

10

design of distributed systems, it is often necessary to weaken the guarantee of one of the
characteristics [28].

• Strong consistency: all nodes in the distributed system can see the same data content
at any time.

• High availability: Any node in the distributed system that is not non-faulty can
respond to the request.

• Partitioned tolerance: The network may be partitioned, meaning that communication
between partitioned nodes is not guaranteed.

2.2.5 Consensus Algorithms

It is often said that consensus algorithm is the core of blockchain, the reason is that the
whole blockchain depends on it to ensure the consistency of distributed nodes and the
trustworthiness of data on the blockchain.

Perhaps in a cloud-based information system, due to the existence of centralized nodes,
we only need to upload and synchronize data and download updates for the central node.
In a blockchain system, each node needs to ensure that its ledger is synchronized with
the ledger information of other nodes, so specifying a process rule for each node to reach
this consensus result becomes the top priority of the blockchain algorithm, and consensus
algorithm refers to such an algorithm that enables distributed nodes to negotiate a con-
sensus decision together beforehand. We will then briefly introduce the various consensus
algorithms and their features.

Proof of Work (PoW)

PoW is the most common and original consensus algorithm used in blockchain applications.
Its concept was first proposed by Cynthia Dwork and Moni Naor in 1993 [20], and was
made more complete and coined in a 1999 article by Markus Jakobsson and Ari Juels [36].
The main applications that use the PoW consensus algorithm are Bitcoin [54], which we
know best, Ethereum [11], and Litecoin [26], which is popular in the cryptocurrency trading
market, as well as Dogecoin [78], which is getting a lot of attention these days because of
Elon Musk’s recommendation. In PoW, a blockchain participant (also known as a Miner)
must solve a complex computational problem if it wants to add a piece of transaction.
To keep the block generation time constant, the complexity of this computation changes

11

Figure 2.2: Summary of Consensus Algorithms and its Applied Scenarios

accordingly, e.g., in Bitcoin, the generation time of new blocks is set to every 10 minutes.
When there are multiple miners working on a chain at the same time, then the one with
the fastest growth and the longest chain length will be recognized as the winner. Under
this premise, the chain is secure as long as more than half of the transactions submitted
by miners are trusted, this has the advantage of avoiding the 51% attack, meaning that
if the adversary want to take management control of the blockchain by generating the
faulty blocks and making the majority (51%) accept it, such an attack would turn out
to be unprofitable and costly. Although PoW-based blockchain systems have countless
applications in the industry, this approach requires too much computing power thus wastes
a lot of electricity resources, so many scholars are aiming to replace it.

Proof of Stake (PoS)

PoS is a good remedy for the shortcomings of the PoW algorithm and has been applied
in the latest generation of Ethereum [12]. Compared to POW, which relies mainly on the
costly power of arithmetic to prevent witch attacks, PoS relies on the “monetary policy”
in the blockchain. PoS allows each Miner to mine or verify new blocks depending on
the amount of cryptocurrency they have (Stake) and not on their computing power as in
PoW. This means that in PoS, the more Stakes you have, the more chances you have to
mine the next block, and the system also encourages verifiers to participate in the network
through incentives and thus promotes consensus. This approach avoids wasting computing

12

power and electricity, but the node with more Stakes in this setup may have a long-term
advantage.

Delegated Proof-of-Stake (DPoS)

DPoS, also known as “Proof of Share Authority Mechanism”, was proposed by Dan Larime
of Bitshares in 2014 [46]. It is a highly scalable blockchain consensus protocol based on
a further optimization of the PoS method. It requires all nodes to vote every once in a
while and elect a specified number of super nodes as block producers, where the weight of
the vote is based on the number of stakes held, and the more stakes you have the more
important the vote is. These super nodes have exactly equal weight and they vote and
create blocks in a round robin order. When a block is voted on by more than 2/3 of the
block producers, the block will be determined. Otherwise, the longest chain rule is followed.
If during this process the verifier finds the presence of any malicious node, it is excluded in
the next round of super node voting. Since only a small number of super nodes are voted
in as block producers to participate in consensus, the throughput of DPoS is considerably
higher than that of PoW. However, because of this, DPoS is also considered a solution
that sacrifices decentralization for throughput, typical application are BitShares [65] and
Ark [6].

Table 2.2: Consensus Algorithm Comparison
PBFT PoW PoS DPoS

Nodes Managements Permissoned Non-permissioned Non-permissioned Permissoned
Energy Consumption Very Low High Low Very Low
Bookkeeping Nodes Dynamic All Highest stake Highest stake

Respond Time In seconds 10 mins 1 min In seconds
Transaction/Second ∼1500 ∼30 ∼170 ∼2500

Example Hyperledger Bitcoin Ethereum Bitshares

Paxos

The algorithm of Paxos was first proposed by Leslie Lamport in 1990 in [42] and further
refined in [44], in which his design also takes into account fault tolerance, but only the
impact of non-byzantine nodes, that is, there is no intentional evil nodes in the default
system, so it is often used in distributed systems like zookeeper or private blockchain
application scenarios. This algorithm uses a two-staged submission method (prepare stage

13

and commit stage), where a proposer is first selected from multiple proposal candidates,
and then this proposal message is sent to other nodes, and the proposal is passed when the
majority of nodes agree to it. The concept of majority of nodes is defined as “quorum”
by Leslie Lamport in the paper. The fault tolerance of the Paxos algorithm is 1/2, which
means that the system can reach a correct consensus when more than half of the nodes are
working properly.

Raft

Raft’s algorithm evolved from Paxos, which was proposed by Diego Ongaro and John
Ousterhout in 2014 in the paper “In Search of an Understandable Consensus Algorithm” [60].
Raft is more structured and easier to understand than Paxos, and provides better security.
It ensures that any node in the cluster is consistent in some kind of state transition.

Practical Byzantine Fault Tolerance (PBFT)

Castro and Liskov first proposed PBFT in 1999 in “Practical Byzantine Fault Tolerance and
Proactive Recovery” [14]. It is an excellent solution to the problem of the Byzantine faulty
nodes in distributed systems, which leads to unsynchronized and inconsistent information.
It is essentially based on the optimization of the Paxos algorithm, which for the first time
reduces the complexity of the Byzantine fault-tolerant algorithm from the exponential
level to the polynomial level. Additionally, when the total number of nodes in the system
is n and the number of faulty nodes is f , PBFT can guarantee the normal information
communication of the whole system under the condition of n ≥ 3f + 1. More detailed
illustration of PBFT will be discussed in Chapter 4.

2.3 Review of Related Works

In addition to some basic introductions to blockchain and distributed system concepts
mentioned above, we will further explore in this section the evolutionary history of some
previous blockchain healthcare systems, and introduce and compare a series of BFT algo-
rithms for Byzantine fault-tolerant designs which might be suitable to be implemented in
the healthcare scenarios.

14

2.3.1 Medical Blockchain Projects

The initial idea was to use cloud services to optimize the storage and sharing of elec-
tronic medical records, which is now more widely accepted. However, this approach has
many disadvantages. For example, in terms of cost, it needs to consider the cost when
setting up the infrastructure, annual maintenance Cost, migration cost, and Productivity
Loss. Moreover, such centralized storage mode has great risks, such as large-scale power
outage, natural disasters, artificial server attacks, and necessary data center maintenance
downtime, which will greatly affect the stability and efficiency of the system, and such
Availability problems are unacceptable in the medical field where every second is needed.
In terms of security, there are many points of vulnerability in the solution of cloud service.
Although the research on this aspect has been very mature, we may need to consider the
security architecture in the quantum computing era in advance. In addition, in order to
meet the auditability and traceability of the healthcare system, the cloud service architec-
ture may sacrifice part of the operational efficiency. But even so, the cloud service can only
meet the auditability and capability of the healthcare system on a regular basis rather than
in real-time. Therefore, most current solutions still rely on in-house information system to
achieve auditability. Based on these reasons, people began to replace the hospital-centered
medical system, and to seek a patient-centered solution [68].

As early as 2015, the researchers from MIT proposed the idea of using blockchain to
achieve privacy-sensitive data access control in the era of big data [79]. They believe
that data should not be centrally stored on any third-party platform, because such a
single point of failure gives opportunity to the potential adversaries, and such a storage
method is not conducive to the transmission or control of large amounts of data, nor can
it prove the accuracy of data. Therefore, they proposed a model of storing user data with
blockchain, which is not only beneficial to users’ control of data sharing and access rights,
but also can provide verifiability for data to be accessed, modified or stored, because it is
computationally robust to tampering.

The earliest comprehensive attempt at blockchain-based healthcare came in 2016, when
MIT’s Media Lab published a project at the Beth Israel Deaconess Medical Centre on us-
ing blockchain to manage medical data and provide access control and notification for the
patients [8]. Based on the inherent privacy, interactivity, verifiability and accountability
of blockchain, they also provided a functional prototype trying to utilize the decentraliza-
tion fact of Blockchain and allow patients to be freely manage the read and modification
permissions of their sensitive electronic medical records. At the same time, it also points
out a future development trend, using the Miner and Rewards mechanism of blockchain
to build a healthy ecological system of voluntary medical data sharing and medical data

15

analysis among medical stakeholders and researchers, which can promote the development
of medical technology in the long term.

However, the original version of MedRec still has many problems. For example, it is
vulnerable to the Eclipse Attack, which is an attack method that can gradually extend
from an adversary on the chain by using the interaction manipulation and finally obtain
the information of the whole chain. Moreover, its scalability has also been criticized. In
the subsequent version 2.0, they updated a new method of using Anonymizing Metadata
to store information on the chain, which further reduced the storage burden of informa-
tion on the chain and enhancing its extensibility, as well as making users’ accounts more
concealed [51].

Also in 2018, another promising medical blockchain system was launched, and it is called
MedicalChain [50]. It is also a decentralized healthcare platform that aims to provide
a transparent, secure and efficient healthcare information architecture. It has a unique
dual chain architecture and utilizes Hyperledger Fabric for EMR access control. As an
extension of the functionality of the platform, it implements a transaction system centered
on MedToken, where patients can voluntarily share their health data or actively participate
in the trial of new drugs in exchange for a specified number of MedTokens. At the same
time, patients can also consume MedToken to obtain some price services such as online
diagnosis or medicine purchase. In this virtuous circle, there will be greater transparency
and greater participation in medical research and development.

In addition to the above projects focusing on medical data control and medical infor-
mation sharing, with the popularity of the Internet of Things research in recent years,
people are also gradually focusing on the further medical supply chain. Medical prod-
ucts are known to have stricter import and export regulations, shipping environmental
standards, and the need for timeliness and traceability in emergency situations. Given
this background, IOTEX [35] has launched its blockchain platform that associated secure
hardware, decentralized identity, and real-world data oracles, its scalability can be used
in a variety of applications including medical scenarios, such as tracking the body data of
patients with chronic diseases, online identity verification based on sensors such as finger-
prints, temperature and environmental monitoring of medical transportation systems, and
so on [21]. While its performance in terms of latency or sensor data stability remains to
be seen, its emergence certainly points to a bright direction for healthcare blockchain.

Based on the in-depth exploration of previous blockchain medical projects, it is easy to
find that they are still mainly at the stage of verifying feasibility, which is probably due
to the limitation of scalability to land the project into practical application. Due to the
bottleneck in throughput of the underlying ethereum and hyperfabric networks, MedRec’s

16

measured efficiency is around 15-30tps, which is difficult to support the application in real
scenarios. Therefore, if we want to use blockchain in real medical scenarios, then we have
to optimize its performance.

2.3.2 Other BFT-Based Consensus Models

In [72], the advantages as well as disadvantages of several kinds of most commonly used
PoW-based and PBFT state-machine replication-based approaches are compared, com-
paring their limitations in terms of fault tolerance, power consumption, throughput and
scalability. The article concludes by discussing and presenting the current status and
possible future directions regarding the development of consensus protocols.

[29] proposed Scalable Byzantine Fault Tolerance (SBFT) algorithm. It treats a node as
a fixed, error-free block producer. SBFT has a theoretical performance advantage of twice
the throughput and 1.5 times the latency optimization compared to traditional PBFT. It
introduces the concept of collectors in its design and uses threshold signatures to reduce
communication to linear, and also borrows the fast path approach from Zyzzyva to reduce
a significant amount of communication cost. Although this scheme greatly improves the
performance of the PBFT algorithm, there are some drawbacks in its design, i.e., it does
not consider the case where the primary node is a Byzantine node, and the performance
improvement of SBFT is to some extent at the cost of reduced Byzantine fault tolerance.

[40] presented Zyzzyva, which pioneered the mechanism of speculation to reduce the
communication cost of BFT-type consensus protocols. In Zyzzyva, the original three-
phase commit protocol is replaced by the speculation model. This means that all replicas
optimistically adopt the order proposed by a primary node. In case of an error in any of
the replica, the client node finds the inconsistencies at the end and helps them synchronize
their responses to the existing state. In terms of performance, it can reach a theoretical
throughput of 10,000, which is much higher than the traditional PBFT protocol, but since
it is not used in systems prone to Byzantine nodes, the application scenario is greatly
limited.

[49] proposed the Stellar Consensus Protocol (SCP). Unlike other Byzantine protocol
models, it presupposes a list of members and opens the access to the list conditionally in
order to promote the benign growth of the network. It reduces the complexity of consensus
messages by replacing the public key signature with a vector of message authentication
codes. And it can dynamically adjust the number of checkpoints, and the response time
and space usage efficiency of the system is improved, but a part of the system security is
sacrificed while the operation efficiency is improved.

17

The HotStuff [77] algorithm demonstrates the impact of structural optimization on the
transmission complexity of PBFT. It innovatively changes the original network topology
to a star network topology, so that each communication will only depend on the central
node. Instead of reaching consensus through multiple rounds of multicast, it sends mes-
sages to the central node, which finally matches and verifies the messages and broadcast
the consensus result to all the other nodes. in addition to providing O(n) linear communi-
cation complexity, the Hotstuff algorithm also pioneered the optimization of view switching
protocol complexity, which is not covered in any other optimization designs for BFT.

OBFT [66] was proposed in 2012 and it is a client node based BFT protocol. The O
in its name stands for obfuscated, because replicas are not aware of each other’s existence.
In other words, compared to message communication between replicas in PBFT, message
communication in OBFT exists between client node and replicas, which greatly reduces the
original message multicast. This prevents non-semantic attacks to some extent, because
the attacked replica does not know about other replicas, so it does not disclose information
about other replicas. In the consensus process, the primary node in the algorithm uses
the speculative mode to send a request to the 2f + 1 selected active set, when the request
is matched by all the receiving nodes, the request will be submitted by the client node;
otherwise the recovery mode will be enabled and the 2f + 1 nodes will be reselected
and started again. OBFT achieves good performance, compared with PBFT’s limited
scalability and rapid decline in throughput as the number of clients increases, OBFT can
achieve hundreds of nodes in a wide area network to participate in consensus at the same
time. However, OBFT also has the limitation that it defaults the nodes participating
in consensus are non-malicious also known as non-Byzantine nodes, in other words, the
system allows node crashes but they cannot cheat.

FastBFT [48], proposed in “Scalable Byzantine Consensus via Hardware-Assisted Secret
Sharing” in 2019, leverages novel message aggregation and hardware-based trusted execu-
tion environment to reduce the consensus transaction complexity from O(n2) to O(n). Un-
like other methods also based on message aggregation, its approach is based on lightweight
secret sharing, so it does not require public-key operations like multisignatures but re-
quires additional hardware support such as Intel SGX, thus saving a lot of compuatation
overhead. It optimized the fault-tolerance performance, compared to the original PBFT of
3f + 1, fastBFT only needs 2f + 1 replicas to tolerate f faulty nodes. FastBFT uses the
basic binary tree topology to optimize the communication efficiency to a certain extent,
which can improve the system operation efficiency when the children of the tree are not
Byzantine nodes.

hBFT [19] is a hybrid PBFT protocol with optimal resilience, which was proposed by
Sisi Duan, Sean Peisert and Karl Levitt in 2015. In the normal case hBFT uses speculation

18

and assume the default primary is correct, i.e., replica directly adopts the order from the
primary and sends a reply to the client. And when there is inconsistency in the replica,
it will be up to the user node to detect the inconsistency and help replicas to recover to
the proper consensus result. It shifts the critical work to the client and has much less
cryptographic operations than the original algorithm. However, its algorithm is based on
assumptions of fault-free and normal cases, so the applicability scenario is greatly limited.

19

Chapter 3

Blockchain Healthcare Model

In this chapter, we will briefly describe the overall model of blockchain-based healthcare
system, because our focus is on the optimization of the application bottleneck, i.e., the
optimization of the consensus protocol, so we will only briefly describe the whole system
architecture and not describe its technical details in detail.

3.1 System Model

3.1.1 System Architecture Design

As mentioned earlier, blockchain systems are mainly divided into public chains, private
chains and federated chains. For example, MedRec [51] is a public chain electronic medical
record management system based on Ethereum, but due to the performance bottleneck of
the public chain structure, its actual operational throughput is only 30 tx/s, which is far
from meeting the performance requirements of the actual medical scenario. On the other
hand, for the private chain, although its operation performance is excellent, it does not
meet the usage scenario of private chain due to the existence of Byzantine nodes in the
medical scenario.

Therefore, as shown in Figure 3.1, for performance and security reasons, this thesis will
use a consortium chain to design a medical blockchain application, using hyperfabric as
the underlying architecture and optimizing its PBFT consensus algorithm, trying to solve
its throughput and scalability limitations. The following diagram shows the application

20

scenario of blockchain medical system, in order to make it more concrete, we can con-
sider the following five roles: patients, hospitals, research institutions, government medical
institutions and insurance companies. Data Operation Module can be an Nginx proxy
server used to deploy and coordinate the code between front-end calls and platform ser-
vices, blockchain services are called through chain code services, and Decentralized Storage
System is another chain composed of a group of nodes for storing medical files with large
data volumes, for detailed concepts refer to Filecoin System [22]

Figure 3.1: Blockchain Healthcare Model

3.1.2 Data Structure Design

First, as shown in Table 3.1 and 3.2, we designed the data structure of patient and medical
data respectively, which simply satisfies the basic application of medical data management,
but the data types and data relationships in the actual situation may be much more
complicated.

21

Table 3.1: Patient Data Structure
serial data field data type interpretation

1 p id int patient’s Id
2 p name string patient’s name
3 p ref num string Patient’s unique medical reference number
4 p nation string patient’s nationality
5 p bd string patient’s birthday
6 p addr string patient’s current address
7 p contact int the Id of patient’s emergency contact
8 p records array an array of all the medical records’ Id

Table 3.2: Medical Record Data Structure
serial data field data type interpretation

1 r id int record’s Id
2 p id int the p id associated to
3 r timestamp string timestamp of creation
4 r disease type string type of disease
5 r symptom string detailed symptom
6 r file link string side chain storage links for medical data
7 r file digest string data’s digest
8 r query list array the Ids with access to the medical record
9 r modify list array the Ids with permission to modify the medical record
10 r history array access and revision history

It is important to mention that p id and r id are the unique identifiers for patient and
medical record respectively, which are used to distinguish different patients and different
medical records.

Moreover, the relationship between the two data structures can be clearly seen in Figure
3.2: for a patient, he can correspond to a series of medical records; but for a medical
record, there is only one related patient. Finally, for operational efficiency reasons, the
huge amount of medical data will be stored in another distributed structure, which will be
interconnected with the medical record by the file address and file digest.

22

Figure 3.2: Structure Diagram for Medical Data Storage

3.1.3 System Flow Design

Figure 3.3 details the process of storing medical data to the chain. As mentioned above,
for performance reasons, we first encrypt the data with the public key of the data owner,
then upload it to the sidechain and return the corresponding address and digest.

After confirming that the information is not repeatedly submitted, we call the putState
method of the hyperledger fabric to update the medical data records on the chain and
return the corresponding end state code.

Figure 3.4 details the flow of retrieving medical data to the chain. When the system

23

Figure 3.3: Flowchart of Storing Medical Data to the Chain

receives a data access request, it first needs to determine the identity of the data requestor
and obtain the appropriate permissions. After the permission is granted, the system will
use the getState method of the hyperledger fabric to get the address and digest of the
data stored on the sidechain, and then it will retrieve the data and compare the digest
to determine whether the data has been tampered with or not. In addition, it will call
putState to update the data access record in time and return the corresponding termination
state value at the end.

24

Figure 3.4: Flowchart of Retrieving Medical Data from the Chain
25

Chapter 4

Analysis for the Original PBFT

Due to the special nature of the design of medical blockchain information systems, we have
to take Byzantine fault tolerance into account in the design, so we choose to explore the
PBFT algorithm in depth. In this section, we will provide an in-depth background knowl-
edge of the PBFT algorithm and the details of the algorithm, and analyze its shortcomings
in practical application scenarios.

4.1 Background Knowledge

4.1.1 Practical Byzantine Fault Tolerance

PBFT [14] was first proposed by Castro and Liskov in 1999, and it is a good solution to
the problem of the Byzantine faulty nodes in distributed systems, which leads to unsyn-
chronized and inconsistent information. In other words, when the total number of nodes in
the system is n and the number of malicious nodes is f , PBFT can guarantee the normal
information communication of the whole system under the condition of n > 3f + 1.

4.1.2 The Two Generals Problem

Before we launch into an exposition of the discussion of the Byzantine problem, we first
start with a more classical problem, the two generals problem, which was introduced back
in 1975 in [4]. The two generals problem refers to the problem of two generals in an army
whose units are separated by two locations, and they have to communicate with each other

26

through their communications to reach an unanimous decision to either attack or withdraw.
However, there is no universal solution to this problem according to the FLP impossibility
principle, since the communicators may receive the harassment from the enemy troops in
the middle of the process leading to the loss of secret messages.

4.1.3 The Byzantine Problem

As an extension of the dual generals problem, the Byzantine problem is more in line with
the model characteristics of asynchronous distributed systems. The Byzantine problem was
first formally introduced by Leslie Lamport in 1982 in the paper “The Byzantine Generals
Problem” [45], while Byzantine is the capital of the ancient Eastern Roman Empire. The
generals are referring to the nodes in the model of the distributed system. Since there
may be traitors among the generals who may refuse to convey messages or even try to
convey wrong orders to interfere with the consensus, the Byzantine problem is to solve the
problem that the participants of consensus protocols in asynchronous distributed systems
may appear to be faulty.

4.1.4 Preliminary Ideas

In the paper “The Byzantine Generals Problem” [45], it is mentioned that if we assume
that there are n nodes and f faulty nodes under the asynchronous system in the Byzantine
problem, then the whole system can reach the correct consensus result only when n > 3f+1.
Let’s take a more practical example, there are 3 nodes and 1 faulty node in the system,
when the proposer sends a consensus proposal, the faulty node may give the opposite result
to interfere with the consensus, then the last remaining node may receive one positive and
one negative message, in this case it is difficult to discern who is right and who is wrong, so
we cannot get the consensus result. Let’s generalize this example, similarly, when a node
sends consensus proposal A and it is not an evil node, for a non-faulty node he will see
n− f consensus messages A, and at most f consensus messages that is not A, denoted as
A. Then obviously only when n − f > f , that is, when n > 2f we can get the correct
consensus result.

What if the consensus proposal is made by the evil-doer? From the standpoint of the
evildoer, in order to interfere with the consensus result, it will send contradictory results
to n − f participants, then there will be (n − f)/2 participants receiving the message A
and another (n − f)/2 participants receiving the message A. These honest participants
will think that the system currently has half of the A consensus message and half of

27

Table 4.1: Relationship between Transaction Volume and Rounds
round # message visited tolerate ability message spread # messages

1 1 f n− 1 n− 1
2 2 f − 1 n− 2 (n− 1) · (n− 2)
.
x x (f + 1)− x n− x (n− 1)(n− 2) . . . (n− x)

x+ 1 x+ 1 (f + 1)− x− 1 n− x− 1 (n− 1)(n− 2) . . . (n− x− 1)
f + 1 f + 1 0 n− f − 1 (n− 1)(n− 2) . . . (n− f − 1)

the A consensus message regardless of the result they receive. Moreover, in addition
to the proposers themselves being evildoers, there are f − 1 evildoers remaining in the
system, whose behavior is uncertain; they may send consensus message A, or they may
send consensus message A, or they may even refuse to participate in the consensus. Then,
if honest participants want to get a consistent consensus result, they have to communicate
with each other to confirm and count the consensus messages they receive, and select the
majority result as the consensus result.

In a subsequent paper by Leslie Lamport entitled “Reaching agreement in the presence
of faults” [61], it is shown that we can negotiate a consensus through at most f + 1 rounds
of interaction when the perpetrators do not exceed 1/3 of the total number of nodes in the
system just as shown in Table 4.1. Otherwise, the consensus result is not guaranteed.

Imagine that for a consensus A, there are f evil nodes and t honest nodes in a system
with n total nodes, where f evil nodes can give the opposite result or refuse to participate
in the consensus. When all the evil nodes give the opposite result A and f of the t honest
nodes refuse to give a consensus response, the remaining t − f honest nodes must have
t− f > f , and because t = n− f so n− f − f > f , so finally our Byzantine fault tolerance
is n > 3f .

4.1.5 Types of Byzantine Failures

There are several types of Byzantine Failures, and we can simply divide them into nodes
that are actively evil and nodes that are passively evil [27].

Active byzantine nodes may be adversary nodes used to try to steal user information
or deliberately send incorrect consensus votes, and they may use a large number of byzan-
tine nodes to frequently trigger attempts to switch protocols and thus affect the overall
operational efficiency of the system.

28

There can be many kinds of passive nodes, the most typical ones being those that fail
to return a result in time due to natural disasters or lack of maintenance resulting in long
or temporary downtime.

4.2 PBFT Protocols

We can also use a simple language to explain the design concept of PBFT: Suppose I, as a
member of the consensus nodes, receive a message from the leader, I will first subjectively
judge it right or wrong and reject those messages that I think are wrong. But even if I
think the message is right, I will still ask and refer to other nodes’ judgment. Only when
I count the existence of more than 2f + 1 people who believe that the leader’s message
is correct, will I approve it and execute it. When the majority of nodes believe that the
leader is wrong, we need to re-elect a new leader.

Basically, PBFT is divided into three main parts: Consistency Protocol, View Switching
Protocol, Checkpoint Protocol

4.2.1 Consistency Protocol

Consistency protocol is the core component of the entire PBFT algorithm, which ensures
the consistency of information across all nodes in the blockchain nodes. It divides the
communicating nodes on the chain into 3 categories, client nodes, primary nodes and
replica nodes. where the client node is the initial sender of the request and it sends a
request to the primary node < REQUEST, o, t, c >, where o is the specific operation, t
is the timestamp. Once the primary node receives the request from client code, it need 3
interactive stages before it replies the client code, they are pre-prepare stage, prepare stage
and commit stage.

- In the pre-prepare stage, when the primary node receives a request, it first analyzes the
request and discards the incorrect requests, then it sorts the remaining correct requests and
assigns the number n in order, and then broadcasts << PRE-PERPARE, v, n, d >,m >
messages to the other replica nodes in the system. Where d represents the summary of the
REQUEST message, n is the number of the message m, and v represents the view number.

- In the prepare stage, node i, which receives the pre-prepare message, first determines
whether it agrees to enter the prepare stage and verifies the accuracy of the message, and
broadcasts < PREPARE, v, n, d, i > messages to other nodes including the primary node.

29

Figure 4.1: Practical Byzantine Fault Tolerance Communication Graph

- In the COMMIT stage, when node i receives 2f+1 validated messages, it goes from the
PREPARE stage to the COMMIT stage and sends < COMMIT, v, n,D(m), i > messages
to other nodes including the PRIMARY node.

- In the reply stage, when node i receives 2f+1 commit messages to meet the consistency
requirement, it then sends a consensus message in the format of < REPLY, c, I, v, t, r > to
the client node. r represents the result of client request execution by node i. Finally, this
consistency interaction is completed when the client node receives at least f + 1 REPLY
messages. After that the PRIMARY node needs to write the consensus data into the
blockchain. If this data block is not generated, then this primary will be classified as a
Byzantine node and the system will select a new primary node according to the view-change
mechanism.

4.2.2 View-Change Protocol

The concept of view ensures that each node in the blockchain works under the same
configuration information. When one of the following conditions is met, the primary node
will be considered as a Byzantine node and the system will select a new primary node
according to the view switching protocol:

• No pre-prepare broadcast message is received from the primary node at time t1

30

• No new module is generated within the time limit t2 > t1

After triggering the protocol for switching views, we first generate a number for the new
view, v′ = v + 1, then select the new primary node based on p = v′ mod n, and broadcast
the view change message to all replica nodes.

Then when each replica node receives 2f + 1 view change messages including its own,
they will send a view-change-ack confirmation message to the new master node of the new
view, and then the new master node will enter the new-view phase.

Finally, the new master node selects the checkpoint as the starting state of the new-view
request and then executes the consistency protocol according to the local data block.

4.2.3 Checkpoint Protocol

In the process of consensus generation, a large amount of stored data is generated. The
periodic operation of the checkpoint protocol largely reduces the data storage size of nodes
and avoids the waste of resources. We will not go into details here.

4.3 Advantages of PBFT

• A certain degree of waste of resources is avoided. PBFT does not require as much
computing power as other distributed consensus protocols, such as those based on
Proof of Work. Therefore, PBFT is a relatively energy-saving approach.

• PBFT provides transaction finality. As the name suggests, PBFT-based distributed
systems eliminate the need for multiple validations after a request is submitted, un-
like traditional Bitcoin, which requires each node to validate all transactions when
adding a block to the local area; once a request is made, we can be sure that the
request will generate a response within a limited time threshold.

4.4 Bottleneck of PBFT Performance

The whole process requires two multi-casts for all nodes, which severely consumes the
total number of communications and slows down the throughput, causing a large degree
of resource consumption. In PBFT, the communication cost of each step is as follows:

31

1. the communication cost of request phase is 1,

2. the communication cost of pre-prepare phase is n− 1,

3. the communication cost of prepare phase is (n− 1)(n− 1),

4. the communication count of commit phase is n(n− 1),

5. the communication count of reply phase is n.

Therefore, the overall complexity is 2n2 − n + 1 => O(n2). For a network model with a
small number of nodes, e.g., n less than or equal to 10, the overall data communication
volume will not be very large, but considering that the number of nodes in today’s real-
world application scenarios is often up to 1000, the squared time complexity is certainly
not enough.

32

Chapter 5

Potential Optimizations for PBFT

Based on the needs of the business scenario of consortium blockchain electronic medi-
cal record system, high performance is one of the goals it must achieve. Therefore, the
performance optimization of the consensus mechanism needs to be a top priority.

We optimize the blockchain consensus model based on PBFT for the hierarchical charac-
teristics of the healthcare system. First, we can think of a simplified distributed healthcare
information sharing scenario where the identities can be divided into hospitals, clinics,
insurance companies and patients. Each of these identities has the risk of becoming a
Byzantine node, for example:

1. the hospital node may be the main target of an attack since it is where a lot of patient
information and medical resources come together

2. The information recording process of the clinic node may be inaccurate and non-
compliant, resulting in incorrect information

3. the insurance company may deny the facts and reject an insurance claim for its own
benefit

4. adversary may use the fake patient nodes for sybil attack [18]

5.1 Optimization by Role Grouping

Initially, our first idea is to divide all nodes into i roles. For example, in the above medical
example, we divide all nodes into 4 groups, hospital nodes, clinic nodes, insurance company

33

nodes and patient nodes. Thus, we only need to select a total of i sub-primary nodes in
the node subset of each group, and then pass the consensus information from these i sub-
primary nodes to the client node of the message requestor.

Figure 5.1: Grouped Network for Medical Example

Assume i groups are evenly distributed. In this first attempt, the communication cost
of each step is as follows:

1. the communication cost of request phase is i,

2. the communication cost of pre-prepare phase is (n
i
− 1) ∗ i,

3. the communication cost of prepare phase is (n
i
− 1)(n

i
− 1) ∗ i,

4. the communication count of commit phase is n
i
∗ (n

i
− 1) ∗ i,

5. the communication count of reply phase is n
i
∗ i+ i.

Therefore, the overall complexity is 2
i
∗ n2 + 2i− n => O(n2), since i is a fixed number

34

The result is clearly within our expectation, even though it is O(n2) as before, but its
total complexity is i times smaller. When the number of nodes is large, it has to be said
that the grouping approach is an effective improvement for the operational efficiency of
the system.

In addition, we subsequently come up with the thought that in a medical scenario,
since most nodes are “bona fide” by default, fault tolerance does not necessarily need to
be as high as 1/3, a decent tolerance rate with 1/6 or even 1/10 is still sufficient for the
real-world scenario. Therefore, we next conducted a study on the feasibility of sacrificing
fault tolerance for throughput in the specific context of medical applications.

5.2 m-ary Tree Structure Optimization

It is known that the efficiency of dividing nodes into groups can be optimized by multiplying
the number of divisions, so we try to make the use of grouping more generalized. We first
think of using some data structures to optimize it, such as m-ary tree, because the results
of optimization with trees are often in log level which is better than O(n2). m-ary tree in
traditional graph theory refers to a tree storage structure with the number of children less
than or equal to m. We often refer to a binary tree as an m-ary tree when m = 2 [30].

Here we consider a complete m-ary tree as the specified data structure, which fills up
the space of each level as much as possible before building the next level. Unlike traditional
PBFT, we put the original node into the data structure of complete m-ary tree as shown
in Figure 5.2, compared to the original PBFT that only has one primary node, we need to
select a sub-primary in each subsets to act as the original primary node but in the subsets,
and pass the consensus result of the group to the upper layer, so that the consensus result
is passed on the line iteratively until it is passed back to the uppermost client node.

To facilitate our quantitative analysis, we then assume:

1. the total number of nodes is n;

2. for the convenience of evaluation, we assume the nodes can be perfectly fit into a
m-ary tree, which means each node in a tree has m branches;

3. we assume on-chain configuration settings;

4. for the convenience of calculation, we temporarily set the sub-group size to be also
m.

35

Figure 5.2: A m-ary tree structured PBFT

Then for each level of the tree, we have:

Tree level 1:

number of groups in this level = m

number of nodes in this level = m ·m = m2

Tree level 2:

number of groups in this level = m2

number of nodes in this level = m2 ·m = m3

. . .

Tree level t:

number of groups in this level = mt

number of nodes in this level = mt+1

Total number of nodes = m2 +m3 +m4 + . . .+mt +mt+1 =
t+1∑
k=2

mk

Suppose we have n nodes in total and use an m-ary tree, we also set the size of sub-
group to be m for now. We then set the number of communications within the subsets to
a multi-cast which is m2 for ease of calculation.

In this case, if we divide all nodes into 4 layers with the current data structure as we
just did, we get:

36

total number of nodes = (m5 +m4 +m3 +m2) = n (5.1)

total communication volume = number of groups ∗ communications in the subsets (5.2)

= (m4 +m3 +m2 +m) ∗m2. (5.3)

When m = 4, total communication volume = 340 ∗ 42 = 5440, this can contain number
of nodes = 1360. For a traditional PBFT, the overall transaction is 2n2−n+1 = 3697841,
which is 680 times bigger! Even for a 4-group medical PBFT as we proposed in the former
section, the overall transaction will be (2/m)n2 +2m−n = 923448, where m is the number
of groups that we have defined in last section.

Based on the nature of m-ary trees in graph theory, we wish to further quantify the
overall operational efficiency. We know that for a complete m-ary tree with a total of n
nodes, its height is logm n. Therefore, we have:

number of groups = number of PBFTs = number of sub-primary nodes (5.4)

= m+m2 +m3 +m4 + ...+mt

= m(1−mt)/(1−m) where t = logm n

= m(1− n)/(1−m)

= m(n− 1)/(m− 1)

= O(n).

(5.5)

Recall that number of transactions inside each group = O(m2) So, in overall, the
communication complexity = O(m2 ∗ n).

5.2.1 Consensus Protocol under m-ary Tree Structure

In the previous section, we briefly introduced the general structure of our m-ary PBFT
and estimated its operational efficiency. In this part, we will explain the specific steps of
the consensus algorithm in more detail.

37

Step 1: the Client node Nclient sends a message < REQUEST, 0, t, Nclient > σclient to the
Primary node who is the root of the m-ary tree, where o is the specific operation, t
is the timestamp.

Step 2: After receiving the request, the Primary node firstly analyze the correctness of the
request, then sorts the remaining correct requests and broadcast a message << PRE-
PERPARE, v, n, d > σprimary, Nprimary,m > to all of its child nodes, where v is the
current series number of the view, d is the signature of the message and m is the
request message itself. If the child node in this propagation is also the sub-primary
node of the next subnet, it continues to broadcast the prep message to the lower
layers in the same message format but with the corresponding view number and
message digest. This process is repeated until they reach the bottom layer and all
its sub-primaries.

Step 3: After receiving the pre-prepare message, the replica nodes in the bottom layer verify
the message m and digest d and compare the hash values, and verify whether the
view number v matches the sequence number n and has been processed, whether the
source of the message is its own parent node and so on. If the above verification
passes, the corresponding replica nodes enter the PREPARE phase and broadcast <
PREPARE , v, n, d, i > σi to the other replicas in the group and adds both messages
to its log, where i is the series number of the node inside its group. Otherwise, if
verification failed, it would do nothing.

Step 4: After the nodes in the bottom-most layer (including the master node) collect 2f + 1
matching PREPARE messages, they go from PREPARE stage to the COMMIT stage
and broadcast a confirmation message < COMMIT, v, n, d, i > σi to other nodes in
the group including the sub-primary node in order to confirm that the view number
and sequence number has not changed.

Step 5: If the child nodes in the bottommost sub-group have collected 2f+1 commit messages
to meet the consistency requirement, they send a reply message< REPLY, v, t, c, i, r >
σi to the sub-primary node of the group, where r represents the result of client request
execution by node i.

Step 6: Each sub-group in the system counts the number of REPLYs they receive in real
time, and if there are f +1 consistent results, they confirm the intra-group consensus
result as r and continue to pass it to the upper subnets. If any sub-primary node
is found to be evil or not responding in timeout or view number change during the
process, a consensus failure message < FAILED, n, d, r, i > σi is broadcasted down

38

to the bottom subnet and the consensus fails. If the above contingency does not
occur, the result set r of sub-groups is sent to the upper subnet, and the process is
repeated up to the highest subnet. The primary node in the highest-level subgroup
counts whether it receives f + 1 matching consensus results and provides feedback to
the client node c.

5.3 Node Rating Mechanism

However, it is easy to see that since we need to elect a sub-primary node in each subset,
while the traditional PBFT only needs to elect one primary node, our fault tolerance will be
largely affected by the probability that the sub-primary nodes are Byzantine nodes, so we
need a more sensible sub-primary node selection mechanism and node rejection mechanism.

Since the selection of primary node and voting node in the original PBFT model is ran-
dom, we want to optimize the selection of node roles based on the different trustworthiness
of each level of the healthcare system in order to reduce the waste of transaction amount.

We can establish a reputation hierarchy to set the promotion and elimination conditions
for different nodes, and dynamically change and evaluate the credit of nodes based on their
past performance, e.g., increase by 1 each time the node information is verified to be correct,
and clear the points once the node response timeout or malicious node is encountered.

We can establish the credit threshold L1 and L2 as high credit threshold and low credit
threshold respectively, when the credit score is higher than L1, it means the node has an
excellent past record and can be selected as the primary node; when the credit score is lower
than L2, it means the node has a bad record and will be eliminated from the consensus
node and will not participate in the consensus but need to accept the consensus result
until its score is higher than L2, which can largely reduce the communication overhead of
switching nodes and improve the operational efficiency.

Credit Tier Range Character
Excellent [L1, 1] can be selected as primary or sub-primary nodes

Good [L2, L1) can participate in consensus protocol voting
Bad [0, L2) cannot participate in voting, but only accept results

In our design, in order that the concept of credit value can be quantified and dynamically
accumulated or deducted, we use the sigmoid function to trap the value within the real
number interval from 0 to 1 . Due to the nature of the sigmoid function, the growth rate of
its credit value is very slow in the low credit and high credit intervals, which well increases

39

the difficulty of malicious nodes to intentionally swipe high credit values, and the difficulty
of normal nodes to enter the high credit interval to become sub-primary key nodes. This
approach can prevent sybil attacks to some extent and also ensures the credit accumulation
efficiency of normal operating nodes in the intermediate interval.

Set credits will be dynamically accumulated with the “view change” event, correspond-
ing to the current view v and the new view v + 1, whose credits can be expressed as Cv

and Cv+1 respectively.

1. If this master node successfully generates a valid block, or the message content of
the nodes participating in consensus is verified to be consistent with the consensus
result, then we will increase its credit accordingly.

Cv+1 = Sigmoid(Cv + a)

where a is the preset parameter for the credit growth rate, c1 and c2 are adjustable
parameter for the cumulative difficulty of the low and high credit zones, as shown in
Figure 5.3.

Figure 5.3: Sigmoid Function [47]

40

2. If the response wait of the sub-primary node exceeds the current exponential fallback
delay value, or if the new block generation fails, or if the messages of the nodes
participating in the consensus are inconsistent with the final consensus result or even
do not respond successfully, then its credit value needs to be adjusted downward.

Cv+1 = Sigmoid(b ∗ Cv)

where 0 < b < 1 is the tolerance factor of credit to the faulty nodes.

5.3.1 View Switching Protocol

The attempted switchover protocol exists to ensure that when the primary node goes down,
the system can recover from the failure in time to ensure liveness.

The view switch is triggered by the timer of the replicas under the primary node, so
that replica can know the unresponsiveness of its primary node and initiate a request to
replace the primary node. After each view change is triggered, the corresponding delay T
is doubled in order to accommodate different network conditions.

In a hierarchical tree PBFT, it is clear that the presence of a faulty sub-primary node
is fatal, so the goal of our view switching protocol is not only to detect the faulty node
and replace its sub-primary role and select a successor based on its creditworthiness, but
also to try to push it to a lower level sub-node in order to reduce its impact on the tree
structure.

Step 1: If a replica within a group finds that its sub-primary node has a response timeout
or is identified as a Byzantine node, we update the credit value of the node using
the credit mechanism described above. Then all its subordinate child nodes will be
evaluated for intragroup credit, and if the current sub-primary node of the group is
not the node with the highest credit within the group, a view replacement message
< VIEW-CHANGE, v + 1, n, i > σi is broadcasted within the group.

Step 2: After the slave node with the highest credit value in the subnet collects 2f + 1
matching view replacement messages (including itself), it will broadcast a new view
message < NEW-VIEW, v+1, s, i > σi within the subnet, where S is the set of 2f+1
view replacement messages. At the same time, it will broadcast a new view message
< NEW-VIEW, v′ + 1, S, sp, Csp, i > σj to the next level of the subnet it leads to
prove that the new master node is valid after this view replacement, where v′ is the
current view of the lower level subnet, sp is the replaced subprimary, and Csp is the
reputation value of the replaced master node.

41

Step 3: After receiving the new view message, other nodes in this subnet verify the correctness
of the signature and the validity of the view replacement message, and then add the
new view message to the message log and enter the view v+1. After receiving the new
view message, the slave nodes in the next subnet verify the validity of the message,
and if the message is valid, check whether there is a slave node in the subnet whose
reputation value is greater than the reputation value of the dispatched master node.
in the subnet. If not, the new view message is stored in the log and the view v′+ 1 is
entered. Otherwise, the view replacement protocol is triggered again in this subnet
range.

Step 4: Repeat steps 1 to 3 until the failed node becomes the master node of a lower-level
subnet or becomes a slave node of the lowest-level subnet.

This credit-based view switching protocol can largely avoid Byzantine nodes being
selected as sub-primary, so when the whole system has been running for a period of time
and maintains a stable structure, the system can slowly reduce the chance of view switching
protocol triggering and maximize the operational efficiency of the system, and under this
stable condition, the fault tolerance will be infinitely close to f = (n− 1)/3 in the original
PBFT.

In order to ensure the efficient operation of the whole m-ary tree, it is not difficult to find
that it is very inefficient to gradually adjust the structure of the tree just by view switching,
which makes the whole system gradually enter the stable state very slowly. However, if we
want to reach a stable state as quick as possible, a good initialization state and regular
full node checking are essential. In this case, we can ensure that the high credit nodes are
assigned to the relatively high layer and ensure the stability of operation efficiency. As we
know that low credit nodes have more possibility to become Byzantine nodes, if we place
them in lower layers, their impact on the consensus result and view-change latency will be
minimized if they have problems.

For the above reasons, we try to use an efficient m-ary heapify algorithm [16] as shown
in Figure 5.4 and 5.5 to dynamically sort the nodes according to their creditworthiness
with a complexity O (m logm n). Whenever the system needs to initialize the m-ary tree,
or when it is in idle state for a long time, or when the view-change is triggered more
frequently than a preset threshold, or any node has been added or deleted from system
(will be discussed in the next section), we can trigger the m-ary heapify to assign nodes
according to their credit from highest to lowest.

For simplicity of illustration, suppose nodes are stored in a datatype A just like an
array and node can be access by its serial number i where the value of the node is its
credit, here is the specific algorithms for sorting this m-ary heap:

42

Figure 5.4: m-ary PBFT before Heapify

Figure 5.5: m-ary PBFT after Heapify

43

Algorithm 1: Heapify(A, i,m)

max← i;
for j = 1 to m do

if j ≤ heap− size[A] and A[Child(i, j) > A[i] then
max← Child(i, j)

end
if max 6= i then

exchange A[i] with A[max];
Heapify(A,max,m);

end

end

Algorithm 2: Build Heap(A,m)

heap-size[A] = length[A];

for i =
⌊(

length[A]−2
m

+ 1
)⌋

downto 1 do

Heapify(A, i,m);
end

Algorithm 3: Sort mary Heap(A,m)

Build Heap(A,m);
for i = length[A] downto 2 do

exchange A[1] with A[i];
heap-size[A] = heap-size[A] - 1;
Heapify(A, 1,m);

end

5.4 Improving the Scalability and Dynamic Registra-

tion of Nodes

The three optimizations approaches mentioned above are not contradictory and can be
mixed together.

However, since more layers also mean more waiting time, in other words the upper
layer has to wait for the results of the lower layer, in time for parallel computation, some

44

of the interactions of different layers can be run simultaneously but overall we still increase
the latency for less transactions. This means that our model is cheap and scalable, but
also relatively slow, which is suitable for the needs of current medical data management
systems. Of course, we can use concurrency to implement simultaneous computations
between different layers, but there is still a degree of dependency between layers, which
leads to latency growing with the size of the tree. Therefore, in order to maximize the
parallel efficiency of the entire system and minimize the impact of hierarchy on latency, we
must control the size of tree and optimize its parallel computing efficiency for cases with
large number of nodes.

5.4.1 Random Forest for m-ary PBFT

We are inspired by the algorithm of Random Forest [33] in artificial intelligence algorithm
for training multiple decision trees to generate consensus results, we can generate multiple
m-ary trees by randomly selecting a subset of reputable nodes from the node pool based
on different categories, each with a different node selection, and generate consensus results
based on majority. In this way, due to the unique data structure and node audit mechanism,
together with the fact that the probability of Byzantine tree appearance itself is already
very small, this random forest-like approach introduces random sampling of reputable
nodes and is able to dynamically exclude inferior nodes from the consensus nodes, so that
they do not participate in the consensus, but only accept it afterwards, thus the overall
algorithm receives minimal influence from Byzantine nodes. In addition, the multiple
consensus trees model of random forest can largely address the concept of concurrency
since multiple consensus trees can be running concurrently hence improves the performance
and scalability.

5.4.2 Dynamic Join Protocol

Another fatal flaw of the original PBFT is its inability to dynamically add new nodes. To
remedy this drawback to accommodate the increasing number of nodes in the healthcare
environment, we consider a special trusted node to manage the registration information of
all nodes. The concept of this special node can be pooled, in other words it can be a common
behavior of multiple extremely trusted nodes. This approach may be inappropriate in a
business scenario because there is no guarantee that large companies or companies with
good credit will not modify information or compete maliciously for increasingly, but in a
medical scenario, for example, the government medical departments of each province can be

45

Figure 5.6: Random Forest for PBFT

identified as fully trusted nodes. However, these government nodes may also suffer DDOS
attacks or catastrophic downtime, so the fully trusted node here is a pooling concept, which
can be a consensus group of medical nodes in multiple provinces.

• First of all, if a Node i wants to apply to join this PBFT consensus, it must first send
an application to the Absolutely Trusted Node Ntrust. After the Absolute Trusted
Node Ntrust reviews its background information and grants its application, it will
broadcast a <ADD REQUEST, P, pk, v, Ci, i > σtrust to all nodes, where P is the
sub-primary node being assigned to, pki is its public key, v is the current view number,
Ci is the initial credit score assigned to this node, i is the serial number of this node.

• Once a node j receives this new node request, they need to verify the signature and
multicast a <ADD READY, v + 1, Ci, S, i, j > σj message to all other nodes, where
S is the set of 2f + 1 new node ADD REQUEST messages.

• When the corresponding parent node p assigned to Node i received 2f + 1 valid
ADD NODEs, it will broadcast a <ADD COMMIT, v + 1, S, P, Ci, i > σp to all
other nodes including node i that just added, where S is the set of 2f + 1 new node
ADD READY messages, P is the parent node p assigned to the added node i.

• Upon receiving the ADD COMMIT from node P , a given node k will first check the
validity of the signature and then send a <ADD COMPLETE, v+ 1, S, P, Ci, k > σk
to Node i and Ntrust, where S is the set of 2f+1 new node ADD COMMIT messages.

46

Figure 5.7: New Node Adding Protocol

• If Node i has received f+1 valid and consistent ADD COMPLETE, it could now as-
sume its NEWNODE REQUEST has been carried out and it can start to participate
in the consensus protocol with an initial credit score Ci.

For deleting a current node in the network, a DEL REQUEST can be done in a similar
manner as the previous adding case, which won’t be repeatedly discussed in detail here.

47

Chapter 6

Performance and Discussion

In this section, we first prove the safety and liveness property of our optimized consensus
algorithm. Then, we evaluate our PBFT based on m-ary hierarchical structure and com-
pare its performance with other algorithms in terms of transaction volume, throughput
and fault tolerance. Finally, to demonstrate our design of blockchain medical data system,
we build a medical blockchain platform based on hyperledger fabric and react. Hence, we
demonstrate the front-end and back-end logic of our system using vaccination clearance
as an application scenario, which shows the unparalleled verifiability and tracability of
blockchain healthcare.

6.1 Proof of Safety Property

Here, we define safety as the ability of the system to always process the same sequence of
tasks and guarantee their consistency and validity.

Theorem 1. If the system has the property of safety, then the validity of the results in
the blocks generated by consensus can be guaranteed, and that all non-faulty nodes should
be consistent in their local blocks at a given height.
Proof. To prove that the locally stored blocks of two honest nodes are consistent in the
same consensus round, we can assume that there are two such block A and block B, and
if they are both recognized, then block A and block B must be the same.

Imagine that if block A is recognized, then at least 2f + 1 nodes will agree on block A
and save block A locally. If at the same time 2f+1 nodes also agree to block B, then 2f+1

48

nodes also need to agree to it at this point. Then, we need (2f+1)+(2f+1)−(3f+1) = f+1
nodes to accept both block A and block B, it is known that there are at most f Byzantine
nodes in the whole system, so there cannot be a situation where f + 1 nodes approve two
different blocks at the same time, because there is at least one honest node at this point.

In addition, we also need to consider the consistency problem in multi-tasking scenarios.
In order to fully utilize the processing efficiency of each node and maximize the throughput,
the consensus protocol allows a certain degree of concurrency, which is based on the view
code and task sequence number, and each node will also prioritize the task corresponding
to the earliest sequence number and discard two tasks with the same sequence number
under the same view to avoid duplicate operations.

Therefore, the safety property of the consensus protocol has been satisfied.

6.2 Proof of Liveness Property

In the context of this thesis, liveness refers to the ability of the system to process requests
made by a client node within a finite time threshold.

Theorem 2. A request made by a client node at any time node must receive a final result at
the end, regardless of whether a Byzantine node is encountered or multiple view switches
are triggered.
Proof. In order to have the liveness property, the node starts a timer during the pre-
prepare phase and triggers the view switching protocol when the response time exceeds
a threshold value. In addition, this response time threshold refers to the concept of ex-
ponential backoff in computer network systems, and is dynamically extended after each
switchover in order to adapt to different network states. Even if a Byzantine node appears
in a critical position such as a sub-primary node, due to the design of such a response timer,
the system triggers the view switching protocol within a limited waiting time delay and
works with the heapify method mentioned in the Node credit mechanism section to move
the Byzantine node to a lower layer’s non-primary node to avoid affecting the efficiency
of subsequent operations. So, even in the worst case, the system must give the result in a
limited time, so the liveness property of the consensus protocol has been satisfied.

49

6.3 Fault Tolerance

One of the very big reasons why PBFT is widely accepted is because it can handle a cer-
tain degree of Byzantine node problem. The original PBFT’s fault tolerance capability is
f = (n− 1)/3, where n is the total number of the nodes, which means that the whole sys-
tem is able to withstand approximately one-third of the total number of Byzantine nodes
at most and generate the correct consensus result.

In our hierarchical system, if we assume that N = m2 = 3f1 + 1,m = 3t + 1 where f1
is the maximal number of faulty node in the network system, then we have the probability
for randomly select a node in the pool is 1

3
, denoted as

P1 = Pr{a node is faulty} =
1

3
. (6.1)

Now we arrange those m2 nodes into an m-ary tree structure of height 2 as shown in
Figure 6.1:

Figure 6.1: m-ary Tree Structure Example

where aij =

{
fault if the group with m member nodes, has more than t fault nodes

non-fault otherwise

50

In order to have the m-ary tree PBFT works, we need to have

| {1 6 j 6 m | aij fault} |6 t (6.2)

Let T = {P1, P2 . . . , PN} be the set consist of all the N nodes.

Pr = Pj{fault} =
1

3
. (6.3)

We define P ∗j = Pr {Pj fault | given that T is partitioned into m m-sets and PBFT
will be running on each m-set }

Thus P ∗j = Pr {Pj fault | given that Pj is in a randomly selected m-set }

Now, how many faults can a configuration of an m-ary tree with height r tolerate?
Theorem 3. For a m-ary tree based PBFT with N = mr,m = 3t + 1, the system can
tolerate (t+ 1)r − 1 faults.
Proof. Suppose the case N = m2,m = 3t+ 1. In order layer one can make the decision by
running PBFT in a m-set, there are at most t groups in layer 2 which yield fault results.

In those t groups, each has t+ 1 faults (the minimum number of the faults in the group
which will produce a faulty result), the rest of the groups should be:

Figure 6.2: Minimum Faults Case in Groups to Provide a Faulty Result

So the system can tolerate f2 = t(t+ 1) + t faults.

f2 = t2 + 2t = t2 + 2t+ 1− 1 = (t+ 1)2 − 1

51

E.g.m = 4, t = 1, N = 16 = 42

f2 = (1 + 1)2 − 1 = 3 (It can tolerate 3 faults instead of 5)

Suppose the case N = m3,m = 3t+ 1.

Let f3 he the number of faults that can be tolerated. Then in order to have layer 2 works,
it requires f2 groups in fault decisions, maximally. Thus

f3 = f2(t+ 1) + t = (t+ 1)3 − 1

By mathematical induction, for general N = mr,

fr = (t+ 1)r − 1

From Theorem 3, the probability of a randomly selected node being a fault node is given
by:

ρ =
fr
N

=
(t+ 1)r − 1

(3t+ 1)r
≈ 1

3r
for large t

Thus, when the height of an m-ary tree increases by 1, the number of faults can be
tolerated decrease by 1

3
. For example, for m-ary tree of height 2, its rate is 1

9
; for m-ary

tree of height 3, its rate is 1
27

.

6.4 Implementations and Performance

Our platform was implemented in earlier stages using Ethereum, Ganache and Metamask
for proof of concept, the blockchain environment was simulated and a vaccination Clearance
management platform was built. In order to test our PBFT, we gradually migrated our
focus to the hyperledger fabric, which is also based on PBFT, and tested our m-ary PBFT
by replacing it with our design. In order to better demonstrate the system interaction and
the logic of the back-end of the system, we built an online platform using React, which
also involved Solidity, truffle, web3.js and other technologies.

To instantiate the use of blockchain in a medical scenario, we built a platform with React
to manage the vaccine information of incoming students. In the case of the University of

52

Table 6.1: Comparsion of Blockchain-based Medical System Designs
System consensus computing power Consensus leader selection Scalability

MedRec [51] PoW high demand no low
MedicalChain [50] PBFT low demand round robin low

our work optimized PBFT low demand credit based high

Waterloo’s Quest system [59], for example, vaccine verification is currently done by sending
an email to students asking them to upload their vaccine certificates and then the medical
team has to manually verify this information. In the future, we could add a new module
to Quest’s website called Health Care, which would prevent students from taking offline
classes in the next semester if they have not completed their medical clearance.

6.4.1 Comparison of Blockchain-based Medical Platforms

Table 6.1 shows a comparison of Blockchain-based Medical Platforms for MedRec, Medi-
calChain and our design. Our platform uses an optimized PBFT consensus, which requires
less computing power than the PoW-based MedRec platform and avoids wasting energy;
On the other hand, when comparing with MedicalChain, which is also based on PBFT
consensus, our optimization of PBFT gives us a better advantage in system performance
and scalability.

6.4.2 Transaction for a Single Consensus

As we can see in Figure 6.3, compared to the traditional PBFT, our optimized PBFT has
a linear increase in transaction volume as the number of nodes increases, which means that
our PBFT has better performance and scalability.

6.4.3 Performance Comparison

Because there is obstacle in finding the full version of the official implementation of other
BFTs, we can only simply compare the implementation of the original paper PBFT and
Hotstuff, and we found that they simply cannot reach the throughput test with more
than 100 nodes. Then, for further comparison and reference, we refer to some results
in [76]. Based on our actual tests, we find that the original PBFT has a much lower

53

Figure 6.3: Transaction Volume for a Single Consensus

throughput than some other designs with tens of thousands of tx/s. The original PBFT
can reach 1576tx/s in peak throughput in our test environment. Due to the lack of full
concurrency optimization in our implementation, the cascading information transfer will
cause some performance degradation, our experimental data is not as good as expected
but still has a stable performance. Since we convert a significant portion of communication
from broadcast between all nodes to intra-group communication, we introduced appropriate
concurrency optimization in our implementation so that intra-group consensus processes
between different layers can be carried out simultaneously so that upper layer does not
need to wait until it receives the lower layer consensus.

6.4.4 Design of Blockchain-Based Vaccination Clearance Plat-
form

In order to demonstrate the advantages of a blockchain healthcare system, we explored
some real-life application scenarios and we found medical clearance to be a very notable
example in the context of the current coronavirus pandemic. Unlike Europe and Canada
where there are no very strict medical examinations and vaccine requirements for new
students, the US university system mandates that every new student must pass a medical

54

Figure 6.4: Comparison of the Consensus Protocol Performance

clearance to be able to enroll, which includes vaccines for some of the more common
infectious diseases, such as coronavirus COVID-19, Infuenza, Mumps, etc., as well as some
routine tests for tuberculosis.

Typically, students are required to submit proofs of a dozen vaccinations and hospital
examinations one by one prior to enrollment. For some international students, the process
is even more cumbersome, as they may need to return to their home country to have
certificates issued by various vaccination centers and hospitals, and then go to an official
agency to have them translated into English and uploaded into the system for manual
verification. During the verification process, the verification process is slow and sloppy,
and does not effective and accurate as expected because of the variety of sources that issue
the proofs and the lack of compliance. Therefore, medical clearance is time-consuming,
labor-intensive and have potential public safety hazard.

For example, for University of South California (USC), they have a list of immunization
requirements for all students[58]. They have mandatory requirements for incoming students
for Measles, Varicella, COVID-19 Vaccines and etc. According to the school’s official
website for Student Health, there will be a verification team manually checking the medical
records. According to [57], in the 2021-2022 academic year, USC has a total of 49,500
enrolled students, of which 8,884 are recent new students and 23.8% are international
students, where the vaccine proofs provided by the non-US students may be more difficult to
manually check. If we assume that it takes 3 minutes to verify a local student’s information

55

and 5 minutes to verify an international student’s information, if every student needs to
be verified for COVID-19 Vaccine proof during the semester, the total labor cost would be
nearly 2771 hours, just for COVID-19 but not for all vaccines required. If we apply the
blockchain-based medical clearance system, we will save these labor costs and greatly help
the efficiency and accuracy of the verification.

As shown in Figure 6.5, we have designed a blockchain-based vaccination clearance
platform for incoming students with reference to the University of California’s admission
requirements. From our design, the students need to upload the QR code received from
the vaccination station to the platform in order to provide the vaccination proof, where
this proof will automatically be verified with the proof stored on blockchain. This design
will make the operation of vaccination and verification process more efficient and effective,
and has strong security and non-falsifiability.

Figure 6.5: Design of the Vaccination Clearance Platform

As shown in Figure 6.6, when a patient receives a vaccination at a vaccination station,

56

the nurse will enter the patient’s personal information and the vaccination information,
where the vaccination information is connected to the blockchain of the supply chain and
can contain the product name, type, batch, production date, expiration date, etc., so that
if there is a problem with any batch of vaccine in the future, we can investigate and track
the patients who received this batch of vaccine. Finally, it generates a Proof of Vaccination
and automatically uploads the vaccination information to the blockchain.

Figure 6.6: Generation of Patient Vaccination Information

In order to demonstrate the logic of the backend operation, we designed a backend
module with the administrator’s view, and the next interface is actually invisible to the
users (medical institutions and patients). As shown in Figure 6.7, we can search all Medical
Records generated by the specified vaccination station by the address of the station. In the
actual design, we can design it so that only the administrator authority of the vaccination
station can see the medical records of their own vaccination station, and only the higher
authority administrator authority of the government or health care department can search
all medical records of the station by entering the address of different vaccination stations.

We can see that all vaccination records are generated with a hash value to compare and
verify the validity of the vaccination proof with the QR code uploaded by the user on the
platform.

Any institutional access or verification of the vaccine record generates a record that is
permanently retained on the blockchain, a process that cannot be denied or deleted. When

57

Figure 6.7: Back-end Vaccination Information Record (View of Vaccination Station Ad-
ministrator)

58

an organization accesses a vaccine record, it can be set up so that it must first request access
from the producer of the vaccine record (which we have simulated using Metamask). This
ensures the security of the user’s information and enables the traceability of each access
record for medical information. As shown in Figure 6.8, In the backend of the system,
for a particular vaccine record, we can clearly see the hash of the patient information, the
hash of the vaccine information, the generator of the vaccine certificate and all reader and
verifiers of this record. When a user uploads a QR code for a medical proof on medical
clearance’s website, it will be parsed for specific content and matched with information
on the blockchain platform for verification. An example of the QR code and its parsed
context is shown in Figure 6.9 and 6.10. In this example, this patient has 2 records whose
validation can be done simultaneously, rather than one by one. In other words, our system
is completely paitent-centric. In fact, when the user is uploading proof on the medical
clearance website, only one QR Code uploading entry is needed to verify all the medical
examination and vaccination information.

59

Figure 6.8: Vaccine Record System Backend

60

Figure 6.9: QR Code Uploaded by the User of Medical Clearance System

Figure 6.10: Parsed QR Code Context for Medical Record

61

Chapter 7

Conclusion and Future

In this chapter, we provide a conclusion for this thesis and list some directions for improve-
ment of future work.

7.1 Conclusions

In this thesis, we design a medical information management system based on permis-
sioned blockchain and build a platform using vaccination clearance during the coronavirus
COVID-19 pandemic as an example to show the logic of running the front and back end of
the system respectively. In terms of performance, we improved the PBFT protocol of the
original hyperledger fabric, and the improved consensus protocol utilizes the hierarchical
structure of the m-ary tree and incorporates a credit mechanism. In addition, we added a
node authorization mechanism to the protocol for the medical scenario where nodes may
change dynamically, further improving its application in the medical scenario.

Our experiments show that, after the optimization, the system has better scalability and
more stable throughput, and the communication complexity is reduced from O(n2) to O(n).
Although we sacrifice some fault tolerance, the introduction of credit mechanism greatly
reduces the probability of Byzantine nodes appearing on critical roles in real situations,
further reducing their impact on the operational efficiency of the system.

62

7.2 Future Work

Finally, we believe that we can further improve this consensus algorithm in the future, for
example, for the authorization protocol of nodes, we simply achieved the proof of concept,
but did not optimize its performance. In fact, if we use the trusted node as a collector
instead of treat it in parallel with other replicas, this will reduce the decentralization of the
whole protocol, but also greatly reduce the complexity of the node authorization protocol.
In addition, we also hope to optimize the parallel efficiency of implementation in the future,
because the delay of the hierarchical structure is interlocked, and if we can maximize the
parallel efficiency of different layers, there must be room for further improvement of its
performance. Finally, we can continue to improve our blockchain Based Medical Clearance
Platform to provide better user experience and security.

63

References

[1] Irani Acharjamayum, Ripon Patgiri, and Dhruwajita Devi. Blockchain: a tale of
peer to peer security. In 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 609–617. IEEE, 2018.

[2] Mohiuddin Ahmed and Al-Sakib Khan Pathan. Blockchain: Can it be trusted? Com-
puter, 53(4):31–35, 2020.

[3] Mukesh Singhal Ajay Kshemkalyani. Consensus and agreement. Cambridge University
Press, Distributed Computing: Principles, Algorithms, and Systems.

[4] Eralp A Akkoyunlu, Kattamuri Ekanadham, and Richard V Huber. Some constraints
and tradeoffs in the design of network communications. In Proceedings of the fifth
ACM symposium on Operating systems principles, pages 67–74, 1975.

[5] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, et al. Hyperledger fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the thirteenth EuroSys conference, pages 1–15, 2018.

[6] Ark.io. Ark - the simplest way to blockchain. URL: https://ark.io/.

[7] Hagit Attiya and Jennifer L Welch. Sequential consistency versus linearizability. ACM
Transactions on Computer Systems (TOCS), 12(2):91–122, 1994.

[8] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec: Using
blockchain for medical data access and permission management. In 2016 2nd inter-
national conference on open and big data (OBD), pages 25–30. IEEE, 2016.

[9] Kenneth P Birman. Maintaining consistency in distributed systems. In Proceedings
of the 5th workshop on ACM SIGOPS European workshop: Models and paradigms for
distributed systems structuring, pages 1–6, 1992.

64

https://ark.io/

[10] Sebastian Burckhardt. Principles of eventual consistency. 2014.

[11] Vitalik Buterin et al. Ethereum white paper. GitHub repository, 1:22–23, 2013.

[12] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437, 2017.

[13] Christian Cachin and Marko Vukolić. Blockchain consensus protocols in the wild.
arXiv preprint arXiv:1707.01873, 2017.

[14] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

[15] Randall D Cebul, James B Rebitzer, Lowell J Taylor, and Mark E Votruba. Orga-
nizational fragmentation and care quality in the us healthcare system. Journal of
Economic Perspectives, 22(4):93–113, 2008.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. The MIT Press, 2 edition, 2001.

[17] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems: Concepts
and design edition 3. System, 2(11):15.

[18] John R Douceur. The sybil attack. In International workshop on peer-to-peer systems,
pages 251–260. Springer, 2002.

[19] Sisi Duan, Sean Peisert, and Karl N. Levitt. hbft: Speculative byzantine fault toler-
ance with minimum cost. IEEE Transactions on Dependable and Secure Computing,
12(1):58–70, 2015. doi:10.1109/TDSC.2014.2312331.

[20] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
Annual international cryptology conference, pages 139–147. Springer, 1992.

[21] Xinxin Fan, Qi Chai, Zhefeng Li, and Tian Pan. Decentralized iot data authorization
with pebble tracker. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT),
pages 1–2. IEEE, 2020.

[22] Filecoin. A decentralized storage network for humanity’s most important information.
URL: https://filecoin.io/.

[23] Michael J Fischer. The consensus problem in unreliable distributed systems (a brief
survey). In International conference on fundamentals of computation theory, pages
127–140. Springer, 1983.

65

https://doi.org/10.1109/TDSC.2014.2312331
https://filecoin.io/

[24] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[25] Erika Fry Fred Schulte. Death by 1,000 clicks: Where electronic health records went
wrong, Jun 2019. URL: https://khn.org/news/death-by-a-thousand-clicks/.

[26] Adrian Gallagher. Litecoin core v0.18.1 release, Jun 2020. URL: https://blog.

litecoin.org/litecoin-core-v0-18-1-release-233cabc26440.

[27] Felix C Gärtner. Byzantine failures and security: Arbitrary is not (always) random.
INFORMATIK 2003-Mit Sicherheit Informatik, Schwerpunkt” Sicherheit-Schutz und
Zuverlässigkeit”, 2003.

[28] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. Acm Sigact News, 33(2):51–59, 2002.

[29] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft: A
scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN), pages 568–580,
2019. doi:10.1109/DSN.2019.00063.

[30] Donald E.; Patashnik Oren (1994) Graham, Ronald L.; Knuth. Properties of m-ary
trees. In Concrete Mathematics: A Foundation for Computer Science (2nd Edition).,
1994.

[31] Stuart Haber and W Scott Stornetta. How to time-stamp a digital document. In
Conference on the Theory and Application of Cryptography, pages 437–455. Springer,
1990.

[32] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

[33] Tin Kam Ho. Random decision forests. In Proceedings of the 3rd International Con-
ference on Document Analysis and Recognition, Montreal, QC, page 14–16, August
1995.

[34] IBM. What is blockchain technology? URL: https://www.ibm.com/hk-en/topics/
what-is-blockchain.

66

https://khn.org/news/death-by-a-thousand-clicks/.
https://blog.litecoin.org/litecoin-core-v0-18-1-release-233cabc26440
https://blog.litecoin.org/litecoin-core-v0-18-1-release-233cabc26440
https://doi.org/10.1109/DSN.2019.00063
https://www.ibm.com/hk-en/topics/what-is-blockchain
https://www.ibm.com/hk-en/topics/what-is-blockchain

[35] IoTeX. Iotex - building the connected world. URL: https://iotex.io/.

[36] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols. In
Secure information networks, pages 258–272. Springer, 1999.

[37] Karim Keshavjee, John Bosomworth, John Copen, James Lai, Beste Küçükyazici,
Rizwana Lilani, and Anne Marie Holbrook. Best practices in emr implementation: a
systematic review. 2006.

[38] Yoojung Kim, Bongshin Lee, and Eun Kyoung Choe. Investigating data accessibility
of personal health apps. Journal of the American Medical Informatics Association,
26(5):412–419, 2019.

[39] Cleverence Kombe, Mussa Dida, and Anael Sam. A review on healthcare information
systems and consensus protocols in blockchain technology. 2018.

[40] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. Zyzzyva: Speculative byzantine fault tolerance. 27(4), jan 2010. doi:

10.1145/1658357.1658358.

[41] Leslie Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. In Concurrency: the Works of Leslie Lamport, pages 197–201.
2019.

[42] Leslie Lamport. The part-time parliament. In Concurrency: the Works of Leslie
Lamport, pages 277–317. 2019.

[43] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. In
Concurrency: the Works of Leslie Lamport, pages 179–196. 2019.

[44] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[45] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
In Concurrency: the Works of Leslie Lamport, pages 203–226. 2019.

[46] Daniel Larimer. Delegated proof-of-stake (dpos). Bitshare whitepaper, 81:85, 2014.

[47] Tali Leibovich-Raveh, Daniel Jacob Lewis, Saja Al-Rubaiey Kadhim, and Daniel
Ansari. A new method for calculating individual subitizing ranges. Journal of Nu-
merical Cognition, 4(2):429–447, 2018.

67

https://iotex.io/
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358

[48] Jian Liu, Wenting Li, Ghassan O. Karame, and N. Asokan. Scalable byzantine consen-
sus via hardware-assisted secret sharing. IEEE Transactions on Computers, 68(1):139–
151, 2019. doi:10.1109/TC.2018.2860009.

[49] David. Maziereso. Stellar consensus protocol. Open Problems in Network Security,
2016. URL: https://www.stellar.org/papers/stellar-consensus-protocol.

[Accessed:22-Oct-2021].

[50] Medicalchain. Medicalchain homepage. URL: https://medicalchain.com/en/.

[51] MedRec. Medrec homepage. URL: https://medrec.media.mit.edu/technical/.

[52] Matej Mikulic. Pharmaceutical counterfeiting incidents by world region
2020, Sep 2021. URL: https://www.statista.com/statistics/253152/

share-of-worldwide-counterfeiting-incidents-in-by-region/.

[53] JP Morgan. Jp morgan report on healthcare financial challenges.
URL: https://www.jpmorgan.com/commercial-banking/insights/

healthcare-financial-challenges-2019.

[54] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, page 21260, 2008.

[55] Qassim Nasir, Ilham A Qasse, Manar Abu Talib, and Ali Bou Nassif. Performance
analysis of hyperledger fabric platforms. Security and Communication Networks, 2018,
2018.

[56] M Niranjanamurthy, BN Nithya, and S Jagannatha. Analysis of blockchain technology:
pros, cons and swot. Cluster Computing, 22(6):14743–14757, 2019.

[57] University of South California. Facts and figures about usc. URL: https://about.
usc.edu/facts/.

[58] University of South California. Usc student health - immunization requirements. URL:
https://studenthealth.usc.edu/immunizations/.

[59] Unviersity of Waterloo. Quest - student information system, May 2021. URL: https:
//uwaterloo.ca/quest/.

[60] Diego Ongaro and John Ousterhout. In search of an understandable consensus al-
gorithm. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14),
pages 305–319, 2014.

68

https://doi.org/10.1109/TC.2018.2860009
https://www.stellar.org/papers/stellar-consensus-protocol.[Accessed: 22-Oct-2021]
https://www.stellar.org/papers/stellar-consensus-protocol.[Accessed: 22-Oct-2021]
https://medicalchain.com/en/
https://medrec.media.mit.edu/technical/
https://www.statista.com/statistics/253152/share-of-worldwide-counterfeiting-incidents-in-by-region/
https://www.statista.com/statistics/253152/share-of-worldwide-counterfeiting-incidents-in-by-region/
https://www.jpmorgan.com/commercial-banking/insights/healthcare-financial-challenges-2019
https://www.jpmorgan.com/commercial-banking/insights/healthcare-financial-challenges-2019
https://about.usc.edu/facts/
https://about.usc.edu/facts/
https://studenthealth.usc.edu/immunizations/
https://uwaterloo.ca/quest/
https://uwaterloo.ca/quest/

[61] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[62] Rachel Pryor, Connie Atkinson, Kaila Cooper, Michelle Doll, Emily Godbout,
Michael P Stevens, and Gonzalo Bearman. The electronic medical record and covid-19:
Is it up to the challenge? American journal of infection control, 48(8):966, 2020.

[63] Mayank Raikwar, Danilo Gligoroski, and Goran Velinov. Trends in development of
databases and blockchain. In 2020 Seventh International Conference on Software
Defined Systems (SDS), pages 177–182. IEEE, 2020.

[64] Lakshmi Siva Sankar, M Sindhu, and M Sethumadhavan. Survey of consensus pro-
tocols on blockchain applications. In 2017 4th International Conference on Advanced
Computing and Communication Systems (ICACCS), pages 1–5. IEEE, 2017.

[65] Fabian Schuh and Daniel Larimer. Bitshares 2.0: general overview. accessed June-
2017.[Online]. Available: http://docs. bitshares. org/downloads/bitshares-general. pdf,
2017.

[66] Ali Shoker, Jean-Paul Bahsoun, and Maysam Yabandeh. Improving independence of
failures in bft. pages 227–234, 2013. doi:10.1109/NCA.2013.22.

[67] Marina Sokolova, Khaled El Emam, Sean Rose, Sadrul Chowdhury, Emilio Neri, Eliz-
abeth Jonker, and Liam Peyton. Personal health information leak prevention in het-
erogeneous texts. pages 58–69, 2009.

[68] AK Soman. Cloud-based solutions for healthcare IT. CRC Press, 2011.

[69] Paul C Tang, Joan S Ash, David W Bates, J Marc Overhage, and Daniel Z Sands.
Personal health records: definitions, benefits, and strategies for overcoming barriers to
adoption. Journal of the American Medical Informatics Association, 13(2):121–126,
2006.

[70] Maarten Van Steen and A Tanenbaum. Distributed systems principles and paradigms.
Network, 2:28, 2002.

[71] Vishesh Ved, Vivek Tyagi, Ankur Agarwal, and Abhijit S Pandya. Personal health
record system and integration techniques with various electronic medical record sys-
tems. pages 91–94. IEEE, 2011.

[72] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft repli-
cation. pages 112–125, Cham, 2016. Springer International Publishing.

69

https://doi.org/10.1109/NCA.2013.22

[73] Abdul Wahab and Waqas Mehmood. Survey of consensus protocols. arXiv preprint
arXiv:1810.03357, 2018.

[74] Lauren Wilcox, Dan Morris, Desney Tan, and Justin Gatewood. Designing patient-
centric information displays for hospitals. In proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 2123–2132, 2010.

[75] Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. A survey of distributed
consensus protocols for blockchain networks. IEEE Communications Surveys & Tu-
torials, 22(2):1432–1465, 2020.

[76] Chen Yang, Mingzhe Liu, Kun Wang, Feixiang Zhao, and Xin Jiang. Review on
variant consensus algorithms based on pbft. pages 37–45, Singapore, 2020. Springer
Singapore.

[77] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham.
Hotstuff: Bft consensus in the lens of blockchain, 2019. arXiv:1803.05069.

[78] Ian Young. Dogecoin: A brief overview & survey. Available at SSRN 3306060, 2018.

[79] Guy Zyskind, Oz Nathan, and Alex ’Sandy’ Pentland. Decentralizing privacy: Using
blockchain to protect personal data. In 2015 IEEE Security and Privacy Workshops,
pages 180–184, 2015. doi:10.1109/SPW.2015.27.

70

http://arxiv.org/abs/1803.05069
https://doi.org/10.1109/SPW.2015.27

	List of Tables
	List of Figures
	Introduction
	Background and Related Works
	Blockchain
	Blockchain Structure
	Types of Blockchain
	Healthcare with Hyperledger Fabric Blockchain

	Core Technologies in Distributed Systems
	Consistency Problem
	Consensus Protocol
	FLP Impossibility Principle
	CAP
	Consensus Algorithms

	Review of Related Works
	Medical Blockchain Projects
	Other BFT-Based Consensus Models

	Blockchain Healthcare Model
	System Model
	System Architecture Design
	Data Structure Design
	System Flow Design

	Analysis for the Original PBFT
	Background Knowledge
	Practical Byzantine Fault Tolerance
	The Two Generals Problem
	The Byzantine Problem
	Preliminary Ideas
	Types of Byzantine Failures

	PBFT Protocols
	Consistency Protocol
	View-Change Protocol
	Checkpoint Protocol

	Advantages of PBFT
	Bottleneck of PBFT Performance

	Potential Optimizations for PBFT
	Optimization by Role Grouping
	m-ary Tree Structure Optimization
	Consensus Protocol under m-ary Tree Structure

	Node Rating Mechanism
	View Switching Protocol

	Improving the Scalability and Dynamic Registration of Nodes
	Random Forest for m-ary PBFT
	Dynamic Join Protocol

	Performance and Discussion
	Proof of Safety Property
	Proof of Liveness Property
	Fault Tolerance
	Implementations and Performance
	Comparison of Blockchain-based Medical Platforms
	Transaction for a Single Consensus
	Performance Comparison
	Design of Blockchain-Based Vaccination Clearance Platform

	Conclusion and Future
	Conclusions
	Future Work

	References

