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The pie sharing problem: Unbiased sampling of N+1 summative weights☆ 
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A B S T R A C T   

A simple algorithm is provided for randomly sampling a set of N+1 weights such that their sum is constrained to 
be equal to one, analogous to randomly subdividing a pie into N+1 slices where the probability distribution of 
slice volumes are identically distributed. The cumulative density and probability density functions of the random 
weights are provided. The algorithmic implementation for the random number sampling are made available. This 
algorithm has potential applications in calibration, uncertainty analysis, and sensitivity analysis of environ
mental models. Three example applications are provided to demonstrate the efficiency and superiority of the 
proposed method compared to alternative sampling methods.   

1. Introduction 

There are many scenarios in optimization, sensitivity analysis, and 
uncertainty analysis of environmental models where it is desirable to 
randomly sample N + 1 quantities wi such that the sum of quantities is 
constrained to be equal to a constant, here set to 1 for simplicity: 
∑N+1

i=1
wi = 1 . (1) 

This problem is equivalent to the problem of sampling N randomly 
sized slices of apple pie; one slice for each of your friends while the 
remaining last slice (N + 1) is for yourself. We assume that you do not 
favour any of your friends (i.e., sampling distribution of all slices is 
identical), the order you hand out the slices does not matter (the samples 
are independent) and you will eat all leftovers yourself (all slices sum up 
to one). 

Examples from environmental modelling include applications where 
one wants to randomly partition unity into classes where class mem
bership is assumed to have equal likelihood. For instance, one may wish 
to randomly sample the soil texture triangle which characterizes soils by 
percent silt, sand, or clay (Pozdniakov et al., 2019). In ecological 
modelling, one may wish to randomly generate distributions of biomass 
compositions by percent lipids, carbohydrates, and proteins. Summative 
weights are used in environmental modeling when various alternative 
options are blended/mixed. These options could be, for example, several 
precipitation station datasets surrounding a domain of interest. Instead 
of forcing the model with individual station datasets, one could use the 

weighted average of the datasets (Piotrowski et al., 2019; Montanari and 
Di Baldassarre, 2013). Weights also need to be sampled in multi-model 
averaging approaches such as in Arsenault et al. (2015) or to weight 
multiple performance criteria in decision making applications (Ganji 
et al., 2016; Hyde and Maier, 2006; Hyde et al., 2004). Another example 
are so-called blended models where the model is defined as the weighted 
average of multiple models (Mai et al., 2020). To conserve mass or 
otherwise respect constraints in these examples, the weights are 
required to sum up to 1. Many optimization algorithms similarly depend 
upon uniform sampling of parameter space – when model parameters 
are constrained as expressed in equation (1), it is useful to have the 
ability to sample independently and identically while respecting con
straints upon parameters. 

While it is straightforward to sample weights for N = 1 by sampling 
from a uniform distribution and then determining w2 as 1 − w1, this 
simple approach is not easily extendable to N greater than 1. Two naïve 
approaches are, for example, (a) to sample random numbers iteratively 
by reducing the sampling range in each step such that the overall sum 
can not be exceeded (see Section 4 for algorithmic details), or (b) 
drawing N samples from the uniform distribution and then either discard 
the entire sample in case the sum is already exceeding 1 otherwise 
keeping the sample and assigning the remainder to 1 to the (N + 1)th 

weight. These approaches, however, can introduce a bias in the expected 
values of weights when using approach (a), i.e., w = {0.25, 0.25, 0.25, 
0.25} is more likely to be generated than w = {0, 0, 0, 1} for N = 3. This 
bias is due to the fact that a large last weight (here w4) requires all 
previous weights to be small while a large first weight does not have that 
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restriction. Naïve approach (b), on the other hand, does not draw biased 
samples but is significantly more computationally expensive than 
approach (a) or other methods. These limitations will be demonstrated 
in detail later in this work (see Section 5 and Figs. 5, 6, and 7 therein). 

This challenge of sampling unbiased weights has been addressed in 
the computational task scheduling literature (Bini and Buttazzo, 2005) 
and the statistics literature (Moeini et al., 2011). The first algorithmic 
implementation to this problem we could locate is the UUnifast sam
pling algorithm first proposed by Bini and Buttazzo (2005). Another 
subsequent solution is found by Moeini et al. (2011) who do not cite Bini 
and Buttazzo (2005) and is thus presumably independent of Bini and 
Buttazzo (2005). A key difference between these solutions is that Bini 
and Buttazzo (2005) provides a readily available sampling algorithm 
(UUnifast) while Moeini et al. (2011) only describes the mathematical 
underpinning of an approach for sampling N random numbers from the 
uniform distribution, 𝒰[0,1], and transforming them into N + 1 weights. 
As reported in Griffin et al. (2020), an alternate method for sampling 
from a uniform distribution is available within an open-source Matlab 
code (Stafford, 2006) but no derivation accompanies the tool. The 
methodology used is unpublished and not readily transferable to ap
plications outside Matlab; the CDFs, PDFs, and inverse CDFs of the 
resultant weight distributions are not reported. Griffin et al. (2020) 
proposed a new and more general sampling algorithm, called the 
Dirichlet-Rescale algorithm (DRS), that replaces the UUnifast algorithm 
(Bini and Buttazzo, 2005) and can sample a vector of N + 1 outputs that 
sum to U (not just 1), with each individual output value in the range of 
potentially different upper and lower bounds. The mathematical pre
sentation in these publications is quite advanced and as noted by Bini 
and Buttazzo (2005), there are some hidden pitfalls with the imple
mentation of such a sampling algorithm. These pitfalls include the 
biased sampling of the weights (some weight combinations are more 
likely to appear than others) and the poor computational efficiency of 
some implementations (Bini and Buttazzo, 2005). None of the afore
mentioned methods has been published in an environmental modelling 
related journal which has apparently hampered their practical applica
tion in this field: for example, none of the 867 publications that cite Bini 
and Buttazzo (2005) (status: June 2021) described applications in the 
environmental sciences. 

The earlier mentioned examples of environmental modelling publi
cations that require the sampling of weights (Pozdniakov et al., 2019; 
Piotrowski et al., 2019; Montanari and Di Baldassarre, 2013; Arsenault 
et al., 2015; Ganji et al., 2016; Hyde and Maier, 2006; Hyde et al., 2004) 
do not describe their sampling method explicitly and do not cite the 
methods introduced by Bini and Buttazzo (2005), Moeini et al. (2011), 
Stafford (2006), or Griffin et al. (2020). As such, some of these previous 
studies might not sample correctly. 

The work presented here provides an alternate (independently 

obtained) mathematical derivation of the approach of Bini and Buttazzo 
(2005) and Moeini et al. (2011). It presents the full derivation of PDFs 
and CDFs and outlines a straightforward and replicable algorithm for 
determining unbiased weights which satisfy equation (1). The method 
has recently been used by Mai et al. (2020) to enable the estimation of 
model structural sensitivities through the weighting of discrete model 
process options continuously for simulating process-level hydrologic 
fluxes. The method also found its application in Chlumsky et al. (2021) 
to allow for a simultaneous calibration of model parameters and model 
structure where the weights are used to define the latter. 

This work aims to bring the proper sampling of weights to the 
attention of environmental modellers by providing not only the math
ematical underpinning (Section 2), the resulting explicit method to 
sample the weights (Section 3) and algorithmic validity checks of the 
proposed sampling method (Section 4) but also by presenting a few 
example applications requiring the sampling of weights (Section 5). The 
algorithms for the weight sampling are provided on GitHub in multiple 
programming languages such that they can easily be used or translated 
into other programming languages. 

2. Methodology 

For the case of two weights summing to one, we can consider the 
constrained sampling problem as trying to uniformly sample a position 
along the one-dimensional line from x = 0 to 1, where the distance to the 
left vertex (x = 0) is given by w1 and the distance to the right vertex (x =
1) is given by w2, as depicted in Fig. 1A. From simple geometry (or 
equation (1)), w2 = 1 − w1, by definition. Because we want to uniformly 
sample the domain, the probability of being at any one position x along 
the line is equal, i.e., f(x) = 1 and, since w1 is interpreted as the distance 
from x = 0, w1 is equal to x, and therefore f(w1) is a uniform distribution 
over the interval from 0 to 1. Note that the same holds for w2 as w2 = 1 −
x = 1 − w1, meaning f(w2) is also a uniform distribution. 

For N greater than 1, the same general approach is valid– we can 
consider the sampling problem as equivalent to uniformly sampling a 
single position (w1, w2, …, wN+1) from a regular N-simplex, which is a N- 
dimensional symmetric geometric shape with N edges connecting N 
nodes. The simplex we use here is defined as the hypervolume defined 
by all points (w1, w2, …, wN+1) where wi is greater than zero for all i such 
that the sum of the coordinates is less than or equal to 1. For N = 1, the 
simplex is the line from above; for N = 2, the simplex is the right triangle 
of Fig. 1B; for N = 3, the simplex is a tetrahedron, and so on. We wish to 
uniformly sample points from the hypervolume of each simplex. This is 
the reasoning for the scaling of the simplex: a vertex corresponds to the 
case where one weight is equal to one, and all others are zero. 

The uniform sampling strategy may be visualized readily for N = 2, 
as shown in Fig. 1B– uniform sampling corresponds to even point density 

Fig. 1. (A) Sampling weights along a line of length 1. (B) Sampling positions within a triangle with unit length sides, with the sweeping area from x = 0 in gray. (C) 
The sweeping volume from x = 0 in a tetrahedron with unit length sides. Note that the visual depiction of the weights wi and the location of the sweeping areas are 
independent. 
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of randomly selected points within this triangle, without position bias. It 
is worthwhile to note, that for N = 2, each position can be uniquely 
identified using a single 2D coordinate (w1, w2), i.e., there are only two 
degrees of freedom and the final weight may always be defined by 
knowing the other coordinates, e.g., w3 = 1 − w1 − w2; this holds true in 
higher dimensions as well. 

With reference to Fig. 1B, we here note that we can determine a 
uniform sampling strategy by recognizing that the cumulative distri
bution function of each weight should be equal to the relative area swept 
from the edge i to a distance of wi from the edge of the triangle, 
regardless which edge it sweeps from, i.e., 

F2(wi) =
1
V2

∫ wi

0
(1)⋅(1 − x) dx = 1 − (1 − wi)

2 (2)  

where F2 is the cumulative distribution function and VN = 1/N! is the 
hyper-dimensional volume of an N-simplex with unit-length edges, 
which in this case is the area of the triangle. Here, L(x) = (1) ⋅ (1 − x) is 
the length of the sweeping edge expressed as a function of x, where the 1 
is used to indicate the length of the edge at x = 0. The probability dis
tribution function of wi is given by the derivative of F2(wi), 

f2(wi) =
dF2

dwi
= 2⋅(1 − wi) . (3) 

This can be repeated for higher dimensions. For example, for N = 3, 

F3(wi) =
1
V3

∫ wi

0
A(x) dx (4)  

where A(x) = A(0) ⋅ (1 − x)2 is the area of the sweeping face at a distance 
x from side i, which is a triangle with side lengths that scale with 1 − x 
and a maximum area A(0), the area of the surface corresponding to x =
0. Note that this area is equivalent to the hypervolume V2 (note also that 
the edge L(0) was the same as V1), giving 

F3(wi) =
V2

V3

∫ wi

0
(1 − x)2 dx = 1 − (1 − wi)

3
. (5) 

Differentiating with respect to wi provides the probability density 
function for wi: 

f3(wi) =
dF3

dwi
= 3⋅(1 − wi)

2 (6) 

Note that the sweeping face was a line of length proportional to 1 − x 
in 2D, the area of an equilateral triangle, A3(x), with side length 

proportional to 1 − x in 3D, and will be the volume of a pyramid with 
side length decreasing as 1 − x in 4D, i.e., A4(x) = A4(0) ⋅ (1 − x)3. This 
generalizes to higher dimensions as AN(x)/AN(0) = (1 − x)N− 1, leading 
to the following integral: 

FN(wi) =
VN− 1

VN

∫ wi

0

AN(x)
AN(0)

dx = N
∫ wi

0
(1 − x)N− 1 dx . (7) 

This, in turn, leads to a general expression for both the CDF and PDF 
of the weights: 

FN(wi) = 1 − (1 − wi)
N (8)  

fN(wi) = N⋅(1 − wi)
N− 1

. (9) 

Note that these distributions more heavily lean towards smaller 
values of wi as N increases, which has a clear interpretation. For 
instance, it should be expected that the mean weight of all sampled 
weights for N + 1 = 3 is 1/3 and the mean for N + 1 = 7 should be 1/7, i. 
e., a uniform weighting. This can be shown to be true for any N, i.e., 

w̄ =
∫ 1

0
w⋅fN(w) dw = N

∫ 1

0
w(1 − w)N− 1 dw =

1
N + 1

. (10)  

3. Sampling 

Of course, these distribution functions cannot be sampled 
independently– once w1 is sampled. For instance, the other weights, w2, 
w3, etc., are constrained to a single plane slicing through the N simplex. 
The appropriate strategy for such conditional sampling recognizes that, 
once the first weight is sampled, the determination of the N − 1 
remaining weights may be done by sampling from the distribution 
fN− 1(w), then scaling the weights by 1 − w1, analogous to sampling the 
remainder of the pie into N-1 slices. This can be repeated from N down to 
1. We can define, from equation (8) above, the following sampling 
function (or inverse CDF), enabling us to generate a random number 
sampled from the distribution fN(w) given a random number r sampled 
from a uniform distribution in the range from 0 to 1: 

SN(r) = 1 − (1 − r)
1
N (11) 

Our sampling strategy then can be summarized as follows. For each 
set of weights needed, first generate a vector of random numbers (r1, r2, 
…, rN) from a uniform distribution between 0 and 1. The corresponding 
vector of weights (w1, w2, …, wN+1) can then be calculated using: 

Fig. 2. First row (A–C) shows N + 1 = 3 and second row (D–H) shows N + 1 = 5 sampled weights (discrete histogram) atop of their according continuous PDF fN(wi) 
(Eq. (9)). The number of samples drawn is M = 10 000 in both cases. 
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w1 = SN(r1)

w2 = (1 − w1)SN− 1(r2)

w3 = (1 − w1 − w2)SN− 2(r3)

⋮

wj =

(

1 −
∑j− 1

i=1
wi

)

SN− j− 1
(
rj
)

⋮

wN+1 =

(

1 −
∑N

i=1
wi

)

.

(12)  

4. Demonstration of validity of proposed sampling method 

A first sampling experiment is performed using M = 10 000 inde
pendent samples of weights drawn (Fig. 2). The sampling is tested using 
N + 1 = 3 and N + 1 = 5 following the sampling strategy in equation 
(12). Fig. 2 demonstrates that the histograms of the sampled weights are 
all identical and matching the analytical PDF f2(wi) and f4(wi) depending 
if 3 or 5 weights are sampled. 

A second numerical exercise is used to confirm that the approxi
mated and analytical PDF also match when the Nrepl = 100 independent 

Fig. 3. The mean absolute error (MAE) of the sampled distribution of the weights wi are shown for N + 1 = 3 (A–C) and N + 1 = 5 (D–H) weights drawing different 
numbers of samples M. The boxplots are derived by performing Nrepl = 100 independent sampling experiments where each time M samples of N + 1 weights have 
been drawn and compared to the analytical PDF fN(wi) (Eq. (9)). 

Fig. 4. (A–D) show the results of the pro
posed sampling for N + 1 = 3 weights wi 
following the sampling algorithm of equation 
(12). Panel (D) depicts the uniform distri
bution of the three weights using a ternary 
plot. (E–G) shows the comparative results 
when a naïve sampling is performed by 
sampling the first weight w1 uniformly in the 
unit interval, the second weight w2 is deter
mined by scaling a second uniform random 
number within the remaining range 1 − w1 
and the third weight is the remainder 1 − w1 
− w2. The ternary plot (H) shows the biased 
distribution of the three weights following 
this naïve approach. The blue lines in panels 
(E–G) are added as a reference to demon
strate the bias in the sampling of the weights. 
The number of samples drawn is M = 10 000 
in both cases. (For interpretation of the ref
erences to colour in this figure legend, the 
reader is referred to the Web version of this 
article.)   

Fig. 5. Two methods to sample N + 1 = 3 weights 
are visualized in a ternary plot: (A) the proposed 
method and (B) the Accept-Reject sampling where a 
samples are drawn within a unit hypercube (here: a 
unit square) and non-feasible points (gray) are 
withdrawn. (C) Shows that fraction of feasible 
points. The analytically-derived efficiency of the 
Accept-Reject sampling is 1/N! The proposed sam
pling is drawing only feasible points (blue line), and 
hence is constantly 1. (For interpretation of the 
references to colour in this figure legend, the reader 
is referred to the Web version of this article.)   
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samplings are performed while increasing the number of samples M 
from 100 to 50 000 (Fig. 3). The results show that the mean absolute 
error between the continuous analytical PDF (Eq. (9)) and the approx
imated PDF are converging to zero with an increasing number of sam
ples drawn. M = 10 000 proves to be a sufficient number of samples to 
yield a mean absolute error (MAE) of below 0.06 for all 100 repetitions 
of the sampling experiment. The uncertainty of the error can be 
approximated through the width of the boxplots and is decreasing to 
zero with an increasing number of samples. The fact that there are no 
differences between the error statistics of the weights wi (compare 
Fig. 3A–C and D-H) shows that the weights are (i) independent and (ii) 
all weights are converging to the same analytical PDF. (i) is proven by 
the fact that all weights show the same pattern of convergence while (ii) 
is demonstrated through the convergence to zero for large sample sizes. 

As a counter example, Fig. 4 compares the proposed sampling 
strategy (A-C) with a naïve sampling (E-G) where the first weight wi is 
uniformly sampled from the unit interval (w1 ∼ 𝒰[0, 1]), the second 
weight is uniformly sampled from the remaining range (w2 ∼ 𝒰[0, 1 −

w1]) while the third weight w3 is set to be the remainder such that the 
three weights sum up to 1.0 (w3 = 1 − w1 − w2). The results show that 
the naïvely sampled weights do not follow the same distribution. The 
sampling strategy favors large weights for w1 and small weights for w2 
and w3 which leads to a non-uniform sampling of the parameter space. 
This is depicted in Fig. 4D and H showing the ternary plot of three 
sampled weights for the proposed method and the naïve method, 
respectively. It clearly demonstrates that the proposed method samples 
the domain uniform while the naïve approach preferentially samples 
large weights for w1 and low weights for w2 and w3 (lower right corner of 
triangle). The proposed method hence is clearly beneficial when, for 
example, random samples of the soil texture are drawn by interpreting 
the weight as the fraction of sand (w1), silt (w2) and clay (w3). The naïve 
approach samples more sandy soils while only a rare amount of clay and 
silty soils. The proposed method prevents this. 

5. Examples of application of proposed sampling method 

The following three sections are to demonstrate examples where the 
sampling of summative weights is required in real-world environmental 
modelling applications. These examples are to demonstrate that the 
proposed sampling is addressing the limitations/pitfalls stated in the 
introduction. The proposed method is more efficient compared to a 
state-of-the-practice exclusion-based method (Sec. 5.1), is superior to 
simple biased sampling approaches (Sec. 5.2), and can be used to avoid 
sampling artefacts when optimal weights are obtained through auto
matic calibration (Sec. 5.3). 

5.1. Example 1: Efficiency of proposed sampling 

A state-of-the-practice method to draw samples of any distribution is 
the so called accept-reject sampling which samples points within a unit 
hypercube and rejects samples that do not follow this distribution 
(Robert and Casella, 2005). In terms of the sampling of summative 
weights problem this translates into sampling points within a square (N 
+ 1 = 3) or cube (N + 1 = 4) and withdraw samples that are outside a 
triangle or tetrahedron, respectively. 

Even though this method guarantees that the samples are distributed 
uniformly within the desired simplex (triangle, tetrahedron), the 
amount of samples withdrawn increases drastically with increasing di
mensions. In case of summative weights, the volume of the unit hyper
cubes is 1 and the volume of the desired N-simplex is 1/N! when N + 1 
weights are to be sampled (Eq. (2)). This results in only 1/N! of the 
samples drawn within a hypercube being accepted. 

Fig. 5A shows that all samples drawn with the proposed method are 
feasible and uniformly distributed within a ternary plot while Fig. 5B 
shows that 50% of the samples drawn with the Accept-Reject method are 
invalid when N + 1 = 3 weights are sampled. Fig. 5C shows the non- 
linear decrease of efficiency (here valid vs. invalid samples). In case N 
+ 1 = 10 weights need to be sampled only 1/9! × 100% = 0.00028% of 
the samples drawn are valid. In other words, only around 3 out of 
1 000 000 samples are valid. On the contrary, the efficiency of the 
proposed sampling is 100% independent of the number of weights since 
the method is constructed to generate samples filling the N-simplex 
uniformly without rejection. 

5.2. Example 2: Sampling of porosity of soil classes 

A real-world example of summative weights is to sample soil tex
tures, i.e., sample the sand, silt and clay content of a mineral soil, as for 
example done by Pozdniakov et al. (2019). These three contents need to 
sum up to 1. The soil textures are used to define soil classes. Sampled soil 
textures are often visualized using the soil triangle, which is a ternary 
plot as shown in Fig. 6A–C and E-G. For demonstration purposes, the 
exemplary soil class “sandy clay” from the USDA soil triangle, which is 
of a triangular shape itself, will be sampled from. The soil class “sandy 
clay” contains soils with sand contents between 45 and 65%, clay con
tents between 35 and 55% and silt contents up to 20%. Soil textures are 
often used in hydrologic models and land surface schemes to derive soil 
properties such as porosity ΘS in [%] using pedo-transfer functions. For 
instance, Cosby et al. (1984) obtained the following pedo-transfer 
function for porosity: 

Fig. 6. Sampling of the USDA soil class “sandy clay” using (A–D) the proposed sampling and (E–H) the naïve approach. The first three plots in each row show the 
same samples; only the assignment of sand, clay and silt content are assigned to different axes. The forth panel in both rows shows the distribution of the derived 
porosity ΘS based on the sampled soil textures using the functional relationship by Cosby et al. (1984). Three distributions are shown corresponding to the samples of 
the first three panels in each row. 
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ΘS = − 0.126⋅csand + 48.9 (13)  

where csand represents the percentage of sand in a given soil. 
Fig. 6 shows random samples drawn from the soil class “sandy clay” 

using the proposed (A-C) and the naïve sampling approach (E-F). The 
difference between the three panels for each approach is solely the 
“labeling” of the three axis, i.e. the random assignment of which weight 
corresponds to which soil component. It is expected that this assignment 
should not matter, which is clearly the case for the proposed sampling 
method (Fig. 6D). However, in the naïve sampling approach, the cor
responding distribution of calculated porosity depends on which weight 
is assigned to sand, and therefore the leads to a calculated porosity 
distribution which is (problematically) sensitive to the order of sampling 
(as shown in Figure 4H). 

5.3. Example 3: Calibration of blended model options 

So-called blended models are defined as the weighted average of 
multiple models or model components (Mai et al., 2020). To conserve 
mass or otherwise respect physical constraints, the weights are required 
to sum up to 1. 

We here use a manufactured example blended model f defined as the 
weighted average of three components: 

f ( x→, p→, w→) = w1⋅sin(p0 x→) + w2⋅sin(p1 x→) + w3⋅(p2 + exp(p3 x→)) (14)  

where w→ denotes the weights of the three components, p→ are model 
component specific parameters, and x→ is an independent variable such 
as time or space. This model has been contrived to keep the discussion of 
results straightforward, however these results extend to much more 
complicated environmental models with summative constraints on their 
calibrated parameters. 

A real-world problem may now be to find the optimal model pa
rameters p→ and weights w→ to fit a set of observations (Chlumsky et al., 
2021). Model parameters would be drawn, for example, from a uniform 
distribution given an upper and lower (physical) limit of the model 
parameters. The weights need to be sampled such that they sum up to 1 
and the sampling distribution should be identical so as to not favour one 
model component over another one. 

Fig. 7A shows the results of such a calibration in case a naïve sam
pling is used to find the optimal weights (and parameters) while Fig. 7B 
shows the same experiment but using the proposed sampling for the 
weights. One vector of synthetic “observations” at 5000 points, f ′

( x→), 
was derived using a fixed set of parameters and weights for all experi
ments and trials. The optimum of the objective function is hence known 
to be 0 in this synthetic experiment. In total 50 independent trials have 
been performed for each of the two experiments. The fixed computa
tional budget Dynamically Dimensioned Search (DDS) (Tolson and 
Shoemaker, 2007) algorithm was used for automatic calibration. A 
budget of 100 function evaluations was used in each trial. 

The distribution of the best objective function value based on the 50 
trials (Fig. 7C) demonstrates that the proposed sampling is more likely to 
find better objective function values after 100 iterations. The sampling 

approach described here will be similarly useful for other optimization 
algorithms based upon stochastic search, such as simulated annealing 
(Kirkpatrick et al., 1983) or shuffled complex evolution (SCE) (Duan 
et al., 1992) algorithms, but not for deterministic gradient-based opti
mization methods as they are not based on random sampling. 

6. Conclusions 

A simple and effective strategy for sampling N + 1 summative 
weights from identical distributions is derived and demonstrated to 
ensure appropriate methods are known to environmental modellers. The 
method is shown to be effective and perfectly unbiased for multiple 
values of N. Three example applications demonstrate the computational 
efficiency and superiority of this method compared to other sampling 
approaches. The approach may be used any time where uniform random 
sampling of variables with a summation constraint is needed; such 
problems are found in a wide variety of calibration, uncertainty analysis, 
and sensitivity analysis exercises. Python and R implementations of the 
sampling algorithm of equation (12) are freely available on GitHub 
under https://github.com/julemai/PieShareDistribution Mai et al. 
(2020). 

We recommend readers that require their weights to sum up to 
values other than 1 or requiring additional lower and upper bounds for 
the weights, to look into the sampling method introduced by Griffin 
et al. (2020) as it addresses these additional constraints. Besides these 
limitations, i.e., fixed upper/lower bounds and the sum being 1, the 
authors are not aware of any other limitation or challenge associated 
with the use of the sampling method proposed. 
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