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University Professor,
Department of Electrical and Computing Engineering
University of Waterloo

Supervisor: Kankar Bhattacharya
Professor,
Department of Electrical and Computing Engineering
University of Waterloo

Internal Member: Mehrdad Kazerani
Professor,
Department of Electrical and Computing Engineering
University of Waterloo

Internal Member: Sahar Pirooz Azad
Assistant Professor,
Department of Electrical and Computing Engineering
University of Waterloo

Internal-External Member: Mehrdad Pirnia
Lecturer,
Department of Management Sciences
University of Waterloo

External Examiner: João A. Peças Lopes
Full Professor,
Department of Electrical and Computer Engineering
Porto University, Portugal

ii



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

High penetration of Renewable Energy Sources (RES) such as solar and wind in power
systems reduce carbon emissions and decentralize the energy generation. However, the
intermittency of these sources introduces new challenges, since solar power is only avail-
able during sunlight hours and wind power is difficult to forecast and may present a high
variability. Thus, since RES generation is not dispatchable, a power system with large
RES penetration may not meet the demand at peak hours and experience voltage flickers
and frequency fluctuations. To tackle these challenges, various Energy Storage Systems
(ESS) technologies have been developed and deployed at different scales throughout the
grid, providing either energy arbitrage or frequency regulation services to the power sys-
tem. For the former, there are two mature large-scale ESS: pumped hydro storage and
Compressed Air Energy Storage (CAES), with the latter being less restrictive in terms of
location. Despite being a mature technology, there are only two large-scale CAES facilities
worldwide. However, with the challenges modern power systems face nowadays, the bulk
capacity, fast response, and efficiency of CAES facilities makes them an attractive ESS
alternative.

Electricity prices vary throughout the day depending on the system demand. At low de-
mand, low-cost generators operate, resulting in cheaper electricity; at peak demand, more
expensive units operate, hence increasing electricity prices. These electricity price varia-
tions opens opportunities for profitable businesses. In this context, an ESS facility owned
by a private investor, depending on its capacity compared to the overall system, may par-
ticipate as a price-taker or as a price-maker in electricity markets. Due to its bulk capacity,
CAES can provide energy arbitrage to the grid and participate in the energy and reserve
markets. Also, CAES newer designs decouple the charging and discharging processes using
two synchronous machines, providing enhanced frequency regulation services.

Since a CAES facility presents physical limitations, its optimum daily schedule must be
determined a priori. Given the day-ahead electricity price forecast, an optimum schedule
can be determined through self-scheduling models, where the daily profit of the facility
is maximized, which requires that the facility be properly modeled. Furthermore, with
the high penetration of RES new and large sources of uncertainty have been introduced,
particularly in generation and real-time market prices. Therefore, these uncertainties must
be properly considered in CAES modeling and operation.

In this thesis self-scheduling models for a price-taker CAES facility, that partakes in
energy and reserve markets under electricity price uncertainties, are proposed. Using an
existing non-linear model for a CAES facility, Robust Optimization (RO) is employed to
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represent price uncertainties, yielding an optimum schedule that protects against the worst-
case scenario for a given level of conservatism. The model is benchmarked with Monte Carlo
Simulations (MCS), presenting a lower computational burden while computing scenarios
that the MCS fails to obtain. Thereafter, a novel linear thermodynamic model for the
CAES is proposed, using mathematical tools for linearization such as McCormick Envelopes
and linear-piecewise approximation, which compared with an existing non-linear model, it
yields similar results at significantly lower computational costs. The novel model is further
expanded considering uncertainties in electricity prices using RO and Affine Arithmetic
(AA) approaches. The AA method keeps track of correlated uncertainties, yielding an
optimum range of schedule with adjustable power dispatch for given real-time mismatches
in price forecasts. Both methods are compared and benchmarked with the MCS approach,
presenting significantly lower computational costs, with profit intervals obtained from AA
being more conservative than MCS and RO, i.e., the former method envelops the intervals
obtained from the latter techniques. The CAES profit and schedules for different levels of
initial and final State of Charge (SOC) of the facility are then assessed in order to estimate
an ideal SOC level where the facility may maximize its participation and profit.

Finally, a Principal Components Analysis (PCA)-Affine Policy (AP)-based self schedul-
ing model for the CAES facility is proposed. PCA is a knowledge extraction based mathe-
matical tool to reduce the dimension of a mathematical model by removing the less relevant
variables, which may decrease the accuracy of the model. The method of AP, similar to
AA, keeps track of correlated uncertainties and provides an optimum range of schedule
with adjustable power dispatch for real-time mismatches in price forecast. The PCA-AP
model is compared with AA and MCS, which is computational more expensive compared
with AA, provides a tighter interval of profit, hence ensuring a safer margin of operation
in pessimistic scenarios. Compared with the MCS, similar results were obtained at a lower
computational cost. The operation of a CAES facility charging and discharging concur-
rently is then examined, which offers the facility with a larger set of combinations for its
operational states, and hence greater profit, but at increased computational costs.
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Chapter 1

Introduction

1.1 Motivation

Power systems are faced with the challenge of maintaining the demand-supply balance on
a continuous basis while operating in a secure and reliable manner [1]. Global climate
change considerations have motivated governments to implement policies to phase out
fossil fuel-based generation sources and integrate Renewable Energy Sources (RES) into the
electricity grid [2]. This has led to large-scale development and integration of wind turbines
and solar photovoltaic (PV) panels to reduce greenhouse gas emissions, decentralizing the
generation portfolio. Simultaneously, several changes are taking place in the demand side,
such as improving the efficiency and reliability of equipment, replacing fossil fuel-based
heating systems for electrical appliances, and large-scale adoption of electric vehicles [3].
However, these changes have introduced new and significant challenges for power systems
operation.

RES are highly intermittent, since solar generation is only available during sunlight and
wind is quite variable, making its resulting power difficult to predict. These characteristics
may lead to frequency fluctuations and voltage flickers as studied in, for example, [4]
and [5], which is highly undesirable. Therefore, even though there may be enough capacity
to supply the loads, there is a possibility that the generation may not meet the demand,
specially at peak hours. To this effect, Energy Storage System (ESS) are being integrated
into power systems to provide the necessary balancing and flexibility in operations, storing
energy when there is generation surplus and discharging when the load increases, thus
improving grid stability, power quality and supply reliability [6, 7].
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Over the years, various ESS technologies have been developed, with sizes ranging from
small to large-scale. Storage can be used for energy arbitrage, capacity reserve, Unin-
terrupted Power Supply (UPS) and other services, based on their characteristics such
as energy and power density, charge/discharge rates, energy and power capacity, and
charge/discharge efficiency [8–10]. For bulk power applications, Pumped Hydro Storage
(PHS) and Compressed Air Energy Storage (CAES) are the two economically and techno-
logically feasible ESS existing technologies [11]. In terms of location, PHS requires different
elevation levels for its reservoirs, whereas CAES requires a geological formation suitable for
underground air storage; hence, CAES is less restrictive in terms of location as compared
to PHS.

Despite CAES not being a recent technology, there are only two large-scale existing
facilities; the first of 290 MW was built in Huntorf, Germany, in 1978, [12], and the
second of 110 MW was constructed in McIntosh, Alabama, USA, in 1991 [13]. Several
CAES pilot projects are now being commissioned worldwide, ranging from small- to large-
scale, proposing different means for air storage and thermodynamic models [14–17]. With
the aforementioned challenges to power system operations nowadays, the bulk capacity,
efficiency, and fast response of CAES facilities render them attractive for grid operation.
Furthermore, given that electricity prices vary significantly over a day, with low off-peak
and high peak prices, investment in ESS can be a cost-saving option as a system asset or
a profit-making decision if owned by a private investor. For the latter, and depending on
the facility’s capacity as compared to the overall system capacity, the facility may partake
in electricity markets as a price-taker or price-maker [18]. However, to influence electricity
market prices as a price-maker, the ESS capacity must be quite large, which is not yet
feasible. Thus, a price-taker facility is most likely and realistic for ESS participating in
electricity markets.

Several studies focusing on the operation of CAES systems in power systems, have been
reported in the literature. Due to their bulk storage capacity, CAES systems can participate
in energy and reserve markets, and given that these can charge/discharge simultaneously,
they can also be used to provide ancillary services, thus enhancing their investment value.
Therefore, static and dynamic models of CAES systems have been proposed (e.g. [19,
20]). However, most of the works reported in the literature either do not consider the
thermodynamic characteristics of the CAES facility or are based on detailed nonlinear
models with a high computational burden, specially in the presence of uncertainties, that
are not suitable for electricity market operations.

Uncertainties have always been an issue for power systems operation. For power grids,
the main source of uncertainty has been traditionally load forecast and generation dispatch
in the context of competitive electricity markets, where uncertainty in electricity prices has
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presented significant challenge. With the integration of large-scale RES, new uncertainties
have been introduced due to their intermittent nature, such as in RES generation and real-
time market prices [21]. Thus, to ensure secure operations within reasonable cost, these
uncertainties must be considered in Unit Commitment (UC) and self-scheduling models.
Some classical approaches to handle uncertainties in these models are Stochastic Opti-
mization (SO) and Monte Carlo Simulations (MCS); however, these methods face several
challenges. In both cases, uncertainties are represented using Probability Density Func-
tions (PDFs), which require large quantities of data to yield a robust representation and
their nonlinear shape may increase the model computational burden significantly [22]. The
MCS approach involves simulating the model multiple times with different combinations
of input data [23], which yields robust results, but at high computational costs. There are
several SO algorithms in the literature used to solve single and multi-stage problems, such
as Sample Average Approximation, Stochastic Approximation, Markov Decision Processes,
etc. Despite yielding robust results, these methods require a careful selection of scenarios,
which may be complex and/or result in large sets to achieve an accurate representation of
the model [24].

Due to the challenges with MCS and SO, methods based on range arithmetic such
as Robust Optimization (RO), Affine Arithmetic (AA) and Affine Policy (AP) have been
proposed in the literature. At the core of these approaches is the representation of uncertain
parameters using an established range of uncertainty based on historical data. Thus, the
uncertainties are modeled using linear equations, avoiding the nonlinearities introduced
by PDFs and the repetitive characteristic of the MCS and SO approaches. Hence, these
methods present a lower computational burden.

Based on the aforementioned discussions, the main objective of the research presented
in this thesis is to develop new self-scheduling models for a price-taker CAES facility
operating under uncertainties. For this purpose, a novel linear model is proposed based
on the thermodynamic characteristics of a CAES facility. Thereafter, uncertainties are
introduced in the model using RO, AA and AP approaches, resulting in new models for
uncertain dispatch of an investor-own CAES facility, presenting a comparative assessment
of the performance of the proposed uncertainty models benchmarked against MCS results.

1.2 Literature Review

The literature review presented in this section concentrates on the participation of CAES
facilities in electricity markets, discussing their thermodynamic models and participation
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strategy, and applications of RO, AA, and AP to represent uncertainties in power systems
operation modeling and applications.

1.2.1 Participation of Compressed Air Energy Storage Facilities
in Electricity Markets

This section discusses research works focused on CAES models and their participation in
electricity markets. Thus, a risk constrained bid/offer strategy for a CAES facility using
information gap decision theory is proposed in [25]. The facility is assumed to operate
in either charging, discharging, simple-cycle gas discharge (discharge using purely gas),
and idle modes. Taking electricity price uncertainty into account, the bid/offer strategy
ensures a minimal profit for the most critical scenario. However, the CAES model does
not take into account the thermodynamic characteristics of the facility or the minimum
charge/discharge limits, and does not participate in services other than energy.

In reference [26], an RO approach to obtain the offer/bid curves for a CAES facility
is proposed considering electricity market price uncertainties. The facility is assumed to
operate in charging, discharging, simple-cycle gas discharge or idle modes. The proposed
method yields better results in optimistic and pessimistic scenarios as compared to the
deterministic model. Despite the uncertainty immunized solution, thermodynamic char-
acteristics and minimum charge/discharge limits are not considered. Furthermore, the
facility participates only in the energy market, not offering reserve services to the system.

An adaptive self-scheduling model for a wind producer paired with a CAES facility is
presented in [27]. The model considers uncertainties in electricity prices and wind power
production using RO, and its robustness level is controlled through a parameter known as
“budget of uncertainty”. The objective function presents a max-min-max structure and is
solved in an iterative approach using bi-level decomposition. In the first level, the profit
of the facility is maximized in terms of the dispatch decisions, while in the second level,
the worst-case realization of uncertainties is determined, sending primal cuts to the first
level. The optimum dispatch for the CAES facility maximizes the daily profit by storing the
energy from wind power during low-price periods, and selling during periods of high prices.
However, the facility only participates in the energy market, not providing reserve services
to the grid; also, the thermodynamic characteristics and minimum charge/discharge limits
are not taken into account.

In [28], a self-scheduling model of a CAES facility participating in day-ahead and real-
time markets is proposed. The facility is assumed to be a price-taker and participates in
the energy and reserve markets. To achieve a more realistic representation of the facility,

4



the physical characteristics of the compressor and expander are considered using linear
piece-wise functions. While higher profits are achieved as compared to other methods, the
model did not consider uncertainties. Also, the complete thermodynamic characteristics
of the CAES facility is not considered, particularly the pressure inside the cavern and the
efficiency of the high pressure turbine.

A self-scheduling model to maximize the daily profit of a CAES facility, considering its
thermodynamic characteristics is proposed in [19]. The facility is assumed to be a price-
taker participating in energy, spinning and idle reserve markets. The thermodynamic
characteristics are modeled using step-functions, based on data from an operating CAES
facility, taking into account the pressure inside the cavern used for storage and efficiency
of the high pressure turbine. Despite providing a more realistic representation, the model
presents solutions without protection against uncertainties, which are not considered. Fur-
thermore, the representation of thermodynamic characteristics using step-functions intro-
duces new binary and auxiliary variables, which increase the complexity of the model,
specially for implementation of range arithmetic methods to represent uncertainties. Fi-
nally, in the proposed model, the compressor is assumed to operate within 15%-100% of
its rated capacity, which is an issue, since operation below 40% severely compromises its
efficiency [29], with the thermodynamic representation becoming inaccurate.

Reference [20] proposes a detailed mathematical model of a diabatic CAES system in
steady-state and dynamic studies. The facility is assumed to be capable to charge/discharge
simultaneously, thus providing frequency regulation services. The studies presented reveal
that the CAES facility contributes significantly to reduce the cumulative frequency de-
viation of the system. However, even though the proposed model provide an accurate
representation of CAES systems considering their thermodynamic characteristics, it is not
a suitable representation for electricity market participation, since the model is rather
complex and nonlinear.

An adiabatic CAES facility integrated into a distribution network to minimize operating
cost and provide continuous reactive power support is proposed in [30]. A detailed mathe-
matical model for the CAES facility is presented, taking into consideration the thermody-
namic characteristics and components’ efficiency. The model is tested using a bi-objective
Optimal Power Flow (OPF), where the first objective is system cost minimization and
the second is system voltage quality improvement. A Nash Bargaining approach is used
to select a unique solution from the Pareto optimum set. The results demonstrate that
participation of the CAES facility to provide reactive power to the system, improved the
voltage quality and voltage regulation, and reduced losses. However, uncertainties are not
considered in this work.
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1.2.2 Modeling Uncertainties in Power Systems Operation

This section focuses on a review of the modeling and representation of uncertain param-
eters in power system operational models. Discussions on operational models have been
excluded.

In [31], an Energy Management System (EMS) model for isolated microgrids, which
features RES, ESS and interruptible loads, is presented. The paper considers the appli-
cation of RO to model the RES generation uncertainties, which are represented using a
linear function given by the forecast value and range of uncertainty. The representation of
RES uncertainties in this work can be extended to represent electricity price uncertainties
for CAES self-scheduling models.

An RO approach to integrate electric vehicles in Ontario’s grid is proposed in [32].
The mathematical formulation takes into account the electricity grid and transport sector
constraints. A sensitivity analysis using MCS is carried out to determine the most relevant
parameters the model is sensitive to, which are found to be the Hourly Ontario Electricity
Price (HOEP) and price of export/import power. Accordingly, their uncertainties are
integrated into the model using RO, assuming a maximum mismatch of 10%. Simulations
are carried out for different levels of conservatism, i.e., varying the budget of uncertainty
from a deterministic case to the most conservative scenario. It is noted that a high budget of
uncertainty is not required to achieve an optimal solution while ensuring a low probability
of violation of the constraints. Hence, implementing RO to self-scheduling models of a
CAES facility may provide optimum schedules that ensures a reasonable profit, without
having to resort to conservative scenarios, since low levels of conservatism may present low
probability of violation of the system constraints.

A hybrid stochastic RO approach is proposed in [33], with the objective of obtaining an
optimal bid strategy for a microgrid in a day-ahead market. Uncertainties in distributed
generation output and day-ahead market prices are modeled as an SO problem using a
forecast data base. The RO approach is used to model the uncertainty in real-time market
price, in order to limit the power unbalance in real-time. The approach is divided into three
stages: first, the microgrid submits bids based on which prices and distributed generation
outputs are obtained; second, the day-ahead market is cleared; and third, the real-time
market is cleared. It is noted that microgrids can benefit significantly from bidding in the
day-ahead market, and the budget of uncertainty can be used to set different risk levels.
However, the ESS devices present in the system are generic and do not capture the specific
characteristic of ESS technologies such as CAES.

The scheduling of a set of ESS is proposed in [34] using RO to represent the uncertain-
ties in RES, load, and real-time thermal ratings of transmission lines. The deterministic
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problem objective is to minimize the operational cost of the ESSs. The RO problem is
solved for the worst-case scenario considering a specific value of budget of uncertainty. The
RO method is compared with the deterministic model using two sets of input data, namely,
no uncertainties, and the most conservative scenario, i.e., the largest range of uncertainty.
The scenario without uncertainties yields the lowest cost as expected; however, the lack of
protection against uncertainties is not desirable, since it may increase costs and accelerate
battery degradation if real-time data deviates from the forecast. As the budget of uncer-
tainty increases, so does the probability of the RO model not violating any constraints,
and the operational cost increases as well. However, a high probability of not violating any
constraints may be achieved for lower budgets of uncertainty. Thus, the proposed method
ensure a safe operation of ESSs without having to resort to the most conservative scenario.
However, ESS are considered as system assets that do not provide reserve services to the
grid.

An AA method is applied to represent the RES uncertainties in an OPF problem in [35].
The model does not rely on PDFs, since uncertainties are represented within a numeric
interval. RES generation, and real and imaginary components of voltages and currents are
represented in their affine forms to keep track of correlated uncertainties. The algorithm
executes the OPF for the expected demand, i.e., their center values, obtaining these values
for the voltages and currents. Thereafter, a sensitivity analysis is carried out by perturbing
the demand at each bus, and executing the OPF to compute the variations in the voltages
and currents of each bus. Furthermore, executing the Power Flow (PF) equations, the up-
per and lower bounds of active and reactive power injections at each bus are determined.
The model yields slightly more conservative results than the MCS at a significantly lower
computational burden. The affine representation of uncertain quantities can be used to
represent electricity price uncertainties and power dispatch for self-scheduling CAES mod-
els. Accordingly, the optimum solution would provide the center and radius of the profit
and power dispatch, allowing the CAES facility to adjust its dispatch, given the mismatch
in real-time electricity prices from the forecast price; hence, this approach is used in this
thesis to model uncertainties for CAES optimal dispatch.

An AA-based framework for PF and OPF studies is presented in [36]. Considering
uncertainties in RES generation and representing the uncertain quantities and variables in
their affine forms, the paper proposes to separate the center and noise terms, thus, turning
the model into a multi-objective optimization problem. The proposed method yields precise
results at a lower computational costs compared with MCS. To further improve the model’s
performance, the use of Principal Components Analysis (PCA) to determine the optimum
number of independent uncertainties is reported, while improving significantly convergence
time. Thus, for self-scheduling models with a large set of noise variables, the PCA is shown
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to be a useful tool to reduce the dimension of the problem and improving the computational
burden. This approach of solving the center and radius of the original problem separately
is only valid because all variables present in the model are continuous.

Reference [37] proposes an EMS for isolated microgrids wherein the UC model includes
uncertainties in RES generation and load that are represented using AA. An ESS is inte-
grated in the microgrid, which introduces binary and inter-temporal variables, associated
with the operational state of the ESS and its State of Charge (SOC), respectively. Conse-
quently, the approach presented in [36] to determine the center and radius in a decoupled
manner, cannot be applied in this case. To this effect, the center and radius terms of
the AA-based UC model are optimized simultaneously, where the conservativeness of the
model is controlled by multiplying these terms with complementary weights. To ensure no
operational limits are violated, inter-temporal constraints are decomposed into two con-
straints, the first takes into account only the central variables, and the second only the
noise variables. The results obtained are benchmarked with an SO solution, achieving
a high degree of accuracy at lower computational burden, without having to use PDFs.
While the ESS facility is assumed to be a system asset, the proposed AA formulation can
be adapted to take the point of view of the owner for self-scheduling models of a CAES
facility, as done in this thesis.

A comparison between RO and AA to represent uncertainties in microgrids integrated
with ESS, is proposed in [38]. A UC model considering uncertainties in RES generation and
loads is proposed. The RO problem is optimized for the worst-case scenario using a min-
max objective, i.e., minimizing the cost in terms of the dispatch decisions and maximizing
it in terms of the uncertainties for a given budget of uncertainty, which is transformed into
a tractable Mixed Integer Linear Programming (MILP) problem. As for the AA model,
the uncertain parameters and variables are represented in their affine forms to keep track
of correlated uncertainties. Since there is an ESS in the model, the center and radius of
the objective function are minimized simultaneously. Comparing their results, RO incurs
the largest operational cost since its objective is to achieve a conservative solution against
the worst-case realization, while the AA model resulted in a slightly lower cost compared
with the deterministic model. While in this work, the ESS is assumed to be a system
asset, the model may be adapted from the perspective of a price-taker CAES facility and
the performance of AA and RO in self-scheduling models can be assessed, as done in this
thesis.

While AA is focused on optimizing the center and radius of the objective function, RO
focuses on optimizing for the worst-case scenario. However, classical RO methods provide
non-adjustable solutions; hence, to address this shortcoming, AP has been proposed to
make RO computationally tractable. Thus, [39] proposes an adjustable AP-based robust
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OPF considering uncertainties in load and RES generation. From the forecast data, i.e.,
the center value of uncertain parameters, the OPF is executed to obtain the base-point
schedule of the Automatic Generation Control (AGC) units. Each unit is associated with a
participation factor, which helps with adjusting their output according to the variations of
the forecast parameters. This approach presents a large computational burden; therefore,
an iterative process using successive constraint enforcement is reported. Although the
proposed approach yields robust results for a nonlinear problem, all variables in the model
are continuous, since ESSs are not integrated with the system and all AGC units are
assumed to be operating.

Reference [40] proposes a multistage adaptive RO for the UC problem, which can
assume significant dimensions for a large-scale power system. Applying a basic AP to
the model is not computationally viable in this case; hence, a simplified AP is proposed
by aggregating the uncertain parameters and thus reducing the problem dimension. To
further reduce the computational burden, the model is solved using a constraint generation
approach. Therefore, the model is first executed without considering any limit constraints;
thereafter, if limits are violated their constraints are integrated in the model and executed
again, with the process being repeated until no limits are violated. In this case, the main
source of uncertainties are the loads, and the optimization problem presented is of a min-
max-min structure, in which, the costs are first minimized in terms of dispatch decisions,
then maximized in terms of load uncertainty, and finally minimized with recourse actions
to adapt with the final outcome. The model provides robust results against significant
uncertainty within a reasonable computational burden. However, the model does not
consider the participation of ESS.

A multistage robust UC model with dynamic uncertainty sets and ESS is presented
in [41] for high penetration of RES, and applied to a large practical system. Due to the
high dimensionality of the uncertainty sets, PCA is used to capture the joint temporal
and spatial correlation of RES, thus reducing the dimension of the problem. As in [40],
uncertain parameters and variables are represented in their affine forms, with the objective
function presenting a min-max-min structure. To reduce the computational burden, the
problem is solved using constraint generation approach. It is noted that the proposed
method leads to more utilization of ESS and less curtailment of RES. Adapting the AP for
self-scheduling models, the PCA method may be used to capture correlations from historic
data of electricity prices, thus reducing the model computational burden, as done in this
thesis.
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1.2.3 Discussions

From the aforementioned literature review, it is noted that several works have proposed
the participation of CAES facilities in electricity markets. However, some of the proposed
models do not consider the full potential of CAES in the market environment, considering
only their participation in energy markets, while neglecting reserve markets, where the
CAES systems can contribute to grid reliability and increase their revenue. It is also
important to emphasize that some works do not consider the thermodynamic characteristics
and minimum charging and discharging limits of the CAES facility, which is an inaccurate
representation of CAES. On the other hand, works that consider CAES thermodynamic
characteristics, these are modeled using nonlinear representations and thus are not the most
suitable for day-ahead market modeling, especially when uncertainties are considered.

One of the main challenges to execute an SO model is to obtain an accurate represen-
tation of the PDFs, in a way that uncertainties are represented with high precision and the
model yields robust results. However, lack of data may lead to weak PDF representations,
which may compromise the results. Therefore, techniques based on range arithmetic, such
as RO, AA, and AP have been proposed for power system studies. Representing uncertain-
ties using linear relations help avoid the nonlinearities introduced by PDFs, hence reducing
the computational burden. These techniques presented good performances, achieving ro-
bust results, i.e., conservative solutions against worst-case realization, and results with
real-time adjustment, where the dispatch can be updated in real-time with uncertainty
realization. However, these studies are mostly focused on UC, PF, and OPF, where ESS
facilities are considered a system asset rather than owned by private investors, without
taking their perspective into account.

Only a few works have proposed self-scheduling models of CAES systems participating
in energy and reserve markets. Due to the complexity of representing the thermodynamic
characteristics, several papers neglect them, yielding inaccurate models. Others propose
detailed nonlinear models, which may be highly complex for day-ahead market simulation
studies. To represent uncertainties in power systems studies, the aforementioned techniques
based on range arithmetic present a good performance, but only a few have focused on
self-scheduling models. Therefore, this thesis focuses on proposing a novel linear thermody-
namic model based on a real-world facility, for a price-taker CAES system that participates
in energy and reserve markets, while considering price uncertainties using range arithmetic
techniques such as RO, AA, and AP.
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1.3 Research Objectives

Based on the aforementioned review of the state-of-the art in CAES self-scheduling models
and uncertainty representation through range arithmetic techniques, the main objectives
of this thesis are the following:

• Develop a novel thermodynamic model for a CAES system based on a real-world
CAES operating facility, taking into consideration the pressure inside the cavern and
the efficiency of the high pressure turbine. Using linearization techniques, such as
McCormick Envelopes and linear-piecewise approximation, the nonlinear constraints
are linearized for the application of the proposed model electricity markets.

• Develop a self-scheduling model for a price-taker CAES facility, including detailed
thermodynamic modeling, for its participation in the day-ahead electricity market to
provide energy and reserve services to the power system. The model is validated and
compared with a nonlinear model of the CAES facility proposed in the literature,
carrying out simulations for deterministic scenarios of electricity market prices.

• Considering electricity market price uncertainties, develop a RO model for the CAES
facility participating in day-ahead electricity market, maximizing its profit in terms
of power dispatch and minimizing it in terms of the price mismatch, using a budget
of uncertainty to control the level of conservativeness.

• Model the electricity price uncertainties using AA, representing the uncertain pa-
rameters and all decision variables in their affine forms, keeping track of correlated
uncertainties. Maximizing the center and radius of the profit simultaneously, an AA
solution is obtained that provides the range of optimal schedules for given electricity
price forecasts.

• Develop a PCA-AP self-scheduling model of the CAES facility wherein the uncertain
parameters and all variables are represented in their affine forms, using APs to keep-
ing track of correlated uncertainties, and applying PCA to extract information from
the electricity prices to reduce the problem dimension. Thus, for a given information
level established by the PCA, a range of optimal adjustable power dispatch solutions
for given electricity price forecasts.

• Benchmark the proposed RO, AA, and PCA-AP models against MCS studies car-
ried out on the CAES facility to compare their performances and suitability for the
proposed application under price uncertainties.
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1.4 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 discusses the relevant background on ESS technologies and the services
they may provide when integrated into power systems, providing details of CAES
facilities. A general overview on optimization using range arithmetic techniques to
represent uncertainties using RO, AA and AP is also presented. Finally, a brief
background of the PCA and Box Cox Transformation tools used in the thesis is also
presented.

• Chapter 3 presents a deterministic self-scheduling model for a price-taker CAES
participating in energy and reserve markets. First, an existing nonlinear formulation
to represent the thermodynamic characteristics is presented. Thereafter, a linear
thermodynamic model is developed applying linearization techniques.

• Chapter 4 presents the mathematical models where uncertainties in electricity prices
are represented using range arithmetic techniques, namely RO, AA, and PCA-AP.

• Chapter 5 presents the results and comparisons of the simulation studies based on
an existing CAES facility. The novel linear thermodynamic model is benchmarked
with the existing nonlinear model, comparing optimum profits, dispatch and compu-
tational burden. Thereafter, results obtained when uncertainties are modeled, using
range arithmetic representations, are presented, compared and benchmarked against
MCS results.

• Chapter 6 summarizes the thesis, and the main conclusions and contributions of the
presented work. The scope for future work is also discussed.
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Chapter 2

Background

In this Chapter, an overview of ESS and the services they may provide when integrated
into the power system are presented. A general representation for a CAES facility is
also discussed, followed by the thermodynamic configurations associated with the facility,
i.e., diabatic, adiabatic, and isothermal. Finally, a general representation of optimization
techniques based on range arithmetic and the mathematical tools employed in this research
are presented.

2.1 Energy Storage Systems (ESS)

The high penetration of RES in power systems introduces new challenges for reliable op-
eration of the grid. Thus, there are a limited number of hours of available solar power,
since it only occurs during the day, and although wind generation may be available at all
hours of the day, the stochastic behavior of these RES can lead to frequency fluctuations
and voltage flickers [5]. Furthermore, the output of RES is not controllable, which may
result in excess generation at low demand hours and shortfall at peak hours. Thus, ESS
technologies plays a very important role in modern power systems, storing energy when
there is a surplus and releasing it when the system needs it.

Different ESS technologies exist, which can be classified as follows [11]:

• Mechanical energy storage: Can be divided into the following subcategories:

– Potential energy based: PHS and CAES.
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– Kinetic energy based: High and Low-Speed Flywheels.

• Electromagnetic energy storage: Conventional Capacitors, Superconducting Mag-
netic Energy Storage (SMES), and Super Capacitors.

• Chemical energy storage: Battery Energy Storage Systems (BESS), Flow Batteries,
and fuel cells.

• Biological-based energy storage.

• Thermal energy storage: Cryogenic, Ground Source Heat Pump (GSHP), and Elec-
trical Thermal Storage (ETS).

PHS, along with CAES, is a large-scale ESS technology. It consists of two reservoirs
located at different elevations. During off-peak hours, the water is pumped to the upper
reservoir while during peak hours, power generation takes place and water is discharged
to be stored in the lower reservoir, with potential energy being converted into electricity
by going through a turbine [42]. It is a mature technology, with high energy and power
capacity; ratings can be between 100 - 3,000 MW, and may have long storage periods,
high efficiency, and low capital cost per unit of energy. Thus, PHS is suitable for energy
arbitrage applications, although it requires particular geographic settings with significant
elevation differentials, and it presents high construction costs and long gestation lags.

Flywheels are made of material that have either high or low inertia, which results in low
or high speed flywheels, respectively [43]. The energy is stored in the angular momentum
of the spinning mass, which operates as a motor during charging and as a generator during
discharging, with the kinetic energy of the spinning mass being converted into electricity.
Several advantages are its high power density, fast response time, very high efficiency,
and long life with hundreds of thousands cycles. The main drawbacks are the high self-
discharge, low energy density, and high capital cost because of the need for expensive
equipment. Therefore, flywheels are used to provide UPS services to the grid.

Conventional capacitors consists of two metallic plates separated by a dielectric. They
can be charged much faster than BESS, presenting high efficiency and long life cycle.
However, the low energy density and inability to achieve higher values of capacitance do
not make the technology attractive for energy storage applications in power systems. With
the introduction of super capacitors, made of two electrodes submerged in an electrolyte
solution, very large capacitances and high energy density have been achieved [44], making
them viable for power system applications. The drawbacks of super capacitors are the high
self-discharge losses, short duration operation, and low voltage breakdown limit. Thus,
super capacitors are also used to provide UPS services.
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SMES systems store energy in the form of electric current. DC current flows through
a superconducting coil immersed in liquid helium, which maintains the temperature below
5 ◦K in a vacuum sealed vessel, so that the material of which the inductor is made, is
kept in its superconducting state [45]. The main advantages of SMES are the very fast
response time and high energy storage efficiency, which makes it suitable as a UPS. The
disadvantages are its high cost and the strong magnetic field, which can be harmful for the
environment and human health.

Conventional BESS is the oldest form of energy storage, which consists of electrochem-
ical cells with an electrolyte, an anode, and a cathode. The reactions that take place are
reversible, so the battery operates in cycles, i.e., can be fully charged and discharged many
times. However, as the number of cycles increases, the state of health of the battery dete-
riorates, reducing drastically the amount of energy that it can deliver back to the system.
The scale of BESS may range from small to large, thus, depending on its characteristics
may provide energy arbitrage or UPS services to the grid. An overview of some BESS tech-
nologies and their respective advantages and disadvantages are presented in Table 2.1 [8].

Table 2.1: BESS Technologies [8].

Technology Advantages Disadvantages

Lead Acid
Low cost, high reliability

and efficiency

Short life as low as 1,000
cycles; and low energy

density

Nickel Cadmium
High energy density, high
reliability and life between

2,000-2,500 cycles

High cost and toxicity of
cadmium

Sodium Sulphur
Life of 2,500 cycles, high
power and energy density

and high efficiency
High cost and self-discharge

Lithium Ion

Very high energy density
and life cycle (up to 10,000
cycles), and efficiency close

to 100%

High cost makes it
unsuitable for large-scale

applications

Flow batteries consist of reservoirs containing electrolyte solutions and two electrodes
separated by a cell, through which the solutions flow. In order to avoid mixing the elec-
trolytes, an ion exchanging membrane is placed in the middle of the cell, which is imper-
meable to electrons. Ions migrate from one electrode to the other through the membrane,
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and electrons flow through an external circuit, hence generating electricity [46]. The re-
action is reversible, which allows charging and discharging cycles. The main advantage of
flow batteries is its storage capacity, since high storage levels can be achieved with larger
tanks, providing energy for many hours at a high discharge ratio with no self-discharge,
thus being suitable for energy arbitrage applications. The disadvantages are its low power
and energy densities compared to other technologies, and the presence of shunt currents in
the electrolytes, which affect its efficiency.

In cryogenic energy storage, air is stored in its liquid state, i.e., at a very low temper-
ature, during off-peak hours. At peak hours, the ambient air temperature heats the liquid
air that goes through a cryogenic heat engine, generating electricity [47]. It is benign to
the environment, while presenting a high energy density and low capital cost per unit of
energy, thus being suitable for energy arbitrage. However, its low efficiency is a major
drawback [8].

Biological-based storage is in its early development stage and requires several advance-
ments for it to be suitable for practical applications. Through photosynthesis it is possible
to store solar energy in large scale. However, photosynthesis is not a high efficiency technol-
ogy currently, and the process to store the energy released from it, named rewired carbon
fixation, requires some technological breakthroughs [48].

In summary, ESS have a wide range of applications, from large-scale at the transmission
level to small-scale at the customer end. Traditionally, CAES and PHS have been the only
technologies delivering very large quantities of power, above 100 MW, but in recent years,
some large-scale BESS projects have been commissioned. In most storage technologies,
there is a trade-off between the energy and power density, and another important aspect
to be considered is their response time. Depending on these parameters, ESS are typically
used to provide the appropriate services to the power system. For a robust operation of
the power system with significant variable RES generation, ESS with different range of
applications must be employed. Thus, ESS can provide UPS services to mitigate transient
flickers, maintaining an acceptable power quality, as well as energy arbitrage to provide
load following and balancing services, helping to provide energy when the grid sources,
particularly RES, are not able to meet the demand.

2.2 Compressed Air Energy Storage (CAES)

A CAES plant mainly consists of the following components, as illustrated in Figure 2.1 [8],
assuming that charging (Motor) and discharging (Generator) are decoupled, which is the
approach being used in new CAES installations:
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Figure 2.1: Typical configuration of a CAES components and its components.

1. A motor connected to the power system, clutched to one or more compressors.

2. Compressors coupled with intercoolers and aftercoolers, removing the humidity in
the air and improving the compression efficiency.

3. Container to store air, such as salt cavern or rock mines.

4. Turbine train: a turbine at high pressure, and another at low pressure.

5. Generator clutched to the turbine train.
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6. Auxiliary equipment to control the fuel and heat exchanging units.

A CAES facility may operate in the following modes:

• Charging: The air is pressurized by a compressor, which is powered by a motor
supplied by the electrical grid. Through pipes, the compressed air is conducted to
a reservoir where it remains stored. In order to improve the compression efficiency,
intercoolers and aftercoolers are used to reduce the air temperature and remove
humidity [49]. As the mass of air stored in the reservoir increases, so does the
pressure inside and the charging air flow rate decrease, and it becomes increasingly
difficult to store more air. When charging, the CAES facility pays for the energy
drawn from the grid, but it may offer load balancing services to the grid.

• Discharging: The compressed air from the reservoir is extracted through pipes, pre-
heated and expanded in a turbine train. The air is released with high temperature
from this process, thus a recuperator can be used to capture the residual heat and
use it in the preheating stage [50]. When discharging, the CAES facility is paid for
the energy supplied, and may also provide spinning reserve service if not operating
at full power.

• Idle: In this mode, the CAES facility is neither charging nor discharging, but remains
connected to the grid, thus being able to provide non-spinning reserve services.

There are two large-scale CAES facilities operating in the world. The first is located in
Huntorf, Germany, built in 1978, which consists of two salt caverns, each with a volume of
150,000 m3 and approximately 700 meters in depth, and can generate up to 290 MW for
2 hours [12]. The second is located in McIntosh, Alabama, USA, built in 1991. It consists
of only one cavern, but with the much greater volume than Huntorf of 500,000 m3; its
maximum generation capacity is 110 MW for 26 hours [13]. The McInthosh CAES plant
also uses a recuperator to capture the waste heat and preheat the air, hence saving 25%
of fuel as compared to the Huntorf plant.

Both Huntorf and McIntosh facilities have a single machine for charging and discharg-
ing. Thus, during the charging process the machine is clutched with the compressor, while
during discharging the machine is clutched with the turbine train [51]. Therefore, these
facilities can only operate either in charging, discharging, or idle mode, at a given time.
New CAES projects have used novel configurations using two synchronous machines, one
clutched with the compressor and the other with the turbine train, as in the CAES facilities
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in Goderich, Ontario, Canada [16], and in Bethel, Texas, USA [52]. In these systems, the
charging and discharging modes are independent and the CAES facility can charge and
discharge concurrently. This enables participation of the facility in frequency regulation
markets, hence expanding its opportunities to increase revenue earnings.

The CAES facilities of Huntorf, McIntosh, and Bethel store the air inside underground
salt caverns and presents a diabatic thermodynamic configuration, where natural gas is
burned to increase the temperature of the air before being expanded in the turbine [12,13,
52]. The round-trip efficiencies of the Huntorf and McIntosh facilities are 46% and 54%,
respectively [53]. However, new thermodynamic models and man-made vessels to store air
have been proposed [54], such as:

• Adiabatic: Captures the heat produced in the compression stage, stores it in ther-
mal systems and uses it to reheat the air before reaching the expansion stage. The
objective is to create a closed-loop process, but heat losses are inevitable, thus lim-
iting the efficiency of the plant to 70%. The Goderich facility presents an adiabatic
thermodynamic configuration [16].

• Near-isothermal: Compression and expansion processes take place at a slow rate,
avoiding significant temperature changes. Since the processes does not burn any
fuel, the efficiency is increased significantly. This technology is still under research
and not much data is available.

• Adsorption Enhanced: Adsorbent chemicals are used to adsorb the molecules from
the compressed air into a solid layer. From that, greater storage capacities can be
achieved in smaller spaces. However, it is a very recent idea and not much data is
available to confirm if it is feasible in economic and engineering terms.

• Underwater: Air is stored inside underwater man-made vessels, as in case of [55].
When the facility is charging, the compressor sends the air inside the vessels, and
when discharging, the water pressure forces the air out to the turbines.

Several other examples can also be mentioned, such as [54]: diabatic solar-assisted CAES,
hydrokinetic energy, transportable CAES, and vehicle compression. There are a few small-
scale projects with these technologies around the world, but they are still in the research
and development stage.

19



2.3 Optimization in the Presence of Uncertainties

Electrical power systems offer several decision-making problems where optimization meth-
ods and models are employed to arrive at the best possible decisions, such as UC and
self-scheduling problems. In UC problems, the optimum commitment and dispatch of gen-
eration units are obtained, while satisfying the load demand and reserve requirements, at
minimum cost [56]. With integration of large-scale ESS and their possibility of being owned
by a private investor, self-scheduling models have gained importance where the investor
seeks to maximize its profits based on the day-ahead market price forecast [19,27,28].

Although the optimization models may have an accurate mathematical representation,
the solutions obtained may not necessarily be the optimum in practice. This is because
models are subject to uncertainties in their parameters, and depending on the degree of
uncertainty, the solution can lead to economic losses, which is highly undesirable. Load
uncertainty have always been a challenge for power system operation, with the high pen-
etration of RES uncertainties in wind and solar generation, and electricity prices being
more recently considered [57]. Thus, in order to ensure reliable operational decisions, these
uncertainties must be taken into account.

A classical approach to deal with uncertainties is through SO [58]. There are several
SO techniques depending on the problem formulation, with uncertainties in parameters
or constraints [59, 60]. In these models, uncertainties are represented by PDFs, which are
nonlinear, hence making the problem more complex. Despite presenting robust results,
adequate PDF representations for the uncertainties considered are only possible if there is
a considerable amount of data; hence, the lack of data may lead to assumptions regarding
the PDFs, which may yield poor representations with significant errors [31]. Due to these
challenges, alternative methods based on range arithmetic have been proposed, such as
RO, AA, and AP, which are discussed next.

2.3.1 Robust Optimization (RO)

Initially proposed in [61], RO presents an attractive approach to represent random variables
through uncertainty sets, rather than probabilistic models, i.e., this method does not use
PDFs, and thus no assumptions are made regarding the characteristics of the uncertainties.
The method was originally employed in a linear optimization problem, seeking to optimize
the objective in the worst-case uncertainty; however, the method has been criticized be-
cause of its highly conservative strategy. A less conservative model has been reported
in [62] which solves the robust counterparts of the problem, representing the uncertainties
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in elliptical sets. Despite the reasonable approximations provided by this method, a major
drawback was the introduction of nonlinearities, thus increasing the computational cost.

A method to make the level of conservatism more flexible while maintaining the ad-
vantages of the linear model in the original framework is proposed in [22]. A parameter
known as the budget of uncertainty Γ is introduced, which can take any value in [0, J ],
where J represents the set of parameters that are subject to uncertainties. Varying Γ from
0 to J allows a trade-off between the level of conservatism and robustness. Thus, for Γ = 0
the model is deterministic, i.e., no uncertainties are considered, while for Γ = J , the most
conservative scenario is considered, yielding the model proposed in [61].

RO problems seeks to optimize an objective function for the worst-case scenario, as
follows:

min
x

N∑
n=1

cnxn (2.1)

s.t. Ax ≤ b (2.2)

where c, A and b are parameters, x is a variable, and n is an index. Observe that the
objective is to minimize the function in terms of the decision variables xn. By considering
uncertainties in the parameters cn, it is assumed that there is a mismatch of up to ∆c in
its value. Hence, the values that cn may assume are in the following interval:

cn ∈ [cn,0(1−∆c), cn,0(1 + ∆c)] (2.3)

where cn,0 represents the forecast and most likely value of the parameter cn. Thus, cn can
be expressed as:

cn = cn,0(1 + ∆cn) (2.4)

where ∆cn is a variable that represents the mismatch of the parameter cn. Substituting
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(2.4) in (2.1) and adding several constraints reflecting cn uncertainty, one has:

min
x

max
∆cn

N∑
n=1

cn,0xn + cn,0 ∆cnxn︸ ︷︷ ︸
Bi-linear term

 (2.5)

s.t. ∆cn = ∆c+
n −∆c−n ∀n (2.6)

∆c+
n ≤ ∆c ∀n (2.7)

∆c−n ≤ ∆c ∀n (2.8)

N∑
n=1

∆c+
n + ∆c−n

∆c
− Γ ≤ 0 (2.9)

∆c+
n ,∆c

−
n ≥ 0 ∀n (2.10)

Observe in (2.5) that the problem seeks to minimize the function in terms of x, and
maximize it in terms of ∆cn. In (2.6), the variable ∆cn is broken into two positive variables
∆c+

n and ∆c−n which represents the uppward and downward deviations, respectively, and
are limited by ∆c in (2.7) and (2.8). Finally, the level of conservatism is controlled using
(2.9), where the budget of uncertainty Γ limits the number of times the value of cn deviates
from the forecast. For this problem, the range of values for the budget of uncertainty is,
Γ ∈ [0, N ], where Γ = 0 corresponds to the deterministic model, i.e., no uncertainties
considered, and Γ = N corresponds to the most conservative scenario, where all values of
cn deviate from the forecast. Hence by choosing different combinations of (∆c, Γ), a set of
possible optimum decisions can be obtained, with different degrees of uncertainty.

Note that a bi-linear term is introduced in the objective function (2.5), which makes
the problem nonlinear. Another issue is that, a min-max structure is a saddle-point math-
ematical problem, which may be non-convex. However, the internal maximization problem
in (2.5) is linear, and hence it can be replaced by its dual problem using the concept of
Strong Duality, as discussed in Section 4.1.

2.3.2 Affine Arithmetic (AA)

AA is a range analysis technique that keeps track of correlated uncertainties between the
variables [63]. It handles both external and internal sources of uncertainty, with imprecise
data and uncertainty in the mathematical model being external sources, while truncation
and round-off errors are internal sources. Each uncertain variable χ is represented in its
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affine form as follows:

χ̂ = χ0 + χ1ε1 + χ2ε2 + · · ·+ χpεp = χ0 +

p∑
h=1

χhεh (2.11)

where χ0 denotes the center value of χ and εh and χh are the noise variables and magnitudes
of the corresponding uncertainty components, respectively; the noise variables are within
the interval [−1, 1]. Hence, when all variables are represented in their affine forms, they
share the same noise variables, thus tracking correlated uncertainties. If the interval of χ
is within

[
χ, χ

]
, its affine representation χ̂ is given as follows:

χ0 =
χ+ χ

2
(2.12)

χ1 =
χ− χ

2
(2.13)

χ̂ = χ0 + χ1ε1 (2.14)

In AA, there are affine and non-affine operations. Thus, considering the affine quantities
â = a0 +

∑p
h=1 ahεh and b̂ = b0 +

∑p
h=1 bhεh and the parameter λ, affine operations are the

following:

ẑ = â± b̂ = (a0 ± b0) +

p∑
h=1

(ah ± bh)εh (2.15)

ẑ = λâ = λa0 + λ

p∑
h=1

ahεh (2.16)

ẑ = â± λ = (a0 ± λ) +

p∑
h=1

ahεh (2.17)

and a non-affine operation is:

ẑ = âb̂ = a0b0 +

p∑
h=1

(a0bh + b0ah)εh + zkεk (2.18)

where the resulting variables contains the information provided by â and b̂, and the ap-
proximation error is denoted as zkεk. Despite being a conservative approach, to avoid
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information loss εk is usually assumed to be 1, and zk =
∑p

h=1 |ah|
∑p

h=1 |bh|. Thus, (2.18)
can be rewritten as:

ẑ = a0b0 +

p∑
h=1

(a0bh + b0ah)εh +

p∑
h=1

|ah|
p∑

h=1

|bh| (2.19)

The general representation for AA in an optimization problem is given by [36]:

min
ẑ
F̂(ẑ) (2.20)

s.t. ĝl(ẑ)
A
≈ 0 ∀l ∈ L (2.21)

ĥm(ẑ)
A

≤ 0 ∀m ∈ M (2.22)

where the equality
A
≈ and inequality

A

≤ constraints are defined in the AA domain for the
aforementioned AA quantities â and b̂ as follows:

A
≈: a0 = b0 ∧ ah = bh ∀h (2.23)

A

≤: a0 +

p∑
h=1

|ah| ≤ b0 −
p∑

h=1

|bh| (2.24)

Thus, (2.23) implies that one affine variable is equal to the other if all their terms are equal,
and (2.24) states that one affine variable is less than the other if the upper boundary of the
left-hand side is lower than the lower boundary of the right-hand side. Therefore, objective
function F̂ in (2.20) can be expressed as:

min
ẑ
F̂(ẑ) = F0(ẑ)︸ ︷︷ ︸

Center terms

+

p∑
h=1

Fh(ẑ)εh︸ ︷︷ ︸
Affine terms

+

p+pna∑
h=p+1

Fh(ẑ)εh︸ ︷︷ ︸
Non-affine terms

(2.25)

In [36], a decoupled solution approach is proposed considering a multi-objective function
as follows:

min
ẑ

{
F0(ẑ),

p+pna∑
h=1

|Fh(ẑ)|

}
(2.26)

where the first term minimizes the center value, without taking into account the uncer-
tainties represented by the noise symbols. The second term minimizes the radius, thus

24



resulting in a lower tolerance of data uncertainty. Based on a trade-off between the two
objectives, the risk level can be flexibly adjusted.

The approach proposed in (2.26) is only valid if all variables in the model are continuous
and no inter-temporal variables are taken into account, since the solution for one problem
may turn out to be infeasible for the other. An AA-based UC model is proposed in
[37], where the center and radius are minimized concurrently, and the protection against
uncertainty is flexibly controlled by using a multi-objective function, as follows:

min
ẑ

(
µF0(ẑ) + (1− µ)

p+pna∑
h=1

|Fh(ẑ)|

)
(2.27)

where µ ∈ [0, 1], and µ = 1 denotes a deterministic representation, i.e., no protection
against uncertainties, while µ = 0 is the most conservative scenario. An alternative model
is presented in [38], as follows:

min
ẑ

(
F0(ẑ) +

p+pna∑
h=1

|Fh(ẑ)|

)
(2.28)

where the center and radius are minimized simultaneously, without any mechanism to
control the level of conservatism of the model, thus providing a single conservative solution
against the range of uncertainty.

The solution obtained when AA is used to represent uncertainties provides the center
and adjustment terms of the variables in the model. Hence, in real-time, as the parameters
of the model deviates from their expected values, their noise terms εh are determined and
the output variables of the model are adjusted according to this variation.

2.3.3 Affine Policies (APs)

One of the main differences between traditional RO techniques and AA, is that RO solutions
fail to adjust to real-time uncertainties. APs were first introduced in [64] to provide an
affinely adjustable RO to solve linear optimization problems with uncertain parameters.
The method was later expanded to solve multi-period inventory problems [65], control [66],
and power systems operation problems [39–41].
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The AP approach can be explained based on the following deterministic problem [65]:

min
u,y

{
cT1 u+ cT2 y

}
(2.29)

s.t. ynun ≤ yn ≤ ynun ∀n (2.30)

N∑
n=1

yn ≥ d (2.31)

where in (2.29), the cost function is minimized in terms of u and y, which are binary and
continuous variables, respectively, while cT1 and cT2 are associated cost parameters. The
upper and lower limits of y are given by (2.30), and a minimum demand d must be met,
as per (2.31).

Considering uncertainties in demand d, its affine form is given as follows:

d̂ = d0 + ∆d (2.32)

−∆d ≤ ∆d ≤ ∆d (2.33)

where d0 represents the center, and most likely value for d̂, while ∆d is the mismatch of
the demand. The continuous variables y are represented in their affine form as follows:

ŷn = yn,0 + βn∆d ∀n (2.34)

N∑
n=1

βn = 1 (2.35)

where yn,0 is the center of ŷn and βn is the adjustment with respect to ∆d. Note that in
AP, the affine variables share the mismatch terms ∆d, which are constrained by (2.33),
while for AA they share the noise terms ε which are within [−1, 1].

Substituting (2.32) and (2.34) in (2.29)-(2.31), the problem can be reformulated as
follows:

min
u

{
cT1 u+ max

∆d
min
ŷ

cT2 ŷ

}
(2.36)

s.t. ynun ≤ yn,0 + βn∆d ≤ ynun ∀n (2.37)

N∑
n=1

(yn,0 + βn∆d) ≥ (d0 + ∆d) (2.38)

|∆d|
∆d
≤ Γ (2.39)
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where (2.36) presents a min-max-min structure in which the objective function is first
minimized in terms of the binary decisions u, then maximized in terms of the demand
uncertainty ∆d, and finally, minimized in terms of the recourse actions ŷ. Constraints
(2.37) and (2.38) ensure that no limits are violated and that the minimum demand is
satisfied, respectively. Finally, in (2.39) the budget of uncertainty is introduced to control
the conservatism of the model, where Γ ∈ [0, 1].

An optimization problem with min-max-min structure cannot be solved in a straightfor-
ward manner. Several methods in the literature have been proposed to solve this problem,
one of them is a two-stage approach, which can be stated as follows [40]:

min
u,η

{
cT1 u+ η

}
(2.40)

s.t. η ≥ Q(u) (2.41)

Q(u) = max
∆d

min
ŷ

cT2 ŷ (2.42)

which can be solved through an iterative process by reformulating it as follows:

min
u,η

{
cT1 u+ η

}
(2.43)

s.t. η ≥ cT2 ŷl ∀l (2.44)

where l denotes a set of extreme points and yl is a vector associated with second stage
decisions from l. Thus, the iterative algorithm to solve this problem consists of minimizing
the gap between the lower boundary (LB) and upper boundary (UB), for an established
tolerance ε, as follows:

1. Set LB = −∞, UB =∞ and k = 0.

2. Solve (2.43) with l ≤ k, update optimal u∗ and η∗, and set LB ← cT1 u
∗ + η∗.

3. Evaluate Q(u∗) in (2.42), store yk+1, and set UB ← min{UB, cT1 u∗ +Q(u∗)}.

4. Check if UB−LB ≤ ε, in which case the algorithm converged. Else, set l = k+1, add
yl to (2.44), set k = k+1, go back to step 2, and repeat the process until convergence
is achieved.

The execution of this process yields a solution where the variables present a center and
adjustable terms, to better adapt with real-time uncertainties based on the budget of
uncertainty defined in (2.39).
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2.4 Mathematical Tools

2.4.1 Principal Components Analysis (PCA)

Optimization problems with large quantities of data may present a high computational
cost. To address this issue, dimension reduction methods such as PCA can be employed to
extract knowledge from the data set and transform a large set of variables into a smaller
one. The reduction in the number of variables naturally decreases the model accuracy;
hence, the main purpose of PCA is to reduce the number of variables while maintaining as
much information as possible.

The step-by-step procedure to execute the PCA is as follows [67]:

• Standardization: To avoid dominance of variables with greater magnitudes, the orig-
inal data D is standardized using the Z-score:

Z =
1

σ
(D −Dav1) (2.45)

where Dav is the average and σ is the standard deviation of D, and 1 a vector of
ones.

• Covariance: Compute the covariance matrix to determine how much the variables
vary with respect to each other, thus capturing their inter-relationships.

• Eigen-analysis: The eigenvectors V of the covariance matrix are the Principal Com-
ponent (PC) directions and the corresponding eigenvalues Λ yield their variances, as
follows:

Z = cov(Z) (2.46)

[V, Λ] = eig(Z) (2.47)

λ = diag(Λ) (2.48)

λinf =
λ∑
i λi

(2.49)

where λinf represents the information level, in terms of percentage, for each eigen-
vector.
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• Feature Vector: Discarding the PCs with lesser information, from V, the remaining
ones form a matrix known as Feature Vector F, with the PCs being calculated as
follows:

PC = FTD (2.50)

where the quantity of PCs is determined by sorting λinf in descending order and
aggregating them until a minimum amount of information is achieved.

2.4.2 Box Cox Transformation

Normality is an important assumption for statistical techniques. However, real world data
may not always adhere to a normal shape behavior; thus, the Box Cox transformation can
be employed to transform the non-normal data into a normal shape [68]. The Box Cox
transformation W of non-normal data w can be defined as follows:

W =

{
wγ−1
γ
, if γ 6= 0

log(w), if γ = 0
γ ∈ [−5, 5] (2.51)

where γ is a parameter estimated to minimize the standard deviation of the transformed
data. For example, if w represents the daily average energy price, obtained from the
HOEP data for the months of May in the years from 2015 to 2019, Figure 2.2a depicts the
histogram of w. Observe the non-normal shape of the data with some extreme points. Thus,
W can be calculated using equation (2.51), where the data is normalized for γ = 0.0249,
and its histogram is presented in Figure 2.2b.

Given the transformation W , the extreme points are filtered from the normal distribu-
tion using the concept of Confidence Interval (CI). For example, sorting the values of W
in ascending order W ∗, and assuming that the total number of samples is S, a CI of p% is
given by [69]:

CIp% =
[
W −

(
W ∗

(1+p)/2 −W
)
,W −

(
W ∗

(1−p)/2 −W
)]

(2.52)

where W is the average of W , W ∗
(1−p)/2 is the (1− p)/2 floor denoted by W ∗

bS(1−p)/2c of the

S samples, and W ∗
(1+p)/2 is the (1 + p)/2 ceiling denoted by W ∗

dS(1+p)/2e of the S samples.
Hence, the remaining data represents the majority of occurrences in the original data.
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(a) (b)

Figure 2.2: Histogram of (a) w, and (b) W .

2.5 Summary

In this Chapter, the main background topics related to this thesis were covered. A general
overview on ESS technologies and the services they may provide to the grid were first
presented. A detailed description of CAES systems was provided, presenting its general
configuration, operation modes, possible role in energy, reserve and frequency regulation
markets, thermodynamic configurations, and storage vessels under development. The lim-
itations of SO were discussed, and the alternative to represent uncertainties using range
arithmetic based techniques such as RO, AA, and AP were presented. Finally, an intro-
duction to PCA to reduce the dimension of a problem, and the Box Cox Transformation
to remove outliers in historical data were presented.
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Chapter 3

Deterministic Self-Scheduling Models
of CAES Systems

This Chapter presents the mathematical model of a self-scheduling, price-taker CAES
facility participating in day-ahead electricity markets, taking into account its detailed
thermodynamic characteristics. Two different representations for the thermodynamics are
presented: a step function model, as proposed in [19], and a linearized model.

3.1 CAES System Model

3.1.1 Self-Scheduling Model of CAES Facility

The CAES facility is assumed to be a price-taker, i.e., it cannot affect the electricity market
prices by its actions. Hence, while participating in the day-ahead market, providing energy,
spinning and idle reserves, its objective is to maximize the daily profit of the facility, given
by:

max
PXt

F =
T∑
t

[
f(PX

t )−OCt
]

(3.1)
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where:

f(PX
t ) = Atπ

E
t +Btπ

SR
t + P ID

t πIDt ∀t (3.2)

At = PD
t − PC

t ∀t (3.3)

Bt = P SRD
t + P SRC

t ∀t (3.4)

OCt = CONG
t + PD

t V OM
e + PC

t V OM
c ∀t (3.5)

CONG
t = HR(PD

t )PD
t π

NG ∀t (3.6)

where all variables, parameters, indices and functions are defined in the Nomenclature
section. The revenue from participation in the energy market is given by the first term of
(3.2), where the CAES facility pays for charging and receives a payment for discharging
as given in (3.3); the facility is paid for spinning reserve services during charge/discharge
operation as denoted by the second term of (3.2) and (3.4); and payment for the idle reserve
service is given by the third term of (3.2). The operations cost of the facility is given by
(3.5), where its first term denotes the cost of natural gas usage during discharging (3.6),
and the second and third terms denote the Variable Operational and Maintenance (VOM)
costs for the expander and compressor, respectively.

The operational constraints are defined as follows:

xCt + xDt ≤ 1 ∀t (3.7)

xCt + xIDt ≤ 1 ∀t (3.8)

xDt + xIDt ≤ 1 ∀t (3.9)

PC
t ≤ P

C
xCt ∀t (3.10)

PD
t ≥ PDxDt ∀t (3.11)

0 ≤ P ID
t ≤ QSCxIDt ∀t (3.12)

P SRC
t ≤ PC

t − PCxCt ∀t (3.13)

P SRD
t ≤ P

D
xDt − PD

t ∀t (3.14)

The constraints (3.7), (3.8), and (3.9) ensure that the CAES facility operates in either
charging, discharging, or idle modes; removing (3.7) would allow the CAES facility to
charge and discharge simultaneously. Equations (3.10) to (3.12) denote the maximum
power capacity during charging, minimum discharging capacity, and the range of idle op-
eration, respectively. The lower and upper limits of the compressor charging power must
be between 40%-100% of the rated power, where its efficiency is approximately constant,
and for the turbine the lower and upper limits must be between 30%-100% of its rated
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power, where its efficiency is not compromised [29]. In (3.13), P SRC denotes the spinning
reserve power made available to the system during charging operation, where the facility
ramps down its charging in order to reduce the system load and hence provide a spinning
reserve. Similarly, in (3.14), P SRD denotes the spinning reserve during discharging opera-
tion, where the facility ramps up its discharging power to provide more energy to the grid.
Up-charging or down-discharging to provide downward spinning reserve is not considered
in this work.

The inter-temporal variation of the SOC is given by:

SOCt+1 = SOCt +
airCt 3, 600

CA
− airDt 3, 600

CA
∀t (3.15)

airCt = AFRC(SOCt)P
C
t ∀t (3.16)

airDt = AFRD(PD
t )PD

t ∀t (3.17)

SOC ≤ SOCt ≤ SOC ∀t (3.18)

SOCt ≥ SOCf ∀t = T (3.19)

The SOC at time t+ 1 is calculated in (3.15). The amount of air charged/discharged is de-
termined by the Air Flow Rate (AFR) of the facility multiplied by the charging/discharging
power, as in (3.16) and (3.17), respectively. Constraint (3.18) ensures the SOC is main-
tained within limits. Since the facility participates in the day-ahead market, it requires to
maintain a specified minimum SOC at the end of the day, in order to be better prepared
for the next day; thus, in (3.19) a minimum limit SOCf is set.

The cost of natural gas (3.6), air charged (3.16) and air discharged (3.17) are variables
dependent on the thermodynamic characteristics of the facility. As the SOC of the facility
increases, so does the pressure inside the cavern; thus, it becomes difficult to store more
air inside the cavern and the charging AFR decreases. The efficiency of a high pressure
turbine reduces when operating below its rated power; thus, a greater discharging AFR is
required to generate one unit of electricity. Hence, a higher AFR requires larger amount
of natural gas, which increases the Heat Rate (HR) of the facility.

3.1.2 Thermodynamic Models

The thermodynamic characteristics of the CAES facilities were extracted from dynamic
studies presented in [70]. When charging the facility from its minimum SOC to its max-
imum at full power, as the pressure inside the cavern increase it becomes harder to store
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more air inside; thus, the charging AFR decreases as illustrated in Figure 3.1a. As pre-
viously discussed, the high pressure turbine efficiency decreases when operating below its
rated power, resulting in a greater AFR is required to generate one unit of power along
with a greater quantity of natural gas. Hence, the discharging AFR and HR increase for
low discharging power, as depicted in Figure 3.1b and Figure 3.1c, respectively.

(a) (b)

(c)

Figure 3.1: Original CAES thermodynamic characteristics: (a) AFRC vs SOC, (b) AFRD

vs discharging power, and (c) HR vs discharging power [19].
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Step Function Model

As proposed in [19], the thermodynamic characteristics of the CAES facility can be rep-
resented as step functions, as illustrated in Figure 3.2, assuming a 100 MW turbine. The
charging/discharging AFR and HR of the facility are determined by identifying the oper-
ating point of the facility, i.e., the SOC and discharging power. For this purpose, a set of
parameters, auxiliary and binary variables are introduced. The charging AFR based on
the SOC of the cavern and mass of air charged are determined as follows:

(a)

(b)

Figure 3.2: Step-function thermodynamic model: (a) charging AFR vs SOC, and (b)
discharging AFR and HR vs discharging power.
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SOCt =
nc∑
s=1

(bct,s + uct,sS
C
s ) ∀t (3.20)

0 ≤ bCt,s ≤ uCt,sb
C

s ∀t, s (3.21)
nc∑
s=1

uCt,s = 1 ∀t (3.22)

airCt +M ≥ AFRC
s P

C
t + uCt,sM ∀t, s (3.23)

airCt −M ≤ AFRC
s P

C
t − uCt,sM ∀t, s (3.24)

where equations (3.20)-(3.22) identify the segment of operation, i.e., the charging AFR,
and (3.23)-(3.24) calculates the mass of air charged.

The following equations determine the discharging AFR and HR based on the power
discharged, and calculates the mass of air discharged and cost of natural gas:

PD
t =

nd∑
s′=1

(bDt,s′ + uDt,s′q
D

s′
) ∀t (3.25)

0 ≤ bDt,s′ ≤ uDt,s′b
D

s′ ∀t, s′ (3.26)

nd∑
s′=1

uDt,s′ = xDt ∀t (3.27)

airDt =
nd∑
s′=1

AFRD
s′ (b

D
t,s′ + uDt,s′q

D

s′
) ∀t (3.28)

CONG
t =

nd∑
s′=1

HRs′(b
D
t,s′ + uDt,s′q

D

s′
)πNG ∀t (3.29)

where equations (3.25)-(3.27) identify the segment of operation, i.e., the discharging AFR
and HR, and (3.28)-(3.29) calculates the mass of air discharged and cost of natural gas,
respectively.

Linear Thermodynamic Model

The previous step-function model, despite yielding a reasonable approximation of the ther-
modynamic characteristics, introduces several binary variables in the model, hence increas-
ing the computational burden; furthermore, discontinuities make it difficult to implement
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methods that track correlated uncertainties, such as AA and AP. Thus, a novel thermo-
dynamic model of the CAES facility is proposed here using linear functions, based on the
Huntorf project in Germany [12], as shown in Figure 3.3. This avoids introducing new
binary and auxiliary variables to model the discontinuities, while also yielding a reason-
able approximation to the original functions as illustrated in Figure 3.1. Therefore, the
charging/discharging AFR and HR equations are obtained using linear interpolation as
follows:

(a) (b)

(c)

Figure 3.3: CAES thermodynamic characteristics: (a) AFRC vs SOC, (b) AFRD vs Dis-
charging power, and (c) HR vs Discharging power.
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AFRC(SOCt) = −0.3SOCt + 1.95 ∀t (3.30)

AFRD(PD
t ) = −0.9

70
PD
t +

18.8

7
∀t (3.31)

HR(PD
t ) = −1.25

70
PD
t +

457.5

70
∀t (3.32)

Replacing (3.30) in (3.16), the mass of air charged at time t is given by:

airCt = −0.3 SOCtP
C
t︸ ︷︷ ︸

Bi-linear term

+1.95PC
t ∀t (3.33)

where the bi-linear term in (3.33) can be linearized to transform the self-scheduling model
of the CAES facility, discussed earlier, into an MILP problem. Thus, given the interval of
the variables SOCt and PC

t , the bi-linear term can be relaxed into a set of linear constraints
using McCormick Envelopes as follows [71]:

wt = SOCtP
C
t ∀t (3.34)

wt ≥ SOCPC
t + SOCtP

C − SOC PC ∀t (3.35)

wt ≥ SOCPC
t + SOCtP

C − SOC PC ∀t (3.36)

wt ≤ SOCPC
t + SOCtP

C − SOCPC ∀t (3.37)

wt ≤ SOCPC
t + SOCtP

C − SOCPC ∀t (3.38)

Accordingly, (3.33) can be reformulated as:

airCt = −0.3wt + 1.95PC
t ∀t (3.39)

Constraints (3.35)-(3.38) are valid when the CAES facility is charging, i.e., for PC
t within

its lower and upper limits. However, when the facility is not charging (PC
t = 0) the problem

becomes numerically infeasible, since (3.35) and (3.38) would force wt to be positive and
negative, respectively. Thus, the big M approach is used in the model to avoid numerical
infeasibility, as follows:

wt ≤MxCt ∀t (3.40)

wt ≥SOCPC
t + SOCtP

C − SOC PC −M(1− xCt ) ∀t (3.41)

wt ≥SOCPC
t + SOCtP

C − SOC PC −M(1− xCt ) ∀t (3.42)

wt ≤SOCPC
t + SOCtP

C − SOCPC
+M(1− xCt ) ∀t (3.43)

wt ≤SOCPC
t + SOCtP

C − SOCPC +M(1− xCt ) ∀t (3.44)
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The above set of constraints ensure that when the CAES facility is not in charging mode,
i.e., wt = 0, no numerical infeasilibility arises from the constraints.

The relationships for the mass of air discharged and the cost of natural gas are obtained
from replacing (3.31) and (3.32) in (3.17) and (3.6), respectively, as follows:

airDt = −0.9

70

(
PD
t

)2
+

18.8

7
PD
t ∀t (3.45)

CONG
t

πNG
= −1.25

70

(
PD
t

)2
+

457.5

70
PD
t ∀t (3.46)

Taking the derivative of each equation in terms of PD
t and equating to zero, yields the

point of maxima, which are 104.4 MW and 183 MW, respectively. Since the CAES facility
operates between 30-100 MW, the air discharged would be in the curvature of (3.45), and
the cost of natural gas would be in the linear region of (3.46); thus, these equations can
be approximated using piecewise linearization and a straight line, respectively, as shown
in Figure 3.4. Their equations can then be approximated by:

PD
t =

2∑
s=1

(
bDt,s + q

s
uDt,s
)

∀t (3.47)

2∑
s=1

uDt,s = xDt ∀t (3.48)

0 ≤ bDt,s ≤ b
D
uDt,s ∀t, s (3.49)

airDt =
2∑
s=1

(
angDs b

D
t,s +Dsu

D
t,s

)
∀t (3.50)

CONG
t =

(
53.57xDt + 4.215PD

t

)
πNG ∀t (3.51)

In (3.47) to (3.49), the power discharged by the CAES facility is decomposed in terms of
variables and parameters that identify the point of operation of the facility and used to
determine the mass of air discharged (3.50). In (3.51), the cost of natural gas is determined
from the state of operation and discharged power. Hence, the model can be solved as
an MILP problem, avoiding the complexities introduced by the discontinuities of step
functions.
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(a)

(b)

Figure 3.4: Linear approximations of (a) (3.45) and (b) (3.46).

3.2 Summary

In this Chapter, the deterministic self-scheduling model for a price-taker CAES facility
that partakes in the day-ahead energy and reserve markets was presented. The operational
constraints of the facility were presented, considering its thermodynamic characteristics for
more realistic modeling. For this purpose, two mathematical models were presented: the
first through step functions and the second using a linearization approach that significantly
improves the solution convergence of the model, and also allows implementing techniques
that keep track of correlated uncertainties, such as AA and AP methodologies.
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Chapter 4

Modeling of CAES Systems
Considering Uncertainties

This Chapter presents an extension of the mathematical model of the self-scheduling CAES
price-taker facility participating in day-ahead electricity markets presented in Chapter 3,
taking into account uncertainties in the electricity market prices. Three different ap-
proaches are used to represent the uncertainties, namely, RO, AA and PCA-AP. The
detailed uncertainty model formulations for each of the approaches are presented next.

4.1 Robust Optimization (RO)

In the RO model, the objective is to maximize the daily profit of a price-taker CAES
facility under worst case scenario. To this effect, electricity prices are expressed in terms
of their center values (forecast price) and the deviation from it, as follows:

πYt = πY0,t(1 + ∆πYt ) ∀t, Y (4.1)

where ∆πY ∈ [−∆π,∆π]. Substituting (4.1) in (3.2), one can write:

f(PX
t ) = Atπ

E
0,t(1 + ∆πEt ) +Btπ

SR
0,t (1 + ∆πSRt ) + P ID

t πID0,t (1 + ∆πIDt ) ∀t (4.2)

which can be written as follows:

f(PX
t ) = Atπ

E
0,t +Btπ

SR
0,t + P ID

t πID0,t︸ ︷︷ ︸
f0(PXt )

+∆πEt Atπ
E
t + ∆πSRt Btπ

SR
t + ∆πIDt P ID

t πIDt ∀t (4.3)
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Thus, substituting (4.3) in (3.1), and reformulating the objective function to maximize the
profit under worst-case scenario, the objective function and additional constraints of the
optimization problem can be stated as follows:

max
PXt

min
∆πYt

F =
T∑
t

[f0(PX
t )−OCt + ∆πEt At︸ ︷︷ ︸

Bi-linear term

πE0,t+

∆πSRt Bt︸ ︷︷ ︸
Bi-linear term

πSR0,t + ∆πIDt P ID
t︸ ︷︷ ︸

Bi-linear term

πID0,t ] (4.4)

where:

∆πYt = ∆πY+
t −∆πY−t ∀t, Y ∈ [E, SR, ID] (4.5)

∆πY+
t −∆π ≤ 0 ∀t, Y (4.6)

∆πY−t −∆π ≤ 0 ∀t, Y (4.7)

T∑
t

∆πY+
t + ∆πY−t

∆π
− Γ ≤ 0 ∀Y (4.8)

∆πY+
t ,∆πY−t ≥ 0 ∀t, Y (4.9)

The modified objective function (4.4) represents a max-min problem, where the profit is
maximized in terms of power arbitrage variables and minimized in terms of price deviation
variables. Equation (4.5) calculates the energy, spinning and idle reserve price deviations,
and (4.6) and (4.7) limit the upward and downward price deviations to their maximum
allowed levels, respectively. Finally, (4.8) controls the flexibility of conservatism in the
model through the budget of uncertainty Γ, which limits the number of times the prices
deviate from their forecast values. Choosing a higher ∆π provides more financial protection
against larger price mismatches.

The max-min structure in (4.4) is a saddle node problem, usually non-convex [31], with
a set of bi-linear terms, which cannot be solved as an MILP optimization. To address this
issue, the dual of the minimization problem (4.4)-(4.9) can be written as follows:

max
PXt ,α

Y
1,t−αY3,t,αY4

F =
T∑
t

[
f0(PX

t )−OCt + ∆π(αE2,t + αE3,t + αSR2,t + αSR3,t + αID2,t + αID3,t )
]
+(

αE4 + αSR4 + αID4

)
Γ (4.10)
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where:

αY2,t, α
Y
3,t, α

Y
4 ≤ 0 ∀t, Y (4.11)

αE1,t = Atπ
E
0,t ∀t (4.12)

αSR1,t = Btπ
SR
0,t ∀t (4.13)

αID1,t = P ID
t πID0,t ∀t (4.14)

− αY1,t + αY2,t +
αY4
∆π
≤ 0 ∀t, Y (4.15)

αY1,t + αY3,t +
αY4
∆π
≤ 0 ∀t, Y (4.16)

Thus, in (4.10), the objective function beams a maximization problem without bi-linear
terms, and hence the problem can be solved as an MILP problem.

In RO, a constraint with n uncertain parameters has a probability P of being violated,
which can be determined for a given value of Γ as follows [22]:

P = 1− Φ

(
Γ− 1√

n

)
(4.17)

where Φ is the cumulative distribution of a standard normal function. Thus, based on
the results obtained and the probability of violation corresponding to Γ, the CAES facility
operator can choose a schedule that ensures profit maximization while protecting it from
a given level of uncertainty.

4.2 Affine Arithmetic (AA)

As stated earlier, the main sources of uncertainties for a price-taker CAES facility are the
electricity market prices. These can be expressed in their affine forms, as follows:

π̂Yt = πY0,t(1 + εYt ∆π) ∀t, Y (4.18)

In this case, a fixed interval of uncertainty is assumed for all hours of the day. However, in-
tervals of uncertainty can be estimated based on historical data, as discussed in Section 4.3.
The power dispatch variables can be expressed as:

P̂X
t = PX

0,t + PX
1,tε

E
t + PX

2,tε
SR
t + PX

3,tε
ID
t ∀t,X (4.19)

PX
h,t ≥ 0 ∀t, h ∈ [1, 2, 3] (4.20)
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where PX
0,t denotes the center terms of the power dispatch X, and PX

1,t, P
X
2,t and PX

3,t denotes
the adjustments in power dispatch, given the mismatch in prices Y , i.e., energy, spinning
and idle reserve prices, respectively. Substituting (4.18) and (4.19) in (3.1), yields:

max
P̂Xt

F =
T∑
t

[
f̂(P̂X

t )− ÔCt

]
(4.21)

where the affine forms of the CAES facility’s revenue and operating costs can be expressed
as follows:

f̂(P̂ x
t ) = (P̂D

t − P̂C
t )π̂Et + (P̂ SRD

t + P̂ SRC
t )π̂SRt + P̂ ID

t π̂IDt ∀t (4.22)

ÔCt = ĈO
NG

t + P̂D
t V OM

e + P̂C
t V OM

c ∀t (4.23)

The affine form of the CAES facility’s revenue in (4.22), can be expanded as follows:

f̂(P̂ x
t ) =

(
PD

0,t + PD
1,tε

E
t + PD

2,tε
SR
t + PD

3,tε
ID
t

− PC
0,t − PC

1,tε
E
t − PC

2,tε
SR
t − PC

3,tε
ID
t

)
πE0,t(1 + ∆πεEt )+(

P SRD
0,t + P SRD

1,t εEt + P SRD
2,t εSRt + P SRD

3,t εIDt

+ P SRC
0,t + P SRC

1,t εEt + P SRC
2,t εSRt + P SRC

3,t εIDt
)
πSR0,t (1 + ∆πεSRt )

+
(
P ID

0,t + P ID
1,t ε

E
t + P ID

2,t ε
SR
t + P ID

3,t ε
ID
t

)
πID0,t (1 + ∆πεIDt ) ∀t (4.24)

Executing the affine and non-affine operations, the resulting terms can be grouped as
follows:

f̂(P̂ x
t ) = (PD

0,t − PC
0,t)π

E
0,t + (P SRD

0,t + P SRC
0,t )πSR0,t + P ID

0,t π
ID
0,t︸ ︷︷ ︸

Center terms

+

((
(PD

0,t − PC
0,t)∆π + PD

1,t − PC
1,t

)
πE0,t + (P SRD

1,t + P SRC
1,t )πSR0,t + P ID

1,t π
ID
0,t

)
εEt︸ ︷︷ ︸

Affine energy terms

+

(
(PD

2,t − PC
2,t)π

E
0,t +

(
(P SRD

0,t − P SRC
0,t )∆π + P SRD

2,t + P SRC
2,t

)
πSR0,t + P ID

2,t π
ID
0,t

)
εSRt︸ ︷︷ ︸

Affine spinning reserve terms

+

(
(PD

3,t − PC
3,t)π

E
0,t + (P SRD

3,t + P SRC
3,t )πSR0,t +

(
P ID

0,t ∆π + P ID
3,t

)
πID0,t

)
εIDt︸ ︷︷ ︸

Affine idle reserve terms

+

3∑
h=1

(
(PD

h,t − PC
h,t)π

E
0,t + (P SRD

h,t − P SRC
h,t )πSR0,t + P ID

h,t π
ID
0,t

)
∆π︸ ︷︷ ︸

Non-affine terms

∀t (4.25)
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Note that the noise associated with non-affine terms, i.e., the product of two noise terms,
are assumed to be equal to 1, which is a conservative approach, but it provides more
protection against internal sources of errors.

Substituting (3.51) in (4.23), the affine form representation of the CAES facility’s op-
erating cost can be expanded and written as follows:

ÔCt =53.57πNGxDt + (PD
0,t + PD

1,tε
E
t + PD

2,tε
SR
t + PD

3,tε
ID
t )4.215πNG+

(PD
0,t + PD

1,tε
E
t + PD

2,tε
SR
t + PD

3,tε
ID
t )V OM e+

(PC
0,t + PC

1,tε
E
t + PC

2,tε
SR
t + PC

3,tε
ID
t )V OM c ∀t (4.26)

Executing the affine operations, the terms can be grouped like before, as follows:

ÔCt = 53.57πNGxDt + PD
0,t(4.215πNG + V OM e) + PC

0,tV OM
c︸ ︷︷ ︸

Center terms

+

(
PD

1,t(4.215πNG + V OM e) + PC
1,tV OM

c
)
εEt︸ ︷︷ ︸

Affine energy terms

+
(
PD

2,t(4.215πNG + V OM e) + PC
2,tV OM

c
)
εSRt︸ ︷︷ ︸

Affine spinning reserve terms

+
(
PD

3,t(4.215πNG + V OM e) + PC
3,tV OM

c
)
εIDt︸ ︷︷ ︸

Affine idle reserve terms

∀t (4.27)

Subtracting (4.27) from (4.25) and re-organizing terms, one can write:

F0,t =(PD
0,t − PC

0,t)π
E
0,t + (P SRD

0,t + P SRC
0,t )πSR0,t + P ID

0,t π
ID
0,t − 53.57πNGxDt

− PD
0,t(4.215πNG + V OM e)− PC

0,tV OM
c ∀t (4.28)

F1,t =
((

(PD
0,t − PC

0,t)∆π + PD
1,t − PC

1,t

)
πE0,t + (P SRD

1,t + P SRC
1,t )πSR0,t

+ P ID
1,t π

ID
0,t − PD

1,t(4.215πNG + V OM e)− PC
1,tV OM

c
)
εEt ∀t (4.29)

F2,t =
(

(PD
2,t − PC

2,t)π
E
0,t +

(
(P SRD

0,t − P SRC
0,t )∆π + P SRD

2,t + P SRC
2,t

)
πSR0,t

+ P ID
2,t π

ID
0,t − PD

2,t(4.215πNG + V OM e)− PC
2,tV OM

c
)
εSRt ∀t (4.30)

F3,t =
(

(PD
3,t − PC

3,t)π
E
0,t + (P SRD

3,t + P SRC
3,t )πSR0,t +

(
P ID

0,t ∆π + P ID
3,t

)
πID0,t

− PD
3,t(4.215πNG + V OM e)− PC

3,tV OM
c
)
εIDt ∀t (4.31)

F4,t =
3∑

h=1

(
(PD

h,t − PC
h,t)π

E
0,t + (P SRD

h,t − P SRC
h,t )πSR0,t + P ID

h,t π
ID
0,t

)
∆π ∀t (4.32)
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where F0,t denotes the center, F1,t to F3,t represent the affine terms for energy, spinning
and idle reserve, respectively, and F4,t corresponds to the non-affine terms of the objective
function.

Since the CAES facility’s self-scheduling model in affine form includes binary and inter-
temporal variables, it cannot be solved using the decoupled approach of maximizing the
center and radius of the objective function separately, as the solution of one problem may
be infeasible for the other. Therefore, the objective function in affine form is formulated
as follows:

max
P̂Xt

T∑
t=1

(
F0,t +

∣∣∣∣∣
3∑

h=1

Fh,t −F4,t

∣∣∣∣∣
)

(4.33)

Note that the center and modulus of the radius are maximized simultaneously, yielding a
single and reasonably conservative day-ahead schedule for the CAES facility. Observe also
that maximization of the radius takes place by maximizing the affine terms and minimizing
the non-affine terms, thus avoiding a large and conservative radius, which may lead to
significantly lower profits or even losses.

The AA approach is not applied to the step function thermodynamic model due to the
large discontinuities present in it, which would require the introduction of new binary and
auxiliary variables; hence, increasing significantly the computational costs of solving the
problem. The proposed piecewise linear thermodynamic model, which presents a smoother
profile, makes the AA approach more feasible.

The operational constraints presented in (3.7)-(3.12) can be formulated according to
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(2.24), yielding:

PC
0,t +

3∑
h=1

PC
h,t ≤ P

C
xCt ∀t (4.34)

P SRC
0,t +

3∑
h=1

P SRC
h,t ≤ PC

0,t −
3∑

h=1

PC
h,t − PCxCt ∀t (4.35)

P SRD
0,t +

3∑
h=1

P SRD
h,t ≤ P

D
xDt − PD

0,t −
3∑

h=1

PD
h,t ∀t (4.36)

PD
0,t −

3∑
h=1

PD
h,t ≥ PDxDt ∀t (4.37)

0 ≤ P ID
0,t ±

3∑
h=1

P ID
h,t ≤ QSCxIDt ∀t (4.38)

Note that binary variables cannot be represented in affine form, since they are not contin-
uous, thus coordination constraints (3.7)-(3.9) remain unchanged.

The inter-temporal constraint (3.15) can be formulated according to (2.23), as follows:

SOC0,t+1 = SOC0,t +
(airC0,t − airD0,t)3, 600

CA
∀t (4.39)

p∑
h=1

SOCh,t+1 =

p∑
h=1

SOCh,t +

p∑
h=1

[
(airCh,t − airDh,t)3, 600

CA

]
∀t (4.40)

SOC0,t+1 +

p∑
h=1

|SOCh,t+1| ≤ SOC ∀t (4.41)

SOC0,t+1 −
p∑

h=1

|SOCh,t+1| ≥ SOC ∀t (4.42)

SOC0,t −
p∑

h=1

|SOCh,t| ≥ SOCf ∀t = T (4.43)

Note that SOCh,t are unrestricted-sign variables, and constraint (4.40) does not ensure
equality among the h terms as per (2.23), but guarantees that no limits are violated.
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Equations (3.39)-(3.44) can be represented in their affine forms as follows:

airC0,t = −0.3w0,t + 1.95PC
0,t ∀t (4.44)

3∑
h=1

airCh,t =
3∑

h=1

[
−0.3wh,t + 1.95PC

h,t

]
∀t (4.45)

w0,t −
3∑

h=1

wh,t ≥ SOCPC
0,t + SOC0,tP

C − SOC PC −M(1− xCt )

+
3∑

h=1

[
SOC PC

h,t + |SOCh,t|PC
]

∀t (4.46)

w0,t −
3∑

h=1

wh,t ≥ SOCPC
0,t + SOC0,tP

C − SOC PC −M(1− xCt )

+
3∑

h=1

[
SOC PC

h,t + |SOCh,t|P
C
]

∀t (4.47)

w0,t +
3∑

h=1

wh,t ≤ SOCPC
0,t + SOC0,tP

C − SOC PC −M(1− xCt )

−
3∑

h=1

[
SOC PC

h,t + |SOCh,t|P
C
]

∀t (4.48)

w0,t +
3∑

h=1

wh,t ≤ SOCPC
0,t + SOC0,tP

C − SOC PC −M(1− xCt )

−
3∑

h=1

[
SOC PC

h,t + |SOCh,t|PC
]

∀t (4.49)

w0,t, wh,t ≥ 0 ∀t, h (4.50)

Note that (4.45) does not ensure equality among the h terms as per (2.23), but guarantees
that the intervals are not violated.

Finally, the air discharged and the cost of natural gas can be represented in their affine

48



forms as follows:

PD
0,t =

2∑
s=1

(
bDt,s + q

s
uDt,s
)

∀t (4.51)

PD
0,t −

3∑
h=1

PD
h,t =

2∑
s′=1

(
bDt,s′ + q

s′
uDt,s′

)
∀t (4.52)

2∑
s=1

uDt,s = xDt ∀t (4.53)

2∑
s′=1

uDt,s′ = xDt ∀t (4.54)

0 ≤ bDt,s ≤ b
D
uDt,s ∀t, s (4.55)

0 ≤ bDt,s′ ≤ b
D
uDt,s′ ∀t, s′ (4.56)

airD0,t =
2∑
s=1

(
angDs b

D
t,s +Dsu

D
t,s

)
∀t (4.57)

airDt =
2∑

s′=1

(
angDs′ b

D
t,s′ +Ds′u

D
t,s′

)
∀t (4.58)

3∑
h=1

airDh,t = airD0,t − airDt ∀t (4.59)

CONG
0,t =

(
53.57xDt + 4.215PD

0,t

)
πNG ∀t (4.60)

CONG
h,t = 4.215PD

h,tπ
NG ∀t, h (4.61)

where the set s′, parameters q
s′

and Ds′ , and variables bDt,s′ and uDt,s′ play a similar role as

s, q
s
, Ds, b

D
t,s and uDt,s, respectively, to determine the lower bound for the air discharged

in (4.58). Thus, the interval of the air discharged is determined by subtracting the lower
bound from the center value, as in (4.59) and illustrated in Figure 4.1. Since the cost of
natural gas is a linear function as shown in Figure (3.4b), its uncertainty terms can be
determined directly, as in (4.60) and (4.61).
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Figure 4.1: Typical air discharge characteristic of CAES facility denoting various intervals.

4.3 Principal Components Analysis (PCA)-Affine Poli-

cies (AP)

The first step in the PCA-AP model is to determine the matrix of eigenvectors V associated
with the price matrices. Motivated by the use of PCA to forecast electricity prices and
study their fluctuations [72,73], it is assumed here that PCA price matrices can be formed
using the hourly electricity prices for energy, spinning, and idle reserves for D days, which
can be expressed as follows:

ΠY =

π
Y
1,1 . . . πY1,24
...

. . .
...

πYD,1 . . . πYD,24

 ∀Y (4.62)
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where the rows represent the day and the columns the hour. Executing the aforementioned
PCA steps, based on the eigenvectors VY and eigenvalues ΛY of ΠY, the PC can be
determined as follows [67]:

PCY
24×1 =

(
VY
)T

24×24
πY24×1 ∀Y (4.63)

Electricity prices have a forecast value and a range of uncertainty, which can be represented
using APs as follows:

π̂Yt = πY0,t(1 + ∆πYt ) ∀t, Y (4.64)

−∆π
Y

t ≤ ∆πYt ≤ ∆π
Y

t ∀t, Y (4.65)

where ∆πYt represents the mismatches in prices of Y , which can be included in the repre-
sentation of power dispatch variables in AP form to adjust the dispatch according to the
mismatches in actual prices with respect to the forecast, as explained next.

Replacing (4.64) in (4.63), the AP form of PCY can be obtained as follows:

P̂C
Y

=
(
VY
)T
πY0︸ ︷︷ ︸

PCY0

+
(
VY
)T
πY0 �∆πY︸ ︷︷ ︸

∆PCY

∀Y (4.66)

where πY0 = [πY0,1 π
Y
0,2 . . . π

Y
0,24]T and πY0 � ∆πY = [πY0,1∆πY1 π

Y
0,2∆πY2 . . . π

Y
0,24∆πY24]T . From

(4.66), the following limits can be defined, based on (4.65):

∆PC
Y

=
(
VY
)T
πY0 ∆π

Y ∀Y (4.67)

−∆PC
Y ≤ ∆PCY ≤ ∆PC

Y ∀Y (4.68)

From (4.63), electricity prices can be represented as a function of PCs. In order to do
so, the matrix LY can be defined as follows:

LY =

 l
Y
1,1 . . . lY1,24
...

. . .
...

lY24,1 . . . lY24,24

 =
((

VY
)T)−1

∀Y (4.69)

Discarding the columns associated with the PCs with low information, the AP form of
prices can be expressed as follows:

π̂Y24×1 = LY
24×NPCP̂C

Y

NPC×1 ∀Y (4.70)

π̂Yt =
NPC∑
n=1

lYt,nPC
Y
0,n︸ ︷︷ ︸

πY0,t

+
NPC∑
n=1

lYt,n∆PCY
n︸ ︷︷ ︸

∆πYt

∀t, Y (4.71)
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And the power dispatch variables in their AP forms can be represented as follows:

P̂X
t = PX

0,t +
∑
Y

NPC∑
n=1

pX,Yn,t ∆PCY
n ∀t,X (4.72)

where pX,Yn,t are the adjustment terms of power dispatch X with respect to the mismatch
of PC n of electricity price Y at time t, which are unrestricted sign variables. Hence:

PX
0,t +

∑
Y

NPC∑
n=1

∣∣pX,Yn,t

∣∣∆PCY

n ≤ P
X ∀t,X (4.73)

PX
0,t −

∑
Y

NPC∑
n=1

∣∣pX,Yn,t

∣∣∆PCY

n ≥ PX ∀t,X (4.74)

Since there are modulus in the above formulation, and in order to avoid non-linearities,
auxiliary variables and binary variables can be introduced as follows [74]:

pX,Yn,t = pX,Y+
n,t − pX,Y−n,t ∀t, n,X, Y (4.75)

pX,Y+
n,t ≤MxpX,Yn,t ∀t, n,X, Y (4.76)

pX,Y−n,t ≤M(1− xpX,Yn,t ) ∀t, n,X, Y (4.77)∣∣pX,Yn,t

∣∣ = pX,Y+
n,t + pX,Y−n,t ∀t, n,X, Y (4.78)

pX,Y+
n,t ; pX,Y−n,t ≥ 0 ∀t, n,X, Y (4.79)

where M is a large number. Thus, as the number of PCs NPC increase, so does the
variables and constraints in the model.

For better presentation, (4.72) can be rewritten as:

P̂X
t = PX

0,t + ∆PX
t ∀t,X (4.80)

where:

∆PX
t =

∑
Y

NPC∑
n=1

pX,Yn,t ∆PCY
n ∀t,X (4.81)

Then, substituting (4.71) and (4.80) in (3.1) yields:

max
P̂Xt

F =
T∑
t

[
f̂(P̂X

t )− ÔCt

]
(4.82)
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where:

f̂(P̂ x
t ) = (P̂D

t − P̂C
t )π̂Et + (P̂ SRD

t + P̂ SRC
t )π̂SRt + P̂ ID

t π̂IDt ∀t (4.83)

ÔCt = ĈO
NG

t + P̂D
t V OM

e + P̂C
t V OM

c ∀t (4.84)

Expanding the AP form representation of the CAES facility’s revenue in (4.83), one has:

f̂(P̂X
t ) =(PD

0,t + ∆PD
t − PC

0,t −∆PC
t )(πE0,t + ∆πEt )+

(P SRD
0,t + ∆P SRD

t + P SRC
0,t + ∆P SRC

t )(πSR0,t + ∆πSRt )+

(P ID
0,t + ∆P ID

t )(πID0,t + ∆πIDt ) ∀t (4.85)

which, re-arranging and grouping terms, results in:

f̂(P̂X
t ) = (PD

0,t − PC
0,t)π

E
0,t + (P SRD

0,t + P SRC
0,t )πSR0,t + P ID

0,t π
ID
0,t︸ ︷︷ ︸

Center terms

+

(PD
0,t − PC

0,t)∆π
E
t + (∆PD

t −∆PC
t )πEt︸ ︷︷ ︸

Energy linear uncertainty terms

+

(P SRD
0,t + P SRC

0,t )∆πSRt + (∆P SRD
t + ∆P SRC

t )πSRt︸ ︷︷ ︸
Spinning reserve linear uncertainty terms

+

P ID
0,t ∆πIDt + ∆P ID

t πIDt︸ ︷︷ ︸
Idle reserve linear uncertainty terms

+

(∆PD
t −∆PC

t )∆πEt + (∆P SRD
t + ∆P SRC

t )∆πSRt + ∆P ID
t ∆πIDt︸ ︷︷ ︸

Non-linear uncertainty terms

∀t (4.86)

Expanding the operations cost of the CAES facility expressed in AP form in (4.84),
one obtains:

ÔCt = 53.57πNGxDt + PD
0,t(4.215πNG + V OM e) + PC

0,tV OM
c︸ ︷︷ ︸

Center terms

+

∆PD
t (4.215πNG + V OM e) + ∆PC

t V OM
c︸ ︷︷ ︸

Linear uncertainty terms

∀t (4.87)
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Subtracting (4.87) from (4.86), the result can then be split into the following terms:

F0,t =(PD
0,t − PC

0,t)π
E
0,t + (P SRD

0,t + P SRC
0,t )πSR0,t + P ID

0,t π
ID
0,t − 53.57πNGxDt

− PD
0,t(4.215πNG + V OM e)− PC

0,tV OM
c ∀t (4.88)

Fl,t =(PD
0,t − PC

0,t)∆π
E
t + (∆PD

t −∆PC
t )πEt +

(P SRD
0,t + P SRC

0,t )∆πSRt + (∆P SRD
t + ∆P SRC

t )πSRt +

P ID
0,t ∆πIDt + ∆P ID

t πIDt −∆PD
t (4.215πNG + V OM e)−∆PC

t V OM
c ∀t (4.89)

Fnl,t =(∆PD
t −∆PC

t )∆πEt + (∆P SRD
t + ∆P SRC

t )∆πSRt + ∆P ID
t ∆πIDt ∀t (4.90)

where F0,t denotes the center, Fl,t the linear uncertainty terms, and Fnl,t the non-linear
uncertainty terms. To secure protection from the worst uncertainties, the self-scheduling
model of the CAES facility is be optimized for the widest intervals of uncertainty, i.e., for

∆PCY = ∆PC
Y

, which linearizes the bi-linear terms in (4.90).

The objective function can be summarized as follows:

max
P̂Xt

T∑
t=1

(
F0,t + Fl,t −Fnl,t

)
(4.91)

where the center F0,t and radius Fl,t and Fnl,t of the profit are maximized simultaneously; to
avoid a conservative result, the radius is maximized in terms of Fl,t and minimized in terms
of Fnl,t. Similar to AA, the PCA-AP approach is not applied to the step model due to its
discontinuities, which make the tracking of correlated uncertainties highly complex. Thus,
the proposed approach is applied in the proposed piecewise linear thermodynamic model,
where the discontinuities present a smoother profile. The operational constraints of this
optimization problem representing the CAES facility (3.7)-(3.12) can then be reformulated
using (4.73) and (4.74), which are given by:

∣∣∆PX
t

∣∣ =
∑
Y

NPC∑
n=1

∣∣∣pX,Yn,t

∣∣∣∆PCY

n ∀t,X (4.92)

PC
0,t +

∣∣∆PC
t

∣∣ ≤ P
C
xCt ∀t (4.93)

P SRC
0,t +

∣∣∆P SRC
t

∣∣ ≤ PC
0,t −

∣∣∆PC
t

∣∣− PCxCt ∀t (4.94)

P SRD
0,t +

∣∣∆P SRD
t

∣∣ ≤ P
D
xDt − PD

0,t −
∣∣∆PD

t

∣∣ ∀t (4.95)

PD
0,t −

∣∣∆PD
t

∣∣ ≥ PDxDt ∀t (4.96)

0 ≤ P ID
0,t ±

∣∣∆P ID
t

∣∣ ≤ QSCxIDt ∀t (4.97)
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The inter-temporal constraints (3.15) can be represented using the following set of
relations:

SOC0,t+1 = SOC0,t +
(airC0,t − airC0,t)3, 600

CA
∀t (4.98)

∆SOCt+1 = ∆SOCt +
(∆airCt −∆airCt )3, 600

CA
∀t (4.99)

SOC0,t+1 + |∆SOCt| ≤ SOC ∀t (4.100)

SOC0,t+1 − |∆SOCt| ≥ SOC ∀t (4.101)

SOC0,t+1 − |∆SOCt| ≥ SOCf ∀t = T (4.102)

Equations (3.39)-(3.44) can be represented using the following relations:

airC0,t = −0.3w0,t + 1.95PC
0,t ∀t (4.103)

∆airCt = −∆wt + 1.95
∣∣∆PC

t

∣∣ ∀t (4.104)

w0,t −∆wt ≥ SOCPC
0,t + SOC0,tP

C − SOC PC −M(1− xCt )

+
[
SOC

∣∣∆PC
t

∣∣+ |∆SOCt|PC
]

∀t (4.105)

w0,t −∆wt ≥ SOCPC
0,t + SOC0,tP

C − SOC PC −M(1− xCt )

+
[
SOC

∣∣∆PC
t

∣∣+ |∆SOCt|P
C
]

∀t (4.106)

w0,t + ∆wt ≤ SOCPC
0,t + SOC0,tP

C − SOC PC −M(1− xCt )

−
[
SOC

∣∣∆PC
t

∣∣+ |∆SOCt|P
C
]

∀t (4.107)

w0,t + ∆wt ≤ SOCPC
0,t + SOC0,tP

C − SOC PC −M(1− xCt )

−
[
SOC

∣∣∆PC
t

∣∣+ |∆SOCt|PC
]

∀t (4.108)

w0,t, ∆wt ≥ 0 ∀t, h (4.109)

Finally, the relations pertaining to the air discharged and cost of natural gas are represented
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as follows:

PD
0,t =

2∑
s=1

(
bDt,s + q

s
uDt,s
)

∀t (4.110)

PD
0,t −

∣∣∆PD
t

∣∣ =
2∑

s′=1

(
bDt,s′ + q

s′
uDt,s′

)
∀t (4.111)

2∑
s=1

uDt,s = xDt ∀t (4.112)

2∑
s′=1

uDt,s′ = xDt ∀t (4.113)

0 ≤ bDt,s ≤ b
D
uDt,s ∀t, s (4.114)

0 ≤ bDt,s′ ≤ b
D
uDt,s′ ∀t, s′ (4.115)

airD0,t =
2∑
s=1

(
angDs b

D
t,s +Dsu

D
t,s

)
∀t (4.116)

airDt =
2∑

s′=1

(
angDs′ b

D
t,s′ +Ds′u

D
t,s′

)
∀t (4.117)

∆airDt = airD0,t − airDt ∀t (4.118)

CONG
0,t =

(
53.57xDt + 4.215PD

0,t

)
πNG ∀t (4.119)

∆CONG
t = 4.215∆PD

t π
NG ∀t, h (4.120)

Note that the main difference between the objective functions in AP, given by (4.91),
with that of the AA approach, given by (4.33), is that in the AP model the radius is not
maximized in terms of the modulus, since the adjustment variables pX,Yn,t are unrestricted
sign variables, while in AA the adjustment variables PX

h,t are positive (4.20).

4.4 Summary

The self-scheduling model of a price-taker CAES facility presented in Chapter 3 was further
extended in this Chapter to consider uncertainties in prices of various electricity market
services such as energy, spinning and idle reserves, based on range arithmetic techniques.
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For this purpose, novel representations of electricity price uncertainties and the correspond-
ing mathematical models using RO, AA, and PCA-AP approaches were presented. The
challenges of implementing each technique were discussed, and the mathematical approach
to transform each of them into an MILP problem was presented.
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Chapter 5

Numerical Studies and Comparisons

This Chapter presents detailed numerical studies and comparisons by simulating the CAES
self-scheduling models under deterministic and price uncertainty scenarios. First, results
are presented considering the step function representation of the CAES thermodynamic
model using RO to represent uncertainties, comparing them with MCS. Thereafter, re-
sults are presented considering the proposed novel linear thermodynamic model for given
intervals of uncertainty. A comparison between the step-function-based model and the pro-
posed linear model is carried out for the deterministic case, followed by uncertainty model
comparisons for the RO, AA, and MCS techniques. Finally, studies and comparisons for
the proposed linear thermodynamic model, using uncertainty intervals based on historical
data, are carried out for the AA, PCA-AP, and MCS approaches.

5.1 Step Function Representation of CAES Thermo-

dynamics

The deterministic self-scheduling model of the CAES facility considering step-function rep-
resentation of its thermodynamic characteristics includes the objective function (3.1) and
constraints (3.2)-(3.5), (3.7)-(3.15), and (3.18)-(3.29). For all simulations, the maximum
charging and discharging capacities of the CAES facility are considered to be 60 MW and
100 MW, respectively, while the minimum charging and discharging capacities are 25 MW
and 30 MW, respectively, with a quick-start capacity of 40 MW, based on the facility
studied in [19]. The SOC is maintained between 33% and 100%, the initial SOC is 60%,

58



and the final SOC is set to be at least 60%, since the facility has to be prepared for the
following day’s market. All simulations were executed in GAMS interfaced with MATLAB.

5.1.1 Robust Optimization (RO)

In order to use RO to represent the uncertainties, the deterministic objective function (3.1)
is replaced by (4.10) and associated constraints (4.11)-(4.16), as discussed in the previous
chapter. The RO simulations were carried out for the following different combinations
of (∆π, Γ) to examine their impact on CAES facility profit and its optimum schedule:
∆π ∈ [8%, 15%, 20%], and Γ ∈ [0, 5, 10, 15, 20, 24], which yield 18 possible scenarios for
different combinations of the above parameters.

The hourly electricity prices were taken from the HOEP historical data of January 19,
2019 [75], depicted in Figure 5.1. Table 5.1 presents the profit of the CAES facility for
the next day, and the corresponding violation probability for each value of Γ. Note that
the probability of a constraint being violated, calculated using (4.17), drops significantly
as the budget of uncertainty increases, being lower than 5% for Γ = 10. Observe that
for Γ = 0, i.e., the deterministic scenario, all profits are the same, and as the budget of
uncertainty increases, the number of times that the price deviates from the forecast values
increases, which leads to a decrease in profits. As the budget of uncertainty approximates
to the most conservative scenario Γ = 24, the profit sensitivity decreases. Greater values
of ∆π yield lower profits, as expected.

Table 5.1: CAES profit in ($) for (∆π,Γ).

Γ Violation Probability [%]
CAES profit for ∆π
8% 15% 20%

0 (Deterministic) 58.09 25,592 25,592 25,592
5 20.71 22,367 19,661 17,926
10 3.31 21,117 17,412 14,874
15 0.21 20,403 16,582 13,895
20 5.258e-3 20,360 16,297 13,895
24 1.334e-4 20,360 16,297 13,895

The optimum daily schedule of the CAES facility is sensitive to changes to Γ and
∆π. Thus, the SOC for the deterministic case Γ = 0, and for the cases considering
(∆π = 8%,Γ = 15), (∆π = 15%,Γ = 10), and (∆π = 20%,Γ = 20) are presented in Fig-
ure 5.2. Note that in the deterministic schedule, the CAES facility operates with higher
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Figure 5.1: Electricity price on January 19, 2019.

Depth of Discharge (DoD), while in scenarios where uncertainties are taken into consider-
ation, it operates in the idle mode for more hours, as expected. Observe also that different
ranges of price uncertainty and the number of times the prices deviate from their forecast
values affect the optimal schedule of the CAES facility. Based on the results obtained, the
facility operator can choose a schedule that provides a certain level of protection against
uncertainties in each scenario. Note that the operator does not need to choose a con-
servative schedule to achieve a high degree of financial protection, since for Γ = 10, the
probability of violation is lower than 5%.
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Figure 5.2: SOC for different (∆π,Γ).

5.1.2 Monte Carlo Simulations (MCS)

To validate the results obtained from the RO approach, a comparison is made with MCS,
which are formulated as deterministic problems with prices varying randomly based on
a uniform distribution. Three uniform random PDF ranges, i.e., [0.92, 1], [0.85, 1], and
[0.8, 1], each with thousand data points that yield MCS convergence, were simulated,
representing three ∆π scenarios of 8%, 15%, and 20%. In Figure 5.3 it can be observed
that the MCS and the RO results present a similar pattern, i.e., as the range of uncertainty
increases, their respective profits decrease.

Computationally, the RO approach is much faster than the MCS method, guaranteeing
that the CAES facility’s profit is maximized for the worst-case scenario. In the worst-
case, when the CAES facility is discharging, i.e., selling energy, and the price of electricity
suddenly falls, it sells power at cheaper rates, whereas when it is charging, i.e., buying
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Figure 5.3: Comparison of CAES profit with RO and MCS approaches for the step model
of the CAES facility.

energy, if the prices suddenly increase, it purchases power at a higher price.

The simulations carried out for the step-function thermodynamic model considering
uncertainties were only done for the RO approach. This is due to, as previously explained,
the significant discontinuities present in the model, which make the implementation of
methods that keep track of correlated uncertainties such as AA and AP infeasible in practice
because of the need to add multiple binary and auxiliary variables to the mathematical
models.
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5.2 Proposed CAES Linear Model With Fixed Inter-

vals

The deterministic self-scheduling model of the CAES facility considering the proposed
linear representation of the thermodynamic behaviour, comprises the objective function
(3.1) and constraints (3.2)-(3.5), (3.7)-(3.15), (3.18)-(3.19), (3.39)-(3.44), and (3.47)-(3.51).
The simulation studies presented next are for two different days with volatile price profiles
denoted as Day 1 (February 6, 2019) and Day 2 (January 19, 2019), depicted in Figure 5.4.

Figure 5.4: Prices profile for Days 1 and 2.
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5.2.1 Deterministic Proposed Model versus Step Model

To validate and evaluate the performance of the proposed linear thermodynamic model of
the CAES facility, the results obtained for a deterministic case are compared with those
obtained with the step-function-based thermodynamic model of the facility. Table 5.2
presents a comparison of the profit and computation cost of the linear model and the step-
function model. Note that both methods yield similar profits, with a maximum mismatch of
1%, but the linear model is computationally much faster. Thus, the linear model converges
in seconds, while the step function model takes much longer, with significant solution
time differences between Day 1 to Day 2, which suggests that the step-function model’s
computational performance is sensitive to market prices.

Table 5.2: Comparison between Linear and Step models.

Linear Model Step Model

Day 1
Profit ($) 30,919 30,932

Computing Time 1.23s 28min42s

Day 2
Profit ($) 25,349 25,617

Computing Time 1.17s 2min58s

Observe in Figure 5.5 that the optimum schedules for both days and the different
thermodynamic models are very similar and match closely. Therefore, the linear model
can be considered to be equivalent to the step-function model but with significantly lower
computational burden.

5.2.2 Robust Optimization (RO)

Using RO to represent price uncertainties, the objective function (3.1) is replaced by
(4.10) and the constraints (4.11)-(4.16) are added to the model. Similar to Section 5.1.1,
simulation studies for different combinations of (∆π,Γ) are carried out, where ∆π ∈
[8%, 15%, 20%] and Γ ∈ [0, 5, 10, 15, 20, 24]. All possible (∆π,Γ) combinations were con-
sidered for each day, obtaining the profit of the CAES facility presented in Table 5.3. Note
that in the deterministic case (Γ = 0), the profit does not change for different values of
∆π. As Γ increases, the number of times the prices deviate from their forecast increases,
resulting in decreasing profits. Also, the sensitivity of profit reduces as Γ tends to the
most conservative scenario, i.e., Γ = 24. As expected, higher values of ∆π lead to lower
profits. Observe also that the facility’s profit on Day 1 is generally higher than on Day 2,
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Figure 5.5: SOC comparison of the Linear and Step models.

which can be attributed to the overall higher market price profile on Day 1, as shown in
Figure 5.4.

Table 5.3: Profit of CAES Facility with RO Approach ($).

Γ
Day 1 Day 2

8% 15% 20% 8% 15% 20%
0 30,919 30,919 30,919 25,349 25,349 25,349
5 27,484 24,566 22,482 22,236 19,592 17,704
10 26,908 23,481 21,057 21,028 17,436 14,927
15 26,649 23,159 20,677 20,505 16,566 13,876
20 26,649 23,159 20,677 20,374 16,317 13,876
24 26,649 23,159 20,677 20,374 16,317 13,876
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As prices deviate from their actual values, the optimum daily schedule is susceptible to
changes. Thus, in Figure 5.6 and Figure 5.7, the SOC for different combinations of ∆π and
Γ for Day 1 and Day 2 are presented. The power dispatch for Day 2 for the deterministic
and RO with (∆π = 20%,Γ = 20) scenarios are presented in Figure 5.8, note that in the
deterministic scenario with the actual prices, i.e., assuming a perfect forecast, the facility
charges and discharges more, whereas in case of uncertainties, it is more conservative and
operates in idle mode for more hours, as expected.

Figure 5.6: Day 1 SOC for different ∆π and Γ.

The purpose of RO is to optimize for the worst-case scenario for a given Γ. Therefore,
for self-scheduling models of a price-taker CAES facility the worst-case realization is the
facility charging when the prices increase, and discharging when the prices decrease, i.e.,
it pays more and gets paid less. Figure 5.4 depicts the actual electricity prices for Day 2,
which are used to compute the actual profits presented in Table 5.4 from the dispatches
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Figure 5.7: Day 2 SOC for different ∆π and Γ.

depicted in Figure 5.8 for the deterministic and RO techniques with (∆π = 20%,Γ = 20).
Note that the deterministic dispatch yields higher profits than the RO, as expected.

Table 5.4: Actual Day 2 profit for different schedules ($).

Schedule Profit
Deterministic 25,349

(∆π = 20%,Γ = 20) 23,488

Given the set of schedules obtained from RO, the operator may choose the interval of
uncertainty ∆π and the desired level of conservatism Γ. Similar results can be obtained
in this case as those presented in Table 5.1, where it can be observed that low probability
of violation can be achieved without having to resort to high values of Γ, while ensuring
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(a)

(b)

Figure 5.8: Day 2 schedule for (a) deterministic approach with perfect forecast, and (b)
RO approach with (∆π = 20%,Γ = 20).

greater profits.
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5.2.3 Affine Arithmetic (AA)

In the AA approach, the uncertain parameters and variables are represented in their affine
forms, as per (4.18) and (4.19). In this case, the CAES facility’s day-ahead self-scheduling
model comprises the objective function (4.33) and constraints (3.7)-(3.9), and (4.34)-(4.61).
In this case, simulations were carried out to maximize the center and radius of the profit,
simultaneously. Since there are no parameters to control the level of conservatism, AA
yields a single optimum interval schedule for each ∆π.

Table 5.5 presents the center, upper and lower bounds of the CAES facility’s profit for
each day. Observe that as ∆π increases, the center and radius of the profit increases, i.e.,
a larger difference can be seen between the upper and lower bounds with respect to the
center value, as expected.

Table 5.5: Profit of CAES Facility with AA approach ($).

∆π
Day 1 Day 2

Lower Center Upper Lower Center Upper
8% 17,065 27,000 36,936 8,961 20,555 32,149
15% 15,409 28,416 41,422 8,996 22,697 36,397
20% 12,604 28,704 44,877 6,538 23,235 39,932

The optimum daily schedules of the CAES facility are sensitive to changes in ∆π, as
illustrated in Figure 5.9 and Figure 5.10, which considers the two most extreme intervals
of price deviation. Note that the SOC interval depends on the magnitude of the power
dispatch adjustment terms PC

h,t/P
D
h,t, which determines whether the SOC has tighter or

larger intervals. As in the case of the deterministic schedule, the dispatch decisions obtained
from AA are similar most of the time, but with different DoD.

When operating the CAES facility in real-time, the actual power dispatch variables
can be obtained from the intervals computed using the AA model. Thus, when the actual
price mismatch with respect to the forecasted center value εYt is known, the power dispatch
of the facility can be obtained. For example, assuming that the optimum schedule of the
CAES facility is within the intervals obtained for ∆π = 8% on Day 1, and if at t = 1
the facility is discharging, for an energy price mismatch of -5% but no mismatches in the
other prices, the noise values can be determined to be εE1 = −5%

8%
= −0.625, εSR1 = 0 and

εID1 = 0; the SOC at t = 2 can then be computed to be SOC2 = 0.464. If the mismatch is
lower than -8% or greater than 8%, εEt can be set to -1 or 1, respectively.
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Figure 5.9: Day 1 SOC for different ∆π.

The AA center power dispatch for Day 2, corresponding to the actual electricity prices
illustrated in Figure 5.4, is presented in Figure 5.11, which yields a daily center profit of
$20,555. Note that, compared with the “perfect” deterministic and RO schedules presented
in Figure 5.8, the CAES facility operates in idle mode for fewer hours in the AA dispatch
and presents a lower profit, due to its riskier behavior.

Note that the PCA-AP approach is not applied in this case, due to the fact that the
price intervals extracted from the HOEP are fixed for specific days. Thus, there is no need
to extract information from the data.
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Figure 5.10: Day 2 SOC for different ∆π.

5.2.4 Monte Carlo Simulations (MCS)

To validate the results obtained from RO and AA approaches, these are compared with
the MCS approach where the random prices are generated using a uniform PDF. Three
uniform distributions are generated, each with 1,000 data points, so that MCS converges,
for the ranges [0.92, 1.08], [0.85, 1.15], and [0.8, 1.2], corresponding to the three cases of
market price deviations ∆π of 8%, 15%, and 20%.

Figure 5.12 presents a comparison between the MCS, AA, and RO approaches for both
days, depicting the upper and lower bounds of the solution, in each approach, denoted
by MCS-UB and MCS-LB, AA-UB and AA-LB and RO-UB and RO-LB. For RO, the
upper and lower bounds corresponds to the results of the deterministic case and the most
conservative scenario, i.e., Γ = 0 and Γ = 24, respectively. Observe for both days and all
values of ∆π that the AA solution profile envelops both the MCS and RO solutions. Since
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Figure 5.11: Day 2 AA center dispatch for ∆π = 8% and actual prices, i.e., εYt = 0∀t, Y .

the RO objective is to optimize the profit for the worst-case scenario, its profits are higher
in the lower bound, as compared to AA.

The MCS approach has the highest computational cost, while RO has the least, con-
verging in a few seconds, as presented in Table 5.6. Since a large number of variables are
used to keep track of the correlated uncertainties, the AA approach has a larger computa-
tional burden than RO; however, it still converges within a few seconds. Therefore, given a
∆π which the CAES facility seeks to be protected from, the plant operator may determine
the optimum schedule using either RO or AA. If RO is employed, given the probabilities of
violation, the operator may choose a schedule with the desired protection level. However,
if AA is used, a unique optimum schedule is determined, given the real-time mismatch in
prices.
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Figure 5.12: Comparison of MCS, AA, and RO approaches for the linear model of the
CAES facility.

5.2.5 Effects of Different SOC Levels

In this section, the impact of initial and final values of the SOC, SOC0 and SOCf , for the
optimum operation of the CAES facility are analyzed. Since electricity prices are usually
low during the early hours of the day, the facility typically starts the day by charging and
reaching a high value of SOC, and when prices increase it starts discharging. Thus, a high
initial SOC would yield a conservative schedule wherein the range of operation will be
constrained. If the final SOC is held at a relatively high value, then the facility would not
have a high DoD, resulting in low profits. Therefore, different initial and final SOC levels
are tested here using the price profile of Day 1, to demonstrate the impact of SOC0 and
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Table 5.6: MCS, AA and RO computational burden.

Method
Day 1 Day 2

∆π ∆π
8% 15% 20% 8% 15% 20%

RO Γ =

0 1.20s 1.33s 1.22s 1.29s 1.13s 1.13s
5 1.22s 1.22s 1.22s 1.13s 1.22s 1.12s
10 1.24s 1.23s 1.22s 1.24s 1.23s 1.13s
15 1.24s 1.24s 1.12s 1.24s 1.13s 1.23s
20 1.23s 1.24s 1.22s 1.23s 1.13s 1.23s
24 1.24s 1.24s 1.23s 1.13s 1.23s 1.22s

AA 10s 7.90s 6.16s 17s 16s 11s
MCS 20min33s 20min25s 20min24s 17min50s 17min55s 18min13s

SOCf on profits and optimum daily schedules.

Table 5.7 presents the profits of the CAES facility using the RO approach for SOC0

and SOCf set both at 0.7 (70% SOC) and 0.8 (80% SOC). When compared to Table 5.3,
which uses SOC0 and SOCf values of 60% for both, it is noted that the profits decrease
from the deterministic schedule (Γ = 0) to the most conservative case (Γ = 24) for higher
SOCf , and all price mismatch scenarios. Figure 5.13 illustrates the deterministic optimum
schedule for the CAES facility for different values of SOC0 and SOCf . Observe that when
SOC0 = SOCf = 0.6, the CAES facility operates with a larger DoD as compared to cases
with both SOC0 and SOCf set to 70% and 80%.

Table 5.7: CAES Profit with RO for Day 1 with Different SOC0 and SOCf ($).

Γ
SOC0 = SOCf = 0.7 SOC0 = SOCf = 0.8

8% 15% 20% 8% 15% 20%
0 30,676 30,676 30,676 29,952 29,952 29,952
5 27,157 24,143 22,075 26,440 23,415 21,311
10 26,547 23,076 20,710 25,828 22,325 19,925
15 26,287 22,776 20,286 25,502 21,941 19,652
20 26,287 22,776 20,286 25,502 21,941 19,652
24 26,287 22,776 20,286 25,502 21,941 19,652

Table 5.8 depicts the CAES facility’s profits using the AA approach for different values
of both SOC0 and SOCf . Observe that the center, lower, and upper boundaries of the
profit decreases for higher values of initial and final SOC, since the interval of operation
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Figure 5.13: Deterministic schedule for Day 1.

is tighter, as shown in Figure 5.14. Note that compared to the deterministic schedule,
the dispatch decisions remain similar but with different DoDs. Therefore, operating with
high SOCf values is not advantageous for the CAES facility, since it yields conservative
schedules and profits to ensure that the desired final SOC value is met at the end of the
day, thus missing opportunities to maximize the daily profit.

Table 5.8: CAES Profit with AA for Day 1 with Different SOC0 and SOCf ($).

∆π
SOCf = 0.7 SOCf = 0.8

Lower Center Upper Lower Center Upper
8% 17,083 26,840 36,597 16,946 26,463 35,979
15% 14,912 28,022 41,131 14,414 27,506 40,598
20% 12,467 28,533 44,599 12,410 28,260 44,111
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Figure 5.14: AA schedule for ∆π = 8% for Day 1.

5.3 CAES Linear Model Based on Historical Data

As presented in Section 5.2, the CAES facility’s day-ahead self-scheduling model with
piecewise linear thermodynamic relationships, comprises the objective function (3.1) and
constraints (3.2)-(3.5), (3.7)-(3.15), (3.18)-(3.19), (3.39)-(3.44) and (3.47)-(3.51). The price
intervals used in this section, are obtained from the HOEP data for 2015 to 2019 [75], with
all prices adjusted to 2019 using the average inflation index of Canada for the 5 years [76].
The 5-year average energy price for each month is presented in Figure 5.15. The simulations
are carried out for the specific months of February, May, August and November, which
represent each season. Electricity market prices can be volatile, with price spikes occurring
following unexpected system conditions such as demand fluctuations or contingencies, or
can be negative if there is an excess of RES generation [77]. Therefore, the interval of
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electricity prices can be too conservative if only the extremes of historical data are used
to define the intervals, as done in Section 5.2. Thus, to obtain a more reasonable range of
electricity prices, the following approach was used:

• The average daily electricity prices were transformed using the Box Cox Transforma-
tion (2.51). A CI of p = 50% was used to filter the significant price spikes.

• From the remaining data, the average and standard deviation of the hourly prices
were determined, i.e., the center and interval of uncertainty, respectively.

Figure 5.15: Average monthly energy price profiles for 2015-2019, adjusted for inflation to
2019.

To avoid a conservative interval of uncertainty, the upper limit on the price deviations was
set to 15%, based on [78]. The filtered average price intervals obtained for August, which
is the peak demand month, are presented in Figure 5.16.
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(a) (b)

(c)

Figure 5.16: Filtered average price intervals for August: (a) energy, (b) spinning, and (c)
idle reserve.

5.3.1 Principal Components Analysis (PCA)-Affine Policies (AP)

Based on the AP approach to represent uncertainties, the uncertain parameters and vari-
ables can be modeled in their affine forms, as per (4.71), (4.80) and (4.81). The CAES
facility’s day-ahead self-scheduling model used in this case comprises the objective func-
tion (4.91) and constraints (3.7)-(3.9), (4.92)-(4.120). Similar to the AA approach, the
PCA-AP model does not use a parameter to control the level of conservatism, yielding
a single optimum scheduling interval for a given interval of price uncertainties. However,
the PCA-AP model is based on PCs, which are defined by the amount of information
aggregated. Thus, simulations were carried out for information levels of 95%, 97.5%, 99%,
and 100%, with the number of PCs and their values being determined based on (2.49) and
(2.50), respectively.
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Since electricity prices are represented as a function of PCs, discarding those that rep-
resent lesser information introduces an error associated with the representation of PCs
with respect to the original data. For a specific information level, the Number of Princi-
pal Components (NPC) and the Mean Percentage Error (MPE) for each electricity price
(energy, spinning and idle reserve), the center and radius of the profit, the computational
burden, and optimum schedules can be computed.

Table 5.9 presents the NPC and MPE for the electricity prices of one of the four months
considered in the studies (August); similar results were obtained for the other months. Note
that for higher information levels, as the NPC increases, the MPE decreases, as expected.
Note that a large number of PCs are required to properly represent the prices, which
implies that these prices show significant volatility, thus yielding poor PCA performance.
Due to its low values, the reserve prices presented a greater MPE, especially for the idle
reserves. A comparison between the energy price representation obtained from PCA with
the original data for August is presented in Figure 5.17. Note that for information levels of
95% and 97.5%, the energy prices differ to some extent from the original data, especially
for the former.

Table 5.9: NPC and MPE of Electricity Prices for August.

PCA
πE πSR πID

NPC MPE (%) NPC MPE (%) NPC MPE (%)
95% 16 1.3452 15 8.9349 15 19.2885

97.5% 19 1.1136 18 1.7703 18 7.3474
99% 21 0.8579 20 0.5356 21 5.1105
100% 24 0 24 0 24 0

Table 5.10 presents the center value and radius of the CAES facility’s profit and com-
putational burden for each month. Note that in all cases the center is greater than the
radius; hence, there are no losses in the most pessimistic scenario. Since the 95% and
97.5% representations involve fewer variables and constraints as compared to the 99% and
100% cases, they would be expected to be computationally more efficient; however, that is
not the case for all months. For example, for February, weak representation of input data
at a 95% information level yielded a result that deviates significantly from the rest, while
presenting a greater computational cost. The reason for this is that the computational
burden depends on the CAES model and is thus sensible to the input data, thus impacting
the solution convergence when weak representations are used. Even though the computa-
tional burden varies depending on the monthly price profile, all simulations converged in
less than 5 minutes, which is reasonable for day-ahead operation planning.
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Figure 5.17: Energy prices from PCA as compared to original prices for August.

The optimum SOC profiles for the CAES facility for August are presented in Figure 5.18
for different levels of information. The depicted SOC results were obtained from the real-
time price mismatch ∆πYt , with the deviation in the PCs ∆PCY being determined as
per (4.66), and the dispatch being updated as per (4.72). Note that as the information
level increases, so does the accuracy of the input data with respect to the original prices,
as expected. The dispatch schedules of the CAES facility with low information can be
observed to have more frequent changes from idle/discharge states and, as information
level increases, the operation of the CAES becomes smoother.
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Table 5.10: PCA-AP Profit and Computational Burden.

February May

PCA
Profit ($) Comp.

Cost
Profit ($) Comp.

CostCenter Radius Center Radius
95% 7,603 4,651 1min11s 10,977 2,570 6.37s

97.5% 8,716 2,368 47s 10,583 2,494 7.47s
99% 7,848 2,695 56s 10,562 2,429 26s
100% 8,399 2,186 47s 10,505 2,419 41s

August November

PCA
Profit ($) Comp.

Cost
Profit ($) Comp.

CostCenter Radius Center Radius
95% 5,921 2,341 3min25s 6,469 1,838 33s

97.5% 5,977 2,341 2min38s 6,374 2,299 29s
99% 6,210 2,151 3min38s 6,225 2,205 41s
100% 5,637 2,127 4min17s 6,383 1,984 46s

The power dispatch for the PCA-AP using 100% information for the month of August,
with the center prices illustrated in Figure 5.16, is presented in Figure 5.19. Note that the
facility charges during the early hours of the day, discharges during the peak hours and
operates in idle mode for the remaining hours, yielding a daily profit of $5,637. Note that
different prices were used in these simulations, and thus these results cannot be directly
compared with the deterministic, RO, and AA results presented in Section 5.2.
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(a) (b)

(c) (d)

Figure 5.18: SOC profiles from PCA-AP for August: (a) 95%, (b) 97.5%, (c) 99%, and (d)
100% precision levels.

5.3.2 Affine Arithmetic (AA)

Using AA to represent uncertainties, the uncertain parameters and variables can be repre-
sented in their affine forms as per (4.18) and (4.19). In this case, the mathematical model
is comprised of the objective function (4.33) and constraints (3.7)-(3.9), and (4.34)-(4.61).

As previously discussed, the AA model yields a single optimum schedule, for the price
intervals presented in Figure 5.16. Table 5.11 illustrates the center and radius of the
facility’s profit and the computational costs for all AA simulations. Note that, in all cases,
the center is greater then the radius; hence, in the most pessimistic scenario, there are no
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Figure 5.19: Center dispatch for PCA-AP using 100% information for the center values of
the the month of August.

losses. Observe that all the cases present low computational burden, converging in less
than a minute.

Table 5.11: AA Profit and Computational Burden.

Month
Profit ($)

Comp. Cost
Center Radius

February 7,322 5,351 12s
May 10,237 2,616 2.40s

August 5,695 3,190 48s
November 6,186 3,048 3.84s
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The optimum SOC profile for August obtained from the AA-based charging/discharging
dispatch of the CAES facility is illustrated in Figure 5.20. Note that the dispatch decisions
and intervals are similar to the schedules obtained using the PCA-AP presented in Fig-
ure 5.18d. Therefore, based on the real-time price mismatch ∆πYt , from which the noise

terms can be defined as εYt =
∆πYt
∆πt

, the dispatch can then be updated as per (4.19).

Figure 5.20: SOC Profiles from AA for August.

The AA center power dispatch for the month of August, using the center price values
in Figure 5.16, is presented in Figure 5.21, accrues a daily profit of $5,695. Note that the
AA dispatch is very similar with that obtained for the PCA-AP using 100% information
shown in Figure 5.19, and the same applies for the profits, given its $5,637 profit value.
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Figure 5.21: Center AA dispatch for the center values of the month of August.

5.3.3 Monte Carlo Simulations (MCS)

The results obtained from the PCA-AP and AA models are compared here with the MCS
approach. For this purpose, three random uniform PDFs with 3,000 data points each were
used to yield different combinations of electricity prices as input data. The convergence
tolerance for the MCS was set to 0.1%.

Table 5.12 presents the lower boundary (LB) and upper boundary (UB) of the CAES
facility’s profits obtained from the PCA-AP, AA, and MCS approaches, along with their
respective computational costs. Note that the AA approach presents the lowest computa-
tional burden, and the results envelop most of the results of the MCS and the PCA-AP
approaches with 99% and 100% information. However, the AA approach also results in
the widest radius and pessimistic scenarios, which yields significantly lower profits. The
PCA-AP approach with 95% and 97.5% information show poor representation of the input

85



Table 5.12: Comparison of Profits and Computational Burden from PCA-AP, AA and
MCS Approaches.

February May

Method LB ($) UB ($)
Comp.
Cost

LB ($) UB ($)
Comp.
Cost

PCA-AP

95% 2,952 12,255 1min11s 8,428 13,567 6.37s
97.5% 6,349 11,084 47s 8,089 13,077 7.47s
99% 5,154 10,543 56s 8,133 12,991 26s
100% 6,213 10,585 47s 8,086 12,924 41s

AA 1,971 12,673 12s 7,621 12,852 2.40s
MCS 5,560 8,240 1h27min 10,837 13,284 1h05min

August November

Method LB ($) UB ($)
Comp.
Cost

LB ($) UB ($)
Comp.
Cost

PCA-AP

95% 3,580 8,261 3min25s 4,631 8,306 33s
97.5% 3,637 8,318 2min38s 4,075 8,673 29s
99% 4,059 8,361 3min38s 4,020 8,429 41s
100% 3,511 7,764 4min17s 4,400 8,367 46s

AA 2,505 8,885 48s 3,138 9,233 3.84s
MCS 5,978 8,105 1h20min 5,548 8,071 1h06min

data, resulting in some cases in higher computational costs and profit intervals that differ
significantly from rest of the results. The PCA-AP results with 99% and 100% information
envelop most of the results of the MCS approach.

Despite the PCA-AP model presenting higher computational costs as compared to the
AA in all cases, convergence was achieved in less than 5 minutes, rendering the proposed
PCA-AP approach reasonable for day-ahead operations. The approach also presented less
conservative results, i.e., tighter profit boundaries, yielding a more profitable margin of
operation in pessimistic scenarios.

5.3.4 Concurrent Charging and Discharging

As stated earlier, removing the constraint (3.7) from the CAES operations model will
enable the facility to charge and discharge concurrently. In order to assess the facility’s
performance in this operating mode, the PCA-AP simulations are repeated here for the
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month of August.

Table 5.13 presents a comparison with the previous model, where the facility operates
either in charging/discharging/idle mode at a given interval (non-concurrent operation),
with the concurrent mode operation. The possibility of charging and discharging concur-
rently increases the number of available operational combinations; hence, higher profits can
be achieved in the optimistic scenario. However, this also implies a greater computational
cost and a wider profit interval in pessimistic scenarios, wherein lower profits are obtained,
resulting in losses in some cases, as seen for the concurrent case for 95% information level
in Table 5.13.

Table 5.13: Charging and/or discharging operation for August.

PCA
Non-concurrent Concurrent

Profit ($) Comp.
Cost

Profit ($) Comp.
CostLB UB LB UB

95% 3,580 8,261 3min25s -1,328 8,836 12min59s
97.5% 3,637 8,318 2min38s 1,868 8,510 16min56s
99% 4,059 8,361 3min38s 1,010 8,540 15min11s
100% 3,511 7,621 4min17s 665 8,045 22min22s

The optimum SOC profiles for the CAES facility charging and discharging concurrently
in August are presented in Figure 5.22. Compared with the SOC obtained from the non-
concurrent model (Figure 5.18), it can be observed that the concurrent model presents a
more flexible profile of the SOC over several hours of the day. This is due to the minimum
charging (4.94) and discharging (4.96) power limits of the CAES facility. When operating
non-concurrently, there is a minimum upward or downward variation in the SOC, whereas
operating concurrently it presents more flexibility in the SOC variation.
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(a) (b)

(c) (d)

Figure 5.22: SOC profiles for concurrent CAES from PCA-AP for August: (a) 95%, (b)
97.5%, (c) 99%, and (d) 100% precision levels.

5.4 Summary

This Chapter presented the results obtained from the CAES models proposed in Chap-
ter 3. First, the results obtained using the step-function thermodynamic model of the
facility were presented. Using RO to represent uncertainties, the model yielded schedules
protected against the worst-case scenario for a given budget of uncertainty, with a lower
computational cost than the MCS.

Second, the operational results considering the proposed linear thermodynamic model
of the facility, were presented. This model yielded similar results at significantly lower
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computational burden, as compared to the step-function model. Next, for fixed intervals
of uncertainty, the RO and AA approaches were simulated. Compared to RO, a greater
computational burden and more conservative results were obtained with the AA approach.

Third, for uncertainty intervals obtained from historic electricity price data, the PCA-
AP simulations provided schedules protected against uncertainty at a tighter range of profit
compared to the AA approach. Finally, the concurrent charging/discharging aspects of the
facility were assessed. The larger number of combinations of operations available, allowed
the facility to achieve higher profits, but at increased computational costs.
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Chapter 6

Conclusions

6.1 Summary and Conclusions

In this thesis, a novel linear thermodynamic model for a CAES facility was proposed, which
considered the pressure inside the cavern and the efficiency of the high pressure turbine,
based on the dynamic characteristics of the Huntorf CAES facility in Germany. These
detailed thermodynamic models were included in a day-ahead self-scheduling operations
model for a price-taker CAES facility participating in the day-ahead energy and reserve
markets. Then, for a given day-ahead electricity price forecast, the optimum schedule
of the facility was determined. However, electricity prices are subject to uncertainties;
thus, methods based on range arithmetic, specifically RO, AA and AP, were developed to
determine operation decisions for a price-taker CAES facility under price uncertainties.

In the first part of the thesis, a deterministic self-scheduling model for a CAES facil-
ity was presented. Three non-linear functions were used, representing the thermodynamic
characteristics of the mass of air charged, mass of air discharged, and the cost of natural
gas. This nonlinear representation was linearized using McCormick Envelopes and lin-
ear piecewise approximations, to avoid discontinuities, thus making it easier to implement
methods that keep track of correlated uncertainties, reducing the number of binary vari-
ables in the model. This novel formulation was compared with the step-function model of
the CAES facility reported in [19], which despite yielding a reasonable approximation of
a real model, is highly complex due to the presence of discontinuities and significant large
number of binary variables, making it difficult to employ methods that take uncertainties
into account. Both models were executed for different days of the year with corresponding
HOEPs, demonstrating that the proposed piecewise linear thermodynamic model yielded
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similar results, at a significantly lower computational burden compared to the step-function
model.

In the second part of the thesis, range arithmetic techniques to represent electricity price
uncertainties were introduced in the model. First, an RO model was presented to optimize
the CAES facility’s day-ahead operations for the worst-case scenario for a given budget of
uncertainty, which allowed to study a range of scenarios from the deterministic to the most
conservative case. With this model, low probability of violation can be achieved without the
need for a large budget of uncertainty, thus enabling the operator to choose schedules that
yield greater profits. Next, an AA model was presented, where the uncertain parameters
and variables were represented in affine forms, keeping track of correlated uncertainties.
The model maximized the center and radius of the profit and yielded an optimum range
with upper and lower bounds for the dispatch. In this case, for a real-time mismatch
in electricity prices from their forecast, the actual dispatch can be updated accordingly.
In order to avoid a conservative schedule that yields losses in pessimistic scenarios, the
radius was maximized for the affine terms and minimized for the non-affine terms. For
both RO and AA models, simulations were carried out for specific days of the year with
their corresponding HOEPs, considering fixed intervals of uncertainty. Both methods were
benchmarked with the MCS approach, obtaining intervals that enveloped the MCS results
at significantly lower computational costs.

Finally, a PCA-AP model was presented, where unlike for the RO and AA models,
five-year data of HOEPs were used to estimate the center and intervals of electricity prices
for each month, based on their hourly averages and standard deviations. A PCA algorithm
was implemented to extract information from each of the three electricity prices, energy,
spinning reserves and idle reserves, to reduce the dimension of the problem. Depending
on the information level, the number of variables and constraints in the model changed;
however, lower levels of information did not necessarily resulted in lower computational
costs, since the model resulted on a weaker representation in some cases. Similar to AA, in
the proposed PCA-AP model, the uncertain parameters and variables were represented in
their affine forms, and the center and radius of the profit were maximized simultaneously.
Despite the greater computational cost, the PCA-AP model yielded tighter profit intervals
as compared to AA, i.e., a more profitable margin of operation in pessimistic scenarios.
The operation of a CAES facility charging and discharging concurrently was also assessed,
resulting in an increased computational burden; however, higher profits and a smoother
SOC profile was obtained. Finally, the PCA-AP was also benchmarked against the MCS
approach, resulting in lower computational costs and similar profit intervals.

The following conclusions can be drawn from this work:
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• The proposed piecewise linear thermodynamic representation of the CAES facility
significantly reduced the computational burden of the self-scheduling model, with-
out loss of accuracy, making it simpler to implement techniques that keep track of
correlated uncertainties.

• The RO model yielded optimum schedules that were protected against the worst-
case scenario, for a given budget of uncertainty. Through the latter, the model
could be varied from deterministic to the most conservative, and low probability
of violation could be achieved without resorting to a large budget of uncertainty.
However, the optimum schedules obtained from the RO approach were fixed for the
assumed budget of uncertainty, without allowing adjustment with respect to the
actual price deviations from the forecast.

• The AA model, based on electricity price centers and intervals, yielded optimum
ranges for the schedules, which allowed to determine the power dispatch for the
actual prices based on their deviation with respect to the forecast. The profit was
maximized for the center and affine terms and minimized for the non-affine terms,
thus avoiding a conservative radius that could lead to losses in pessimistic scenarios.

• The PCA-AP model also yielded optimum schedules with power dispatch affine in-
tervals, but at tighter profit intervals than the AA, thus resulting in a more profitable
margin of operation. Unlike the RO and AA approaches, the input data used was not
for a specific day, but was based on the monthly averages and standard deviations
of prices from 2015 to 2019. This allowed to estimate the electricity price center and
intervals using Box Cox technique to filter the outliers. A PCA method was used
to extract data for each month and reduce the number of variables for a given level
of information. However, low information levels could lead to weak representations,
yielding greater computational costs and inaccurate results.

• The possibility of the CAES facility to charge and discharge concurrently, despite pre-
senting a greater computational burden, allowed the facility to achieve higher profits
with the more varied operational strategies. Furthermore, a smoother transition
in the SOC profile was noted when compared with the non-concurrent operations.
However, for pessimistic scenarios, it yielded worse values for the lower bounds.
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6.2 Contributions

The main contributions of this thesis can be summarized as follows:

• A novel linear thermodynamic model of a CAES facility was proposed and validated,
incorporating it into a day-ahead, self-scheduling operations model of a price-taker
facility participating in energy and reserve electricity markets. The proposed com-
prehensive operations model of the CAES facility provides important insights into
price-taker energy storage facility operations in electricity markets.

• The effectiveness of applying RO to model electricity price uncertainties is demon-
strated for the operation of a CAES facility for the worst-case scenario at a given
budget of uncertainty. It was shown that operators do not need to resort to conser-
vative scenarios to obtain a low probability of violation, so that greater profits can
be ensured.

• For the first time, a self-scheduling model based on AA was developed for a CAES
facility to represent electricity price uncertainties, keeping track of correlated uncer-
tainties. The proposed model allows the facility owner to determine an optimum
operating range for a given interval of uncertainty.

• The application of Box Cox interval to remove outliers from historical electricity
price data was demonstrated, enabling a more precise estimation of the center and
intervals of electricity prices for affine interval modeling of uncertainties.

• A new PCA-AP-based self-scheduling model was proposed using PCA to extract
information from the price data, and APs to keep track of correlated uncertainties.
It was shown that the proposed method yields an optimum operating range, with
tighter profit bounds compared to AA.

• The operation of a CAES facility charging and discharging concurrently was studied,
demonstrating that the possible operational combinations allow greater profits to be
achieved.

The proposed models, approaches, and results presented in the thesis were published
in [79] and [80], and have been submitted for publication in [81].
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6.3 Future Work

Based on the work presented in this thesis, the following issues could be addressed in the
future:

• Enhance the self-scheduling model of concurrent CAES operation to consider real-
time market participation, so that the facility may partake in frequency regulation
market, expanding its opportunities to increase revenue.

• Implement the presented techniques to model uncertainties in both day-ahead and
real-time markets.

• Consider the CAES facility participating as a price-maker in the market. For this
purpose, a bi-level model could be developed to study the impact in electricity prices
of such a facility.

• Apply the proposed techniques to model uncertainties in other system parameters
such as demand and RES generation.
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[36] A. Vaccaro and C. A. Cañizares, “An affine arithmetic-based framework for uncertain
power flow and optimal power flow studies,” IEEE Transactions on Power Systems,
vol. 32, no. 1, pp. 274–288, 2017.
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