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Abstract

Coarse-grained reconfigurable array (CGRA) overlays can improve dataflow kernel through-
put by an order of magnitude over Vivado HLS on Xilinx Alveo U280. This is possible with a
combination of carefully floorplanned high-frequency (645 - 768 MHz Torus, 788 - 856 MHz
Mesh, 583 - 746 MHz BFT) design and a scalable, communication-aware compiler. Our CGRA
architecture supports configurable Processing Element (PE) functionality supported by a config-
urable number of communication channels to match application demands. Compared to recent
FPGA overlays like 4×4 ADRES and HyCUBE implementations in CGRA-ME, our design op-
erates at a faster clock frequency by up to 3.4×, while scaling to an orders-of-magnitude larger
array size of 19 × 69 on Xilinx Alveo U280.

We propose a novel topology agnostic ILP placer that formulates the CGRA placement prob-
lem into an ILP problem. Our ILP placer optimizes placement regardless of topology and even
for non-linear objective functions by using pre-computed placement costs as inputs to the ILP
problem formulation. Using the ILP placer reduces placement quadratic wirelength up to 37%
compared to the commonly used simulated annealing approach but increases runtime from less
than a minute to hours.

Our communication-aware compiler targets HLS objectives such as initiation interval (II) and
minimizes communication cost using an integer linear programming (ILP) formulation. Unlike
SDC schedulers in FPGA HLS tools, we treat data movement as a first-class citizen by encoding
the space and time resources of the communication network in the ILP formulation. Given the
same constraints on operational resources as Vivado HLS, we can retain our target II and achieve
up to 9.2× higher frequency. We compare Torus and Mesh topologies, and show Mesh has less
latency per area compared to Torus for the same benchmarks.

iv



Acknowledgements

I would like to thank my supervisor, Professor Nachiket Kapre, for all his support and help
which enabled me to go through my Master’s journey.

Next, I would like to thank everyone in the WatCAG lab: my friends and lab mates Frederick
Tombs, Srinirdheeshwar Kuttuva Prakash, and Ian Lang, whose helps played an important role
in this work.

The last couple of years have been difficult to pass, being far away from home with lockdowns
during the pandemic. My dear friends Simin Asgari, Srinirdheeshwar Kuttuva Prakash, Sajjad
Rashidiani, and Abtin Riasatian were the propelling force that helped me pass through these
difficult times. I will always be grateful for their friendship.

Finally, I would like to thank my lovely family for their unconditional support and love. I
would like to thank my father, who has always been supportive and has helped me with my
difficulties, and my mother who has always been there for me, even through difficult times and
when I was not at my best. My lovely brother has always been the source of joy in my life and
has always been by my side. I would not have reached where I am now without their help and
support, and will always be grateful for all they have done for me.

v



Dedication

This is dedicated to my grandfather, who was the guiding light through my life, and I will
dearly miss him forever.

vi



Table of Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 CGRAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Differentiating factors for CGRAs . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 CGRAs vs ASICs and FPGAs . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Survey of CGRA frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 ADRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 ULP-SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 SYSCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Plasticine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 Cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.6 4D-CGRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.7 HyCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



2.2.8 CGRA-ME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.9 Xilinx AI Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.10 Summary of Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Integer Linear Programming (ILP) . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Gurobi solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Simulated Annealing (SA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Dataflow computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Dataflow graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Network on Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.2 Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.3 Butterfly Fat Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Alveo U280 board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.1 Laguna registers and Super Long Lines (SLLs) . . . . . . . . . . . . . . 21

2.8 Vivado HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Hardware Architecture 24

3.1 Processing Element (PE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Butterfly Fat Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 NoC Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Torus Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Mesh Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 BFT Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Context memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 CGRA implementation and floorplanning . . . . . . . . . . . . . . . . . . . . . 28

viii



3.5.1 Torus implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Mesh implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.3 BFT implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Compiler 33

4.1 Framework overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Formal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Operator Allocation and Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 SA placer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 ILP placer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Torus scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Mesh scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.3 BFT scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Experimental results 53

5.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Scheduler results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Comparing ILP and SA placer . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 CGRA overlay floorplanning Fmax . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Mocarabe vs Vivado HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6.1 Torus vs Mesh latency per area . . . . . . . . . . . . . . . . . . . . . . . 67

6 Conclusion and future research 69

6.1 Future reseach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

References 71

ix



List of Figures

2.1 Overlay as a layer between FPGA and application. . . . . . . . . . . . . . . . . 6

2.2 An abstract CGRA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 ASICs vs CGRAs vs FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 A 4× 4 ADRES array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 ULP-SRP structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 A 4× 8 SYSCORE block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Plasticine array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Cascade architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.9 4D-CGRA vs generic CGRA for a given application. . . . . . . . . . . . . . . . 13

2.10 A 4× 4 HyCUBE and enlarged view of PE. . . . . . . . . . . . . . . . . . . . . 14

2.11 CGRA-ME framework overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.12 A Xilinx AI Engine tile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.13 An example DFG for z = ax2 + bxy. . . . . . . . . . . . . . . . . . . . . . . . 19

2.14 A 3× 3 Mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.15 A 3× 3 Torus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.16 BFT topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.17 SLR connections using SLLs and Laguna registers. . . . . . . . . . . . . . . . . 22

3.1 Internals of a PE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 A 2× 2 Mocarabe array with I-input PEs and a C-channel Torus NoC. . . . . . . 26

3.3 A 2× 2 Mocarabe array with I-input PEs and a C-channel Mesh NoC. . . . . . . 26

x



3.4 A Mocarabe array with 4 I-input PEs and a C-channel BFT NoC. . . . . . . . . . 26

3.5 Internals of a Torus switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Internals of a mesh switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Internals of a BFT switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Frequency as a function of block size for a 10× 10 Torus Mocarabe array. . . . . 29

3.9 A 19× 69 Torus Mocarabe device view. . . . . . . . . . . . . . . . . . . . . . . 30

3.10 A 19× 22 Mesh Mocarabe device view. . . . . . . . . . . . . . . . . . . . . . . 30

3.11 A 256 PE BFT Mocarabe device view. . . . . . . . . . . . . . . . . . . . . . . . 30

3.12 The multilayered implementation of an 8 PE BFT. . . . . . . . . . . . . . . . . . 32

4.1 Mocarabe compiler flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Example Dataflow for y = (2a+ x)× x2. . . . . . . . . . . . . . . . . . . . . . 35

4.3 DFG Partitioned into CGRA PEs. . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 ILP Variables for Scheduling on Torus. . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 ILP Variables for Scheduling on Mesh. . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 ILP Variables for Scheduling on BFT (Interconnect Tree Node). . . . . . . . . . 46

4.7 ILP Variables for Scheduling on BFT (BFT PE-Switch Connection). . . . . . . . 47

4.8 CGRA placement and schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Required channels per benchmark for II = 1 to 5. . . . . . . . . . . . . . . . . . 55

5.2 Mean required channels per benchmark for II = 1 to 5. . . . . . . . . . . . . . . 56

5.3 Frequency for different channel-count and PE configurations. . . . . . . . . . . . 59

5.4 LUT and FF usage vs frequency for different channel-count and topologies. . . . 59

5.5 Vivado HLS fmax vs. Torus and Mesh Mocarabe. (deriche at II = 1 needs
C=3 for Mesh that is not supported) . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Achieved II vs. Target II for various dataflow benchmarks in Vivado HLS. Mo-
carabe always meets target II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Torus vs Mesh average latency per area (LUTs used). . . . . . . . . . . . . . . . 67

5.8 Torus vs Mesh latency per area (LUTs used) for each benchmark. . . . . . . . . 68

xi



List of Tables

2.1 Summary of CGRA Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Alveo U280 available resources . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Summary of Vivado HLS experiments . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 PE and router resource usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Scheduling ILP problem size and runtime comparison of different topologies for
a DFG with 15 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Overview of Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 ILP vs SA placement quality and runtime (SA finds placement for all bench-
marks in less than 30 seconds). . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Overlay configurations and their average maximum frequency . . . . . . . . . . 58

5.4 CGRA sizes and frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Mocarabe frequency gains over other CGRAs . . . . . . . . . . . . . . . . . . . 60

5.6 Torus Mocarabe vs Vivado HLS resource usage (Torus Mocarabe/Vivado HLS) . 63

5.7 Mesh Mocarabe vs Vivado HLS resource usage (Mesh Mocarabe/Vivado HLS) . 64

5.8 Torus Mocarabe vs Vivado HLS latency in cycles (Mocarabe/Vivado HLS ratio
is shown in red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.9 Mesh Mocarabe vs Vivado HLS latency in cycles (Mocarabe/Vivado HLS ratio
is shown in red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xii



Chapter 1

Introduction

The slowdown in Moore’s Law is limiting improvements to CPU performance scaling [42]. Spe-
cialized accelerators can increase throughput and efficiency of computations across various appli-
cation domains. Field-Programmable Gate Arrays (FPGAs) are being adopted by cloud service
providers such as Microsoft, IBM, and Intel [6] [13] [34], but low-level register-transfer level
(RTL) development for these platforms is difficult and expensive. One solution is the use of
High-Level Synthesis (HLS) to express the desired algorithmic behavior in high-level C/C++
rather than low-level RTL, but this approach can suffer from inefficiencies and overheads result-
ing in low frequency at scale (up to 9× away from peak, demonstrated in Section 5.6). We still
need to complete FPGA place and route that can take hours or days of run-time for large cloud-
scale designs. Furthermore, modern FPGAs like Xilinx Alveo U280 are composed of multiple
FPGA dies connected together to form a large FPGA. Although the connected dies are equal to
a large uniform FPGA in terms of available resources, they have limited connectivity to each
other and can impose routing restrictions on the data crossing between them. Even though one
may be able to write optimized RTL and HLS codes capable of efficiently using modern FPGAs,
the code may not perform as expected as the implementation may result in die-crossing induced
delays.

We can use structured coarse-grained FPGA overlays with careful floorplanning that trade-
off FPGA flexibility in exchange for performance guarantees and faster application mapping
times [37]. Coarse-grained reconfigurable arrays (CGRAs) are a class of programmable logic
devices consisting of several coarse logic blocks such as adders and multipliers connected to-
gether with reconfigurable interconnect to provide high performance for specific classes of ap-
plications. Each logic block can have multiple inputs and outputs, a configurable ALU, and
provide support for storage and data movement. In contrast to FPGAs that contain finer-grained
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logic blocks (e.g., look-up-tables) supported by bit-level interconnect, CGRAs are less flexible
and provide ALU-like building blocks with bus-oriented interconnect. One can naively overlay
existing CGRAs on top of modern FPGAs [13] [34], but these overlays do not fully leverage the
benefits of operating on an FPGA. They have small fixed array sizes (e.g. 4 × 4 [16] [46][39]),
and operate at low frequencies (226–382 MHz [16][39]).

1.1 Objective

The aim of this thesis is to provide a framework that compiles structured high-level C code
into high-speed FPGA overlays with efficient usage of FPGA resources. To that end, we intro-
duce Mocarabe, a programmable FPGA overlay CGRA that supports variable array sizes and
topologies (up to 19×69 Torus, 19×22 Mesh, and 256 PE BFT) and operates at high frequen-
cies (645 – 768 MHz Torus, 788 – 856 MHz Mesh, and 583 - 746 MHz BFT) on the Xilinx
Alveo U280 chip. We perform CGRA placement using our novel topology-agnostic Integer Lin-
ear Programming (ILP) placer, and reduce placement quadratic wirelength up to 37% compared
to traditional simulated annealing. Mocarabe offers rich interconnect flexibility in the form of
multiple Network on Chip topologies, multiple communication channels, and logic block I/Os
that are essential for supporting communication-rich dataflow kernels. Our space-time compiler
is an interconnect-aware ILP scheduling formulation which routes data movement in space and
time while minimizing communication costs. To efficiently floorplan our CGRA, we use hand-
crafted FPGA placement scripts that ensure each CGRA block receives the resources necessary
for high-frequency operation. Using our framework, one can give an input C code and receive a
high-speed overlay programmed to deploy the given code, providing both high-level programma-
bility and high performance.

1.2 Main contributions

The key contributions of this work are:

• Design of a CGRA architecture with pipelined interconnect for high-frequency operation
with support for multiple topologies and communication channels.

• An interconnect-rich CGRA providing various CGRA multi-channel interconnect topolo-
gies (Torus, Mesh, BFT).

• An ILP based placer to find the optimum placement on CGRA PEs.
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• A CGRA compiler with a communication-aware ILP scheduler formulation backbone that
encodes interconnect resources in the ILP and generates a time-multiplexed hardware
schedule for a given code.

• Comparison of ILP and simulated annealing placer that shows up to 37% reduction in
quadratic wirelength.

• A carefully floorplanned implementation of 19×69 Torus, 19×22 Mesh, and 256 PE BFT
Mocarabe configurations with up to 3 Torus or 2 Mesh channels on the Xilinx Alveo U280
for 645 – 768 MHz Torus, 788 – 856 MHz Mesh, and 583 – 746 MHz BFT operation
frequency.

• Evaluation of Mocarabe as an HLS tool by comparing it with Vivado HLS across a range
of datapath kernels with 4–49 I/Os, 2–35 adds, and 0–45 multiplies.

1.3 Thesis organization

The remainder of this thesis is organized as follows:

• Chapter 2 gives detailed background information about CGRAs, ILP, Simulated Anneal-
ing (SA), dataflow computing, Network on Chips, the Alveo U280 board, and Vivado
HLS.

• Chapter 3 describes the hardware architecture of Mocarabe by explaining Processing Ele-
ments and Network on Chips components. Additionally, it presents CGRA implementation
and floorplanning on Alveo U280, and gives details about how we managed to achieve a
scalable high-frequency design.

• Chapter 4 describes the Mocarabe compiler flow. It gives a detailed explanation about
different parts of our compiler by explaining the allocation, partitioning, placement, and
scheduling phases. It describes our ILP formulation of CGRA placement and ILP formu-
lation for scheduling.

• Chapter 5 explains our experiments and presents their results. We quantify the cost and
performance of Mocarabe and compare it to other CGRAs and Vivado HLS. We show
how many communication channels our scheduler needs to run each benchmark on Torus,
Mesh, and BFT configurations, and compare ILP and SA placement in terms on runtime
and quality of results.
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• Chapter 6 concludes the thesis by giving a brief overview of Mocarabe and presents future
research ideas that could benefit Mocarabe compiler, hardware, and RTL overlay place-
ment.
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Chapter 2

Background

Developing applications for FPGA execution is a different experience from software develop-
ment. Hardware design suffers from a lower productivity compared to software development
as FPGA tools and programming methods have a steep learning curve. FPGA overlays are vir-
tual reconfigurable architectures that are implemented on top of the FPGA fabric and act as an
intermediate layer between FPGA and the application[37], as shown in Figure 2.1.

This chapter gives an overview of CGRAs and reviews notable recent CGRA frameworks.
Then, we review Integer Linear Programming (ILP), Simulated Annealing (SA), dataflow com-
puting, Network on Chips (NoCs), and the Alveo U280 board as they each play a vital role in
this work.

2.1 CGRAs

Coarse-grained reconfigurable architectures (CGRAs) are a class of programmable logic devices
where the processing elements (PEs) are large ALU-like logic blocks, and the interconnect fabric
is bus-based. Figure 2.2 shows an abstract CGRA. This stands in contrast to Field Programmable
Gate Arrays (FPGAs), which are configurable at the individual LUT level. CGRAs dedicate less
area to flexibility, therefore requiring far fewer configuration bits than FPGAs. This simplifies
their CAD complexity by reducing the number of decisions the tools need to make. Despite their
reduced flexibility, CGRAs are ideal for applications where: 1) some flexibility is required, 2)
software programmability is desired, and 3) compute / communication needs closely match with
the CGRA capabilities. CGRAs can be realized as custom ASICs, or alternatively, implemented
on FPGAs as overlays. CGRAs provide word-wide datapaths and more complex operators com-
pared to FPGAs Theye also provide word-wide interconnect thereby reducing routing costs.
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Figure 2.1. Overlay as a layer between FPGA
and application.
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Figure 2.2. An abstract CGRA.

2.1.1 Differentiating factors for CGRAs

CGRAs can be classified into different groups based on their microarchitecures. Although many
classifications are available, most CGRAs can be differentiated based on the following factors:

• Logic functionality: An important aspect of each CGRA is the types of computation in
each block. Some CGRAs have blocks capable of more complex operations like branching,
while others may only be capable of simple arithmetic operations per block. Mocarabe
supports addition and multiplication per block.

• Interconnect architecture: Interconnect architecture and the data movement through the
array influences cost and performance of the array. Some CGRAs use shared Network-On-
Chips (NoCs) , while others use single hop or multi hop crossbar connections. Mocarabe
supports NoCs with Torus, Mesh, and Butterfly Fat Tree (BFT) topologies.

• Memory: Memory can be contained inside the CGRA, be external, or a hybrid of both.
Mocarabe has shift registers that store the incoming data at every block.

• Dynamic reconfigurability: Some CGRAs enable the user to reconfigure functional units
and interconnects based on their application (closer to FPGAs). On the other hand, func-
tional units and interconnect can be fixed and just perform differently for each application
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(closer to ASICs). In Mocarabe, each block can be configured as either an adder or a
multiplier, and interconnect can be Mesh, Torus, or BFT.

2.1.2 CGRAs vs ASICs and FPGAs

CGRAs provide coarse grained reconfigurability while maintaining high performance. Com-
pared to ASICs that are fixed designs tailored towards specific applications with high perfor-
mance, CGRAs provide some programmability, making them flexible for a wider range of appli-
cations. However, CGRAs have lower performance compared to ASICs due to the added over-
head for programmability. Compared to FPGAs, CGRAs have shorter compile times as fewer,
bigger components like PEs and switches need to be configured, in contrast to FPGAs that con-
figure devices at the LUT and FF level. As a result, CGRAs can be placed between ASICs and
FPGAs in terms of performance and flexibility, as shown in Figure 2.3, and are suitable for cases
where high performance is needed with a degree of reconfigurability.

Flexibility

Pe
rf
or
m
an
ce

ASICs

CGRAs

FPGAs

Figure 2.3. ASICs vs CGRAs vs FPGAs

2.2 Survey of CGRA frameworks

In this section we survey notable CGRA frameworks, and compare our work with some of the
mentioned CGRAs in the later chapters.
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2.2.1 ADRES

ADRES (Architecture for Dynamically Reconfigurable Embedded Systems) [24] is a CGRA
proposed in 2003 which couples a coarse grained reconfigurable matrix with a VLIW processor
into a single architecture. The ADRES core has multiple functional units (FU) and Register Files
(RF), with the FUs executing word level operations and RFs storing immediate data. The archi-
tecture has two views: a VLIW processor and a reconfigurable matrix. The VLIW has faster,
more capable FUs connected to each other through a multi-port RF. The FUs have load/store
operations available to access data on the RF.

FU FUFUFU

RC RCRCRC

RC RCRCRC

RC RCRCRC

Register File

VLIW view

Reconfigurable Matrix View

RCRCRC RC

Figure 2.4. A 4× 4 ADRES array.

The reconfigurable matrix is composed
of the FUs and RFs shared with the VLIW
and Reconfigurable cells (RC), each includ-
ing FUs and RFs. Reconfigurable cell FUs
are simpler and have less ports. They have
a configuration RAM witch stores configura-
tions locally to be used on a cycle by cycle
basis. Figure 2.4 shows an ADRES core. The
processor/coprocessor model means only one
of the VLIW or reconfigurable matrix views
are active at a time, enabling resource sharing
between the views as they are different views
of the same device. Additionally, the VLIW
processor has higher performance than RISC
cores, resulting in better speedups for the en-
tire system. ADRES achieves an Instructions
Per Cycle (IPC) of 28.7 for IDCT and 23.3 for
FFT applications.

2.2.2 ULP-SRP

Ultra Low Power Samsung Reconfigurable Processor (ULP-SRP) [16] is a CGRA proposed in
2014 focusing on biomedical applications. The SRP is a variation of ADRES that aims to satisfy
both low energy consumption and high performance by having many FUs working on parallel
to accelerate execution speed and lower execution time. Although having many FUs working in
parallel increases power consumption, the reduced execution time has a bigger effect and leads
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to a reduced total energy consumption. The SRP is composed of a 3× 3 CGRA, used for accel-
erating loops with instruction level parallelism, and a dual issue VLIW which can process more
complex functions and control flows outside the CGRA’s capabilities. The CGRA supports two
modes: a 2 × 2 low performance (LP), and a 3 × 3 high performance (HP) mode. Figure 2.5
shows the SRP structure.

FU0 FU2FU1

RC RCRC

RC RCRC

Register File

RCFU RCFU3
RF RCFUFU4

RF RCFUFU5
RF

RCFUFU8
RFRCFUFU7

RFRCFUFU6
RF

RCFUFU0
RF RCFUFU1

RF RCFUFU2
RF

VLIW 
IMEM

CMEM

Low Performance  
Mode

VLIW Mode
High  

Performance  
Mode

Figure 2.5. ULP-SRP structure.

In CGRA mode, the configuration is read from
the Configuration Memory (CMEM) at every
cycle. Furthermore, the CGRA can change
performance mode at runtime using Dynamic
CGRA Mode Changing (DCMC) which al-
lows executing some loops in low perfor-
mance mode while others execute at high per-
formance mode. However, each application
needs to be compiled once for each CGRA
mode to enable using DCMC. To further in-
crease energy efficiency, the SRP has multiple
power domains and uses fine grained power
gating to turn off FUs not used in a selected
mode. ULP-SRP is implemented in 40nm
ASIC and runs at 100MHz. It achieves an IPC
of 2.35 in LP and 4.67 in HP for 256 point
FFT applications.

2.2.3 SYSCORE

SYSCORE [29] is another CGRA similar to ADRES proposed in 2011. It focuses on low power,
real-time processing of biomedical signal processing, and to the authors’ claim, is the first CGRA
aimed towards biosignal processing applications. SYSCORE architecture maps irregular algo-
rithms by using RoundAbout Interconnect (RAI), which performs nearest neighbor data transfer
without the power and area cost of dense interconnects. Furthermore, SYSCORE reduces energy
usage by:

• Using reconfiguration to eliminate the fetch-decode steps of processors

• Using systolic data reuse to reduce the number of intermediate RAM accesses
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• Using compact functional units to reduce logic switching

• Dynamically scaling Voltage and frequency
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Figure 2.6. A 4× 8 SYSCORE block.

A 4 × 8 SYSCORE architecture is shown
in Figure 2.6. The architecture has two
main elements: Configurable Function Units
(CFUs) and RAI. Direct Memory Access
(DMA) units inject data into the architec-
ture from west and north, and collect data
from east. Each CFU has 4 input ports and
3 output ports and contains a computation
unit tailored towards systolic algorithms capa-
ble of MUL-ADD, MULL-SUB, and compare
(CMP). Each CFUs is connected to its nearest
neighbor to the east and west. To reduce inter-
connect density, only Odd numbered columns
have cross interconnections which are useful
for non-systolic applications. A column of
RAI is placed after every second columns of
CFUs to allow data to go from any CFU on
the left of the RAI column to any CFU on
the right of the RAI column. The lack of a
global interconnect further contributes to re-
ducing chip area and power consumption. An
8 × 8 SYSCORE, built of two 4 × 8 arrays,
is implemented using 90nm CMOS and op-
erates at 100 MHz. Compared to DSP and
Single Instruction Multiple (SIMD) designs,
SYSCORE consumes less energy while pro-
viding up to 64× speedup from DSP and 16×
speedup from SIMD.

2.2.4 Plasticine

Plasticine [33] is a large, 16 × 8 CGRA architecture focusing on parallel patterns proposed at
2017. At the highest abstraction level, it is a mesh of compute and memory units as shown in
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Figure 2.7. Both the compute and memory units are programmable for every cycle of operation.
Compute units contain ALUs and programmable state registers for controlling them, and support
both Single Instruction Single Data (SISD) and SIMD Data type parallelism in addition to vector
operations. The memory units contain scratchpad SRAMs and use a small set of ALUs cimbined
with programmable logic to interface them. The mesh uses a set of address generators and coa-
lescing units to interface outside memory. Plasticine is programmable using a custom language
for dataflow computing computing called Spatial [17].
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Figure 2.7. Plasticine array.

Plasticine is implemented as a 16× 8 array using 28nm technology and runs at 1GHz. Com-
pared to 28nm Altera Stratix V FPGA, Plasticine has a better performance to power ratio up to
76.9×.

2.2.5 Cascade

Cascade [46], proposed in 2019, aims at high-throughput data streaming by decoupling memory
accesses from computations. Conventional designs generate data load/store memory addresses
inside the array. However, generating addresses inside the arrays could use a noticeable amount
of PEs which could otherwise perform computations. By moving the address generation out-
side the CGRA, Cascade reduces address generation overhead and makes the array focus on
computations. Cascade uses specialized hardware units called Steam Engines (SE) that gener-
ate an address per cycle. Figure 2.8 shows Cascade architecture. Cascade compiler extracts
computations and memory access patterns for a given C code and generates CGRA and SE con-

11



PE PE PE

PE PE PE

PE PE PE

PE

PE

PE

PE PE PE PE

Config Bus

.......

On-Chip
Memory

Stream
Engine

Stream RegistersXbar CGRA

Host
Processor

Main 
Memory DMA

Figure 2.8. Cascade architecture.

figurations. Cascade is implemented as a 4 × 4 array in 40nm CMOS and reaches a maximum
operating frequency of 510 MHz while resulting in up to 3× improved performance.

2.2.6 4D-CGRA

4D-CGRA [15] proposed in 2019 introduces branch dimension to application mapping on CGRAs.
Although statically scheduled modern CGRAs provide a good support for dataflow computing,
static scheduling limits CGRAs’ ability to accelerate loops with branches and complex control
flows. 4D-CGRA uses predication for control divergence and maps both paths from a condi-
tional divergence to the CGRA, while only one executes. When mapping conditional paths,
duplicate allocation on unused resources limits performance and increases schedule length due
to the wasted resources. To overcome this issue, splits each basic block (a single entry, single
exit code sequence) into multiple subsets called shards, with all instructions inside a shard get-
ting mapped to the same PE. Each shard is associated with a tag based on the the result of the last
conditional branch. In 4D-CGRA, multiple shards get mapped to the same PE and only one of
them gets selected for execution based on the branch outcomes. This leads to more efficient re-
source usage and reduced schedule lengths. Figure 2.9 compares 4D-CGRA to a generic CGRA
for a given application. 4D-CGRA is implemented in 40nm technology, runs at 714 MHz, and
improves throughput by up to 2.5×.
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Figure 2.9. 4D-CGRA vs generic CGRA for a given application.

2.2.7 HyCube

HyCUBE [14] is a CGRA similar to ADRES with reconfigurable single-cycle multi-hop (combi-
national) interconnect proposed in 2017. HyCUBE’s multi-hop interconnect benefits the CGRA
by allowing for more flexible and efficient scheduling as distant PEs can exchange with mini-
mum overheads, eliminating the need to use several intermediate PEs for communication. Unlike
ADRES, HyCUBE loads data from the leftmost column of device, as opposed to ADRES which
does so from the top row. Additionally, there are no toroid wrap around connections as data can
go in any direction. Each PE consists of a FU and a crossbar switch. At each cycle. configu-
ration is read from the configuration memory and the incming data can be registered or proceed
directly to the crossbar. Figure 2.10 shows a 4× 4 HyCUBE array and a PE’s internal structure.
HyCUBE is implemented as a 4 × 4 array on 28nm ASIC and operates at 704 MHz. HyCube
achieves 1.5× better performance-per-watt over a standard NoC.

2.2.8 CGRA-ME

CGRA Modelling and Exploration (CGRA-ME) [8] is an open-source framework initially pro-
posed at 2017 that allows describing arbitrary CGRA architecture and enables mapping, place-
ment, and scheduling C benchmarks to the arbitrary CGRA. It generates Verilog code for the
resulting design for simulation and synthesis. CGRA-ME also allows for area and performance
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modeling of CGRAs [26] by synthesizing commonly occurring primitives in isolation and adding
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Figure 2.11. CGRA-ME framework overview.

component wise results together. Figure 2.11 [40] shows an overview of the CGRA-ME frame-
work. ADRES and HyCUBE are implemented as FPGA overlays using CGRA-ME on Intel
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Stratix 10 (S10) and Xilinx Ultrascale+ (US+) in [39]. After optimizations, the ADRES and
HyCUBE overlays operate at up to 226 – 382MHz on S10 and US+.

2.2.9 Xilinx AI Engine

AI Engine [49] is a CGRA proposed by Xilinx in 2018 as a solution for higher compute density
and lower power requirements of emerging machine learning and wireless applications. AI En-
gine provides 3−8× compute capacity per silicon compared to programmable logic and reduces
compute intensive power consumption by 50%. An AI Engine array can have between 30 AI En-
gines and 80k LUTs to 400 AI Engines and near 1 million LUTs, with each AI Engine including
the following resources:

• Dedicated 16KB instruction memory

• 32KB RAM

• 32 bit RISC scalar processor

• 512 fixed-point and 512 bit floating-point vector processor
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Figure 2.12. A Xilinx AI Engine tile.

Figure 2.12 shows details of the AI Engine tile. AI engine is implemented in 7nm and has a
maximum frequency of 1GHz. It reaches 100 MHz for a 5-Channel LTE20 Wireless application.
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2.2.10 Summary of Frameworks

To summarize the frameworks discussed so far, Table 2.1 shows the detail of each framework.
As the discussed frameworks show, CGRAs are a capable candidate for accelerating applications
and keep growing with new technologies, with more recent frameworks like Xilinx AI engine
and Plasticine showcasing their potential. Furthermore, as frameworks like CASCADE and 4D-
CGRA show, CGRAs can benefit greatly from compiler optimizations that make the most use of
the available compute resources by reducing overheads and the number of IDLE resources.

TABLE 2.1
SUMMARY OF CGRA FRAMEWORKS

Name Year Tech Size Fmax Performance
ADRES 2003 – 4× 4 – 28.7 IPC (idct), 23.3 IPC (fft)
SYSCORE 2011 90 nm 8× 8 100 MHz Up to 64× (16×) speedup from DSP (SIMD)
ULP-SRP 2014 40nm 3× 3 100 MHZ 2.35 IPC (LP), 4.67 IPC (HP) for 256 point FFT
HyCUBE 2017 28nm 4× 4 704 MHZ 1.5× better performance-per-watt over standard NoC
Plasticine 2017 28nm 16× 8 1GHz Up to 76.9× better performance to power ratio over Stratix V
AI Engine 2018 7nm 80 – 40 1GHz 100 MHz for a 5-Channel LTE20 Wireless application
CASCADE 2019 40nm 4× 4 510 MHz 3× improved performance
4D-CGRA 2019 40nm 4× 4 714MHZ Up to 2.5× increased throughput
CGRA-ME 2017 – Variable Variable Variable

2.3 Integer Linear Programming (ILP)

Linear Programming (LP) is a method to compute optimal solutions for problems with linear
objective functions and linear constraints. In Integer Linear Programming (ILP), the unknowns
are limited to integers. ILP is NP-hard as the space of possible answers for variables is restricted
to integers. Equation 2.1 shows an example ILP formulation which aims to minimize a value
with respect to the given constraints. It can be seen as a scheduling problem with three tasks,
called T0, T1, and T2, with execution times of X0, X1, and X2 respectively. T1 relies on the
output of T0 and T2 relies on the outputs of T0 and T1. As a result, assuming each task takes
1 timeslot to complete, their execution times can be formulated in the ILP formulation shown
in Equation 2.1, which minimizes X2 and forces a correct execution of tasks using constraints
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(X1 −X0 ≥ 1 means X1 should be executed at least 1 timeslot after X0).

Variables: X0, X1, X2

Constraints:


X0 > 0;X1 > 0;X2 > 0;

X2 −X0 ≥ 1;

X1 −X0 ≥ 1;

X2 −X1 ≥ 1;

Objective: MinimizeX2

(2.1)

2.3.1 Gurobi solver

Gurobi [12] is a commercial mathematical solver used for solving various optimization problems,
like ILP. Gurobi provides a Python API and can be used to solve mathematical models in a
Python program. In this work, we use Gurobi to solve ILP problems for partitioning, placement,
and scheduling, which will be discussed in the upcoming chapters.

2.4 Simulated Annealing (SA)

Simulated annealing (SA) is a probabilistic technique for finding the global optimum of a given
function. It is a metaheuristic particularly useful for finding global optimum in a large search
space and is used when the search space is discrete. Although SA may not produce the optimal
solution in finite time, it can find a solution close enough to the optimal solution faster than ILP
given the right parameters. As shown in Equation 2.2, SA consists of multiple iterations of the
annealing algorithm, in which every time a random variable is picked and given a new value at
random. If the new value is an improvement with respect to a cost function, the new value is
adopted for the variable. If the new value is not an improvement with respect to a cost function,
it is adopted probabilistically based on a temperature parameter, T. With an initial value on N0

and a new value of N1, a cost function h(x) the new value will be accepted with a probability of
e−(h(N1)−h(N0))/T . Temperature can be reduced after each iteration. As a result, initial parameters
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play an important role in SA’s performance. SA is commonly used in CAD tools for placement.

Let N0 space be the initial assignment of values to all variables
Let T be a high temperature

repeat:



Pick a random variable and assign it to a random value.
Call the new values of variables N1

if h(N1) < h(N0) :

N0 = N1

else :

N0 = N1with probabilitye−(h(N1)−h(N0))/T

reduce T
Stop if stopping criteria is reached

(2.2)

2.5 Dataflow computing

Dataflow computing models programs as graphs of data moving between operations. Unlike
traditional programming where programs are modelled as series of operations executing in a
specific sequential order, dataflow computing consists of programs each having multiple opera-
tions working in parallel, each processing as soon as their input operands are available.

2.5.1 Dataflow graph

A dataflow program can be described as a DataFlow Graph (DFG). Each node represents an
operation and the edges between the nodes indicate data dependencies between operations. If an
edge goes from node A to node B, it means node B relies on node A’s output for one of its inputs,
and as a result it should be executed after node A. Input nodes have no in going edges and output
nodes have to no outgoing edges. Figure 2.13 shows a DFG for z = ax2+bxy, which has 4 input
nodes and an output node. As ax2 + bxy can be written as x(ax + by), we should first compute
ax and by, and since they do not rely on each other, they can be computed in parallel. Then, we
should add ax and by together and multiply the result by x to get z = ax2 + bxy. The process to
compute z = ax2 + bxy is encoded in the DFG in Figure 2.13, with the first two multiplications
happening in parallel and using their results to make the rest of the computations. We can use
ILP to formulate and schedule DFG nodes, giving each node an execution time in such a way
that all data dependencies are maintained.
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Figure 2.13. An example DFG for z = ax2 + bxy.

2.6 Network on Chips

FPGAs have long supported statically configured routing which gets programmed at compile
time and does not change during runtime. Although the statically configured routing suits circuit-
like applications well, there is still a need for runtime-configured communications to route the
traffic overlays or IP cores generate. Network on Chips (NoCs) provide chip-wide communica-
tion and support routing multiple individual packets simultaneously using NoC switches, making
them a suitable candidate for managing chip-wide exchange of data and control. NoCs could
have multiple topologies and configurations like Mesh [20] [25], Torus [10], and Butterfly fat
trees [1] [27]. NoCs are usually either time-multiplexed or packet-switched. In packet-switched
NoCs, data arrives at switches in packets containing their destination address, and routing deci-
sions get made at packet arrival based on each packet’s destination. In time-multiplexed routing,
routing decisions at each switch are based on a fixed, predetermined schedule that instructs each
switch on how to route the incoming data at each cycle. In Mocarabe, we use statically-scheduled
time-multiplexed NoCs and store routing decisions in RAM blocks called context memories.

2.6.1 Mesh

In Mesh topology, switches are connected in a 2D array structure as shown in Figure 2.14. Data
moves bidirectionally and each switch is connected to its 4 neighboring switches at north, south,
east, and west, with boundary switches having less than 4 connections.
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Figure 2.16. BFT topology.

2.6.2 Torus

In Torus topology, switches are connected in a 2D array structure as shown in Figure 2.15. Each
switch is connected to its 4 neighboring switches at the top, bottom, left, and right, with boundary
switches having wrap-around connections that go through the entire array and connect them to
other boundary switches and the other end of the array. Data moves directionally to east and
north. Although data only moves in one direction, having the wrap-around connections enables
data to reach any destination on the array.

2.6.3 Butterfly Fat Tree

In Buttefly Fat Trees (BFTs) switches are connected together in multiple levels, organized in
a folded-tree-like structure, with PEs connected to the lowest level, leaf switches. To present
various structures, BFTs usually have two types of switches: t switches with two inputs from
the lower level and an output to the higher level, and pi switches with two inputs from the lower
level and two outputs to the higher. Figure 2.16 shows a BFT composed of only pi switches,
connecting 8 PEs located at the bottom together.

2.7 Alveo U280 board

Xilinx Alveo U280 [50] is a datacenter acceleration card produced by Xilinx. It is a custom-
built UltraScale+ FPGA that runs on the alveo architecture and uses the XCU280 FPGA, which
in composed of three FPGA dies, called Super Logic Regions (SLRs), connected together us-
ing Xilinx Stacked Silicon Interconnect (SSI). Table 2.2 showsshows available resources on the
Alveo U280 board.
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TABLE 2.2
ALVEO U280 AVAILABLE RESOURCES

Resource Capacity

PCIe interface Gen3 ×3, Gen4 ×8, CCIX
HBM2 total capacity 8 GB
HBM2 total bandwidth 460 GB/s
Look-up tables (LUTs) 1304K
Registers 2607K
DSP slices 9024
Block RAMs 960
Ultra RAMs 960
DDR total capacity 32GB
DDR maximum data rate 2400 MT/s

2.7.1 Laguna registers and Super Long Lines (SLLs)

In order to communicate between different SLRs in multi-die Xilinx FPGAs, like Alveo u280,
Laguna registers and Super Long Lines (SLLs) are used to transmit data fast and efficiently be-
tween different SLRs. SLLs are long vertical wires spanning FPGA chips that connect different
SLRs together. Laguna registers are special registers in Xilinx FPGAs designed to connect to
SLLs efficiently to communicate between SLRs. In order to route data between SLRs without
imposing heavy delays, the SLR crossing data should cross between a pair of Laguna regis-
ters (each in a separate SLR) using SLLs without having any logic on the path as having logic
on the path interrupts the Laguna–SLL–Laguna path and imposes heavy delays on the design.
Alveo U280 has 23040 Laguna register pairs SLR0 and SLR1 communication and 23040 La-
guna register pairs for SLR1 and SLR2 communication. Figure 2.17 shows an overview of SLR
connections using SLLs and Laguna registers [5].

2.8 Vivado HLS

Vivado High Level Synthesis (HLS) converts higher-level languages like C, C++ into RTL like
Verilog, which enables higher level language programs to directly target and deploy on Xilinx
devices. HLS greatly boosts development speed and creativity by eliminating the need to manu-
ally create RTL designs. However, HLS designs usually suffer from lower operating frequencies
and higher resource usage, and need various compiler directives to work properly. In the remain-
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Figure 2.17. SLR connections using SLLs and Laguna registers.

der of this section, we go through running a simple example on Vivado HLS and observe the
effect of compiler directives on the resulting designs. We use Vivado HLS to implement poly
function, which implements ax2 + bx + c, on a Xilinx ‘xc7z020clg400’ device. The function
code is shown in Code block 2.1.

1 void poly(int x, int a, int b, int c, int* y)
2 {
3 (*y)=a*x*x+b*x+c;
4 }

Listing 2.1: Poly Function

First, we direct Vivado to pipeline the function for an Initiation Interval (II) of 1, accepting in-
puts every cycle, and aim for a clock period of 2 ns. Running Vivado to Synthesize the design
results in a pipelined design with an II of 1, but fails to achieve a 2 ns clock period and gets 2.79
ns instead. The generated design has a latency of 42 cycles and requires 6 DSP48s, 1532 FFs,
and 374 LUTs. The 42-cycle latency is due to pipelining, which breaks operations into smaller
chunks for speeding up the design. Changing the target clock period to 2 ns results in a design
with a latency of 4 cycles, as the 2 ns clock period is long enough to accommodate each operation
in the code. The resulting design consumes fewer resources and needs 6 DSP48s, 292 FFs, and
154 LUTs. Next, we modify the experiment by targeting II=2 and a clock period of 2 ns. Doing
so does not improve previous timing and results in a clock period of 2.79 ns and latency of 42
cycles. Increasing II also has a negligible effect on resource usage and the resulting design uses
6 DSP48s, 1513 FFs, and 374 LUTs.

None of the experiments so far imposed any constraints on the computing resources available.
To see the effect of putting resource constraints, we run an experiment targeting a clock period
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TABLE 2.3
SUMMARY OF VIVADO HLS EXPERIMENTS

Function
Target Clock

(ns)
Target II Resource Limit

Achieved Clock
(ns)

Achieved II
Resource Usage Latency

(cycles)DSP FF LUT
Poly 2 1 - 2.79 1 6 1532 374 42
Poly 10 1 - 10 1 6 292 154 4
Poly 2 2 - 2.79 2 6 1513 374 42
Poly 10 1 1adder, 1 multiplier 10 2 3 197 141 5
poly loop 2 1 - 2.79 1 6 1530 450 1068
poly loop (unroll) 2 1 - 2.79 1 48 10837 2398 172

of 10 ns and limiting the design to only use 1 adder block and 1 multiplier block. The resulting
design meets timing and has a latency of 5 cycles. However, it can no longer support II = 1 and
needs at least an II of 2 to operate. As expected, the resulting design has a lower resource usage
and only uses 3 DSP48s, 197 FFs, and 141 LUTs.

1 void poly_loop(int x[N], int a, int b, int c, int y[N])
2 {
3 loopA: for(int i=0; i<N; i++) {
4 y[i]=a*x[i]*x[i]+b*x[i]+c;
5 }
6 }

Listing 2.2: Loop-Based Poly Function

To see the effect of loop unrolling and partitioning, we use a modified loop-based version of the
code shown in Code block 2.2. Synthesizing the code with N=1024, a target clock period of 2 ns,
and a target II of 1 results in a design with a clock period of 2.79 ns, II of 1, and latency of 1068
cycles, which is close to 1024. The resulting design uses 6 DSP48s, 1530 FFs, and 450 LUTs.
We are now able to use loop unrolling to create multiple copies of the datapath and divide the
work between them. Since the loop-based code has single-port memory interfaces for accessing
x and y, we need to use partitioning in conjunction with unrolling to create parallel ports for
accessing x and y, enabling efficient loop unrolling. Synthesizing ‘poly loop’ with N = 1024, a
target clock period of 2 ns, target II of 1, and an unroll factor of 8 results in a design with a clock
period of 2.79 ns, II of 1, and latency of 172 cycles, which is close to 1024/8. As unrolling makes
multiple copies of the datapath, the unrolled design needs more resources and uses 48 DSP48s,
10837 FFs, and 2398 LUTs.

During the experiments above, we observed how target clock period, target II, available re-
source limitations, loop-based code, and unrolling affect performance and resource usage. Table
2.3 summarizes HLS experiments and their resulting designs.
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Chapter 3

Hardware Architecture

The Mocarabe architecture consists of PEs connected by a torus, mesh, or Butterfly Fat Tree
(BFT) NoC, where PEs execute operations on incoming data and NoC routers control data move-
ment. This chapter will explain the architecture of Mocarabe PEs and NoC switches and show
how each Mocarabe NoC topology is formed. Then, we will discuss floorplanning and imple-
mentation of Mocarabe overlay on the Alveo U280 FPGA, and show how each NoC topology
gets floorplanned on the FPGA fabric.

3.1 Processing Element (PE)

A PE can be configured as either an operator (multiply or add) or a data input/output. PEs store
incoming operands in shift registers and select the relevant stored operands as inputs to their
ALU at each cycle, as shown in Figure 3.1. If C > 1, a multiplexer is used at each PE input to
choose incoming data from the relevant channel. Operand and channel selection at each cycle are
extracted from the compiler output and put into the context memories (labeled as ‘CTX’ in Figure
3.1) which act as the select lines for the multiplexers and shift registers. For a given Initiation
Interval (II), Mocarabe accepts new inputs, and each element will perform the same task once per
II cycles. As a result, each context memory has the size of ‘II’ configuration words. PE output
goes to all NoC channels, as at each channel the switch decides whether to take and route PE
output.
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Figure 3.1. Internals of a PE.

3.2 Network Architecture

Mocarabe supports Torus, Mesh, and BFT NoCs as the interconnect network to route data be-
tween PEs. A key feature of our architecture is the variable number of parallel physical commu-
nication channels [44]. If the number of communication channels is greater than one, PE inputs
are fanned in from each channel to both shift registers.

3.2.1 Torus

A Torus-based Mocarabe is a 2D array of building blocks connected by a directional Torus NoC.
Each block contains both a PE to execute operations on incoming data and a set of NoC routers
to control data movement. Figure 3.2 shows a 2×2 Torus Mocarabe array with C communication
channels and I-input PEs.

3.2.2 Mesh

A mesh-based Mocarabe is a 2D array of building blocks connected by a bi-directional mesh
NoC. Each block contains both a PE to execute operations on incoming data and a set of NoC
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routers to control data movement. Figure 3.3 shows a 2 × 2 Mocarabe array with with C com-
munication channels and I-input PEs.

3.2.3 Butterfly Fat Tree

A BFT-based Mocarabe is an array of PEs connected by a BFT NoC. Each PE executes operations
on incoming data and communicates with other PEs using a BFT NoC, which is composed of
pi switches. Each pi switch is connected to two switches at the next level and two switches or
PEs(at level 0 switches) at the previous level. PEs are located at the leaf nodes and are connected
to the level 0 switches. Figure 3.4 shows a 4-PE Mocarabe array with C communication channels
and I-input PEs.

3.3 NoC Switch

Each communication channel is composed of multiple connected NoC switches exchanging data.
Every switch accepts inputs from the local PE (in Torus or Mesh) and the neighbors on the same
channel and sends outputs to the local PE (in Torus or Mesh) and the neighbors on the same
channel. As Mocarabe is statically scheduled, NoC switches have RAMs (in the form of context
memories) that hold the schedule and control their routing.
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3.3.1 Torus Switch

Each Torus NoC switch takes data from the PE inside its block or its western and southern
neighbors and sends data to the PE or its northern and eastern neighbors. Figure 3.5 shows the
internal components of a Torus switch. Context memories are connected to output multiplexers
and choose the data going to each output port at every cycle.
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Figure 3.5. Internals of a Torus
switch.
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Figure 3.6. Internals of a mesh switch.
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Figure 3.7. Internals of a BFT switch.

3.3.2 Mesh Switch

Each mesh NoC switch takes data from the PE inside the block or its western, eastern, northern,
or southern neighbors and sends data to the PE or its western, eastern, northern, or southern
neighbors. Figure 3.6 shows the internal components of a mesh switch. Each output port multi-
plexer is controlled by context memories extracted from compiler output.

3.3.3 BFT Switch

Each BFT NoC switch takes and sends data data to two higher level switches (labeled U0 and
U1) and two lower level switches (labeled L and R). Figure 3.7 shows the internal components
of a BFT switch. Each output port multiplexer is controlled by context memories extracted from
compiler output.

Unlike other CGRAs [24][16][14], which have fixed array sizes, an application can be mapped
over a subset of all available PEs and unrolled (repeated) by tiling over the full array. Table 3.1
shows the average resource consumption and maximum operating frequency of each PE and
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router on Alveo U280. The high operating frequency of our modules is due to careful floorplan-
ning and pipelining, which will be discussed in the upcoming sections.

TABLE 3.1
PE AND ROUTER RESOURCE USAGE

LUT (logic) LUT (memory) FF DSP blocks Fmax

Adder PE 40 80 146 0 1GHz
Multiplier PE 9 64 148 3 986 MHz
Torus router 99 0 290 0 1 GHz
Mesh router 130 0 514 0 1 GHz
BFT router 129 0 386 0 1 GHz

3.4 Context memories

The entire Mocarabe architecture is designed for statically-scheduled, time-multiplexed opera-
tion. Every routing and functional resource will repeat the same task, accept inputs, and drive
outputs in a repeating phase of II cycles. II is thus also the number of operations mapped to a
resource which can enable larger applications to be mapped to fewer blocks at the cost of more
LUTs to drive multiplexer select lines. II is the number of cycles in the modulo schedule found
by the compiler. Operation execution and data movement are statically scheduled and encoded as
multiplexer select or shift register address line memories. Statically-scheduled operation allows
for simpler NoC router designs as routers do not need to make routing decisions and usual rout-
ing difficulties like back pressure will not occur. Furthermore, a static schedule will lessen data
overheads like packet address, and allows for a much more deterministic approach. We use the
compiler output to generate context memories that determine how each CGRA element operates
at every cycle.

3.5 CGRA implementation and floorplanning

We implement the Mocarabe overlay using parametric Verilog for PEs and switches. We use
Xilinx Vivado 2020.1 to synthesize, place, and route the design on a Xilinx Alveo U280 card for
analysis. We use Vivado in command-line mode and use TCL scripts to control the flow. We use
the XDC flow to supply frequency and placement constraints.
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Floorplanning allows choosing a suitable grouping and connectivity of logic in a design and
manually placing logic blocks in an FPGA. It aims to make a place and routed design meet
timing by increasing density, routability, or performance. During floorplanning, a Physical block
(Pblock) spans a part of the FPGA and contains various resources like LUTs, FF, etc. When a
logic block is assigned to a Pblock, Vivado tries to use the resources inside the Pblock for placing
the assigned logic block. We design hand-crafted placement scripts to effectively map the design
and make use of FPGA resources while keeping the operation frequency high.

3.5.1 Torus implementation

Each logical block containing PE and switches is assigned to a physical block (Pblock) on the
chip. We define an arbitrary estimate for each Pblock’s size as the number of logic slices it
contains, with each slice containing Look-Up Tables (LUTs) and flip flops. For instance, a 10×10
Pblock can span the chip from slice X0Y0 to slice X9Y9, creating a rectangular area over the
device that contains 100 slices. We use interleaved Torus placement to eliminate the long toroidal
critical path between different array ends. During our floorplanning experiments we notice that
the unused portions at each Pblock add to routing delay. We place and route a 10 × 10 array
with multipliers on the first column and the rest of the blocks being adders for varying Pblock
sizes up to 100 slices shown in Figure 3.8. Compact Pblocks generally deliver higher frequency
with the 8× 10 PE achieving the highest frequency of 980MHz. To scale up the CGRA and span
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871
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Figure 3.8. Frequency as a function of block size for a 10× 10 Torus Mocarabe array.

the FPGA, we set the array size to 20 × 60, with the same configuration of having multipliers
on the first column and the rest of the blocks being adders. Spanning the entire FPGA required
communication between different SLRs which lead to large routing delays between SLRs. We
performed multiple tweaks to the placement and RTL to maintain high operating frequencies
at large sizes. We fixed Pblock size to 10 × 10 in order to avoid having single Pblocks spread
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among multiple SLRs. Furthermore, we added extra pipeline registers to each router’s output to
the nearby routers and registered the incoming data. We forced Vivado to map the router registers
that had incoming or outgoing SLR crossing nets to SLR crossing Laguna registers, which are
connected together by Super Long Lines (SLLs), inside the router’s corresponding Pblock. We
use Vivado’s “phys opt design” compiler option to include various physical optimizations (e.g.
an SLR-crossing optimization), once after placement and once after routing to enable the 20×60
array to run at 650 MHz+.

Although the 20 × 60 array operates at 650 MHz, the operation frequency is not stable be-
tween different operator configurations. For instance, having all blocks performing multiplica-
tion results in a noticeable frequency drop to 400 MHz. The drop in frequency is because some
PEs use DSPs placed far away outside their Pblocks. To overcome this issue, we modify the
placement scripts to force each PE to only use the DSPs located inside its Pblock and added
paddings to array placement on the chip to make sure each Pblock contained at least the amount
of DSP blocks needed by each PE. The 10× 10 size for each Pblock is a suitable option here as
well to make sure all Pblocks receive the resources they need. By using the updated placement
scripts, we are able to scale the array size to 19 × 69, spanning the entire chip and operate at
640 MHz for an array composed only from multiplier PEs. To further increase the operation
frequency we pipelined the router outputs to PEs, which improved operation frequency, taking
the all-multiplier 19 × 69 array frequency up from 640 – 740MHz. Since some applications at
a given II require higher channel counts, we support 1–3 channel, two-input PE configurations.
Figure 3.9 shows a dual-channel 19× 69 array’s device view in Vivado.
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Figure 3.9. A 19×69 Torus Mocarabe
device view.
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Figure 3.11. A 256 PE BFT Mo-
carabe device view.
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3.5.2 Mesh implementation

Mesh implementation is similar to Torus. Each logic block containing PE and switches is as-
signed to a Pblock on the chip, and we use 10 × 10 sized Pblocks as it gives enough resources
to each logical block and prevents Pblocks from spilling between different SLRs. Each logic
block is forced to to only use the resources (LUT, DSP, etc.) available in its assigned Pblock. We
implement a 19 × 22 mesh Mocarabe and provide 1–2 channels to satisfy applications’ needs.
Like Torus, we pipeline computations and communications and use various Vivado compiler di-
rectives like “phys opt design” to perform various physical optimizations once after placement
and once after routing. The 19 × 22 mesh array runs at 788 – 856 MHz. Figure 3.10 shows a
19× 22 mesh Mocarabe device view in Vivado.

3.5.3 BFT implementation

Unlike mesh and Torus, we assign PEs and routers to separate Pblocks to implement BFT. This
is because instead of having logic blocks connected together in a 2D array, BFT is composed of
a set of PEs communicating with each other using a multi-layered network of NoC routers. As
a result, we assign PEs and each layer of routers to different sets of Pblocks and place different
layers on top of each other using Vivado’s nested Pblocks. Nested Pblocks allows having multiple
layers of Pblocks placed on top of each other if each lower level Pblock is covered by only one
higher level Pblock at each level above and do not cross between multiple Pblocks at each higher
level. As an example, if Pblock A is placed on top of Pblock B, Pblock A must cover Pblock B
entirely and there must be no parts of Pblock B spilling out of Pblock A.

To implement BFT Mocarabe, first, we assign PE Pblocks each accommodating a single PE.
Then, we assign Pblocks for each layer of NoC switches. At layer 0, each NoC Pblock spans
2 PE Pblocks and contains a NoC switch that connects the underlaying PEs together. At layer
1, each NoC Pblock spans 4 PE Pblocks and contains 2 NoC switches that connect the level 0
switches together. This way, we place each layer’s Pblocks on top of the previous layer’s Pblocks
until all layers have their Pblocks assigned, with each layer l having 2l switches assigned to a
Pblock and each Pblock spanning 2l+1 PEs. Assigning more switches to each Pblock at higher
levels makes placement easier and gives vivado more freedom to achieve an optimal placement.
Figure 3.12 shows Pblock placements for an 8 PE BFT and how each layer of Switches gets
placed on top of the previous layer. Figure 3.11 shows a 256 PE BFT Mocarabe’s device view in
Vivado highlighting a PE Pblock and a Pblock for each NoC level (except level 7 which covers
the entire array), showing a pattern similar to Figure 3.12 (each level of switches covers lower
level ones). Furthermore, like Torus and Mesh, we force each PE to use DSP blocks inside its

31



1 Switch

PE PE

PE PE

PE PE

PE PE

2 Switches

4 Switches

1 Switch

1 Switch 1 Switch

2 Switches

PEs

L0

L1

L2

Figure 3.12. The multilayered implementation of an 8 PE BFT.

assigned Pblock and use Vivado compiler directives and optimizations to maximize performance.
The 256 PE BFT array runs at 583 – 746 MHz.
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Chapter 4

Compiler

In this chapter, we present Mocarabe compiler flow. We give a detailed explanation about differ-
ent parts of our compiler by explaining allocation, partitioning, placement, and scheduling.

4.1 Framework overview

The Mocarabe compiler framework extracts the data-flow graph (DFG) from a C kernel (with
gcc and GIMPLE) and generates an architecture configuration and a schedule to coordinate data
movement. The compiler flow, shown in Figure 4.1, consists of four phases: 1 operator alloca-
tion, 2 DFG partitioning, 3 placement, and 4 scheduling; the objective is to find a feasible
schedule with a minimum number of channels. We use simple linear search for channels, and
most of our benchmarks need 2–3 torus channels or 1–2 BFT or mesh channels when scheduled
with ILP.

Compared to SDC scheduling [9], data dependencies are handled differently in our scheduler.
We schedule each DFG edge in isolation, but use rotating registers to ensure correct alignment of
data dependency. Frequency constraints (‘cycle time’) found in SDC schedulers are not found in
the compiler, as the overlay is guaranteed to run close to the FPGA fabric fmax (645–768 MHz
torus, 788–856 MHz mesh, 583–746 MHz BFT).

Unlike the CGRA-ME ILP scheduler [7] that unifies partitioning, placement, and scheduling
into a monolithic ILP formulation, we split these tasks into separate disjoint phases to ensure
feasible computational runtime for large problem sizes. The CGRA-ME scheduler routinely
times out after 24 hours for a benchmark with an operation count under 30. When using mesh
or torus, our compiler can tackle 80 operations in less than 30 minutes, with most benchmarks
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Figure 4.1. Mocarabe compiler flow.

taking less than a minute. Due to the increased number of BFT switches, it takes longer to
perform scheduling for BFT, although most benchmarks take less than 12 hours to complete.

4.1.1 Formal Description

The DFG is encoded in a hypergraph format [35] to retain multi-fanout attributes. A DFG is
comprised of a set of nodes, Ops, which represent operations, inputs, and outputs, while edges,
V als, represent the data dependencies between Ops. The kernel in Figure 4.2 is mapped to the
torus architecture as a motivating example, with II = 2 (dual-context).

4.2 Operator Allocation and Partitioning

Given a context count II , the compiler allocates K PEs. DFG Ops are partitioned among the K
PEs, each PE holding at most II Ops to allow for time-multiplexed operator sharing. We use an
ILP formulation for hypergraph partitioning [19] that is solved using the Gurobi solver [12].

Variables: The formulation has two binary variables.

• V alInPartitionj,k = 1 indicates that DFG edge j is entirely in partition k.

• OpInPartitionop,k = 1 indicates that DFG node op is in partition k.
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Constraints:
Every operator must be in exactly one partition.

K∑
k

OpInPartitionop,k = 1,∀op ∈ Ops (4.1)

No more than II operators can be mapped to one partition.

Ops∑
op

OpInPartitionop,k ≤ II, ∀k ∈ K (4.2)

Graph dependency is encoded with the following constraint. Op(j) denotes all DFG nodes inci-
dent on edge j.

OpInPartitionop,k >= V alInPartitionj,k,

∀j ∈ V als,∀op ∈ Op(j),∀k ∈ K
(4.3)

There is a fixed number of partitions for each operator type. K(op) denotes the partitions re-
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served for op’s operator type (e.g. ‘*’).

K(op)∑
k

OpInPartitionop,k = 1,∀op ∈ Ops (4.4)

Objective Function:
The objective function is set to minimize the sum of cut nets (V als), which is encoded as the
maximization of uncut nets.

Maximize

V als∑
j

K∑
k

V alInPartitionj,k (4.5)

A partition may only group operations of the same type into groups no larger than II . The
motivating example has four operator types (input, add, multiply, output) and the resulting par-
titioning is shown in Figure 4.3. Here, the sum is two uncut nets, one between both adds and
another between both multiplies. Note that in general, operations need not be neighbours to be
in the same partition.

∗
∗ Multiplier PE

y IO PE

x a IO PE

+
Adder PE

+

Figure 4.3. DFG Partitioned into CGRA PEs.
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4.3 Placement

Every DFG operator is mapped to one of K partitions, which must then be placed in a specific
(x, y) (torus,mesh) or n (BFT) location. We use Simulated Annealing (SA) [31], an approach
which has been used in other CGRA compilers [8] as a fast placement option and propose an
topology-agnostic ILP-based placer to find the optimal placement, given enough time.

4.3.1 SA placer

Any PE location can be fixed to be any type of operator. The placer’s objective is to minimize the
minimal torus, mesh, or BFT distance a net must travel, as in (4.6). The placer and the scheduler
are decoupled, but the aim is to provide the next stage with a placement that will enable it to find
a feasible solution using the fewest parallel channels. Moves from one placement state to another
are unrestricted. The cost of a certain placement is the sum, across every source-destination pairs,
of the squared distance each net would have to travel through the interconnect. The result is a
mapping from every DFG operator to its PE, which is used to create a netlist to be scheduled in
the next step.

Minimize
V als∑
j

(MinDistance(source(j), dest)

∀dest ∈ dests(j)).

(4.6)

4.3.2 ILP placer

To achieve the optimal placement, we propose a topology-agnostic ILP placer as an alternative
to the SA placer. The ILP placer formulates placement as an ILP problem and solves it using
Gurobi solver. When mapping M operators to N PEs (N ≥ M ), we define the following binary
and continuous variables to encode the placement:

• Zm,n: Operation m is placed on PE n.

• wopa,opb,na,nb
: For connected operators opa and opb where opa produces an input for opb, opa

is placed on PE na and opb is placed on PE nb. As a result, wopa,opb,na,nb
= Zopa,na∧Zopa,na .

• dopa,opb: The distance between two connected operators. dopa,opb is calculated as follows:

dopa,opb =
N−1∑
na=0

N−1∑
nb=0=

wopa,opb,na,nb
.Dna,nb (4.7)
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Where Dna,nb
is the distance between PEs na and nb in the given topology and can be

calculated using any procedure.

ILP Constraints and Objective Function: We present the following constraints for placement
ILP formulation:

• PE exclusivity: Each PE may be used by at most one operator.

∀n
N−1∑
m=0

Zm,n ≤ 1 (4.8)

• Operator exclusivity: Each operator is mapped to exactly one PE.

∀m
M−1∑
m=0

Zm,n = 1 (4.9)

• AND constraint: To encode the “∧” operator in wopa,opb,na,nb
= Zopa,na ∧ Zopa,na into the

ILP formulation, we can use the following constraints [3]:

wopa,opb,na,nb
≤ Zopa,na

wopa,opb,na,nb
≤ Zopb,nb

wopa,opb,na,nb
+ 1 ≥ Zopa,na ∧ Zopa,na

(4.10)

• Objective function: Our objective function minimizes the sum of all distances between
all connected operators.

Minimize

M∑
opa

M∑
opb

dopa,opb (4.11)

As we pre-compute all distances between all locations, our ILP placer is topology-agnostic and
can place to any topology as the distances are given as input to the placer. Furthermore, pre-
computing the distances allows us to minimize placement cost even for some non-linear opti-
mization objectives like quadratic wirelength, as the distances are pre computed and are given as
numbers to the ILP placer
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4.4 Scheduling

SDC schedulers encode the execution cycle of an operation as an integer. Our scheduling prob-
lem, formulated as an ILP and solved with the Gurobi solver [12], encodes resource occupancy
in space and time as boolean unknowns. The resulting ILP is larger, but we make it feasible by
limiting schedule length (the time dimension) to II and realigning dependencies after schedul-
ing. The input is a netlist of sources and destinations on the array with the same number of Ops
and V als as the input DFG, but with decoupled dataflow dependencies (which will be realigned
after scheduling). The resulting modulo schedule has up to II cycles. We now show how to set
up this formulation for each NoC topology.

4.4.1 Torus scheduling

ILP Variables: We define six sets of binary variables, grouped into pairs. The connectivity
between some of these is illustrated in Figure 4.4.

• Rh
(x,y,t,c),j and Rv

(x,y,t,c),j: routing resource at (x, y) on channel c is used by value j in cycle
t. Horizontal and vertical routing resources are denoted by h and v, respectively. Rh,v

indicates that a constraint applies to both types of resources independently.

• EnterRouting(x,y,t),j: At cycle t, value j leaves PE (x, y). EnterChannel(x,y,t,c),j speci-
fies which channel to use.

• ExitRouting(x,y,t),j: At cycle t, value j enters PE (x, y). ExitChannel(x,y,t,c),j specifies
which channel to use.

For the sake of brevity, we denote the tuple (x, y, t) as “i”. For example, Rh
(i,c),j represents value

j’s use of the horizontal routing resource at (x, y, t) on channel c. A denotes M × N × II , the
cube over the 2D array and the schedule length II .

ILP Constraints and Objective Function: We present a number of constraints for the ILP
formulation. The first six sets are somewhat trivial, while the last is the core of how the formula-
tion encodes data movement.
Source/Destination Mapping: A value must leave its source exactly once, but can do so any
time. For all values j in V als, with source PE srcx,y(j),

T∑
t=0

EnterChannel(srcx,y(j),t,c),j = 1. (4.12)
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Rh(x, y, t, c)

Rv(x, y, t, c)

Rv(x, (y + 1)%N, (t+ 1)%II, c)

Rh((x+ 1)%M, y, (t+ 1)%II, c)

EnterChannel(x, y, t, c)
ExitChannel(x, y, (t+ 1)%II, c)

Figure 4.4. ILP Variables for Scheduling on Torus.

A value j must enter all of its destinations exactly once. For every j in V als with destination
destx,y(j),and for all t ∈ II ,

T∑
t=0

ExitRouting(destx,y(j),t),j = 1. (4.13)

A value cannot enter or exit any PE that is not its source or one of its destinations. For every
j in V als, and every location which is not one of j’s destinations, notDestx,y(j), and for all
t ∈ II ,

T∑
t=0

ExitRouting(notDestx,y(j),t),j = 0. (4.14)

Routing Resource Exclusivity: Each routing resource may be used by at most one value in each
cycle.

V als∑
j

Rh,v
(i,c),j ≤ 1, ∀i ∈ A,∀c ∈ C. (4.15)

V als∑
j

EnterChannel(i,c),j ≤ 1,∀i ∈ A,∀c ∈ C

V als∑
j

EnterRouting(i),j ≤ 1,∀i ∈ A.

(4.16)
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Single-Channel Entry: When a value enters the NoC, it must choose a single channel. For all
i ∈ A, c ∈ C, j ∈ V als,

C∑
c

EnterChannel(i,c),j ≥ EnterRouting(i),j (4.17)

EnterChannel(i,c),j ≤ EnterRouting(i),j. (4.18)

PE Input: A PE can absorb at most 2 values from the NoC each cycle.

V als∑
j

ExitChannel(i,c),j ≤ 2,∀i ∈ A, ∀c ∈ C. (4.19)

Single-Channel Exit: Similarly, when a value exits a PE, it must choose a single channel. For
all i ∈ A, c ∈ C, j ∈ V als

C∑
c

ExitChannel(i,c),j ≥ ExitRouting(i),j (4.20)

ExitChannel(i,c),j ≤ ExitRouting(i),j. (4.21)

Value Propagation: These core constraints illustrate the interconnect’s torus connectivity and
modulo scheduling.

This constraint ensures that information cannot be created from nothing. This is encoded
for horizontal routing (4.22), vertical routing (4.23), and for leaving the NoC (4.41). For all
(x, y, t) ∈ A, c ∈ C, j ∈ V als,

Rh
(x,y,t,c),j +Rv

(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥
Rh

((x+1)%M,y,c,(t+1)%II),j,
(4.22)

Rh
(x,y,t,c),j +Rv

(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥
Rv

(x,(y+1)%N,c,(t+1)%II),j,
(4.23)

Rh
(x,y,t,c),j +Rv

(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥
ExitChannel(x,y,c,(t+1)%II),j.

(4.24)
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A value must fan-out to at least one routing resource, i.e. information cannot be destroyed.
For all ∀i ∈ A,∀c ∈ C, ∀j ∈ V als

Rh
((x+1)%Nx,y,c,(t+1)%II),j +Rv

(x,(y+1)%Ny,c,(t+1)%II),j+

ExitChannel(x,y,c,(t+1)%II),j

≥ Rh
(i,c),j +Rv

(i,c),j + EnterChannel(x,y,t,c),j.

(4.25)

Objective Function: Our objective function minimizes the sum of all routing resources used,
across every PE and every location.

A∑
i

C∑
c

V als∑
j

Rh
(i,c),j +Rv

(i,c),j (4.26)

4.4.2 Mesh scheduling

ILP Variables: We define six sets of binary variables. The connectivity between some of these
is illustrated in Figure 4.5.

• Rs
(x,y,t,c),j , R

n
(x,y,t,c),j , R

e
(x,y,t,c),j , and Rw

(x,y,t,c),j: routing resource at (x, y) on channel c is
used by value j in cycle t. Northbound, southbound, eastbound, and westbound routing
resources are denoted by n, s, e, and w, respectively. Rn,s,w,e indicates that a constraint
applies to multiple types of resources independently.

• EnterRouting(x,y,t),j: At cycle t, value j leaves PE (x, y). EnterChannel(x,y,t,c),j speci-
fies which channel to use.

• ExitRouting(x,y,t),j: At cycle t, value j enters PE (x, y).
ExitChannel(x,y,t,c),j specifies which channel to use.

For the sake of brevity, we denote the tuple (x, y, t) as “i”. For example, Rn
(i,c),j represents

value j’s use of the north bound routing resource at (x, y, t) on channel c. A denotes M×N×II ,
the cube over the 2D array and the schedule length II .

ILP Constraints and Objective Function: We present a number of constraints for the ILP
formulation. The first six sets are somewhat trivial, while the last is the core of how the formula-
tion encodes data movement.
Source/Destination Mapping: A value must leave its source exactly once, but can do so any
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Rn
(x,y+1,t+1%II,c)

Rn
(x,y,t,c)

Rs
(x,y,t,c)

Rs
(x,y−1,t+1%II,c)

Re
(x+1,y,t+1%II,c)

Rw
(x−1,y,t+1%II,c) Rw

(x,y,t,c)

Re
(x,y,t,c)

ExitChannel(x,y,t,c)EnterChannel(x,y,t,c)

Figure 4.5. ILP Variables for Scheduling on Mesh.

time. For all values j in V als, with source PE srcx,y(j),

T∑
t=0

EnterChannel(srcx,y(j),t,c),j = 1. (4.27)

A value j must enter all of its destinations exactly once. For every j in V als with destination
destx,y(j),and for all t ∈ II ,

T∑
t=0

ExitRouting(destx,y(j),t),j = 1. (4.28)

A value cannot enter or exit any PE that is not its source or one of its destinations. For every
j in V als, and every location which is not one of j’s destinations, notDestx,y(j), and for all
t ∈ II ,

T∑
t=0

ExitRouting(notDestx,y(j),t),j = 0. (4.29)

Routing Resource Exclusivity: Each routing resource may be used by at most one value in each
cycle.

V als∑
j

Rn,s,e,w
(i,c),j ≤ 1,∀i ∈ A, ∀c ∈ C. (4.30)
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PE Output: A PE can emit at most one value per cycle, and cannot enter multiple channels
simultaneously.

V als∑
j

EnterChannel(i,c),j ≤ 1,∀i ∈ A,∀c ∈ C

V als∑
j

EnterRouting(i),j ≤ 1,∀i ∈ A.

(4.31)

Single-Channel Entry: When a value enters the NoC, it must choose a single channel. For all
i ∈ A, c ∈ C, j ∈ V als,

C∑
c

EnterChannel(i,c),j ≥ EnterRouting(i),j (4.32)

EnterChannel(i,c),j ≤ EnterRouting(i),j. (4.33)

PE Input: A PE can absorb at most 2 values from the NoC each cycle.

V als∑
j

ExitChannel(i,c),j ≤ 2,∀i ∈ A, ∀c ∈ C. (4.34)

Single-Channel Exit: Similarly, when a value exits a PE, it must choose a single channel. For
all i ∈ A, c ∈ C, j ∈ V als

C∑
c

ExitChannel(i,c),j ≥ ExitRouting(i),j (4.35)

ExitChannel(i,c),j ≤ ExitRouting(i),j. (4.36)

Value Propagation: These core constraints illustrate the interconnect’s mesh connectivity and
modulo scheduling.

This constraint ensures that information cannot be created from nothing. This is encoded
for southbound routing (4.37), northbound routing (4.38), westbound routing (4.39), eastbound
routing (4.40), and for leaving the NoC (4.41). For all (x, y, t) ∈ A, c ∈ C, j ∈ V als,

Rn
(x,y,t,c),j +Rw

(x,y,t,c),j +Re
(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥ Rs

(x,y−1,c,(t+1)%II),j (4.37)
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Rs
(x,y,t,c),j +Rw

(x,y,t,c),j +Re
(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥ Rn

(x,y+1,c,(t+1)%II),j (4.38)

Rn
(x,y,t,c),j +Rs

(x,y,t,c),j +Re
(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥ Rw

(x−1,y,c,(t+1)%II),j (4.39)

Rn
(x,y,t,c),j +Rs

(x,y,t,c),j +Rw
(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥ Re

(x+1,y,c,(t+1)%II),j (4.40)

Rn
(x,y,t,c),j +Rs

(x,y,t,c),j +Rw
(x,y,t,c),j +Re

(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥
ExitChannel(x,y,c,(t+1)%II),j

(4.41)

A value must fan-out to at least one routing resource, i.e. information cannot be destroyed.
For all ∀i ∈ A,∀c ∈ C, ∀j ∈ V als

Rn
(x,y+1,c,(t+1)%II),j +Rs

(x,y−1,c,(t+1)%II),j +Rw
(x−1,y,c,(t+1)%II),j +Re

(x+1,y,c,(t+1)%II),j+

ExitChannel(x,y,c,(t+1)%II),j ≥ Rn
(i,c),j +Rs

(i,c),jR
w
(i,c),j +Re

(i,c),j + EnterChannel(x,y,t,c),j
(4.42)

The blocks located at the boundaries take less inputs and do not use the routing resources
that would come from outside the array. For instance, a block located at x = 0 will not take input
from the eastbound channel as no data enters the block from right.

Objective Function: Our objective function minimizes the sum of all routing resources used,
across every PE and every location.

Minimize
A∑
i

C∑
c

V als∑
j

Rn
(i,c),j +Rs

(i,c),j +Rw
(i,c),j +Re

(i,c),j (4.43)

4.4.3 BFT scheduling

We define six sets of binary variables. The connectivity between some of these is illustrated in
Figures 4.6 and 4.7.

• Ru0
(l,loc,t,c),j , R

u1
(l,loc,t,c),j , R

d0
(l,loc,t,c),j , and Rd1

(l,loc,t,c),j : routing resource at level l location loc
on channel c is used by value j in cycle t. Upward straight, upward crossing, downward
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straight, and downward crossing routing resources are denoted by u0, u1, d0, and d1, respec-
tively. As based on BFT topology, routing resources can either go straight up or down, or
cross into 20,1,... locations away based on the level. Ru0,u1,d0,d1 indicates that a constraint
applies to multiple types of resources independently.

• EnterRouting(loc,t),j: At cycle t, value j leaves PE loc. EnterChannel(loc,t,c),j specifies
which channel to use.

• ExitRouting(loc,t),j: At cycle t, value j enters PE loc.
ExitChannel(loc,t,c),j specifies which channel to use.

For N PEs, we would have log(N) levels each with N/2 switches. For the sake of brevity,
we denote the tuple (l, loc, t) as “i”. For example, Rd0

(i,c),j represents value j’s use of the down
going straight routing resource at (l, loc, t) on channel c. A denotes N/2× log(n)× II , the cube
over the array and the schedule length II .

Ru0
(l+1,loc,t+1%II,c)

Rd1
(l−1,loc+2l−1/loc−2l−1,t+1%II,c)

Ru1
(l+1,loc+2l/loc−2l,t+1%II,c)

Rd0
(l−1,loc,t+1%II,c)

Rd1
(l,loc,t,c)

Ru0
(l,loc,t,c)

Ru0
(l,loc,t,c)Ru1

(l,loc,t,c)

Figure 4.6. ILP Variables for Scheduling on BFT (Interconnect Tree Node).

ILP Constraints and Objective Function: We present a number of constraints for the ILP
formulation. The first six sets are somewhat trivial, while the last is the core of how the formula-
tion encodes data movement.
Source/Destination Mapping: A value must leave its source exactly once, but can do so any
time. For all values j in V als, with source PE srcloc(j),

T∑
t=0

EnterChannel(srcloc(j),t,c),j = 1 (4.44)
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ExitChannel(1,t,c)

Ru1
(1,1,t+1%II,c)

Rd0
(0,0,t,c)

EnterChannel(1,t,c)

ExitChannel(0,t,c)

Ru0
(1,0,t+1%II,c)

Ru1
(1,1,t+1%II,c)

0 1

EnterChannel(0,t,c)

Figure 4.7. ILP Variables for Scheduling on BFT (BFT PE-Switch Connection).

A value j must enter all of its destinations exactly once. For every j in V als with destination
destloc(j),and for all t ∈ II ,

T∑
t=0

ExitRouting(destloc(j),t),j = 1 (4.45)

A value cannot enter or exit any PE that is not its source or one of its destinations. For every
j in V als, and every location which is not one of j’s destinations, notDestloc(j), and for all
t ∈ II ,

T∑
t=0

ExitRouting(notDestloc(j),t),j = 0 (4.46)

Routing Resource Exclusivity: Each routing resource may be used by at most one value in each
cycle.

V als∑
j

Ru0,u1,d0,d1
(i,c),j ≤ 1,∀i ∈ A, ∀c ∈ C (4.47)

PE Output: A PE can emit at most one value per cycle, and cannot enter multiple channels
simultaneously.

V als∑
j

EnterChannel(i,c),j ≤ 1, ∀i ∈ A,∀c ∈ C

V als∑
j

EnterRouting(i),j ≤ 1,∀i ∈ A

(4.48)
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Single-Channel Entry: When a value enters the NoC, it must choose a single channel. For all
i ∈ A, c ∈ C, j ∈ V als,

C∑
c

EnterChannel(i,c),j ≥ EnterRouting(i),j (4.49)

EnterChannel(i,c),j ≤ EnterRouting(i),j (4.50)

PE Input: A PE can absorb at most 2 values from the NoC each cycle.

V als∑
j

ExitChannel(i,c),j ≤ 2,∀i ∈ A,∀c ∈ C (4.51)

Single-Channel Exit: Similarly, when a value exits a PE, it must choose a single channel. For
all i ∈ A, c ∈ C, j ∈ V als

C∑
c

ExitChannel(i,c),j ≥ ExitRouting(i),j (4.52)

ExitChannel(i,c),j ≤ ExitRouting(i),j (4.53)

Value Propagation: These core constraints illustrate the interconnect’s BFT connectivity and
modulo scheduling.

This constraint ensures that information cannot be created from nothing. This is encoded
for upward straight routing (4.54), upward crossing routing (4.55), downward straight routing
(4.56), and downward crossing routing (4.57). For all (l, loc, t) ∈ A, c ∈ C, j ∈ V als,

Ru0
(l,loc,t,c),j +Ru1

(l,loc,t,c),j +Rd1
(l,loc,t,c),j ≥ Ru0

(l+1,loc,(t+1)%II,c),j (4.54)

if loc%2l+1 < 2l :

Ru0
(l,loc,t,c),j +Ru1

(l,loc,t,c),j +Rd0
(l,loc,t,c),j ≥ Ru1

(l+1,loc+2l,(t+1)%II,c),j

else:
Ru0

(l,loc,t,c),j +Ru1
(l,loc,t,c),j +Rd0

(l,loc,t,c),j ≥ Ru1
(l+1,loc−2l,(t+1)%II,c),j,

(4.55)
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Ru1
(l,loc,t,c),j +Rd0

(l,loc,t,c),j +Rd1
(l,loc,t,c),j+ ≥ Rd0

(l−1,loc,(t+1)%II,c),j (4.56)

if loc%2l < 2l−1 :

Ru0
(l,loc,t,c),j +Rd0

(l,loc,t,c),j +Rd1
(l,loc,t,c),j+ ≥ Rd1

(l−1,loc+2l−1,(t+1)%II,c),j

else:
Ru0

(l,loc,t,c),j +Rd0
(l,loc,t,c),j +Rd1

(l,loc,t,c),j+ ≥ Rd1
(l−1,loc−2l−1,(t+1)%II,c),j

(4.57)

As level 0 switches communicate with PEs, the enter and exit channel variables define the
data going between PEs and level 0 switches, as shown in figure 4.7. As a result, the value
propagation constraints for level 0 switches are shown in equations 4.58, 4.59, 4.60, and 4.61.

Rd0
(0,loc,t,c),j +Rd1

(0,loc,t,c),j + EnterChannel(loc∗2,c,t) ≥ ExitChannel(loc∗2+1,c,(t+1)%II) (4.58)

Rd0
(0,loc,t,c),j +Rd1

(0,loc,t,c),j + EnterChannel(loc∗2+1,c,t) ≥ ExitChannel(loc∗2,c,(t+1)%II) (4.59)

if loc%2 = 0 :

Rd0
(0,loc,t,c),j + EnterChannel(loc∗2,c,t) + EnterChannel(loc∗2+1,c,t) ≥ Ru1

(1,loc+1,(t+1)%II,c),j

else:
Rd0

(0,loc,t,c),j + EnterChannel(loc∗2,c,t) + EnterChannel(loc∗2+1,c,t) ≥ Ru1
(1,loc−1,(t+1)%II,c),j

(4.60)

Rd1
(0,loc,t,c),j + EnterChannel(loc∗2,c,t) + EnterChannel(loc∗2+1,c,t) ≥ Ru0

(1,loc,(t+1)%II,c),j (4.61)

A value must fan-out to at least one routing resource, i.e. information cannot be destroyed.
For all ∀i ∈ A,∀c ∈ C, ∀j ∈ V als (for l > 1),

Ru0
(l+1,loc,c,(t+1)%II),j +Ru1

(l+1,loc+2l,c,(t+1)%II),j +Rd0
(l−1,loc,c,(t+1)%II),j +Rd1

(l−1,loc−2l−1,c,(t+1)%II),j

≥ Ru0
(l,loc,c,t,j) +Ru1

(l,loc,c,t,j) +Rd0
(l,loc,c,t,j) +Rd1

(l,loc,c,t,j)

(4.62)
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Similarly, For level 0, the following equation holds:

if loc%2 = 0 :

Ru0
(1,loc,c,(t+1)%II),j + ExitChannel(loc∗2,(t+1)%II,c),j+

Ru1
(1,loc+1,c,(t+1)%II),j + ExitChannel(loc∗2+1,(t+1)%II,c),j

≥ Ru0
(0,loc,c,t,j) + EnterChannel(loc∗2,t,c),j+

Ru1
(0,loc,c,t,j) + EnterChannel(loc∗2+1,t,c),j

else:
Ru0

(1,loc,c,(t+1)%II),j + ExitChannel(loc∗2,(t+1)%II,c),j+

Ru1
(1,loc−1,c,(t+1)%II),j + ExitChannel(loc∗2+1,(t+1)%II,c),j

≥ Ru0
(0,loc,c,t,j) + EnterChannel(loc∗2,t,c),j

+Ru1
(0,loc,c,t,j) + EnterChannel(loc∗2+1,t,c),j

(4.63)

The blocks located at the highest level take less inputs and do not use the routing resources that
would come from outside the array (output nothing and input nothing from above).

Objective Function: Our objective function minimizes the sum of all routing resources used,
across every PE and every location.

Minimize
A∑
i

C∑
c

V als∑
j

Ru0
(i,c),j +Ru1

(i,c),j +Rd0
(i,c),j +Rd1

(i,c),j (4.64)

Scheduling concludes the generation of a repeatable schedule for a fixed size array, which
can then be replicated over a chip. Figure 4.8 illustrates a schedule of the motivating example
over a torus NoC. Inputs leave the IO PE at (0, 1) and both use the same router and the same
channel in different contexts (cycles). Both x and a propagate to the adder PE at (0, 0) and, in
x’s case, to the multiplier PE at (1, 1), and so on until the final multiply is propagated to the IO
PE at (1, 1). This dual-context run (II = 2, represented by two close parallel lines) was mapped
with C = 2 channels which is required because of PE self-communication (e.g. the result of one
add is the input to another, and there is one adder).

Table 4.1 compares scheduling complexity over different topologies for a DFG with 15 nodes
(Caprasse benchmark) by showing the number of ILP variables, ILP constraints, and runtime.
Due to its simpler connectivity, torus has the smallest ILP problem size and runtime, and BFT is
hte most complex one due to more complex routing and a larger number of interconnect elements
(the multi-layered interconnect tree).
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Figure 4.8. CGRA placement and schedule.

TABLE 4.1
SCHEDULING ILP PROBLEM SIZE AND RUNTIME COMPARISON OF DIFFERENT TOPOLOGIES FOR A DFG WITH

15 NODES.

Topology ILP variables ILP constraints Runtime

Torus 2100 4470 0.05s
Mesh 2940 6270 0.05s
BFT 4928 11904 0.13s

4.4.4 Configuration

After an appropriate schedule is computed, we generate a hardware configuration with the final
channel count, II , and PE operator arrangement. The static schedule is processed to generate
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context memories for all routers, PE input multiplexers, and operand rotating register addresses,
which are then fed into the synthesis tool. Here, the array can be unrolled to the greatest extent
allowed by the chip-specific implementation (e.g. a 3x19 array can be unrolled 23 times to utilize
the entire 19× 69 torus overlay).

52



Chapter 5

Experimental results

In this chapter, we quantify the cost and performance of Mocarabe and compare it with Vivado
HLS and other CGRAs. First, we show how many communication channels (C) our scheduler
needs to run each benchmark on our Torus, Mesh, and BFT configurations. We then compare
CGRA placement results with the Integer Linear Programming (ILP) and Simulated Annealing
(SA) formulation in terms of runtime and quality of results. We compare the final scheduled
results for different overlay configurations based on performance and resource usage. We also
compare our work with contemporary CGRA overlays. We compare our chip-spanning torus
overlays with Vivado HLS and show how Mocarabe performs compared to Vivado HLS in terms
of performance and resource usage.

5.1 Tools

In this work, We use GNU parallel [38] to run our experiments. We use Vivado 2020.1 and
Vivado HLS 2020.1 for hardware synthesis, and use Gurobi solver [12] to solve ILP problems.
We use a modified version of the open-source gcc-python plugin to convert a given C code to a
DFG representing the code. Gcc-python-plugin is usually used for modifying the gcc GIMPLE
backend which allows accessing the internal representations of compiler and performing various
analysis. Our modified framework can be found at: https://git.uwaterloo.ca/watcag-public/gcc-
python-plugin.

53

https://git.uwaterloo.ca/watcag-public/gcc-python-plugin
https://git.uwaterloo.ca/watcag-public/gcc-python-plugin


5.2 Benchmarks

To evaluate our work, we use a set of benchmarks from BitGPU benchmarks [53]. Our bench-
marks are feedforward dataflow kernels that result in DataFlow Graphs (DFGs) ranging from 10
to more than 100 nodes. Table 5.1 shows an overview of every benchmark’s DFG size and the
number of I/O, adder, and multiplier nodes they have.

TABLE 5.1
OVERVIEW OF BENCHMARKS.

Benchmark DFG Size
I/Os Adds Multiplies

fig3 4 2 1
adder chain 5 3 0
level1 linear 5 2 2
poly quadratic 5 2 2
poly3 5 2 3
bellido 4 5 3
approx1 6 4 3
poly4 6 3 4
level1 saturation 7 5 2
caprasse 6 3 6
poly6 8 5 6
poly8 10 7 7
sobel 11 11 4
rgb 15 3 9
poly10 12 9 9
gaussian 19 8 9
poly20 21 19 9
iir8 31 7 14
dct 23 32 22
deriche 49 35 45
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Figure 5.1. Required channels per benchmark for II = 1 to 5.

5.3 Scheduler results

To find out how many communication channels each benchmark needs for running on each NoC
topology, we used our compiler to generate overlay schedules for all benchmarks with II = 1 to II
= 5 for Torus, Mesh, and BFT topologies. The resulting schedules then can be used to generate
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context memories for RTL overlays to run the desired benchmarks. Figure 5.1 shows the required
number of communication channels per benchmark for each topology for II = 1 to II = 5. Figure
5.2 shows the mean required channels per II for each topology. As seen in Figures 5.1 and 5.2, as
II increases, the number of required channels always decreases since more II means more time
and freedom to route data, resulting in fewer required communication channels. Furthermore,
Torus always needs more communication channels than BFT or Mesh to run benchmarks. This
is due to the more limited routing Torus offers, as data can only go up or right over the array. On
the other hand, as Mesh and BFT provide higher degrees of freedom for data movement, they
need less communication channels.
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Figure 5.2. Mean required channels per benchmark for II = 1 to 5.

5.4 Comparing ILP and SA placer

Although our topology-agnostic ILP placer finds an optimal placement, it strictly performs equal
to or better than SA placer,but can take longer than SA to finish. Moreover, SA could find
placements very close to the optimal version. To compare our SA and ILP placers and find out
if the ILP placer is always the best choice, we used our compiler to perform placement using SA
and ILP placers for all benchmarks over mesh, torus, and BFT topologies. Table 5.2 compares
ILP and SA placers by providing ILP vs SA placement cost (quadratic wirelength) ratio and
ILP placer runtime. SA finds placement for all benchmarks in less than 30 seconds, and we

56



give ILP placer 13 hours for each benchmark, which times out for sobel, deriche, dct,
poly20,and iir8 benchmarks. As shown in the table, ILP can improve placement quadratic
wirelength up to 37%, which makes it a good candidate for applications where a high quality
solution is preferred over runtime.

TABLE 5.2
ILP VS SA PLACEMENT QUALITY AND RUNTIME

(SA FINDS PLACEMENT FOR ALL BENCHMARKS IN LESS THAN 30 SECONDS).

Benchmark
ILP vs SA W 2 ratio

Average ILP runtime
torus mesh BFT

fig3 1 1 1 0.81s
adder chain 1 1 1 0.57s
level1 lin 1 1 0.93 1.7s
poly quad 1 1 1 1.57s
poly3 1 1 1 2.25s
bellido 1 1 0.93 9.66s
approx1 1 1 0.86 5.6s
poly4 1 1 0.94 7.03s
level1 sat 1 0.97 0.94 0.46s
caprasse 0.92 0.9 1 22s
poly6 0.92 0.84 1 11.43s
poly8 0.88 0.76 0.93 13.67s
rgb 0.8 0.9 0.86 1h10m
poly10 0.87 0.80 0.91 5s
gaussian 0.63 0.71 0.85 12h29m

5.5 CGRA overlay floorplanning Fmax

To compare the cost and performance of different Mocarabe overlay configurations, and compare
our work with recent CGRA overlays, we implemented Mocarabe on a Xilinx Alveo U280 using
the floorplanning described in chapter 3 to carefully optimize the design. Mocarabe is available
in seven different configurations, which are shown in table 5.3 (the 4× 4 torus is for comparison
with other CGRA overlays).

To demonstrate high operation frequencies across a spectrum of operator configurations (mul-
tipliers and adders), each CGRA configuration was tested with 10–100% of PEs as multipliers
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TABLE 5.3
OVERLAY CONFIGURATIONS AND THEIR AVERAGE MAXIMUM FREQUENCY

Topology C PE inputs Array Size Average Fmax (MHz)

Torus 1 1 19×69 748
Torus 2 2 19×69 717
Torus 3 2 19×69 675
Torus 1 1 4×4 864
Mesh 1 1 19×22 801
Mesh 2 2 19×22 809
BFT 1 1 256 PEs 670

(in steps of 10%), randomly distributed across the array, with the remaining PEs configured as
adders. Figure 5.3 shows the operation frequencies of different configurations and figure 5.4
compares different topologies in term of frequency per LUT and FF usage (as both the mesh
and BFT overlays only span SLR0, we divided torus resource usage by 3 to have a sensible
comparison as torus spans all 3 available SLRs and uses almost the same amount of resources
on each SLR). There are small frequency variations between different PE configurations, and
Mocarabe maintains high operating frequencies regardless of the PE configurations because of
Pblock sizing and adequate pipelining.

TABLE 5.4
CGRA SIZES AND FREQUENCIES

CGRA C Frequency (MHz) Array size

Torus Mocarabe 1 711–768 19× 69
Torus Mocarabe 2 691–750 19× 69
Torus Mocarabe 3 645–693 19× 69
Torus Mocarabe 1 813–921 4× 4
ADRES (Ultrascale+) 1 382 4× 4
ADRES (Stratix10) 1 260 4× 4
HyCUBE (Ultrascale+) 1 307 4× 4
HyCUBE (Stratix 10) 1 226 4× 4

We compare the chip-spanning torus Mocarabe to recent CGRA-ME [39] overlay imple-
mentations of ADRES [24] and HyCUBE [14]. In [39], the authors implement 4 × 4 ADRES
and HyCUBE CGRAs as overlays on the Xilinx Ultrascale+ XCVU3P and the Intel Stratix 10
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TABLE 5.5
MOCARABE FREQUENCY GAINS OVER OTHER CGRAS

CGRA C=1 C=2 C=3 C=1 (4× 4)

ADRES (U+) 2× 2× 1.8× 2.4×
ADRES (S10) 3× 2.9× 2.7× 3.5×
HyCUBE (U+) 2.5× 2.4× 2.3× 3×
HyCUBE (S10) 3.4× 3.3× 3.1× 4×

GX850. The 32-bit ADRES overlay operates at up to 382 MHz on average on the Ultrascale+
and up to 260MHz on average on the Stratix 10. The 32-bit HyCUBE overlay operates at up to
307 MHz on average on the Ultrascale+ and up to 226 MHz on average on the Stratix 10.

Torus Mocarabe maintains higher operation frequencies while having orders-of-magnitude
larger array sizes. In Table 5.4, we show operating frequencies for different CGRAs. For torus
Mocarabe we provide frequency ranges, as frequency varies in different operator configurations.
In Table 5.5, we show the clock frequency gains for different torus Mocarabe configurations
when compared to ADRES and HyCUBE overlays.

5.6 Mocarabe vs Vivado HLS

To evaluate our framework as an HLS tool, we scale up the Mesh array to span the entire chip
(up to 19× 69, similar to Torus), and compare our chip-spanning Torus and Mesh overlays with
Vivado HLS. To do so, we implement each benchmark with a given initiation interval (II) and
unroll the resulting array to take advantage of every available PE (19×69). We give Vivado HLS
the same benchmark, II , unroll factor and frequency target. Though Vivado provides the option
to constrain the number of adders and multipliers, we outperform Vivado without providing
these constraints, as shown in Figure 5.5. Vivado HLS can, in some cases, retain a high fmax

for benchmarks with no resource sharing (II = 1), but this quickly drops off by factors of up
to 2× for II = 2, 4.5× for II = 3, and 5.5× for II = 4 as more operations are assigned to
one functional unit. At II = 5, the lowest fmax achieved by Vivado HLS is with the poly10 at
78.06 MHz, 9× away from Mocarabe peak at 750 MHz. These results do not apply any resource
constraints to Vivado HLS.

For all benchmarks, Mocarabe has met the target II , requiring the number of communication
channels shown in figure 5.1. Vivado HLS can also meet target II when not given any resource
constraints. However, when we count the number of functional units we use and force Vivado
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Figure 5.5. Vivado HLS fmax vs. Torus and Mesh Mocarabe. (deriche at II = 1 needs C=3 for Mesh that is not
supported)

HLS to use the same, Vivado’s resource sharing simply fails beyond II = 1, as shown in Figure
5.6. II can increase by up to 2 cycles for II = 4, and up to 4 for II = 5.

Tables 5.6 and 5.7 compare Vivado HLS resource usage to Torus and Mesh Mocarabe re-
source usage. Torus and Mesh Mocarabe use a similar number of DSP blocks in most cases
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Figure 5.6. Achieved II vs. Target II for various dataflow benchmarks in Vivado HLS. Mocarabe always meets
target II.

while using more LUTs, which is in part due to the communication network. Furthermore, as
II increases, Mesh Mocarabe uses less resources compared to Torus Mocarabe, as it requires
fewer communication channels to run the benchmarks. Vivado HLS failed to implement dct,
poly10, and poly20 for targeting II = 5 with the same unroll as us. Implementation failures
are indicated by “DNF” in the table. Tables 5.8 and 5.9 compare Torus and Mesh Mocarabe
latency in cycles to Vivado HLS latency. Torus Mocarabe latency can be up to 6.8× (3.1 - 3.4×
mean), and Mesh Mocarabe latency can be up to 6.8× (2.8 - 3.2× mean) larger than Vivado HLS
depending on the number of communication channels. This is because the PE takes 6-8 cycles
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and the router takes 2-3 cycles for high-frequency pipelined operation.

TABLE 5.6
TORUS MOCARABE VS VIVADO HLS RESOURCE USAGE

(TORUS MOCARABE/VIVADO HLS)

Benchmark II=1 II=2 II=3 II=4 II=5
DSP LUT DSP LUT DSP LUT DSP LUT DSP LUT

adder chain – 22.6 – 18.8 – 18.6 – 5.3 – 4.9
approx1 1.0 23.4 1.0 9.4 1.0 7.5 1.0 10.6 1.0 7.2
bellido 1.0 46.3 0.9 16.1 1.0 7.9 1.0 9.2 1.0 9.5
caprasse 1.5 21.2 1.0 6.7 1.0 5.1 1.5 9.3 1.5 7.4
dct 1.0 47.9 1.0 13.8 1.0 6.8 1.0 4.0 DNF DNF
deriche 1.4 58.5 1.0 19.0 1.0 9.2 1.0 8.8 1.0 6.5
fig3 1.0 20.4 1.0 16.1 1.0 12.0 1.0 6.0 1.0 6.6
gaussian 1.0 31.9 1.0 10.5 1.0 7.8 1.0 4.1 1.0 3.2
iir8 0.9 12.7 1.0 10.8 1.0 7.3 1.0 3.9 1.0 3.5
level1 lin 1.0 25.7 1.0 8.0 1.0 9.7 1.0 6.7 1.0 6.4
level1 sat 1.0 21.3 1.0 9.3 1.0 5.1 1.5 10.5 1.5 9.4
poly10 0.9 19.4 1.0 5.6 1.0 4.3 1.0 2.9 DNF DNF
poly20 0.9 24.3 1.0 5.1 1.0 4.7 1.0 3.0 DNF DNF
poly3 1.0 16.7 1.0 6.9 1.0 8.2 1.0 7.1 1.0 8.2
poly4 1.1 33.8 1.0 4.3 1.0 6.9 1.1 12.3 1.1 7.8
poly6 1.0 25.0 1.0 5.4 1.0 3.8 1.0 4.0 1.0 4.0
poly8 0.9 20 1.0 4.8 1.0 4.0 1.0 2.6 1.0 2.8
poly quad 1.0 85.4 1.0 13.3 1.0 37.4 1.0 8.0 1.0 8.2
rgb 1.0 28.2 1.0 11.3 1.0 10.6 1.0 4.7 1.0 7.0
sobel 4.0 32.6 2.0 14.9 1.0 14.1 1.0 12.5 1.0 18.8
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TABLE 5.7
MESH MOCARABE VS VIVADO HLS RESOURCE USAGE

(MESH MOCARABE/VIVADO HLS)

Benchmark II1 II2 II3 II4 II5
DSP LUT DSP LUT DSP LUT DSP LUT DSP LUT

adder chain 0.0 27.0 0.0 12.2 0.0 12.1 0.0 3.4 0.0 3.2
approx1 1.0 28.1 1.0 5.8 1.0 4.7 1.0 4.4 1.0 3.0
bellido 1.0 55.7 0.9 10.0 1.0 4.9 1.0 5.7 1.0 4.0
caprasse 1.5 25.6 1.0 4.1 1.0 3.1 1.5 5.6 1.5 4.5
dct 1.0 38.4 1.0 5.6 1.0 4.1 1.0 2.4 DNF DNF
deriche DNF DNF 1.0 15.3 1.0 7.4 1.0 3.2 1.0 2.6
fig3 1.0 24.4 1.0 10.4 1.0 7.8 1.0 3.9 1.0 4.3
gaussian 1.0 38.4 1.0 6.3 1.0 4.7 1.0 2.5 1.0 2.0
iir8 0.9 15.2 1.0 6.6 1.0 4.4 1.0 2.4 1.0 2.1
level1 linear 1.0 30.9 1.0 4.9 1.0 6.0 1.0 4.2 1.0 4.0
level1 saturation 1.0 25.5 1.0 6.0 1.0 3.3 1.5 4.6 1.5 4.2
poly10 0.9 23.3 1.0 3.4 1.0 2.6 1.0 1.7 DNF DNF
poly20 0.9 19.5 1.0 6.1 1.0 2.9 1.0 1.8 DNF DNF
poly3 1.0 20.0 1.0 4.2 1.0 5.0 1.0 4.3 1.0 3.3
poly4 1.1 40.7 1.0 2.6 1.0 4.2 1.1 7.4 1.1 3.1
poly6 1.0 30.0 1.0 3.3 1.0 2.3 1.0 2.4 1.0 2.4
poly8 0.9 24.1 1.0 2.9 1.0 2.4 1.0 1.6 1.0 1.7
poly quadratic 1.0 102.8 1.0 8.2 1.0 23.2 1.0 5.0 1.0 5.1
rgb 1.0 33.9 1.0 6.8 1.0 6.4 1.0 2.8 1.0 2.8
sobel 4.0 39.2 2.0 9.2 1.0 8.7 1.0 7.8 1.0 7.9
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TABLE 5.8
TORUS MOCARABE VS VIVADO HLS LATENCY IN CYCLES

(MOCARABE/VIVADO HLS RATIO IS SHOWN IN RED)

Benchmark II=1 II=2 II=3 II=4 II=5
Moc HLS Moc HLS Moc HLS Moc HLS Moc HLS

adder chain 63.0 10.0 (6.3) 64.0 10.0 (6.4) 66.0 13.0 (5.1) 68.0 10.0 (6.8) 70.0 11.0 (6.4)
approx1 93.0 30.0 (3.1) 94.0 34.0 (2.8) 99.0 28.0 (3.5) 100.0 31.0 (3.2) 105.0 29.0 (3.6)
bellido 93.0 23.0 (4.0) 96.0 25.0 (3.8) 102.0 22.0 (4.6) 104.0 20.0 (5.2) 105.0 22.0 (4.8)
caprasse 109.0 30.0 (3.6) 108.0 27.0 (4.0) 114.0 28.0 (4.1) 112.0 31.0 (3.6) 135.0 29.0 (4.7)
dct 152.0 98.0 (1.6) 128.0 88.0 (1.5) 132.0 82.0 (1.6) 144.0 89.0 (1.6) 140.0 87.0 (1.6)
deriche 647.0 212.0 (3.1) 666.0 186.0 (3.6) 498.0 155.0 (3.2) 492.0 172.0 (2.9) 505.0 172.0 (2.9)
fig3 63.0 17.0 (3.7) 66.0 17.0 (3.9) 63.0 17.0 (3.7) 72.0 17.0 (4.2) 70.0 18.0 (3.9)
gaussian 165.0 45.0 (3.7) 166.0 58.0 (2.9) 180.0 43.0 (4.2) 192.0 45.0 (4.3) 195.0 56.0 (3.5)
iir8 243.0 119.0 (2.0) 268.0 166.0 (1.6) 261.0 136.0 (1.9) 272.0 140.0 (1.9) 295.0 131.0 (2.3)
level1 lin 75.0 25.0 (3.0) 76.0 24.0 (3.2) 78.0 24.0 (3.2) 76.0 24.0 (3.2) 90.0 25.0 (3.6)
level1 sat 85.0 31.0 (2.7) 86.0 28.0 (3.1) 90.0 30.0 (3.0) 96.0 32.0 (3.0) 95.0 30.0 (3.2)
poly quad 77.0 25.0 (3.1) 80.0 25.0 (3.2) 81.0 24.0 (3.4) 84.0 24.0 (3.5) 85.0 25.0 (3.4)
poly10 293.0 104.0 (2.8) 324.0 106.0 (3.1) 333.0 108.0 (3.1) 344.0 101.0 (3.4) 350.0 98.0 (3.6)
poly20 1025.0 206.0 (5.0) 1108.0 238.0 (4.7) 987.0 233.0 (4.2) 1020.0 214.0 (4.8) 975.0 210.0 (4.6)
poly3 91.0 32.0 (2.8) 96.0 34.0 (2.8) 96.0 31.0 (3.1) 96.0 33.0 (2.9) 100.0 32.0 (3.1)
poly4 121.0 44.0 (2.8) 130.0 40.0 (3.2) 138.0 48.0 (2.9) 140.0 41.0 (3.4) 140.0 40.0 (3.5)
poly6 189.0 64.0 (3.0) 188.0 62.0 (3.0) 198.0 59.0 (3.4) 204.0 68.0 (3.0) 200.0 68.0 (2.9)
poly8 247.0 83.0 (3.0) 246.0 82.0 (3.0) 252.0 84.0 (3.0) 252.0 80.0 (3.1) 280.0 96.0 (2.9)
rgb 59.0 33.0 (1.8) 60.0 47.0 (1.3) 60.0 36.0 (1.7) 64.0 34.0 (1.9) 70.0 54.0 (1.3)
sobel 149.0 32.0 (4.7) 156.0 32.0 (4.9) 159.0 30.0 (5.3) 164.0 29.0 (5.7) 165.0 33.0 (5.0)
geomean 3.1 3.1 3.3 3.4 3.3
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TABLE 5.9
MESH MOCARABE VS VIVADO HLS LATENCY IN CYCLES

(MOCARABE/VIVADO HLS RATIO IS SHOWN IN RED)

Benchmark II=1 II=2 II=3 II=4 II=5
Moc HLS Moc HLS Moc HLS Moc HLS Moc HLS

adder chain 63.0 10.0 (6.3) 64.0 10.0 (6.4) 66.0 13.0 (5.1) 68.0 10.0 (6.8) 75.0 11.0 (6.8)
approx1 91.0 30.0 (3.0) 94.0 34.0 (2.8) 96.0 28.0 (3.4) 100.0 31.0 (3.2) 110.0 29.0 (3.8)
bellido 93.0 23.0 (4.0) 96.0 25.0 (3.8) 99.0 22.0 (4.5) 96.0 20.0 (4.8) 105.0 22.0 (4.8)
caprasse 111.0 30.0 (3.7) 112.0 27.0 (4.1) 114.0 28.0 (4.1) 124.0 31.0 (4.0) 120.0 29.0 (4.1)
dct 111.0 98.0 (1.1) 112.0 88.0 (1.3) 114.0 82.0 (1.4) 124.0 89.0 (1.4) 125.0 87.0 (1.4)
deriche DNF 212.0 (DNF) 336.0 186.0 (1.8) 360.0 155.0 (2.3) 400.0 172.0 (2.3) 355.0 172.0 (2.1)
fig3 61.0 17.0 (3.6) 64.0 17.0 (3.8) 66.0 17.0 (3.9) 68.0 17.0 (4.0) 75.0 18.0 (4.2)
gaussian 151.0 45.0 (3.4) 152.0 58.0 (2.6) 159.0 43.0 (3.7) 172.0 45.0 (3.8) 175.0 56.0 (3.1)
iir8 235.0 119.0 (2.0) 238.0 166.0 (1.4) 240.0 136.0 (1.8) 252.0 140.0 (1.8) 270.0 131.0 (2.1)
level1 lin 77.0 25.0 (3.1) 78.0 24.0 (3.2) 84.0 24.0 (3.5) 84.0 24.0 (3.5) 90.0 25.0 (3.6)
level1 sat 81.0 31.0 (2.6) 84.0 28.0 (3.0) 90.0 30.0 (3.0) 92.0 32.0 (2.9) 90.0 30.0 (3.0)
poly quad 77.0 25.0 (3.1) 80.0 25.0 (3.2) 81.0 24.0 (3.4) 80.0 24.0 (3.3) 95.0 25.0 (3.8)
poly10 285.0 104.0 (2.7) 294.0 106.0 (2.8) 303.0 108.0 (2.8) 316.0 101.0 (3.1) 320.0 98.0 (3.3)
poly20 743.0 206.0 (3.6) 686.0 238.0 (2.9) 699.0 233.0 (3.0) 716.0 214.0 (3.3) 745.0 210.0 (3.5)
poly3 89.0 32.0 (2.8) 90.0 34.0 (2.6) 96.0 31.0 (3.1) 100.0 33.0 (3.0) 100.0 32.0 (3.1)
poly4 121.0 44.0 (2.8) 122.0 40.0 (3.0) 129.0 48.0 (2.7) 136.0 41.0 (3.3) 140.0 40.0 (3.5)
poly6 177.0 64.0 (2.8) 184.0 62.0 (3.0) 192.0 59.0 (3.3) 196.0 68.0 (2.9) 195.0 68.0 (2.9)
poly8 227.0 83.0 (2.7) 230.0 82.0 (2.8) 237.0 84.0 (2.8) 244.0 80.0 (3.0) 250.0 96.0 (2.6)
rgb 53.0 33.0 (1.6) 56.0 47.0 (1.2) 57.0 36.0 (1.6) 56.0 34.0 (1.6) 65.0 54.0 (1.2)
sobel 133.0 32.0 (4.2) 140.0 32.0 (4.4) 144.0 30.0 (4.8) 148.0 29.0 (5.1) 155.0 33.0 (4.7)
geomean 2.9 2.8 3.0 3.2 3.1
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5.6.1 Torus vs Mesh latency per area

Using the data we got by running the benchmarks, we compare Torus and Mesh Mocarabe in
terms of latency per area (LUTs used), as shown in Figures 5.7 and 5.8. For each topology/II
combination, Figure 5.7 shows average latency per area over all benchmarks, and Figure 5.8
shows latency per area for each benchmark. To make figures easier to read, we have normalized
data per benchmark. As the figures show, Mesh has less latency per area compared to Torus,
making it a suitable candidate for applications where a smaller chip area with low latency is
desirable.

0.0 0.2 0.4 0.6 0.8 1.0
LUT

0.0

0.2

0.4

0.6

0.8

La
te

nc
y 

(C
yc

le
s)

Mesh
Torus
Mesh II = 0
Torus II = 0

Mesh II = 1
Torus II = 1
Mesh II = 2
Torus II = 2

Mesh II = 3
Torus II = 3
Mesh II = 4
Torus II = 4

Figure 5.7. Torus vs Mesh average latency per area (LUTs used).
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Figure 5.8. Torus vs Mesh latency per area (LUTs used) for each benchmark.
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Chapter 6

Conclusion and future research

As Moore’s scaling is coming to an end, various alternative gardware architectures are being
used to accelerate applications and provide better computation capabilities. Custom ASICs pro-
vide high performance with no reconfigurability and suffer from high development time and
manufacturing costs. FPGAs, on the other hand, provide rapid deployment and fine-grained
reconfigurability but suffer from low performance and their performance varies greatly on the
given application they implement. CGRAs are becoming a competitive computation candidate
as an alternative to ASICs and FPGAs by providing better and more predictable performance
than FPGAs while still providing some coarse-grained reconfigurability in terms of interconnect
and operations configurations. In this work we introduce Mocarabe, a new CGRA overlay archi-
tecture for Xilinx FPGAs and its associated communication-aware compiler.

We propose a novel topology-agnostic ILP placer that reduces placement cost up to 37% and opti-
mizes placement even for non-linear cost functions (like quadratic wirelength) by pre-computing
costs and feeding them as an input argument to the ILP problem, at the cost of increasing run-
time from less than a minute up to hours and timing out for larger benchmarks. We present a
scalable and flexible FPGA overlay implementation with torus, mesh and BFT NoC support engi-
neered with generous pipelining and careful floorplanning to achieve 650MHz+ torus, 766MHz+
mesh, and 583MHz+ BFT operation. Our chip-spanning torus implementation outperforms other
CGRA overlay implementations on FPGAs with 1.8–3× higher frequency. Furthermore, to eval-
uate our framework as an HLS platform, we compare our work with Vivado HLS. At scale, our
torus overlay outperforms Vivado HLS with up to 9.2× higher frequency. We can share func-
tional resources very effectively and provide efficient communication between functional units,
while HLS struggles to do so at higher II . Our CGRA maintains it’s high performance between
different configurations with small frequency variations, which makes it a suitable HLS platform
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as the performance varies very little between different applications. We compare Mesh and Torus
topologies, and show Mesh has less latency per area compared to Torus.

6.1 Future reseach

Here we present the possible future work and research ideas based on the work done in this
thesis:

• We can add support for branches and conditional execution to add support for more ap-
plications. We can use an idea similar to [15] by mapping multiple operations to each PE
and decide which one to execute at runtime using the added control lines. We can do so by
having multiple context memories instead of one per NoC output, PE operand selection,
etc. and select which context memory to use at runtime by adding multiplexers and control
lines. Doing so will also require updating the compiler infrastructure as the GCC-python
plugin currently does not support conditional execution.

• We can have larger BFT overlays with more communication channels by using all SLRs
available on the chip. That would require more elaborate floorplanning and possibly a
different number of pipeline registers per each level, as higher levels and SLR-crossing
levels would need more pipelining to achieve high performance.

• We can consider accelerating FPGA placement by leveraging tools such as RapidWright
[22] and exploiting the regular structure of out architecture (as in [54]) may eliminate the
very painful task of finding an optimal floorplan for each target device and speed up the
end-to-end flow.

• We can Break up the DFG into separate but adjacent arrays, when possible, would allow
for even larger applications to be easily mapped. Coalescing different operations (e.g.
sequential multiply and add) into one PE could reduce communication between PEs.
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