
Decompilation of Binaries into LLVM
IR for Automated Analysis

by

Tejvinder Singh Toor

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Tejvinder Singh Toor 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Complexity in malicious software is increasing to avoid detection and mitigation. As such,
there is greater interest in using automation for reverse engineering. Current state-of-
the-art tools use proprietary intermediate representations (IR) in decompilation and lack
open-source development. LLVM IR has emerged as a candidate for a reverse engineering
IR as it is already a mature tool for compilation and has a wide set of existing analysis
tools. In 2019, the NSA released the Ghidra reverse engineering framework as a free and
open-source alternative. In this thesis, we examine the development and application of IRs
in Ghidra for lifting to LLVM IR and evaluating the efficacy of that lifting. Of interest
was lifting at both the disassembly and decompilation stages of Ghidra. We developed
two tools: Ghidra-to-LLVM and Ghidrall. The former uses Ghidra’s Low P-Code IR
for a disassembling lifter while the latter uses Ghidra’s decompilation data structures as a
decompiling lifter. Lastly, we test the efficacy of Ghidrall as an input for automated solving
and against another lifter. Our results show that Ghidra is effective and has promise as
an input for future LLVM-based reverse engineering technologies.

iii

Acknowledgements

I would like to thank my advisor, Arie Gurfinkel for his mentorship and support.

I would like to thank my readers Mahesh Tripunitara and Werner Dietl.

I would like to thank my colleagues Hung, Thibaud, and Yitong for their support.

I would also like to thank my friends and family for their support as well.

iv

Dedication

This is dedicated to the ones I love.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 3

2.1 LLVM . 3

2.2 Ghidra . 4

2.2.1 Low P-Code . 5

2.2.2 High P-Code . 6

2.2.3 Internal Decompilation Data Structures 7

2.3 Translating P-Code to LLVM IR . 7

3 Ghidra-to-LLVM 9

3.1 Overview . 9

3.2 Disassembly . 10

3.2.1 Disassemble Function Signature . 11

3.2.2 Disassemble Instruction . 11

3.2.3 Emit Register and Memory References 12

3.3 Lifting Stage . 13

vi

3.3.1 Lift Registers and Memory References 14

3.3.2 Build Function and CFG . 14

3.3.3 Populate Function and CFG . 16

3.4 Example of Preservation of Buffer Overflow 19

4 Ghidrall 23

4.1 Overview . 23

4.2 Decompilation . 24

4.2.1 Call Graph Recovery . 24

4.2.2 Function Decompilation . 25

4.3 Lifting Stage . 26

4.3.1 Global Recovery . 28

4.3.2 Calling Convention Recovery . 28

4.3.3 Local Function Stack Recovery . 28

4.3.4 Instruction Lifting . 30

4.4 Example . 31

5 Evaluation 34

5.1 Simple Password Challenge . 34

5.2 Functional Verification . 36

5.2.1 Test Generation . 36

5.2.2 Comparing Stack Structures . 36

5.2.3 Comparing Lifters . 38

6 Related Work 39

6.1 Lifters . 39

6.2 Pharos . 40

7 Conclusion 41

vii

References 42

APPENDICES 45

A Ghidra-to-LLVM’s bof.c 46

B Ghidra-to-LLVM’s vuln.ll 47

C Output from Password Challenge 51

viii

List of Tables

2.1.1 Examples of LLVM IR . 3

2.2.1 P-Code Operations Introduced at High P-Code Stage 7

3.3.1 Mappings of P-Code to LLVM IR . 18

4.3.1 Mappings of High P-Code to LLVM IR . 30

5.2.1 Success Rate Overall for Structures . 36

5.2.2 Comparison Local Function Stacks . 38

5.2.3 Overall Success Rate of Lifters . 38

ix

List of Figures

2.2.1 Internal Representations of Ghidra Data Flow 5

2.2.2 Snippet of Low P-Code . 6

2.3.1 Translation of x86 Assembly to Low P-Code 8

2.3.2 Translation of Low P-Code to LLVM IR 8

3.1.1 Overview for Ghidra-to-LLVM. 9

3.2.1 Comparison of source and intermediate XML Output 12

3.2.2 Ghidra-to-LLVM XML instruction output 13

3.2.3 Example of XML output for register and memory references 14

3.3.1 Comparison of intermediate XML and LLVM for registers and memory . . 16

3.3.2 Example of LLVM output of a function stack 17

3.4.1 Call Stack Setup . 19

3.4.2 Example of a lifted LLVM IR in Ghidra-to-LLVM 20

3.4.3 Calling of strcpy from foo . 21

3.4.4 Calling strcpy . 22

4.1.1 Overview for Ghidrall. 23

4.2.1 Sample output of rizin afl . 26

4.3.1 Different Formats of Local Function Stack Recovery 29

4.4.1 Comparison of source and Ghidra decompiled C 32

4.4.2 Ghidrall LLVM output for main . 33

x

5.1.1 A Simple Password Challenge . 34

5.1.2 Ghidrall and SeaHorn Instrumentation Functions 35

5.2.1 Test Generation . 36

5.2.2 Example Functional Verification Problem 37

xi

Chapter 1

Introduction

Software reverse engineering is a useful technique for finding vulnerabilities in black-box
testing environments as it mimics the same methods a malicious actor would use. It is
also becoming an increasingly difficult challenge[1] due to growth in software complexity.
Stuxnet[2], for example, is a widely considered an extremely complex malware and over ten
years old. In order to evade defenses and mitigation, an arms race has resulted in complex
malware that are not easy to reason about. Research has become more expensive due to
the fundamental requirement of human analyst time and experience. As such, between
reversing malicious programs as well as defensive testing of binary programs, there has
been growing interest in improving workflows and reverse engineering automation. Cur-
rent research workflows involve tools like IDA Pro from Hex-Rays[3]. IDA Pro includes
a disassembler, a decompiler, as well as debugging and dynamic analysis tools. The pri-
mary downsides for IDA Pro are learning curve, ease-of-access, and lack of open-source.
Previously, price was a major factor but pressure from competitors has forced Hex-Rays
to reduce the cost.

Automation is already a hot topic in reverse engineering. In 2016, DARPA ran the Cyber
Grand Challenge[4]. The goal of the challenge was to produce fully-automated software
that would be able to discover and patch novel vulnerable binaries. From this competition
a number of tools were produced, some of which are being adapted to commercial prod-
ucts like Mayhem[5], Xandra[6], and Shellphish[7]. Additionally, other assisted-automated
tools for reverse engineering exist like Angr[8]. These tools require human guidance to
work but speed up the process. Another automated method of vulnerability discovery is
fuzzing, where programs like American Fuzzy Lop (AFL)[9] have discovered vulnerabilities
in hundreds of programs.

1

Existing state-of-the-art reverse engineering tools lack standards for open source work
and have implementations of the same functionality. Most of these tools run on their own
intermediate representations for decompiling and analysis and are not transferable between
one another. LLVM IR[10] already exists as a standard for compilation. It is mature and
well-tested, and has a mature set of tools that can be used for program analysis like
KLEE[11] and SeaHorn[12]. However, unlike for compilation there is no standard process
for decompilation. Disassembling and decompilation of binaries to LLVM IR is known as
lifting. We distinguish between the two with the terms disassembling lifter and decompiling
lifter. There are currently a few LLVM lifters like McSema[13], McToll[14], and RetDec[15].

In 2019, the National Security Agency released its own free and open-source tool, Ghidra[16].
It includes a disassembler, a decompiler, a plugin interface, and a debugger. Of interest
are its intermediate stages. Low-P-Code[17] is the IR that architectures are translated to
before decompilation is performed. High P-Code introduces static single-assignment opera-
tions and markers for further decompilation phases. Through modifying the decompiler, we
expose a third intermediate representation, which we call Decompilation Data Structures.
This IR exposes P-Code and other decompilation information before it is translated to the
C-like pseudo-code that is presented to the user in the Ghidra UI. The challenges for this
work were exposing the different layers of Ghidra to develop tools, translating instructions
between Ghidra and our tools, and managing machine emulation at different levels.

The contributions of this thesis as follows:

• The design of a disassembling lifter, Ghidra-to-LLVM, based on Ghidra’s Low
P-Code. This tool was developed to a proof of concept level.

• The design of decompiling lifter, Ghidrall, based on the Ghidra decompiler’s internal
data structures. Ghidrall was the primary effort of this thesis.

• An evaluation of Ghidrall against McSema using instrument test programs with the
SeaHorn verification framework. We find a 15% improvement in accuracy in preserv-
ing program functionality with Ghidrall. Ghidra-to-LLVM was not developed to the
same standard as Ghidrall; as such it was not evaluated in the same testing scheme
as McSema and Ghidrall.

2

Chapter 2

Background

In this chapter we present information regarding LLVM IR and P-Code for this thesis.

2.1 LLVM

The LLVM Project is a collection free, modular, and open compiler-related technologies.
The ecosystem is designed to interface with new programming languages and machine
architectures through the compiler frond-end and back-end, respectively. This feature is
enabled through its intermediate representation, LLVM IR[10]. LLVM IR is a strongly
typed and single-static assigned (SSA). LLVM IR is the output used by lifters in reverse
engineering processes.

Concept LLVM Example
Function Declaration declare {i32, i1} @add with overflow(i32 %1, i32 %2)
Global Variable @X = internal global i32 0
Control Flow br label %5
GEP Instruction %155 = getelementptr i8, i8* %5, i64 0

Table 2.1.1: Examples of LLVM IR

Table 2.1.1 illustrates a few examples of LLVM IR. The readable representation of LLVM
IR is emitted as a .ll file. Each file consists of a module, which corresponds to the input
programs as a translation unit. Multiple module files may be linked by the LLVM linker.
Each module consists of functions, global variables and symbol table entries. There are

3

two types of identifiers in LLVM: the global identifier (@) and the local identifier (%). Line
1 of the table illustrates an example of the global identifier used in a function declaration,
while line 4 is an example of the local modifier used to identify an LLVM register. Registers
in LLVM IR refer to single-use variables in SSA.

Functions in LLVM can either be declared or defined. Declared functions are used as
placeholders until linking defines them. Each function takes in a series of inputs on the right
side and emits a single output. The type of the output is determined by either instruction
type or the input values. For instance, integer addition with the add instruction must take
two inputs of the same size and emits an output of that same size. Each function is made
up of one or more basic blocks in a Control-Flow Graph (CFG). Each block consists of a
label, instructions, and a terminator instruction. Line 3 of the table illustrates an example
of a terminator instruction.

Values in LLVM can either be LLVM registers (defined with SSA), constants, or globals.
All values in LLVM are bit-arrays (written as i32 for a 32-bit integer). Pointers in LLVM
are defined with an additional * affix. Line 4 is an example of the LLVM GEP instruction,
which is used for accessing values in structures, pointer arithmetic, and dereferencing.

2.2 Ghidra

Reverse engineering tools are typically packaged into a framework. The framework allows
an analyst to develop a simple workflow. Ghidra, a reverse engineering platform, was
developed by the National Security Agency and released to the general public as a free
and open-source project in 2019. It consists of a disassembler and decompiler, as well
as a suite of visualization and editing tools. Ghidra also includes a plugin interface so
users can access the API. Ghidra goes through a similar transformation process as LLVM
compilation, where there are a series of stages for decompilation and different front-ends
(called processors) and back-ends for decompiled code.

Figure 2.2.1 illustrates the data-flow in the Ghidra decompilation process and the different
intermediate representations that can be accessed at each stage. The first stage is where raw
P-Code is generated. We refer to this format as Low P-Code[17]. This P-Code is generated
by processors that are unique to specific system architectures. Ghidra-to-LLVM uses this
output as a source for lifting a binary to LLVM. The second type of IR is accessible after
the CFG Recovery and Annotation phase of Ghidra. This process recovers some control
flow and introduces markers for further decompilation stages. No tool was developed for
High P-Code as the markers are not directly translatable to LLVM IR. Two further stages

4

Figure 2.2.1: Internal Representations of Ghidra Data Flow

are applied to decompile the P-Code before translating it to a programming language for
human-readability. Ghidra defaults to a pseudo-C type of representation, but it is possible
to modify the Ghidra source to access P-Code before it is translated to pseudo-C. We define
this stage of the internal representation as Decompilation Data Structures as it consists of
complex data-structures that contain P-Code as well as other information about memory
and control-flow. This intermediate representation is consumed by Ghidrall to produce
LLVM IR.

2.2.1 Low P-Code

Figure 2.2.2 is a snippet of a few P-Code instructions. Low P-Code retains references to
architecture specific values. In lines 2 and 3 we see references to the carry flag (CF) and the
zero flag (ZF), which are in this case registers specific to x86 assembly. P-Code instructions
follow polish notation and generally require their output size to match their input sizes.
Input and output values are referred to as varnodes. Varnodes in P-Code consist of an

5

1 $U34b0 : 1 = INT SLESS $Ub7d0 , 0 : 8
2 $U3450 : 1 = INT AND $U3440 , CF
3 CBRANCH A 00100532 : 8 , ZF

Figure 2.2.2: Snippet of Low P-Code

address space, an offset into that space and a size. The segment after the colon of a value
is the size of the variable in bytes.

Address Spaces

Address spaces are generalizations for memory in Ghidra. It is a sequence of bytes that
can be written to and read from. Each byte has an address associated with it. There are
few types of address spaces:

• ram space is used to model the RAM on a real processor. The value A 00100532:8

in line 3 is an example of an address in ram space.

• register space is used to define architecture-specific registers like EAX or CF.

• constant space is used to define constant values that are accessed by instructions.
0:8 in line 1 is an example.

• temporary or unique space is used for temporary values. Varnodes like $U3440 are
temporary values.

2.2.2 High P-Code

High P-Code is accessible and includes some control-flow graph recovery as well as anno-
tations for further decompilation. Figure 2.2.1 shows the new P-Code operations that are
defined in High P-Code. All of these operations can be translated to LLVM except for
the INDIRECT operation. This does not have any explicit meaning and is used to mark
varnodes as being potentially implicitly modified by another instruction.

6

High P-Code Explanation
MULTIEQUAL Phi node for SSA
INDIRECT Marker for decompiler for indirect change
PTRADD Pointer addition
PTRSUB Pointer subtraction
CAST Type casting

Table 2.2.1: P-Code Operations Introduced at High P-Code Stage

2.2.3 Internal Decompilation Data Structures

The internal decompilation data structures are accessible by modifying the Ghidra decom-
piler. P-Code instructions can be accessed by iterating over functions and emitting their
structures in blocks. The instructions are the same as High P-Code but have INDIRECT

operations removed. Additional information like function paramaters, function variables,
and stack information can be found in these data structures.

2.3 Translating P-Code to LLVM IR

Figure 2.3.1 shows the translation between machine instructions and Low P-Code. Each
machine instruction maps to one or more P-Code operations. In this case, all of the steps in-
volved in translating MOV EAX,dword ptr [ESP + local 14] to P-Code are broken down
and shown in red. Each of these operations is then mapped to a P-Code operation, which
is shown in green.

Figure 2.3.2 maps each of the previous P-Code operations to LLVM IR. Much like with the
machine code, each P-Code operation maps to one or more LLVM IR lines, shown in white.
Both LLVM IR and P-Code integer operations require that both inputs and the output be
the same size and type. P-Code does not distinguish between pointer and integer types
like LLVM IR does, so additional processing needs to be added during lifting.

7

Figure 2.3.1: Translation of x86 Assembly to Low P-Code

Figure 2.3.2: Translation of Low P-Code to LLVM IR

8

Chapter 3

Ghidra-to-LLVM

3.1 Overview

Figure 3.1.1: Overview for Ghidra-to-LLVM.

Figure 3.1.1 shows an overview of the Ghidra-to-LLVM program flow. Overall, the program
takes in a compiled binary, disassembles it into intermediate decompilation data structures,
and then lifts the structures into valid LLVM IR. In this chapter the disassembly and lifting
stages are presented in detail, as well as an example of a buffer overflow vulnerability being
preserved after lifting.

In the disassembly stage Ghidra-to-LLVM needs to recover the function signature, disas-
semble instructions, and maintain references to registers, memory, and the stack. These
features form part of the main challenge with Ghidra-to-LLVM — since it is so low level,
there is a need to emulate the machine to maintain the logic of the program without de-
compiling the program. This creates a machine model that is specific to this tool and
platform agnostic.

9

In the lifting stage there are four steps. First, references to memory and registers are defined
in LLVM as global variables. Then, each function has its function signature defined and
its CFG skeleton built. This CFG is then populated with LLVM instructions derived from
the Low P-Code instructions. Finally, the entire output is verified as valid LLVM before
being outputted.

The source for Ghidra-to-LLVM and its test can be found at the following webpage: https:
//github.com/toor-de-force/Ghidra-to-LLVM.

3.2 Disassembly

Algorithm 1: Ghidra-to-LLVM Disassembly Algorithm

Result: Low P-Code XML
1 foreach function do
2 DisassembleFunctionSignature(function);
3 foreach instruction do
4 DisassembleInstruction(instruction);
5 end

6 end
7 EmitRegisterMemoryReferences;

The disassembly stage of Ghidra-to-LLVM is entirely self-contained within a headless plu-
gin for Ghidra. Algorithm 1 illustrates the top-level steps it takes to disassemble the
program and emit the intermediate low P-Code data structures. An input program is
passed into the disassembler plugin using the analyzeHeadless utility provided by the
Ghidra API.

Using the Ghidra plugin API, functions are collected and passed through the
DisassembleFunctionSignature procedure, which recovers function return types, para-
maters, address, and name. The function’s constituent assembly instructions are then
iterated over and passed through the DisassembleInstruction procedure, which recovers
each assembly instruction’s address, constituent P-Code operations and their input and
output values. Finally in the global scope the EmitRegisterMemoryReferences proce-
dure register and memory references are collected along with their sizes and addresses to
facilitate lifting later on.

10

https://github.com/toor-de-force/Ghidra-to-LLVM
https://github.com/toor-de-force/Ghidra-to-LLVM

3.2.1 Disassemble Function Signature

Algorithm 2: DisassembleFunctionSignature

Result: Function Low P-Code XML
1 Emit function name;
2 Emit function address;
3 Emit function output type;
4 foreach input do
5 Emit input name;
6 Emit input type;

7 end

The DisassembleFunctionSignature procedure is outlined in Algorithm 2. It takes in a
function and emits the name, address, return type as well as the input names and types.
The name and address are used to maintain references to the function in lifting since it
is legal in P-Code to refer to a function by either when performing calls. Output type is
assumed to be void if it is impossible to confidently recover the function type. Figure 3.2.1
is an example comparing the source of func0 and the disassembly XML. In this example
the disassembly is fully accurate.

3.2.2 Disassemble Instruction

Algorithm 3: DisassembleInstruction

Result: Instruction Low P-Code XML
1 Emit assembly address;
2 foreach P-Code op do
3 Emit P-Code op output size and storage type;
4 foreach input do
5 Emit input size and storage type;
6 end
7 Emit P-Code op name;

8 end

Algorithm 3 illustrates the steps required to disassemble a single instruction for the proce-
dure DisassembleInstruction. Instruction disassembly in Ghidra-to-LLVM treats each

11

1 void func0 (int x) {
2
3 int n=INT RAND;
4 i f (n==4 && x < 10) {
5 func1 (n , x) ;
6 }
7 }

(a) Source code

1 <f unc t i on address=”0010071 c” name=” func0 ”>
2 <output type=” void ”/>
3 <input name=”x” type=” i n t ”/>
4 < i n s t r u c t i o n s >
5 . . .
6 </ i n s t r u c t i o n s >
7 </funct ion>

(b) Ghidra-to-LLVM Intermediate XML Output

Figure 3.2.1: Comparison of source and intermediate XML Output

assembly instruction as its own block. As P-Code operations do not cover all possible
operations in a single instruction set, one assembly instruction can map to one or more low
P-Code operations. Additionally, implicit changes like flag settings need to be explicitly
defined.

Of note is the storage field, which keeps track of the Ghidra storage type. The possible
options are register (a register as defined by the instruction set), memory (a memory
location), constant (a constant integer value), or unique (Ghidra’s temporary type used
for temporary values). Figure 3.2.2 is an example of the output of the disassembly stage
for the assembly corresponding to branch if not equal.

3.2.3 Emit Register and Memory References

The final procedure in the disassembly stage is EmitRegisterMemoryReferences. As
register and memory references are hit in the previous procedures, these values are kept
track of and emitted as separate lists along with their sizes. This step is there to facilitate
the lifting stage where these values must be defined in the global scope and not within

12

1 < i n s t r u c t i o n 0 >
2 <address >0010071c</address>
3 <pcodes>
4 <pcode 0>
5 <output s i z e=”8” s to rage=” unique ”>u 2510 :8</ output>
6 <name>COPY</name>
7 <i nput 0 s i z e=”8” s to rage=” r e g i s t e r ”>RBP</input 0>
8 </pcode 0>
9 <pcode 1>

10 <output s i z e=”8” s to rage=” r e g i s t e r ”>RSP</output>
11 <name>INT SUB</name>
12 <i nput 0 s i z e=”8” s to rage=” r e g i s t e r ”>RSP</input 0>
13 <i nput 1 s i z e=”8” s to rage=” constant ”>0x8</input 1>
14 </pcode 1>
15 <pcode 2>
16 <name>STORE</name>
17 <i nput 0 s i z e=”8” s to rage=” constant ”>0x1b1</input 0>
18 <i nput 1 s i z e=”8” s to rage=” r e g i s t e r ”>RSP</input 1>
19 <i nput 2 s i z e=”8” s to rage=” unique ”>u 2510 :8</ input 2>
20 </pcode 2>
21 </pcodes>
22 </ i n s t r u c t i o n 0 >

Figure 3.2.2: Ghidra-to-LLVM XML instruction output

functions in order to work with LLVM. Figure 3.2.3 shows an example of both outputs;
the registers seen here are x86 registers.

3.3 Lifting Stage

The lifting stage of Ghidra-to-LLVM builds the LLVM files and validates them. Algorithm
4 illustrates the top-level steps it takes to lift the program and output the final LLVM file.
The XML output from the disassembly stage is used to perform the lifting.

First, LiftRegistersandMemoryReferences produces the LLVM variables that reference
register and memory locations. These need to be performed separately as these belong to
the global scope and not any function. Then each function is first built with a skeleton CFG

13

1 <g loba l s>
2 <register name=”CF” s i z e=”1”/>
3 <register name=”RSP” s i z e=”8”/>
4 <register name=”OF” s i z e=”1”/>
5 <register name=”SF” s i z e=”1”/>
6 <register name=”ZF” s i z e=”1”/>
7 <register name=”RAX” s i z e=”8”/>
8 <register name=”RIP” s i z e=”8”/>
9 . . .

10 <register name=”RBX” s i z e=”8”/>
11 </g loba l s>
12 <memory>
13 <memory name=” A 00300fe8 : 8 ” s i z e=”8”/>
14 <memory name=”A 00301010 : 1 ” s i z e=”1”/>
15 . . .
16 <memory name=”A 001007b0 : 8 ” s i z e=”8”/>
17 </memory>

Figure 3.2.3: Example of XML output for register and memory references

in BuildFunctionCFG before populating the function’s CFG in PopulateFunctionCFG.

3.3.1 Lift Registers and Memory References

Algorithm 5 illustrates the steps required to lift the global scope registry and memory
variables. Since register storage types in Ghidra do not necessarily include the correct
sizing nor pointer types additional analysis is required. Register values are compared
against known architecture-specific registers before lifting them to their respective types.
If neither, the register is a regular register and no additional processing is needed. Memory
locations are more straightforward and can be lifted without any additional processing.
Figure 3.3.1 shows an example of XML inputs and their resulting LLVM outputs.

3.3.2 Build Function and CFG

Algorithm 6 shows the steps to construct the skeleton of an LLVM function. This needs
to be a separate step to ensure references to branch locations and functions exist before
processing instructions. Each assembly instruction address is treated as its own basic block.

14

Algorithm 4: Ghidra-to-LLVM Lifting Algorithm

Result: Lifted LLVM
1 LiftRegistersandMemoryReferences;
2 foreach function do
3 BuildFunctionCFG(function);
4 PopulateFunctionCFG(function);

5 end

Algorithm 5: LiftRegistersMemory

Result: Register and Memory Data Structures in LLVM
1 foreach register do
2 if register is a flag then
3 Lift flag register;
4 else if register is a pointer then
5 Lift pointer register;
6 else
7 Lift generic register;
8 end

9 end
10 foreach memory do
11 Lift memory location;
12 end

Algorithm 6: BuildFunctionCFG

Result: Function Structure in LLVM
1 foreach function do
2 Build function type;
3 Build entry block;
4 foreach instruction address do
5 Build instruction block;
6 end

7 end

15

1 <g loba l s>
2 <register name=”CF” s i z e=”1”/>
3 <register name=”RSP” s i z e=”8”/>
4 <register name=”OF” s i z e=”1”/>
5 <register name=”SF” s i z e=”1”/>
6 <register name=”ZF” s i z e=”1”/>
7 <register name=”RAX” s i z e=”8”/>
8 <register name=”RIP” s i z e=”8”/>
9 . . .

10 <register name=”RBX” s i z e=”8”/>
11 </g loba l s>
12 <memory>
13 <memory name=” A 00300fe8 : 8 ” s i z e=”8”/>
14 <memory name=”A 00301010 : 1 ” s i z e=”1”/>
15 . . .
16 <memory name=”A 001007b0 : 8 ” s i z e=”8”/>
17 </memory>

(a) Intermediate XML

1 @”RSP” = i n t e r n a l g l o b a l i 8 ∗ n u l l
2 @”RIP” = i n t e r n a l g l o b a l i 8 ∗ n u l l
3 @”CF” = i n t e r n a l g l o b a l i 1 0
4 @”OF” = i n t e r n a l g l o b a l i 1 0
5 @”SF” = i n t e r n a l g l o b a l i 1 0
6 @”ZF” = i n t e r n a l g l o b a l i 1 0
7 @”RAX” = i n t e r n a l g l o b a l i 64 0
8 @”A 00101008 : 8 ” = i n t e r n a l g l o b a l i 64 0
9 @”A 00100000 : 8 ” = i n t e r n a l g l o b a l i 64 0

10 @”A 00101010 : 8 ” = i n t e r n a l g l o b a l i 64 0

(b) Final LLVM

Figure 3.3.1: Comparison of intermediate XML and LLVM for registers and memory

3.3.3 Populate Function and CFG

Algorithm 7 illustrates PopulateFunctionStack procedure. The population stage of the
lifting process is where the vast majority of the lifting is done. A stack for each function

16

is constructed to maintain the machine emulation requirements that are needed to analyze
code at this level. Then for each P-Code operation we map it to an LLVM operation
(LiftOp) and sanitize the inputs and outputs (SanitizeOp) as LLVM and P-Code do not
follow the same rules for typing.

Ghidra-to-LLVM is able to recover control-flow graphs. The tool does this by treating
each machine instruction as a single basic block, with its associated P-Code operations
forming the instructions within it. Flow between blocks is either explicitly defined in the
machine instructions, or is implicitly recovered as a fall-through to the subsequent block.
Simplification passes are performed later on by LLVM optimization passes.

Algorithm 7: PopulateFunctionCFG

Result: Function Population in LLVM
1 foreach function do
2 PopulateFunctionStack;
3 foreach block do
4 foreach op do
5 LiftOp(op);
6 SanitizeOp(op);

7 end

8 end

9 end

Function Stack

1 entry :
2 %” stack ” = a l l o c a i8 , i 32 10485760
3 %” s tack top ” = gete l ementptr i8 , i 8 ∗ %” stack ” , i 64 10485752
4 s t o r e i 8 ∗ %” stack top ” , i 8 ∗∗ @”RSP”
5 br l a b e l %”0010066 c”

Figure 3.3.2: Example of LLVM output of a function stack

Figure 3.3.2 is an example of how Ghidra-to-LLVM represents the stack. Each function
in the program has its own stack, represented by a pointer to an arbitrarily large area
of memory allocated using LLVM’s alloca instruction. The top of the stack is then

17

calculated and stored in the stack pointer RSP. As the stack pointer is a global register,
when a function call is made a reference to the previous function’s stack is maintained and
arguments can be passed between functions. Function calls in Ghidra-to-LLVM are made
without arguments. Arguments are instead passed through the stack.

Instruction Translation

No. P-Code LLVM IR via llvmlite

1 B = COPY A
%temp = load i8, i8* %A
store i8 %temp, i8* %B

2 val:1 = LOAD ram(addr) %val = load i8, i8* %addr
3 STORE ram(addr), val:4 store i32 %val, i32* %addr
4 BRANCH *[ram]addr br label %”3”
5 CBRANCH *[ram]addr, val br i1 %val, label %1, label %”2”
6 CALL *[ram]0x8048728b call void @sym.path start()
7 RETURN ret void
8 out = INT EQUAL A, 0:4 %out = icmp eq i32 %A, 0
10 out = INT ADD A, 3:4 %out = add i32 %A, 3
11 out:1 = BOOL XOR A, 1:1 %out = xor i1 %A, 1

Table 3.3.1: Mappings of P-Code to LLVM IR

Table 3.3.1 illustrates some examples of how operations are translated in LiftOp. Rows 1–3
are examples of how data P-Code operations are mapped to LLVM IR. Rows 4–7 illustrate
examples of control flow instructions. Rows 8–11 are examples of arithmetic operations.

Instruction Sanitizing

P-Code and LLVM IR differ in how they treat operation inputs and outputs. For instance,
LLVM IR typically requires inputs and outputs to be of the same size, while P-Code does
not necessarily have the same requirement. Additionally, Ghidra operands do not explicitly
keep track of whether or not the values they reference are pointers, while LLVM requires
its registers to be explicitly defined as either pointers or non-pointers.

18

3.4 Example of Preservation of Buffer Overflow

In this section an analysis of a buffer overflow being preserved in lifting is presented.
Appendix A includes the C source while the lifted vuln.ll can be found in Appendix B.

Figure 3.4.1: Call Stack Setup

Figures 3.4.1 and 3.4.2 show an example of a function call within Ghidra-to-LLVM. Ghidra
prepares calls by placing the call arguments on the stack. Blocks 00100674 (lines 1–3) and
0010067e (lines 4–6) form the beginning of the function call. In both of these instruction
the string "aaaaaaaa" as in integer is stored in each of RAX and RDX. In the following
blocks (00100688 – 0010069c these values are copied onto the stack at indexes off of the
base pointer. For each of these the base pointer RBP is decremented and a portion of
the input parameter is stored. In this case, the value "aaaaaaaa" was previously stored
in the general purpose registers RAX and RDX. Each of these blocks was originally a COPY

instruction, so it is represented as a load/store pair. The index register RDI is then used
to store a reference to the start of the input string.

In figures 3.4.3 and 3.4.4 the remainder of the program execution is illustrated. Here the
same call setup is done for arguments and stack pointer management. RDI and RSI are used
as the source and destination index registers, passing pointers to the two argument arrays.
At this point, we can be certain that vulnerability persists in the lifted code. strcpy does

19

1 00100674:

2 store i64 7016996765293437281 , i64*

@RAX

3 br label %0010067e

4 0010067e:

5 store i64 7016996765293437281 , i64*

@RDX

6 br label %00100688

7 00100688:

8 %.53 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -64

9 %.54 = load i64 , i64* @RAX

10 %.55 = bitcast i8* %.53 to i64*

11 store i64 %.54 , i64* %.55

12 br label %0010068c

13 0010068c:

14 %.57 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -56

15 %.58 = load i64 , i64* @RDX

16 %.59 = bitcast i8* %.57 to i64*

17 store i64 %.58 , i64* %.59

18 br label %00100690

19 00100690:

20 %.61 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -48

21 %.62 = load i64 , i64* @RAX

22 %.63 = bitcast i8* %.61 to i64*

23 store i64 %.62 , i64* %.63

24 br label %00100694

25 00100694:

26 %.65 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -40

27 %.66 = load i64 , i64* @RDX

28 %.67 = bitcast i8* %.65 to i64*

29 store i64 %.66 , i64* %.67

30 br label %00100698

31 00100698:

32 %.69 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -32

33 %.70 = load i64 , i64* @RAX

34 %.71 = bitcast i8* %.69 to i64*

35 store i64 %.70 , i64* %.71

36 br label %0010069c

37 0010069c:

38 %.73 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -24

39 %.74 = load i64 , i64* @RDX

40 %.75 = bitcast i8* %.73 to i64*

41 store i64 %.74 , i64* %.75

42 br label %001006 a0

43 001006 a0:

44 %.77 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -16

45 %.78 = bitcast i8* %.77 to i16*

46 store i16 24929, i16* %.78

47 br label %001006 a6

48 001006 a6:

49 %.80 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -64

50 %.81 = load i8, i8* %.80

51 %.82 = bitcast i64* @RAX to i8*

52 store i8 %.81 , i8* %.82

53 br label %001006 aa

54 001006 aa:

55 %.84 = ptrtoint i64* @RAX to i64

56 store i64 %.84 , i64* @RDI

57 br label %001006 ad

58 001006 ad:

59 %.86 = getelementptr i8*, i8** @RSP ,

i64 0, i64 -8

60 store i8* %.86 , i8** @RSP

61 %.88 = getelementptr i8*, i8** @RSP ,

i64 0, i64 0

62 %.89 = bitcast i8* %.88 to i64*

63 store i64 1050290 , i64* %.89

64 call void @foo()

65 br label %001006 b2

66 001006 b2:

67 store i64 0, i64* @RAX

68 br label %001006 b7

Figure 3.4.2: Example of a lifted LLVM IR in Ghidra-to-LLVM

not account for bounds checking, so the larger array will overflow the smaller and spill onto
the stack. A malicious actor could then inject instructions and execute arbitrary code.

Figure 3.4.4 illustrates how stack is layed out when the final call to strcpy is made. At this
point, RAX is loaded with a pointer to the input string, and RDX is loaded with a pointer to
the output string. As strcpy does not check bounds on strings for copying, it will overflow
the buffer of char array c and be vulnerable to exploitation.

20

1 00100652:

2 %.45 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -24

3 %.46 = load i64 , i64* @RDI

4 %.47 = bitcast i8* %.45 to i64*

5 store i64 %.46 , i64* %.47

6 br label %00100656

7 00100656:

8 %.49 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -24

9 %.50 = load i8, i8* %.49

10 %.51 = bitcast i64* @RDX to i8*

11 store i8 %.50 , i8* %.51

12 br label %0010065a

13 0010065a:

14 %.53 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -5

15 %.54 = load i8 , i8* %.53

16 %.55 = bitcast i64* @RAX to i8*

17 store i8 %.54 , i8* %.55

18 br label %0010065e

19 0010065e:

20 %.57 = load i64 , i64* @RDX

21 store i64 %.57 , i64* @RSI

22 br label %00100661

23 00100661:

24 %.59 = load i64 , i64* @RAX

25 store i64 %.59 , i64* @RDI

26 br label %00100664

27 00100664:

28 %.61 = getelementptr i8*, i8** @RSP ,

i64 0, i64 -8

29 store i8* %.61 , i8** @RSP

30 %.63 = getelementptr i8*, i8** @RSP ,

i64 0, i64 0

31 %.64 = bitcast i8* %.63 to i64*

32 store i64 1050217 , i64* %.64

33 call void @strcpy ()

34 br label %00100669

Figure 3.4.3: Calling of strcpy from foo

21

Figure 3.4.4: Calling strcpy

22

Chapter 4

Ghidrall

4.1 Overview

Figure 4.1.1: Overview for Ghidrall.

The main difference between Ghidrall and Ghidra-to-LLVM is that Ghidrall adds a decom-
pilation stage instead of a disassembly stage. Figure 4.1.1 shows the overview of Ghidrall
with snippets of a motivating example. The decompilation stage takes binary program
inputs and extracts decompilation-related data structures. The lifting stage takes these
structures and constructs the final lifted LLVM. In this chapter the decompilation and lift-
ing stages are presented in detail, as well as an example of a buffer overflow vulnerability
being preserved after lifting.

The decompilation stage comes in two major sub-stages: call graph recovery and function
decompilation. The former selects which functions to decompile and lift. In a regular

23

binary there are dozens of functions, however only some of these are actually used in
reverse engineering. This is done creating a call graph and walking it from the entry
function till the entire closed graph is explored. These functions are then decompiled using
a modified version of the Ghidra decompiler using the command-line reverse engineering
platform rizin. All the relevant decompilation data structures are stored in intermediate
XML files.

The lifting stage takes in these decompilation data structures and performs a series of sub-
stages to produce the lifted LLVM. Calling convention recovery is performed to validate
function arguments and eliminate ambiguity between different stages of Ghidra. Local
function stack recovery is performed to fix errors in the Ghidra decompiler regarding arrays
and complex data structures in source code. Global recovery is performed separately as
Ghidra decompiles programs function-by-function and a global set of memory is not well
defined. Finally, instruction lifting is performed on each P-Code operation of each function
in decompilation based on translation rules between P-Code and LLVM.

The source for Ghidrall and its test can be found at the following webpage: https://

github.com/toor-de-force/Ghidrall.

4.2 Decompilation

Algorithm 8 shows the steps involved in the decompilation stage. Lines 3–15 illustrate
the call graph recovery steps needed to determine which functions to decompile. The
DecompileFunction procedure then takes in those functions and emits the intermediate
decompiled functions for the lifter.

4.2.1 Call Graph Recovery

One challenge in automating the reverse engineering process is selecting the appropriate
functions to decompile. Large programs can consist of thousands of functions, increasing
complexity for both human and machine analysis.

Before decompiling individual functions in rizin, Ghidrall chooses which functions to de-
compile. 4.2.1 is an example output from rizin’s afl command. This lists function names
and their associated addresses. From a specified entry point the complete call graph is re-
constructed and then pruned to eliminate unreachable nodes. These are typically the back-
ground/system functions common across all binary programs (lines 1–6,11,14,15,19).

24

https://github.com/toor-de-force/Ghidrall
https://github.com/toor-de-force/Ghidrall

Algorithm 8: Ghidrall Call Graph Recovery Algorithm

Result: Decompilation Data Structures XML
1 to visit← [entry];
2 visited← [];
3 while to visit > 0 do
4 current = to visit.pop;
5 foreach function reference in current do
6 if reference is instrumented then
7 next;
8 else if reference in system then
9 nextx

10 else if reference in visited then
11 next;
12 else
13 to visit← reference
14 end

15 end
16 visited← current;

17 end
18 foreach visited function do
19 DecompileFunction;
20 end

Other functions, which have pre-defined implementations in Ghidrall are also not selected
for decompilation. Instrumentation functions (lines 7,8,9,12,13,16,20) are predefined
as they have pre-defined behaviours and should lift the same way each time in Ghidrall.
System functions (lines 8,21) are either pre-defined or not selected for decompilation, de-
pending on whether or not their function is necessary for analysis. All functions are paired
with their addresses to allow indirect function calls to occur. The resulting list of functions
is then passed to the function decompilation step.

4.2.2 Function Decompilation

The standard pseudo-C output from Ghidra strips away a lot of useful information: local
variables are assumed to be separate with stack positioning removed, function declarations
are sometimes inconsistent, and operations are collapsed in ways that do not necessarily

25

1 0x00400430 entry0
2 0x00400470 sym . d e r e g i s t e r t m c l o n e s
3 0x004004a0 sym . r e g i s t e r t m c l o n e s
4 0 x004004e0 sym . d o g l o b a l d t o r s a u x
5 0x00400510 entry . i n i t 0
6 0 x004009c0 sym . l i b c c s u f i n i
7 0x00400520 sym . nd
8 0x00400420 sym . imp . time
9 0x00400540 sym . p a t h s t a r t

10 0x00400570 sym . path goa l
11 0 x004009c4 sym . f i n i
12 0x004005a0 sym . path nongoal
13 0x004005d0 sym . example cons t ra in a rg
14 0x00400950 sym . l i b c c s u i n i t
15 0x00400460 sym . d l r e l o c a t e s t a t i c p i e
16 0x00400640 sym . example counter
17 0x00400660 main
18 0x00400310 sym . foo
19 0 x004003e0 sym . i n i t
20 0x00400600 sym . e x a m p l e c o n s t r a i n r e t
21 0x00400410 sym . imp . p r i n t f

Figure 4.2.1: Sample output of rizin afl

make sense. The decompiler works by taking in the P-Code output from the earlier stages
and performs a series of transformation and analysis passes to decompile the program.

This annotated P-Code is then passed to a code generator to produce Ghidra’s pseudo-
C. This internal state is not immediately accessible and required adding algorithm 9 to
extract decompilation information from the internal decompilation data structures, with
some re-engineering required to maintain references to information normally lost in the
decompilation passes.

4.3 Lifting Stage

Algorithm 10 illustrates the procedures used in the lifting process. First, globals are recov-
ered from the intermediate files. Then each function has its calling convention recovered,

26

Algorithm 9: Ghidrall Decompilation Algorithm

Result: Internal Decompilation Data Structure XML
1 Emit basic blocks in flat structure;
2 Emit return type reference;
3 Emit function name and address;
4 Emit parameter stack range;
5 foreach parameter do
6 Emit name, typeref, space and offset;
7 end
8 Emit local variable stack range;
9 foreach local variable do

10 Emit name, typeref, space and offset;
11 end
12 foreach basic block do
13 Emit id and address;
14 foreach operation do
15 Emit operation name;
16 Emit output varnode;
17 foreach input do
18 Emit input varnode;
19 end

20 end
21 Emit in and out branches;

22 end

Algorithm 10: Ghidrall Lifting Algorithm

Result: Valid Lifted LLVM
1 GlobalRecovery;
2 foreach function do
3 CallingConventionRecovery;
4 LocalFunctionStack;
5 InstructionLifting;

6 end

has its local function stack built and has each of its instructions lifted.

27

4.3.1 Global Recovery

Global variables are not accurately maintained across functions as each function is indepen-
dently decompiled. As such a list of global variables is constructed using their decompiled
name as well as their address. This list is constructed by doing xpath queries across all
of the intermediate files. All the references are then connected to maintain a single global
variable reference list.

4.3.2 Calling Convention Recovery

Calling convention for a common function in a single program is not necessarily consistent
in Ghidra. This is because each function is analyzed independently and information is not
propagated across each state. For example, a common error is variability in the number of
arguments in declaration and usage of the same function (void A(param1, param2) vs

void A(param1)). Ghidrall corrects this by propagating the calling convention recovered
in the function declaration across all references to the function, with some added repair
steps if there is a mismatch in the number of arguments. We trust the function declaration
over references as the declaration is typically closer to being accurate.

4.3.3 Local Function Stack Recovery

Ghidra’s representation of local variables in functions is broken. In figure 4.4.1 the char-
acter array bad is broken apart into a series of 4-byte values which assume values will be
adjacent to each other on compilation; C standard makes no such guarantees. Additionally,
the values are annotated with what appear to be stack positions. The Ghidra decompiler
maintains the concept of a stack until the pseudo-C tokens are emitted. Since Ghidra’s
internal data structures are consumed by Ghidrall’s lifter and LLVM data structures sup-
port memory adjacency it is possible to perform decompilation better. The performance
of the three approaches for local variable recovery are contrasted in the evaluation section.

(a) Simplistic lifting strategy

Each local variable’s internal decompilation data is used to allocate the necessary amount
of memory as dictated by the variable P-Code type and size using LLVM’s alloca in
sequence. For example, the value u1 is of P-Code type undefined4 with size 4. It becomes
%u1 = alloca i32. This maintains the same issue in Ghidra, as each value is independent
of other values and complex data structures will not be lifted correctly.

28

1 %u1 = alloca i32
2 %v18 = alloca i64
3 %v10 = alloca i32
4 %v8 = alloca i32
5 %v4 = alloca i64
6 %r0 = alloca i32
7 %r8 = alloca i32
8 %r206 = alloca i8
9 %r10 = alloca i32

(a) Simplistic lifting strategy

1 %s t = type { i7999744 , i64 , i32 , i32 , i32 , i64}
2
3 %uvar1 = alloca i32
4 %s = alloca %s t
5 %p.1 = getelementptr %s t , %s t ∗ %s , i32 0 , i32 0
6 %v18 = getelementptr %s t ,% s t ∗ %s , i32 0 , i32 1
7 %v10 = getelementptr %s t ,% s t ∗ %s , i32 0 , i32 2
8 %p.2 = getelementptr %s t ,% s t ∗ %s , i32 0 , i32 3
9 %v8 = getelementptr %s t ,% s t ∗ %s , i32 0 , i32 4

10 %v4 = getelementptr %s t ,% s t ∗ %s , i32 0 , i32 5
11 %r0 = alloca i32
12 %r8 = alloca i32
13 %r206 = alloca i8
14 %r10 = alloca i32

(b) Single struct strategy

1 %s = alloca [999999 x i8]
2 %u1 = alloca i32
3 %1 = getelementptr [999999 x i8] , [9 9 9999 x i8]∗ %s , i32 0 , i32 999968
4 %v18 = bitcast i8 ∗ %1 to i64∗
5 %2 = getelementptr [999999 x i8] , [9 9 9999 x i8]∗ %s , i32 0 , i32 999976
6 %v10 = bitcast i8 ∗ %2 to i32∗
7 %3 = getelementptr [999999 x i8] , [9 9 9999 x i8]∗ %s , i32 0 , i32 999984
8 %v8 = bitcast i8 ∗ %3 to i32∗
9 %4 = getelementptr [999999 x i8] , [9 9 9999 x i8]∗ %s , i32 0 , i32 999988

10 %v4 = bitcast i8 ∗ %4 to i64∗
11 %r0 = alloca i32
12 %r8 = alloca i32
13 %r206 = alloca i8
14 %r10 = alloca i32

(c) Byte addressable stack strategy

Figure 4.3.1: Different Formats of Local Function Stack Recovery

(b) Single struct strategy

Using a single LLVM struct to represent the local variable stack requires mapping the type
of each variable in the stack as well as its address to values in a struct, while inserting

29

padding between gaps to maintain the correctness of relative indexing. For example, in
4.3.1 (b), %s t is declared and then alloca’d to %s. Values %p.1 and %p.2 are padding
values inserted to maintain positioning of variables %v18, %v10, %v8, %v4. The values are
accessible by creating a pointer to the position using the getelementptr function in LLVM
and indexing into the correct position in %s. The remaining variables %uvar1, %r0, %r8,
%r206, and %r10 are all recovered as independant variables as analysis passes did not find
any relative indexing.

(c) Byte addressable stack strategy

For the byte addressable strategy in 4.3.1 (c), the struct is replaced with a single arbitrarily
large array of bytes, represented in LLVM as %s = alloca [999999 x i8]. Pointers to
the correct index for each variable are created using the getelementptr instruction and
then bitcast to the correct size and stored into the named variable.

4.3.4 Instruction Lifting

No. P-Code LLVM IR via llvmlite

1 B = COPY A
%temp = load i8, i8* %A
store i8 %temp, i8* %B

2 val:1 = LOAD ram(addr) %val = load i8, i8* %addr
3 STORE ram(addr), val:4 store i32 %val, i32* %addr
4 BRANCH *[ram]addr br label %”3”
5 CBRANCH *[ram]addr, val br i1 %val, label %1, label %”2”
6 CALL *[ram]0x8048728b call void @sym.path start()
7 RETURN ret void
8 out = INT EQUAL A, 0:4 %out = icmp eq i32 %A, 0
9 out = INT ADD A, 3:4 %out = add i32 %A, 3
10 out:1 = BOOL XOR A, 1:1 %out = xor i1 %A, 1
11 out = PTRSUB A,3:4 %out = gep %A, %A*, i32 0, i32 3

Table 4.3.1: Mappings of High P-Code to LLVM IR

Once the previous stages are complete, instruction lifting proceeds similarly to Ghidra-to-
LLVM. P-Code operations are mapped to one or more LLVM operations with sanitization
performed on the operands to bridge the rules between the two languages. Table 4.3.1

30

illustrates examples of mapping P-Code instructions to LLVM IR. Special instructions
like PTRSUB, PTRADD, PIECE and SUBPIECE make usage of the special stack recovery as
each of these instructions require relative indexing to access fields (the former two) or
concatenation and selecting specific bits (the latter two).

4.4 Example

Figure 4.4.1 is a comparison of source code for a motivating buffer overflow example and
the output from the standard Ghidra decompiler in pseudo-C. The vulnerability in this
example comes from line 21 in foo of (a), where a string copy is performed without
bounds-checking on arrays of mismatched size. An attacker could exploit the resulting
buffer overflow to perform arbitrary code execution. Sub-figure (b) shows the standard
decompiler output from Ghidra. Figure 4.4.2 is the LLVM output from Ghidrall for the
main function.

Each of the steps in Ghidrall addresses an issue in the standard Ghidra decompilation.
Call graph recovery prunes the number of functions to lift. Function decompilation re-
covers more information from the decompilation than is present in the pseudo-C. Calling
convention recovery propagates the function signature found in the function declaration to
all references. Local function stack recovery eliminates the bizarre variable representation
found 4.4.1 (b). Globals recovery merges the local function scope with the global scope to
maintain consistency in variable types and names. And lastly the instruction lifting maps
High P-Code operations to LLVM IR for re-compilation. The following section validates
the output of Ghidrall.

31

1 #include <s t r i n g . h>
2 #include <s t d i o . h>
3
4 char ∗my strcpy (char ∗ des t ina t i on ,
5 const char ∗ source) {
6 i f (d e s t i n a t i on == NULL)
7 return NULL;
8 char ∗ptr = de s t i n a t i on ;
9 while (∗ source != ’ \0 ’) {

10 ∗ de s t i n a t i on = ∗ source ;
11 d e s t i n a t i on++;
12 source++;
13 }
14 ∗ de s t i n a t i on = ’ \0 ’ ;
15 return ptr ;
16 }
17
18
19 void foo (char ∗bar) {
20 volat i le char c [5] ;
21 my strcpy ((char ∗) c , bar) ;
22 }
23
24 int main () {
25 volat i le char bad [5 0] =
26 ”aaaaaaaaaaaaaaaaaaaaaaaaaaaa
27 aaaaaaaaaaaaaaaaaaaaaa” ;
28 foo ((char ∗)&bad) ;
29 return 0 ;
30 }

(a) Source code

1 undef ined8 main (void)
2 {
3 i n t 6 4 t var 40h ;
4 undef ined4 uStack64 ;
5 undef ined4 uStack60 ;
6 undef ined4 uStack56 ;
7 undef ined4 uStack52 ;
8 undef ined4 uStack48 ;
9 undef ined4 uStack44 ;

10 undef ined4 uStack40 ;
11 undef ined4 uStack36 ;
12 undef ined4 uStack32 ;
13 undef ined4 uStack28 ;
14 undef ined2 uStack24 ;
15 i n t 6 4 t var 4h ;
16
17 var 4h . 0 4 = 0 ;
18 uStack40 = s t r . aa . 3 2 4 ;
19 uStack36 = s t r . aa . 3 6 4 ;
20 uStack32 = s t r . aa . 4 0 4 ;
21 uStack28 = s t r . aa . 4 4 4 ;
22 uStack56 = s t r . aa . 1 6 4 ;
23 uStack52 = s t r . aa . 2 0 4 ;
24 uStack48 = s t r . aa . 2 4 4 ;
25 uStack44 = s t r . aa . 2 8 4 ;
26 var 40h . 0 4 = s t r . aa . 0 4 ;
27 var 40h . 4 4 = s t r . aa . 4 4 ;
28 uStack64 = s t r . aa . 8 4 ;
29 uStack60 = s t r . aa . 1 2 4 ;
30 uStack24 = 0x6161 ;
31 sym . foo ((i n t 6 4 t)&var 40h) ;
32 return 0 ;
33 }

(b) Standard Ghidra Decompiler Output for main

Figure 4.4.1: Comparison of source and Ghidra decompiled C

32

1 de f i n e i64 @”main” ()
2 {
3 ”0” :
4 %” .2 ” = a l l o c a %” l o c a l s t r u c t . main”
5 %”padding” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 0
6 %”var 40h ” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 1
7 %”uStack64” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 2
8 %”uStack60” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 3
9 %”uStack56” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 4

10 %”uStack52” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 5
11 %”uStack48” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 6
12 %”uStack44” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 7
13 %”uStack40” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 8
14 %”uStack36” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 9
15 %”uStack32” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 10
16 %”uStack28” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 11
17 %”uStack24” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 12
18 %”padding . 1 ” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 13
19 %”var 4h ” = gete l ementptr inbounds %” l o c a l s t r u c t . main” , %” l o c a l s t r u c t . main”∗ %” .2 ” , i 32 0 , i 32 14
20 %” r e g i s t e r 0 x 0 ” = a l l o c a i64
21 %” .3 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 0
22 %” .4 ” = b i t c a s t i 8 ∗ %” .3 ” to i32 ∗
23 %” .5 ” = load i32 , i 32 ∗ %” .4 ”
24 s t o r e i32 %” .5 ” , i 32 ∗ %”uStack40”
25 %” .7 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 4
26 %” .8 ” = b i t c a s t i 8 ∗ %” .7 ” to i32 ∗
27 %” .9 ” = load i32 , i 32 ∗ %” .8 ”
28 s t o r e i32 %” .9 ” , i 32 ∗ %”uStack36”
29 %” .11 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 8
30 %” .12 ” = b i t c a s t i 8 ∗ %” .11 ” to i32 ∗
31 %” .13 ” = load i32 , i 32 ∗ %” .12 ”
32 s t o r e i32 %” .13 ” , i 32 ∗ %”uStack32”
33 %” .15 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 12
34 %” .16 ” = b i t c a s t i 8 ∗ %” .15 ” to i32 ∗
35 %” .17 ” = load i32 , i 32 ∗ %” .16 ”
36 s t o r e i32 %” .17 ” , i 32 ∗ %”uStack28”
37 %” .19 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 0
38 %” .20 ” = b i t c a s t i 8 ∗ %” .19 ” to i32 ∗
39 %” .21 ” = load i32 , i 32 ∗ %” .20 ”
40 s t o r e i32 %” .21 ” , i 32 ∗ %”uStack56”
41 %” .23 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 4
42 %” .24 ” = b i t c a s t i 8 ∗ %” .23 ” to i32 ∗
43 %” .25 ” = load i32 , i 32 ∗ %” .24 ”
44 s t o r e i32 %” .25 ” , i 32 ∗ %”uStack52”
45 %” .27 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 8
46 %” .28 ” = b i t c a s t i 8 ∗ %” .27 ” to i32 ∗
47 %” .29 ” = load i32 , i 32 ∗ %” .28 ”
48 s t o r e i32 %” .29 ” , i 32 ∗ %”uStack48”
49 %” .31 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 12
50 %” .32 ” = b i t c a s t i 8 ∗ %” .31 ” to i32 ∗
51 %” .33 ” = load i32 , i 32 ∗ %” .32 ”
52 s t o r e i32 %” .33 ” , i 32 ∗ %”uStack44”
53 %” .35 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 0
54 %” .36 ” = b i t c a s t i 8 ∗ %” .35 ” to i32 ∗
55 %” .37 ” = load i32 , i 32 ∗ %” .36 ”
56 %” .38 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 4
57 %” .39 ” = b i t c a s t i 8 ∗ %” .38 ” to i32 ∗
58 %” .40 ” = load i32 , i 32 ∗ %” .39 ”
59 %” .41 ” = zext i32 %” .40 ” to i64
60 s t o r e i64 %” .41 ” , i 64 ∗ %”var 40h ”
61 %” .43 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 8
62 %” .44 ” = b i t c a s t i 8 ∗ %” .43 ” to i32 ∗
63 %” .45 ” = load i32 , i 32 ∗ %” .44 ”
64 s t o r e i32 %” .45 ” , i 32 ∗ %”uStack64”
65 %” .47 ” = gete l ementptr [17 x i 8] , [17 x i 8]∗ @”0x00400620” , i 32 0 , i 32 12
66 %” .48 ” = b i t c a s t i 8 ∗ %” .47 ” to i32 ∗
67 %” .49 ” = load i32 , i 32 ∗ %” .48 ”
68 s t o r e i32 %” .49 ” , i 32 ∗ %”uStack60”
69 s t o r e i16 24929 , i 16 ∗ %”uStack24”
70 %” .52 ” = p t r t o i n t i64 ∗ %”var 40h ” to i64
71 c a l l void @”sym . foo ” (i64 %” .52 ”)
72 s t o r e i64 0 , i 64 ∗ %” r e g i s t e r 0 x 0 ”
73 %” .55 ” = load i64 , i 64 ∗ %” r e g i s t e r 0 x 0 ”
74 r e t i64 %” .55 ”
75 }

Figure 4.4.2: Ghidrall LLVM output for main

33

Chapter 5

Evaluation

5.1 Simple Password Challenge

1 int main () {
2 int a = INT RAND;
3 int b = INT RAND;
4 int c = INT RAND;
5 int d = INT RAND;
6 int e = INT RAND;
7 int f = INT RAND;
8 int g = INT RAND;
9 i f (a<97 | |a>122) return 1 ;

10 i f (b<97 | |b>122) return 1 ;
11 i f (c<97 | | c>122) return 1 ;
12 i f (d<97 | |d>122) return 1 ;
13 i f (e<97 | | e>122) return 1 ;
14 i f (f <97 | | f >122) return 1 ;
15 i f (g<97 | |g>122) return 1 ;
16 i f ((char) (((((a ∗32)>>2)%26)+65) != ’C ’)) return 1 ;
17 i f ((char) (((((b∗23)>>2)%26)+65) != ’ I ’)) return 1 ;
18 i f ((char) (((((c ∗22)>>2)%26)+65) != ’Z ’)) return 1 ;
19 i f ((char) (((((d∗42)>>2)%26)+65) != ’U ’)) return 1 ;
20 i f ((char) (((((e ∗15)>>2)%26)+65) != ’L ’)) return 1 ;
21 i f ((char) (((((f ∗25)>>2)%26)+65) != ’Q’)) return 1 ;
22 i f ((char) (((((g ∗29)>>2)%26)+65) != ’E ’)) return 1 ;
23 path goa l () ;
24 return 0 ;
25 }

Figure 5.1.1: A Simple Password Challenge

Figure 5.1.1 is a challenge that was created for undergraduate students. These types of

34

challenges are typically designed by security practitioners and based on real-world en-
counters to test and engage other engineers. When compiled, this binary takes a single
command line argument as a password and compares it against a series of checks to verify
if the password is correct. In this example, the intended password is ”reverse”.

Ghidrall SeaHorn Description

INT RAND nd() Non-deterministic input
path start() - Program start
path goal() verifier.error() Program objective
path non goal() verifier.error() Program failure state

Figure 5.1.2: Ghidrall and SeaHorn Instrumentation Functions

Table 5.1.2 lists the functions that are used by Ghidrall and SeaHorn to solve problems. In
this example, the source code is already instrumented with Ghidrall and SeaHorn functions
to automate lifting and solving. Program inputs are replaced character-by-character with
the output of INT RAND, which maps to SeaHorn’s nd function. This treats the output
as non-deterministic so SeaHorn knows to perform its solving based on these variables.
Ghidrall maps the path goal function to verifier.error in LLVM IR. SeaHorn then
attempts to solve the problem by either proving the goal is unreachable or by providing a
counterexample. The lifted LLVM IR can be found in Appendix C.

Running this through SeaHorn, we find that another password is possible. SeaHorn’s pro-
vided counter example ”@0 = private constant [7 x i32] [i32 114, i32 119, i32

118, i32 101, i32 121, i32 115, i32 101]” looks like an array of ASCII values. This
translates to the string ”enveysw”. Plugging this back into the original binary, we find that
this password also works. Ghidrall and Seahorn are collectively able to solve this password
problem automatically, and provided us with an unexpected alternative solution.

35

5.2 Functional Verification

5.2.1 Test Generation

Figure 5.2.1: Test Generation

Figure 5.2.1 illustrates the evaluation procedure for this section. 97 different programs
were used to verify the functional accuracy of the lifters under test. Two major set of
results were extracted — the performance of each of Ghidrall’s function stacks against one
another, and the performance of the best Ghidrall mode against another lifter, McSema.
All lifted results were then passed through SeaHorn with the expected results to validate
their functional accuracy in reaching goals and nongoals.

Figure 5.2.2 is an example of a verification problem that was used to validate Ghidrall’s
lifting with SeaHorn. Each of these problems include a non-deterministic input (INT RAND)
as well as a goal (path goal() and a non-goal (path nongoal()). Two versions are then
compiled for each program for each of the goal states.

5.2.2 Comparing Stack Structures

Stack Format Passes Fails Lifting Fails Timeouts Success Rate (%)
no option 484 64 30 4 83.16
byte addressable 483 87 8 4 82.99
single struct 501 67 8 6 86.08

Table 5.2.1: Success Rate Overall for Structures

Table 5.2.1 shows the success rate for each of the local function stack options. There are two
main interesting findings. Firstly, any test that involves data structures fails in the lifting

36

1
2 #include ” t e s t . hpp”
3
4
5 int main () {
6 p a t h s t a r t () ;
7 int n = INT RAND;
8 volat i le int x = n ;
9 for (int i = 0 ; i < n ; i++) {

10 for (int j = i ; j < n ; j++) {
11 path goa l () ;
12 i f (i > x) {
13 path nongoal () ;
14 }
15 }
16 }
17 }

Figure 5.2.2: Example Functional Verification Problem

stage with the no option stack structure. 22 tests failed there, with the primary reason
being that later P-Code and LLVM IR instructions attempt to index or access those data
structures in ways that do not make sense. For instance, the data may be accessed under
the assumption that sequentially defined data is arranged in the same order in memory.
Those types of accesses are only valid in both the byte addressable and single struct

stack structures. The second interesting finding is that the single struct stack structure
has the best success rate, while byte addressable is actually the worst. The improvement
in lifting failures for the former translates to an improved overall success rate making it
the best option for future decompiling lifter designs.

Table 5.2.2 breaks down the results by test type. For each of the 97 test programs tests are
generated at three different compilation optimization modes and with goal and non-goal
settings as SeaHorn tests these separately.

37

Stack Format Optimization Goal Pass Fail Lifting Fail Timeout

no option

0
goal 80 10 7 0
nongoal 74 16 7 0

1
goal 79 12 5 1
nongoal 85 6 5 1

2
goal 81 12 3 1
nongoal 85 8 3 1

byte addressable

0
goal 84 12 1 0
nongoal 84 12 1 0

1
goal 73 21 2 1
nongoal 84 10 2 1

2
goal 74 21 1 1
nongoal 84 11 1 1

single struct

0
goal 84 11 1 1
nongoal 78 17 1 1

1
goal 82 12 2 1
nongoal 87 7 2 1

2
goal 83 12 1 1
nongoal 87 8 1 1

Table 5.2.2: Comparison Local Function Stacks

5.2.3 Comparing Lifters

Lifter Passes Fails Lifting Fails Timeouts Success (%) Avg. LOC
Ghidrall 501 67 8 6 86.08 61.1
McSema 414 168 0 0 71.13 3417.6

Table 5.2.3: Overall Success Rate of Lifters

Table 5.2.3 compares the best performing stack structure of Ghidrall (single struct) and
McSema with DysInst as its CFG generator. DysInst was used instead of McSema’s main
option of IdaPro due to license costs. These results show Ghidrall performing better than
McSema by a large margin. The reduction in file length is also significant as it illustrates
the difference between the motivations of the two programs. McSema is a disassembling
lifter that prioritizing re-compilation, where Ghidrall is a decompiling lifter that prioritizes
readability and usefulness from a higher-level in the reverse engineering process.

38

Chapter 6

Related Work

6.1 Lifters

McSema[13] is an executable LLVM lifter produced by Trail of Bits. It preserves programs
such that they may be re-compiled, so the end result is LLVM IR that is closer to machine
instructions than higher level decompilation[18]. McSema has a two step process to produce
LLVM IR. The first step is control flow recovery, which requires disassemblers like Ida Pro.
The second step is instruction translating, which maps machine instructions to LLVM IR
through the Remill library[19]. The version of McSema that Ghidrall is tested against uses
DynInst for the first stage[20]. McSema has a few interesting features that Ghidrall does
not. For instance, it handles C++ exceptions[21]. This can be a difficult challenge due
to features like runtime errors. It does this by emulating how exceptions are handled in
Linux systems. McSema associates exception handlers and cleanup methods with blocks
that raise exceptions and uses the LLVM invoke instruction to call them. Ghidrall is
currently unable to replicate this feature.

McToll[14][22] is a lifter released by Microsoft. It shares some features that Ghidrall
does, such as function prototype discovery and stack frame recovery. Like McSema, it too
includes features for C++ like vtables, name mangling and exception handling. McToll also
is structured to be re-compilable like McSema. One main limitation it has is a requirement
to annotate each lifted program with a list of functions to include/exclude as well as
pointing to library functions.

RetDec[15][23] is a complete decompiler and lifter from Avast. RetDec has similar features
as McSema and McToll in that it can manage C++ features and is also designed to be

39

re-targetable. It is also capable of recovering debugging information in binaries. RetDec
can also emit human-readable code in either a C-like or Python-like pseudocode.

6.2 Pharos

The Pharos Static Binary Analysis Framework[24][25], produced by Carnegie Mel-
lon’s Software Engineering Institute, is a series of reverse engineering analysis tools built
using the ROSE compiler infrastructure[26]. It performs static analysis, control flow anal-
ysis and dataflow analysis. The functionality test-set used by Ghidrall was produced by
the Pharos team. Pharos consists of the following tools:

• APIAnalyzer: A tool for finding API Calls within a binary like common operating
system calls.

• OOAnalyzer: A tool for recovering object-oriented code.

• CallAnalyzer: A tool for recovering static parameters of function calls.

• FN2Yara: A tool to generate YARA signatures from functions.

• FN2Hash: A tool for generating useful hashes from binaries.

• DumpMASM: A tool for dumping assembly from a binary.

Pharos can be used to find paths to interesting execution states for malicious binary reverse
engineering[27]. They use constraint-based analysis with the Z3-theorem prover to generate
constraints and to find paths of interest. More recent work has involved using Satisfiability
Modulo Theorem (SMT) to create a new tool called GhiHorn[28]. This strategy is similar
to how Ghidrall uses SeaHorn, in that it is able to determine whether or not a path is
reachable and if not, prove why it is unreachable. GhiHorn translates P-Code directly to
SMT-Lib format for horn clauses.

40

Chapter 7

Conclusion

This thesis presents two reverse engineering tools to enable automated reverse engineering
and vulnerability discovery: the disassembling lifter Ghidra-to-LLVM and the decompiling
lifter Ghidrall. Both types of lifters have their benefits, and illustrate that it is possible to
lift binaries to LLVM IR with further decompilation and preserve program functionality.
Additionally, features of decompiling lifters like function stack recovery are shown to be
critical to preserving behaviour.

In the future further work is necessary to discover better decompilation strategies and
how they can enable vulnerability researchers to discover vulnerabilities at lower cost in
time and resources. Additionally, greater support in Ghidrall is needed to make it a more
mature tool for use. For example, features like heap representations and variable function
arguments are currently missing.

41

References

[1] T. Cipresso and M. Stamp, Software Reverse Engineering, pp. 659–696. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010.

[2] D. Kushner, “The real story of stuxnet,” IEEE Spectrum, vol. 50, no. 3, pp. 48–53,
2013.

[3] C. Eagle, The IDA pro book. no starch press, 2011.

[4] D. Brumley, “The cyber grand challenge and the future of cyber-autonomy,” USENIX
Login, vol. 43, no. 2, pp. 6–9, 2018.

[5] T. Avgerinos, D. Brumley, J. Davis, R. Goulden, T. Nighswander, A. Rebert, and
N. Williamson, “The Mayhem Cyber Reasoning System,” IEEE Security Privacy,
vol. 16, no. 2, pp. 52–60, 2018.

[6] A. Nguyen-Tuong, D. Melski, J. W. Davidson, M. Co, W. Hawkins, J. D. Hiser,
D. Morris, D. Nguyen, and E. Rizzi, “Xandra: An Autonomous Cyber Battle System
for the Cyber Grand Challenge,” IEEE Security Privacy, vol. 16, no. 2, pp. 42–51,
2018.

[7] Y. Shoshitaishvili, A. Bianchi, K. Borgolte, A. Cama, J. Corbetta, F. Disperati,
A. Dutcher, J. Grosen, P. Grosen, A. Machiry, et al., “Mechanical phish: Resilient
autonomous hacking,” IEEE Security & Privacy, vol. 16, no. 2, pp. 12–22, 2018.

[8] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of) The Art of War: Of-
fensive Techniques in Binary Analysis,” in IEEE Symposium on Security and Privacy,
2016.

[9] M. Zalewski, “Google/afl: American fuzzy lop - a security-oriented fuzzer,” 2020.

42

[10] LLVM Project, “Llvm Language Reference Manual,” 2022.

[11] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI’08,
(USA), p. 209–224, USENIX Association, 2008.

[12] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The SeaHorn Verification
Framework,” in Computer Aided Verification (D. Kroening and C. S. Păsăreanu, eds.),
(Cham), pp. 343–361, Springer International Publishing, 2015.

[13] Trail of Bits, “lifting-bits/mcsema: Framework for lifting x86, amd64, aarch64,
sparc32, and sparc64 program binaries to LLVM bitcode,” 2015.

[14] Microsoft, “microsoft/llvm-mctoll: llvm-mctoll,” 2019.

[15] Avast, “avast/retdec: RetDec is a retargetable machine-code decompiler based on
LLVM,” 2018.

[16] National Security Agency, “Ghidra,” 2019.

[17] National Security Agency, “P-code Reference Manual,” Sep 2017.

[18] Trail of Bits, “Heavy lifting with McSema 2.0,” Jan 2018.

[19] Trail of Bits, “lifting-bits/remill: Library for lifting of x86, amd64, and aarch64 ma-
chine code to LLVM bitcode,” 2015.

[20] L. KORENČIK, “Decompiling binaries into llvm ir using mcsema and dyninst [on-
line],” master’s thesis, Masaryk University, Faculty of Informatics, Brno, 2019 [cit.
2021-12-02].

[21] Trail of Bits, “How McSema Handles C Exceptions,” Jan 2019.

[22] S. B. Yadavalli and A. Smith, “Raising Binaries to LLVM IR with MCTOLL (WIP
Paper),” in Proceedings of the 20th ACM SIGPLAN/SIGBED International Confer-
ence on Languages, Compilers, and Tools for Embedded Systems, LCTES 2019, (New
York, NY, USA), p. 213–218, Association for Computing Machinery, 2019.

[23] J. Křoustek and P. Matula, “RetDec: An Open-Source Machine-Code Decompiler.”
[talk], July 2018. Presented at Pass the SALT 2018, Lille, FR.

43

[24] CMU-SEI, “cmu-sei/pharos: Automated static analysis tools for binary programs,”
2017.

[25] J. Gennari, “Pharos Binary Static Analysis Tools Released on GitHub,” Aug 2017.

[26] D. Quinlan and C. Liao, “The ROSE source-to-source compiler infrastructure,” in Ce-
tus users and compiler infrastructure workshop, in conjunction with PACT, vol. 2011,
p. 1, Citeseer, 2011.

[27] J. Gennari, “Path Finding in Malicious Binaries: First in a Series,” Dec 2018.

[28] J. Gennari, “Ghihorn: Path Analysis in Ghidra Using SMT Solvers,” Oct 2021.

44

APPENDICES

45

Appendix A

Ghidra-to-LLVM’s bof.c

1 #include <string.h >

2
3 // Compiled with: clang -fno -stack -

protector buffer_overflow.c -o

4 // buffer_overflow.bin

5
6 #include <stdio.h >

7
8 // Function to implement strcpy ()

function

9 char *my_strcpy(char *destination ,

const char *source) {

10 // return if no memory is allocated

to the destination

11 if (destination == NULL)

12 return NULL;

13
14 // take a pointer pointing to the

beginning of destination string

15 char *ptr = destination;

16
17 // copy the C-string pointed by

source into the array

18 // pointed by destination

19 while (* source != ’\0’) {

20 *destination = *source;

21 destination ++;

22 source ++;

23 }

24
25 // include the terminating null

character

26 *destination = ’\0’;

27
28 // destination is returned by

standard strcpy ()

29 return ptr;

30 }

31
32
33 void foo(char *bar) {

34 volatile char c[5];

35 my_strcpy ((char*)c, bar); // no

bounds checking

36 }

37
38 int main() {

39 volatile char bad [50] =

40 "aaaaaaaaaaaaaaaaaaaaaaaaa

41 aaaaaaaaaaaaaaaaaaaaaaaaa";

42 foo((char *)&bad);

43 return 0;

44 }

46

Appendix B

Ghidra-to-LLVM’s vuln.ll

1 ; ModuleID = lifted

2 target triple = x86_64 -pc-linux -gnu

3 target datalayout = e-m:e-p:32:32 - f64

:32:64 - f80:32-n8:16:32 - S128

4
5 @CF = internal global i1 0

6 @RSP = internal global i8* null

7 @OF = internal global i1 0

8 @SF = internal global i1 0

9 @ZF = internal global i1 0

10 @PF = internal global i1 0

11 @RAX = internal global i64 0

12 @RIP = internal global i8* null

13 @EBP = internal global i8* null

14 @RBP = internal global i8* null

15 @R9 = internal global i64 0

16 @RDX = internal global i64 0

17 @RSI = internal global i64 0

18 @R8 = internal global i64 0

19 @RCX = internal global i64 0

20 @RDI = internal global i64 0

21 @R15 = internal global i64 0

22 @R14 = internal global i64 0

23 @R13 = internal global i64 0

24 @R12 = internal global i64 0

25 @RBX = internal global i64 0

26 @R13D = internal global i32 0

27 @EDI = internal global i32 0

28 @EBX = internal global i32 0

29 @A_00300fe8 :8 = internal global i64 0

30 @A_00100502 :8 = internal global i64 0

31 @A_00300fc0 :8 = internal global i64 0

32 @A_00300fc8 :8 = internal global i64 0

33 @A_00300fd0 :8 = internal global i64 0

34 @A_00100510 :8 = internal global i64 0

35 @A_00300ff8 :8 = internal global i64 0

36 @A_00300fe0 :8 = internal global i64 0

37 @A_0010056a :8 = internal global i64 0

38 @A_001005a0 :8 = internal global i64 0

39 @A_00300fd8 :8 = internal global i64 0

40 @A_001005f0 :8 = internal global i64 0

41 @A_00300ff0 :8 = internal global i64 0

42 @A_00301010 :1 = internal global i8 0

43 @A_00100638 :8 = internal global i64 0

44 @A_00100623 :8 = internal global i64 0

45 @A_00301008 :8 = internal global i64 0

46 @A_00100530 :8 = internal global i64 0

47 @A_00100570 :8 = internal global i64 0

48 @A_001005b0 :8 = internal global i64 0

49 @A_00100520 :8 = internal global i64 0

50 @A_0010064a :8 = internal global i64 0

51 @A_001004f0 :8 = internal global i64 0

52 @A_00100716 :8 = internal global i64 0

53 @A_00100700 :8 = internal global i64 0

54 declare void @strcpy ()

55
56 define void @main()

57 {

58 0010066c:

59 %.20 = ptrtoint i8** @RBP to i64

60 %.21 = getelementptr i8*, i8** @RSP ,

i64 0, i64 -8

61 store i8* %.21 , i8** @RSP

62 %.23 = getelementptr i8*, i8** @RSP ,

i64 0, i64 0

63 %.24 = bitcast i8* %.23 to i64*

64 store i64 %.20 , i64* %.24

65 br label %0010066d

66 0010066d:

67 %.26 = ptrtoint i8** @RSP to i64

47

68 %.27 = getelementptr i8*, i8** @RBP ,

i64 0, i64 0

69 %.28 = bitcast i8* %.27 to i64*

70 store i64 %.26 , i64* %.28

71 br label %00100670

72 00100670:

73 %.30 = ptrtoint i8** @RSP to i64

74 %.31 = icmp ult i64 %.30 , 64

75 store i1 %.31 , i1* @CF

76 %.33 = ptrtoint i8** @RSP to i64

77 %.34 = call {i64 , i1}

@llvm.sadd.with.overflow.i64(i64 %

.33 , i64 64)

78 %.35 = extractvalue {i64 , i1} %.34 , 1

79 store i1 %.35 , i1* @OF

80 %.37 = getelementptr i8*, i8** @RSP ,

i64 0, i64 -64

81 store i8* %.37 , i8** @RSP

82 %.39 = ptrtoint i8** @RSP to i64

83 %.40 = icmp slt i64 %.39 , 0

84 store i1 %.40 , i1* @SF

85 %.42 = ptrtoint i8** @RSP to i64

86 %.43 = icmp eq i64 %.42 , 0

87 store i1 %.43 , i1* @ZF

88 %.45 = ptrtoint i8** @RSP to i64

89 %.46 = call i64 @llvm.ctpop.i64(i64 %

.45)

90 %.47 = zext i8 1 to i64

91 %.48 = and i64 %.46 , %.47

92 %.49 = trunc i64 %.48 to i1

93 store i1 %.49 , i1* @PF

94 br label %00100674

95 00100674:

96 store i64 7016996765293437281 , i64*

@RAX

97 br label %0010067e

98 0010067e:

99 store i64 7016996765293437281 , i64*

@RDX

100 br label %00100688

101 00100688:

102 %.53 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -64

103 %.54 = load i64 , i64* @RAX

104 %.55 = bitcast i8* %.53 to i64*

105 store i64 %.54 , i64* %.55

106 br label %0010068c

107 0010068c:

108 %.57 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -56

109 %.58 = load i64 , i64* @RDX

110 %.59 = bitcast i8* %.57 to i64*

111 store i64 %.58 , i64* %.59

112 br label %00100690

113 00100690:

114 %.61 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -48

115 %.62 = load i64 , i64* @RAX

116 %.63 = bitcast i8* %.61 to i64*

117 store i64 %.62 , i64* %.63

118 br label %00100694

119 00100694:

120 %.65 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -40

121 %.66 = load i64 , i64* @RDX

122 %.67 = bitcast i8* %.65 to i64*

123 store i64 %.66 , i64* %.67

124 br label %00100698

125 00100698:

126 %.69 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -32

127 %.70 = load i64 , i64* @RAX

128 %.71 = bitcast i8* %.69 to i64*

129 store i64 %.70 , i64* %.71

130 br label %0010069c

131 0010069c:

132 %.73 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -24

133 %.74 = load i64 , i64* @RDX

134 %.75 = bitcast i8* %.73 to i64*

135 store i64 %.74 , i64* %.75

136 br label %001006 a0

137 001006 a0:

138 %.77 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -16

139 %.78 = bitcast i8* %.77 to i16*

140 store i16 24929, i16* %.78

141 br label %001006 a6

142 001006 a6:

143 %.80 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -64

144 %.81 = load i8, i8* %.80

145 %.82 = bitcast i64* @RAX to i8*

146 store i8 %.81 , i8* %.82

147 br label %001006 aa

148 001006 aa:

149 %.84 = ptrtoint i64* @RAX to i64

150 store i64 %.84 , i64* @RDI

151 br label %001006 ad

152 001006 ad:

153 %.86 = getelementptr i8*, i8** @RSP ,

i64 0, i64 -8

154 store i8* %.86 , i8** @RSP

155 %.88 = getelementptr i8*, i8** @RSP ,

i64 0, i64 0

156 %.89 = bitcast i8* %.88 to i64*

157 store i64 1050290 , i64* %.89

158 call void @foo()

159 br label %001006 b2

160 001006 b2:

161 store i64 0, i64* @RAX

162 br label %001006 b7

163 001006 b7:

164 %.93 = ptrtoint i8** @RBP to i64

48

165 %.94 = getelementptr i8*, i8** @RSP ,

i64 0, i64 0

166 %.95 = bitcast i8* %.94 to i64*

167 store i64 %.93 , i64* %.95

168 %.97 = load i8*, i8** @RSP

169 store i8* %.97 , i8** @RBP

170 %.99 = getelementptr i8*, i8** @RSP ,

i64 0, i64 8

171 store i8* %.99 , i8** @RSP

172 br label %001006 b8

173 001006 b8:

174 %.101 = load i8*, i8** @RSP

175 store i8* %.101 , i8** @RIP

176 %.103 = getelementptr i8*, i8** @RSP ,

i64 0, i64 8

177 store i8* %.103 , i8** @RSP

178 ret void

179 }

180
181 define void @foo()

182 {

183 0010064a:

184 %.14 = ptrtoint i8** @RBP to i64

185 %.15 = getelementptr i8*, i8** @RSP ,

i64 0, i64 -8

186 store i8* %.15 , i8** @RSP

187 %.17 = getelementptr i8*, i8** @RSP ,

i64 0, i64 0

188 %.18 = bitcast i8* %.17 to i64*

189 store i64 %.14 , i64* %.18

190 br label %0010064b

191 0010064b:

192 %.20 = ptrtoint i8** @RSP to i64

193 %.21 = getelementptr i8*, i8** @RBP ,

i64 0, i64 0

194 %.22 = bitcast i8* %.21 to i64*

195 store i64 %.20 , i64* %.22

196 br label %0010064e

197 0010064e:

198 %.24 = ptrtoint i8** @RSP to i64

199 %.25 = icmp ult i64 %.24 , 32

200 store i1 %.25 , i1* @CF

201 %.27 = ptrtoint i8** @RSP to i64

202 %.28 = call {i64 , i1}

@llvm.sadd.with.overflow.i64(i64 %

.27 , i64 32)

203 %.29 = extractvalue {i64 , i1} %.28 , 1

204 store i1 %.29 , i1* @OF

205 %.31 = getelementptr i8*, i8** @RSP ,

i64 0, i64 -32

206 store i8* %.31 , i8** @RSP

207 %.33 = ptrtoint i8** @RSP to i64

208 %.34 = icmp slt i64 %.33 , 0

209 store i1 %.34 , i1* @SF

210 %.36 = ptrtoint i8** @RSP to i64

211 %.37 = icmp eq i64 %.36 , 0

212 store i1 %.37 , i1* @ZF

213 %.39 = ptrtoint i8** @RSP to i64

214 %.40 = call i64 @llvm.ctpop.i64(i64 %

.39)

215 %.41 = zext i8 1 to i64

216 %.42 = and i64 %.40 , %.41

217 %.43 = trunc i64 %.42 to i1

218 store i1 %.43 , i1* @PF

219 br label %00100652

220 00100652:

221 %.45 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -24

222 %.46 = load i64 , i64* @RDI

223 %.47 = bitcast i8* %.45 to i64*

224 store i64 %.46 , i64* %.47

225 br label %00100656

226 00100656:

227 %.49 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -24

228 %.50 = load i8, i8* %.49

229 %.51 = bitcast i64* @RDX to i8*

230 store i8 %.50 , i8* %.51

231 br label %0010065a

232 0010065a:

233 %.53 = getelementptr i8*, i8** @RBP ,

i64 0, i64 -5

234 %.54 = load i8, i8* %.53

235 %.55 = bitcast i64* @RAX to i8*

236 store i8 %.54 , i8* %.55

237 br label %0010065e

238 0010065e:

239 %.57 = load i64 , i64* @RDX

240 store i64 %.57 , i64* @RSI

241 br label %00100661

242 00100661:

243 %.59 = load i64 , i64* @RAX

244 store i64 %.59 , i64* @RDI

245 br label %00100664

246 00100664:

247 %.61 = getelementptr i8*, i8** @RSP ,

i64 0, i64 -8

248 store i8* %.61 , i8** @RSP

249 %.63 = getelementptr i8*, i8** @RSP ,

i64 0, i64 0

250 %.64 = bitcast i8* %.63 to i64*

251 store i64 1050217 , i64* %.64

252 call void @strcpy ()

253 br label %00100669

254 00100669:

255 br label %0010066a

256 0010066a:

257 %.67 = ptrtoint i8** @RBP to i64

258 %.68 = getelementptr i8*, i8** @RSP ,

i64 0, i64 0

259 %.69 = bitcast i8* %.68 to i64*

260 store i64 %.67 , i64* %.69

261 %.71 = load i8*, i8** @RSP

262 store i8* %.71 , i8** @RBP

49

263 %.73 = getelementptr i8*, i8** @RSP ,

i64 0, i64 8

264 store i8* %.73 , i8** @RSP

265 br label %0010066b

266 0010066b:

267 %.75 = load i8*, i8** @RSP

268 store i8* %.75 , i8** @RIP

269 %.77 = getelementptr i8*, i8** @RSP ,

i64 0, i64 8

270 store i8* %.77 , i8** @RSP

271 ret void

272 }

273
274 declare {i64 , i1}

@llvm.sadd.with.overflow.i64(i64 %

.1, i64 %.2)

275
276 declare i64 @llvm.ctpop.i64(i64 %.1)

50

Appendix C

Output from Password Challenge

1 ; ModuleID = "/ tmp/examples/

password.bin "

2 target triple = "i386 -pc-linux -gnu"

3 target datalayout = "e-m:e-i64:64-f80

:128-n8:16:32:64 - S128"

4
5 %"local_struct.main" = type {i7999904 ,

i64}

6 declare i32 @"nd"()

7
8 declare void @"verifier.error"()

9
10 define void @"sym.path_goal"()

11 {

12 entry:

13 call void @"verifier.error"()

14 ret void

15 }

16
17 @"reloc.__libc_start_main" = global i32

0

18 @"segment.GNU_STACK" = global i32 0

19 @"sym..bss" = global i32 0

20 @"obj.global_time" = global i32 0

21 @"reloc.time" = global i32 0

22 @"segment.LOAD1" = global i32 0

23 @"obj.__ctr" = global i32 0

24 @"reloc.__gmon_start" = global i32 0

25 define i32 @"main"()

26 {

27 "0":

28 %"iVar1" = alloca i32

29 %"iVar2" = alloca i32

30 %"iVar3" = alloca i32

31 %"iVar4" = alloca i32

32 %"iVar5" = alloca i32

33 %"iVar6" = alloca i32

34 %"iVar7" = alloca i32

35 %".2" = alloca %"local_struct.main"

36 %"padding" = getelementptr inbounds %

"local_struct.main", %"

local_struct.main"* %".2", i32 0,

i32 0

37 %"var_4h" = getelementptr inbounds %"

local_struct.main", %"

local_struct.main"* %".2", i32 0,

i32 1

38 %"register0x8" = alloca i32

39 %"register0x206" = alloca i8

40 %"register0x0" = alloca i32

41 %".3" = call i32 @"nd"()

42 store i32 %".3", i32* %"iVar1"

43 %".5" = call i32 @"nd"()

44 store i32 %".5", i32* %"iVar2"

45 %".7" = call i32 @"nd"()

46 store i32 %".7", i32* %"iVar3"

47 %".9" = call i32 @"nd"()

48 store i32 %".9", i32* %"iVar4"

49 %".11" = call i32 @"nd"()

50 store i32 %".11", i32* %"iVar5"

51 %".13" = call i32 @"nd"()

52 store i32 %".13", i32* %"iVar6"

53 %".15" = call i32 @"nd"()

54 store i32 %".15", i32* %"iVar7"

55 %".17" = load i32 , i32* %"iVar1"

56 %".18" = icmp slt i32 %".17", 97

57 br i1 %".18", label %"23", label %"1"

58 "1":

59 %".20" = load i32 , i32* %"iVar1"

60 %".21" = icmp slt i32 122, %".20"

51

61 br i1 %".21", label %"23", label %"2"

62 "2":

63 %".23" = load i32 , i32* %"iVar2"

64 %".24" = icmp slt i32 %".23", 97

65 br i1 %".24", label %"22", label %"3"

66 "3":

67 %".26" = load i32 , i32* %"iVar2"

68 %".27" = icmp slt i32 122, %".26"

69 br i1 %".27", label %"22", label %"4"

70 "4":

71 %".29" = load i32 , i32* %"iVar3"

72 %".30" = icmp slt i32 %".29", 97

73 br i1 %".30", label %"21", label %"5"

74 "5":

75 %".32" = load i32 , i32* %"iVar3"

76 %".33" = icmp slt i32 122, %".32"

77 br i1 %".33", label %"21", label %"6"

78 "6":

79 %".35" = load i32 , i32* %"iVar4"

80 %".36" = icmp slt i32 %".35", 97

81 br i1 %".36", label %"20", label %"7"

82 "7":

83 %".38" = load i32 , i32* %"iVar4"

84 %".39" = icmp slt i32 122, %".38"

85 br i1 %".39", label %"20", label %"8"

86 "8":

87 %".41" = load i32 , i32* %"iVar5"

88 %".42" = icmp slt i32 %".41", 97

89 br i1 %".42", label %"1f", label %"9"

90 "9":

91 %".44" = load i32 , i32* %"iVar5"

92 %".45" = icmp slt i32 122, %".44"

93 br i1 %".45", label %"1f", label %"a"

94 a:

95 %".47" = load i32 , i32* %"iVar6"

96 %".48" = icmp slt i32 %".47", 97

97 br i1 %".48", label %"1e", label %"b"

98 b:

99 %".50" = load i32 , i32* %"iVar6"

100 %".51" = icmp slt i32 122, %".50"

101 br i1 %".51", label %"1e", label %"c"

102 c:

103 %".53" = load i32 , i32* %"iVar7"

104 %".54" = icmp slt i32 %".53", 97

105 br i1 %".54", label %"1d", label %"d"

106 d:

107 %".56" = load i32 , i32* %"iVar7"

108 %".57" = icmp slt i32 122, %".56"

109 br i1 %".57", label %"1d", label %"e"

110 e:

111 %".59" = load i32 , i32* %"iVar1"

112 %".60" = shl i32 %".59", 5

113 store i32 %".60", i32* %"register0x8"

114 %".62" = load i32 , i32* %"register0x8

"

115 %".63" = ashr i32 %".62", 2

116 store i32 %".63", i32* %"register0x8"

117 %".65" = load i32 , i32* %"register0x8

"

118 %".66" = srem i32 %".65", 26

119 %".67" = icmp eq i32 %".66", 2

120 %".68" = zext i1 %".67" to i8

121 store i8 %".68", i8* %"register0x206"

122 %".70" = load i8, i8* %"register0x206

"

123 %".71" = trunc i8 %".70" to i1

124 br i1 %".71", label %"f", label %"1c"

125 f:

126 %".73" = load i32 , i32* %"iVar2"

127 %".74" = mul i32 %".73", 23

128 store i32 %".74", i32* %"register0x8"

129 %".76" = load i32 , i32* %"register0x8

"

130 %".77" = ashr i32 %".76", 2

131 store i32 %".77", i32* %"register0x8"

132 %".79" = load i32 , i32* %"register0x8

"

133 %".80" = srem i32 %".79", 26

134 %".81" = icmp eq i32 %".80", 8

135 %".82" = zext i1 %".81" to i8

136 store i8 %".82", i8* %"register0x206"

137 %".84" = load i8, i8* %"register0x206

"

138 %".85" = trunc i8 %".84" to i1

139 br i1 %".85", label %"10", label %"1b

"

140 "10":

141 %".87" = load i32 , i32* %"iVar3"

142 %".88" = mul i32 %".87", 22

143 store i32 %".88", i32* %"register0x8"

144 %".90" = load i32 , i32* %"register0x8

"

145 %".91" = ashr i32 %".90", 2

146 store i32 %".91", i32* %"register0x8"

147 %".93" = load i32 , i32* %"register0x8

"

148 %".94" = srem i32 %".93", 26

149 %".95" = icmp eq i32 %".94", 25

150 %".96" = zext i1 %".95" to i8

151 store i8 %".96", i8* %"register0x206"

152 %".98" = load i8, i8* %"register0x206

"

153 %".99" = trunc i8 %".98" to i1

154 br i1 %".99", label %"11", label %"1a

"

155 "11":

156 %".101" = load i32 , i32* %"iVar4"

157 %".102" = mul i32 %".101", 42

158 store i32 %".102", i32* %"register0x8

"

159 %".104" = load i32 , i32* %"

register0x8"

160 %".105" = ashr i32 %".104", 2

161 store i32 %".105", i32* %"register0x8

52

"

162 %".107" = load i32 , i32* %"

register0x8"

163 %".108" = srem i32 %".107", 26

164 %".109" = icmp eq i32 %".108", 20

165 %".110" = zext i1 %".109" to i8

166 store i8 %".110", i8* %"register0x206

"

167 %".112" = load i8, i8* %"

register0x206"

168 %".113" = trunc i8 %".112" to i1

169 br i1 %".113", label %"12", label %"

19"

170 "12":

171 %".115" = load i32 , i32* %"iVar5"

172 %".116" = mul i32 %".115", 15

173 store i32 %".116", i32* %"register0x8

"

174 %".118" = load i32 , i32* %"

register0x8"

175 %".119" = ashr i32 %".118", 2

176 store i32 %".119", i32* %"register0x8

"

177 %".121" = load i32 , i32* %"

register0x8"

178 %".122" = srem i32 %".121", 26

179 %".123" = icmp eq i32 %".122", 11

180 %".124" = zext i1 %".123" to i8

181 store i8 %".124", i8* %"register0x206

"

182 %".126" = load i8 , i8* %"

register0x206"

183 %".127" = trunc i8 %".126" to i1

184 br i1 %".127", label %"13", label %"

18"

185 "13":

186 %".129" = load i32 , i32* %"iVar6"

187 %".130" = mul i32 %".129", 25

188 store i32 %".130", i32* %"register0x8

"

189 %".132" = load i32 , i32* %"

register0x8"

190 %".133" = ashr i32 %".132", 2

191 store i32 %".133", i32* %"register0x8

"

192 %".135" = load i32 , i32* %"

register0x8"

193 %".136" = srem i32 %".135", 26

194 %".137" = icmp eq i32 %".136", 16

195 %".138" = zext i1 %".137" to i8

196 store i8 %".138", i8* %"register0x206

"

197 %".140" = load i8 , i8* %"

register0x206"

198 %".141" = trunc i8 %".140" to i1

199 br i1 %".141", label %"14", label %"

17"

200 "14":

201 %".143" = load i32 , i32* %"iVar7"

202 %".144" = mul i32 %".143", 29

203 store i32 %".144", i32* %"register0x8

"

204 %".146" = load i32 , i32* %"

register0x8"

205 %".147" = ashr i32 %".146", 2

206 store i32 %".147", i32* %"register0x8

"

207 %".149" = load i32 , i32* %"

register0x8"

208 %".150" = srem i32 %".149", 26

209 %".151" = icmp eq i32 %".150", 4

210 %".152" = zext i1 %".151" to i8

211 store i8 %".152", i8* %"register0x206

"

212 %".154" = load i8 , i8* %"

register0x206"

213 %".155" = trunc i8 %".154" to i1

214 br i1 %".155", label %"15", label %"

16"

215 "15":

216 call void @"sym.path_goal"()

217 br label %"24"

218 "16":

219 br label %"24"

220 "17":

221 br label %"24"

222 "18":

223 br label %"24"

224 "19":

225 br label %"24"

226 "1a":

227 br label %"24"

228 "1b":

229 br label %"24"

230 "1c":

231 br label %"24"

232 "1d":

233 br label %"24"

234 "1e":

235 br label %"24"

236 "1f":

237 br label %"24"

238 "20":

239 br label %"24"

240 "21":

241 br label %"24"

242 "22":

243 br label %"24"

244 "23":

245 br label %"24"

246 "24":

247 %".173" = load i64 , i64* %"var_4h"

248 %".174" = trunc i64 %".173" to i32

249 store i32 %".174", i32* %"register0x0

53

"

250 %".176" = load i32 , i32* %"

register0x0"

251 ret i32 %".176"

252 }

54

	List of Tables
	List of Figures
	Introduction
	Background
	LLVM
	Ghidra
	Low P-Code
	High P-Code
	Internal Decompilation Data Structures

	Translating P-Code to LLVM IR

	Ghidra-to-LLVM
	Overview
	Disassembly
	Disassemble Function Signature
	Disassemble Instruction
	Emit Register and Memory References

	Lifting Stage
	Lift Registers and Memory References
	Build Function and CFG
	Populate Function and CFG

	Example of Preservation of Buffer Overflow

	Ghidrall
	Overview
	Decompilation
	Call Graph Recovery
	Function Decompilation

	Lifting Stage
	Global Recovery
	Calling Convention Recovery
	Local Function Stack Recovery
	Instruction Lifting

	Example

	Evaluation
	Simple Password Challenge
	Functional Verification
	Test Generation
	Comparing Stack Structures
	Comparing Lifters

	Related Work
	Lifters
	Pharos

	Conclusion
	References
	APPENDICES
	Ghidra-to-LLVM's bof.c
	Ghidra-to-LLVM's vuln.ll
	Output from Password Challenge

