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Abstract

Visualizing a model checker’s run on a model can be useful when trying to gain a deeper
understanding of the verification of the particular model. However, it can be difficult to
formalize the problem that visualization solves as it varies from person to person. Having
a visualized form of a model checker’s run allows a user to pinpoint sections of the run
without having to look through the entire log multiple times or having to know what to look
for. This thesis presents the Hubble Spacer Telescope (HST), a visualizer for Spacer, an
SMT horn clause based solver. HST combines multiple exploration graph views along with
customizable lemma transformations. HST offers a variety of ways to transform lemmas
so that a user can pick and choose how they want lemmas to be presented. HST’s lemma
transformations allow a user to change variable names, rearrange terms in a literal, and
rearrange the placement of literals within the lemma through programming by example.
HST allows users to not only visually depict a Spacer exploration log but it allows users
to transform lemmas produced, in a way that the user hopes, will make understanding a
Spacer model checking run, easier.

Given a Spacer exploration log, HST creates a raw exploration graph where clicking
on a node produces the state of the model as well as the lemmas learned from said state.
In addition, there is a second graph view which summarizes the exploration into its proof
obligations. HST uses programming by example to simplify lemma transformations so that
users only have to modify a few lemmas to transform all lemmas in an exploration log.
Users can also choose between multiple transformations to better suit their needs.

This thesis presents an evaluation of HST through a case study. The case study is used
to demonstrate the extent of the grammar created for lemma transformations. Users have
the opportunity to transform disjunctions of literals produced by Spacer into a conditional
statement, customized by the contents of the predicate. Since lemma transformations are
completely customizable, HST can be viewed as per each individual user’s preferences.

iii



Acknowledgements

I would like to thank my supervisors, Professor Richard Trefler and Professor Arie
Gurfinkel for providing their time, knowledge, and support throughout the creation of this
thesis.

I would like to thank Professor Grant Weddell and Professor Jian Zhao for reading my
thesis, attending my presentation, and providing thought-provoking questions and feed-
back.

I would like to the PROSE team at Microsoft for answering my queries about PROSE
which ultimately led to the completion of the PROSE section of this thesis.

Finally, I would like to thank my peers, many of whom have helped by providing
feedback on the visualizer, especially Nham Le, who has been and continues to be valuable
collaborator on the visualizer.

iv



Dedication

This is dedicated to all those who have ever wanted something dedicated to them.

v



Table of Contents

List of Figures viii

1 Introduction 1

2 Background 3

2.1 Model Checking With Constrained Horn Clauses . . . . . . . . . . . . . . . 3

2.2 Programming By Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Programming By Example with Microsoft Prose . . . . . . . . . . . 6

3 Hubble Spacer Telescope 10

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Inputting a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Overview of Visualization Page . . . . . . . . . . . . . . . . . . . . 20

3.2.3 HST Graph Views . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.4 User Edits to Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.5 Star Modal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.6 Variable Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.7 Prefix Notation to Infix Notation . . . . . . . . . . . . . . . . . . . 22

3.2.8 Diff Between Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.9 Ease of Use Features . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Choosing Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



4 HST Programming By Example 24

4.1 Framework for Understanding Lemmas . . . . . . . . . . . . . . . . . . . . 24

4.2 Transforming Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Transforming Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Transforming Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4.1 DSL & Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4.2 Witness Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.3 Ranking Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Case Studies 29

5.1 Simple Bakery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Description of Simple Bakery . . . . . . . . . . . . . . . . . . . . . 30

5.1.2 Running Simple Bakery on HST . . . . . . . . . . . . . . . . . . . . 31

5.1.3 Expected versus Actual Results . . . . . . . . . . . . . . . . . . . . 34

6 Related Work 37

6.1 Visualizing Model Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Programming By Example with Prose . . . . . . . . . . . . . . . . . . . . 38

7 Conclusion 40

7.1 Limitations & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 42

APPENDICES 48

A Grammar Models 49

A.1 Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Simple Bakery 54

B.1 Simple Bakery Three Processes . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



List of Figures

2.1 Example of Satisfiable Model in CHC from [6] . . . . . . . . . . . . . . . . 4

2.2 Representation for Figure 2.1 using the standard model of arithmetic [6] . 4

2.3 Validation of Example in Figure 2.1 [6] . . . . . . . . . . . . . . . . . . . . 5

2.4 Example of Unsatisfiable Model in CHC form [6] . . . . . . . . . . . . . . . 5

2.5 Refutation of Example 2.4 [6] . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 FlashFill Example of Initial Data and User Input . . . . . . . . . . . . . 7

2.7 FlashFill Example after FlashFill has been applied . . . . . . . . . . 7

2.8 Inputs required for Prose to produce a set of programs. . . . . . . . . . . . 8

3.1 HST landing page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 HST Spacer Input Options . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 HST Visualization Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Star View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 SatVis View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 PobVis View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.7 Multi Select Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.8 Selecting a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.9 Replacing Variables with Custom Values . . . . . . . . . . . . . . . . . . . 16

3.10 Lemmas with Infix Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.11 Open Editor Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.12 Edited Lemma in Open Editor Box . . . . . . . . . . . . . . . . . . . . . 18

viii



3.13 Example of Transformations Learned . . . . . . . . . . . . . . . . . . . . . 19

5.1 Simple Bakery state machine for a process p. Square brackets indicate a
guard. Every state has an implicit self loop (not shown). . . . . . . . . . . 30

5.2 Replacing Variables with Custom Values . . . . . . . . . . . . . . . . . . . 31

5.3 Simple Bakery Transformation in HST . . . . . . . . . . . . . . . . . . . . 32

5.4 Open Editor Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Edited Lemma in Open Editor Box . . . . . . . . . . . . . . . . . . . . . 33

5.6 Example of Transformations Learned . . . . . . . . . . . . . . . . . . . . . 34

5.7 Simple Bakery Transformation in HST . . . . . . . . . . . . . . . . . . . . 35

ix



Chapter 1

Introduction

Model checkers are not the easiest to understand and gain useful information from. It is
often the case that those that interact with model checkers are practiced in what to look
for and can therefore understand what is presented to them. Even still, there are cases
where model checker runs do not produce an expected output and then a seasoned user
cannot rely on familiar indicators to be able to figure out what was different in the run.
One way that has proven to be useful in improving the understanding of model checker
runs is visualizing the run with annotations [5].

A visualization can be useful in multiple ways. A model checker like Spacer, whose
solving method is IC3 based, can be visualized as a directed graph because Spacer’s
exploration follows a tree like structure with the same starting point for each exploration
tree. Having the exploration as a graph allows a user to be able to click on each node for
further details on the state of the exploration. While this makes the model checker run
more accessible, each of the states can still be hard to decipher. A user may want to change
the representation of a selected node. However, an exploration tree produced by Spacer
can have hundreds, thousands, even hundreds of thousands of nodes which means a user
would have to make the same changes over and over again to each node. This is where
program synthesis can be useful to synthesize programs based on how the user decides to
make changes.

Program synthesis through programming by example has played an interesting role in
the world of artificial intelligence. While traditional machine learning relies on many train-
ing examples in order to create a very basic program, programming by example is able to
produce favourable results with a fraction of the sample space [19]. This is achieved by
using a combination of a reduction of the problem space, smart backtracking of possible
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programs, as well as a ranking system to score possible programs. Programming by ex-
amples has been applied to a number of problem spaces, resulting in generally improved
functionality of the aforementioned problem space [19, 3].

In HST, program synthesis is used to determine changes that a user has made to a
set of lemmas. To implement this synthesis system, we use Prose, a program synthesis
framework created by Microsoft. The system works by producing an input-output example
or examples. The inputs come from the lemmas that Spacer produces while the output
comes from the user’s changes to the lemma. These examples are fed into Prose whose
problem space comes from a domain-specific language. For HST, we have provided a
domain-specific language based on lemmas that Spacer produces. The system is discussed
in detail in Chapter 4

This thesis consists of 6 consequent chapters. We first discuss the background informa-
tion of the project Chapter 2. Chapters 3 and 4 detail the key tools of the project, HST
and Prose respectively. Chapter 5 discusses a case study that was used to evaluate HST.
The thesis concludes with Chapter 6 and Chapter 7 where we feature some related work
as well as talk about some of the limitations and future plans for HST.
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Chapter 2

Background

2.1 Model Checking With Constrained Horn Clauses

Constrained Horn Clauses (CHCs) are a fragment of a First-Order Logic. A single Horn
Clause is a sentence of the form

∀V · (ϕ ∧ p1[X1] ∧ · · · ∧ pn[Xn])→ h[X]

where ϕ is a constraint in some background theory (e.g., Linear Real Arithmetic (LRA),
Arrays, bit-vectors, or a combinations of these theories), V is the set of all free variables in
the clause, each Xi is a term over V , p1, . . . , pn and h are n-ary predicates, and each pi[Xi]
is an application of a predicate, pi to first order terms Xi. A set C of CHCs is satisfiable
(modulo theory T ) iff there is an FOL model of T that satisfies every clause in C.

Many questions in program verification and model checking naturally correspond to
CHC satisfiability [6]. In particular, a weakest liberal precondition (WLP) of an imperative
program can be expressed by a set of CHCs [6]. Under this interpretation, it is convenient
to interpret a model for CHCs as an inductive invariant, and a resolution proof showing
that CHCs are unsatisfiable as a counterexample. We rely on this duality when presenting
results of CHC analysis to the users by visualizing the model as a collection of lemmas,
where each lemma is a part of an inductive invariant, and visualizing the search for an
inductive invariant as a tree of potential counterexamples.
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∀x · x ≤ 0 =⇒ P (x)

∀x, x′ · P (x) ∧ x < 5 ∧ x′ = x+ 1 =⇒ P (x′)

∀x · P (x) ∧ x ≥ 10 =⇒ false

Figure 2.1: Example of Satisfiable Model in CHC from [6]

P (x) ≡ {x | x ≤ 5}
≡ {5, 4, 3, 2, ...}

Figure 2.2: Representation for Figure 2.1 using the standard model of arithmetic [6]

CHC Example

Figure 2.1 depicts a set of CHCs that are satisfiable. This set of clauses is satisfiable by any
x value that is less than or equal to 5. Figure 2.4 depicts a set of CHCs are unsatisfiable.
The set of clauses in Figure 2.4 is unsatisfiable because if x begins at 0, after two iterations,
x will have a value of 2. While this satisfies the recurrence condition (line 2 of Figure 2.4)
the resulting value enters the bad state of the model (line 3 of Figure 2.4) which tells us
that the model can enter a bad state from at least one path that begins at the initial state.
Therefore, the model defined in Figure 2.4 is unsatisfiable.

Spacer

Spacer is an SMT based horn clause solver that uses an exploration of the model to
determine inductive invariants for a model1

2.2 Programming By Example

Programming by example (PBE) is a type of program synthesis that allows a user to create
a script (or a program) from a set of input/output examples. PBE works as follows: (a)
the user presents a collection of input/output examples E = {(ik, ok)}, (b) PBE generates

1https://github.com/Z3Prover/z3/tree/master/src/muz/spacer.
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` ∀x · x ≤ 0 =⇒ x ≤ 5

` ∀x, x′ · x ≤ 5 ∧ x < 5 ∧ x′ = x+ 1 =⇒ x′ ≤ 5

` ∀x · x ≤ 5 ∧ x ≥ 10 =⇒ false

Figure 2.3: Validation of Example in Figure 2.1 [6]

∀x · x ≤ 0 =⇒ Q(x)

∀x, x′ ·Q(x) ∧ x < 5 ∧ x′ = x+ 1 =⇒ Q(x′)

∀x ·Q(x) ∧ x ≥ 2 =⇒ false

Figure 2.4: Example of Unsatisfiable Model in CHC form [6]

a program P such that P (ik) = ok for every input/output pair (ik, ok) ∈ E, if possible;
(c) the user either accepts P , or, produces a new input/output pair (in, on) such that
P (in) 6= on, and the synthesis process repeats. An example is demonstrated in Figure 2.6
and will be explained further in the next paragraph.

The unique strength of PBE is that it is easy to present in a format that allows non-
programmers to create complex scripts. One of the most common and effective uses of
PBE is in data wrangling, the manipulation of data to a format that can be more easily
digested by the appropriate downstream format [19]. For example, given a column of first
names and an adjacent column of corresponding last names in an Excel spreadsheet, this
data may not be in an ideal format for other utilities that a user may have. A user may
want to have the aforementioned names in the format of last name followed by first initial.
FlashFill would allow a user to change the name format by inputting this new format
of name into another column. FlashFill would then auto-fill the corresponding format
for all last names, saving the user from tedious, repetitive work of changing the format
for every single name. The aforementioned example is demonstrated in Figure 2.6 and
Figure 2.7.
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(x = 0)
∀x · x ≤ 0 =⇒ Q(x)

Q(0)
∀x ·Q(x) ∧ x < 5 =⇒ Q(x+ 1)

Q(1)

∀x ·Q(x) ∧ x < 5 =⇒ Q(x+ 1)
Q(2)

∀x ·Q(x) ∧ x ≥ 2 =⇒ false
false

Figure 2.5: Refutation of Example 2.4 [6]

2.2.1 Programming By Example with Microsoft Prose

In this thesis, we use a PBE framework called Prose from Microsoft Research. 2 The
framework consists of a series of APIs for program synthesis. The key component of Prose
used in this thesis is its program synthesis frame work for custom domain-specific languages
(DSLs). Synthesizing programs with Prose involves a program specification.

Every specification has a set of inputs and a set of constraints for the program’s out-
put based on the program’s expected output. Every Prose DSL consists of three main
components: (a) the grammar/semantics, (b) witness functions, and (c) features/ranking
scores. The following breakdown of the Prose framework is based on [45] and is illustrated
by Figure 2.8.

Synthesis Algorithm

The synthesized program or programs is expected to be consistent with the spec and is
synthesized through a combination of deduction, search, and ranking.

• Deduction is a top-down exploration of the DSL grammar, which reduces the syn-
thesis problem to smaller synthesis sub-problems through the divide-and-conquer
dynamic programming algorithm.

• Search is an enumerating algorithm, which constructs possible sub-expressions from
the grammar and checks if they are consistent with the spec.

2https://github.com/microsoft/prose.
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Figure 2.6: FlashFill Example of Initial Data and User Input

Figure 2.7: FlashFill Example after FlashFill has been applied
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Grammar/
Semantics

Witness
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Ranking
Score
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Input/Output

Example

User Input

Dev Input

Set of
Programs

Figure 2.8: Inputs required for Prose to produce a set of programs.

• Ranking consists of picking the most effective program based on consistency with the
spec. While this may produce many programs, programs can be filtered through the
description, further down, in Section 2.2.1, Feature/Ranking Score.

Grammar & Semantics

The syntax or grammar of the prose synthesis framework sets the stage for the entire set
of allowed functions that can be used in the synthesized program. This grammar is known
as a domain-specific language or a DSL. A DSL is a context-free language that consists
of functions for a specific purpose. Each semantics function corresponds to a function
description defined in the grammar. There are no type specifications for a semantics
function as per the Prose framework but the user should ensure that input and output
types of each function match the types in the corresponding function definition in the
Grammar.

Witness Functions

Witness functions are used to perform back-propogation learning on given input and out-
put examples. Each Witness Function corresponds to a parameter of a semantics function.
Using a witness function, the synthesis program can deduce a specification for the pa-
rameter when given an input and output for the related semantics function. A witness
function takes in a specification on the output of the entire semantics functions and re-
turns an output spec for one parameter of the semantics function. A very simple example
of a witness function would be, given a semantics function that takes in two parameters,
that are numbers, and returns the sum of the two numbers, the witness function for the
second parameter would be given a first parameter and a sum. Given the number 2 and

8



a resulting sum of 5, the witness function would produce a mapping of the input/output
example (2,5) paired with 3 as 2 + 3 = 5.

Feature/Ranking Score

Every program is assigned a score based on a metric in its recursive structure. Generally
that filters down into its parameters where each variable parameter used is assigned a
score.

9



Chapter 3

Hubble Spacer Telescope

The Hubble Spacer Telescope (HST) is a tool that users can use to visualize Spacer’s
exploration on a given model while also manipulating the lemmas produced in order to
make it easier for the user to read and understand. The tool is built using a ReactJS
front end along with a Flask and .NET Core back end. The .NET Core back-end houses
the Prose program synthesis framework while the Flask back end contains methods to
support the visualization part of HST.

HST derives from the base code for the Vampire Saturation Visualizer, SatVis [18].
Spacer produces a log of the exploration that can be visualized in the form of a directed
graph or tree. Each node in the graph pertains to a program state of the exploration tree.

3.1 Overview

In this section, we demonstrate HST by showing a detailed user interaction on an example
from our case study. The case study itself is described later in Chapter 5.

When you first load HST, the landing page contains:

1. a large input box (left side of Figure 3.1),

2. a text box with a drop-down for a selection of Spacer options (top of blue box in
Figure 3.1),

3. a text box to input a manual string of Spacer options (bottom of blue box in Figure
3.1), and

10



Figure 3.1: HST landing page.

4. a Hit and Run button (green box in Figure 3.1).

A user can click on the file icon (right icon of red box in 3.1) to choose a file from a
local hard drive.

If you click on the S (left icon of red box in Figure 3.1) button, the user is presented
multiple options for inputting a model, shown in Figure 3.2. The user can choose to upload
an SMT-LIB file or a Spacer.log file of an existing Spacer run. In addition, the user can
choose to give a custom name to the particular run. In our case, we would like to upload
the simple-bakery.smt2 file and since the file already has a recognizable name, we will
not be adding a custom name for the run.

Once a file has been selected, a user can either add additional options or proceed by
clicking the Hit And Run button, at which point they will be redirected to the Visualization
Page, shown in Figure 3.3. For this example, we will not be using any extra options.

The Visualization Page has a number of different things for the user to interact with.
The bulk of the page is taken up by the graph view. By default, the view shown is the
PobVis view. When first encountering the Visualization Page, the graph view is populated
by the contents of the intermediate Spacer log. The user can see the status of Spacer

11



Figure 3.2: HST Spacer Input Options

Figure 3.3: HST Visualization Page
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Figure 3.4: Star View

in the top left boxes, as shown by the blue highlighted box in Figure 3.3. The box on
the left contains that status of the Poke and the box on the right contains the status of
Spacer. As you can see, in Figure 3.3, the status of the Poke is Poking is done while the
Spacer status still says running. Below those boxes, you can see the Spacer command,
highlighted by the green box in Figure 3.3, that was run to produce the Spacer log that
HST is interpreting. Below the Spacer command, there are a series of five buttons, Poke,
Star, SatVis, PobVis, and Multi Select, highlighted by the red box in Figure 3.3.

A user can use the Poke button to check on the status of Spacer. Once Poke is
clicked, the Poke status box will say Poking Spacer... until the Poke is complete, at
which point the box will say Poking is done. In most cases, a user will want to Poke
until Spacer has completed its exploration and has made a conclusion on the model. Once
the Spacer status box has a value other than Running, Spacer has completed its run
and Spacer will not update the Spacer log file.

The next three buttons have to do directly with the visualization graph shown in HST,
Star, SatVis, and PobVis buttons. Clicking on the Star button will allow a user to see
all lemmas that have been identified as an inductive invariant for the model (Figure 3.4).
Each of these inductive invariants’ nodes in the graph can be identified by a star symbol.
As you can see, there are a number of inductive invariants identified for this example. The
SatVis button allows a user to view the full exploration graph from Spacer (Figure 3.5).

13



Figure 3.5: SatVis View

Figure 3.6: PobVis View

The PobVis button allows a user to see a summarized version of the exploration in the

14



Figure 3.7: Multi Select Mode

form of separate trees for each level of exploration (Figure 3.6).

Tha last button, the Multi Select button allows a user to compare two different
nodes in the graph. The user can do this by clicking on the Multi Select button and
then clicking on the two nodes they would like to compare. Another box will appear with
the diff (blue box in Figure 3.7) between the two nodes selected. The nodes are coloured
according to the diff in order for the user to easily see which node is being referenced in
the diff. An example of Multi Select mode can be seen in Figure 3.7.

The user can interact with the graph by clicking on nodes. Clicking on a node will
open up the two information boxes for the node on the left side of the page and change the
colour of the node to red. The top box is the state of the problem that the node represents.
The bottom box shows potential and confirmed invariants for the problem. The user has
multiple options on changing the appearance of the lemmas in the lemma summarization.

Firstly, a user can customize the variable names in the lemmas by utilising the variable
map on the top left of the graph page. An example of this is shown in Figure 3.9.

Secondly, a user can toggle between infix and prefix notation for the lemmas to make
it easier to read. By default, lemmas are presented with prefix notation. The user can use
the To Readable button to switch to infix notation and the To Raw button to switch
back to prefix notation. This is shown in Figure 3.10.
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Figure 3.8: Selecting a Node

Figure 3.9: Replacing Variables with Custom Values
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Figure 3.10: Lemmas with Infix Notation

Figure 3.11: Open Editor Box

Once Spacer has completed its run (the Spacer status box says sat, unsat, or

17



Figure 3.12: Edited Lemma in Open Editor Box

unknown), the user will see a button on the bottom of the box titled Open Editor.
Clicking on Open Editor will open a box in the center of the page that allows a user to
modify lemmas learned on the selected node. The Open Editor box contains buttons
on the left side that correspond to each of the lemmas in the selected node. When a user
clicks on one of these buttons. The corresponding lemma is presented on the right side
in its abstract syntax tree form. This tree can then be modified by selecting nodes and
using the buttons on the top to modify the tree. In Figure 3.11, the fourth lemma in the
node was selected and the AST for that lemma is displayed. After selecting the first and
second nodes in the second level of the tree, the user can click on the ToImp button and
transform their tree to describe an equivalent conditional statement. This tree is displayed
in Figure 3.12.

Once the node is modified to a user’s liking, the user can click on the Add to Learn
button and both the initial form as well as the modified form of the lemma get stored as
an input/output example. All stored input/output examples are visible to the user on the
bottom right side of the main graph space and can be seen in Figure 3.13. Once a user is
satisfied with the amount of input/output examples, the user can click on the Learn new
transformations button under the input/output examples display box to trigger the
Custom Prose API, discussed in Chapter 4, which will process the input/output examples
to produce a function that can be applied to every other node. When complete, clicking

18



Figure 3.13: Example of Transformations Learned

on Learn new transformations, will display buttons that can be clicked to apply
the corresponding transformation to all lemmas in every exploration node. In Figure 3.13,
there are two possible transformations that are learned.

Overall, HST allows a user to see the exploration in the form of a graph and click on
individual nodes to learn more about them. Additionally, a user can modify specific lemmas
however they wish and use that as an example for the HST to learn how to transform every
other lemma according to the user’s changes. This allows the visualization to be catered
to each individual user.

3.2 Summary

3.2.1 Inputting a Model

The first page you’ll see on the HST is the model input page or the landing page, as shown
in Figure 3.1. As a user, one has a number of options when inputting a model or model
run. Firstly, a user can type in a model definition using SMTLib syntax. Another option
is to upload an SMTLib file. A user can also upload a Spacer log file rather than having
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HST run Spacer and produce a Spacer log. Users also have the option of custom naming
for a run to help with organization.

In addition to choosing a method to interpret a model, the user can also specify options
and flags that Spacer has. The user can use the available drop down menu which provides
a number of options and their types whether it true/false, string, etc. There is also the
option to paste in a Spacer delimited line of the options for those that have a larger set
of options. Once a model is chosen, the user can use the Hit and Run button at the
bottom of the page.

Lastly, this first page also features a list of previously run models in the user’s HST
session.

3.2.2 Overview of Visualization Page

Once a user clicks on Hit and Run, they are redirected to another page while HST begins
the processing of the inputted model.

In the top left, the user will see two informational boxes, a line of text, and a series of
five different buttons. The first box tells the user the status of HST, whether it is waiting
for information from the backend or if the frontend is fully up to date with the status of the
backend at the time of the poke, Poking Spacer... and Poking is done respectively.
The second box is the status of Spacer whether that be running, sat, unsat, or unknown.
The line of text is the exact Spacer command that was run, if applicable.

The five buttons below are Poke, Star, SatVis, PobVis, and Multi Select. The
Poke button allows the user to check the current status of the Spacer run. Clicking on
the Poke button will update the previously mentioned status boxes for HST and Spacer.
The Star button opens a modal that shows the user all inductive invariant lemmas when
applicable. The SatVis and PobVis buttons toggle between two possible views that the
user can use to explore the run. The Multi Select button allows a user to toggle between
looking at a single node and looking at two nodes.

3.2.3 HST Graph Views

When the user clicks on the Poke button, the Spacer log of the current run is pulled
from the Spacer process running in the backend and interprets the log into a node graph.
The Poke button allows the user to visualize the log without waiting for Spacer to
complete its evaluation. The user can choose to view the log in one of two views, SatVis
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and PobVis, both of which are selected by clicking on its respective button in the top
left corner of the screen. The SatVis view shows the full chronological exploration graph
of each of the events included in Spacer’s log. While this view is useful for visualizing
Spacer’s log in its entirety, it can be difficult to use for larger problems. The PobVis
view includes a separate tree for each level of exploration and has a summary of all lemmas
discovered through that particular depth of exploration. This allows for a more concise yet
comprehensive understanding of what makes up the proof or the counterexample for the
verification of a problem.

Clicking on a node in either graph will display boxes on the left side of the screen.
The top box contains the node id, expression id, and the parent id. Below the ids, there
is the state of the model for that node. If applicable, the second box provides a lemma
summarization for the node selected. The lemma summarization includes lemmas identified
before and after the exploration of the node selected.

3.2.4 User Edits to Lemmas

As a user, you can apply edits to the lemmas in the lemma summarization. Note, edits
made will only allow a user to rearrange the lemma and therefore does not affect the
meaning of the lemma. A user can do this by clicking on the Open Editor button on
the bottom. Note, this button will only appear when Spacer’s run on the problem is
complete. Once the editor box is open, a user can choose one of the lemmas from the
selected node to modify. Clicking on the lemma will generate a syntax tree of the lemma
where a user can click on nodes of the tree to select sub statements of the lemma. The user
can then choose from the buttons on the top to transform the lemmas as they see fit. Once
the lemma is in a form you would like, you can click the Add to Learn button and both
the original and the transformed versions of the lemma should be saved. You can see your
saved, transformed lemmas in the box on the bottom right of the graph page. Once the user
is satisfied with the amount of transformed lemmas saved (this number must be at least 1),
the user can click Learn new transformations. Learn new transformations will
ping the the Custom Prose API, which will be discussed in detail in Chapter 4 and return
any programs found. Found programs can be applied to the entire problem’s lemmas by
clicking on the program. Keep in mind, newly transformed lemmas can be saved at any
time but they will not affect the learned list of programs unless the user clicks on Learn
new transformations after saving newly transformed lemmas.
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3.2.5 Star Modal

In the PobVis view, nodes where inductive invariant lemmas are identified are denoted
by using a star shaped node. The user can also click on the Star button in the top left to
view all Star Nodes. This allows the user to view all inductive invariants in one place.
The user can also choose between three ordering views. The user can also choose to order
star lemmas in by grouping together similar lemmas or by grouping together lemmas by
which level of exploration they were discovered at.

3.2.6 Variable Replacement

Spacer often produces its own variable names for the sake of simplicity, these variable
names are often difficult to either decipher or keep track of when reading through a Spacer
run in HST. HST also features a variable replacement map on the right hand side where
users can input a custom dictionary mapping Spacer variables to whatever names they
wish.

3.2.7 Prefix Notation to Infix Notation

The HST displayed the states as well as the lemmas in the form of s-expressions. While
this may be easily readable to some, others might prefer these lemmas to use infix notation
for better understand ability.

The conversion occurs in the backend using a custom parsing function along with and
SMTLib parser library for .NET. The SMTLib parser converts each of the lemmas from
prefix notation into a syntax tree. The parsing function will then traverse through the tree
recursively to build out the equivalent lemma in infix notation form. This function can be
applied to all lemmas in a given run by using a To Readable button on the HST run
post processing page. The user also has to the option to revert back to prefix notation, if
they wish, by clicking on the To Raw button on the same page, beside the To Readable
button.

3.2.8 Diff Between Nodes

As mentioned previously, one of the five utility buttons at the top left is a Multi Select
button which allows a user to simultaneously view the information of two different nodes.
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To make a user’s life easier, there is also a diff that is run between the two selected nodes,
allowing a user to view possible discrepancies in the states of two similar nodes.

3.2.9 Ease of Use Features

HST allows a user to traverse either graph view with arrow keys to provide a more seamless
experiencing while moving through nodes of the Spacer exploration graph. Any lemma
that is in the form of a conditional expression has a difference in colour between the
precedent and antecedent to make it easier to differentiate between the two.

3.3 Choosing Features

The features discussed above were chosen based on two main sources; related work and
interaction with current users. The precursor to HST consisted of a graph where a user
could click on a node and see the state as well as the lemma summarization of the node.
This was a base feature that made sense to replicate in HST. From there, users expressed
a number of feature requests including an ability to manipulate lemmas so that they may
be presented differently as well as being able to see differences between two nodes. Based
on user feedback, a number of features were added to HST throughout its development.
From there, each feature was put through trial and error until it was decided that the
feature either needed to be developed further or it was not needed.
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Chapter 4

HST Programming By Example

4.1 Framework for Understanding Lemmas

In order to simplify the multiple types of transformations users can apply to lemmas, the
system uses a three part transformation suite. Those three parts are denoted as variable
transformations, literal transformations, and lemma transformations.

4.2 Transforming Variables

Transforming variables corresponds to renaming variables based on input/output examples
of the user. For example, the user might want to rename all variables of the form Inv i n

into Var i by providing the following single input/output example: Inv 1 n 7→ Var 1.
Since these transformations are done on the string representation of variable names, no
special DSL is required. Instead, we reuse the DSL of FlashFill [19]. This transformation
can be generalized into α x y− > β x const.

These transformations allow the user to apply a string manipulation-esque transforma-
tion across all eligible variables in a Spacer run. Of course, what can be learned is limited
to what is expected of FlashFill. For example, the learned transformation assumes that
variables have some pattern in common and the transformation is a function of that pat-
tern. In particular, not much can be learned and generalized from input/output examples
that completely rename a variable. For example, if the user renames Inv 0 n into State,
not much can be learned in addition to this single replacement because the renaming does
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not exhibit any particular pattern. On the other hand, given an example Inv 1 n 7→ Var 1,
FlashFill can learn a general transformation corresponding to renaming Inv to Var and
deleting the suffix n. The learned transformation, will, for example, map Inv 2 n to Var 2.

4.3 Transforming Literals

The ideas presented in this section are not included in HST as of yet but is theoretical
work. Similar to the transformation of lemmas 4.4, the transformation of literals involves
the movement of terms within the literal. The key difference in transforming literals lies in
the equal sign. The grammar would be similar to the grammar for lemma transformation
with the addition of keeping track of the position of the literal segment in relation to the
equal sign. The change in grammar would lead to a slightly different execution. This
ensures that any literal segment that is moved to opposite side of the equal sign is made
negative as per the algebraic manipulation of equivalent equations.

4.4 Transforming Lemmas

4.4.1 DSL & Semantics

Node outputTree := ToImp(inputTree, leftSide)

List<int> leftSide := filter | JoinFilters(filter, filter)

List<int> filter := FilterByName(inputTree, name)

| FilterByArrayIndex(inputTree, index)

| FilterStatic(inputTree, type)

The grammar above describes the transformation from a disjunction of literals to a con-
ditional statement. The current grammar only supports the disjunction of literals as input.
The input, inputTree, is a custom tree structure that represents SMTLib statements as a
recursive structure. Each literal in the input is assigned an integer index value as per the
order the literals appear in inputTree. Based on what numbers make up the leftSide,
the corresponding literals are negated and become the antecedent of the conditional state-
ment while the remaining literals become the consequent. Users have the option of filtering
by variable name, filtering by an index in an array, filtering by negative literals, or filtering
by every literal except the final one. Filtered literals will always become the antecedent of
the conditional statement. A user also has the option to combine up to two of the filters
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mentioned previously. Note that the transformation does not modify the meaning of any
given lemma.

LeftSide

LeftSide is a list comprised of integers that each correspond to a literal in a given lemma.
It is calculated based on three possible filters that can be combined or used individually.

• FilterByName: Every literal with the given variable name becomes a part of the
consquent. Possible variables to filter by are restricted to the variables that are in
the lemma. If FilterByName is given a variable that is not found in the lemma, it
has no effect.

• FilterByArrayByIndex: The function is given an index of an array that is present
in the one or more literals. The indexes of corresponding literals become a part of
leftSide.

• FilterStatic: Consists of two possible static functions

– FilterByNot: Indexes of negative literals (contains a not at the beginning of
the literal) become a part of leftSide.

– FilterAllButLast: Every index except the last that of the last child becomes
a part of leftSide

4.4.2 Witness Functions

Each semantic function can be paired with an optional witness function. In order to verify
that a program is correct, witness functions are used to back-propogate a function using
an input-output example. Each function is written for a variable parameter of a function.
Given the input-output example, the function should return viable parameters that when
applied to the function with the input, produce the output.

ToImp

ToImp has one corresponding witness function for the second parameter of the function,
leftSide. For this function, the witness function would be given and inputTree and an
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outputTree as spec and we would expect it to produce valid input for leftSide, that
is we expect it to return a list of integers that when given to the ToImp function along
with inputTree, outputTree is returned. This is achieved by generating the possible lists
that could satisfy this particular witness function based on how many literals make up
the precedent in outputTree. Each of those lists of integers are then inputted as the
leftSide parameter of the ToImp function along with the inputTree available in the
spec. The resulting tree is compared against the outputTree in the spec to check if they
are equivalent. Those that are equivalent are stored in a global example spec for the
function. Once every possible list of integers is checked, the local example spec is returned.

JoinFilters

JoinFilters has two witness functions, one for each of the filter parameters. For each
filter, we want to ensure that the combined result of both filters produces the resulting
outputTree. Therefore, both witness functions work together in the sense that one must
fill in the parts of the lemma that the other accounts for. For example, given the lemma
below:

(State[2] <= 0) ∨ (¬(Serve = Num[2])) ∨
(State[3] <= 0) ∨ (¬(Serve = Num[3]))

Where each literal in the lemma has a corresponding indices based on its position in
the lemma. The witness functions for both filters should ensure that the second filter is
the difference between the resulting list and the first filter.

FilterByName, FilterByArrayByIndex, FilterStatic

Each of the filter functions return a list of integers where each integer corresponds to
the index of the literal in the original lemma. The witness function for each filter function
produces a filtered list by each of the possible identifiers in the lemma and checks it against
the expected list of integers. For example, given a lemma that has four different variable
names, the witness function for FilterByName would generate that list of four variables,
compute the resulting list of integers from FilterByName with each of the variables and
return those that match the expected list of integers.

(State[2] <= 0) ∨ (¬(Serve = Num[2])) ∨
(State[3] <= 0) ∨ (¬(Serve = Num[3]))
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Given the above equation, FilterByName has three possible identifiers, State, Serve,
and Num. Say our expected list is [0,2]. The witness function would then generate that
list using each of those identifiers on FilterByName. The respective lists for State,
Serve, and Num would be [0,2], [1,3], and [1,3]. As we can see, the only identifier that
matches our expected output is the list produced by State so the witness function would
return a mapping with State.

4.4.3 Ranking Score

We chose to tune the Ranking Score for the above grammar by putting a preference on
longer programs. This was done by compounding the score for every function in the final
program.
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Chapter 5

Case Studies

To create a useful grammar, the following case studies are presented for which the grammar
provides a comprehensive set of transformations that can be applied to the lemmas created
by Spacer. In this chapter, we demonstrate that the visualizer and grammar work well
on a realistic example.

5.1 Simple Bakery

Simple bakery [36] is one implementation of the Mutual Exclusion algorithm [10]. Mutual
exclusion is a property of a system that is used to prevent race conditions and deadlock
by controlling concurrency.

Simple bakery was chosen as a case study because as a basic form of mutual exclusion,
it is simple to model in SMT-based model checking software yet it is a problem that is
not extremely well researched in terms of how model checkers find the solution and what
that looks like visually. In an attempt to gain a better understanding of simple bakery
and its proof as presented by Spacer, an implementation of simple bakery was created
to be fed into Spacer. The implementation in question, is restricted to three processes.
This decision was made in order for Spacer to come to a conclusion on the satisfiability
of the problem. Spacer treats the latter as a problem with an unknown outcome. In
other words, Spacer will return a sat value of unknown because it is unable to identify the
symmetry between arbitrary processes. In practice, simple bakery is a confirmed satisfiable
problem.
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Thinking Hungry

Eating

p.Num = Issue;
Issue ++;

[p.Num == Serve;]
p.Num = -1;
Serve ++;

Figure 5.1: Simple Bakery state machine for a process p. Square brackets indicate a
guard. Every state has an implicit self loop (not shown).

5.1.1 Description of Simple Bakery

Lamport’s bakery algorithm [36], also known as simple bakery , is a well known implemen-
tation of a mutual exclusion protocol. Intuitively, it simulates a line in a bakery: each
customer gets a number and only one number is served at any given time. In this sec-
tion, we will explain the implementation that is inputted into HST. The implementation
works as follows: there are two global counters: Issuer and Served. Both counters are
initially 0. Processes that participate in the implementation can be in one of three states:
Thinking, Hungry, or Eating. All processes begin in the Thinking state. When a pro-
cess is Thinking, it has a Num value of -1. A Thinking process can non-deterministically
transition to Hungry. Once a process is Hungry, it is given a Num value equivalent to the
current value of Issuer and Issuer increments by 1. This operation happens atomically
through the operating system. When a process is Hungry, it continues to be Hungry until
its Num matches the current value of Served, at which point it can transition to Eating.
In theory, a process that is Eating can non-deterministically transition back to Thinking,
at which point, its Num would also be reset to −1 and Served would increment by 1. This
operation is done atomically. This is illustrated in Figure 5.1. In practice, however, the
non-determism of a process completing its Eating can cause a hang in the system and can
be solved by introducing a timeout.
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Figure 5.2: Replacing Variables with Custom Values

5.1.2 Running Simple Bakery on HST

Through the evaluation simple bakery in HST, we are checking to see that the model
satisfies the mutual exclusion property. For this particular problem, that property can be
described as, for any distinct processes p and q, if p is Eating then q is not Eating

∀p, q · p 6= q =⇒ (p.State = 2 =⇒ q.State 6= 2)

The simple bakery implementation mentioned in 5.1.1 was entered into the visualizer with
no additional options. For this particular problem, Spacer is able to show that the
property is satisfied (i.e., returns sat). For this reason, we focus on the PobVis view to
identify inductive invariants found by Spacer.

Based on the ordering of the lemmas, we first apply the variable replacement to all of
the lemmas. For this particular model, we have four different variables: p.State, p.Num,
Issue, and Serve. We can do this by creating a dictionary mapping in the Replacement
Map.

Next, we want to get a basic idea of what kind of lemmas are learned by Spacer
through the exploration. We can do this by clicking on a few nodes and looking at resulting
lemmas. By default, lemmas are presented with prefix notation. We can toggle between
prefix notation and infix notation for better readability.
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Figure 5.3: Simple Bakery Transformation in HST

Spacer produces lemmas of the problem as a disjunction of literals. For someone who
is looking to interpret the model, this is not the easiest form to understand nor work with.
The goal is to convert the disjunction of literals into a conditional statement where literals
become part of either the antecedent or the consequent. The transformed format allows
the user to more easily draw conclusions about the variables and literals in each lemma.

The next thing we want to do is to manipulate at least one lemma so that a transfor-
mation program can be synthesized and applied to all other lemmas, making them look
like what we’d expect to see in the solution of this problem. For this particular problem,
I found that utilising the FilterStatic method with the AllButLast parameter, gives the
most useful form of each lemma. To do this, I can click on any given node and click on
the Open Editor button. This opens a window that allows the user to choose a lemma
and generate the syntax tree for the lemma. By clicking on top level nodes of each literal
in the lemma, the user can select everything but the last literal and click on the ToImp
button to convert this lemma into a conditional statement. Once the user is satisfied with
the format of the lemma, they can click on Add to Learn and I now have an input/out-
put example to feed to the back-end. The resulting transformation options can be seen
in Figure 5.6. As mentioned previously, we want to apply the FilterStatic(inputTree,

AllButLast) transformation. Once applied, we can click into the Star Mode to see all
inductive invariants according to the transformation applied.
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Figure 5.4: Open Editor Box

Figure 5.5: Edited Lemma in Open Editor Box
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Figure 5.6: Example of Transformations Learned

5.1.3 Expected versus Actual Results

According to the book by Chandy and Misra [8], we’re looking for lemmas that fall into the
following solution conditions. The following invariants have been modified slightly from [8]
according to the implementation being used with Spacer. The problem remains the same
through these modifications:

1. If a process, p, is thinking (i.e., p.State = 0) then p.Num = −1;

2. If a process, p, is hungry (i.e., p.State = 1) then either p.Num = −1 or (Serve ≤
p.Num < Issue);

3. If a process, p, is eating (i.e., p.State = 2) then p.Num = Serve and any other
process, q, is not eating;

4. If two distinct processes, p and q, have the same Num then p.Num = q.Num = −1;

5. For any x with Serve ≤ x < Issue, there exists a process s.t. p.Num = x for that
process.
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Figure 5.7: Simple Bakery Transformation in HST

Based on the transformation described in section 5.1.1, we expect that transformed
lemmas that are identified as inductive invariants, will describe one of the above solution
conditions. Note that non transformed lemmas still describe one of the above solution
conditions since the transformation does produce an equivalent lemma in a different format.
However, we expect that the user chooses to transform lemmas to make it easier to identify
which solution condition a lemma describes. An example lemma transformation would be
the following

(Inv 0 n[2] <= 0) ∨ (¬(Inv 3 n = Inv 1 n[2])) ∨
(Inv 0 n[3] <= 0) ∨ (¬(Inv 3 n = Inv 1 n[3]))

to

(State[2] > 0) ∧ (Serve = Num[2]) ∧ (State[3] > 0) →
¬((Serve = Num[3]))

Though the above two lemmas are equivalent in meaning, it is easier to see that the
second lemma is in the form of solution condition #3, stating that if one process is Eating
then any other process must not be Eating for the user who chose to use this transfor-
mation. Similarly, the user can then use the transformation learned from this particular
example and apply it to all other lemmas to be able to see that every inductive invariant
produced by Spacer, falls into one of the above solution conditions. The user doesn’t
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necessarily have to use the above input/output example to be able to better understand
simple bakery . The user can manipulate the lemmas however they see fit in order to cater
their HST experience to themselves.
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Chapter 6

Related Work

While there have been a number of tools that describe the visualization of various solvers as
well as a number of tools that simplify text through program synthesis, HST introduces the
idea of visualizing Spacer while also catering the usage of the visualizer to each individual
user through program synthesis.

6.1 Visualizing Model Checkers

The first tool relevant to our work attempted to improve the understanding of parallel
constraint solvers that are SMT-based. In this paper, Budakovic et al. [7] created a tool
that allows a user to retrieve information about the execution of the partitioning tree
parallelization approach at any given point of time. Both the tool in [7] as well as HST
attempt to tackle the problem of visualizing tree-like structures that are often found in
SMT solvers, IC3/PDR algorithms, SAT solving, etc due to the use of parallel computing.
The tool comprises six different views, each modifiable by various selections chosen by the
user. The user would then be able to visualize this tree and determine the satisfiability or
unsatisfiability of the model. Parallelization trees are constructed such that the root of the
tree is an AND-node which represents the input instance. Every AND-node represents a
constraint problem and potentially multiple constraint solvers. Given the instances in the
AND-node, if one is satisfiable then the input instance is satisfiable. Alternatively, if one of
the AND-node’s sub-trees has a child which is unsatisfiable or one of the constraint solvers
on the instance of the AND-node is unsatisfiable then the input instance is unsatisfiable.
While their tool was fully proposed in this paper, Budakovic et al. do not evaluate the
effectiveness of their tool. They merely propose that the tool will “help users to be more
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confident with parallel computing techniques, encouraging the community to develop new
efficient decision procedures for constraint solving”.

The second relevant tool is an extension of an existing z3 visualizer, created by Microsoft
Research, called the VCC Axiom Profiler [4], and was used to help understand the quantifier
instantiations that occur in an SMT run. The paper most significantly contributed an
implementation that identifies and explains previously unknown matching loops which
was confirmed by experimenting on 34 159 SMT files. While this does not perfectly match
up with what we are doing in creating HST, both tools are similar since they both utilise
visualization to identify patterns in SMT solvers. Part of finding these matching loops was
a visualizer that takes in a z3 log file. From the file, the visualizer allows the user to visualize
the raw data of the quantifier instantiation, (inherited from the VCC Axiom Profiler), an
instantiation graph that displays the causal relationships between quantifier instantiations,
making high-branching and long-sequence scenarios identifiable. Each node represents a
quantifier instantiation and each quantifier has its own colour. The visualizer has various
options (like maximum depth control, expand or collapse children of a node, node with
the highest number of children, etc.) in order to help the user identify quantifiers that
could cause problems. Through many different input tests, the tool “allows a to effectively
explore and understand the quantifier instantiations by an SMT run, their connections
and potentially-problematic patterns which arise (e.g. due to matching loops)”. Their
visualizer has also shown to help users analyze more complicated SMT models.

6.2 Programming By Example with Prose

There are a number of papers that outline the development of Prose [19, 3, 20, 21, 45, 23, 22,
24, 26, 28] and the applications of Prose [27, 39, 25, 51, 33, 9, 55, 2, 46, 38, 49, 12, 54, 32, 42],
to reference a few. Of the papers, we found that the work done by Pan et al. [44] and
Rolim et al. [49] was most relevant to the work we have done.

Rolim et al. focuses on an application of Prose called Refazer. Refazer is a tech-
nique that produces program transformations automatically based on user input. Similar to
HST, Refazer produces program transformations by using a custom domain-specific lan-
guage, domain-specific deductive algorithms for synthesizing transformations in the DSL,
and functions for ranking the synthesized transformations. The custom domain-specific
language for both HST and Refazer are based on making changes to an abstract syntax
tree where Refazer applies changes to code written in Python and C# and HST applies
changes to lemmas in disjunction of literals form. However, Refazer’s goal is to apply
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changes to the code while HST makes changes that produce a logically equivalent state-
ment. Refazer was evaluated by applying it on two different domains. Refazer was first
given code edits made by students to fix errors in their assignment submissions. Based on
those code edits, Refazer synthesized program transformations that would allow other
students with the same errors in their assignments to have the correct changes be auto-
matically applied. Based on 4 programming tasks done by 720 students, Refazer helped
correctly modify 87% of student submissions. The second domain Refazer was applied to
was 3 large open-source projects that were in need of repetitive edits throughout the code
base. Normally, developers would need to make many of the same code edits in multiple
places in the code base. With Refazer, 83% of code edits on 59 different scenarios were
learned correctly using only 2.8 examples on average.

Another tool that was relevant to our work was the Merge Conflict Resolution
tool created by Pan et al. [44]. The merge between the code base for Microsoft Edge
and its fork source, Chromium has conflicts that are difficult to merge automatically.
Upon analysis, it is noted that most conflicts can be resolved through 1-2 line changes
and many are similar. Thus, similar changes can be learned through program synthesis
with the use of a custom DSL. Through this custom DSL, 11.4% of conflicts ( 41% of
1-2 line changes) can be resolved with 93.2% accuracy. Similar to Refazer as well as
HST, the Merge Conflict Resolution tool consists of a custom domain-specific lan-
guage, domain-specific deductive algorithms for program synthesis and ranking functions.
What is unique about the Merge Conflict Resolution tool is the use of recursion
in the domain-specific language. In Merge Conflict Resolution, they use recursion
in multiple parts of the DSL including to concatenate two transformations to make one
larger transformation that can then be applied to the merge condition. Similarly, we use
recursion to combine two filters to make one large filter to be applied to the conversion
between a disjunction of literals and an equivalent conditional statement.

The work presented in this thesis combines different aspects of each of the related works
discussed above to create a completely different tool in terms of uses as well as techniques.
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Chapter 7

Conclusion

In this thesis, we study the problem of developing visual aids to help understand model
checking results. This is an extremely difficult task since it is difficult to define the prob-
lem formally. Specifically, we develop the first visualizer, called Hubble Spacer Telescope
(HST), for an SMT-based model checker Spacer. The visualizer address two major issue.
First, it presents an intermediate run of the model checker as a tree of explored config-
urations. The user is able to examine the trees of different runs, examine the details of
the formulas corresponding to each node, and the lemmas that are learned by the model
checker to block each node. In our evaluation, we find that the view is very useful at quickly
assessing the quality of the model checker run. For example, whether the model checker
is converging, diverging, potential reasons for divergence, and potential symmetry in the
proof being constructed. We believe that this visual aids will be useful both in diagnosing
hard problems and in future improvements to the model checking algorithm. The second
issue addressed by HST is to help the user of HST automate presentation of complex
formulas. This is a common problem to many logic-based, and more generally, symbolic
techniques. The tools often present information in a form convenient to the algorithm,
and usually that form might be very difficult for humans to understand. Automatically
making formulas “easy” to understand seems like a daunting task. Instead, we focus by
learning from examples, what a user considers “easy” and transforming the rest of the pre-
sented formulas to match that style. Our approach is based on the Prose framework that
has been successfully used in similar tasks in Microsoft Excel FlashFill and in program
repair tasks [19]. By developing a specialized DSL for formula-transformations, we are
able to use Prose to learn meaningful simplification rules based on user examples. In our
case study, we show that this can significantly reduce the necessary manual user interac-
tions to convert an automatically generated proof of Lamport’s Bakery Protocol into an
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easy-to-understand form.

7.1 Limitations & Future Work

While Prose is a very powerful framework, it is limited by the way the code is setup. It
also takes a significant amount of knowledge on the framework in order to use it to its full
potential. The key lies in the witness functions and how they are defined. Throughout the
process of building HST, a large amount of time was spent on fine tuning the grammar into
what it is now. I would expect that any changes to the grammar, no matter how small,
would require some time into how the changes alter the effectiveness of the grammar,
specifically its witness functions. Additionally, grammars with deeply nested programs are
difficult to maintain and optimize. Shallow programs may suffice for our current program
needs but it may be wise to move away from Prose to either another program synthesis
framework or make our own. This is something that could be explored in future work.

Another limitation that boxes HST is the amount of users and case studies that have
contributed to its development. The grammar that has been created has been heavily
influenced by the case study mentioned in Chapter 5. While we have kept the grammar
as general as possible, it would benefit future users of HST to use more case studies
and examples to improve the grammar so that it can be effectively used on a variety of
Spacer runs. Additionally, HST would benefit from more feedback. Throughout the
process of creating HST, we have received feedback on it from a few peers and professors.
The feedback has been essential to creating HST and building into what it has become.
Therefore, more feedback would help develop the tool.

As of right now, HST is not very scalable. The graph views can only effectively produce
smaller to medium sized graphs. Anything with a larger number of exploration trees
would be very small on the graph views and would require a user to zoom in to gain
any information. Additionally, it would take very long to load in a larger Spacer log
file. Currently, we allow a user to visualize a partially complete Spacer run based on the
intermediate log. However, load time tends to increase with the size of the log file, which
means a user can be waiting a while before they see anything of use. Potential future
work on this could be to visualize portions of the run instead of the whole thing. This
could include more views as well as partitioning of data according to what the user deems
important.
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Appendix A

Models Used in the Grammar

A.1 Node

public class Node

{

private static int _idCounter;

public Node(Z3_decl_kind type , List <Node > children , Expr expr ,

Context ctx)

{

_id = _idCounter;

_idCounter ++;

Expr = expr;

Children = children;

Type = type;

Ctx = ctx;

}

public List <Node > Children { get; set; }

private Node Parent { get; set; }

private int _id;

public Expr Expr { get; }

public Context Ctx { get; }

public Z3_decl_kind Type { get; }

public void AddChild(Node child , int position = -1)
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{

if (child.Parent == null)

{

child.Parent = this;

}

if (position != -1)

{

Children.Insert(position , child);

}

else

{

Children.Add(child);

}

}

public override string ToString ()

{

return Expr.ToString ();

}

public bool IsEqualTo(Node tree)

{

if (tree is null)

{

return false;

}

if (Children ?.Count == 0 && tree.Children.Count == 0)

{

return Expr.ToString () == tree.Expr.ToString ();

}

if (Children ?.Count != tree.Children.Count)

{

return false;

}

var result = true;

for (var i = 0; i < Children.Count; i++)

{

result = result && Children[i]

.Equals(tree.Children[i]);

}
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return Type == tree.Type && result;

}

public override bool Equals(object obj)

{

return IsEqualTo(obj as Node);

}

public override int GetHashCode ()

{

return HashCode.Combine ((int) Type);

}

public IEnumerable <string > GetIdentifiers ()

{

var result = new List <string >();

if (Children.Count == 0)

{

if (Expr.FuncDecl.DeclKind ==

Z3_decl_kind.Z3_OP_UNINTERPRETED)

{

result.Add(Expr.ToString ());

}

}

foreach (var child in Children)

{

result = result.Concat(child.GetIdentifiers ())

.ToList ();

}

return result;

}

public bool HasIdentifier(string id)

{

var result = false;

if (Children.Count != 0)

{

foreach (var child in Children)

{
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result = result || child.HasIdentifier(id);

}

}

return result || Expr.ToString () == id;

}

public bool IsNot()

{

return Expr.FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_NOT;

}

public IList <Expr > FlattenTree ()

{

var exprs = new List <Expr >();

if (Expr.NumArgs == 0

|| Expr.FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SELECT)

{

exprs.Add(Expr);

}

foreach (var child in Children)

{

exprs = exprs.Concat(child.FlattenTree ()).ToList ();

}

return exprs;

}

public IEnumerable <string > GetProcesses ()

{

var children = new List <string >();

foreach (var child in Children)

{

var exprs = child.FlattenTree ();

var indices = Utils.FindSelect(exprs.ToList ());

foreach (int index in indices)

{

var selectExpr = exprs[index];
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var process = selectExpr.Args [1]. ToString ();

if (! children.Contains(process))

{

children.Add(process);

}

}

}

return children;

}

}
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Appendix B

SMT Files for Simple Bakery

B.1 Simple Bakery Three Processes

(set-logic HORN)

(declare-fun Inv ((Array Int Int) (Array Int Int) Int Int) Bool)

(assert (forall ((State (Array Int Int))

(Num (Array Int Int))

(Issue Int)

(Serve Int)

(|State’| (Array Int Int))

(|Num’| (Array Int Int))

(|Issue’| Int)

(|Serve’| Int)

(i Int)

(j Int))

(=> (and (= Issue 0)

(= Serve 0)

(= (select State 1) 0)

(= (select State 2) 0)

(= (select State 3) 0)

(= (select Num 1) (- 1))

(= (select Num 2) (- 1))

(= (select Num 3) (- 1)))

(Inv State Num Issue Serve))))
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(assert (forall ((State (Array Int Int))

(Num (Array Int Int))

(Issue Int)

(Serve Int)

(|State’| (Array Int Int))

(|Num’| (Array Int Int))

(|Issue’| Int)

(|Serve’| Int)

(i Int)

(j Int))

(let ((a!1 (or (and (= (select State i) 0)

(<= i 3)

(>= i 1)

(= |Serve’| Serve)

(= |Issue’| (+ Issue 1))

(= |State’| (store State i 1))

(= |Num’| (store Num i Issue)))

(and (= (select State i) 1)

(<= i 3)

(>= i 1)

(= (select Num i) Serve)

(= |Serve’| Serve)

(= |Issue’| Issue)

(= |Num’| Num)

(= |State’| (store State i 2)))

(and (= (select State i) 2)

(<= i 3)

(>= i 1)

(= |Issue’| Issue)

(= |Serve’| (+ Serve 1))

(= |Num’| (store Num i (- 1)))

(= |State’| (store State i 0))))))

(=> (and (Inv State Num Issue Serve) a!1)

(Inv |State’| |Num’| |Issue’| |Serve’|)))))

(assert (forall ((State (Array Int Int))

(Num (Array Int Int))

(Issue Int)

(Serve Int)
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(|State’| (Array Int Int))

(|Num’| (Array Int Int))

(|Issue’| Int)

(|Serve’| Int)

(i Int)

(j Int))

(=> (and (Inv State Num Issue Serve)

(= (select State i) 2)

(= (select State j) 2)

(distinct i j)

(<= i 3)

(>= i 1)

(<= j 3)

(>= j 1))

false)))

(check-sat)
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