
Interactive and Static Statistical
Graphics:

Bridge to Integration

by

Zehao Xu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Statistics

Waterloo, Ontario, Canada, 2021

© Zehao Xu 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Paul Ross Murrell
Associate Professor, Dept. of Statistics,
University of Auckland

Supervisor: Richmond Wayne Oldford
Professor, Dept. of Statistics and Actuarial Science,
University of Waterloo

Internal Member: Greg Bennett
Professor Emeritus, Dept. of Statistics and Actuarial Science,
University of Waterloo
Ryan Browne
Assistant Professor, Dept. of Statistics and Actuarial Science,
University of Waterloo
Marius Hofert
Associate Professor, Dept. of Statistics and Actuarial Science,
University of Waterloo

Internal-External Member: Jian Zhao
Assistant Professor, Dept. of Cheriton School of Computer Science,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The research in this thesis is based upon the design and implementation of several R
software packages novel to this thesis. The base package is loon (Waddell and Oldford,
2020) based on the thesis by Waddell (2016) supervised by Wayne Oldford.

I am the principal author of all new packages (viz., loon.ggplot, ggmulti, loon.shiny,
and loon.tourr) and the research in all chapters. Software design and implementation
benefited from review by Wayne Oldford, as did the writing of all chapters.

Exceptions to sole authorship of material are as follows:

Research presented in Chapter 1:

The software bridge abstraction is based on an idea of Wayne Oldford and developed
jointly in this chapter.

Research presented in Chapter 2:

The l_compound data structure already existed in loon but was extended in the current
work.

Research presented in Chapter 3:

I was the main author of the research in Chapter 3 under the supervision of Wayne
Oldford.

Research presented in Chapter 4:

The loonGrob software bridge had already been initiated in loon; in the thesis, I re-
designed and fully developed this bridge under the supervision of Wayne Oldford.

iv

Abstract

There are plenty of graphical packages in R which play an important role in building graph-
ics for data analysis, either static graphics (e.g., graphics, grid, ggplot2) or interactive
graphics (e.g., loon, shiny). Each of them has certain strengths and weaknesses. Typi-
cally, analysts only use one graphical system at a time during data analysis. However, it
may not be sufficient in some circumstances. To better achieve goals, analysts sometimes
need more than one graphical packages. For example, an analyst aims to use interactive
plots to uncover patterns of interest in data exploration, in which case, a web-based app
or an animation could better deliver the analysis dynamically in the presentation. Un-
fortunately, due to the dissimilarity of the design, data analysis using multiple graphical
systems could be too complicated to accomplish. To simplify the process, the idea of
“bridge” is introduced. A bridge is a peer to peer transformation and works as a connec-
tion to map elements (i.e., visual display or visual structure) from one graphical system to
another. Usually, the difficulty level of building a bridge mainly depends on how well the
abstraction level can be matched.

In this thesis, we mainly focus on four packages. The graphical system loon provides
interactive visualization toolkit for data exploration. The package ggplot2 offers tools to
extend the flexibility of drawing static plots in data analysis based upon a grammar of
graphics. The package grid is a core graphical system in R, providing low-level, general
purpose graphics functions. The package shiny provides interactive web applications in R.

To integrate the strengths of each, three bridges are introduced: bridge loon.ggplot is
to transform a loon widget to a ggplot object, or backwards; bridge loonGrob is to turn
a loon widget to a static grid graphic; bridge loon.shiny is to render a loon widget into
a shiny web app. In addition, a new package loon.tourr is also discussed. Even though
it is not a bridge, it could be useful to help find interesting lower projections from a high
dimensional subspace in an interactive way.

v

Acknowledgements

The very first I want to thank is my parents, Xiaodong Xu and Hongbo Jiang. Words
simply cannot tell how much I love them. Each time when I was upset, they are the first
to give me hugs; when I had any accomplishments, they could be happier than me. They
give me the most generous supports so that I can pursue my dreams to a large extent. One
of the toughest time I had experienced was the College Entrance Examination. Thanks
for their understanding and encouragements so that I could have a chance to receive a
good education, from Southwestern University of Finance and Economics to University of
Waterloo. I feel so lucky to be their kid. Also, I would like to thank my grandparents, Li
Xu and Cuilan Sheng. They give me a wonderful childhood. I hope I make them proud.

I want to give my sincere thanks to my supervisor Wayne Oldford. The first course I
took in University of Waterloo was STAT431 (Generalized Linear Regression) in 2015 fall
and Wayne was the lecturer. It was an amazing experience. His knowledge, humor and
attitude on academic left me with a deep impression. I first felt that statistics could be
so interesting. In 2016 winter, I took his another course, STAT444 (Statistical Learning -
Function Estimation). In this course, I first “met” the interactive graphical system loon
(which I would dedicate with my whole PhD career) and immediately was obsessed by its
powerful functionalities. More than interests, I found the direction of my career. In 2016
fall, I became his master student. The master career was a hard time for me. Wayne had
very high expectations on me but at the beginning, I was not so capable to accomplish his
requirements. Nevertheless, as time went by, I realized I was better and better in research.
Wayne pushed me hard and gave me a chance to see “a better me”! After the master, I
decided to pursue a PhD degree with him. During my PhD career, the weekly meeting
was becoming a joyful moment. Our talk could always innovate many good ideas. All of a
sudden, it is my time to say goodbye. I am so grateful for his time, patience and guidance
among these six years. It is the greatest treasure in my life. Also, I want to express my
thanks to Dr.Bennett who has spent so many hours to help me polish my dissertation.
Many thanks!

Next I want to thank my friends, Tianbo Wang, Xinyu Zhang and Siyu Hao. Tianbo,
Xinyu and I have known each other since year 2015. They gave me many helps. Tianbo is
a selfless guy who is always willing to help people without considering gain or loss. Xinyu
is an optimist, always confident about the future. It is a ten years’ friendship between Siyu
Hao and I. We first met in my fourth year high school. He is definitely one of the smartest
and most knowledgeable person I have ever known. Besides, I would like to express my
thanks to Dr.Yijun Xie, “Wayne Gang bad boys” (Pavel Shuldiner and Chris Salahub),
Jiayue Zhang, Chenghao Liao, Hao Luo. It is great to have you to make my Canada

vi

life colourful. Special thanks to Mary Lou Dufton (Administrative Coordinator Graduate
Studies of our department) who helped me with all my administrative work in the past 4
years.

In the end, I would like to thank my girl friend, Yuanyue Yang who helped me a lot
in writing. It is so great to have her company. Also, I would like to thank two little cute
dogs, mochi and teemo (two pomeranians) who bring me so many happy hours.

vii

Dedication

This is dedicated to my parents, Xiaodong Xu and Hongbo Jiang.

viii

Table of Contents

List of Figures xiv

1 Introduction 1

1.1 Interactive Graphics and Static Graphics 2

1.2 Exploratory Graphics and Presentation Graphics 5

1.3 An Example of Interactive Graphics in EDA 6

1.4 Graphical Packages in R . 10

1.4.1 Base Graphical Packages . 10

1.4.2 Extensions of the Base Graphical Packages 12

1.4.3 Transformations between Different Graphical Packages 16

1.5 Bridges . 17

1.5.1 Bridge Abstraction . 19

1.6 Thesis Overview . 21

2 Loon 24

2.1 Loon Data Structure . 25

2.2 Model Layer . 27

2.2.1 Plot Region . 27

2.2.2 Data . 28

2.2.3 Attributes . 29

ix

2.2.4 Linking and Selection . 33

2.2.5 Non-data Element States . 34

2.3 Dependent Layer . 35

2.3.1 l_layer . 38

2.3.2 l_navigator and l_graphswitch 40

2.3.3 l_context . 41

2.3.4 l_glyph . 42

2.4 Compound Object . 43

2.4.1 l_ts . 44

2.4.2 l_pairs . 44

2.4.3 l_facet . 47

2.5 Summary . 52

3 Loon.ggplot 53

3.1 Introduction of ggplot2 . 54

3.1.1 A Grammar of Graphics . 54

3.1.2 Components . 55

3.1.3 Programming . 56

3.2 ggmulti: an Extension of ggplot2 . 57

3.2.1 Serialaxes in ggplot2 . 57

3.2.2 Non-primitive Glyphs in ggplot2 61

3.3 ggplot2 to loon . 62

3.3.1 Making ggplot2 Interactive . 62

3.3.2 Transformations . 64

3.3.3 A Grammar of Interactive Graphics 73

3.4 loon to ggplot2 . 78

3.4.1 Arguments . 78

3.4.2 Compound Plot . 84

x

3.5 Summary . 85

3.5.1 Lessons . 85

3.5.2 Limitations . 85

3.5.3 Further Work . 88

4 LoonGrob 89

4.1 Introduction of grid . 90

4.2 Conversion of the Aesthetic Attributes . 90

4.2.1 Color . 91

4.2.2 Shape . 91

4.2.3 Size . 94

4.3 loonGrob Data Structure . 96

4.3.1 Main Graphics Model . 96

4.3.2 Serialaxes Model . 103

4.3.3 Compound Plot . 105

4.4 Summary . 105

4.4.1 Lessons . 106

4.4.2 Limitations . 106

4.4.3 Further Work . 106

5 Loon.shiny 108

5.1 Introduction . 108

5.2 User Interface . 109

5.2.1 Singleton Design . 109

5.2.2 World View Window . 110

5.2.3 Plot Panel . 112

5.2.4 Select Panel . 115

5.2.5 Linking Panel . 116

xi

5.2.6 Modify Panel . 117

5.2.7 Layer Panel . 117

5.2.8 Glyph Panel . 119

5.3 Interactivity . 119

5.3.1 Plot Region . 120

5.3.2 Non-data Element States . 120

5.3.3 Selection . 121

5.3.4 Linking . 123

5.3.5 States Modification . 123

5.4 Dynamic ui . 124

5.4.1 Update Slider Bars . 125

5.4.2 Update “by color” . 125

5.5 Limitations . 126

5.5.1 Computing Speed . 126

5.5.2 Scales Control . 126

5.5.3 Design of Plot Window and Inspector 127

5.5.4 Mouse Gestures . 127

5.5.5 Event Bindings . 128

5.6 Summary . 128

6 Loon.tourr 130

6.1 Introduction . 130

6.2 Tour Object . 131

6.3 Tour Specifications . 134

6.3.1 Tour Techniques . 134

6.3.2 Lower Sub-space Dimensions . 135

6.4 Layers in Tour . 136

6.5 Summary . 140

xii

7 Discussion and Further Work 142

7.1 Bridge . 142

7.1.1 On Elements . 142

7.1.2 On the Level of Abstraction . 144

7.1.3 Zenplots Revisited . 144

7.2 Extension and Suite Connection . 146

7.2.1 Extension . 146

7.2.2 Suite Connection . 147

7.3 Limitations . 153

7.4 Further Work . 153

Bibliography 156

Appendices 165

A Introduction 167

B loon 170

C loon.ggplot 173

xiii

List of Figures

1.1 Figure (a) is created by rgl which provides immediate manipulation. Figure
(b) is created by ggvis which provides mediated manipulation via the slider
bars. The size and transparency of the points are changed as we drag the bar. 4

1.2 It illustrates the life expectancy versus GDP per capita from 1952 to 2007
(the data is contributed by Bryan, 2017). The point colors represent con-
tinents (yellow is Africa; red is American; purple is Asia; green is Europe
and blue is Oceania) and the point sizes represent population. As they five
are shown in sequence, the viewer may have an illusion that the graphic is
“dynamic” and points are moving. 5

1.3 Graphics created in ‘A’ are exploratory graphics. The graphics presented to
a small group (‘B’), a talk (‘C’) or an online session (‘D’) are presentation
graphics. Presentation graphics can be interactive as well, but they are
curated and the modifications are very limited (e.g., plot ‘E’). See Oldford
(2019). 7

1.4 They are two linked bar plots. Figure (a) is the bar plot representing heart
disease (‘No’ and ‘Yes’). Figure (b) is the bar plot representing a family
history (‘Absent’ and ‘Present’) of heart disease. 9

1.5 As these two plots are linked, highlight the barplot (b) will cause changes in
the barplot (a). When a family history of heart disease presents, the ratio
of people gets heart disease is approximately 1:1. 10

1.6 Conditional on a history of family heart disease (the right bin in Figure b)
or high (> 175mg) systolic blood pressure (the rightmost bins in Figure c),
the ratio of people getting heart disease is approximately 1:1 (i.e., the ratio
of the highlighted heights in Figure a). 11

1.7 It only provides a small collection of R graphical packages and is extended
from the figure in (Murrell, 2018, p. 19) (as shown in Figure A.1, appendix) 14

xiv

1.8 The dotted lines can be imagined as transformations. Lines are painted in
three different colors: transformations that are not present are colored red
(viz., loon and iplots, ggplot2 and lattice); purple means that such
transformations have already existed before this thesis; and the green ones
represent the transformations to be introduced in this thesis. A dotted
arrow means that ggplot2 (or lattice) depends on grid but also renders
by transforming the ggplot (or lattice) object into a grid object. 18

1.9 A zenplot of the data set iris. 19

2.1 The loon data structure . 26

2.2 The margins of a main graphics model . 28

2.3 The data we used is mtcars which was extracted from the 1974 Motor Trend
US magazine (Henderson and Velleman, 1981). It comprises the fuel cost and
eleven aspects of automobile design (e.g., the number of gears, horsepower,
etc.) for 32 automobiles. Here is a scatterplot of the vehicle’s horsepower
versus miles per gallon. 31

2.4 A loon nav-graph . 32

2.5 Andrews curve of iris data set . 33

2.6 Non-data element states in a serialaxes plot 37

2.7 Figure (a) and (b) show the text anchor and justify. In (a), the pink dot
is the reference of the position; in (b), from top to bottom, the justify is
“right”, “center” and “left”. 39

2.8 The graph switch and navigator . 41

2.9 Loon non-primitive glyphs. From left to right, the glyph is image, polygon,
radial axes, point range and text . 44

2.10 A loon pairs plot. The (a) is a traditional scatterplot matrix. In (b),
six histograms and a parallel coordinate plot are packed. All these plots
(including scatterplots) are linked and some states (e.g., selected, color)
are sharing. 45

2.11 Scaling synchronization in a loon pairs plot. The center scatterplot is mov-
ing towards the north east. Then, all plots sharing the same vertical scaling
would move towards the north and all plots share the same horizontal scaling
would move towards the east. 46

xv

2.12 Plot for the arbitrary data set . 48

2.13 The logic is set by argument by which accommodates three types: an n
dimensional state, a data frame and a formula. 50

2.14 The display is set by argument layout which accommodates three types:
“grid” (default, shown as Figure 2.13), “wrap” (a) and “separate”(b) 51

3.1 From data to graphic (Wilkinson, 2005). 54

3.2 Serialaxes in ggplot . 58

3.3 Serialaxes in ggplot with histogram layer and quantiles layer 59

3.4 Andrews curve for iris data . 60

3.5 Tukey’s curve . 61

3.6 Non primitive glyph in ggplot object . 63

3.7 Which layer should be interactive, neither, bins or points? 66

3.8 The same static graphics but different interactive motions 67

3.9 Interactive non-primitive glyphs and static non-primitive glyphs. 68

3.10 Map the visual display only. 71

3.11 The mapping is incomplete. 71

3.12 To transform a ggplot object (with statistical layers) in the serialaxes co-
ordinate system to a loon widget: if it is transformed to an interactive
l_serialaxes widget, the layers are missing; if it is transformed to an
l_plot widget, all layers are preserved but static. 72

3.13 Two possible designs to turn a ggplot object with multiple facets to a loon
object. The sky blue means the data is still maintained by ggplot object
and the firebrick red represents the data has been passed into a loon widget 73

3.14 A loon widget created by ggplot2 syntax 74

3.15 The points with high mpg are highlighted. The region is scaled to the
highlighted points. 75

3.16 To transform a loon l_hist widget to a ggplot histogram object. If the
asAes is set as TRUE, the ggplot histogram is constructed by geom_histogram;
else by geom_rect. 80

xvi

3.17 A bug in the legend for filled shapes. In the fill legend, the colors should be
black and gray. 81

3.18 Whether to force the highlighted points to be displayed at the front. 83

3.19 When colors are similar (similar hue, chroma or luminance), the “approxi-
mate” colors (setting showNearestColor as TRUE) may shrink the number
of unique colors. 84

4.1 Map a loon point glyph to a grid data structure 93

4.2 Point glyph size mapping from loon (left) to grid (right). 94

4.3 Figure (a) is a screenshot of the loon plot and Figure (b) is a grid graphic. 98

4.4 Each label represents a gTree or a grob. Gray ones are applicable to all
models, while the colored ones can only be applied to the corresponding
colored models. For example, when the main graphic model is histogram, the
label names at the corresponding levels would be l_hist, l_hist_layers
and histogram. 99

4.5 The data structure of a loonGrob non-primitive glyph 100

4.6 This is a modified version of Figure 4.3 (b). The red line is changed to a
blue thick dashed line. 102

4.7 The l_serialaxes loonGrob data structure. The order (from top to bot-
tom) is the default stacked order. If the graph was embedded in the parallel
coordinate, the children was parallelAxes, else it was radialAxes 104

5.1 This loon.shiny app is composed of three linked loon plots, a scatterplot
and two histograms. 111

5.2 loon (left) and loon.shiny (right) World View windows 111

5.3 l_plot loon (left) and loon.shiny (right) Plot panels 112

5.4 When querying, a loon.shiny app shows the detailed information of all
overlapped points, in this case, the shown automobiles are “Jetta” and “New
Bettle”. 113

5.5 l_hist loon (left) and loon.shiny (right) Plot panels 114

5.6 l_serialaxes loon (left) and loon.shiny (right) Plot panels 115

5.7 loon (left) and loon.shiny (right) Select panels 116

xvii

5.8 The Linking panel . 117
5.9 loon (left) and loon.shiny (right) l_plot Modify panels 118
5.10 loon (left) and loon.shiny (right) Layer panels 118
5.11 Selection in loon (left) and loon.shiny (right) of an l_serialaxes widget 122

6.1 Basic loon tour for data iris. 132
6.2 The left figure is a facet tour that each panel displays a species of iris.

The right one is a pairs tour. Each scatterplot in the matrix visualizes the
relationship between a pair of variables in Y 134

6.3 One dimensional tour and four dimensional tour. 136
6.4 Grand tour with Fourier transformation. The left one is embedded in a par-

allel coordinate system and the right one is embedded in a radial coordinate
system. 137

6.5 The convex hull layer for data iris. With the layer hull, each cluster is
easier to be distinguished. All three species are clearly separated in (b). . . 138

6.6 A density 2D layer and a trail layer . 138
6.7 One can add any layers to an l_tour object. Nevertheless, if the function

l_layer_callback() was not set, the layer would not be updated along
with the tour, as shown in (b) . 139

6.8 After executing the function l_layer_callback.density1D(), density 1D
layer is updated as the tour is being navigated. 140

7.1 Transform a histogram from loon to ggplot2 143
7.2 A ggplot version of Figure 1.9 via the bridge loon.ggplot. 145
7.3 With loon.ggplot, the features in one suite can be brought into the other. 148
7.4 The figure shows the life expectancy versus GDP per capita, faceted by year

and continent by loon. 149
7.5 The screenshot of the animation . 150
7.6 The figure shows the life expectancy versus GDP per capita in year 2007

using ggplot2. Each line represents a weighted regression fit. 151
7.7 A shiny app, based on a ggplot object . 152

A.1 The structure of the R graphics system (Murrell, 2018) 168

xviii

Chapter 1

Introduction

“It has been widely noted that between 1940 and 1960 there had been a great
decline in the attention paid by academic statisticians to graphical representa-
tion of data. Academic statisticians found the new analytical and conceptual
aspects of their field more exciting. Lately, however, there has begun a sub-
stantial change in the attention paid to graphics as an intellectual discipline
with important uses.”
Chernoff, Herman (1978)

Statistical graphics have often been distinguished as whether they are static, interactive,
dynamic, presentation, or exploratory graphics. This chapter begins with a discussion of
these distinctions, focusing mainly on static versus interactive and presentation versus
exploratory graphics. A detailed example of interactive graphics is then given to show the
particular value of interactive graphics in exploratory data analysis.

As all graphics in this thesis are embedded in the R environment, an overview of the base
pre-installed R graphical packages (viz., grid, graphics, and tcltk) is given followed by
a summary of many of the R graphical packages built on the base packages (e.g., lattice,
ggplot2, and loon). Various connections between these packages are shown and the idea
of a software “bridge” from one graphical package to another introduced.

Each graphical package has its own strengths and weaknesses. The idea of a bridge is to
combine the strength of different graphical systems by allowing the user to transform plots
from one graphical system to another. A bridge would allow the user to select whichever
graphical system is best suited to a given purpose and, as the purpose changes, to transform
the graphic to a graphical system better suited to the new purpose. Several examples are

1

given to illustrate the definition of a bridge followed by a more formal description of the
“bridge” as an abstract mapping of elements from one graphical system to elements of
another.

The chapter closes with a brief outline of the remaining chapters of the thesis.

1.1 Interactive Graphics and Static Graphics

In terms of interactivity, a distinction can be made between static graphics and interactive
graphics. Both static graphics and interactive graphics are good for exploratory data
analysis (EDA) where we hope to uncover patterns, both anticipated and unanticipated,
in data, but their aims are different.

“The aim of interactive graphics is not to improve and polish a particular
display till it conveys its message in an effective manner, but to use sets of
displays to explore data sets and discover the information in them.”
Unwin (1999)

Static graphics can be polished so as to present the intended information to the user
as clearly as possible. This is not the strength nor purpose of interactive graphics. Rather
their strengths are that they are the more efficient means for the analyst to discover the
patterns in data in the first place.

Static graphics are typically not changeable after rendering (e.g., after appearing in
a print publication). In a statistical analysis system, functions might be provided which
allow adding to the static graphic after it has been rendered. For example, in the base R
graphics (R Core Team, 2013) package, the function lines() will add lines to the current
plot already rendered. In principle, the whole plot could be constructed via a sequence of
commands that add to the existing display (e.g., axis(), mtext(), etc.).

In contrast, after interactive graphics have been rendered, users are still able to take
an action on the plot resulting virtually instantaneous change of elements (e.g., Becker,
Cleveland, and Wilks, 1988). For example, a simple interaction in the R graphics package
can be realized by the identify(x, y) command. Once identify is executed, the position
of the graphics pointer can be read when the mouse button is pressed over the current plot.
Hitting the escape key causes the end of the execution and the indices to be displayed on
the plot. Other statistical graphical systems allow much more interactivity and more
immediate feedback.

2

Since the earliest systems, data analysts have explored a variety of ways to directly
interact with a statistical graphic. For example, in PROMENADE (Ball and Hall, 1967) (Ball
and Hall, 1970), they considered using a light pen to interact with the graphic and finally
chose to use a “mouse” (described in details in the paper) to select data points or move
items on the screen. In PRIM-9 (Friedman, Fisherkeller, and Tukey, 1974), button switches
were used to interact with the graphic. For example, the coordinate displayed was changed
in the vertical (or horizontal) direction by depressing one of button switches. In ORION I
(McDonald, 1982), a trackerball was used to paint on two linked scatterplots. The cursor
was positioned in the active plot by moving the trackerball – points near the cursor were
colored red, those at an intermediate distance were painted purple, and points far away
from the cursor were blue. The same points on the other plot were given the same color.
Brushing was used by Becker and Cleveland (1987), where the analyst used a mouse to
construct a rectangular region and points within this region would be highlighted. In DINDE
(Oldford and Peters, 1988), contextual menus popped up associated with points or with
whole displays depending on where the user was focusing. Any number of these methods
would be used to interact with a statistical graphic thereafter. For a more complete history,
see, for example, Cook and Swayne (2007) or Wilhelm (2005).

The immediacy of the direct manipulation is associated with the physical proximity
of the means to effect the change to the graphic element being changed. For example, a
“tool tip” might be accessed to provide information about a point by hovering the mouse
over the point being queried. This close proximity between object displayed (the point),
the query or interaction (the hovering mouse), and the rendered result (the displayed tool
tip), provides an immediacy which allows the user to efficiently and effortlessly change the
display without changing their visual focus. In contrast, changing a plot by choosing items
from a distant menu-bar or control panel is an example of a less immediate interaction.
Least immediate might be a command executed in a console to effect the same change.

In this thesis, we distinguish direct manipulation from command-line manipulation
(programmatic interaction) as having interactions be some combination of mouse gestures
(possibly modified by a few keyboard events) conducted near the graphic to be affected.
Ideally, both direct manipulation and command-line manipulation will be available to the
user, for example, see Oldford (1999). The nearer the user’s visual focus remains to the
graphic being changed the more immediate is the direct manipulation.

It is sometimes useful to distinguish those direct manipulations which are immediate
(and proximate to the visual focus) from those which are “mediated” by the user accessing
a control panel, or slider, or any other intermediary display, to effect the changes (and

3

requiring user focus to move from the graphic element)1.

An example of an R package that provides immediate manipulation would be the pack-
age rgl (Adler and Murdoch, 2020), as shown in Figure 1.1 (a). Points and cube are
rotated in the direction of the mouse movement. The whole time, the focus of the viewer
remains on the plot itself.

Figure 1.1: Figure (a) is created by rgl which provides immediate manipulation. Figure
(b) is created by ggvis which provides mediated manipulation via the slider bars. The
size and transparency of the points are changed as we drag the bar.

An example of an R package that provides “mediated” manipulation would be the
package ggvis (Chang and Wickham, 2018), shown as Figure 1.1 (b). Two slider bars
control the size and transparency of points respectively. To modify these two plotting
states, the focus of the viewer is slightly moved away from the plot itself to the values on
the sliders.

The phrase “dynamic graphics” (Cleveland and McGill, 1988) has sometimes been used
to cover both statistical graphics which change dynamically in real time, whether under
user control or not, and what we have called interactive graphics. A better distinction
would be to use “motion graphics” or “kinematic graphics” (or even “animated graphics”)

1“Immediate manipulation” and “mediated manipulation” are sometimes distinguished as direct and
indirect manipulation, such as Swayne and Klinke (1999) and Sievert et al. (2019).

4

to describe graphics changing in real time as if in a motion picture. For example, the plots
in Figure 1.2 can be thought of as five frames of a movie. When played in sequence, the
illusion is created of points moving. Commonplace examples would include animated GIFs
(e.g., Pedersen and Robinson, 2019). The phrase “dynamic graphics” will not be used in
any technical sense in this thesis.

Figure 1.2: It illustrates the life expectancy versus GDP per capita from 1952 to 2007
(the data is contributed by Bryan, 2017). The point colors represent continents (yellow
is Africa; red is American; purple is Asia; green is Europe and blue is Oceania) and the
point sizes represent population. As they five are shown in sequence, the viewer may have
an illusion that the graphic is “dynamic” and points are moving.

1.2 Exploratory Graphics and Presentation Graphics

Graphics can also be distinguished between exploratory graphics and presentation graphics
by audience (e.g., see Theus and Urbanek, 2008).

Exploratory graphics are graphics created in data exploration. Data analysts can create
whatever they want to best discover the particular patterns of interest. They are used
necessarily before presentation graphics.

Presentation graphics are graphics used to present. These plots usually focus on one or
more data sets particular to the analysis to present the result. No changes, or very limited
changes, can be made on these plots.

5

In Figure 1.3 ‘A’, data analysts explore a data set and choose some graphical tools to
convey the statistical summaries. This process is open and graphics created in this process
are called the exploratory graphics. After that, data analysts may share those graphical
summaries to a small group (Figure 1.3 ‘B’); give an on-site talk (Figure 1.3 ‘C’); or hold
an online presentation (Figure 1.3 ‘D’). The graphics we mentioned in ‘B’, ‘C’ and ‘D’ are
curated (pre-designed) and called presentation graphics.

Analysts often alternate between using graphics for exploration and graphics for pre-
sentation. Once an analyst gets feedback or is inspired by a small group or audiences,
presentation graphics can also be turned back to the exploratory graphics to discover more
interesting patterns. Presentation graphics are not necessarily static. Figure 1.3 ‘E’, for
example, is an interactive shiny (Chang et al., 2019) app (Salahub and Oldford, 2018).
The graphics provide some interactions in this presentation. However, the interactions are
limited.

1.3 An Example of Interactive Graphics in EDA

In an exploratory data analysis, we often begin without a complete description of how
the analysis will unfold. Instead, we view different graphics and, depending on what we
see, we may proceed in one direction or another. It is an iterative process where each
step depends upon what was learned before. Since 1960s, Tukey pioneered and promoted
graphical tools as a central tool for exploratory data analysis (e.g., Tukey and Wilk, 1966;
Friedman, Fisherkeller, and Tukey, 1974 and Tukey, 1977). Compared with static graphics,
interactive graphs allow us to make these steps very efficiently through direct manipulation.

When there are multiple logical conditions to be enforced on the display, static graphics
are much slower to reflect results and require relatively more complex means to effect the
changes across multiple displays; than do interactive graphics. Additionally, static graphics
are often displayed on a very limited space (e.g., RStudio), making it hard to compare many
plots simultaneously. In contrast, with interactive graphics, changes are typically reflected
across multiple plots immediately, making it relatively easy to compare multiple plots at
the same time.

This efficiency suggests interactive graphics are well suited to data exploration. To
illustrate, we will investigate how the ratio of coronary heart disease (the number of people
with heart disease to those without heart disease) changes with family history of such
disease and as systolic blood pressure change, using the interactive graphical package loon
(Waddell and Oldford, 2020). The data is from the package loon.data (Oldford and
Waddell, 2020).

6

Figure 1.3: Graphics created in ‘A’ are exploratory graphics. The graphics presented
to a small group (‘B’), a talk (‘C’) or an online session (‘D’) are presentation graphics.
Presentation graphics can be interactive as well, but they are curated and the modifications
are very limited (e.g., plot ‘E’). See Oldford (2019).

7

“Hastie and Tibshirani (1987) selected a subset of 465 subjects from the
3,357 white males (in these communities, male mortality rates were about two
and a half times that of the females; see Rossouw et al., 1983). The 465
subjects consisted of all 162 cases having had coronary heart disease as well as
303 controls sampled from the remaining set of survey subjects.

The same (or similar) data seems to be used again for illustration in Hastie,
Tibshirani, and Friedman (2009) and it is that which is now ported here from
the book’s accompanying website. Curiously, this data set (viz., that recorded
here) contains values on only 462 subjects, of which now only 160 are cases and
302 are controls.”
Oldford (2020b)

Consider the following three variables as described by Oldford (2020b):

• “sbp: Systolic blood pressure in millimetres of mercury (mm Hg).”

• “famhist: Factor indicating presence or absence of a family history of ischaemic heart
disease.”

• “chd: The response, a factor identifying whether the subject had been diagnosed as
having coronary heart disease or not.”

From bar plot 1.4 (a), we observe that the ratio of the coronary heart disease is ap-
proximately 2:1; from Figure 1.4 (b), we observe that the proportion of people without a
family history of heart disease is higher than those with.

We now interactively explore how the ratio changes depending upon whether people
have a family of heart disease or not. Shown as Figure 1.5 (b), when users click on the bar
corresponding to people with family history on plot 1.4 (b), the bar is highlighted (the color
turns to magenta). Since the two barplots are linked, changes on one plot will produce
changes on the other, shown as Figure 1.5 (a). The ratio of coronary heart disease, shown
by the ratio of the highlighted bars in Figure 1.5 (a), is approximately to 1:1. Alternatively,
these changes can be effected programmatically, though this requires typing texts in the
command-line and so not be as immediate.

High blood pressure may be another risk factor for heart disease. Suppose we are
interested in the ratio for those people who either have high blood pressure (“sbp” > 175
mmHg) or have a family history of heart disease. To see this ratio, we first need a histogram
of the “sbp” (as in Figure 1.6 c) that is linked to these two bar plots.

8

(a) (b)

Figure 1.4: They are two linked bar plots. Figure (a) is the bar plot representing heart
disease (‘No’ and ‘Yes’). Figure (b) is the bar plot representing a family history (‘Absent’
and ‘Present’) of heart disease.

To effect this query, we first click on those who have a family history of heart disease as
in Figure 1.5 (b). Then, we need to select the high blood pressure from the “sbp” histogram
as in Figure 1.6 (c). But now with the <shift> key pressed at the same time, so as to
preserve the highlighted bins. Notice this has picked up some people who have no history
of heart disease as seen in Figure 1.6 (b). All three plots reflect these two selections. Now
the ratio can be determined by the highlighted bins in Figure 1.6 (a). While these heights
have been changed (c.f., Figure 1.5 a), the ratio remains the same as 1:1. Many such logical
queries can be made interactively (e.g., see Oldford, 2020a).

All these graphics are interactive exploratory graphics. They are open and flexible.
After exploration, some of these graphics are typically turned into presentation graphics.
The quality of a screenshot of these graphics is not particularly good. For example, the
quality of the display can be low when the screenshot is simply saved as an image. So, a
question may be raised, “how can high quality static graphics for storage or publishing be
produced from an interactive plot?” We will answer this question in succeeding chapters.

9

(a) (b)

Figure 1.5: As these two plots are linked, highlight the barplot (b) will cause changes in
the barplot (a). When a family history of heart disease presents, the ratio of people gets
heart disease is approximately 1:1.

1.4 Graphical Packages in R

R (Ihaka and Gentleman, 1996) (R Core Team, 2013) is one of the most widely used
software in statistical analysis. It provides a free software environment, a large number of
statistical and computing methods, and several elegant graphical packages. Researchers
work both independently and collaboratively to contribute to the R project. As of May
2021, over 17,000 packages have been created on CRAN which cover almost all aspects of
statistics.

In this thesis, all graphics discussed belong to the R system. We begin with an overview
of visualization systems available in R.

1.4.1 Base Graphical Packages

There are over fifty graphical packages in R, among which are the base packages graphics,
grid (Murrell, 2002), and tcltk. They are installed automatically. Nearly all graphical
packages are based on one or more of these three packages. For example,

10

(a) (b)

(c)

Figure 1.6: Conditional on a history of family heart disease (the right bin in Figure b)
or high (> 175mg) systolic blood pressure (the rightmost bins in Figure c), the ratio of
people getting heart disease is approximately 1:1 (i.e., the ratio of the highlighted heights
in Figure a).

11

“The graphics package, which will be referred to as the traditional graphics
system, provides a complete set of functions for creating a wide variety of plots
plus functions for customizing those plots in very fine detail.

The grid package provides a separate set of basic graphics tools. It does not
provide functions for drawing complete plots, so it is not often used directly to
produce statistical plots. It is more common to use functions from one of the
graphics packages that are built on top of grid, especially either the lattice
(Sarkar, 2008) package or the ggplot2 (Wickham, 2016) package.”
Murrell (2018)

The tcltk package provides access to the platform-independent “Tool Command Lan-
guage”, Tcl, and its toolkit, Tk, which were developed by John Ousterhout in the late
1980s. Tcl is a scripting language and Tk provides a number of widgets commonly used
to develop interactive applications. The tcltk package in R combines both and has ev-
erything needed to provide interactive graphics for data exploration. Some comments and
strengths of these three core packages are shown in Table 1.1.

1.4.2 Extensions of the Base Graphical Packages

Most graphical packages rely on one or more of the three packages, as shown in Figure
1.7. There, packages with dark gray backgrounds are pre-installed graphical systems and
most are maintained by the R core team. Packages in light gray are extensions built upon
one or more of the three packages discussed above. Package dependency is represented by
the direction of the arrow. For example, the package ggplot2 is built on top of, and so
depends on, the package grid.

Some graphical packages that provide direct manipulation are built upon tcltk. For
example, the package tkrplot (Tierney, 2021) provides a simple mechanism to place R
graphics in a Tk widget. In contrast, the package loon is a large and extendable toolkit
for data exploration.

The packages diagram (Soetaert, 2020), maps (Becker et al., 2018), tourr (Wickham
et al., 2011), pixmap (Bivand et al., 2021) and gplots (Warnes et al., 2020) are built based
on the base graphical package graphics. The package diagram plots small networks, flow
charts, and webs; maps draws geographical maps; tourr provides a variety of projection
methods for kinematically exploring high dimensional data (e.g., random tour, guided tour,
etc.); pixmap provides functions for import, export, plotting and other manipulations of

12

Table 1.1: Base Graphical Packages in R

packages comments strengths

graphics automatically loaded in
a standard installation
of R; traditional base
graphics

high rendering speed; simple com-
mands; good for prototyping new
graphics; easily customized

grid automatically loaded in
a standard installation
of R; it only provides
low-level, general pur-
pose graphics functions

classic computer graphical abstrac-
tions (viewports, coordinate sys-
tems, clipping, etc.), flexible and
open-ended, excellent for prototyp-
ing (especially complex designs), ar-
bitrary layout

tcltk automatically loaded in
a standard installation
of R; interface to third
party tcltk library

GUI (Graphical User Interface)
toolkits providing powerful mouse
gesture abilities are conveniently
available in R. Graphics can be kine-
matic and interactive.

13

Figure 1.7: It only provides a small collection of R graphical packages and is extended from
the figure in (Murrell, 2018, p. 19) (as shown in Figure A.1, appendix)

14

images; gplots provides a variety of enhanced statistical plots (e.g., balloonplot, barplot2
and hist2d).

Other graphical packages are based on grid graphics. For example, the package vcd
(Meyer et al., 2020) provides tools, such as mosaic plots and sieve displays (Meyer et al.,
2006) to visualize categorical data; grImport enables users to convert, import, and draw
postscript pictures in R plots; lattice (Sarkar, 2008), a pre-installed R graphical system,
implements the trellis graphics for multivariate data (Becker et al., 1996).

The package ggplot2, built on top of grid, implements a grammar of graphics (Wilkin-
son, 2005), providing tools to extend the flexibility of drawing static plots in data analysis.
Over 100 extensions of ggplot2 have been contributed by many researchers. For exam-
ple, the package ggraph (Pedersen, 2021) extends ggplot2 to draw graph and networks;
gganimate (Pedersen and Robinson, 2019) extends ggplot2 to provide kinematic graph-
ics. The packages animint2 (Hocking et al., 2020), ggvis (Chang and Wickham, 2018),
ggedit (Sidi, 2020), esquisse (Meyer and Perrier, 2020) and ggiraph (Gohel and Skint-
zos, 2019), each provide a browser-based interactive graphics from ggplot2. More details
of these interactive graphical systems will be given in Section 3.3.

Some packages depend on more than one of these three graphical systems. For example,
gridBase (Murrell, 2014) is an integration of base graphics and grid graphics. The
package zenplots (Hofert and Oldford, 2019), visualizing high dimensional data via spatial
layout in a zig-zag pattern, implements its plot in the user’s choice of grid, graphics and
loon.

Some graphical systems provide additional graphics devices for R, such as JavaGD
(Urbanek, 2020) which routes all R graphics commands to a Java program, tikzDevice
(Sharpsteen and Bracken, 2020) which records plots in LaTeX, and Cairo (Urbanek and
Horner, 2020) which uses Cairo graphics library for creating high-quality vector (PDF,
PostScript, SVG) or bitmap output (PNG, JPEG, TIFF) as well as high-quality rendering
in screen displays (X11, Win32).

There are other graphical packages entirely separated from the pre-installed ones as
shown within the rectangular region of Figure 1.7. These provide interfaces between R
and third-party graphics. For example, iplots (Urbanek and Theus, 2003), (Urbanek and
Wichtrey, 2018), providing fluid and responsible interactive graphics, even with a million
points, is based on Java; cranvas (Xie et al., 2013), constituted of graphics layers, is based
on Qt; rggobi (Wickham et al., 2006), R implementation of GGobi (Cook and Swayne,
2007), is based on Gtk; rgl (Adler and Murdoch, 2020), providing interactive sophisticated
3D images, is based on OpenGL; the packages shiny (Chang et al., 2019), plotly (Sievert,
2018), and dash (Parmer et al., 2020), each create interactive web graphics, by wrapping

15

Javascript, HTML, and CSS in R functions.

1.4.3 Transformations between Different Graphical Packages

From exploration to presentation, users typically use a single graphical system. There are
many available graphical systems in R and each has its own strengths and weaknesses. To
best achieve a user’s goals, more than one graphical systems may be needed. For example,
one may use interactive plots (e.g., loon) in data analysis to explore the patterns of interest.
After exploration, a web-based app (e.g., shiny or plotly) can be used to present the final
analysis dynamically. However, due to the different design of each graphical system, it is
often difficult for a user to switch from one to another.

Figure 1.8 adds dotted lines which can be imagined as a transformation from one
graphical package to another. For example, the dotted arrow now between grid and
ggplot2 is there, because ggplot2 has its own graphics objects which are displayed by
transforming them into grid objects. The same is true for the dotted arrow between
lattice and grid. Note that there is no dotted arrow between vcd and grid, because vcd
does not have graphical data structures that are transformed to grid objects. One can
imagine a transformation between a lattice object and a ggplot object; then users can
explore and visualize in both graphical systems at the same time. Such a transformation
will be from one static graphical package to another.

Another interesting possible connection could be between loon and iplots. Both are
interactive graphics. The strength of loon is to provide richer direct manipulation tools,
such as a floating palette interface – loon inspector which controls the plot views and
modifications of graphical elements. The strength of iplots is the ability to interactively
visualize a very large number of observations. If the two graphical systems were connected,
loon users who wanted to visualize a million points would turn their loon plots into iplots
plots; iplots users who favoured rich interactive toolkit like loon could do the reverse.
This transformation would be from one interactive graphical package to another.

The package plotly already provides a link which can transform a ggplot object to a
plotly object, which is a Javascript based graphical system. Data structures in ggplot2
are simply transformed to corresponding data structures in plotly. This transformation
is from one static graphical package to an interactive graphical package.

This thesis will focus on transformations between interactive loon plots and plots from
other packages. For example, loon.ggplot (Xu and Oldford, 2019a) transforms an inter-
active loon plot to a ggplot object, back and forth; loonGrob turns an interactive loon

16

plot into a static grid graphic object; loon.shiny (Xu and Oldford, 2019b) renders a loon
plot in a shiny app.

We will call each dotted line connection, shown in Figure 1.8, a “bridge” from one
graphical system to another.

1.5 Bridges

The majority of statistical analysis tools only provide single graphical system for visualiza-
tion. Developers who do not want to constrain users to one specific graphical system might
provide a variety of choices in visualization. For example, zenplots (Hofert and Oldford,
2020) visualizes high dimensional data by laying out alternating one and two dimensional
plots, as shown in Figure 1.9, and allows a user to draw a plot in their choice of graphical
system graphics, grid or loon. The following code shows the construction of a zenplot
on the iris data set (Anderson, 1935) (Fisher, 1936), alternating 2D scatterplots and 1D
histograms, rendered interactive by the package loon.

> library(zenplots)
> # The R package used for plotting , can be one of
> # "grid", "graphics" and "loon"
> p <- zenplot(iris[, -5],
+ plot1d = "hist",
+ plot2d = "points",
+ pkg = "loon")

To accommodate the different graphical systems, the zenplot developers created func-
tions with prefix hist_1d_* and points_2d_* and suffix * given by the value of the pkg
argument (e.g., pkg = “loon” in this case).

The package zenplots provides eleven 1D and seven 2D geometry objects. In other
words, Hofert and Oldford (2020) had to create (11 + 7)× 3 = 54 functions to realize this
accommodation! Due to the dissimilar software models of packages graphics, grid and
loon, it requires a lot of work.

To combine the strengths of different graphical systems, the idea of a “bridge” is intro-
duced. Given a display in the graphical system G, the “bridge” would return the same (or
as similar as possible) display realized in a different graphical system K. With “bridges”,
users who favour multiple graphical systems could transform plots designed for exploration
into plots designed for presentation; developers who want to provide a flexible environment

17

Figure 1.8: The dotted lines can be imagined as transformations. Lines are painted in
three different colors: transformations that are not present are colored red (viz., loon
and iplots, ggplot2 and lattice); purple means that such transformations have already
existed before this thesis; and the green ones represent the transformations to be introduced
in this thesis. A dotted arrow means that ggplot2 (or lattice) depends on grid but also
renders by transforming the ggplot (or lattice) object into a grid object.

18

Figure 1.9: A zenplot of the data set iris.

can focus on their design on one graphical system and use the “bridge” to transform the
plots to other graphical systems. For example, imagine zenplot only provided loon graph-
ics. Rather than re-programming the same functionality in multiple graphical systems, a
“bridge” would transform a loon plot produced to another graphical systems such as grid
or ggplot2.

1.5.1 Bridge Abstraction

In this thesis, the word “bridge” is used to describe a peer to peer transformation from
one graphical system to another (and possibly back). “Transformation” means that objects
recognized in one side are mapped to objects recognized in the other side.

More abstractly, think of this transformation as a mapping f from a graphical system
G with elements g1, . . . , gm to another graphical system K with elements k1, . . . , kn. We
can imagine a function f : G → K that transforms elements in G to elements in K and
possibly another function h : K → G that does the reverse. The bridge is defined by the
sets G and K (and their elements) together with the function(s) f and/or h. If only one
of f and h exist, we say the bridge is “one-way”, and say it is “two-way” if both f and h
exist. Ideally h = f−1, but this need not be the case for a bridge to exist.

To better clarify what is a bridge and what is not, some examples are now given.
Note that as a bridge is more general idea and not necessarily restricted to any particular

19

systems.
An example of something that is not a bridge is the implementation of a bi-directional

link between the geographic information system ArcView (Breslin, 1999) and the interactive
graphical system XGobi (Swayne et al., 1998), as presented by Symanzik et al. (2000). The
two graphical systems were linked by remote procedure call; as each point/location was
brushed in XGobi, corresponding point/location would be highlighted in ArcView. This
linking is not a bridge because no transformations are implemented in this process.

Quail (Oldford, 1998) is an interactive, display-oriented programming environment for
data exploration and visualization. It has a hierarchically organized object-oriented graph-
ical system called Views (Hurley and Oldford, 1988) that renders plots either interactively
on screen (e.g., Mac, PC or X11) for direct manipulation or statically in postscript for
publication graphics, as with zenplots, the users chooses which. As no transformations
are from elements in one graphical system to another, there is no bridge here.

Although, a zenplot can be rendered into a loon plot (or a grid object), but this is
not a bridge. There are no transformations between objects in zenplots package and loon
package (or grid package).

An interesting example of a bridge is to render a ggplot object into a grid object. The
reason is that a ggplot object has its own graphical data structure even without being
drawn. To display a ggplot object (viz., via print() or plot(), see Chapter 3); the data
structures are mapped to corresponding grid data structures. Imagine the plotting engine
is not grid but some other graphical systems such as tcltk. When displayed, elements in
ggplot2 are transformed to tk widgets.

In contrast, a loon plot is always rendered as a tk widget as soon as it is created; a
loon plot must be plotted. Therefore, it is not a bridge between loon and tcltk.

A challenge of the bridge of abstraction is to determine what we mean by a graphical
system G and its elements g1, . . . , gm and by a graphical system K and its elements k1, . . . ,
kn. There are at least two choices for what might be elements in each graphical system
– it might be enough to imagine each element as simply its visual display, that is simply
how it appears when rendered; or, the element might be a visual structure, that is the data
structure(s) which define the visualization.

For visual displays, a bridge would be successful in one direction, from G to K, if kj =
f(gi) for some kj ∈ K such that gi and kj appear to be (nearly) visually indistinguishable
to the viewer. Alternatively, for visual structures gi in G to be successful, kj = f(gi) would
have to contain all the data information of gi as a properly constructed visual structure
of kj in K. Of course, if the visual structure of gi is mapped to the visual structure of kj,
then the visual display must be also mapped. However, the opposite is not always true.

20

An example would be to map a histogram. Imagine a gi is a histogram visual structure,
containing all essential features, such as data, bin-width and bin-origin. Suppose in K,
kj represents a histogram visual structure, but kl represents a visual structure simply
drawing rectangles (e.g., storing xmin, xmax, ymin, and ymax for each rectangle and no
other information that it is a histogram). If gi is mapped to kj, then both the visual
display and the visual structure are mapped; if gi is mapped to kl, then only the visual
display is mapped.

Graphical systems can be roughly characterized according to the level of abstraction
at which they operate. Some, such as grid, have functionality primarily at a relatively
low level of graphical abstraction, such as drawing (e.g., lines, circles, polygons, etc.) and
layout (e.g., graphical parameters, viewports, etc.) functionality common to nearly all
graphics. Slightly higher are functions more tailored to statistical graphics, such as data
determined coordinate systems or even a points function (e.g., to lay out a scatterplot).
Slightly higher again, levels of abstraction are enabled by functions, like gTree, that allow
composition of the elements of a graphic. Other statistical graphical systems, such as
loon and ggplot2, offer primarily functions at a high level abstraction to users, such as
histogram, pie chart, or scatterplot functions, to create complete plots.

When peers G and K have matching abstraction levels, then a bridge is relatively easy
to build, high-level elements to high-level elements and low-level elements to low-level
elements. For example, in the loon.ggplot2 bridge, high-level elements (e.g., histogram,
scatterplot), are matched and low-level abstraction elements (e.g., lines, polygons) are
matched. When peers G and K do not match abstraction levels, typically, two solutions
are considered: 1. extend non-matched elements in K; 2. break high-level elements down
to several low-level elements (e.g., histogram to rectangles).

In all cases, we would like the visual displays to be as similar as possible, if not mapping
exactly. Ideally, the two would also match on level of abstraction.

1.6 Thesis Overview

Bridges between four key graphical packages will be the main focus of this thesis. The
package loon provides both direct and command-line manipulation allowing users to change
elements of a plot by a mouse and programmatically. Ggplot2, implementing a grammar
of graphics in R, has many handy functions to produce high quality graphics for data
analysis. Grid is a core, pre-installed graphical package, mainly providing functionality
at a relatively low level abstraction. Shiny, providing web applications, is often used for
interactive presentation graphics.

21

Bridges would allow users to transform from one graphical system to another. For
example, using interactive graphics loon for data exploration and transforming a subset
of these to an interactive shiny app or static ggplot2 or grid graphics for presentation,
as shown in Figure 1.8. Furthermore, a bridge from loon to ggplot2 graphics could then
be followed, by the bridge ggplotly (contributed by plotly), to transform a loon display
to a plotly display in two steps.

When building a bridge from one graphical system G to another graphical system K,
it is important to first consider the level of abstraction of each graphical system. When
the levels of abstraction match (either at a high-level or a low-level), then, it should be
straightforward to match visual structures. Matching the visual displays should follow
from matching the visual structures.

It may still be the case that some element gi of G has no counterpart in K. To complete
the bridge from G to K, K would have to be extended to include an element ki to match gi.
Conversely, an element kj in K might have no counterpart in G so that not all elements in K
are reachable by a bridge from G to K without first extending G. For example, in Chapter
2, the graphical system loon (G) is extended by adding facet plots as in the graphical
system ggplot2 (K), and in Chapter 3, the graphical system ggplot2 (K) is extended by
the package ggmulti to match some of the high dimensional graphics, available in loon
(G).

When the levels of abstraction do not match, for instance, the graphical system G
mainly provides high-level elements and the graphical system K mainly provides low-level
elements, then most high-level elements gi, . . . , gn in G will not have exact counterparts in
K. Visual structures are not easily mapped without creating high level visual structures in
K, effectively changing K from its low level design. Alternatively, we could treat elements
g1, . . . , gn in G as visual displays and reproduce them in K using only the low level abstrac-
tions of K. For example, in Chapter 4, a histogram (gi) in loon (G) is expressed in grid
(K) as a number of stacked rectangles (ki) using the low level grid abstraction rectGrob
because no histogram abstraction exists in grid.

In this thesis, three bridges are introduced and discussed, loon.ggplot (a two-way
bridge), loonGrob (a one-way bridge) and loon.shiny (a one-way bridge). Each of these
bridges encounters one or more of above issues in their construction. The issues and how
they were resolved, as well as shortcomings of the solutions, will be discussed.

The package loon is reviewed in Chapter 2 and new functionality, such as l_facet,
is introduced in Section 2.4 to extend loon. This extension is needed to accommodate a
bridge between loon and ggplot2. Similarly, the graphical system ggplot2 is extended in
Chapter 3 by functionality in a new auxiliary package ggmulti (Xu and Oldford, 2020).

22

This extension adds more elements (e.g., non-primitive glyphs and serialaxes plots) for
ggplot2.

Chapter 3 describes in detail a two way bridge between loon and ggplot2. As loon
and ggplot2 generally match levels of abstraction, the bridge maps visual structures of one
graphical system to those of the other. For example, geom_point structures in ggplot2 are
mapped to interactive scatterplots (or point layers) in loon and geom_histogram structures
to interactive histograms (or rectangular layers). In this way, for most cases, the visual
structures are mapped from one system to the other.

However, for some elements, there are no counterparts in loon to match the elements
in ggplot2 (e.g., a ggplot pie chart cannot be mapped to an interactive loon pie chart).
In this case, either the visual display (e.g., see Figure 3.10) is mapped, or no mapping at
all is provided (e.g., see Figure 3.11). As not all visual structures are perfectly mapped
from ggplot2 to loon, the bridge in this direction could be improved only by a substantial
extension to loon that is not considered in this thesis (see Section 7.4).

In Chapter 4 and 5, two one-way bridges are introduced, loonGrob and loon.shiny.
The loonGrob bridge maps a loon visual display to a grid visual display. All high-level
elements in loon, such as a histogram, can be broken down into low-level ones (e.g.,
rectangles) and mapped to their counterparts in grid. In the loon.shiny bridge, a loon
visual display is mapped first to a grid visual display via the loonGrob bridge, then
control features (e.g., buttons, slider bars, etc.) are added in shiny to render the grid
visual display interactive in shiny.

In Chapter 6, a new package loon.tourr is introduced. We use only the tour engine
from tourr and replace the non-interactive kinematic tourr graphics by interactive loon
graphics. This is not a bridge (because no transformations are from graphical elements in
tourr to graphical elements in loon); it is an extension of loon that provides interactive
tours on high dimensional data.

In the last chapter, we review our work, discuss benefits and limitations of bridges, and
suggest some future work.

23

Chapter 2

Loon

The package loon (see https://great-northern-diver.github.io/loon/) (Waddell and Old-
ford, 2020) is an interactive toolkit designed for open-ended, creative and unscripted data
exploration, allowing both immediate and mediated manipulation when interacting with a
plot. Immediate manipulation is often realized by a mouse or keyboard gestures. Mediated
manipulation is supported by a floating palette interface – loon inspector (a GUI that can
be used to modify plotting states).

Loon is the backbone of this thesis where all the bridges are established as connections
with it. This chapter begins with introducing the loon data structure (details see Waddell,
2016). Typically, loon has three different structures, model layer, dependent layer and
compound object. Model layer is the main graphics model (e.g., scatterplot, histogram,
etc.), controlling the interactivity of a loon plot. Dependent layer controls the primitive
visuals (e.g., l_layer_lines, l_layer_polygons, etc.) or adds additional functionality
(e.g., l_navigator) to a model layer. An overview of five model layers (viz., l_plot,
l_plot3D, l_hist, l_graph and l_serialaxes) and five dependent layers (viz., l_layer,
l_graphswitch, l_navigator, l_context and l_glyph) is given followed by a summary
of states controlling their appearance (e.g., plot region, data, aesthetic attributes, linking,
selection and etc.).

Compound object, l_compound, is a new data structure. It is a compound of loon
widgets working together to explore data. We focus mainly on two l_compound objects,
an l_pairs plot and an l_facet plot. In an l_pairs plot (in Subsection 2.4.2), more
than a scatterplot matrix, histograms and a high dimensional visualization plot (parallel
or radial coordinate plot) can be added. In an l_facet plot (in Subsection 2.4.3), a loon
plot is partitioned into multiple plots where each represents a subset of data.

24

https://great-northern-diver.github.io/loon/

Before we start, here’s a quick clarification on widget and object. Typically, a widget
means a tcltk data structure, such as l_plot widget and l_layer widget which are mostly
written in tcltk. An object often refers to an R data structure, such as l_compound
object. Essentially, an l_compound object is a list and each element in this list is a loon
widget.

2.1 Loon Data Structure

A loon plot has its own data structure with certain functionality, as shown in Figure 2.1.
The dashed line represents is. For example, an l_plot3D widget is an l_plot widget,
which is a loon widget; an l_facet object is an l_compound object, which is a loon
object.

The solid line represents contain. For example, an l_ts object contains l_plot widgets
and l_layer widgets.

The curly brace represents potentially contain. For example, an l_facet object poten-
tially contains l_plot widgets, l_hist widgets, or l_serialaxes widgets. An l_pairs
object contains l_plot widgets, but it also potentially containsl_hist widgets or an
l_serialaxes widget.

Other than naming with the word “loon”, three colors, dark gray, light gray and black,
are also used to represent three different loon models. Dark gray represents a model
layer which is the only interactive one and allows contents to be accessible via direct
manipulation. Light gray represents a dependent layer which must be attached onto a
model layer and cannot be created independently. Black represents a compound object
that consists of several model layers.

All loon widgets have plotting states which can be queried or changed. For example,
in following code, an l_plot widget is assigned to a plot handle p. The states can be
queried by the function l_cget() and modified by the function l_configure() through
this handle p.

> p <- l_plot(x = 1, y = 1,
+ color = "black")
> # query the color of p
> l_cget(p, "color")
"#000000000000" # black 12 digits hex code
> # modify the color of ‘p‘ to red
> l_configure(p, color = "red")

25

Figure 2.1: The loon data structure

26

> l_cget(p, "color")
"#FFFF00000000" # red 12 digits hex code.

2.2 Model Layer

Currently, loon has five model layers, which are l_plot, l_plot3D, l_hist, l_graph and
l_serialaxes.

2.2.1 Plot Region

Widgets l_plot, l_plot3D, l_hist and l_graph display data in the Cartesian coordinate
system so that they share similar states which are displayed in Table 2.1. An l_serialaxes
widget is embedded in the parallel or radial coordinate system which does not share the
same graphical states.

Table 2.1: Plot Region

l_hist l_plot l_plot3D l_graph l_serialaxes Dim Type Default

————— panX, panY —————— 1 double
———— zoomX, zoomY —————– 1 pos.double
———— deltaX, deltaY —————— 1 pos.double 5/6
———— minimumMargins ————— 4 nneg.int (20,20,20,20)
———— labelMargins ——————– 4 nneg.int (30,30,60,0)
———— scalesMargins ——————- 4 nneg.int (30,80,0,0)
—————– swapAxes ——————– 1 boolean FALSE

The states panX, panY, zoomX, zoomY, deltaX and deltaY define the data coordinate.
The left bottom corner of the data coordinate is [panX, panY] and the top right corner is
[panX + deltaX

zoomX , panY + deltaY
zoomY]. To map the data coordinate to the plot region is to map

[panX, panY] and [panX + deltaX
zoomX , panY + deltaY

zoomY] to [0, 0] and [1, 1] respectively.

A main graphics model splits the display area into four regions, illustrated in Figure
2.2. The three states minimumMargins, scalesMargins and labelMargins control the size
of the margin region, the scales region, and the labels region respectively. Each state is a
4 dimensional vector representing the bottom, left, top and right margins (in pixel).

27

Figure 2.2: The margins of a main graphics model

2.2.2 Data

Table 2.2 shows the input data of each model layer. An l_hist widget is to display a one
dimensional loon histogram. The data in an n-dimensional state x is binned before it is
displayed. Any changes of attributes (see Subsection 2.2.3) may cause a re-binning of x
data so that the display is changed accordingly.

An l_plot widget is an interactive scatterplot. The states x and y are used to locate
the points. Meanwhile, it also provides states xTemp and yTemp. The dimensions of these
two are either 0 or n. If they are not length 0, the scatterplot will display those temporary
coordinates rather than the real coordinates in x and y. The l_plot3D widget is a 3D
interactive scatterplot, controlled by states x, y, and z.

A graph display is closely related to a scatterplot display; however, the n dimensional
state is now nodes. Edges connect nodes and are specified by the attributes from and to.
The boolean state isDirected specifies whether edges have directions.

An l_serialaxes widget provides tools to visualize high dimensional data interactively.
Data is rendered into a parallel coordinate or a radial coordinate. Each column of the data
frame is placed on each axis and each row of the data frame is displayed as an individual
line.

28

Table 2.2: Data

l_hist l_plot l_plot3D l_graph l_serialaxes Dim Type Default

x ——————x, y—————— n double
z n double

———–xTemp, yTemp———– 0||n double
data n data.frame

nodes n string
from, to p string
isDirected 1 boolean

2.2.3 Attributes

Table 2.3 shows the attributes of each model. The active state is a length n boolean
vector to control the visibility of elements (e.g., points, bins, lines) for all models. Once
the ith one is set as FALSE, then the ith element is invisible.

Colors in loon use the Tk color specifications which are a 12 digit hexadecimal color
representations. No transparency is allowed.

Querying is one of the most intuitive interactions in interactive graphics. It is a natural
way to display detailed information associated with an element (e.g., a point in a scatterplot
or a line in a serialaxes plot). In loon, one can customize the information displayed in a
toolbox by modifying the itemLabel state. For example, in Figure 2.3, the toolbox shows
the detailed aspects of the automobile design (e.g., model, year, drv). Once, the mouse
hovers over the top-most point, the motor vehicle’s information (e.g., “year”, “drive way”
and “fuel type”) is displayed.

The tag state is often used in the item bindings which is described in details in Waddell
(2016) (Chapter 5).

The by state is to split the data into subsets and display each subset of interest in
different panels. More details will be described in Subsection 2.4.3.

A binning origin of an l_hist widget is controlled by the state origin which determines
where to start counting the bins. The default value is the minimum value of x. A binwidth
can affect the shape of a histogram and different bin sizes could reveal different features of
data. In general, bins need not be of equal width. However, so far, l_hist only accepts an
equal bin width and the default is computed by Scott (2015) rule. In l_hist, the x data

29

Table 2.3: Attributes

l_hist l_plot l_plot3D l_graph l_serialaxes Dim Type Default

————————— active —————————– n boolean TRUE
————————— color ——————————- n string gray60

—————— size —————— n double 4
—————— glyph —————– n string ccircle
————— itemLabel, tag —————— n string item0,...,n-1

—————— by————— —————– 0||n string NULL
origin 1 double min(x)
binwidth 1 double Scott’s Rule
yshows 1 string frequency|density
colorStackingOrder g string selected

rotate3DX 1 double 0
rotate3DY 1 double 0
axesCoords 3 list (1,0,0)(0,1,0)(0,0,1)

activeNavigator 0||1 string char(0L)
activeEdge p boolean TRUE
orbitDistance 1 double 15
orbitAngle n double evenly 0 ∼ 2π
colorEdge p string black

linewidth n pos.double 1
scaling 1 string variable|data|

|observation|none
axesLayout 1 string radial|parallel

andrews 1 boolean FALSE
sequence p string column.names

‘g’: the number of groups; bold string are the default one of the multiple choices

30

Figure 2.3: The data we used is mtcars which was extracted from the 1974 Motor Trend US
magazine (Henderson and Velleman, 1981). It comprises the fuel cost and eleven aspects of
automobile design (e.g., the number of gears, horsepower, etc.) for 32 automobiles. Here
is a scatterplot of the vehicle’s horsepower versus miles per gallon.

31

is partitioned into a selected group and separate groups (each group is in one color). A
histogram for each group is stacked in order in the display – the selected bins are placed
at the bottom and the remaining bins are stacked. One can modify the stacking order via
the colorStackingOrder state.

In a loon 3D plot (an l_plot3D widget), the rotation mode can be turned on by typing
the <R> key on the keyboard. One can either left click the mouse or press the arrow keys
to rotate the plot. The states rotate3DX and rotate3DY represent the rotation angle in
the horizontal and vertical direction respectively. The axesCoords state is a matrix of
projection vectors to draw the axis visual. In the end, typing the <R> key again will turn
off the rotation mode. Then, one can select or brush as any l_plot widget.

Figure 2.4 shows a loon graph. orbits are labels of nodes. Once a node is deactivated,
the node, its orbit and all edges connected with the node will be invisible immediately.
The large orange node on the right is called navigator. Usually, more than one navigators
can be added onto a loon graph. Details will be introduced in Subsection 2.3.2.

Figure 2.4: A loon nav-graph

In a loon serialaxes plot, the scaling state determines the way to map data to a plot
region. The mathematical expressions are shown in Subsection 4.3.2. The axesLayout
state is to specify the coordinate system, either radial or parallel.

32

If the boolean state andrews is set to be TRUE, then an Andrews curve (Andrews, 1972)
is created (shown in Figure 2.5), as in

> s <- l_serialaxes(iris[, -5], andrews = TRUE ,
+ color = iris$Species ,
+ title = "Andrews Curve",
+ showGuides = FALSE ,
+ axesLayout = "parallel")

Figure 2.5: Andrews curve of iris data set

The sequence state defines the axes sequence of the variables and the default is all
columns of the input data.

2.2.4 Linking and Selection

Table 2.4 illustrates the linking and selection states of each loon model. Loon’s standard
linking model is based on three states, linkingGroup, linkingKey and linkedStates.
The default linkingGroup is none which leaves a display un-linked.

Observations in a loon plot are uniquely identified (for the purpose of linking) by their
linkingKey. Within the same linkingGroup (not none), the same element (determined

33

Table 2.4: Linking and Selection

l_hist l_plot l_plot3D l_graph l_serialaxes Dim Type Default

———————— linkingGroup —————— 1 string none
———————— linkingKey ——————— n string (0,...,<n-1>)
———————— linkedStates ——————- string

———————— selected ———————— n boolean FALSE
—————- selectBy —————– 1 factor sweeping|brushing
————- selectionLogic ————- 1 factor select|deselect|invert

by linkingKey) in different displays will share the same visual features (linkedStates).
The available linkedStates are the n-dimensional attributes listed in Table 2.5 (the bold
ones are the default linked states).

Selection is one of the most fundamental tools in interactive graphics. A subset of
visual objects of interest can be highlighted. In a scatterplot, the visual objects are point
glyphs; in a histogram, they are bins; in a graph, they are nodes and in a serialaxes plot,
they are lines. Note that only the active (visible) elements can be selected.

There are three selectionLogics in loon: select, deselect and invert. The first
highlights observations as selected; the second downlights them; and the third inverts them
(downlighting highlighted observations and highlighting downlighted ones).

In loon, selection comes with two modes. Default is sweeping where a rectangular
region is reshaped or “swept” out to select observations; alternately brushing will indicate
that a fixed rectangular region is moved about the display to select observations.

2.2.5 Non-data Element States

All non-data element states are listed in Table 2.6. When the showItemLabels is set to be
TRUE, hover the mouse over a point (in scatterplot) or a line (in serialaxes plot), a toolbox
will be displayed (as Figure 2.3). When the boolean state showLabels or showScales
is FALSE, the labels or scales (axes) will be invisible (meanwhile, the labels margin or the
scales margin, as shown in Figure 2.2, will be set as [0, 0, 0, 0]). When the state showGuides
is TRUE, the guidelines will show up to help determine point locations.

34

Table 2.5: Linkable States

Model Layer linked States

l_hist selected, active, color
l_plot selected, active, color, size, glyph, itemLabel, tag
l_plot3D selected, active, color, size, glyph, itemLabel, tag
l_graph selected, active, color, size, glyph, itemLabel, tag
l_serialaxes selected, active, color, linewidth, itemLabel, tag

The showBinHandle state turns the graphical element on and off for an l_hist
widget. If TRUE, with the binwidth-handle, one can adjust the bin width or the bin origin
directly on the graphic.

The boolean state showStackedColors controls whether bins could be partitioned into
several groups; if FALSE, all non-selected bins are partitioned into one single group and
colored thistle (default).

In a serialaxes plot, axes, labels, axesLabels are shown in Figure 2.6. They can be
turned on and off by setting states showAxes, showLabels, and showAxesLabels. The
default geometric elements are lines (i.e., showArea = FALSE). When the state showArea
is set as TRUE, the geometric elements are polygons.

2.3 Dependent Layer

A dependent layer cannot be created alone and must be attached onto a model layer. It
does not support linking or selection. Table 2.7 shows the model layer of each dependent
layer.

The geometric layer visuals, l_layer widgets can only be embedded on the main graph-
ics model (e.g., scatterplot, histogram and graph); an l_graphswitch widget provides a
graphical user interface element for switching graphs interactively; an l_navigator widget
turns a graph into a navgraph and the meaning of a navigator’s position on the graph can
be defined by an l_context widget; in a scatterplot, the l_glyph widget assigns each
point an additional visual representation.

35

Table 2.6: Non-data Element States

l_hist l_plot l_plot3D l_graph l_serialaxes Dim Type Default

——————– background —————– 1 color white
——————– foreground —————— 1 color black
————– guidesBackground ————– 1 color gray92
——————– guidelines ——————- 1 color white
——————————— title —————————— 1 string
———————– xlabel ——————— 1 string x.name
———————– ylabel ——————— 1 string y.name
———————- showScales —————- 1 boolean FALSE

—————- showItemLabels ——————– 1 boolean FALSE
—————————- showLabels ————————– 1 boolean TRUE
—————————– showGuides ————————- 1 boolean TRUE
showBinHandle 1 boolean FALSE
showOutlines 1 boolean TRUE
showStackedColors 1 boolean TRUE
colorFill 1 color thistle
colorOutline 1 color black

showArea 1 boolean FALSE
showAxesLabels 1 boolean TRUE
showAxes 1 boolean TRUE
axesLabels p string col.names

Table 2.7: Dependent layer

Dependent layer Model layer

l_layer l_hist, l_plot, l_plot3D, l_graph
l_graphswitch l_graph
l_navigator l_graph
l_context l_navigator
l_glyph l_plot, l_plot3D, l_graph

36

Figure 2.6: Non-data element states in a serialaxes plot

37

Table 2.8: one-dimensional l_layer object

l_layer_ text line polygon rectangle oval Dim Type

Data ———————- x ———————- 0||1 double
———————- y ———————- 0||1 double

Attributes —————— color ———————– 0||1 color
—————— tag ————————– string
—————– itemLabel —————— string

—————- linewidth ————— 0||1 color
———- linecolor ———- 0||1 color

text 1 string
angle 1 double
anchor 1 string
justify 1 string

dash 0||1 pos.int

2.3.1 l_layer

The one-dimensional geometric layering visuals supported by loon are illustrated in Table
2.8. One-dimension means that x and y are 1×k numerical vectors where k is determined
by the geometric object. For a text visual, k is 1; for a rectangle or oval visual, k is 2; for
a line or polygon visual, k can be any number greater than or equal to 2.

For closed geometric objects (i.e., polygon, rectangle and oval), the color state repre-
sents the filled color. The states anchor and justify control the direction of a text to be
displayed in the widget. The state anchor must be one of the values “n”, “ne”, “e”, “se”,
“s”, “sw”, “w”, “nw”, or “center”, as shown in Figure 2.7 (a). The state justify is to align
different text lines and must be one of the “left”, “center” and “right”, as shown in Figure
2.7 (b).

Table 2.9 shows the p-dimensional geometric layering visuals. The x and y are p
dimensional states. For texts or points, the dimension is p×1; for rectangles, the dimension
is p × 2; for lines or polygons, the dimension of each element (i.e., a line or a polygon)
is 1 × kj, where kj ≥ 2 and j ⊆ [1, ..., p]. The p dimensional ones have a state active,
controlling the visibility of each element. It is a length p boolean vector.

38

(a) (b)

Figure 2.7: Figure (a) and (b) show the text anchor and justify. In (a), the pink dot is
the reference of the position; in (b), from top to bottom, the justify is “right”, “center” and
“left”.

Table 2.9: p-dimensional l_layer object

l_layer_ texts points lines polygons rectangles Dim Type

Data ————————— x ———————— p double|list
————————— y ———————— p double|list

Attributes ——————— active ———————– p color
——————— color ———————— p color
——————— tag ————————— string
———————- itemLabel —————— string

—————— linewidth ————— p color
—————— linecolor —————- p color

text p string
angle p double
anchor p string
justify p string

size p string
dash p pos.int

39

Table 2.10: Attributes of l_navigator, l_graphswitch

l_navigator l_graphswitch Dim Type

activewidget 1 string
tag string
color 1 color
animationPause 1 double
animationProportion-

Increment 1 double
scrollProportionIncrement 1 double
from string
to string
proportion 1 double
label 0||1 string

2.3.2 l_navigator and l_graphswitch

Navigators (the large orange node shown in Figure 2.8) could turn a graph into a navgraph
(Hurley and Oldford, 2011) and can only be dragged along the edge (path). A graphswitch
widget provides tools to switch the graphs interactively. Table 2.10 shows the states of
these two widgets.

In Figure 2.8, for example, the interface surrounded by a red region is a graphswitch
widget. The current activewidget is a 3D transition. It can be switched to a 4D transition
or a 3D and 4D transition directly.

The three states animationProportionIncrement, scrollProportionIncrement and
animationPause control the moving speed of a navigator. The first controls the proportion
increment in animation; the second controls the delay in ms before moving the navigator
to the next position; and the third controls the proportion increment when moving the
navigator with the mouse scroll wheel.

The from, to and proportion states record the trace of a navigator (the trace is
highlighted in orange). For example, in Figure 2.8, a thick orange line is a from path,
while a thin orange line is a to path. The navigator moves from A:B to A:D, then to C:D
and pauses in the half way of the A:D and C:D. Thus, the from state is [‘A:B’, ‘A:D’], the
to state is [‘C:D’] and the proportion state is 0.5.

40

Figure 2.8: The graph switch and navigator

2.3.3 l_context

Contexts are implemented in a navgraph, providing standard graph semantics. Every move
of a navigator will execute the callback function defined by the command state. Table 2.11
shows the states of an l_context widget.

Table 2.11: l_context

l_context_ context2d geodesic2d slicing2d Dim Type

Attributes ——————- command ——————— 1 string
——————- separator ——————— 1 string
—————– interchange4d —————— 1 blooean

———— data ————— p string
scaling 1 string
proportion 1 double

conditioning4d 1 string

Three contexts context2d, geodesic2d and slicing2d specify three different aspects
of a navgraph. The context2d maps every location on a graph to a list of x and a list of

41

y; the geodesic2d maps every location on a graph as an orthogonal projection of the data
onto a two-dimensional subspace; the slicing2d context implements slicing by navigation
graphs and a scatterplot to condition on one or two variables.

The state separator is a symbol to separate variable names in the nodes of a 2D graph
(e.g., “:” in “A:B”). In a 4D transition, for example, in a R4 space, “A:B” to “C:D”, if the
state interchange4d is set as TRUE, then the column space A is projected onto the space
D and B is projected onto the space C; else the column space A is projected onto C and B
is onto D.

The state data contains the data used for projections. Note that the variable names of
the data state need to match the node names of a graph. The state scaling determines
how the data is scaled to the projection. It could be one of the variable, observation
and none (see Subsection 4.3.2 for mathematical expressions).

In the slicing2D context, the state proportion presents the navigator location along
the edge to the total length of the edge. The conditioning4d specifies the conditioning
method with a 4D edge transition and has to be one of intersection (default), union
and sequential (see Waddell, 2016, Chapter 4 for more details).

2.3.4 l_glyph

Glyphs are typographical symbols that are used to introduce items in a plot. Typically,
the primitive glyphs are also known as “bullets” in various shapes (e.g., circle, triangle,
rectangle and etc.). For each shape, it could be either empty , solid or filled .

Except these primitive glyphs, loon provides non-primitive glyphs that conveying more
information for each point. This information could range from providing a more evocative
picture for each point (e.g., a flag for countries’ data) to incorporating quantitative infor-
mation. Table 2.12 shows the states of loon non-primitive glyphs and Figure 2.9 illustrates
each of them.

Some aesthetic attributes of an l_glyph widget, such as color, size and coordinates,
are determined by its model layer – a scatterplot display. The states shown in Table 2.12
are used for specific glyphs.

A pointrange glyph represents a vertical interval defined by ymin and ymax. When
showArea is TRUE, the shapes of points are empty; else, they are solid. In a polygon glyph,
states x and y contain the bounding coordinates of the vertices of the polygon. When
showArea = TRUE, the polygon will be filled. A serialaxes glyph shows either a radial

42

Table 2.12: l_glyph

l_glyph_ text pointrange polygon serialaxes image Dim Type

data ymin, ymax n double
x, y n double

data n data.frame

Attributes text n string
————- linewidth ———— n double

sequence p string
scaling 1 string
axesLayout 1 string
andrews 1 boolean

images n string

Non-
data
Element
States

————- showArea ———— 1 boolean

showAxes 1 boolean
showEnclosing 1 boolean
axesColor 1 color
bboxColor 1 color

or a parallel coordinate glyph by the optional data. In an image glyph, a picture is used
to represent an individual point.

2.4 Compound Object

An l_compound object is a list with named elements, each represents a separate interactive
loon widget and typically, all plots are linked. Currently, loon provides five compound ob-
jects, l_navgraph, l_ng_plots (details of these two are shown in Waddell, 2016, Chapter
7), l_ts, l_pairs and l_facet.

43

Figure 2.9: Loon non-primitive glyphs. From left to right, the glyph is image, polygon,
radial axes, point range and text

2.4.1 l_ts

An l_ts object is created from a decomposed.ts (by the function decompose()) object or
an stl object (by the function stl()) (R Core Team, 2013). It has four interactive scat-
terplots, from top to bottom, drawing the original data, the seasonal component, the trend
component and the residuals component (remainders). All four plots are linked so that
changes on the plotting states (e.g., color, selected, active and etc.) are synchronized.

2.4.2 l_pairs

An l_pairs object of the initial version is a basic scatterplot matrix, as shown in Figure
2.10 (a), containing a collection of scatterplots organized into a grid. All plots are linked.
Each shows the relationship between a pair of variables. Scales are aligned either vertically
or horizontally; therefore, the patterns can be diagnosed between two plots sharing the
common axis.

In version 1.2.2, we re-implement it and add new features, such as adding histograms
and a serialaxes plot to a pairs plot, as in
> pairs <- l_pairs(iris[, -5],
+ showHistograms = TRUE ,
+ histLocation = "edge",
+ showSerialAxes = TRUE)

In the plot shown below, the histograms are displayed on the edge (the other option is to
lay diagonally) and a parallel coordinate plot is displayed in the lower triangle (bottom

44

(a) (b)

Figure 2.10: A loon pairs plot. The (a) is a traditional scatterplot matrix. In (b), six his-
tograms and a parallel coordinate plot are packed. All these plots (including scatterplots)
are linked and some states (e.g., selected, color) are sharing.

45

left corner), as shown in Figure 2.10 (b). Each has a set of linked states associated with
others so that all plots will change simultaneously whenever linked states get changes in
any plot.

In a loon pairs plot, the vertical scaling is synchronized in each row and the horizontal
scaling is synchronized in each column. The states zoomY, deltaY and panY of plots
in the same row are identical, so do the states zoomX, deltaX and panX of plots in the
same column. For example, in Figure 2.11, the scales of scatterplot “Petal.Width” versus
“Sepal.Width” (the center one in this grid) are panned towards the top right. The direction
and the moving distance forms a vector that is able to be decomposed into two orthogonal
vectors. All plots in the same column move along horizontally and all plots in the same
row move along vertically.

Figure 2.11: Scaling synchronization in a loon pairs plot. The center scatterplot is moving
towards the north east. Then, all plots sharing the same vertical scaling would move
towards the north and all plots share the same horizontal scaling would move towards the
east.

46

The names of each plot are the layout positions. For example, the name of the scatter-
plot, “Sepal.Width” versus “Sepal.Length”, is “x2y2” (the order is from left to right, from
top to bottom). No names are given to a serialaxes plot because at most one serialaxes plot
can be displayed in an l_pairs object and the layout position must be the lower triangle.

2.4.3 l_facet

With facets, the original plot can be partitioned into multiple panels and each panel il-
lustrates one subset of data. The motivation of creating the l_facet object comes from
transforming a ggplot2 object to a loon widget (discussed in Chapter 3). The pack-
age ggplot2 provides Facet components to assign data to different panels, which is not
available in loon before version 1.3.0.

Table 2.13 shows an arbitrary data set. With the data, the following code creates a
loon scatterplot, as shown in Figure 2.12,

Table 2.13: Arbitrary Data

Data Coords Factor 1 Factor 2 color

observation 1 (1,1) A C red
observation 2 (2,2) A D red
observation 3 (3,3) A C blue
observation 4 (4,4) B D blue
observation 5 (5,5) B C blue
observation 6 (6,6) B D blue

> color <- c(rep("blue", 2), rep("red", 4))
> fp <- l_plot(x = 1:6, y = 1:6, size = 50,
+ color = color)
> g <- l_glyph_add_text(fp, text = 1:6)
> fp[’glyph’] <- g

In loon, facets are created in two ways: from an existing loon plot (by the function
l_facet()) or ab initio at the time that the loon plot is created (by setting argument by).

47

Figure 2.12: Plot for the arbitrary data set

Argument by

The widget fp can be split by:

• the n-dim states: color, size, glyph (see Table 2.3), as in

> f1 <- l_facet(fp, by = "color")
> # which is equivalent to
> # f1 <- l_plot(x = 1:6, y = 1:6, size = 50,
> # color = color , by = "color")

f1 is an l_facet object composed of two loon scatterplots: one has two blue points
with label 1, 2 and the other has 4 red ones with label 3, 4, 5 and 6, as shown in
Figure 2.13 (a).

• an n-dim data frame or list, as in

> multiFac <- data.frame(Factor1 = c(rep("A", 3),
+ rep("B", 3)),
+ Factor2 = rep(c("C", "D"), 3))
> f2 <- l_facet(fp, by = multiFac)
> # which is equivalent to

48

> # f2 <- l_plot(x = 1:6, y = 1:6, size = 50,
> # color = color , by = multiFac)

In Figure 2.13 (b), the original data (with 6 observations) is split into four groups by
this arbitrary data frame “multiFac” where the observation 1 and 3 are in the group
“A:C”; the 2 is in group “A:D”; the 4 and 6 are in group “B:D” and the 5 is in group
“B:C”.

• a formula, as in

> f3 <- l_facet(fp, by = Factor2 ~ Factor1, on = multiFac)
> # which is equivalent to
> # f3 <- l_plot(x = 1:6, y = 1:6, size = 50,
> # color = color , by = Factor2 ~ Factor1,
> # on = multiFac)

f3 is identical to f2, as shown in Figure 2.13 (b). An optional data frame on contains
the variables in this formula. When the variables are not found in the data frame
on, they are taken from the environment, typically the environment from which the
function is called. Note that, the formula also accommodates n dimensional states.
For example, setting by = ∼ color will return a identical graph as Figure 2.13 (a).

Argument layout

The function l_facets() provides three layouts, “grid”, “wrap” and “separate”.

• layout = “grid”: by default; the panels are packed in two dimensions, row and
column, as in

> # facet grid (# same as ‘f2’)
> f4 <- l_facet(fp, by = multiFac , layout = "grid")

Figure 2.13 shows the “grid” layout. The values of the “Factor1” is spread down the
rows and “Factor2” is spread across the columns. If the by is a formula, the variables
before the tilde will be taken as the row names (vertically) and the ones after the
tilde will be considered as the column names (horizontally).

• layout = “wrap”: makes a long ribbon of panels and wraps it into 2D, as in

> # facet wrap
> f5 <- l_facet(fp, by = data , layout = "wrap")

49

(a) (b)

Figure 2.13: The logic is set by argument by which accommodates three types: an n
dimensional state, a data frame and a formula.

In Figure 2.14 (a), a long ribbon of four panels are wrapped in a 2 × 2 table. The
arguments nrow and ncol control the number of rows and columns. If not set, the
function n2mfrow() is applied to find an appropriate number of rows and columns.

• layout = “separate”: the panels are unpacked, as in

> # facet separate
> f6 <- l_facet(fp, by = data , layout = "separate")

In Figure 2.14 (b), four isolated windows are displayed.

Scaling Synchronization

As an l_pairs object, the scales of each plot are synchronized by connectedScales that
determines how the scales of the facets are connected. For each layout type,

• layout = “grid”: when connectedScales is

– cross: only the scales in the same row and the same column are connected;

50

(a) (b)

Figure 2.14: The display is set by argument layout which accommodates three types:
“grid” (default, shown as Figure 2.13), “wrap” (a) and “separate”(b)

– row: both x and y scales of facets in the same row are connected;

– column: both x and y scales of facets in the same column are connected;

– x: only the x scales are connected;

– y: only the y scales are connected;

– both: both x and y scales are connected;

– none: neither x nor y scales are connected.

• layout = “wrap”: for all plots, when connectedScales is

– x: only the x scales are connected;

– y: only the y scales are connected;

– both: both x and y scales are connected;

– none: neither x nor y scales are connected.

• layout = “separate”: the connectedScales will be set as none in mandatory that
neither scales are connected.

51

2.5 Summary

This chapter reviewed the loon visual structures. We mainly discussed five model layers
(e.g., l_plot, l_hist) and five dependent layers (e.g., l_layer, l_glyph), as well as their
plotting states. This gave an overview of the abstraction levels in loon plots which need
to be matched, where possible, in any target graphical system K that is to be bridged
to the graphical system loon (G). The chapter also introduced new visual structures via
l_compound and l_facet, extending loon in preparation for bridges between loon and
other packages. These bridges will be the focus of following chapters.

The new structure, l_compound, was introduced to extend loon to organize multiple
plots in a single display. This is very much like the arrangeGrob functionality from the
package gridExtra (Auguie, 2017) which extends grid to multiple displays. Extending
loon by l_compound allows multiple displays to be matched in a bridge between loon
and grid. This will be used in Chapter 4. Similarly, l_compound matches the patchwork
structure of the package patchwork (Pedersen, 2020a) which extends the package ggplot2
to accommodate multiple plots in a single display. The bridge between loon and ggplot2
is developed in Chapter 3.

The new structure l_facet is an l_compound object specially designed to extend the
graphical system loon to better match the visual structure – a Facet object in ggplot2.
Again, this allows a more complete, and two-way, bridge to be constructed between loon
and ggplot2 in Chapter 3.

These new visual structures both extend loon by adding elements gi in G to match ki
in different graphical packages K (i.e., grid or ggplot2) and do so by matching levels of
abstraction. Following chapters develop bridges between the now extended loon and other
graphical systems in R.

52

Chapter 3

Loon.ggplot

The ggplot2 package uses the base grid package to produce publication quality graphics.
Based on a grammar of graphics, ggplot2 also provides a lot of functionality that can be
extremely useful in data analysis. The loon package provides interactive graphics which
are especially valuable in exploratory data analysis.

The package loon.ggplot (see https://great-northern-diver.github.io/loon.ggplot) (Xu
and Oldford, 2019a) is a two-way bridge, bringing both packages ggplot2 and loon to-
gether. Data analysts who value the ease with which ggplot2 can create meaningful
graphics can now turn these ggplots into interactive loon plots for more direct interac-
tion with their data. Conversely, data analysts who explore data interactively can turn a
snapshot of their interactive loon plots into ggplots at any time.

This chapter begins with an overview of the package ggplot2. Both loon and ggplot2
packages mainly provide functionalities at a relatively high level of graphical abstraction
to create complete plots, but some of the high-level elements may not be able to get
mapped from one package to the other. In order to have more high-level ones mapped,
an extension of the package ggplot2, ggmulti is introduced which enables more high
dimensional visualization functionality.

Furthermore, details of how the bridge (i.e., loon.ggplot) is constructed are discussed,
such as the transformations of aesthetic attributes, how to map elements from one to the
other and et cetera. Additionally, with the bridge, we are able to extend a grammar of
graphics to a grammar of interactive graphics.

This chapter closes with a summary of this bridge, including lessons learned and
loon.ggplot’s limitations.

53

https://great-northern-diver.github.io/loon.ggplot

3.1 Introduction of ggplot2

3.1.1 A Grammar of Graphics

A grammar of graphics is a tool to describe deep features of statistical graphics.

“Many have used some type of data flow to illustrate how visualization systems
work. Few have identified the necessary sub-sequences these systems must
follow.”
(Wilkinson, 2005)

The grammar tells people how to map from a data set to aesthetic attributes (e.g., color) of
geometric objects (e.g., bars). “Such a grammar allows us to move beyond named graphics
(e.g., the scatterplot) and gain insight into the deep structure that underlies statistical
graphics” (Wickham, 2010).

Figure 3.1: From data to graphic (Wilkinson, 2005).

Once the raw data is given, variables of interest are extracted (sometimes, some “alge-
bra” is applied on the variables). Then, “scales” are to determine how to perceive aesthetic
attributes (e.g., color, size). “Statistics”, “geometry” and “coordinates” are operated one
after the other, mainly to: alter the position of graphics; determine the geometric ob-
jects; and locate the points in space, respectively. We have created a graph so far, but
the graph is a mathematical abstraction. To sense mathematical abstractions, perceivable
forms should be given to the abstraction. “Aesthetic” functions are to translate a graph
into a graphic. After rendering, the graphic is displayed.

54

The ordering of stages in the pipeline are not changeable. Obviously, we cannot apply
aesthetics before we determine geometric objects. For a more detailed description, see
Wilkinson (2005).

The package ggplot2 (Wickham, 2016) is a statistical graphical system with an un-
derlying grammar called layered grammar of graphics (Wickham, 2010) which is based on
the grammar of graphics and embedded in the R environment. “Layered” means that each
layer can have its own geometric object, statistical transformation, position adjustment,
data set and mapping system.

3.1.2 Components

Each ggplot object is composed of six components.

1. “Data”: what users want to visualize. Mapping aesthetics are required from users to
locate the variables mapped onto the axes.

2. “Layers”: control geometric objects (e.g., points, lines, polygons) and statistical trans-
formations (used to summarize the data of interest).

3. “Scales”: help map values from the data space to the aesthetic space. For example,
use color, size or shape to represent variables.

4. “Coordinate System”: combines the two position aesthetics (x and y) to produce a 2D
position on the plot. The most commonly used coordinate system is the Cartesian
coordinate system (by default). Ggplot2 provides various systems, such as polar
coordinate system to produce pie charts and map coordinate system to project a
spherical plane onto a flat 2D plane.

5. “Facets”: divide data into subsets and display them on multiple panels. They are
extremely useful when comparing the pattern of interest across different subsets.
The default is no facet (i.e., facet_null()).

6. “Theme”: a central control of non-data elements display, such as title, fonts and
legends position.

55

3.1.3 Programming

The package ggplot2 is programmed based on prototype programming (a style of object-
oriented programming) where a generalized object can be cloned and extended. For exam-
ple, a geom_**() function (e.g., geom_path()) returns a layer, responsible for rendering
the data in a plot. Essentially, the output is a Geom** object (e.g., GeomPath) which is a
prototype object ggproto.

The top-level ggproto (viz., Geom, Coord, Stat, Facet, Position and Scale) declares
general elements, such as the element required_aes in Geom. For a particular object
descending from the top-level object, any non specified elements (e.g., required_aes) are
inherited from the settings of the default top-level object and any specified elements will
overwrite the default settings.

Another useful design in ggplot2 is that each ggplot object is only executed at the
printing time. For example,

> p <- ggplot(data = mtcars ,
+ mapping = aes(x = mpg , y = hp)) +
+ geom_point()

p is a ggplot object with a point layer visual. The graphic will not be displayed until we
print() or plot() it in the console

> # print(p)
> p

Note that, the function print() is called automatically in R. As we type p in the console,
print(p) is executed to return its argument invisibly.

The print() function is a generic function (an extended function object, containing
information used in dispatching methods for this function). In our case, since p is a
ggplot object, a method will be dispatched to function print.ggplot() to render the p
as a graphic. More of the function print() will be discussed in Subsection 3.3.3.

The prototype programming design can make the extension of the package ggplot2
easily: the package ggmulti is created to extend ggplot2 in high dimensional data visu-
alization (see Section 3.2); a grammar of graphics is extended to a grammar of interactive
graphics (see Subsection 3.3.3).

56

3.2 ggmulti: an Extension of ggplot2

The package ggmulti (see https://great-northern-diver.github.io/ggmulti/) (Xu and Old-
ford, 2020) extends the ggplot2 package to add high dimensional visualization functionality
such as serialaxes coordinates (e.g., parallel and radial) and multivariate scatterplot glyphs
(e.g., encoding many variables in a radial axes or star glyph).

3.2.1 Serialaxes in ggplot2

Serialaxes coordinate is a methodology for visualizing a high dimensional data (typically,
p > 2). The axes can be a finite p space or an infinite space (e.g., Fourier transformation).

In a finite p space, all axes can be displayed in parallel (the parallel coordinate plot) or
under a polar coordinate (the radial coordinate plot). In an infinite space, a mathematical
transformation needs applying.

A point in Euclidean p-space, Rp, is represented as a line in a serialaxes coordinate
and a point ↔ line duality is induced in the Euclidean plane R2 (Inselberg and Dimsdale,
1990).

In the ggplot2 syntax, one sets coordinate systems by adding a coord_** component.
To be consistent, the serialaxes coordinate is realized by adding coord_serialaxes(). In
a ggplot object, states x and y are often provided in the mapping aesthetics (aes()) to
locate the variables on axes. However, x and y are not necessarily required in the serialaxes
coordinate system. Any variable could be used to declare a single axis. For example, the
following code shows how to create a serialaxes object in ggplot2.

> pm <- ggplot(iris ,
+ mapping = aes(
+ x1 = Sepal.Length ,
+ x2 = Sepal.Width ,
+ x3 = Petal.Length ,
+ x4 = Petal.Width
+)) +
+ geom_path(alpha = 0.3) +
+ coord_serialaxes(scaling = "variable")
> pm

In Figure 3.2, the axes, x1, x2, x3 and x4 are defined in function aes() by variables sepal
length, sepal width, petal length and petal width. The layer geom_path() is used to draw

57

https://great-northern-diver.github.io/ggmulti/

lines and each line represents an observation. In this case, the data has been scaled by
variable so that values for each axis is scaled to [0, 1]. To modify scaling methods, one
can set:

> geom_path(stat = "serialaxes", scaling = **)

where ** is one of the variable, observation, data and none (mathematical expressions
are shown in Subsection 4.3.2).

Figure 3.2: Serialaxes in ggplot

Other than lines, on each axis, 1D layers (e.g., geom_histogram) or the quantile layer
(geom_quantiles) can be added to reveal the pattern of interest as well. For example,

> pm <- pm +
+ geom_histogram(alpha = 0.5) +
+ geom_quantiles(color = c("firebrick", "steelblue", "khaki"),
+ quantiles = c(0.25, 0.5, 0.75),
+ size = 2)
> pm

In Figure 3.3, the distributions of axes x1 and x2 are nearly symmetric. The distances
between q3 (upper quantile) and q2 (median), and q2 and q1 (lower quantile) are almost
identical. However, the distributions of axes x3 and x4 are highly right-skewed. The
distances between q3 and q2 are significantly smaller than the distances between q2 and q1.

58

Figure 3.3: Serialaxes in ggplot with histogram layer and quantiles layer

Andrews (1972) plot is a way to project multi-response observations into a function f(t),
by defining f(t) as an inner product of the observed values of responses and orthonormal
functions in t

fyi
(t) =< s(yi), at >

where yi is the ith response; function s() is a scaling method (see 4.3.2); at is the orthonor-
mal functions within a certain interval. Andrew suggests to use the Fourier transformation

at = [
1√
2
, sin(t), cos(t), sin(2t), cos(2t), ...]

T

which are orthonormal in the interval (−π,π). In this way, a p dimensional space is pro-
jected onto an infinite space. To implement the dot product statistical transformation, one
can easily set stat in geom_path(). For example,

> ggplot(iris ,
+ mapping = aes(Sepal.Length = Sepal.Length ,
+ Sepal.Width = Sepal.Width ,
+ Petal.Length = Petal.Length ,
+ Petal.Width = Petal.Width ,
+ color = Species)) +
+ geom_path(alpha = 0.2,
+ stat = "dotProduct",

59

+ scaling = "none") +
+ coord_serialaxes ()

Figure 3.4 shows these curves.

Figure 3.4: Andrews curve for iris data

In addition, one can customize projection vectors. In order to cover more space of the
sphere, Tukey proposed the idea of at as

at = [cos(t), cos(
√
2t), cos(

√
3t), cos(

√
5t), ...]

T

where t ∈ [0, kπ] (Gnanadesikan, 1977). The following code shows how to implement
Tukey’s curve in ggmulti, as shown in Figure 3.5.

> tukey <- function(p = 4, k = 50 * (p - 1), ...) {
+ t <- seq(0, p* base::pi, length.out = k)
+ seq_k <- seq(p)
+ values <- sapply(seq_k,
+ function(i) {
+ if(i == 1) return(cos(t))
+ if(i == 2) return(cos(sqrt(2) * t))
+ Fibonacci <- seq_k[i - 1] + seq_k[i - 2]
+ cos(sqrt(Fibonacci) * t)
+ })
+ list(
+ vector = t,

60

+ matrix = matrix(values , nrow = p, byrow = TRUE)
+)
+ }
+ ggplot(iris ,
+ mapping = aes(Sepal.Length = Sepal.Length ,
+ Sepal.Width = Sepal.Width ,
+ Petal.Length = Petal.Length ,
+ Petal.Width = Petal.Width ,
+ color = Species)) +
+ geom_path(alpha = 0.2,
+ stat = "dotProduct",
+ transform = tukey
+ scaling = "none") +
+ coord_serialaxes ()

Figure 3.5: Tukey’s curve

3.2.2 Non-primitive Glyphs in ggplot2

Glyphs can be used as point symbols in a scatterplot to convey more information on each
point. This information could range from providing a more evocative picture for each
point (e.g., an airplane for flight data or a team’s logo for sports data) to incorporating

61

quantitative information (e.g., the values of other variables in a serialaxes or star glyph
or as a Chernoff face, Chernoff, 1973). The following code shows how to construct three
points in ggplot2, as shown in Figure 2.12, from left to right, a serialaxes glyph, a maple
(polygon) glyph and an image glyph.

> ggplot(mapping = aes(x, y)) +
+ geom_serialaxes_glyph(
+ data = data.frame(x = 1, y = 1),
+ serialaxes.data = iris[1L,],
+ # parallel or radial axes
+ axes.layout = "parallel",
+ # scaling method
+ scaling = "variable",
+ # sequence of serialaxes
+ axes.sequence = sample(colnames(iris), 10, replace = TRUE)
+) +
+ geom_polygon_glyph(
+ data = data.frame(x = 2, y = 1),
+ polygon_x = ggmulti ::x_maple ,
+ polygon_y = ggmulti ::y_maple ,
+ fill = "red"
+) +
+ geom_image_glyph(
+ data = data.frame(x = 3, y = 1),
+ images = png:: readPNG("me.png"),
+ imagewidth = 1,
+ imageheight = 1
+) +
+ coord_cartesian(xlim = extendrange(c(1,3)),
+ ylim = extendrange(c(1,2)))

3.3 ggplot2 to loon

3.3.1 Making ggplot2 Interactive

The grammar of graphics does not include interactivity; therefore the ggplot2 package
only creates static plots. How does a ggplot object become interactive?

62

Figure 3.6: Non primitive glyph in ggplot object

Functions identify() and locator() are provided in the base R standard graphics
grDevices to mark the mouse click. They read the position of the graphics pointer when
the (first) mouse button is pressed, which helps realize simple point selection. The func-
tions can even be used to build a simple GUI such as one for the game tic tac toe (e.g., see
Lawrence and Verzani, 2018). However, besides not supporting common graphical tools
such as buttons, checkboxes, and sliders, the base R functions run without interruption,
forcing users to halt the interactive session whenever they want to interact programmati-
cally with the selection information.

Several packages have been developed over the last few years which add some inter-
activity to ggplot. The most interactive of these are browser based. Of these, the most
downloaded include ggvis, ggiraph, and animint2. Others such as gganimate provide
tools to render plots kinematically.

The ggvis (Chang and Wickham, 2018) package is based on shiny’s reactive program-
ming model. The graphics are rendered in a web browser using Vega, providing a rich set
of GUI tools. For example, users can brush, link, and even adjust a histogram’s bin width
with a slider bar. Moreover, a ggvis widget can be embedded to a shiny app. Unfortu-
nately, every interactive ggvis plot must be connected to a running R session which means
once any ggvis widget is rendered, its components are determined at compile time and
fixed at run time. No modification from the R console is possible until the running session
is stopped.

The ggiraph (Gohel and Skintzos, 2019) package allows users to add tooltips, anima-
tions and Javascript actions to ggplot graphics to achieve interactivity. The animint2
(Sievert et al., 2019) package, an extension of ggplot2’s implementation of a grammar
of graphics, allows one to write ggplot2 code and produce a standalone web page with
multiple linked views (Hocking et al., 2020). However, they both suffer a very similar

63

problem with ggvis. Once the plot is rendered, graphical components specified at compile
time become difficult to manipulate outside the browser interface. Moreover, interactive
graphics built on top of browser languages such as HTML, Javascript will result in all asso-
ciated widgets being stuck in one large scrollable window (e.g., a single browser). Browser
windows are independent, making it difficult, if not impossible, for graphics to be shared
between different browsers. Browser design makes it hard to interact with many plots at
once without effectively having the browser implement an entire desktop interface within
it.

The gganimate (Pedersen and Robinson, 2019) package includes the description of
animation and returns a gif_image object. Consequently, gganimate is more a kinematic
graphics package than it is an interactive graphics one.

Other possible ways to make ggplot interactive depend on third party GUI available
platforms. These include, for example, the rJava package based on Java GUI system, the
RGtk2 package which binds R and Gtk+, the qtbase package based on the Qt framework,
and the tcltk package based on Tk GUI components of Tcl. All these systems provide
rich toolkits to realize interactivity.

Here, we choose tcltk (loon) as our interactive system. The main reasons are: first,
Tk is one of the most widely used for GUIs; second, many languages can bind Tk including
R, Python, Ruby and Perl; third, to use rJava, qtbase or RGtk2, R users have to install
platform, Java, Qt or Gtk+ first. In contrast, no such installation issues arise for R users of
the tcltk. Some OSes, like the MS windows system and McIntosh’s OS X ship with tcltk
already installed (Lawrence and Verzani, 2018); so does R itself. It is a base package in R
maintained by R Core Team (2013).

The package loon.ggplot provides the function ggplot2loon() that could transform
a ggplot object to an interactive loon widget.

3.3.2 Transformations

Attributes

The graphical system ggplot2 uses the engine of grid to draw graphics. It inherits almost
all aesthetic attribute settings in grid (see Section 4.2).

The package ggplot2 provides the most commonly used 25 primitive point symbols,
while loon only provides 12. If a ggplot object uses point symbols defined in Table 4.1
(right), a corresponding glyph from the left would be mapped in loon. However, if a ggplot

64

object uses point symbols not defined in Table 4.1, the default loon glyph (ccircle: circle
with boundary) would be mapped.

The package ggplot2 uses 8 (6 + 2 transparency) digit hexadecimal color code. Re-
gardless of the last 2 digit (transparency), the color is converted to a 12 digit hexadecimal
color in loon. However, if a point is drawn with a very low alpha value (almost transpar-
ent), completely ignoring the transparency would not be a good mapping. Consequently,
we set: if the alpha value is less than 0.5 (alpha level in [0,1]), a point symbol with a filled
or bounded shape will be mapped to a point with an empty shape (e.g., or to).

The package ggplot2 multiplies size by two constants .pt and .stroke in order to
convert the unit lwd and fontsize to the unit mm. To transform a ggplot point size
to a loon size, first convert the unit mm to px (pixel), then map the size based on the
transformations shown in Figure 4.2.

Layer

To build a ggplot object, layer ggplot() initializes the whole object such as to declare
input data frame and to specify a set of aesthetic attributes. The data and aesthetic
attributes are intended to be common throughout all subsequent layers.

Note that layer ggplot() does not specify a particular geometric output (which are
specified by adding Geom/Stats layers). In contrast, a loon model always begins with a
model layer that specifies the geometric visual. For example, model layer l_plot creates
an interactive scatterplot; l_hist creates an interactive histogram.

During transformation, a ggplot2 histogram layer is mapped to l_hist and a points
layer is mapped to l_plot (see Table C.1, C.2, C.3, C.4, from right to left1). Suppose a
ggplot object has two layers, a histogram layer and a points layer, in the mapping, this
object should be mapped to a loon widget composed of l_hist and l_plot. However,
it is not available in loon as loon only supports one model layer. So, how to choose the
interactive term?

To provide the option to the analyst, an argument activeGeomLayers is introduced to
identify which layer to be interactive. A ggplot object is shown as follows

> php <- ggplot(data = data.frame(x = rnorm(100), y = rep(0, 100)),
+ mapping = aes(x = x)) +

1The tables show the matched visual structure between loon and ggplot2. However, in the current
version 1.3.0, some layers are not yet perfectly matched (e.g., layer l_layer_smooth is mapped to a
geom_path layer for the fitted line and a geom_polygon layer for the confidence interval).

65

+ geom_histogram(fill = "pink") +
+ geom_point(mapping = aes(y = y), alpha = 0.5,
+ size = 4, color = "skyblue")

The data is generated from a standard normal distribution. Here php is a ggplot object
with two geometric layers: a histogram layer and a point layer with the points along the x
axis. To transform this ggplot object to a loon widget, an analyst needs to choose which
layer should be the model layer.

The geom position is used to set the activeGeomLayers argument. For example, Fig-
ure 3.7 shows three possible transformations from php to loon. To have neither layers

Figure 3.7: Which layer should be interactive, neither, bins or points?

interactive, activeGeomLayers is set 0, as in

> ggplot2loon(php , activeGeomLayers = 0)

Then an empty l_plot is returned with two static layers, one for the static points and one
for the rectangles of the histogram (the data structure is shown in Figure 3.7 topmost and
the graphic is shown in the leftmost plot of Figure 3.8).

When activeGeomLayers = 1, as in:

> ggplot2loon(php , activeGeomLayers = 1)

an l_hist widget is created with interactive bins and a static points layer is added (the
data structure is shown in Figure 3.7 middle and the graphic is shown in the middle chart
of Figure 3.8).

Alternatively, when activeGeomLayers = 2, as in

66

> ggplot2loon(php , activeGeomLayers = 2)

then an l_plot widget is returned with interactive points and bins layered as static rect-
angles (the data structure is shown in Figure 3.7 bottom and the graphic is shown as the
rightmost chart in Figure 3.8).

Figure 3.8: The same static graphics but different interactive motions

If loon could accommodate multiple interactive layers, it would be natural to specify
them by setting activeGeomLayers to a vector of geom positions (e.g., activeGeomLayers
= c(1, 2) would have bins and points become interactive simultaneously, or, perhaps,
switchable). Unfortunately, loon does not support multiple interactive layers for now;
therefore, vector valued activeGeomLayers is not yet allowed in the transformation.

Imagine the transformation to be a mapping, setting argument activeGeomLayers as 0
is equivalent to only having the visual display mapped. In order to map the visual structure
instead, one has to set the argument activeGeomLayers to the geom position (as it ap-
peared in the order it was added to the ggplot) of either a geom_point or geom_histogram
layer. Suppose the geom layer does not have a counterpart in loon, for example a boxplot
as in
> ggplot(iris , aes(Species , Sepal.Length)) + geom_boxplot ()

then, regardless the values of argument activeGeomLayers, only the display is mapped as
if activeGeomLayers = 0.

The package ggmulti extends the package ggplot2 in non-primitive point glyphs.
When a ggplot object has a non-primitive point glyph layer (e.g., geom_image_glyph,
geom_serialaxes_glyph, geom_polygon_glyph), to transform it to a loon widget, one
can choose either to map the display only (each point is static) or to map the visual
structure (each point is interactive). For example,

67

> ps <- ggplot(data = iris ,
+ mapping = aes(Sepal.Length , Sepal.Width ,
+ color = Species)) +
+ geom_serialaxes_glyph(serialaxes.data = iris[, -5],
+ axes.layout = "radial")

If activeGeomLayers = 1 (default), as in

> ggplot2loon(ps, activeGeomLayers = 1) # default setting

then an l_plot widget is returned with interactive non-primitive glyph points (as in the
left plot of Figure 3.9). If activeGeomLayers = 0, as in

> ggplot2loon(ps, activeGeomLayers = 0L)

then an empty l_plot is returned with one static layer (as in the right plot of Figure 3.9).

Figure 3.9: Interactive non-primitive glyphs and static non-primitive glyphs.

Coordinate Systems

A coordinate system combines two positions to produce a 2D projection on a plot. In
general, there are two types of coordinate systems, linear coordinate systems (e.g., Carte-
sian coordinate system) and non-linear coordinate systems (e.g., polar coordinate system,
serialaxes coordinate system).

68

A linear coordinate system is also known as the Cartesian coordinate system. Table
3.1 shows the linear transformations for both graphical systems. Suppose one modifies the
ggplot Cartesian system, such as setting limits, changing ratios or flipping axes, in the
transformation, the corresponding states upon these changes will be set in loon.

Table 3.1: Linear Coordinate Systems

ggplot loon

Zooming coord_cartesian() Direct Manipulation: scroll a
mouse; Command-line: set
states zoomX and zoomY

Display Ratio coord_fixed() Direct Manipulation: scroll a
mouse with holding <shift>
(vertically) or <Alt>/<cmd>
(horizontally); Command-line:
set states deltaX and deltaY

Swap Axes coord_flip() Direct Manipulation: click
swap on loon inspector;
Command-line: set state
swapAxes as TRUE

Unlike the linear coordinate system, a non-linear coordinate system (as shown in Table
3.2) does not preserve the shape of geometric objects. The ggplot2 package focuses on
the transformations from the Cartesian coordinate system to other coordinate systems
(e.g., in the polar coordinate system, a bar chart can be turned into a pie chart; in the
map coordinate system, a portion of the earth, approximately spherical, is mapped onto a
flat 2D plane). Unfortunately, these coordinate systems are not supported in the package
loon. In other words, suppose a ggplot object is embedded in one of polar, map or trans
coordinate systems, the visual structure cannot be mapped to a loon plot. Sometimes,
even the visual display cannot be mapped.

Figure 3.10 (a) shows a loon bar plot transformed from a ggplot bar chart. The
bins can be highlighted as we click or brush. Figure 3.10 (b) shows a loon pie chart

69

Table 3.2: Non-linear Coordinate Systems

loon ggplot

l_serialaxes() ggmulti::coord_serialaxes()

coord_polar()

coord_map()

coord_trans()

transformed from a ggplot pie chart. Although, it has the same appearance, it is static.
In this example, only the visual display is mapped.

Figure 3.11 (a) is a ggplot object with orthographic projection (looking down at North
pole). When it is transformed to a loon widget, the orthographic projection will be
omitted, as shown in Figure 3.11 (b). In this example, neither the visual display nor the
visual structure gets mapped.

When a ggplot object, in the serialaxes coordinate system (e.g., see Figure 3.2; by the
package ggmulti), is transformed to a loon plot and the object has geometric layers (e.g.,
histograms, density), as shown in Figure 3.3, two scenarios may happen:

• to map the visual structure – an l_serialaxes widget will be returned but no
geometric layers will be displayed in the loon plot (as shown in Figure 3.12 left), as
the primitive layer visuals (e.g., polygons) are not yet available in an l_serialaxes
widget;

• to map the visual display – an l_plot will be returned with stacked rectangles and
lines (as shown in Figure 3.12 right).

70

(a) (b)

Figure 3.10: Map the visual display only.

(a) (b)

Figure 3.11: The mapping is incomplete.

71

Figure 3.12: To transform a ggplot object (with statistical layers) in the serialaxes coordi-
nate system to a loon widget: if it is transformed to an interactive l_serialaxes widget,
the layers are missing; if it is transformed to an l_plot widget, all layers are preserved
but static.

Facets

The package ggplot2 provides two types of faceting, facet_grid() and facet_wrap().
The function facet_grid() (a 2D facet) forms a matrix of panels defined by row and
column faceting variables, while the function facet_wrap() wraps a 1D sequence of panels
into 2D.

As we transform a ggplot object with multiple facets to a loon widget, Figure 3.13
shows two possible designs: 1. the package ggplot2 provides the function ggBuild()
to split the original data set into multiple subsets. In the transformation, we pass these
subsets to loon and then each loon widget is created by an individual subset. In the end,
all widgets are packed as an l_facet object; 2. we pass the original data set into loon.
Then, construct an l_facet object in loon via setting the states by and layout to split
the data and draw facets.

So far, the first design has been used. An explicit benefit is that the function ggBuild()
is maintained by the package ggplot2. If the logic or application programming interface is
updated for functions facet_grid() and facet_wrap(), ggBuild() could still work. How-
ever, if the 2nd design is used, loon.ggplot developers should always track the updated
news of ggplot2 which may require much more efforts for the purpose of maintenance.

72

Figure 3.13: Two possible designs to turn a ggplot object with multiple facets to a loon
object. The sky blue means the data is still maintained by ggplot object and the firebrick
red represents the data has been passed into a loon widget

3.3.3 A Grammar of Interactive Graphics

Function l_ggplot()

Typically, a loon widget is constructed by calling functions with prefix l_** (e.g., l_plot,
l_histogram) and adding layers by calling functions l_layer_**(widget, ...). In the
package loon.ggplot, the function l_ggplot() is built, providing the ggplot syntax to
create a loon plot. Users who prefer the design of constructing a ggplot object but
also want to keep dynamic interactions with their data can now replace ggplot() with
l_ggplot(), as in

> lp <- l_ggplot(data = mtcars ,
+ mapping = aes(x = mpg , y = hp)) +
+ geom_point () +
+ geom_smooth ()

lp is an l_ggplot object with duality. When users type print(lp) (or only lp) in
the console, a loon widget is then created with interactive points and a static smooth line.
When users type plot(lp), a ggplot object will be created (imagine print() and plot()

73

are two bridges: in the print() function, a ggplot object is transformed to a loon widget;
while in the plot() function, a ggplot object is transformed to a grid object).

lp is a variable. All ggplot components can be added to lp. The function facet_wrap(),
for example, can be added to lp so that the data can be split into multiple panels and
each panel represents a subset of transmission (0 = automatic, 1 = manual), as in (shown
in Figure 3.14)

> lp1 <- lp + facet_wrap(~am)
> lp1

Figure 3.14: A loon widget created by ggplot2 syntax

Interactive Components

Five interactive components (functions) are available to control linking, selecting, activa-
tion, querying and scaling (or zooming) respectively, as shown in Table 3.3. Most states
of these components (e.g., linkingGroup, selectBy) have been discussed in Chapter 2,
except the state layerId, activeGeomLayers (see Subsection 3.3.2) and scaleToFun.

The zoom component is adopted to configure a plot region. Unlike coord_cartesian()
whose main purpose is to set the limit of the view, it uses layerId to scale the plot region
to an individual geometric layer.

74

The scaleToFun state is a function to determine how to scale the region. Available ones
are l_scaleto_plot() (scale to a model layer), l_scaleto_active() (scale to all active
elements), l_scaleto_selected() (scale to selected elements) and l_scaleto_layer()
(scale to any dependent layers). The following code shows how to zoom in to focus on
economical cars whose fuel consumption is greater than 20 mile per gallon, as in (shown
in Figure 3.15)

> lp_higlighted <- lp +
+ selection(selected = ~mpg > 20) +
+ linking(linkingGroup = "mtcars") +
+ zoom(layerId = 1,
+ scaleToFun = loon::l_scaleto_selected)
> lp_higlighted

Figure 3.15: The points with high mpg are highlighted. The region is scaled to the high-
lighted points.

The static ggplot can be turned into an interactive loon plot (even without calling
the function l_ggplot()) by adding any of these interactive components. For example,

> gp <- ggplot(data = mtcars ,
+ mapping = aes(x = mpg , y = hp)) +
+ geom_point () +

75

Table 3.3: Interactivity Components

Interactivity Description Subfunction States

Zoom Region Modification zoom() layerId,
scaleToFun

Linking Linking several plots
to discover the pat-
tern of interest

linking() linkingGroup,
linkingKey,
linkedStates,
sync

Select Highlight the subset
of interest

selection() selected,
selectBy,
selectionLogic

Active Determine which
points appear or
which layer is the
interactive layer

active() active
activeGeomLayers

Query Query in interactive
graphics

hover() itemLabel,
showItemLabels

76

+ geom_smooth ()

gp is a ggplot object. One can add any interactive components (e.g., selection()) to
turn the static plot into an interactive loon plot, such as
> gp + selection ()

With these interactive components, a grammar of interactive graphics is implemented.

Logic of Implementation

The logic of implementation is that a ggplot object is a variable at construction time
and is rendered as a graphic at printing time. In the function l_ggplot(), a new class
called l_ggplot gets assigned to the ggplot object, then, a new object – l_ggplot object
is created with the class attribute [l_ggplot, gg, ggplot]. It has an identical data
structure with a ggplot object, expect the class attribute (the class attribute of a ggplot
object is [gg, ggplot])

In R, when a generic function fun() (an S3 method) is applied to an object with
class [first, second], a function called fun.first() will be looked for first. If it is
found, then this function will be applied to the object. If not, then a function called
fun.second() will be tried. The print() is a generic function. Therefore, at printing time,
print.l_ggplot() will be executed (rather print.ggplot()). Within print.l_ggplot(),
the ggplot object is transformed into a loon widget, as in
> print.l_ggplot <- function(x, ...) {
+ p <- ggplot2loon(x, ...)
+ invisible(p)
+ }

where x is an l_ggplot object.

The plot() function is a generic function as well. Since there is no function called
plot.l_ggplot(), when we execute plot(x), the function plot.ggplot() will be exe-
cuted and a static ggplot (based on grid graphics) will be displayed.

Any interactive components (see Table 3.3) is an Interactivity object (a prototype
object, ggproto). Once it is added to a ggplot object or an l_ggplot object, the function
ggplot_add() will be activated. As it is generic, ggplot_add.Interactivity() is created
to ensure the objects in the interactive components are dispatched to the correct place. In
this function, if the input object is a ggplot object, the class l_ggplot will be added to
force it to be an l_ggplot object, as in

77

> ggplot_add.Interactivity <- function(object , plot , object_name) {
+ if(!is.l_ggplot(plot)) {
+ class(plot) <- c("l_ggplot", class(plot))
+ }
+ ...
+ }

Then an l_ggplot object is returned.

3.4 loon to ggplot2

The package loon.ggplot is a two-way bridge, in that a loon plot can be transformed to
a ggplot object as well. To set up a bridge from loon to ggplot2, high-level elements will
be mapped to high-level elements and low-level elements to low-level elements (see Table
C.1, C.2, C.3, C.4, from left to right).

Unfortunately, not all high-level elements in loon can be mapped in ggplot2 (e.g.,
serialaxes coordinates, non-primitive glyphs) without first extending the graphical system
ggplot2 to include these elements. The package ggmulti is created to provide this exten-
sion to ggplot2. Table 3.4 shows the mappings of high dimensional graphics from loon to
ggplot2 via ggmulti.

The ggplot2 package provides high-level functionality such as whether to treat data as
variables or as constants, whether or not to display a more intuitive legend and et cetera.
These require users to make choices to better tailor for their own specific problems. In the
following subsection, these choices will be discussed, as well as corresponding arguments
to make these decisions.

Note that the conversions of aesthetic attributes will not be discussed in this section.
As ggplot2 is built on top of grid, they have similar settings of aesthetics and in Chapter
4, transformations of aesthetics, from loon to grid will be discussed, in details (see Section
4.2).

3.4.1 Arguments

Argument asAes

There are two ways to construct geometric visuals in ggplot2: mapping aesthetic attributes
to variables (set in function aes()) or setting them as constants. For example,

78

Table 3.4: Extensions by ggmulti

loon ggplot

l_serialaxes() ggmulti::coord_serialaxes()

l_glyph_add_serialaxes() ggmulti::geom_serialaxes_glyph()

l_glyph_add_image() ggmulti::geom_image_glyph()

l_glyph_add_polygon() ggmulti::geom_polygon_glyph()

> data <- data.frame(x = seq(4), y = seq(4),
+ color = c(rep("red", 2),
+ rep("green", 2)))
> p1 <- ggplot(data = data ,
+ mapping = aes(x = x, y = y)) +
+ geom_point(color = data$color)
> p1 # as constants
> p2 <- ggplot(data = data ,
+ mapping = aes(x = x, y = y,
+ color = color)) +
+ geom_point () +
+ scale_color_manual(
+ values = c("green", "red")
+)
> p2 # as variables

Both p1 and p2 show two red points and two green points; nevertheless, the construc-
tion is very different. For p1, color is treated as a general attribute of points, like
loonGrob. For p2, it maps the color aesthetic attribute to a variable named “color” which
has two categories “red” and “green” (they are just two specified factors, not colors!). If
scale_color_manual() is not applied, the color of each category will use the default

79

ggplot2 color scales where category “red” will be colored #00BFC4 (turquoise) and cate-
gory “green” will be colored #F8766D (selmon).

In order to accommodate both ways to construct geometric visuals for the transforma-
tion, an argument asAes is introduced in the function loon2ggplot(). When it is set as
TRUE, aesthetic attributes color, fill, and size, will be treated as variables; otherwise
constants. It is beneficial to take an aesthetic attribute as a variable, especially for the
further analysis, for example,
> h <- l_hist(iris , color = iris$Species)
> gh <- loon2ggplot(h, asAes = TRUE)
> gh

Here, a ggplot histogram (geom_histogram()) is mapped, as shown in Figure 3.16 (a).
Other components for statistical analysis, such as facet_wrap(), could be added to gh, as
shown in Figure 3.16 (b).
> gh + facet_wrap(~fill)

(a) (b)

Figure 3.16: To transform a loon l_hist widget to a ggplot histogram object. If the
asAes is set as TRUE, the ggplot histogram is constructed by geom_histogram; else by
geom_rect.

However, setting asAes = TRUE in a scatterplot may cause some unexpected problems.
Currently, ggplot2 legend has a bug that filled glyphs are always black if the shape is set
as a vector, as in (see Figure 3.17)

80

> d <- data.frame(x = c(1,2),
+ y = c(1,2),
+ color = c("red", "blue"),
+ fill=c("black", "gray"))
> ggplot(d, aes(x = x, y = y)) +
+ geom_point(aes(fill=fill , color = color),
+ size=4,
+ shape = c(19, 21)) +
+ scale_fill_manual(values = c("black", "gray")) +
+ scale_color_manual(values = c("red" = "red",
+ "blue" = "blue"))

Figure 3.17: A bug in the legend for filled shapes. In the fill legend, the colors should be
black and gray.

If all points are with borders (e.g., all pchs are in [21, 22, ..., 25]) or without borders (e.g.,
all pchs are in [0, 1, ..., 20]), setting asAes = TRUE (treating color or fill as a variable)
is fine; else, points with and without borders are mixed so that the legend will not be
displayed as expected (e.g., see Figure 3.17).

If the asAes is set as FALSE, an aesthetic attribute will be treated as a constant and
only the display is mapped. The ggplot2 graphics will be constructed by the primitive
geom layers (e.g., geom_rectangle) and no statistical transformations are required. Thus,

81

the plot rendering speed is faster. Continue with the previous histogram example, Table
3.5 shows the evaluation time via micro benchmark.

Table 3.5: Time Consumption

expression
summary (ms)

min lq mean median up max eval

loon.ggplot(h, asAes = TRUE) 195 213 230 222 238 543 100

loon.ggplot(h, asAes = FALSE) 83 87 95 90 98 303 100

Obviously, if the asAes is set FALSE, the construction speed is twice faster than that
as TRUE. Note that, there are only 150 elements in data set iris. If the number increases
(e.g., over 2,000), the difference would be non-negligible.

Argument selectedOnTop

In loon, the highlighted points are always displayed at the front. In the transformation,
when the argument selectedOnTop is set as TRUE (default), the highlighted points are
drawn at the front of the non-highlighted points. In this way, the order of the data is
altered (highlighted points are drawn last). When the argument selectedOnTop is set as
FALSE, the order of the data remains unchanged. However, in this way, when points are
overlapped, highlighted points may be drawn at the back.

For example, in Figure 3.18 left, the order of the data is changed where the highlighted
point is drawn last (at the front). While, in the right figure, all points are displayed in
order and the highlighted point are displayed at the back.

Argument showNearestColor

When we transform a loon widget to a ggplot object, a 12-digit hexadecimal color is
turned into a 6-digit hexadecimal color. Suppose color and fill are set in aes() (as
variables), a legend will be displayed whose labels are color names or hexadecimal codes.

82

Figure 3.18: Whether to force the highlighted points to be displayed at the front.

For a majority of users, a color name (e.g., gray) is more intuitive than a hex code
(e.g., #808080). To convert a hex code to a real color name, we first convert all built-
in colors (by the function colors(); approximate 657 in total) and the hex code (to be
transformed) to RGB (red/green/blue) values (e.g., gray→ [50, 50, 50]). Then, the closest
(Euclidean distance) built-in color can be determined using the RGB vector value. If the
showNearestColor is set as FALSE (default), whenever the minimum distance is zero, the
hex code will be replaced by the color name; otherwise (set as TRUE), the hex code will be
replaced by the nearest R color (it is “approximate”).

For example, in Figure 3.16, the hex code #A6CEE3 does not have an exact color name
(minimum Euclidean distance between its RGB value and built-in colors’ RGB vector values
is 12.2474, not 0). If showNearestColor is set as FALSE, the color name is still #A6CEE3;
else (TRUE), the closest color name of #A6CEE3 is lightblue2. Consequently, in the legend,
#A6CEE3 would be replaced by lightblue2. In contrast, the hex code #FFC0CB has an
exact color name (minimum Euclidean distance is 0). Whatever the showNearestColor is
set, it is converted to the color name pink.

It is very helpful to set it as TRUE when analysts are satisfied with the “approximation”
and need a neat color legend. However, we should be careful when colors are too close to
be distinguished. For example, 20 colors are created via the following code with the same
hue and chroma, but slightly different value.

> redGradient <- matrix(hcl(0, 80, seq(49, 68, 1)),
+ nrow=4, ncol=5, byrow = TRUE)
> p <- l_plot(x = rep(1:5, each = 4), y = rep(1:4, 5),
+ color = redGradient ,
+ glyph = "square", size = 100)
> loon2ggplot(p, showNearestColor = FALSE) +

83

+ # legend is displayed in two columns
+ guides(color = guide_legend(ncol=2))
> loon2ggplot(p, showNearestColor = TRUE)

The argument showNearestColor is set as FALSE for the left Figure 3.19, and TRUE for the
right. When it is TRUE, the “approximate” colors are applied so that 20 different colors are
shrunk to 4.

Figure 3.19: When colors are similar (similar hue, chroma or luminance), the “approximate”
colors (setting showNearestColor as TRUE) may shrink the number of unique colors.

3.4.2 Compound Plot

To transform a loon l_compound object, the package patchwork is applied, providing
a patchwork data structure that can arrange multiple ggplot objects in a single panel.
The main reason to use the patchwork rather than the gridExtra (Auguie, 2017) (see
Subsection 4.3.3) is it extends the ggplot2 data structure to multiple displays.

The symbol “+” or “/” could be used to connect several ggplots. For example, suppose
p1 and p2 are two ggplot objects, p1 plus p2, as in,
> library(patchwork)
> p1 + p2

two plots would be placed side by side; p1 divided by p2, as in,
> p1 / p2

two plots would be stacked (p1 is on top of p2). See Pedersen, 2020b for more details.

84

3.5 Summary

The loon.ggplot package provides a two way bridge, through which interactive loon
plots can be transformed to static ggplots, and vice versa. Both ggplot2 and loon
graphical systems primarily provide graphics at a high level of graphical abstraction. Con-
sequently, in the loon.ggplot bridge, the priority is to map visual structures, for example,
a geom_histogram data structure is mapped to an l_hist data structure.

Not each visual structure can be mapped from one to the other. For example, layer
geom_histogram embedded in a polar coordinate system (i.e., a pie chart) cannot be
mapped to an interactive loon pie plot; a loon scatterplot with polygon glyphs cannot be
mapped to a corresponding structure in ggplot2. In order to establish successful mappings,
we extend ggplot2 using the package ggmulti. A non-primitive glyph in loon can then be
mapped to a geom_**_glyph structure in ggplot2. Nevertheless, in cases when extensions
are not created, visual displays are used for mapping purpose. For instance, to transform
a geom_histogram object embedded in a polar coordinate system from ggplot2 to loon,
we break a ggplot2 pie chart down into polygon visuals and use the primitive graphical
data structure l_layer_polygon to build a static plot in loon.

Furthermore, loon.ggplot helps extend a grammar of graphics to a grammar of inter-
active graphics. Interactive components (e.g., selection()) can be added onto a ggplot
object; therefore, the ggplot object is transformed to an interactive loon widget.

3.5.1 Lessons

An important lesson from building this bridge is: even though matching the level of ab-
straction is the most natural transformation method, it is possible that not every high-level
element in G has a mapping in K (visual structure cannot be mapped), in which case, ex-
tending K should be considered first. If the extension is hard to build, we break this
high-level element down to low-level ones and then map visual displays.

3.5.2 Limitations

Mappings are useful not only in designing a bridge, but also in reviewing and assessing a
bridge. When assessing the bridge loon.ggplot, limitations in design are detected and
addressed.

85

First of all, when the visual display is mapped but the visual structure is not, it may
become difficult to follow from this bridge to another (e.g., loon with facets → ggplot
→ plotly). For instance, when a loon widget with multiple facets is transformed to a
ggplot object, the package patchwork was applied to return a patchwork object. A better
approach would be to use the function facet_wrap(), or facet_grid(), in ggplot2 so
that the visual structure also gets mapped.

Secondly, rendering a ggplot object created by ggplot2 is faster than rendering a
ggplot object created via the bridge (i.e., after already mapping the loon plot to a
ggplot via loon.ggplot). Tables 3.6 and 3.7 show the rendering time benchmark (Mers-
mann, 2019) of a scatterplot with 1,000, 10,000 and 100,000 points first rendered simply
by ggplot2 and then by loon.ggplot. The rendering times are close when the number of
points is small (e.g., less than 10,000), but, as the number increases to 100,000, the speed
of drawing a ggplot object directly is much faster than drawing a ggplot object from
the bridge. In addition, much less memory is consumed by a standard ggplot object

Table 3.6: ggplot2 Rendering Time

number of points
summary (sec)

min lq mean median up max eval

1,000 0.136 0.192 0.210 0.215 0.234 0.247 100

10,000 0.572 0.651 0.664 0.675 0.689 0.706 100

100,000 5.046 5.324 5.418 5.412 5.566 5.623 100

than that of one obtained from loon.ggplot, as shown in Table 3.8. The principal reason
seems to be that loon provides a vector of data values (e.g., color, size, etc.), even when
all values are identical; ggplot2 does not.

Thirdly, when transforming a loon scatterplot with a combination of primitive glyphs
and non-primitive glyphs, or multiple non-primitive glyphs, a single layer in loon will be
mapped to more than one layer in ggplot2, which destroys the layer data structure. For
example, transforming a loon plot with two points, one being filled-circle and the other a

86

Table 3.7: ggplot2 Rendering Time via loon.ggplot

number of points
summary (sec)

min lq mean median up max eval

1,000 0.138 0.168 0.184 0.187 0.204 0.213 100

10,000 0.772 0.842 0.844 0.848 0.863 0.868 100

100,000 7.057 7.320 7.364 7.347 7.430 7.543 100

Table 3.8: Memory Consumption (MB)

Number of points ggplot2 (by bridge) ggplot2

1,000 0.261 0.022

10,000 2.389 0.159

100,000 24.362 1.532

87

text glyph, the returned ggplot object will have two layers, one geom_point layer for the
filled-circle and one geom_text layer for the text glyph. With many more points, there
will be a different ggplot2 layer for each type of glyph.

Furthermore, in ggplot2, only a point layer and a histogram layer can be made inter-
active in the current version of loon (i.e., map visual structure). Other geometric objects,
such as rectangles, polygons and lines, are currently only static (i.e., map visual display).
Without extending loon, the loon.ggplot bridge must specify which geoms in the ggplot
are to be made interactive in the loon plot.

The animint2 package suggests how interactivity might be specified in any layer. For
example, the code below shows how to make a static segment layer selectable.

> geom_segment(
+ ...
+ showSelected = ***,
+ clickSelects = ***)

The tcltk design of loon would have to be refactored to accommodate similar specifica-
tions for different layers. This would be a major extension of loon (see Section 7.4).

3.5.3 Further Work

In the future, we would like to: firstly, redesign the transformation from an l_facet object
in loon to a ggplot object by using the function facet_wrap() or facet_grid(), in order
to map the visual structure; secondly, optimize the returned ggplot data structure to have
a faster rendering speed and a less memory consumption.

88

Chapter 4

LoonGrob

The loon package is mainly designed for interactive data exploration. Upon exploring
the events of interest, we need a tool to turn interactive plots into static for the purpose
of storage (or publication). Taking screenshot is an option, however, the quality of a
screenshot of these graphics is not particularly good. In addition, the details of graphical
elements are not programmatically editable. One solution is to transform the loon plot to
a static graphical system plot, not only to preserve the high quality of the loon plot, but
also to allow further modifications in command-line.

The package loon.ggplot can turn a loon widget into a static ggplot object. However,
ggplot2 is not a pre-installed package. Additionally, it has many other dependencies (not
maintained by R core team). Depending upon ggplot2 to return a static loon plot is
not as stable as depending upon the package grid (plotting engine of ggplot2) (Murrell,
2018), which is pre-installed in R, and has been maintained by R core team now.

This chapter begins with an overview of the grid graphics package. Then, we discuss
about the transformation of plotting states, such as color, point size and point shape from
loon to grid. As the abstraction levels of loon and grid do not perfectly match, how to
map the graphical elements between these two packages is discussed. This chapter closes
with a summary of the bridge loonGrob. Lessons learned from building this bridge, its
limitations and further work required are shared in details.

89

4.1 Introduction of grid

The graphical system grid, grew out of Murrell (1998)’s PhD thesis, provides functionality
at a relatively low level of graphical abstraction. Rather than creating plots for data
analysis directly, it is more commonly used by other graphical packages (e.g., ggplot2,
lattice) that are built on top of grid (Murrell, 2018).

In grid, any geometric layers (e.g., lines, points) have two functions: one is **Grob()
which produces a graphical object, named grob; the other is grid.**() which draws
the actual graphical output. For example, the output of lineGrob(x,y) is an object
storing all coordinates (x and y) and other essential plotting states (e.g., line color, line
dash, the name, etc.). It does not actually draw a line. If one wants to display it, call
grid.line(x,y) (alternatively, grid.draw(lineGrob(x,y))).

A grob is composed of four major components: features, graphical parameters, a view-
port and a name.

1. features: named slots describing important features of a grob (e.g., x, y coordinates).

2. gpar (graphical parameters): a list of graphical parameter settings used to control
the output appearance (e.g., color).

3. vp (viewports): describe rectangular regions on a graphics device and define a number
of coordinate systems within those regions.

4. name: a character identifier for a grob.

Besides, grid provides a data structure gTree that can have other grobs or even nested
gTrees as children. When a gTree is drawn (by grid.draw()), all of its children are
displayed.

4.2 Conversion of the Aesthetic Attributes

To transform a loon widget into a grid object, all aesthetic attributes (e.g., color, point
size, point shape) should be mapped accurately (or as accurately as possible).

90

4.2.1 Color

Color specifications are normalized to a 12 digit hexadecimal color representation in tcltk
while R uses 6 (or 8) hexadecimal colors. During transformation, a 12 digit hexadecimal
color is converted to a 6 digit hexadecimal color, for example,

> "#FFFF00000000" is a 12 digit hex code of red
> as_hex6color("#FFFF00000000")
[1] "#FF0000" # is a 6 digit hex code of red

4.2.2 Shape

The graphical system loon provides four different primitive point shapes: circle, triangle,
rectangle and diamond. Each could be either empty , solid or filled . The grid
graphical system provides richer point symbols (at least twenty five). Table 4.1 shows the
conversion of the point glyph from loon to grid.

The package loon also supports non-primitive glyphs such as an image glyph, a poly-
gon glyph, a point-range glyph, a text glyph and a serialaxes glyph. As grid does not
offer such glyphs, they are mapped to the primitive geometrical visuals (e.g., polygonGrob,
polylineGrob, etc.), as shown in Figure 4.1. The arrow represents a mapping. For ex-
ample, a point glyph and a text glyph are mapped to a pointsGrob and a textGrob
accordingly. The curly brace means options. For example, a polygon glyph can be mapped
to a polylineGrob data structure or a polygonGrob data structure, depending upon it is
filled or not. The solid line means contain that an image glyph is mapped to a gTree data
structure containing a rectGrob as the background (for selection) and a rasterGrob for
image drawing.

91

Table 4.1: Mapping Glyph

loon ("glyph") grid ("pch")

circle 19

ocircle (empty circle) 1

ccircle (circle with boundary) 21

square 15

osquare (empty square) 0

csquare (square with boundary) 22

triangle 17

otriangle (empty triangle) 2

ctriangle (triangle with boundary) 24

diamond 18

odiamond (empty diamond) 5

cdiamond (diamond with boundary) 23

92

Figure 4.1: Map a loon point glyph to a grid data structure

93

4.2.3 Size

The package loon uses pixel to define the size of points while grid uses pt (point size,
determined by fontsize in gpar).

Table 4.2 shows the mapping from size to area (except for polygon and text glyphs) for
a glyph (in pixel2) in loon.

For the area based glyphs, we transform the input size to area, then compute the
diameter (circle glyph), side (square, triangle, diamond glyph) or length/width (image,
star and parallel glyph). In the end, we convert the unit from pixel to pt.

The conversion between pixel and pt is affected by the resolution of the screen. For
example, a pixel (px) at 96DPI (dots per inch) is equal to 0.75 point size. Accordingly, an
argument adjust is applied to linearly twist the conversion, as in
> px2pt <- function(adjust = 1) 0.75 * adjust

The default adjust is 1, meaning no adjustment is applied. However, the sizes of polygon
glyph and image glyph are not mapped very well. After several tries, an adjust value 0.6
seems satisfying.

Figure 4.2: Point glyph size mapping from loon (left) to grid (right).

Figure 4.2 shows the mapping from all available glyphs in loon, each with sizes from
1 to 10, to grid graphics. In the two graphics above, apparently, element sizes are fairly

94

Table 4.2: The size mappings in loon (Waddell, 2016)

95

close but not identical. Ideally, a new function is required so that we can automatically
query the DPI of the machine and precisely convert the unit from pixel to pt.

4.3 loonGrob Data Structure

The package loon mainly provides functionality at a relatively high level graphical abstrac-
tion, such as histogram and scatterplot. It also provides some low-level elements, such as
the primitive geometrical visuals, as shown in the left column in Table 4.3.

The graphical system grid provides functionality at a relatively low level abstraction.
To map low-level elements, the loon primitive layered data structures on the left, in Table
4.3, are mapped to the corresponding grid data structures on the right. However, to map
high-level elements, one has to extract the statistical summaries of a complete plot in loon,
and then, use primitive graphical visuals to reproduce this plot in grid. In this mapping,
from loon to grid, visual display is mapped.

4.3.1 Main Graphics Model

The main graphics model is embedded in the Cartesian coordinate system. To better
explain its loonGrob data structure, an example is given as follows, showing a loon scat-
terplot with a single point and a red line,

> library(loon)
> p0 <- l_plot(x = 2.5, y = 2.5,
+ color = "gray60", size = 4,
+ showScales = TRUE , showLabels = TRUE ,
+ xlabel = "x", ylabel = "y",
+ title = "Hello World")
> l0 <- l_layer_line(p0, x=c(1,2,3,4), y=c(1,3,2,4),
+ color="red", linewidth = 1)
> l_scaleto_world(p0)

We can then get the loonGrob of p0 by calling the function loonGrob(), as shown in
Figure 4.3 (b).

> g0 <- loonGrob(p0)
> grid.draw(g0)
> # or ‘grid.loon(p0)’

96

Table 4.3: Mapping Low-Level Elements

loon grid

l_layer_points() pointsGrob()

l_layer_group() gTree(), gList()

l_layer_line(),
l_layer_lines()

linesGrob(),
polylineGrob(),
segementGrob(),
xsplineGrob(),
curveGrob(), pathGrob()

l_layer_rectangle(),
l_layer_rectangles()

rectGrob(),
roundrectGrob()

l_layer_polygon(),
l_layer_polygons()

polygonGrob()

l_layer_text(),
l_layer_texts()

textGrob()

l_layer_oval() circleGrob()

97

(a) (b)

Figure 4.3: Figure (a) is a screenshot of the loon plot and Figure (b) is a grid graphic.

Non-data Element loonGrob Data Structure

Figure 4.4 shows the hierarchical loonGrob data structure of g0. It is a tree-based model.
The solid line means beneath. For instance, the bounding box gTree and loon plot gTree
are beneath the l_plot gTree.

The bounding box gTree controls the visuals (e.g., background color) of the margin
region and the loon plot controls the visuals of the plot region. Beneath the loon plot
gTree,

• the guides gTree contains the vertical and horizontal guide lineGrobs;

• the label gTree has three textGrobs representing the x label, y label and title;

• the axes gTree stores the xaxisGrob and yaxisGrob;

• the clipping region grob sets the clipping region within the current viewport;

• the boundary rectangle grob draws the plot region boundary lines.

98

Figure 4.4: Each label represents a gTree or a grob. Gray ones are applicable to all models,
while the colored ones can only be applied to the corresponding colored models. For
example, when the main graphic model is histogram, the label names at the corresponding
levels would be l_hist, l_hist_layers and histogram.

99

loonGrob Data Structure of l_plot

The l_plot_layers gTree contains all the geometric graphical visuals and plays a key role
in the display. All the points’ features are stored in the layer scatterplot whose children
is either points: primitive glyphs or points: mixed glyphs.

The points: primitive glyphs is a pointGrob; therefore, all points have primitive
shapes (e.g., pch is from 0 to 25).

The points: mixed glyphs is a gTree structure and each child represents an individual
point. For example, suppose some non-primitive glyphs are displayed in loon, as Figure
2.9, after transformation, the child of the scatterplot gTree would be points: mixed
glyphs and its data structure is shown as 4.5. The glyph of point 1 is an image. After

Figure 4.5: The data structure of a loonGrob non-primitive glyph

transformation, it is mapped to a gTree structure containing a rectGrob for the image
border and a rasterGrob for drawing the image. The point 2 has a polygon glyph. When
showArea = TRUE, it is mapped to a polygonGrob; else, a polylineGrob. The point 3
has a serialaxes glyph embedded in the parallel coordinate. After transformation, it is
mapped to a gTree structure containing three children: serialaxes lines, boundaries and
axes. When a parallel axes glyph point is displayed with boundaries and axes, it would
be, for example, like . The “unusual” names, boundary: polylineGrob arguments
and axes: polylineGrob arguments will be discussed later. The glyph of point 4 is a
point range. After transformation, it is mapped to a gTree containing a pointsGrob and
a lineGrob. The point 5 has a text glyph and is mapped to a textGrob.

100

loonGrob Data Structure of l_plot3D

The loonGrob data structure of an l_plot3D widget is almost the same as that of an
l_plot widget, but contains additional three axes objects (viz., 3d x axis, 3d y axis
and 3d z axis) measuring the rotation angle.

loonGrob Data Structure of l_hist

In the loonGrob data structure of an l_hist widget, the bin visuals are stored beneath
the histogram gTree, constructed by rectGrobs.

loonGrob Data Structure of l_graph

In the l_graph loonGrob data structure, the children of the graph gTree are graph edges,
graph nodes and graph labels. If the l_graph widget is a navgraph, children navpath
navigator* and navpoints navigator* are created to record the location of the naviga-
tor(s) and their paths (* represents a navigator’s index, starting from 0).

loonGrob Data Structure of Dependent Layers

The name of the dependent layer grob is composed of the layer name, layer type and layer
id. For g0, the name of the line is l_layer_line: line layer0.

Query and Modify a loonGrob

One can query the graphical objects via the function getGrob() using the object’s name.
For example, the name of the grob displaying the title (call titleGrob) is “title”, one can
get the grob by its name “title” as follows;

> library(grid)
> # extract the title
> titleGrob <- getGrob(g0, gPath = "title")
> titleGrob
[1] text[title]

Then, one can access the title (i.e., “Hello World”) of this loonGrob.

101

> titleGrob$label # title
[1] "Hello World"

In addition, one can modify the graphical objects of g0 by using editGrob() or
grid.edit(). For example, the attributes of the line can be altered using the follow-
ing code, as shown in Figure 4.6.

> # modify the line color and line type
> grid.edit("l_layer_line: line layer0",
+ gp = gpar(col = "blue", lwd = 3, lty = 2))

Figure 4.6: This is a modified version of Figure 4.3 (b). The red line is changed to a blue
thick dashed line.

Completeness of a loonGrob

All of the elements of a loon plot appear in the grob, either explicitly or, if they were
not drawn in the loon plot, as an empty grob (by the function grob()) containing the
relevant arguments to drawing them.

For example, if the axes/labels were not displayed (set showAxes = FALSE or set
showLabels = FALSE) in loon; or the points were deactivated (invisible) in loon, after

102

transformation, they could still be found in grid, but their names in the new loonGrob
were changed.

Continuing with the loon plot p0, we first turn off the labels,

> p0[’showLabels ’] <- FALSE

and then get a new loonGrob g1, as follows,

> g1 <- loonGrob(p0)

The name of the titleGrob is not “title” but “title: textGrob arguments”. It is composed
of the name of a graphical element (e.g., “title”), a geometric grob name (e.g., “textGrob”)
and a string “arguments”.

> titleGrob <- getGrob(g1, gPath = "title")
NULL
> titleGrob <- getGrob(g1, gPath = "title: textGrob arguments")
> titleGrob
grob[title: textGrob arguments]
> titleGrob$label
[1] "Hello World"

This titleGrob is constructed by the function grob() which stores all essential features
but does not produce any geometric visuals.

4.3.2 Serialaxes Model

A serialaxes plot, embedded in either the parallel coordinate system or the radial coordinate
system, is used to visualize high dimensional data. To map the visual display of a serialaxes
model from loon to grid graphics, we break down the high-level elements (serialaxes plot)
to low-level geometric visuals such as lines or polygons, then map them to lineGrobs or
polygonGrobs.

A loon parallel plot is created below and the data structure is shown in Figure 4.7.

> s <- l_serialaxes(iris[, -5],
+ color = iris$Species ,
+ showGuides = FALSE ,
+ axesLayout = "parallel")

103

Figure 4.7: The l_serialaxes loonGrob data structure. The order (from top to bottom)
is the default stacked order. If the graph was embedded in the parallel coordinate, the
children was parallelAxes, else it was radialAxes

The children of the parallelAxes (or radialAxes) are lineGrobs that each represents
an observation. The details of how to construct a serialaxes plot in grid are described as
follows:

Suppose the data X = [xij] has n observations and k variables, where i ∈ [1, ..., n]
and j ∈ [1, ..., k]. The data X will be scaled to X∗ by one of the four scaling methods
variable, observation, data or none.

• variable: x∗
j = 1

aj−bj
(xj − bj1) where X = [x1, ...,xp], xj is a n × 1 vector, aj =

max (xj) and bj = min (xj);

• observation: x∗
i = 1

ci−di
(xi − di1), X = [x1

T, ...,xn
T]

T, xi is a p × 1 vector, ci =
max (xi) and di = min (xi);

• data: x∗ij =
1

e−f
(xij − f), where X = [xij], e = max (xij), f = min (xij);

• none, x∗ij = xij.

In a parallel coordinate system, upon transformation, each data point x∗ij is restricted
within a [0, 1] × [0, 1] canvas. For observation i, the horizontal coordinate of the line is
li = [0

k−1
, ..., j

k−1
, ..., 1]

T

1×k
and the vertical coordinate is x∗

i . For a point parallel axes glyph,

104

located at xp and yp, with size sp, then li and x∗
i will be mapped to θ × li + xp × 1 and

θ × x∗
i + yp × 1 (θ ∝ sp).

In a radial coordinate, the angle 2π are equally split into k angles where the a = [aj]k×1

(aj = 2π j−1
k
). To display the ith observation x∗

i of the radial axes plot, we first construct
a diagonal matrix Di, where diag(Di) = x∗

i ; then the coordinates, xi = Diax + cx and
yi = Diay + cy, where ax = [r cos(a)]k×1, ay = [r sin(a)]k×1, cx and cy are the center
of the x and y. With the default setting, r = 0.5, cx = cy = [0.5]k×1 (all radial axes are
centered at [0.5, 0.5] with a maximum radius 0.5). For a point radial axes glyph, located
at xp and yp, with size sp, then, cx = xp, cy = yp and radius r = θsp (θ is some scaling
scalar).

4.3.3 Compound Plot

The loon package provides compound objects (e.g., l_pairs, l_facet and l_ts) that sev-
eral loon graphics are drawn simultaneously to uncover the patterns of interest of data. For
example, Figure 2.10 is a loon compound pairs plot. To transform an l_compound object
to a grid object, we first transform each widget in this compound object to an individual
loonGrob; then, query the names (the name of each plot in an l_compound object is the
layout position) and construct a layout matrix. Finally, we arrange multiple loonGrobs in
a single panel using packages gridExtra and gtable (Wickham and Pedersen, 2019).

4.4 Summary

The package loonGrob is a one way bridge to turn interactive loon plots into static grid
graphics by mapping visual displays from one to the other. The main reason why we have
to use visual displays in this mapping is visual structure mapping requires the same level of
graphical abstraction (e.g., high to high or low to low). However, the package grid provides
a general-purpose graphical system which is only equipped with structures at a relatively
low level of abstraction. In contrast, many loon visual structures, such as scatterplot with
non-primitive glyphs, histogram and serialaxes plot, are at a high level of abstraction and
cannot be mapped in grid.

105

4.4.1 Lessons

An important lesson we have learned in building loonGrob is the ease of constructing a
bridge significantly depends on how well the abstraction levels match.

When the abstraction levels are completely matched, it is fairly easy to create a bridge
such as mapping the primitive layer visual (e.g., l_layer_line to lineGrob). When the
abstraction levels are not perfectly matched, it is relatively hard to build a bridge. As there
is no high-level structure in grid, some actions are required to break high-level elements
down to low-level ones before the mapping (e.g., a loon histogram to rectangle structures,
rectGrob in grid).

4.4.2 Limitations

The hierarchical data structure of a loonGrob is extremely useful to retrieve, edit and
replace an object. It preserves the whole loon data structure. However, this preservation
comes at a cost of rendering speed and memory consumption.

Table 4.4 shows the benchmark of a loonGrob scatterplot with 1,000, 10,000 and 100,000
points. Compared to the same for ggplot scatterplots (Table 3.6), the rendering time of
a loonGrob is shorter when the number of points is small (e.g., 1,000); as the number
increases to 10,000, the speeds of two objects are almost the same; if the number is large
(e.g., reach to one million or above), the rendering of a ggplot object is approximately 1
second faster on average.

Table 4.5 shows the memory consumption of a loonGrob and a ggplot object. When
the number of points is small, a ggplot object only requires one-fifth of memory of a
loonGrob being used. As the number increases, the difference of the memory consumption
is getting smaller, but a ggplot object is more economic. That is because when the
data size is small, the design of loonGrob data structure which reproduces all loon data
structure, dominates the memory consumption; in contrast, when the data size is large,
the data dominates.

4.4.3 Further Work

The major obstacle we encountered is the size conversion. In loon, the size is defined by
pixel which is affected by screen resolution, while in grid, there is no pixel unit. To map
the size in perfect, we have to find the DPI of the screen and precisely convert the pixel to
pointsize. So far, it is not available yet.

106

Table 4.4: loonGrob Rendering Time

number of points
summary (sec)

min lq mean median up max eval

1,000 0.067 0.069 0.071 0.070 0.073 0.077 100

10,000 0.643 0.658 0.666 0.662 0.676 0.700 100

100,000 5.908 6.517 6.593 6.541 6.597 7.825 100

Table 4.5: Memory Consumption (MB)

Number of points loonGrob ggplot2

1,000 0.109 0.022

10,000 0.250 0.159

100,000 1.623 1.532

107

Chapter 5

Loon.shiny

5.1 Introduction

The package shiny (Chang et al., 2019), wrapping Javascript, CSS and HTML in R func-
tions, allows users with little experience in those areas to build nice web applications.
Packages loon and shiny both provide direct manipulation; nevertheless, there are still
some reasons to motivate us to render a loon widget into a shiny app.

A shiny app is composed of two components, a ui (user interface) object and a server
function. The ui object is responsible for creating the layout of an app, with which users
can insert inputs (e.g., selectInput, textInput) to control the specification. The server
is an inner function responsible for generating the logic of an app. When users manipulate
on the page, the graph of dependencies specified inside the server function allows it to
arrange changes immediately to reflect the interactivity. This ui/server pair is passed
as arguments to the function shinyApp() to create an interactive shiny app (Wickham,
2021).

The package shiny provides powerful presentation graphics. However, most web-based
graphics are not satisfying in data exploration, as they usually suffer from one issue: once
the plot is rendered, it is difficult (or impossible) to manipulate graphical components
(specified in compilation) outside the browser interface. Thus, users have to render the
session to check the output and stop the session to modify the layout or the logic. Ad-
ditionally, although shiny has already simplified the procedure of creating a web app,
users still need extra work to come up with a powerful data analysis toolkit, in order to
accommodate questions like how to set logic to best achieve the interactivity.

108

Loon provides powerful tools for data exploration, however, after exploring data interac-
tively, how to efficiently present the analysis to the audience. A short video or GIF could be
an option, however, they are kinematic graphics and do not offer any direct manipulation.

The package loon.shiny (Xu and Oldford, 2019b) (see https://github.com/great-
northern-diver/loon.shiny) wraps the ui design and server function to create a loon.shiny
app whose layout and logic specification largely restore loon’s design. For example, users
can sweep the mouse to create a region and points falling into this region can be high-
lighted; plotting states of highlighted points can be easily modified by the inspector and
et cetera. Analysts who explore data in loon now can present their interactive graphics
easily in a shiny web app.

This chapter begins with an introduction of the ui design of a loon.shiny app. After
specifying the layout, the server specification is discussed illustrating how direct manip-
ulation of this app is realized. Sometimes, direct manipulation may cause a change of the
user interface. Therefore, the details of the dynamic ui are discussed. This chapter closes
with limitations and a summary of loon.shiny.

5.2 User Interface

A user interface can be considered as a guideline telling users what objects can be manip-
ulated in an application.

The ui in a loon.shiny web app restores the original loon appearance to a great
extend. It is composed of two views, a fixed display (output graphics) and a fluid inspector
(input toolkits). The inspector consists of a World View window (the graph under the
navigation bar menu), a Plot panel, a Linking panel, a Select panel, a Modify panel, a
Layer panel (not for the serialaxes plot) and a Glyph panel (only for the scatterplot).

5.2.1 Singleton Design

A loon widget comes with two windows, a graphic window and a “singleton” inspector
window. “Singleton” means that there is only one instance of it. Each graphic model
(scatterplot, graph, histogram, serialaxes plot) has its own specified inspector. When more
than one loon displays are presented, the shown one depends upon which display receives
the last mouse gesture input or the window focus event.

In a loon.shiny web app, since only one window (containing graphics and inspectors)
is displayed, in order to realize the singleton design, a navigation bar menu is required.

109

https://github.com/great-northern-diver/loon.shiny
https://github.com/great-northern-diver/loon.shiny

The shown inspector (only one instance) can be switched by toggling the tabpanel or by
the last mouse gesture input (<double-click>) on the graphics.

For example, the following code shows a loon.shiny app (as shown in Figure 5.1).
There are three linked loon widgets: the top left is a histogram with the variable “Sepal
length”; the bottom right is a swapped histogram with the variable “Sepal width” and the
bottom left is a scatterplot with x representing the “Sepal length” and y representing the
“Sepal width”, as in

> library(loon.shiny)
+ p1 <- l_plot(iris ,
+ linkingGroup = "iris",
+ showLabels = FALSE)
+ p2 <- l_hist(iris$Sepal.Length ,
+ linkingGroup = "iris",
+ showLabels = FALSE ,
+ showStackedColors = TRUE)
+ p3 <- l_hist(iris$Sepal.Width , linkingGroup = "iris",
+ color = iris$Species , sync = "push",
+ showLabels = FALSE , swapAxes = TRUE ,
+ showStackedColors = TRUE)
+ loon.shiny(list(p1, p2, p3),
+ layoutMatrix = matrix(c(2,NA,1,3),
+ nrow = 2, byrow = TRUE))

In this case, the window focus is on the scatterplot. To switch the window focus to the top
histogram, one can double click any area on the top histogram or toggle the navigation
bar to “Histogram2”.

5.2.2 World View Window

Figure 5.2 shows the World View window, one for a loon widget (left) and one for a
loon.shiny app (right). The World View only displays active elements (e.g., points,
bins). The black thick outline shows the display view port.

In loon, the World View allows users to interact with the loon plot by scrolling the
mouse wheel (zooming) or dragging the view area (panning).

In contrast, the World View is static in a loon.shiny app because in the current shiny
version, one plot cannot be used to interact with another plot(s). To zoom or pan, one has
to drag slider bars in the Plot panel (see next subsection).

110

Figure 5.1: This loon.shiny app is composed of three linked loon plots, a scatterplot and
two histograms.

Figure 5.2: loon (left) and loon.shiny (right) World View windows

111

5.2.3 Plot Panel

The Plot panel controls the display over all non-data elements such as swapping axes,
showing or hiding labels/scales/guides.

Model l_plot

Figure 5.3 shows the loon (left) and loon.shiny (right) l_plot Plot panels. Two slider

Figure 5.3: l_plot loon (left) and loon.shiny (right) Plot panels

bars are provided to control the x limit and y limit. Reasons and limitations are demon-
strated in Subsection 5.5.2

In the “axes” channel, labels/scales/guides can be turned on/off and axes can be
swapped.

In loon and loon.shiny, querying is triggered by hovering the mouse over a point (with
itemLabels is on). Then a tooltip pops up with detailed information of this element.

When points are overlapped, in a loon widget, the toolbox only shows queries of the
top-most point, as shown in Figure 2.3. In contrast, in a loon.shiny app, the toolbox
shows all points’ queries, as shown in Figure 5.4.

112

Figure 5.4: When querying, a loon.shiny app shows the detailed information of all over-
lapped points, in this case, the shown automobiles are “Jetta” and “New Bettle”.

113

In the “scale to” channel, the plot interior can be adjusted to: the scales of selected
points (the “selected” button); the scales of all points in the plot layer (the “plot” button);
the scales of all plot objects in all layers (the “world” button).

Model l_hist

Figure 5.5 shows the loon (left) and loon.shiny (right) l_hist Plot panels.

Figure 5.5: l_hist loon (left) and loon.shiny (right) Plot panels

When stackedColors is toggled off, the color of all bins will be set as thistle; otherwise,
the elements are split into several groups and each group is represented by an individual
color. When outlines is toggled off, no bin boundaries are displayed. The yshows controls
the representation (e.g., frequency and density) of the y axis.

114

In loon, bins can be modified via the graphical element that is inside a histogram
graphic. Since Shiny does not support inserting a graphical element into a plot yet,
the element is replaced by two slider bars, controlling the bin-width and bin-origin
accordingly.

Model l_serialaxes

Figure 5.6 shows the loon (left) and loon.shiny (right) l_serialaxes Plot panels. Two

Figure 5.6: l_serialaxes loon (left) and loon.shiny (right) Plot panels

designs are almost the same.

5.2.4 Select Panel

Figure 5.7 shows the loon (left) and loon.shiny (right) Select panels.

115

Figure 5.7: loon (left) and loon.shiny (right) Select panels

The loon inspector provides a by channel that one can select points either by brushing
or sweeping. However, in a loon.shiny app, by channel is not available and brushing as
well as sweeping has been pre-defined. Once the app is rendered, the way of selection is
no longer changeable.

In loon, multiple-steps selection can be realized by holding the <shift> key. However,
tracking a key input in shiny is not easy. In contrast, multiple-steps selection is realized
by a “sticky” radio box in a loon.shiny app.

In addition, channel by color in a loon inspector is replaced by a checkbox-group
input in a loon.shiny app. More details will be introduced in Subsection 5.4.2.

5.2.5 Linking Panel

In loon, suppose one wants to push (or pull) the linked states of one plot to (or from)
other plots or to reset the linked states, command-line is often adopted (see Subsection
2.2.4 for the details of linking in loon).

However, in loon.shiny, once the app is rendered, settings are not allowed to be
changed programmatically. Therefore, we display all linking associated states within the
panel Linking (for all five models), as shown in Figure 5.8.

116

Figure 5.8: The Linking panel

5.2.6 Modify Panel

Figure 5.9 shows the loon (left) and loon.shiny (right)Modify panels of an l_plot widget
(the designs are similar for rest models).

In loon, new color buttons can be added to the panel by clicking the “+” or “+5”
button. However, in shiny, once an app is rendered, no new buttons can be created. In
contrast, in loon.shiny, the color picker widget (Attali, 2020) is used.

Additionally, the transparency settings are also allowed in loon.shiny (e.g., l_plot,
l_graph and l_serialaxes) by modifying an “alpha” slider bar and an “apply” button.

5.2.7 Layer Panel

The Layer panel (for l_plot, l_hist and l_graph) is to modify layers, as shown in Figure
5.10. In loon (left), a listbox widget is displayed showing the layer name, layer type and
layer id. As shiny does not yet provide a listbox widget, in loon.shiny (right), the design
is simplified by a select box.

The buttons beneath the “layer” channel are used to move this layer up or down a level;
make this layer visible or invisible; add a new layer group (not implemented yet) or delete
this layer; scale the view port to the region of this layer. The last command “label name:”
is to customize the label of the focused layer. Note that buttons that help move the
focused layer inside or outside a group layer in loon are not implemented in a loon.shiny
app yet.

117

Figure 5.9: loon (left) and loon.shiny (right) l_plot Modify panels

Figure 5.10: loon (left) and loon.shiny (right) Layer panels

118

5.2.8 Glyph Panel

The Glyph panel (for l_plot only) is to modify the appearance of non-primitive glyphs.
Different non-primitive glyphs have different designs,

• Serialaxes glyph: three checkbox toolkits are to control, whether to show enclosing
boxes; whether to display axes; whether to fill the glyph regions, respectively;

• Polygon glyph: a checkbox toolkit is to control whether to fill the area;

• Point-range glyph: a checkbox toolkit is to control the shape of the point, solid or
empty.

5.3 Interactivity

A loon.shiny app is based on the loonGrob bridge (see Section 5.6). As a loon widget is
passed into the function loon.shiny(), it will be transformed to a grid object first using
the function loonGrob(). Changes on the app can cause a re-evaluation of the server,
and inside the server, the data structure of the loonGrob would be modified, then an
updated grid graphic would be displayed.

An observer object (by the function observe()) is used to construcut a server func-
tion for updating the graphics and dynamic ui (introduced in Section 5.4). It monitors
changes in all reactive values such as pressing a button (inputs) or selecting points in a
graphic (outputs) in its environment. Meanwhile, it uses eager evaluation which can auto-
matically re-execute the app whenever any changes are detected. The following code shows
the design of the loon.shiny server function,

> server <- function(input , output , ...) {
+ ...
+ shiny:: observe ({
+ # to update the user interface
+ ...
+ # to update graphics
+ ...
+ })
+ }

119

The input is a list-like object, named according to the input ID, that contains all the
input data sent from the app; the output object is very similar to input, also a list-like
object named according to the output ID, but used to send output (i.e., graphics).

5.3.1 Plot Region

One can hover over the xlim (or ylim) slider bar (e.g., see Figure 5.3) till it shows .
Then dragging the double-headed arrow will pan the view port horizontally (or vertically).
In order to zoom in or out the view port, one can drag the round circle button on the xlim
(or ylim) slider bar.

The logic is that, if any of the xlim or ylim was modified, then, in the observer, the
new xlim and ylim would be assigned to handles newxlim and newylim, as in

> newxlim <- input$xlim
> newylim <- input$ylim

The new viewport of the grid graphics will be edited as in

> grid:: setGrob(
+ gTree = lg,
+ gPath = "loon plot",
+ newGrob = grid:: editGrob(
+ grob = grid:: getGrob(lg, "loon plot"),
+ vp = dataViewport(xscale = newxlim ,
+ yscale = newylim ,
+ name = "dataViewport")
+)
+)

where lg is a loonGrob transformed from a loon widget.

Buttons “plot”, “world”, “selected” are used to re-scale the window. When any of them
are pressed, in the observer, newxlim and newylim are assigned to corresponding scales
to modify the data view port.

5.3.2 Non-data Element States

When the axes are swapped, in the observer, the coordinates, labels and scales are flipped.

120

Labels, axes and guides can be turned on or off. When any of them is turned off, for
example, axes, its grob will be set as a nullGrob – a NULL graphical object that generates
nothing, as in

> grid:: setGrob(
+ gTree = lg,
+ gPath = "axes",
+ newGrob = grid:: nullGrob(name = "axes")
+)

When any of them is turned on, the nullGrob is switched back to the grob which draws
corresponding graphical elements (e.g., nullGrob() → xaxisGrob()).

Note that, once the labels or scales are turned on (or off), the margins (label margins
and scales margins) of the plot view port will be adjusted simultaneously.

5.3.3 Selection

To select, we need to query the elements’ indices falling inside the brushing region.

When a brushing area is constructed, the plot will send coordinates of the region to
the observer. A named list with xmin, xmax, ymin, and ymax is returned to locate the
brushing area (scaled to a [0, 1] plate). To match the scales of the brushing region, we need
to transform the coordinates of the current data viewport to [0, 1]. As different models
have different graphical elements, the selection strategies differ from one to another.

Model l_plot and l_graph

As the brushing region and the data viewport have the same scales, in a loon scatterplot,
we can easily identify points within the region.

Model l_hist

The elements of an l_hist widget are partitioned into a separate group for each color.
To determine which elements are selected, the following process is applied: go through all
active bins. For each bin, determine whether any corner of the brushing area is inside this
bin area or any corner of this bin is inside the brushing area. If any of these happens, this
bin will be highlighted and all elements in this bin will be marked as “selected”.

121

Model l_serialaxes

In loon, an l_serialaxes widget can be highlighted by a one dimensional selection tool
“crosser”. One can draw a single segment and all the elements (i.e., lines) intersecting with
this segment are highlighted, as shown in Figure 5.11 (a).

However, this one dimensional selection tool is not available in shiny yet. In contrast,
a two dimensional rectangular region is used, as shown in Figure 5.11 (b).

(a) (b)

Figure 5.11: Selection in loon (left) and loon.shiny (right) of an l_serialaxes widget

When determining whether one segment intersects with another segment, typically, one
of the three scenarios could happen:

• the segments do not intersect;

• there is a unique intersection point;

• the intersection is another segment.

Each element is composed of k end-to-end segments. To identify if an element is selected,
we need to check if any segments (of the k end-to-end) intersect with any side of the
brushing region. Therefore, it is relatively hard to find selected elements directly.

122

To simplify the process, we turn each element into a sequence of points. If any point
falls into the region, this element will be marked as “selected”.

5.3.4 Linking

In a loon.shiny app, the linkedStates such as color and size, are set via the checkbox
(see Figure 5.7). Suppose plot ‘A’ belongs to the linkingGroup ‘groupA’ and the state ‘S’
(e.g., color) is a linked state, any changes to ‘S’ in plot ‘A’ will lead to an update on a list
called linkingInfo (inside the observer). Then, the rest of the plots in ‘groupA’ will be
checked and their state ‘S’ will be changed accordingly.

Once the linkingGroup is set as none for plot ‘A’, this plot will disconnect from
‘groupA’. Any modifications applied to this plot will not affect the linkingInfo.

Suppose this plot now joins back to ‘groupA’, nothing happens – neither this plot’s
states or other plots’ states are modified. That is because, this linkingGroup select-box
input is wrapped inside the function isolate() so that the modification of this widget will
not trigger an evaluation of the observer. This select-box input is waiting for a command,
whether to push its states to other linked plots or pull states from other linked plots.

If pull, this plot’s linked states will be changed by the linkingInfo; else, the linked
states of this plot remain, but the linked states of the linkingInfo will be updated based
upon this plot’s states. Then every member in ‘groupA’ will be modified by the new
linkingInfo.

5.3.5 States Modification

Model l_plot and Model l_serialaxes

In the model l_plot and model l_serialaxes, the elements (points and lines) are inde-
pendent of each other, so that the state modification of an individual element would not
affect other elements. Note that for each evaluation of the observer, only the states of
those selected points/segments will be modified.

To modify colors, other than clicking the 21 listed color buttons, one can also use the
color picker widget to retrieve richer colors, as shown in Figure 5.9. Note that, the color
picker widget is wrapped inside the function isolate() as well.

The “deactivate” button and “reactivative” button are used to switch element state
between invisible and visible mode. When the “deactivate” button is clicked, the graphical

123

function used to draw the visuals (e.g., pointsGrob()) is replaced by the function grob(),
for example,

> for (i in id) {
+ newGrob$children [[i]] <-
+ do.call(grid::grob ,
+ getGrobArgs(newGrob$children [[i]]))
+ }

where id is the indices of the deactivated elements and getGrobArgs() is used to record
all the arguments of this grob. Neither grob() nor nullGrob() produces any geometric
displays, however, the grob() can accommodate all arguments as a basic creator. For
example:

> grid::grob(arrow = grid::arrow(type="open"))
grob[GRID.grob.6]
> grid:: nullGrob(arrow = grid::arrow(type="open"))
Error in grid:: nullGrob(arrow = grid::arrow(type = "open")) :

unused argument (arrow = grid::arrow(type = "open"))

Storing all attributes in grob() is helpful for reactivation, through which all elements
will be visible again. Once reactivated, all elements will be gone through and the function
grob() will be replaced by the graphical function which draws the original visuals (e.g.,
grob() → pointsGrob()).

Model l_hist

Unlike a scatterplot or a serialaxes plot, any states modification of attributes may cause
a re-binning of x data so that the display of a histogram is changed accordingly. Conse-
quently, in each evaluation of an l_hist loon.shiny app, the coordinates of all bins are
recalculated.

5.4 Dynamic ui

Ui is to control the layout specification of an app. Sometimes, a change to a loon.shiny
app may not only update the output graphics, but also update its input interface, in which
case, the messages of the new changes will be collected and sent to update**() (e.g.,
updateSelectInput()) functions.

124

5.4.1 Update Slider Bars

Two slider bars are used to control the x limit and y limit to realize panning or zooming. In
a loon.shiny app, the slider bars (values or labels) can be affected by different scenarios:
whether the coordinates are swapped or whether the graphics are scaled to the “plot”
region, the “world” region or the “selected” region.

The “swap” checkbox is to flip the Cartesian coordinates. Once the swap checkbox
is toggled on, the function shiny::updateSliderInput() gets activated. Within this
function, we swap the labels of these two bars, “xlim” to “ylim” and “ylim” to “xlim”.

Suppose any of the display region is scaled to “plot”, “world” or “selected”, the values of
the slider bars will be updated immediately; then, the server function is re-evaluated to
change the display view port.

5.4.2 Update “by color”

In a loon inspector, the channel “by color” shows a list of buttons (e.g., see Figure 5.7
left), each represents a unique color in the plot. By selecting a certain color, all elements
in that color will be highlighted. When the element colors are changed in the graphics, the
buttons will be updated accordingly, either in the color of each button widget or in the
number of buttons.

In shiny, the dynamic ui system only supports the update of the existing button
widgets (e.g., change the label or icon of an existing action button on the client), instead
of creating new button widgets. In contrast, in a loon.shiny app, all color buttons are
replaced by a checkbox-group input as the checkbox can be updated in time via the
function updateCheckboxGroupInput(). Besides, here are some other benefits of this
design:

• color names are displayed beside each check box (e.g., see Figure 5.7 right);

• to select multiple groups (each group is in one color), one can simply toggle multiple
choices through the checkbox-group input without holding the <shift> key (loon
inspector).

125

5.5 Limitations

5.5.1 Computing Speed

Most code in loon.shiny runs in R but R is not a fast language (Wickham, 2014). Based on
our test on a machine with i7-6700HQ CPU, GeForce GTX 970 Desktop Graphics Cards,
as the number of observations reaches 2000, the interactivity is not satisfying.

Right now, in the server function, only one observer is used so that in each execution,
all computations in this object will be evaluated. Even though many logical blocks are built
to avoid unnecessary runs, it is still not perfectly efficient. The only reason we still stay
with this design is that: most of the time, many interactions are highly related. Putting
everything in one can make the logic easier to be followed.

One possible way to improve the performance of a loon.shiny app is to break the
single observer design down into several pieces and each piece is in charge of one or
several functionalities, for example,

> server <- function(input , output , session) {
+ ...
+ shiny:: observe ({
+ # non -data element states modification
+ ...
+ })
+ shiny:: observe ({
+ # selection modification
+ ...
+ })
+ ...
+ }

5.5.2 Scales Control

In loon, panning and zooming are realized by immediate manipulation with a mouse and
the modifier key (<shift> or <ctrl>). To zoom in and out a plot, one can scroll the
mouse wheel. To pan a plot, select the plot interior with the right (or secondary) mouse
button and move the mouse (with the button still down). The direction of panning can be
constrained by holding down the named modifier keys (<shift> or <ctrl>) while panning.

126

In shiny, the function plotOutput() (used to display the graphic) cannot trace scrolling
yet. Consequently, two sliders bars are provided in a loon.shiny app. The problem is
that slider bars have limits but scrolling is unlimited (a loon widget provides an infinite
space).

5.5.3 Design of Plot Window and Inspector

In a loon plot, both the display window and the inspector can be dragged, resized or
closed. However, in a loon.shiny app, they are designed differently.

• Dragging: in a loon.shiny web app, the user interface can be dragged but the main
plot cannot. That is because panels in a shiny app are dragged by holding the left
mouse button. However, if we set the main plot drag-able, there was no way for
users to sweep (or brush). So far, we cannot find a way to realize both dragging and
sweeping (or brushing) simultaneously on the main plot.

• Resizing: a loon window is a fluid panel. However, in a loon.shiny app, using a
fluid panel may make the display look bad. Thus, a fixed panel is used.

• Closing: in loon, closing a loon widget results a true termination; closing a loon
inspector results in creating a new loon inspector as soon as a display reporting to
the loon inspector receives a mouse gesture input or window focus event (Waddell,
2016). In a loon.shiny app, the interface or plot output cannot be closed until we
end the running session.

5.5.4 Mouse Gestures

In loon, a <single click> can deselect elements or activate the window focus. However,
in loon.shiny, if a <single click> mouse gesture was implemented, suppose one wanted
to use sweeping (press down the left button and sweep out an area) to select points, then,
the server function would be executed twice – one for the click (at the moment a user
presses down the left mouse button) and one for the sweeping.

To reduce the duplicated evaluation, in loon.shiny, a <single click> mouse gesture
is replaced by a <double click> mouse gesture; therefore, to deselect highlighted points or
switch the window focus, one has to double click on the window. Though, compared with
the <single click>, <double click> is less natural, the efficiency of the app improves.

127

5.5.5 Event Bindings

The reactive logic of a loon.shiny app is curated and designed based on loon’s default
logic specifications. Loon also provides another framework called event bindings which
offers the functionality of binding code to specific event types. The following code shows
a state event bindings example,

> p <- l_plot(iris)
> l_bind_state(target = p,
+ event = "selected",
+ callback = function () {
+ sel <- p[’selected ’]
+ p[’size’][sel] <- 12
+ p[’color’][sel] <- "firebrick"
+ })

Here, when one selects a point, more than highlighted, the size of it gets bigger. Once the
selected point is downlighted, the color of this point is changed to firebrick. Currently, the
binding functionality is not available in a loon.shiny app.

5.6 Summary

The shiny package is a graphical system whose principal structures are a user interface,
ui, and a server function. Any R graphic created with either the base graphics (by the
graphics package) or the grid-based graphics can be displayed in a web browser using
shiny. Since ggplot2 is built on grid, ggplots could also be used in shiny. A bridge
between the graphical system loon and the graphical system shiny can therefore rely on
a bridge between loon any of the base graphical systems in R, including ggplot2.

In this chapter, the loon.shiny bridge was built via the loonGrob bridge to produce the
plots in shiny. The package loon.shiny then extends shiny by adding the functionality of
the loon inspector and other interactive features of loon (e.g., panning, zooming, brushing,
linked plots).

To transform loon plots into interactive plots in a shiny web app, the visual display
of each loon plot is first mapped to the visual display of a grid graphic (using loonGrob),
then, the control features (i.e., input) such as slider-bars, buttons and checkbox, provided
by shiny, are added to the app to reproduce the floating palette interface – loon inspector.
To allow the interface to interact with the grid graphic, the logic specifications in the

128

server function were edited so that changes on the ui can update the output plot, just as
(as similar as possible) what loon does.

Again, in place of the loonGrob bridge, a loon.shiny bridge could have been con-
structed using the loon.ggplot bridge of Chapter 3. The ui design would not change
but the server would have to be changed to effect changes in a ggplot2 visual structure
instead of a grid structure (i.e., visual display). A future loon.shiny bridge might ac-
commodate both grid and ggplot2 packages by redesigning the server function to switch
between the loonGrob and loon.ggplot bridges by user choice.

129

Chapter 6

Loon.tourr

6.1 Introduction

A tour is a motion graphic designed to study the joint distribution of multivariate data
(Asimov, 1985)(Buja and Asimov, 1986). A sequence of low-dimensional projections is cre-
ated by a high dimensional data set and tours are thus used to find interesting projections.
In mathematics, Xn×p represents the original data set; P p×d is the matrix of projection
vectors and d < p.

Y = XP

where Y is the lower dimensional sub-space.

The tour was first implemented in the software Dataviewer (Buja et al., 1986)(Hurley,
1987)(Buja et al., 1987) in Symbolics Lisp machine. A smoothly moving scatterplot could
be created to visualize the tour paths. Swayne et al. (1998) implemented the software XGobi
in the X Window System, providing portability across a wide variety of workstations (i.e.,
X terminals, personal computers, even across a network). The software GGobi (Swayne
et al., 2001)(Cook and Swayne, 2007) redesigned and extended its ancestor XGobi, can
be embedded in other software, like R. The package rggobi (Wickham et al., 2006) is an
R interface of GGobi, however, it has been removed from the CRAN (can be accessed in
archive).

The package tourr (Wickham et al., 2011), inherited most functionality from rggobi,
implements geodesic interpolation and provides various tour generation functions (e.g.,
grand tour, guided tour, etc.) in R. Unlike earlier tour implementations (rggobi), no
interactive manipulation of the plot elements in tourr is allowed.

130

https://cran.r-project.org/src/contrib/Archive/rggobi/

The loon package is a toolkit that enables highly interactive data visualization. The
package loon.tourr (see https://great-northern-diver.github.io/loon.tourr/) (Xu and Old-
ford, 2021) adds full functionality of loon’s interactive graphics to tourr. For example,
in loon.tourr, interactive selection, coloring, and deactivating of points in a tour display
and also linking that display to any other loon plots are allowed. Interesting projections
discovered during the tour can be accessed at any point in the tour. In addition, random
tours displaying more than 2 dimensions are also accommodated in the parallel or radial
coordinate system.

This chapter begins with an introduction of the data structure of the l_tour object
(not a widget) and l_tour_compound object. Then, we discuss the specifications of a
loon tour object, such as setting different tour techniques (e.g., guided tour), projecting
the original data onto 1D, 2D, or higher than 2D subspace and adding interactive visual
layers. This chapter closes with a summary of the package loon.tourr.

6.2 Tour Object

An l_tour interface is composed of a loon widget and a GUI system (i.e., a slider bar to
control the tour, a refresh button and scaling radio buttons). Figure 6.1 shows a basic 2D
random tour in loon.

> library(loon.tourr)
> ltp <- l_tour(iris[, -5],
+ color = iris$Species)

These plots are interactive for users to pan, zoom or select. By default, there are
30 random projections and 40 steps between each two. Thus, the number of matrices of
projection vectors becomes 30 × 40 + 1 (start position) in total. To navigate the tour,
scroll the rightmost sliderbar to transform the projection from one to the other (e.g., in
Figure 6.1, from left to right). Unfortunately, if none of the projections is interesting,
press the “refresh” button at the left-bottom corner to generate new random tours. At the
bottom of the plot, a menu of scaling methods is available for selection, data, variable,
observation and sphere. The projected space can be rewritten based on the scaling as

Y = s(X)P

The first three scaling methods have been introduced in Subsection 4.3.2. The last one
sphere is defined as

s(X) = X?V

131

https://great-northern-diver.github.io/loon.tourr/

(a) (b)

Figure 6.1: Basic loon tour for data iris.

where X? = (I − 1
n
11T)X = UDV . U is an n× p semi-unitary matrix and V is an p× p

semi-unitary matrix, such that UTU = V TV = I and D is a diagonal matrix.

With pre-set tour paths, the interactivity of the GUI system is realized by customizing
the command option in tk. To modify the interface, a callback function (defined in the
command) is executed. For example, suppose one drags the bar, the callback function will
be evaluated and the corresponding projection matrix will be located (P new). Based on
this projection, the coordinates (Y old = XP old) will then be transformed to the new one
(Y new = XP new).

An l_tour object is not a loon widget,

> loon::l_isLoonWidget(ltp)
[1] FALSE

but it inherits some functionality of loon. For example, one can query the aesthetic
attributes of an l_tour object by “[” or l_cget() and modify its plotting states by
“[<-” or l_configure(). However, as not all loon functionality is inherited by an l_tour
object, one cannot simply add a geometric layer, as in

> l_layer_line(l_tour , ...)

or set non-primitive glyphs, as in

> l_add_glyph_polygon(l_tour , ...)

132

To get a loon widget, the function l_getPlots() can be used, as in

> p <- l_getPlots(ltp)

The returned object is a true loon widget,

> loon::l_isLoonWidget(p)
[1] TRUE

Then, one can add geometric layers or set non-primitive glyphs via the returned loon
widget (i.e., p; see Section 6.4).

An l_tour object stores a matrix of projection vectors reflecting the current projections.
For example, the matrix of projection vectors in Figure 6.1 (b) can be accessed as in

> ltp[‘projection ’]
[,1] [,2]

[1,] 0.2101051 -0.54962269
[2,] -0.6903045 0.41549149
[3,] 0.4055277 -0.01074593
[4,] 0.5611442 0.72468355

Note that the state projection cannot be configured. For example, ltp[’projection’]
<- ** is illegal.

In loon, the l_getFromPath() function is often used to create a loon widget handle
from the path name (e.g., .l0.plot). However, simply calling l_getFromPath() only
produces a loon widget instead of an l_tour object (expected result). To convert the
loon widget to an l_tour object, one has to fire the callback function. Once the callback
function gets activated, all elements in the environment in which the function was called
will be scanned. If the unique path name was detected, the projection matrix would be
assigned to that loon widget which would then become an l_tour object. The simplest
way to fire the callback function is to manipulate the tour GUI (e.g., scroll the bar, refresh
the sequences, apply a different scaling method, etc.).

In an l_tour_compound object, all plots have the same matrix of projection vectors.
Currently, loon.tourr provides two l_tour_compound objects, a facet tour object (by
setting the argument by in the function l_tour()) and a pairs tour object (by the function
l_tour_pairs()), as shown in Figure 6.2.

133

Figure 6.2: The left figure is a facet tour that each panel displays a species of iris. The
right one is a pairs tour. Each scatterplot in the matrix visualizes the relationship between
a pair of variables in Y

6.3 Tour Specifications

6.3.1 Tour Techniques

In tourr, several tour techniques are introduced to better explore a low-dimensional space:

• Grand Tour: the next target basis is selected randomly. The default tour mechanism
in loon.tourr is grand_tour(d = 2), as in

> l_tour(data , tour_path = grand_tour(d = 2))

where d represents the lower sub-space dimension and will be discussed more in
Subsection 6.3.2.

• Guided Tour: the next target basis is selected by a criterion function g(Y) that
specifies some features of interest.

argmax g(Y),∀P

where Y = [yT
1 , ...,y

T
n]

T
= XP , yj is a p× 1 vector. The package tourr introduces

several projection pursuit indexes such as “holes” and “central mass” (Cook et al.,
1993) which are defined as follows:

134

– Holes:

g(Y) =
1− 1

n

∑n
i=1 exp(−

1
2
yT
i yi)

1− exp (−p
2
)

In loon.tourr, it is implemented as in
> l_tour(data , tour_path = guided_tour(holes(), d = 2L))

– Central Mass:

g(Y) =
1
n

∑n
i=1 exp(−

1
2
yT
i yi)− exp (−p

2
)

1− exp (−p
2
)

It is implemented as in
> l_tour(data , tour_path = guided_tour(cmass(), d = 2L))

The “holes” and “central mass” indexes are inspired from the normal density function.
See Cook and Swayne (2007) for more details.

Additionally, the package tourr also provides other tour paths. For example, in a
frozen tour (frozen_tour()), one variable is designated as the manipulation variable so
that the projection coefficient is fixed; a local tour (local_tour()) alternates between the
starting position and a nearby random projection.

Besides, a slicing tour (or a section tour) is introduced in tourr. In this tour, only
the projected points whose orthogonal distances are smaller than a cutoff value st (slice
thickness) are highlighted (Laa et al., 2020). In loon.tourr, its application is slightly
different. In interactive loon plots, several linked plots may share the same selected state.
In a slicing tour, rather than altering selection, points whose orthogonal distances within
the range will be visible and others become invisible. A slicing tour can be approached by,
> l_tour(data , slicing = TRUE , slicingDistance = st)

6.3.2 Lower Sub-space Dimensions

Other than a defaulted 2D scatterplot, other dimensional sub-spaces are also implemented
by modifying the parameter d in functions **_tour() (e.g., grand_tour()). The 1D sub-
space is embedded in a histogram and the higher dimensional sub-space is embedded in a
serialaxes plot (i.e., parallel and radial). For example, Figure 6.3 gives examples of 1D and
4D tour plots.

135

> # 1D tour
> lth <- l_tour(iris[, -5],
+ color = iris$Species ,
+ tour_path = grand_tour(1))
> # 4D tour
> lts <- l_tour(iris[, -5],
+ color = iris$Species ,
+ axesLayout = "parallel",
+ tour_path = grand_tour(4))

Figure 6.3: One dimensional tour and four dimensional tour.

An Andrews (1972) tour plot can be created by setting the state andrews = TRUE, as
in (shown in Figure 6.4),

> lts[’andrews ’] <- TRUE

6.4 Layers in Tour

Sometimes, layer visuals could provide additional information in the search for interesting
patterns.

In geometry, the convex hull of a planar set is the minimum-area convex polygon
containing the planar set. Figure 6.5 shows a convex hull layer (by the algorithm CONVEX
Eddy, 1977) on the tour plot ltp.

> l_layer_hull(ltp , group = iris$Species)

136

Figure 6.4: Grand tour with Fourier transformation. The left one is embedded in a parallel
coordinate system and the right one is embedded in a radial coordinate system.

Each species is an individual set and each hull is constructed by the vertices of each species.
By navigating the tour (e.g., drag the bar, modify the scaling methods, etc.), the hull is re-
calculated immediately based on the new projection. The hull layer is extremely useful in
determining clusters. When the hulls barely overlap with each other, the projection could
be an interesting one. For example, the Figure 6.5 (a) is not an interesting projection
because all three clusters are completely overlapped – none of the groups could be easily
distinguished from others. In contrast, Figure 6.5 (b) could be considered an interesting
projection. Species “virginica” is entirely isolated. Species “setosa” and “versicolor” are
well-isolated as well.

Besides, inspired by animate_density2D() and animate_trails() in tourr, a density
2D layer and a points trail layer are provided in loon.tourr. A density 2D layer deals
with the overplotting issues, as shown in Figure 6.6 (a). In a points trail layer, a trail
appears behind every single point where the angle measures the direction and the length
measures the size of the step, as shown in Figure 6.6 (b).

The function l_layer_callback(), controlling the interactivity of tour layers, is the
backbone of the hull layer, the density 2D layer and the points trail layer. It is a generic
method (see Subsection 3.3.3) so that one can customize this function to realize the inter-
activity of any loon layers.

For example, one can draw a 1D density layer visual on top of the histogram lth, as
shown in Figure 6.7 (a).

137

(a) (b)

Figure 6.5: The convex hull layer for data iris. With the layer hull, each cluster is easier
to be distinguished. All three species are clearly separated in (b).

(a) (b)

Figure 6.6: A density 2D layer and a trail layer

138

> # Note that ‘lth ’ is not a loon widget
> # one can query the loon widget by calling ‘l_getPlots()‘
> l <- l_layer(l_getPlots(lth),
+ stats:: density(lth[’x’]),
+ label = "density1D")

However, this layer will not reflect the change along with the tour. As the tour is being
navigated, the density curve is not updated, as shown in Figure 6.7 (b).

(a) (b)

Figure 6.7: One can add any layers to an l_tour object. Nevertheless, if the function
l_layer_callback() was not set, the layer would not be updated along with the tour, as
shown in (b)

The reason is that the callback function of this density 1D layer does not exist. To
update the 1D layer instantaneously, one should create an layer 1D callback function, such
as,

> l_layer_callback.density1D <- function(target , layer , ...) {
+
+ layer <- loon::l_create_handle(c(l_getPlots(target), layer))
+ den <- stats:: density(target[’x’])
+
+ loon::l_configure(layer ,
+ x = den$x,
+ y = den$y)
+ }

139

Within this function, the density is computed through the new basis so that the density
layer can be configured simultaneously along with the changes of the tour, as shown in
Figure 6.8.

Figure 6.8: After executing the function l_layer_callback.density1D(), density 1D
layer is updated as the tour is being navigated.

The function l_layer_callback() is a generic function. In the callback procedure, to
make sure the method dispatching to the function l_layer_callback.density1D(), one
has to set the label of the layer as density1D.

6.5 Summary

The package tourr extends the base graphics system in R to provide kinematic graphics
following any computed tour. The package loon.tourr extends loon to also take advan-
tage of tours computed by tourr. However, the kinematic tours in loon.tourr are now
interactive and integrated with any other plots in loon. This makes them more powerful:
1. analysts can directly manipulate on the plot in a tour process, such as selecting, link-
ing, and querying; 2. any interesting matrix of projection vectors can be queried at any
moment; 3. layers can be added and automated with the tour to provide richer information.

The visual displays of tourr are mapped to visual displays in loon via loon.tourr. So,
in this sense, loon.tourr is a bridge from tourr to loon, in that it maps visual displays.

140

However, by relying only on the projection information, no graphical element in tourr is
actually transformed to a graphical element in loon. So, as formally defined in Chapter 1,
loon.tourr is not formally a bridge.

141

Chapter 7

Discussion and Further Work

This thesis introduced the idea of a bridge between graphical systems in R. Three specific
bridges and their design were discussed in detail in previous chapters (i.e., loonGrob,
loon.ggplot, loon.shiny). In this chapter, we focus on the benefits and some limitations
of a bridge in general. Some further work is also proposed.

7.1 Bridge

A bridge was introduced in Chapter 1, as a mapping from one graphical system, G, to
another, K; elements g1, ..., gn ∈ G are mapped to elements k1, ..., km ∈ K. The elements
gi and kj are imagined to be either a visual display or a visual structure.

7.1.1 On Elements

When the elements gi and kj are thought of as visual displays, success is measured by how
closely the display kj visually resembles gi. When the elements gi and kj are thought of
as visual structures, success is measured by how well the full set of information of gi is
incorporated in kj, including matching levels of abstraction.

When visual structures are being mapped, analysts should ideally be able to continue
exploring the data in the graphical system K. This aligns with our initial intention of the
bridge – allowing analysts to use more than one graphical systems in different aspects of
data analysis.

142

For example, the following code shows how to map a visual structure from a loon
histogram to a ggplot object.

> library(loon.ggplot)
> h <- l_hist(iris)
> hg1 <- loon2ggplot(h)
> hg1

The output of hg1 is shown in Figure 7.1 (a). The hg1 is constructed by the function
geom_histogram() in ggplot2. In geom_histogram(), the data structure (e.g., bin width
and bin color) is inherited from the loon l_hist widget. The hg1 object is editable due
to the nature of the visual structure mapping, as in the following code (shown in Figure
7.1 b):

> hg1$layers [[1]]$ stat_params$binwidth <- 0.2
> hg1

(a) (b)

Figure 7.1: Transform a histogram from loon to ggplot2

In contrast, when mapping only visual displays, the changes of kj are often very limited
(e.g., aesthetic attributes could be changed but statistical modifications not allowed). For
example, the code below maps a visual display from a loon histogram widget to that of a
ggplot object (the display is identical to Figure 7.1 a).

> hg2 <- loon2ggplot(h, asAes = FALSE)
> hg2

143

In order to build hg2, we treat the input histogram h as stacked rectangles; therefore, the
function geom_rect() is adopted for the bridge loon.ggplot. The locations of the four
corners of each bin (i.e., xmax, xmin, ymax, ymin) are extracted and set in geom_rect().
Even though hg1 and hg2 have exactly the same output, the fact is that they are very
different objects. No histogram parameters (e.g., bin width and bin origin) can be set in
hg2 at all.

7.1.2 On the Level of Abstraction

Usually, mapping a visual structure provides more functionality for the elements than
mapping a visual display, and so is generally preferred. However, mapping visual structures
can be difficult, if not impossible, when the levels of abstraction do not match between
systems.

If the abstraction level matches (i.e., high-level to high-level, low-level to low-level),
the bridge is easy to build (e.g., a loon l_hist widget and a ggplot2 geom_histogram
object). If the abstraction level does not match (e.g., f(gi) /∈ K), the bridge is relatively
hard to create (e.g., loon to grid).

Usually when elements at the level of abstraction do not match, we have two solu-
tions: 1., extend K to create corresponding high-level element kj and then match gi (e.g.,
ggmulti); 2., break gi down to several low-level elements gl (e.g., loonGrob). The former
one is still a visual structure mapping, but the later one is a visual display mapping.

7.1.3 Zenplots Revisited

In Section 1.5, we noted that some developers solve the problem of user preference for
different graphical systems in R by implementing their visualization using more than one
graphical systems. The package zenplots (Hofert and Oldford, 2019) accommodates three
graphical systems at the same time, graphics, grid and loon. With the proper bridge,
however, this is no longer necessary.

Suppose users want to visualize high dimensional data using the zigzag layout of
zenplots but prefer a graphical system ggplot2. No need to implement a ggplot2 set of
functions for zenplots when the loon.ggplot is available. Instead, with a bridge, users
can create a zenplot using pkg = “loon”, then use loon.ggplot to return a patchwork
object (extensions of ggplot2).

144

For example, the following code shows the construction of an interactive zenplot with
2D scatterplots and 1D histograms for the iris data (see earlier as a screenshot in Figure
1.9).

> library(zenplots)
> zp <- zenplot(iris[, -5],
+ plot1d = "hist",
+ plot2d = "points",
+ pkg = "loon")

Now, the bridge function loon.ggplot() is called on zp to produce a ggplot (i.e., a
patchwork) object, as shown in Figure 7.2.

> loon.ggplot(zp)

Figure 7.2: A ggplot version of Figure 1.9 via the bridge loon.ggplot.

This patchwork object could also be transformed back to an interactive compound
loon plot via the loon.ggplot bridge (after version 1.3.0). Note that an l_compound
object would be returned, not a zenplot object.

145

7.2 Extension and Suite Connection

A two-way bridge is defined by graphical systems G andK with the functions f and h, where
f is a function to transform elements in G to elements in K and h does the reverse. By both
f and h, the functionalities of G and K might be shared with each other. Furthermore,
the suite of G (related packages of G) and the suite of K can be connected by this two-way
bridge.

For example, loon.ggplot extends the functionalities of both loon and ggplot2. Ad-
ditionally, it connects the suite of loon (e.g., loon.shiny) and the suite of ggplot2 (e.g.,
gganimate).

7.2.1 Extension

The package ggplot2 extends the graphical API (Application Programming Interface) of
the package loon (which uses a traditional graphical API). Similar to the base graphics
package, a collection of commonly used graphical functions are provided, such as the func-
tion l_plot() for drawing a scatterplot, as shown in following code,

> # scatterplot
> l0 <- l_plot(x = iris$Sepal.Length , y = iris$Sepal.Width)

It is fairly easy for new users to get started with this API as it is very intuitive and only
requires minimum typing – only one function l_plot() and two coordinate arguments x
and y. However, this design requires a lot of manual work to add complexity (e.g., plot
points in a radial axes).

Alternatively, based on a grammar of graphics, the package ggplot2 provides a new
grammar-based API. With the bridge loon.ggplot, users are able to create the same loon
scatterplot by this new design, as in

> # grammar based
> l1 <- l_ggplot(data = iris ,
+ mapping = aes(x = Sepal.Length ,
+ y = Sepal.Width)) +
+ geom_point()
> l1

The benefit of this design is to add complexity (and equally easy to take the complexity
away) on an existing plot easily. For example, for a scatterplot that has been rendered

146

into the Cartesian coordinate system, having it rendered again into the radial coordinate
system can be simply achieved by adding the function coord_polar() to the existing l1
(i.e., l1 + coord_polar()). However, compared with the traditional API, it needs more
typing. Arguments “data” and “mapping” in the main function l_ggplot() have to be
defined. In addition, the layer geom_point() is also required for the purpose of drawing
points.

On the other hand, the package loon extends the implementation of a grammar of
graphics to a grammar of interactive graphics (allowing interactivity in ggplot2). With
the bridge loon.ggplot, an interactive plot can be built by adding an interactivity
component, as in

> ggplot(data = iris ,
+ mapping = aes(x = Sepal.Length , y = Sepal.Width)) +
+ geom_point() +
+ selection(selectBy = "sweeping")

In the expression above, the ggplot object “understands” that the analyst wants it to be
“selectable” and that’s how an interactive loon plot gets returned.

7.2.2 Suite Connection

With the bridge loon.ggplot, the suite of loon and the suite of ggplot2 are connected.
Figure 7.3 shows the connections between these two suites.

Loon to the Suite of ggplot2

For loon users, after exploration, the plots can be turned into either static graphics through
the bridge loonGrob or loon.ggplot, or an interactive web app via loon.shiny. Some-
times, neither a static nor an interactive plot is the best choice, rather than an animation
(dynamic graphics) may convey the story to a large extent. To transform a loon plot to
a dynamic graphic, a video editor (e.g., “photoshop”) is an option. While, it suffers a very
similar problem with taking a screenshot. The quality might be low. In addition, a lot of
manual work might be required (e.g., one has to turn interactive loon plots static first.
Then, save all plots for edition).

Fortunately, in the ggplot2 suite, the package gganimate can turn a ggplot object to
a kinematic plot. As the package loon.ggplot connects loon and ggplot2; therefore, a

147

Figure 7.3: With loon.ggplot, the features in one suite can be brought into the other.

bridge from loon to ggplot2 graphics could then be followed, then to transform a loon
display to a gganimate kinematic graphic in two steps.

For example, suppose an analyst is interested in the relationship between GDP per
capita and life expectancy across different countries for the past 70 years. Specially, he is
more interested in the changes of those countries with large populations. The following code
shows the loon plot (x represents the GDP per capita; y represents the life expectancy;
point size represents the population and point color represents the continent), as in

> library(loon)
> library(gapminder)
> p <- with(gapminder ,
+ l_plot(gdpPercap , lifeExp ,
+ # scale the size into certain amounts
+ size = scales :: rescale(pop , to = c(4, 50)),
+ color = continent))

Then, query top 10 most populous countries (measured in year 2007), as in

> library(dplyr)
> top10in2007 <- gapminder %>%
+ filter(year == 2007) %>%
+ top_n(10, pop)

148

Highlight these countries and split the plot by “continent” and “year”, as

> p[’selected ’][gapminder$country %in% top10in2007$country] <- T
> fp <- l_facet(p, by = continent ~ year ,
+ on = gapminder)

Figure 7.4 shows the facets (fp). As years go by, the GDP per capita and the life
expectancy increase simultaneously. For the top 10 most populous countries (highlighted
points), most of them are in Asia and Americas; one is in Africa and none of them are
in Europe or Oceania. This figure conveys the relationship between GDP per capita and

Figure 7.4: The figure shows the life expectancy versus GDP per capita, faceted by year
and continent by loon.

life expectancy across different countries since 1952. However, displaying too many plots
all at once may distract the audience. A better graphic to present this study is to return
an animation, in which, the plot can be split by five panels and each panel represents a
continent. As time goes by, points in each panel move and the movement of the points
represents how the relationship of GDP per capita and life expectancy changes across years.

Benefited from the bridge loon.ggplot, creating an animation as well as highlighting
the points of interest could be relatively easy, as in (a screenshot of the animation is shown
in Figure 7.5),

> library(gganimate)
> library(loon.ggplot)
> loon.ggplot(p, selectedOnTop = FALSE) +

149

+ facet_wrap(gapminder$continent) +
+ theme(legend.position = "none") +
+ labs(title = ’Year: {frame_time}’,
+ x = ’GDP per capita ’,
+ y = ’life expectancy ’) +
+ transition_time(gapminder$year) +
+ ease_aes(’linear ’)

Figure 7.5: The screenshot of the animation

150

Ggplot2 to the Suite of Loon

In contrast, for ggplot2 users, graphics with some interactions could make the story more
vivid in presentation (e.g., publish the findings online). Suppose an analyst starts the
analysis in static graphical system ggplot2 and is only interested in the relationship of
GDP per capita and life expectancy in year 2007, as in
> gp <- gapminder %>%
+ filter(year == 2007,
+ continent != "Oceania") %>%
+ ggplot(mapping = aes(gdpPercap , lifeExp ,
+ color = continent)) +
+ geom_point(mapping = aes(size = pop)) +
+ geom_smooth(mapping = aes(weight = pop),
+ method = "lm",
+ se = FALSE)
> gp

Figure 7.6: The figure shows the life expectancy versus GDP per capita in year 2007 using
ggplot2. Each line represents a weighted regression fit.

In Figure 7.6, the line represents the weighted regression which plots the GDP per
capita against the life expectancy and sets population as weights. Apparently, the line

151

of Africa has the largest slope. We may conclude that, as the GDP per capita increases
by one, people living in Africa may have a higher life expectancy than people from other
continents.

Although Figure 7.6 is capable to convey the phenomenon, including some interactiv-
ity could be more helpful in presentation. The package shiny provides some interactive
functionality however one has to build a ui and a server function on his own. Many logic
specifications in the server need to be written to make sure that any manipulations on
the plot can give the correct response.

With bridges loon.ggplot and loon.shiny, a handy solution would be that one trans-
forms this ggplot object to a loon plot then to a shiny application, as in
> library(loon.shiny)
> library(loon.ggplot)
> gp %>%
+ loon.ggplot () %>%
+ loon.shiny()

A shiny web app is created and a screenshot of the app is shown in Figure 7.7. In this shiny

Figure 7.7: A shiny app, based on a ggplot object

app, the guide lines are turned off. Except the points representing Africa, the shape of all

152

other points is modified as open circle and the transparency is turned as 0.5. Meanwhile,
we only make the fitted line of Africa visible. In this way, without dropping any points, we
can better focus on the relationship of the life expectancy and GDP per capita in Africa
countries.

7.3 Limitations

The design of a bridge depends upon both G and K, thus the update of a bridge is always
one-step behind the updates of G or K. If new changes in G or K are tiny, without
updating the bridge, the effect on the transformation may not be significant. However,
if changes applied are dramatic, during the gap period (when updating the bridge), the
transformation may be completely broken.

The convenience of a bridge comes with a cost. There are now at least three packages
involved, the two graphical systems, G and K and the bridge between them. The quality
of the bridge will always depend upon the quality of G and of K. Moreover, the less stable
either of these are, the less the stable will be the bridge.

7.4 Further Work

Waddell (2016) listed several further possibilities in his dissertation about loon. It is
necessary to discuss what has been done yet, what has not been achieved but important
in building a bridge and what is not mentioned but valuable.

Possible future directions discussed by Waddell (2016) are:

• “Tk desired improvements”

• “Making every layer type interactive”

• “Linkable layers and linkable arbitrary dimensional states”

• “More sophisticated event patterns for state change bindings”

• “Dealing with missing values”

• “Embedding loon in Python”

153

• “Context specific menus”

• “Annotating Tab for Inspectors”

“Dealing with missing values” and “Embedding loon in Python” have been accomplished
so far. In the current version of loon (1.3.7), the missing values have been accommodated.
We choose not to draw them and instead, leave warnings to users.

Some work has been done on embedding loon in the environment Python (see the link
https://github.com/great-northern-diver/loon/tree/master/Python). Based on the most
recent approach, some basic features can be realized. Further work is to implement more
new features such as l_facet in Python.

Among all these future directions, “making every layer type interactive” would be one
of the most interesting things to do. Waddell (2016) suggests a loon widget could get an
activelayer state to determine which layer can receive the mouse and keyboard gestures.

So far, it is not always achievable to map a ggplot visual structure to a loon visual
structure (e.g., expect points and histogram, all other layers are static, etc.). Imagine
“making every layer type interactive” is realized, the visual structure mapping could be
completed in loon.ggplot. For example, to build an interactive pie chart, rather than
mapping the visual display or creating a new interactive widget (e.g., l_pie), one can
simply set the layer which is usually used to draw the polar coordinate (a polygon) as the
interactive layer.

Besides, based on further study and research, we discover some other interesting future
directions.

• Embedding layers in an l_serialaxes widget: in the current version, only the
main graphics model (i.e., histogram, scatterplot and graph displays) supports adding
primitive layer visuals. We find that layering can also be useful in a serialaxes plot,
as shown in Figure 3.3. One dimensional statistical graphics can be displayed on
each axis.

• Implementing loon.tourr in shiny: when we render a loon.tourr object into a
shiny web app, an l_tour object is taken as an ordinary loon widget; the features
of the interface, such as a dragging bar, a refresh button and scaling radio buttons,
to specify tour techniques, are missing. In the future, all those specified features are
expected to be implemented into a loon.shiny app.

154

https://github.com/great-northern-diver/loon/tree/master/Python

• Visualizing large quantities of data with loon: Unwin et al. (2006) stated that
“the number ‘a million’ is a useful symbolic target” in interactive data visualization.
However, Waddell (2016) pointed out “in that respect, loon cannot visualize large
quantities of data. Although it is possible to create a scatterplot in loon with one
million points, the interaction speed is likely not satisfactory.” Indeed, the perfor-
mance of visualizing a million data in iPlots is outstanding. We try to create two
linked plots, a scatterplot and a histogram, with a million observations each. As we
brush, the reaction is immediate.

An interesting project for loon suite developers in the future is to build a bridge to
transform a loon widget to an iplots object. Therefore, if the size of data is large
and the interaction speed of loon is not satisfying. Users can immediately transform
the loon widget to an iplot object for more fluent direct manipulation.

155

Bibliography

Daniel Adler and Duncan Murdoch. rgl: 3D Visualization Using OpenGL, 2020. URL
https://CRAN.R-project.org/package=rgl. R package version 0.100.50.

Edgar Anderson. The irises of the Gaspe Peninsula. Bull. Am. Iris Soc., 59:2–5, 1935.

David F. Andrews. Plots of high-dimensional data. Biometrics, pages 125–136, 1972.

Daniel Asimov. The grand tour: a tool for viewing multidimensional data. SIAM journal
on scientific and statistical computing, 6(1):128–143, 1985.

Dean Attali. colourpicker: A Colour Picker Tool for Shiny and for Selecting Colour in
Plots, 2020. URL https://CRAN.R-project.org/package=colourpicker. R package
version 1.1.0.

Baptiste Auguie. gridExtra: Miscellaneous Functions for "Grid" Graphics, 2017. URL
https://CRAN.R-project.org/package=gridExtra. R package version 2.3.

Geoffrey H. Ball and David J. Hall. PROMENADE-AN ON-LINE PATTERN RECOG-
NITION SYSTEM. Technical report, STANFORD RESEARCH INST MENLO PARK
CA, 1967.

Geoffrey H Ball and David J Hall. Some implications of interactive graphic computer
systems for data analysis and statistics. Technometrics, 12(1):17–31, 1970.

Richard Becker, William Cleveland, and Allan Wilks. Dynamic Displays of Data Analysis.
Dynamic Graphics for Statistics, Cleveland WS and McGill ME (eds.) Wadsworth Inc.,
Belmont, California, pages 1–72, 1988.

Richard A. Becker and William S. Cleveland. Brushing scatterplots. Technometrics, 29
(2):127–142, 1987.

156

https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=colourpicker
https://CRAN.R-project.org/package=gridExtra

Richard A. Becker, William S. Cleveland, and Ming-Jen Shyu. The visual design and
control of trellis display. Journal of Computational and Graphical Statistics, 5(2):123–
155, 1996.

Richard A. Becker, Allan R. Wilks., Ray Brownrigg., Thomas P. Minka, and Alex Deckmyn.
maps: Draw Geographical Maps, 2018. URL https://CRAN.R-project.org/package=
maps. R package version 3.3.0.

Roger Bivand, Friedrich Leisch, and Martin Maechler. pixmap: Bitmap Images / Pixel
Maps, 2021. URL https://CRAN.R-project.org/package=pixmap. R package version
0.4-12.

Pat Breslin. Getting to know ArcView GIS: the geographic information system (GIS) for
everyone. ESRI, Inc., 1999.

Jennifer Bryan. gapminder: Data from Gapminder, 2017. URL https://CRAN.R-project.
org/package=gapminder. R package version 0.3.0.

A. Buja, D. Asimov, and C. Hurley. Elements of a viewing pipeline for data analysis. Bell
Communications Research. Morris Research and Engineering Center . . . , 1986.

Andreas Buja and Daniel Asimov. Grand tour methods: an outline. Computing Science
and Statistics, 17:63–67, 1986.

Andreas Buja, Catherine Hurley, and Johnalan McDonald. A data viewer for multivariate
data. In Colorado State Univ, Computer Science and Statistics. Proceedings of the 18 th
Symposium on the Interface p 171-174(SEE N 89-13901 05-60), 1987.

Winston Chang and Hadley Wickham. ggvis: Interactive Grammar of Graphics, 2018.
URL https://CRAN.R-project.org/package=ggvis. R package version 0.4.4.

Winston Chang, Joe Cheng, J.J. Allaire, Yihui Xie, and Jonathan McPherson. shiny: Web
Application Framework for R, 2019. URL https://CRAN.R-project.org/package=
shiny. R package version 1.3.2.

H. Chernoff. The use of faces to represent statistical association. JASA, 68:361–368, 1973.

Chernoff, Herman. Graphical Representations as a Discipline. Technical report, MAS-
SACHUSETTS INST OF TECH CAMBRIDGE DEPT OF MATHEMATICS, 1978.

William C. Cleveland and Marylyn E. McGill. Dynamic graphics for statistics. CRC Press,
Inc., 1988.

157

https://CRAN.R-project.org/package=maps
https://CRAN.R-project.org/package=maps
https://CRAN.R-project.org/package=pixmap
https://CRAN.R-project.org/package=gapminder
https://CRAN.R-project.org/package=gapminder
https://CRAN.R-project.org/package=ggvis
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny

Dianne Cook and Deborah F. Swayne. Interactive and Dynamic Graphics for Data Anal-
ysis With R and GGobi. Springer Publishing Company, Incorporated, 2007. ISBN
0387717617, 9780387717616.

Dianne Cook, Andreas Buja, and Javier Cabrera. Projection pursuit indexes based on
orthonormal function expansions. Journal of Computational and Graphical Statistics, 2
(3):225–250, 1993.

William F. Eddy. A new convex hull algorithm for planar sets. ACM Transactions on
Mathematical Software (TOMS), 3(4):398–403, 1977.

Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of
eugenics, 7(2):179–188, 1936.

J.H. Friedman, M.A. Fisherkeller, and J.W. Tukey. PRIM-9: An interactive multidimen-
sional data display and analysis system. In Proc. Fourth International Congress for
Stereology, 1974.

Ram Gnanadesikan. Methods for statistical data analysis of multivariate observations.
Wiley New York, 1977. ISBN 0471308455.

David Gohel and Panagiotis Skintzos. ggiraph: Make ’ggplot2’ Graphics Interactive, 2019.
URL https://CRAN.R-project.org/package=ggiraph. R package version 0.7.0.

Trevor Hastie and Robert Tibshirani. Non-parametric logistic and proportional odds re-
gression. Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(3):
260–276, 1987.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learn-
ing: data mining, inference, and prediction. Springer Science & Business Media, 2009.

Harold V. Henderson and Paul F. Velleman. Building multiple regression models interac-
tively. Biometrics, pages 391–411, 1981.

Toby Hocking, Hadley Wickham, Winston Chang, Nicholas Lewin-Koh, Martin Maech-
ler, Randall Prium, Susan VanderPlas, Carson Sievert, Kevin Ferris, Jun Cai, Faizan
Khan, Vivek Kumar, and Himanshu Singh. animint2: Animated Interactive Grammar
of Graphics, 2020. URL https://CRAN.R-project.org/package=animint2. R package
version 2020.9.18.

Marius Hofert and Wayne Oldford. zenplots: Zigzag Expanded Navigation Plots, 2019.
URL https://CRAN.R-project.org/package=zenplots. R package version 1.0.0.

158

https://CRAN.R-project.org/package=ggiraph
https://CRAN.R-project.org/package=animint2
https://CRAN.R-project.org/package=zenplots

Marius Hofert and Wayne Oldford. Zigzag Expanded Navigation Plots in R: The R Package
zenplots. Journal of Statistical Software, 95(1):1–44, 2020.

C. Hurley and R.W. Oldford. Higher hierarchical views of statistical objects. Available
from the video library of the ASA sections on Statistical Graphics: http://stat-graphics.
org/movies, 1988.

Catherine Hurley. The Data Viewer: A Program For Graphical Data Analysis. PhD thesis,
University of Washington, 1987.

Catherine B. Hurley and R.W. Oldford. Graphs as navigational infrastructure for high
dimensional data spaces. Computational Statistics, 26(4):585–612, 2011.

Ross Ihaka and Robert Gentleman. R: a language for data analysis and graphics. Journal
of computational and graphical statistics, 5(3):299–314, 1996.

Alfred Inselberg and Bernard Dimsdale. Parallel coordinates: a tool for visualizing multi-
dimensional geometry. In Proceedings of the First IEEE Conference on Visualization:
Visualization90, pages 361–378. IEEE, 1990.

Ursula Laa, Dianne Cook, and German Valencia. A slice tour for finding hollowness in
high-dimensional data. Journal of Computational and Graphical Statistics, 29(3):681–
687, 2020.

Michael Lawrence and John Verzani. Programming graphical user interfaces in R. Chapman
and Hall/CRC, 2018.

John Alan McDonald. Interactive Graphics for Data Analysis. PhD thesis, Stanford Uni-
versity, 1982.

Olaf Mersmann. microbenchmark: Accurate Timing Functions, 2019. URL https://CRAN.
R-project.org/package=microbenchmark. R package version 1.4-7.

David Meyer, Achim Zeileis, and Kurt Hornik. The Strucplot Framework: Visualizing
Multi-Way Contingency Tables with vcd. Journal of Statistical Software, 17(3):1–48,
2006. URL https://www.jstatsoft.org/v17/i03/.

David Meyer, Achim Zeileis, and Kurt Hornik. vcd: Visualizing Categorical Data, 2020. R
package version 1.4-8.

159

https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://www.jstatsoft.org/v17/i03/

Fanny Meyer and Victor Perrier. esquisse: Explore and Visualize Your Data Interac-
tively, 2020. URL https://CRAN.R-project.org/package=esquisse. R package ver-
sion 0.2.3.

Paul Murrell. The grid graphics package. R News, 2(2):14–19, 2002.

Paul Murrell. gridBase: Integration of base and grid graphics, 2014. URL https://CRAN.
R-project.org/package=gridBase. R package version 0.4-7.

Paul Murrell. R Graphics. Chapman and Hall/CRC, 2018.

Paul R. Murrell. Investigations in Graphical Statistics. PhD thesis, ResearchSpace@ Auck-
land, 1998.

R. Wayne Oldford and Stephen C. Peters. DINDE: Towards More Sophisticated Software
Environments For Statistics. SIAM Journal on Scientific and Statistical Computing, 9
(1):191–211, 1988.

R. Wayne Oldford and Adrian Waddell. loon.data: Data Used to Illustrate ’Loon’ Func-
tionality, 2020. URL https://CRAN.R-project.org/package=loon.data. R package
version 0.0.8.

R.W. Oldford. The Quail Project: Overview and Current Directions. COMPUTING
SCIENCE AND STATISTICS, pages 397–402, 1998.

R.W. Oldford. Mental Models and Interactive Statistics: Design Principles. In Computing
Science and Statistics, volume 31, pages 254–262. Interface Foundation of North America,
1999.

R.W. Oldford. Interactive Visualization For Exploratory Data Visualization. North-
ern Arizona University, Flagstaff AZ, 2019. URL https://www.math.uwaterloo.ca/
~rwoldfor/talks/Arizona2019/assets/player/KeynoteDHTMLPlayer.html.

R.W. Oldford. Logical queries, 2020a. URL https://great-northern-diver.github.
io/loon/articles/logicalQueries.html. Loon Articles.

R.W. Oldford. South African Heart Disease Data. https://great-northern-
diver.github.io/loon.data/, 2020b.

Chris Parmer, Ryan Patrick Kyle, Carson Sievert, and Hammad Khan. dash: An Interface
to the ’dash’ Ecosystem for Authoring Reactive Web Applications, 2020. URL https:
//CRAN.R-project.org/package=dash. R package version 0.5.0.

160

https://CRAN.R-project.org/package=esquisse
https://CRAN.R-project.org/package=gridBase
https://CRAN.R-project.org/package=gridBase
https://CRAN.R-project.org/package=loon.data
https://www.math.uwaterloo.ca/~rwoldfor/talks/Arizona2019/assets/player/KeynoteDHTMLPlayer.html
https://www.math.uwaterloo.ca/~rwoldfor/talks/Arizona2019/assets/player/KeynoteDHTMLPlayer.html
https://great-northern-diver.github.io/loon/articles/logicalQueries.html
https://great-northern-diver.github.io/loon/articles/logicalQueries.html
https://CRAN.R-project.org/package=dash
https://CRAN.R-project.org/package=dash

Thomas Lin Pedersen. patchwork: The Composer of Plots, 2020a. URL https://CRAN.
R-project.org/package=patchwork. R package version 1.1.1.

Thomas Lin Pedersen. patchwork, 2020b. URL https://patchwork.data-imaginist.
com/.

Thomas Lin Pedersen. ggraph: An Implementation of Grammar of Graphics for Graphs
and Networks, 2021. URL https://CRAN.R-project.org/package=ggraph. R package
version 2.0.5.

Thomas Lin Pedersen and David Robinson. gganimate: A Grammar of Animated Graphics,
2019. URL https://CRAN.R-project.org/package=gganimate. R package version
1.0.3.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2013. URL http://www.R-project.org/.

J.E. Rossouw, J.P. Plessis Du, A.J. Benadé, P.C. Jordaan, J.P. Kotze, P.L. Jooste, and J.J.
Ferreira. Coronary risk factor screening in three rural communities. The CORIS baseline
study. South African medical journal= Suid-Afrikaanse tydskrif vir geneeskunde, 64(12):
430–436, 1983.

Christopher D. Salahub and R. Wayne Oldford. About “her emails”. Significance, 15(3):
34–37, 2018.

Deepayan Sarkar. Lattice: Multivariate Data Visualization with R. Springer, New York,
2008. URL http://lmdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5.

David W. Scott. Multivariate density estimation: theory, practice, and visualization. John
Wiley & Sons, 2015.

Charlie Sharpsteen and Cameron Bracken. tikzDevice: R Graphics Output in LaTeX For-
mat, 2020. URL https://CRAN.R-project.org/package=tikzDevice. R package ver-
sion 0.12.3.1.

Jonathan Sidi. ggedit: Interactive ’ggplot2’ Layer and Theme Aesthetic Editor, 2020. URL
https://CRAN.R-project.org/package=ggedit. R package version 0.3.1.

Carson Sievert. plotly for R, 2018. URL https://plotly-r.com.

161

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=patchwork
https://patchwork.data-imaginist.com/
https://patchwork.data-imaginist.com/
https://CRAN.R-project.org/package=ggraph
https://CRAN.R-project.org/package=gganimate
http://www.R-project.org/
http://lmdvr.r-forge.r-project.org
https://CRAN.R-project.org/package=tikzDevice
https://CRAN.R-project.org/package=ggedit
https://plotly-r.com

Carson Sievert, Susan VanderPlas, Jun Cai, Kevin Ferris, Faizan Uddin Fahad Khan, and
Toby Dylan Hocking. Extending ggplot2 for linked and animated web graphics. Journal
of Computational and Graphical Statistics, 28(2):299–308, 2019.

Karline Soetaert. diagram: Functions for Visualising Simple Graphs (Networks), Plot-
ting Flow Diagrams, 2020. URL https://CRAN.R-project.org/package=diagram. R
package version 1.6.5.

D. Swayne, Duncan Temple Lang, Andreas Buja, and Dianne Cook. GGobi: XGobi Re-
designed and Extended. In Proceedings of the 33th Symposium on the Interface: Com-
puting Science and Statistics, 2001.

Deborah F. Swayne and Sigbert Klinke. Introduction to the special issue on interactive
graphical data analysis: What is interaction? Computational Statistics, 14(1):1–6, 1999.

Deborah F. Swayne, Dianne Cook, and Andreas Buja. XGobi: Interactive dynamic data vi-
sualization in the X Window System. Journal of computational and Graphical Statistics,
7(1):113–130, 1998.

Jürgen Symanzik, Dianne Cook, Nicholas Lewin-Koh, James J. Majure, and Inna Megret-
skaia. Linking ArcView™ and XGobi: Insight behind the Front End. Journal of Com-
putational and Graphical Statistics, 9(3):470–490, 2000.

Martin Theus and Simon Urbanek. Interactive Graphics for Data Analysis. Chapman &
Hall/CRC, 2008. ISBN 1584885947, 9781584885948.

Luke Tierney. tkrplot: TK Rplot, 2021. URL https://CRAN.R-project.org/package=
tkrplot. R package version 0.0-26.

John W. Tukey. Exploratory Data Analysis. Mass: Addison-Wesley, 1977.

John W. Tukey and Martin B. Wilk. Data analysis and statistics: an expository overview.
In Proceedings of the November 7-10, 1966, fall joint computer conference, pages 695–
709, 1966.

Antony Unwin. Requirements for interactive graphics software for exploratory data anal-
ysis. Computational Statistics, 14(1):7–22, 1999.

Antony Unwin, Martin Theus, and Heike Hofmann. Graphics of Large Datasets: Visualiz-
ing a Million. Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387329064.

162

https://CRAN.R-project.org/package=diagram
https://CRAN.R-project.org/package=tkrplot
https://CRAN.R-project.org/package=tkrplot

Simon Urbanek. JavaGD: Java Graphics Device, 2020. URL https://CRAN.R-project.
org/package=JavaGD. R package version 0.6-4.

Simon Urbanek and Jeffrey Horner. Cairo: R Graphics Device using Cairo Graphics Library
for Creating High-Quality Bitmap (PNG, JPEG, TIFF), Vector (PDF, SVG, PostScript)
and Display (X11 and Win32) Output, 2020. URL https://CRAN.R-project.org/
package=Cairo. R package version 1.5-12.2.

Simon Urbanek and Martin Theus. iPlots: high interaction graphics for R. In Proceedings
of the 3rd International Workshop on Distributed Statistical Computing, 2003.

Simon Urbanek and Tobias Wichtrey. iplots: iPlots - interactive graphics for R, 2018. URL
https://CRAN.R-project.org/package=iplots. R package version 1.1-7.1.

Adrian Waddell. Interactive Visualization and Exploration of High-Dimensional Data. PhD
thesis, University of Waterloo, 2016.

Adrian Waddell and R. Wayne Oldford. loon: Interactive Statistical Data Visualiza-
tion, 2020. URL http://great-northern-diver.github.io/loon/. R package version
1.3.0.

Gregory R. Warnes, Ben Bolker, Lodewijk Bonebakker, Robert Gentleman, Wolfgang Hu-
ber, Andy Liaw, Thomas Lumley, Martin Maechler, Arni Magnusson, Steffen Moeller,
Marc Schwartz, and Bill Venables. gplots: Various R Programming Tools for Plotting
Data, 2020. URL https://CRAN.R-project.org/package=gplots. R package version
3.1.1.

H. Wickham. Mastering Shiny: Build Interactive Apps, Reports, and Dashboards Powered
by R. O’Reilly Media, Incorporated, 2021. ISBN 9781492047384. URL https://books.
google.ca/books?id=nrvAzQEACAAJ.

Hadley Wickham. A layered grammar of graphics. Journal of Computational and Graphical
Statistics, 19(1):3–28, 2010.

Hadley Wickham. Advanced R. Chapman and Hall/CRC, 2014.

Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer, 2016.

Hadley Wickham and Thomas Lin Pedersen. gtable: Arrange ’Grobs’ in Tables, 2019. URL
https://CRAN.R-project.org/package=gtable. R package version 0.3.0.

163

https://CRAN.R-project.org/package=JavaGD
https://CRAN.R-project.org/package=JavaGD
https://CRAN.R-project.org/package=Cairo
https://CRAN.R-project.org/package=Cairo
https://CRAN.R-project.org/package=iplots
http://great-northern-diver.github.io/loon/
https://CRAN.R-project.org/package=gplots
https://books.google.ca/books?id=nrvAzQEACAAJ
https://books.google.ca/books?id=nrvAzQEACAAJ
https://CRAN.R-project.org/package=gtable

Hadley Wickham, Micheal Lawrence, Duncan Temple Lang, and Deborah F. Swayne. An
introduction to rggobi, 2006.

Hadley Wickham, Dianne Cook, Heike Hofmann, and Andreas Buja. tourr: An R Package
for Exploring Multivariate Data with Projections. Journal of Statistical Software, 40(2):
1–18, 2011. URL http://www.jstatsoft.org/v40/i02/.

Adalbert Wilhelm. Interactive statistical graphics: the paradigm of linked views. Handbook
of statistics, 24:437–537, 2005.

Leland Wilkinson. The Grammar of Graphics (Statistics and Computing). Springer-Verlag,
Berlin, Heidelberg, 2005. ISBN 0387245448.

Yihui Xie, H. Hofmann, Di Cook, X. Cheng, B. Schloerke, M. Vendettuoli, T. Yin, H. Wick-
ham, and M. Lawrence. cranvas: Interactive statistical graphics based on Qt. R package
version 0.8, 3:555, 2013.

Zehao Xu and R. Wayne Oldford. loon.ggplot: Making ’ggplot2’ Plots Interactive with ’loon’
and Vice Versa, 2019a. R package version 1.2.1.

Zehao Xu and R. Wayne Oldford. loon.shiny: Automatically Create a ’Shiny’ App Based
on Interactive ’Loon’ Widgets, 2019b. R package version 1.0.0.

Zehao Xu and R. Wayne Oldford. ggmulti: High Dimensional Data Visualization, 2020. R
package version 0.1.0.

Zehao Xu and R. Wayne Oldford. loon.tourr: Tour in ’Loon’, 2021. R package version
0.1.1.

164

http://www.jstatsoft.org/v40/i02/

Appendices

165

All sources of this thesis can be found in the following links:

• loon and loonGrob: https://great-northern-diver.github.io/loon/

• loon.ggplot: https://great-northern-diver.github.io/loon.ggplot/

• ggmulti: https://great-northern-diver.github.io/ggmulti/

• loon.shiny: https://great-northern-diver.github.io/loon.shiny/

• loon.tourr: https://great-northern-diver.github.io/loon.tourr/

166

https://great-northern-diver.github.io/loon/
https://great-northern-diver.github.io/loon.ggplot/
https://great-northern-diver.github.io/ggmulti/
https://great-northern-diver.github.io/loon.shiny/
https://great-northern-diver.github.io/loon.tourr/

Appendix A

Introduction

Figure 1.1

> library(rgl)
> # rgl 3D
> with(iris , plot3d(Sepal.Length , Sepal.Width , Petal.Length ,
+ type="s", col=as.numeric(Species)))
+ mtcars %>%
> library(ggvis)
> # ggvis
> ggvis(~wt, ~mpg ,
+ size := input_slider(10, 100, label = "size"),
+ opacity := input_slider(0, 1, label = "transparency")
+) %>%
+ layer_points ()

Figure 1.2

> library(gganimate)
> library(gapminder)
> ###################### gganimate ##################
> ggplot(gapminder , aes(gdpPercap , lifeExp , size = pop , color = country)) +
+ geom_point(alpha = 0.7, show.legend = FALSE) +
+ scale_color_manual(values = country_colors) +
+ scale_size(range = c(2, 12)) +
+ scale_x_log10() +
+ facet_wrap(~ continent) +
+ # Here comes the gganimate specific bits

167

Figure A.1: The structure of the R graphics system (Murrell, 2018)

168

+ labs(title = ’Year: {frame_time}’,
+ x = ’GDP per capita ’,
+ y = ’life expectancy ’) +
+ transition_time(year) +
+ ease_aes(’linear ’)

Figure 1.4

> library(loon)
> library(loon.data)
> data("SAheart")
> h1 <- l_hist(SAheart$chd ,
+ linkingGroup = "chd",
+ title = "Coronary heart disease"))
> h2 <- l_hist(SAheart$famhist ,
+ linkingGroup = "chd",
+ title = "Family history of heart disease"))

Highlight bins via programming

> withFamilyHistory <- SAheart$famhist == "Present"
> h2[’selected ’] <- withFamilyHistory
> h3 <- l_hist(SAheart$sbp , linkingGroup = "chd",
+ title = "Systolic blood pressure (mmHg)"))

Figure 1.6 (a) can also be created by base graphics.

> with(SAheart ,
+ barplot(table(chd),
+ col = ’thistle ’,
+ main = "Coronary heart disease"))
> with(SAheart ,
+ barplot(table(chd[highBloodPressure|withFamilyHistory]),
+ col = ’magenta ’,
+ add = TRUE)
+)

169

Appendix B

loon

Figure 2.2

> lp <- with(mpg , l_plot(displ , hwy ,
+ showItemLabels = TRUE ,
+ color = "black"))

Figure 2.3

> lp[’itemLabel ’] <- with(mpg ,
+ paste0("model:", manufacturer , " ",
+ model , "\n",
+ "year:", year , "\n",
+ "drive way:", drv , "\n",
+ "fuel type:", fl)
+)

Figure 2.4

> g <- loongraph(
+ nodes = c("A", "B", "C", "D"),
+ from = c("A", "A", "B", "B", "C"),
+ to = c("B", "C", "C", "D", "D")
+)
> ## Not run:
> # create a loon graph plot
> p <- l_graph(g)
> l_navigator_add(p)

170

Figure 2.7 (a)
> p <- l_plot(x = c(rep(1, 3),
+ rep(2, 3),
+ rep(3, 3)),
+ y = rep(1:3, 3),
+ color = "pink",
+ glyph = "circle",
+ xlabel = "",
+ ylabel = "")
> dat <- data.frame(
+ x = c(rep(1, 3),
+ rep(2, 3),
+ rep(3, 3)),
+ y = rep(1:3, 3),
+ anchor = c("sw","w", "nw",
+ "s", "center", "n",
+ "se", "e", "ne")
+)
> for(i in 1:9) {
+ d <- dat[i,]
+ l_layer_text(p,
+ x = d$x,
+ y = d$y,
+ size = 20,
+ text = d$anchor ,
+ anchor = d$anchor)
+ }

Figure 2.7 (b)
> p <- l_plot()
> dat <- data.frame(
+ x = c(rep(1, 3)),
+ y = 3:1,
+ text = c(’This is right \n Right’,
+ ’This is center \n Center ’,
+ ’This is left \n Left’),
+ justify = c("right", "center", "left")
+)
> for(i in 1:3) {
+ d <- dat[i,]

171

+ l_layer_text(p,
+ x = d$x,
+ y = d$y,
+ size = 20,
+ text = d$text ,
+ justify = d$justify)
+ }
> l_scaleto_world(p)

172

Appendix C

loon.ggplot

Figure 3.12 (a)

> ggplot2loon(pm)

Figure 3.12 (b)

> ggplot2loon(pm, activeGeomLayers = 0L) %>%
+ l_scaleto_world()

173

Table C.1: Primitive Layers

loon ggplot

l_layer() layer()

l_layer_group()

geom_blank()

l_layer_line(),
l_layer_lines()

geom_segment(), geom_path(),
geom_line(), geom_step()

l_layer_rectangle(),
l_layer_rectangles()

geom_rect(), geom_tile()

l_layer_polygon(),
l_layer_polygons()

geom_polyon()

l_layer_texts(),
l_layer_text()

geom_label(), geom_text()

l_layer_oval()

l_layer_points() geom_point(), geom_jitter()

174

Table C.2: One Dimension Layers

loon ggplot

geom_dotplot()

l_layer.density() geom_density(),
geom_freqpoly()

l_hist() geom_bar(), geom_col(),
geom_histogram()

geom_area(), geom_ribbon()

175

Table C.3: Two Dimension Layers

loon ggplot

geom_boxplot(),
geom_violin()

geom_quantile()

l_glyph_add_pointrange() geom_pointrange()

l_glyph_add_text() geom_text()

geom_crossbar(),
geom_errorbar(),
geom_linerange()

l_plot(), l_graph()∗ geom_point()

l_layer.map() geom_map()

geom_count()

l_layer_smooth() geom_smooth()

geom_bin2d(), geom_hex()

geom_rug()

176

Table C.4: Three Dimension Layers

loon ggplot

l_plot3D() geom_point(aes(x, y, z))

l_layer_contourLines() geom_density2d(),
geom_contour()

l_layer_heatImage(),
l_layer_rasterImage()

geom_raster()

177

	List of Figures
	Introduction
	Interactive Graphics and Static Graphics
	Exploratory Graphics and Presentation Graphics
	An Example of Interactive Graphics in EDA
	Graphical Packages in R
	Base Graphical Packages
	Extensions of the Base Graphical Packages
	Transformations between Different Graphical Packages

	Bridges
	Bridge Abstraction

	Thesis Overview

	Loon
	Loon Data Structure
	Model Layer
	Plot Region
	Data
	Attributes
	Linking and Selection
	Non-data Element States

	Dependent Layer
	l_layer
	l_navigator and l_graphswitch
	l_context
	l_glyph

	Compound Object
	l_ts
	l_pairs
	l_facet

	Summary

	Loon.ggplot
	Introduction of ggplot2
	A Grammar of Graphics
	Components
	Programming

	ggmulti: an Extension of ggplot2
	Serialaxes in ggplot2
	Non-primitive Glyphs in ggplot2

	ggplot2 to loon
	Making ggplot2 Interactive
	Transformations
	A Grammar of Interactive Graphics

	loon to ggplot2
	Arguments
	Compound Plot

	Summary
	Lessons
	Limitations
	Further Work

	LoonGrob
	Introduction of grid
	Conversion of the Aesthetic Attributes
	Color
	Shape
	Size

	loonGrob Data Structure
	Main Graphics Model
	Serialaxes Model
	Compound Plot

	Summary
	Lessons
	Limitations
	Further Work

	Loon.shiny
	Introduction
	User Interface
	Singleton Design
	World View Window
	Plot Panel
	Select Panel
	Linking Panel
	Modify Panel
	Layer Panel
	Glyph Panel

	Interactivity
	Plot Region
	Non-data Element States
	Selection
	Linking
	States Modification

	Dynamic ui
	Update Slider Bars
	Update ``by color''

	Limitations
	Computing Speed
	Scales Control
	Design of Plot Window and Inspector
	Mouse Gestures
	Event Bindings

	Summary

	Loon.tourr
	Introduction
	Tour Object
	Tour Specifications
	Tour Techniques
	Lower Sub-space Dimensions

	Layers in Tour
	Summary

	Discussion and Further Work
	Bridge
	On Elements
	On the Level of Abstraction
	Zenplots Revisited

	Extension and Suite Connection
	Extension
	Suite Connection

	Limitations
	Further Work

	Bibliography
	Appendices
	Introduction
	loon
	loon.ggplot

