
Logging Statements Analysis and
Automation in Software Systems
with Data Mining and Machine

Learning Techniques

by

Sina Gholamian

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Sina Gholamian 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

Supervisor: Paul Ward
Associate Professor, Dept. of Electrical & Computer Engineering,

University of Waterloo

Internal Member: Mark Crowley
Assistant Professor, Dept. of Electrical & Computer Engineering,

University of Waterloo

Internal Member: Wojciech Golab
Associate Professor, Dept. of Electrical & Computer Engineering,

University of Waterloo

Internal-External Member: Samer Al-Kiswany
Assistant Professor, David R. Cheriton School of Computer Science,

University of Waterloo

External Member: Ding Yuan
Associate Professor, Dept. of Electrical & Computer Engineering,

University of Toronto

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Log files are widely used to record runtime information of software systems, such as the
timestamp of an event, the name or ID of the component that generated the log, and parts
of the state of a task execution. The rich information of logs enables system developers
(and operators) to monitor the runtime behavior of their systems and further track down
system problems in development and production settings.

With the ever-increasing scale and complexity of modern computing systems, the vol-
ume of logs is rapidly growing. For example, eBay reported that the rate of log generation
on their servers is in the order of several petabytes per day in 2018 [17]. Therefore, the
traditional way of log analysis that largely relies on manual inspection (e.g., searching for
error/warning keywords or grep) has become an inefficient, a labor intensive, error-prone,
and outdated task. The growth of the logs has initiated the emergence of automated tools
and approaches for log mining and analysis. In parallel, the embedding of logging state-
ments in the source code is a manual and error-prone task, and developers often might
forget to add a logging statement in the software’s source code.

To address the logging challenge, many efforts have aimed to automate logging state-
ments in the source code, and in addition, many tools have been proposed to perform
large-scale log file analysis by use of machine learning and data mining techniques. How-
ever, the current logging process is yet mostly manual, and thus, proper placement and
content of logging statements remain as challenges. To overcome these challenges, meth-
ods that aim to automate log placement and content prediction, i.e., ‘where and what to
log’, are of high interest. In addition, approaches that can automatically mine and extract
insight from large-scale logs are also well sought after.

Thus, in this research, we focus on predicting the log statements, and for this purpose,
we perform an experimental study on open-source Java projects. We introduce a log-aware
code-clone detection method to predict the location and description of logging statements.
Additionally, we incorporate natural language processing (NLP) and deep learning methods
to further enhance the performance of the log statements’ description prediction.

We also introduce deep learning based approaches for automated analysis of software
logs. In particular, we analyze execution logs and extract natural language characteristics
of logs to enable the application of natural language models for automated log file analysis.
Then, we propose automated tools for analyzing log files and measuring the information
gain from logs for different log analysis tasks such as anomaly detection. We then con-
tinue our NLP-enabled approach by leveraging the state-of-the-art language models, i.e.,
Transformers, to perform automated log parsing.

iv

Acknowledgements

This thesis would not have been possible without the valuable advice and the help of
several individuals who contributed and extended their valuable assistance in the fulfillment
of this thesis. First of all, I would like to thank my supervisor, Professor Paul A. S. Ward,
for his guidance and his support throughout my Ph.D. program, which led to the submission
of this thesis. His great motivation and accurate view of the research area made a invaluable
impression on me and I have learned so much from him.

In addition, thanks to the rest of the colleagues in the Shoshin Research Group at
the University of Waterloo for giving me unforgettable help and for sharing with me their
helpful and inspiring experiences.

Finally, I would like to express my sincere gratitude to my parents, Ahmad and Forough,
and also my sisters, Sara and Samira, for their never-ending love and irreplaceable support
throughout my life.

v

Dedication

I dedicate this thesis to my parents, Ahmad and Forough, who offered me unconditional
love and support throughout my life. It is also dedicated to my siblings, Sara, and Samira,
who always supported me throughout my life.

vi

Table of Contents

List of Figures xvi

List of Tables xx

List of Abbreviations xxiii

1 Introduction 2

1.1 Research Motivation . 4

1.2 Thesis Outline . 4

1.2.1 Chapter 2: Literature Review . 5

1.2.2 Chapter 3: Research Plan for Log Prediction 5

1.2.3 Chapter 4: Clone Detection Background 5

1.2.4 Chapter 5: Log Location Prediction 5

1.2.5 Chapter 6: Log Content Prediction 6

1.2.6 Chapter 7: Cost and Gain from Logs 6

1.2.7 Chapter 8: Naturalness of Logs . 6

1.2.8 Chapter 9: Natural Language Models for Log Parsing 6

1.2.9 Chapter 10: Conclusions and Future Work 7

1.2.10 Chapter 11: Summary of Publications 7

1.3 Contributions . 7

1.4 Closing Remarks . 7

vii

2 A Comprehensive Survey of Logging in Software: From Logging State-
ments Automation to Log Mining and Analysis 9

2.1 Introduction . 10

2.1.1 Terminology . 11

2.1.2 Research Questions . 11

2.1.3 Survey Organization . 12

2.2 Log statements and Log Files . 13

2.2.1 Transaction Logs . 13

2.2.2 Log Example . 14

2.2.3 Program Traces vs. Logs . 16

2.3 RQ1: How the prior logging research can be categorized to different topics? 16

2.3.1 Survey Methodology . 16

2.3.2 Survey Scope . 19

2.4 RQ2: What are the publication trends based on venues, topics, and years? 23

2.4.1 Venue Trends . 23

2.4.2 Topic Trends . 24

2.4.3 Year Trends . 24

2.4.4 Logging Challenges . 24

2.5 RQ3: How the research in each topic can be systematically compared with
their approaches, pros and cons? . 28

2.5.1 Category A: Logging Cost and Benefit Analysis 28

2.5.2 Mining Log Printing Statements . 32

2.5.3 Category E: Log Statement Automation 37

2.5.4 Mining Log Files . 46

2.5.5 Category L: Emerging Applications of Logs 64

2.6 RQ4: Challenges and Opportunities for Future Work 67

2.6.1 Category A: Logging Cost . 67

2.6.2 Categories B, C, D: Logging Practices, progression, and Issues . . . 68

viii

2.6.3 Category E: Log Printing Statement Automation 70

2.6.4 Category F: Log Maintenance and Management 71

2.6.5 Categories H, I, J, K: Automated Log Analysis Applications 72

2.6.6 Category L - Emerging Logging Research 73

2.7 Conclusions . 75

2.8 List of Papers . 77

3 Leveraging Code Clones and Natural Language Processing for Log State-
ment Prediction 82

3.1 Introduction . 83

3.2 Motivating Example . 84

3.3 Related Work . 85

3.4 Research Approach . 86

3.4.1 RO1: Demonstrate whether code clones are consistent in their log-
ging statements and their log verbosity level. 87

3.4.2 RO2: Propose an approach to utilize code clones for log statement
location prediction. 88

3.4.3 RO3: Provide logging description suggestions based on code clones
and NLP models. 88

3.4.4 RO4: Utilize code clones for predicting other details of log state-
ments such as log verbosity level and variables. 89

3.5 Discussion . 89

3.6 Summary of Contributions . 90

3.7 Conclusions and Future Work . 91

4 Code Clones Background 92

4.1 Introduction . 92

4.2 Source Code Clones . 93

4.3 Approach . 94

4.4 Closing Remarks . 94

ix

5 Logging Statements Prediction Based on Source Code Clones 96

5.1 Introduction . 97

5.2 Related Work . 99

5.2.1 Empirical Analysis of Log Statements 99

5.2.2 Logging Statement Prediction . 100

5.2.3 Code Clone Detection . 100

5.3 Definitions, Background, and Approach . 101

5.3.1 Definitions . 101

5.3.2 Source Code Feature Formulation 102

5.4 Study methodology . 103

5.4.1 Toolchain . 104

5.4.2 Algorithm . 105

5.4.3 Research Objectives on Clone Detection for Logging Statement Pre-
diction . 106

5.5 Experimental Study . 107

5.5.1 Method-level clone detection and logging prediction 107

5.5.2 Systems under study . 107

5.5.3 RO1: demonstrate that code clones are consistent in their logging
statements and their severity level. 108

5.5.4 RO2: extract the categories of code clones with logging statements. 110

5.5.5 RO3: apply method level code clone detection for logging prediction. 111

5.5.6 Log Prediction . 111

5.5.7 A Clone Detection Shortfall . 112

5.6 Log-Aware Code Clone Detector (LACC) 112

5.7 Threats to validity . 115

5.7.1 External Validity . 116

5.7.2 Internal Validity . 116

5.8 Closing Remarks . 116

x

6 Borrowing from Similar Code: A Deep Learning NLP-Based Approach
for Log Statement Automation 118

6.1 Introduction . 119

6.2 Motivation and Methodology . 122

6.2.1 Motivation . 122

6.2.2 Code Clones . 122

6.2.3 Why Leveraging Code Clones for Log Prediction? 123

6.2.4 Method-Level Log Prediction Rationale 124

6.2.5 Practical Scenario . 124

6.2.6 Research Questions . 125

6.3 RQ1: How code clones can be used for automated log location prediction? 126

6.3.1 Motivation and Approach . 126

6.3.2 Findings . 126

6.3.3 Log-Aware Feature Calculation Illustrative Example 127

6.3.4 Approach Significance . 130

6.4 RQ2: how the available context from clone pairs can be borrowed for log
description prediction? . 131

6.4.1 Motivation . 131

6.4.2 NLP for LSD Prediction - Theory 131

6.4.3 Methodology . 133

6.4.4 Toolchain . 134

6.4.5 Implementation . 134

6.4.6 LSD Prediction Algorithm and Steps 135

6.5 RQ3: how the accuracy of both log location and description prediction can
be evaluated and compared with prior work? 136

6.5.1 Systems Under Study . 136

6.5.2 RQ3.I: LACCP Evaluation . 138

6.5.3 RQ3.II: LSD Evaluation . 142

xi

6.6 Case Study . 147

6.7 Discussion . 150

6.7.1 Log Verbosity Level (LVL) and Variables (VAR) 150

6.7.2 Practicality in Software Engineering 150

6.8 Threats to validity . 150

6.8.1 External Threats . 150

6.8.2 Internal Threats . 151

6.9 Related Work . 152

6.9.1 Log Prediction . 152

6.9.2 Code Clone Detection . 153

6.9.3 NLP in Software Systems . 153

6.10 Conclusions and Future Directions . 153

6.11 Repository Explained . 154

7 What Distributed Systems Say: A Study of Seven Spark Application
Logs 156

7.1 Introduction and Motivation . 157

7.2 Approach and Setup . 159

7.3 RQ1: Cost of Logging . 165

7.3.1 Computation time (CT) . 165

7.3.2 Storage overhead (SO) . 165

7.3.3 RAM Disk . 166

7.4 RQ2: Log Effectiveness . 167

7.5 RQ3: Failure Assessment . 170

7.5.1 Compute Node Failure . 172

7.5.2 Storage Failure . 174

7.5.3 Communication Interference Modeling 175

7.5.4 Discussion . 179

xii

7.6 Case study . 181

7.7 Related work . 182

7.8 Closing Remarks . 183

8 On the Naturalness and Localness of Software Logs 186

8.1 Introduction . 187

8.2 Background and Motivation . 189

8.3 Natural Language Processing for Logs . 191

8.4 Naturalness of Logs . 194

8.4.1 RQ1: does a natural repetitiveness and regularity exist in
log files? . 194

8.4.2 RQ2: is the regularity that the statistical language model
captures merely log-nature specific, or is it also project-
specific? . 196

8.4.3 RQ3: how does Zipf’s law capture the repetitiveness of high-
rank tokens in log files? . 198

8.5 Localness of Logs . 199

8.5.1 RQ4: are log n-grams endemic to their projects? 199

8.5.2 RQ5: are log n-grams specific to their projects? 200

8.6 RQ6: Log File Anomaly Detection . 202

8.6.1 Hampel Filter for Threshold Selection 205

8.6.2 Evaluation . 205

8.6.3 Results . 207

8.7 Related Work . 208

8.8 Threats to Validity and Discussion . 212

8.9 Closing Remarks . 212

xiii

9 L'PERT: Log Parsing with BERT 214

9.1 Introduction . 214

9.1.1 Contributions . 216

9.2 Background . 216

9.3 Approach . 217

9.3.1 Pre-processing . 217

9.3.2 Tokenization . 217

9.3.3 Word Embedding and Axial Positional Embedding 218

9.3.4 Multi-Head Attention and Feed Forward 219

9.4 Evaluation . 220

9.4.1 Evaluation Dataset . 220

9.4.2 Evaluation Metrics . 220

9.5 Discussion . 221

9.5.1 Flexibility . 221

9.5.2 Tokenization . 221

9.6 Related Work . 222

9.6.1 Log Parsing . 222

9.6.2 NLP for Software Engineering Tasks 222

9.7 Conclusion and Future Directions . 223

10 Conclusions and Future Work 225

10.1 Summary of Findings . 225

10.1.1 Part II . 225

10.1.2 Part III . 225

10.1.3 Part IV . 226

10.1.4 Part V . 226

10.2 Avenues for Future Work . 226

10.2.1 Chapter 2 - Survey of Logging Research 226

xiv

10.2.2 Chapters 3, 4, 5, and 6 - Log Statement Prediction 226

10.2.3 Chapter 7 - Logging Cost and Benefit 227

10.2.4 Chapter 8 - Naturalness and Localness of Logs 227

10.2.5 Chapter 9 - L'PERT . 227

References 228

11 Summary of Publications 262

xv

List of Figures

1.1 Framework for creation and analysis of log files [273]. 4

2.1 Log example in C. 14

2.2 Log example with Log4j library. 14

2.3 A log file example from Apache Spark. 15

2.4 This figure provides the steps involved in our survey methodology. 17

2.5 This figure provides a taxonomy of the present-day logging research. Af-
ter providing an introduction on logs and log messages in §2.2, we explain
logging costs and benefits in §2.5.1. Log printing statement research covers
two sections, §2.5.2-2.5.3, followed by log files’ research in §2.5.4. §2.5.5 and
§2.6 provide emerging applications and opportunities for future work. We
conclude our survey in §2.7. 21

2.6 Percentage of publications in each topic. 25

2.7 Number of publications per year divided into conference and journal cate-
gories. Publications up to May 31, 2021 has been observed at the time of
this survey. 26

2.8 Logging practice challenges. 27

2.9 Logging code mining research in subcategories. 32

2.10 Logging research with the emphasis on logging code automation research,
Category E. 40

2.11 Learning to log platform. 41

2.12 Log prediction with source code features and code clones. 42

2.13 Auto logging of the software systems’ source code. 42

xvi

2.14 Mining of log files for different applications. 50

2.15 Log parsing for a raw log message to a parsed log from HDFS logs [311]. . 51

2.16 Duplicate and recurrent issue detection tool. 59

3.1 Example for log prediction with code clones. 85

3.2 Research steps, including objectives, intermediate data, and findings. . . . 87

5.1 Methodology for the experimental study. 103

5.2 Log severity level breakdown for Hadoop and Tomcat projects. 109

5.3 Log severity level mismatch for three Java projects. 110

5.4 Clone types breakdown for Hadoop, Tomcat, and Hive. 111

5.5 Percentage of log prediction accuracy. 114

5.6 LACC updated section. 115

6.1 A log example with level, description, and variable parts. 119

6.2 Log prediction with similar code snippets, i.e., semantic clones. On the
left side, we observe the recursive psuedocode implementation of the binary
search (MDi), and on the right the iterative version (MDj). Borrowing
from similar code, the logging statement for MDj can be learned from its
clone logging statement on Line 9 of MDi. 123

6.3 The toolchain for log statement description prediction. The approach shows
how both LACCP and NLP CC’d collaborate for LSD prediction. 133

6.4 The figure shows the inside of NLP CC’d, our deep learning long short-term
memory (LSTM) model for log description prediction. 136

6.5 . 151

7.1 Log statement and end product in the log file. 158

7.2 Our approach for measuring the cost and effectiveness of the logs. 159

7.3 Design of the distributed cluster, consisting of one master/name node and
three slave/data nodes. 160

7.4 Computation time (CT) and storage overhead (SO) for WordCount and
K-Means tasks. 164

xvii

7.5 Entropy for n-gram models for Spark logs and English text. 171

7.6 Entropy values for log windows for different applications with Spark’s com-
pute node failure. 172

7.7 Gilbert-Elliot communication interference model. 175

7.8 Entropy values for log windows for WordCount with HDFS’s data node failure.176

7.9 Entropy values for log windows for DFSIO with HDFS’s data node failure.
We have also shown the entropy values for DN2 and DN3 during a normal
run for comparison. The peaks show failure log messages with some normal
interleaving logs. Failure for DN4 happens very close to the start of the
x-axis and thus the initial peaks for DN2 and DN3. 177

7.10 Execution time for WC and TC during the communication interference and
combined failure. 178

7.11 Entropy values for log windows for WordCount for different values of drop
rate (1-h). 179

7.12 Speculative execution for different benchmarks. 180

7.13 Openstack entropy values for log sequences with four anomalous VM log
records. 182

8.1 A log example from an Apache Spark application. 187

8.2 Entropy values for a sequence of n-grams for log data (boxplot) and English
corpora (blue line). 196

8.3 Entropy values for 5-grams cross-project versus self-project. 197

8.4 Frequency of tokens for Logs and English text. 199

8.5 Distribution of entropies for non-endemic n-grams, grouped by the number
of files. “Uniform” represents that n-grams are distributed uniformly in the
files. 201

8.6 ANALOG steps for anomaly detection through log files. 203

8.7 Anomaly detection with perplexity values for HDFS. 204

8.8 Perplexity values for different projects. 209

8.9 ROC for performance of ANALOG. The black line (random guess) shows
y = x, i.e., 45°angle; however, the x-axis is stretched to provide a better
separation on the ROC values of the evaluated projects. 210

xviii

8.10 PCA versus ANALOG performance comparison. 210

9.1 High level design for L'PERT. 218

xix

List of Tables

2.1 Literature review databases and keywords. We searched in various online
research databases for different combinations of log-related keywords. . . . 18

2.2 List of related venues for our survey sorted from the most to least number of references. J stands for

journal, and C stands for conference, symposium, or workshop. The list of additional venues with only

one publication include: arXiv [285, 151], CSUR [77], TOCS [326], TPDS [102], IEEE Software [228],

TSMCA [199], TNSM [160], SP&E [175], JCST [349], HiPC [88], CSRD[292], IJCAI [224], NSDI [234],

CIKM [294], CCS [107], SIGKDD [198], IMC [258], MASCOTS [57], WSE [296], IWQoS [343], ICWS[148],

ICPC [225], ICSEM [54], ICPE [317], ICC [329], Middleware [313], VLDB [187], CNSM [300], AP-

SYS [333], HICSS [274], and COMPSAC [184]. The total number of listed papers is 103. 22

2.3 System’s performance overhead associated with logging. 30

2.4 Logging cost and benefit research - Topic (A). ‘Type’ shows qualitative,
quantitative, or both. 31

2.5 Logging practices research - Topic (B). 33

2.6 Logging code progression research - Topic (C). 35

2.7 Log-related issues research - Topic (D). 36

2.8 Log printing statement automation research - Topic (E). 38

2.8 Log printing statement automation research - Topic (E) (continued). 39

2.9 Confusion matrix for log prediction. 43

2.10 Evaluation metrics for automated log prediction. 45

2.11 Log maintenance and management research - Topic (F). 47

2.11 Log maintenance and management research - Topic (F) (continued). 48

2.12 Log parsing research - Topic (G). 52

xx

2.12 Log parsing research - Topic (G) (continued). 53

2.13 Log anomaly detection research - Topic (H). 55

2.13 Log anomaly detection research - Topic (H). 56

2.13 Log anomaly detection research - Topic (H) (continued). 57

2.14 System’s runtime behavior research - Topic (I). 58

2.15 Performance, fault, and failure diagnosis research - Topic (J). 60

2.15 Performance, fault, and failure diagnosis research - Topic (J). 61

2.15 Performance, fault, and failure diagnosis research - Topic (J) (continued). . 62

2.16 User, business, security, and code coverage research - Topic (K). 63

2.17 Emerging log research - Topic (L). 65

2.17 Emerging log research - Topic (L) (continued). 66

2.18 Summary of avenues for future work in logging research. 74

2.19 A full list of reviewed publications. ‘Subtopic’ column shows what other topics are dis-

cussed in the research, if applicable. 78

2.19 A full list of reviewed publications (continued). ‘Subtopic’ column shows what other

topics are discussed in the research, if applicable. 79

2.19 A full list of reviewed publications (continued). ‘Subtopic’ column shows what other

topics are discussed in the research, if applicable. 80

5.1 Selected projects statistics for the experimental study. 108

5.2 Method-level log related features. 115

6.1 Method-level log related features. 129

6.2 Log-related features comparison with (MDj) and without (MDj′) the log
statement. 130

6.3 The table lists the details for the studied project. The projects are well-
established software from different application domains. The table also lists
the number of lines of code (LOC), number of log print statements (LPS),
and number of log statements per thousand lines of code (KLOC). 138

xxi

6.4 The table shows the value of tp, tn, fp, and fn for the three approaches. We
also show Precision (P), Recall (R), F-Measure (F), and BA for the three
methods of log prediction. The general trend on how the methods perform
is observable on F-Measure, and BA metrics, as the values increase, i.e.,
Oreo < LACC < LACCP. 141

6.5 BLEU (B) and ROUGE (R) scores for No-NLP, NLP-1, and NLP-3 are
included side-by-side for each project. The NLP model improves the scores
across the board. For example, for MQ, the No-NLP B-1 and R-1 scores are
69.94 and 68.43, respectively, and the values increase to 70.51 and 69.55 for
the NLP-1 model, and furthermore, rise to 71.15 and 71.25 for the NLP-3
model. 146

6.6 BLEU (B) and ROUGE (R) scores comparison for [145], the LSD from code
clone with no modification, i.e., No-NLP, considering only one prior token in
prediction, NLP-1, and considering a sequence of three prior tokens, NLP-
3. The ‘Improvement’ column shows the percentage that No-NLP improves
on prior work, and how much NLP-3 improves over No-NLP. On average,
NLP-3 makes 40.86% improvement over [145] (Z(over)W). 146

7.1 Styx cluster for Spark computation and HDFS. 160

7.2 Main Spark and HDFS settings. 161

7.3 Benchmark characteristics. 163

7.4 Computation time values for RAM Disk vs. HDD for trace level. 167

7.5 Shannon’s entropies for info and trace for various applications. 169

8.1 System logs and English corpora statistics. 193

8.2 System logs and English endemic n-gram stats. 200

8.3 Values of t for different systems. 205

8.4 Performance of anomaly detection with NLP models for different system logs.207

8.5 Summary of RQs and our findings. 211

9.1 Log parsing results for BGL dataset. 222

xxii

List of Abbreviations

ACM: Association for Computing Machinery see p. 18

DL: Deep Learning see p. 135

IEEE: Institute of Electrical and Electronics Engineers see p. 18

LACC: Log-Aware Code Clone detection see p. 96

LACCP: Log-Aware Code Clone detection Plus see p. 121

LM: Language Model see p. 132

LPS: Log Print/Printing Statement see p. 11

LSD: Log Statement Description see p. 120

MD: Method Definition see p. 86

ML: Machine Learning see p. 2

NLP: Natural Language Processing see p. 186

SOTA: State of the Art see p. 5

xxiii

Part I
Prologue

1

Chapter 1

Introduction

Software systems are pervasive and play important and often critical roles in the society
and economy such as in airplanes or surgery room patient monitoring systems. Gathering
feedback about software systems’ states is a nontrivial task and plays a crucial role in
systems diagnosis in the case of a failure. In the interest of higher availability and reliabil-
ity, software systems regularly generate log files of their status and runtime information.
Developers insert logging statements into the source code which are then printed in the
log files, also known as execution logs and event logs [91]. Then, at a later time, while the
system is running or postmortem, developers or operators would analyze the log files for
various tasks. For example, the content of log files has been studied to achieve a variety
of goals such as anomaly and fault detection [311, 167, 116, 107], online or postmortem
performance and failure diagnosis [323, 234, 291, 340, 338], pattern detection [46, 217, 300],
profile building [300], business decision making [62], and user’s behavior observation [187].

Conventionally, software developers and practitioners apply testing and monitoring
techniques to analyze the software systems. System’s testing happens during the devel-
opment phase by developers, while practitioners utilize system monitoring techniques to
understand the behavior of the system in the deployed environment [73]. As such, it is a
common practice to have running programs report on their internal state and variables,
through log files that developers, system administrators, and operators can analyze [65] for
different purposes. This continuous cycle of development and deployment of the software
and looking at the system logs has also initiated and thrived adjacent fields of research such
as DevOps [165, 95, 108]. That is, the importance of log analysis and its computational
intensity has also brought in other tools to scale up the effort. For example, considering the
advancements of machine learning (ML) and artificial intelligence (AI) and the vast size
of the log files, researches have proposed the use of ML for automated operation analysis

2

(AIOps) [28] of execution logs. From the commercialization perspective, the widespread
need for log analysis has also contributed to the emergence of commercial products such as
Splunk [43] and Elastic Stack [30]. Splunk makes the large-scale logs accessible by extract-
ing patterns and correlating system metrics to diagnosing problems and provide insight for
business decisions. Elastic Stack [30], a.k.a. ELK, consists of three different subsystems of
Elasticsearch [22], Logstash [21], and Kibana [31], works to ingest and process logs from
different sources by Logstash, in a searchable format accomplished by Eleasticsearch, and
Kibana lets users visualize data with charts and graphs.

From the system’s diagnosis perspective, the information provided through the logging
statements combined with other system metrics, such as CPU, memory, and I/O utiliza-
tion, serves an important role in anomaly detection and understanding and diagnosing the
system’s runtime behavior in the case of a failure. Despite the tremendous potential value
hidden in execution logs, the inherent characteristics of logs, such as their heterogeneity
and voluminosity [73], make the analysis of them difficult on a large scale and poses several
challenges. Some of the associated challenges with logging statements and their analysis
in software systems are:

1 Providing proper logging statements inside the source code remains a manual, ad-
hoc, and non-trivial task in many cases [191] due to the free-form text format of log
statements and lack of a general and well-established guideline for logging.

2 As the size of computer systems increases and software becomes more complex and
distributed, manual inspection of log files becomes cumbersome and impractical, and
it calls for automated analysis of logs.

3 Log data can be heterogeneous and voluminous, as within a large software system
multiple subsystems may potentially generate a plethora of logs in different formats.

4 Developers and automatic logging tools, that aim to automate the addition or en-
hancement of logging statements in the source code, always face challenging questions
of “what, where, how, and whether to log?”.

Considering the aforementioned challenges, prior and ongoing research has made nu-
merous efforts to mine and understand log statements in the source code and execution
log files to either gain more insights about logging practices, troubleshoot the software, or
automate the logging process [325, 78, 346]. Figure 1.1 depicts a framework in which the
creation process and analysis of log files are illustrated. After the system’s architecture is
decided and programmers implement the source code with logging statements, the opera-
tors run the system with selecting proper runtime configuration parameters (e.g., logging

3

verbosity level in Log4j [15]). While the software is running, events that are logged in the
source code generate records within the log files. Next, administrators (, practitioners),
and automated log analyzer tools may review the files and feedback the outcome to the
designers, programmers, and operators to make adjustments to the architecture, source
code, and system configuration if needed, respectively.

Designer

Architecture

Programmer Operator

Configuration
Log files

Administrator

Log analyzer

Running application events

Code w/ logging
statements

Figure 1.1: Framework for creation and analysis of log files [273].

1.1 Research Motivation

This thesis aims to gain more insight into the current software systems logging practices
and propose automated approaches for logging and information gain from execution logs.
We observe that although logging statements are generally considered to be in unstruc-
tured text format, they still bear some structure (i.e., semi-structured, such as timestamp,
verbosity, etc.), which can be leveraged for automated log analysis. Specifically, this thesis
pursues the following research hypothesis:

Research Hypothesis

Current developers’ logging practices can be learned and leveraged in the develop-
ment of automated log prediction tools. Additionally, the semi-structured format
of logs and the information gained from execution logs can be utilized to develop
tools for automated log analysis to support developers’ and practitioners’ efforts in
software testing and monitoring.

1.2 Thesis Outline

In the following, we provide an outline for each chapter of this thesis.

4

1.2.1 Chapter 2: Literature Review

In this chapter we survey the state-of-the-art (SOTA) logging research in software systems
and its applications. We categorize the prior work into two main categories:

� Logging source code: discusses the research that aims to understand log state-
ments and uncover patterns and issues for improving and automating the logs in the
source code.

� Log files: explains the research that aims to gain information from the logs to im-
prove automated log analysis for various applications, e.g., log file anomaly detection.

Our findings from the literature review enable us to observe the missing pieces of the puzzle
for improvement and future work in the logging research for software systems.

1.2.2 Chapter 3: Research Plan for Log Prediction

In this chapter, we review our research plan and steps for the application of similar code
snippets, i.e., code clones, and natural language processing for log statement location and
content automation.

1.2.3 Chapter 4: Clone Detection Background

In this chapter, we provide the necessary background on source code clones. Clone detection
is the procedure of locating exact or semantically similar pieces of source code within or
between software systems which we apply in the following chapters for log-aware clone
detection.

1.2.4 Chapter 5: Log Location Prediction

In this chapter, we explain our approach for predicting log statement locations based on
the source code clones. We perform an experimental study on open-source Java projects
and show that code clones follow similar logging patterns. We then apply this feature to
propose a log-aware code-clone detection method for log statement prediction.

5

1.2.5 Chapter 6: Log Content Prediction

In this chapter, we improve on the performance of log-aware clone detection to predict
the location and description of logging statements. Additionally, we incorporate natural
language processing (NLP) deep learning methods to further enhance the performance of
the log statements’ description prediction. We evaluate the performance of the predictions
with BLEU and ROUGE scores.

1.2.6 Chapter 7: Cost and Gain from Logs

To evaluate the performance overhead and storage cost of logging, in this chapter, we
present the result of our experimental study on seven Spark benchmarks to illustrate the
impact of different logging verbosity levels on the execution time and storage cost of dis-
tributed software systems. We also evaluate the log effectiveness and the information gain
values, and study the changes in performance and the generated logs for each benchmark
with various types of distributed system failures. Our research draws insightful findings
for developers and practitioners on how to set up and utilize their distributed systems to
benefit from the execution logs.

1.2.7 Chapter 8: Naturalness of Logs

We discuss natural language attributes of log files in this chapter and explain how these
attributes can be utilized for automated log analysis. We begin with the hypothesis that
log files are natural and local and these attributes can be applied for automating log
analysis tasks. We guide our research with six research questions with regards to the
naturalness and localness of the log files, and present a case study on anomaly detection
and introduce a tool for anomaly detection, called ANALOG, to demonstrate how our new
findings facilitate the automated analysis of logs.

1.2.8 Chapter 9: Natural Language Models for Log Parsing

Previously, we showed that NLP characteristics can be applied for automated analysis
of log files as log records can be looked at as natural language sequences. Thus, in this
chapter, we leverage the latest advances in NLP models and employ “Bidirectional En-
coder Representations from Transformers (BERT)” NLP models to enable more accurate
automated log file parsing.

6

1.2.9 Chapter 10: Conclusions and Future Work

We conclude and summarize our research in this chapter and give directions for future
avenues of work.

1.2.10 Chapter 11: Summary of Publications

Chapter 11 provides a summary of publications from this thesis.

1.3 Contributions

This thesis proposes novel approaches for log location and content prediction. In addition,
we provide insight on automated analysis of logs which provides developers and practition-
ers with more effective troubleshooting. We summarize our contributors as follows:

� In Chapter 2, we provide a comprehensive and systematic literature review of current
logging practice, challenges associated with logging, and automated logging and log
mining.

� In Chapters 3, 4, 5, and 6 we initially explain the background for source code clone
detection and then provide a novel approach for automating the log statements and
their content.

� In Chapter 8, we investigate the naturalness and locallness of execution logs and
demonstrate how these attributes can be leveraged for automated log analysis.

� We study costs and benefits associated with logging in distributed systems in Chap-
ter 7, and provide insight on the information gain from logs in the case of failures.

� Finally, in Chapter 9, we provide novel BERT-based log parsing approach, which
utilizes the natural language characteristics of the logs.

1.4 Closing Remarks

We discussed the importance of logs, how they help developers and practitioners, and the
existing challenges to make logs more effective. As we conclude this chapter, we continue
with the survey of the prior work in the next chapter.

7

Part II
Systematic Literature Review and

Mapping

8

Chapter 2

A Comprehensive Survey of Logging
in Software: From Logging
Statements Automation to Log
Mining and Analysis

Abstract- Logs are widely used to record runtime information of software systems, such
as the timestamp and the importance of an event, the unique ID of the source of the log,
and a part of the state of a task’s execution. The rich information of logs enables system
developers (and operators) to monitor the runtime behaviors of their systems and further
track down system problems and performs analysis on log data in production settings.
However, the prior research on utilizing logs is scattered and that limits the ability of
new researchers in this field to quickly get to the speed and hampers currently active
researchers to advance this field further. Therefore, this chapter surveys and provides
a systematic literature review of the contemporary logging practices and log statements’
mining and monitoring techniques and their applications such as in system failure detection
and diagnosis. We study a large number of conference and journal papers that appeared
on top-level peer-reviewed venues. Additionally, we draw high-level trends of ongoing
research and categorize publications into subdivisions. In the end, and based on our
holistic observations during this survey, we provide a set of challenges and opportunities
that will lead the researchers in academia and industry in moving the field forward.

Keywords:
survey, systematic literature review (SLR), software systems, logging, log statement, log

9

file, log automation, log analysis, log mining, logging cost, anomaly detection, failure
detection and diagnosis

A reversion of this chapter is under review at the IEEE Journal of Transaction

on Software Engineering [125].

2.1 Introduction

As the size of computer systems increases, the manual process of developers placing log-
ging statements into the source code and administrators reviewing the log files and detect
problems negatively affecting the system becomes less practical and less effective. Conse-
quently, being able to automatically detect logging points and insert appropriate logging
statements in the source code, as well as systematically detecting system issues are very
beneficial and high-in-demand research topics [346, 339]. Thus, researchers have dedicated
a significant amount of studies in the area of software logging and log analysis techniques
throughout the last decade [73] to propose various approaches, including automated anal-
ysis and application of machine learning to process large-scale log files. However, after
reviewing the prior work, we noticed what has not been addressed is a clear review of the
current progress in software systems’ logging and log analysis research. It is, therefore,
hard for researchers to recognize how their current and future work will fit in the big
picture of present-day logging research. Understanding where we are at the moment and
creating a snapshot of the current research is a fundamental step towards understanding
where we should go from here and what the necessary next steps of the research would
be. Learning from our own experiences and the obstacles that we have to go through to
holistically picturize the current research in the field, this survey aims to pave the road
obstacles and provide a methodological review of logging, its practices, and its automation
techniques and tools for software systems. Additionally, in this survey, we review the cur-
rent state of logging in software to discover solutions for the aforementioned challenges and
highlight the next steps for future research efforts. We review and study a vast number of
peer-reviewed conference and journal papers from related research areas including software
and distributed systems, dependability, and machine learning. Moreover, we aim to build
knowledge [63] and trends by connecting and combining findings from multiple research.
Thus, we examine and categorize the prior research for logging costs, logging practices, au-
tomation of log analysis, and efforts to automate the insertion and improvement of logging
statements inside the source code. Finally, we provide trends and opportunities for future
work based on the insights we gain during this survey. For each research, we provide its 1)
aim, i.e., the problem it is trying to address, 2) experimentation, 3) results and findings,

10

4) advantages, i.e., pros, and 5) disadvantages, i.e., cons. Before we dive deeper into the
survey, we will review a few important vocabulary in the following.

2.1.1 Terminology

Log printing statement (LPS). LPSs are the log statements in the source code added
by developers. We use “log printing statement”, “log statement”, and “logging statement”
interchangeably, as the prior work has used all of the variations [116, 339, 117, 123, 192].

Log message. A log message, typically a single line, is the output of the LPS in
the log file. Prior work also makes a subtle distinction between a log message and a log
entry, and defines a “log entry” or a “log record” as a line in the log file composed of
a log header and a log message [110]. Log header contains timestamp, verbosity level,
and source component, and its format is usually defined by the logging framework, e.g.,
log appenders [37], whereas a log message is written by the developer and consists of the
amalgamation of the static part of the log message from the source code and the dynamic
value of the variables during the runtime. For our purpose in this survey, log message, log
entry, log record, and log event are used interchangeably [250, 192, 115, 183].

Log file. Log file(s) is a collection of log messages stored on a storage medium, also
called “event logs”, and “execution logs”, or simply just “logs” [115, 183, 116]. In most
cases, these terms can be used interchangeably, and we commonly use log file(s) as an
umbrella term to cover the different naming variations throughout the survey. As a minor
point, in special cases that we mean to refer to a set of log lines in general (i.e., without
binding them to specific files), it is more appropriate to refer to them as execution logs or
log records (e.g., execution logs are used for anomaly detection).

Additionally, we might refer to computer (computing) systems and software systems
interchangeably on some occasions throughout this survey with regards to logs, meaning
that the log messages in the log files are generated from log printing statements within
the source code of the software systems (for various software or hardware related events,
concerns, or issues), which are also an artifact of computer systems as an umbrella for
software, hardware, and anything in between.

2.1.2 Research Questions

While we review the prior literature, we aim to purse and answer the following research
questions:

11

� RQ1: How to systematically review and categorize prior logging research into dif-
ferent topics?

� RQ2: What are the publication trends based on venues, topics, and years?

� RQ3: How the research in each topic can be systematically compared with their
approaches, pros, and cons?

� RQ4: What open problems and future directions are foreseeable for logging research?

With the pursual of the aforementioned RQs, we ensure to follow the established
evidence-based software engineering (EBSE) [172, 177] paradigm for our literature review.
As a contributing improvement, our survey combines and benefits from the advantages of
both systematic literature review (SLR) and systematic mapping (SM) paradigms. Prior
research indicates the main differences between SM and SLR are that SM methodology
is broader and more based on qualitative measures, while SLR focuses on narrower re-
search questions and quantitative measures [237]. While being comprehensive, i.e., SM,
our survey also provides details on the experimentation and results of each primary study,
i.e., SLR. In summary, RQ1, RQ3, and RQ4 qualitatively assess the prior literature into
different research categories base on different topics, i.e., systematic mapping (SM) [309],
whereas RQ2 quantitatively measures the publications based on venues, topics, and years,
and RQ3 provides details aligned with SLR data extraction methods for each study, e.g.,
the aim, experiments, results, and findings [237].

2.1.3 Survey Organization

The rest of this survey is organized as follows. Section 2.2, prior to answering the RQs, we
provide the background for log statements, messages, and files. In Section 2.3, we provide
our findings for RQ1 and categorize the prior logging research. In Section 2.4, we present
our findings for RQ2 and present the publication trends for different topics, years, and
venues. Then, Section 2.5 reviews the prior research in each category of logging in details
and provide our findings for RQ3. In Section 2.6, we provide our findings for RQ4 and
describe open problems and opportunities for future work, and Section 2.7 concludes the
survey.

12

2.2 Log statements and Log Files

Logging is the process of recording and keeping track of the events of interest, e.g., to
developers, practitioners, system admins, and end users, while the software is running.
As such, log messages aim to achieve this goal and record the events of interest that
happen during the software system’s execution and store them in the log files. Generally,
the logging process starts with software developers (i.e., programmers) include logging
statements with description, variables, and verbosity levels (Figures 2.1 and 2.2) into the
source code. Then, while the software is running, the logging statements are logged, if
appropriate configurations (e.g., verbosity level) are enabled. In the simplest case, log
messages are written to a single log file. However, in a distributed system, there can be
multiple log files in different formats. The focus of our survey is on this type of logs
which are also called execution logs or event logs [299]. Event logs are the outcome of
logging statements that software developers insert into the source code. Event logging
and log files are playing an increasingly important role in computer systems and network
management [299, 311, 73], which we will review later in this survey.

2.2.1 Transaction Logs

It is also worth mentioning briefly the difference between the execution logs and transac-
tion logs. A transaction log (also called journal) is a record file of the transactions between
a system and the users of that system, or a data collection method that naturally captures
the type, content, or time of transactions made by a user from interacting with the system.
In a database server, a transaction log is a file in which the server stores a record of all the
transactions performed on the database [98]. The transaction log is an important compo-
nent of database servers and cryptocurrency protocols (e.g., blockchain [64]) when it comes
to recovery. If there is a system failure, transaction logs are used to revert the database
back to a consistent state. In summary, transaction logs act as a ledger to accurately
record the transactions in the system which are agreed, shared, and synchronized among
all the parties involved, whereas execution logs capture events of interests with different
verbosity and severity levels, e.g., DEBUG, INFO, ERROR, etc., which do not necessarily
require sharing, agreement (i.e., consensus), or synchronization between different software
modules.

13

2.2.2 Log Example

Software developers utilize logging statements inside the source code to gain insight into
the internal state of applications amid their execution. In the simplest form, logging
statements are print statements utilized in different programming languages. In this case,
the logging statement may contain a textual part indicating the context of the log, i.e., the
description of the log, a variable part providing contextual information about the event.
Figure 2.1 shows an example of logging statements in C programming language.

printf(“Cannot find BPService for bpid=%d”, id);
| description | variable

Figure 2.1: Log example in C.

Logging statements may utilize logging libraries to improve the organization of the
logged information. For example, in Java, libraries such as Log4j [15] and SLF4J [29]
provide a higher degree of flexibility to the developers. Logging libraries, also called logging
utilities (LU) [81] or logging libraries and utilities (LLUs), provide extra features, such as
log level, which indicate the verbosity and the severity of the logging statement. Log levels
help to better distinguish the importance of runtime events and control the number of logs
collected on the storage device [229]. For example, less verbose levels, i.e., fatal, error, and
warn, are leveraged to alarm the user when a potential problem happens in the system,
and more verbose levels such as info, debug, and trace are utilized to record more general
system events and information or detailed debugging. In practice, info and more verbose
levels are utilized during the software development phase by programmers, and info or less
verbose levels are, by default, for the software deployment phase, as the end user observes.
In case more insight about the internal state is needed, end users might enable more verbose
logging. An example of a logging statement with library usage for warn verbosity level is
shown in Figure 2.2.

log.warn(”Cannot find BPService for bpid=” + id);
level | description | variable

Figure 2.2: Log example with Log4j library.

Logging statements are generally saved in log files. Figure 2.3 shows ten lines of logs
from Apache Spark [16] execution logs collected in our execution of k-means clustering

14

algorithm [216] on a standalone cluster. In real-world cases, a computing cloud system can
generate millions of such log messages per minute [347]. For example, for an online store
with millions of customers worldwide, it is common to generate tens of terabytes of logs in
a single day [211, 208].

Log file example
20/02/21 13:47:47 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform...
using builtin-java classes where applicable

1

20/02/21 13:47:47 INFO SparkContext: Running Spark version 2.4.42

20/02/21 13:47:48 INFO SparkContext: Submitted application: JavaKMeansExample3

20/02/21 13:47:48 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled;
users with view permissions: Set(user); groups with view permissions: Set(); users with modify permissions:
Set(user); groups with modify permissions: Set()

4

20/02/21 13:47:49 INFO StandaloneSchedulerBackend: Connected to Spark cluster with app ID
app-20200221134749-0004

5

20/02/21 13:47:49 INFO StandaloneAppClient$ClientEndpoint: Executor added: app-20200221134749-0004/0
on worker-20200220231425-192.168.210.13-34881 (192.168.210.13:34881) with 8 core(s)

6

20/02/21 13:47:50 INFO EventLoggingListener: Logging events to
file:/tmp/spark-events/app-20200221134749-0004

7

20/02/21 13:47:51 INFO DAGScheduler: Submitting 933 missing tasks from ResultStage 0 (MapPartitionsRDD[5]
at map at KMeans.scala:248) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14))

8

20/02/21 13:47:53 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor
NettyRpcEndpointRef(spark-client://Executor) (192.168.210.12:39482) with ID 3

9

20/02/21 14:03:58 INFO DAGScheduler: Job 12 finished: sum at KMeansModel.scala:105, took 13.099825 s10

Figure 2.3: A log file example from Apache Spark.

As observed in Figure 2.3, a major part of logging messages is unstructured text. Thus,
in order to make log files useful and avoid the hassle of manually processing a plethora
of log files, the first and foremost step of log processing is the automatic “parsing” of log
messages, which transforms unstructured logs into structured events. Not to be confused
with syntactic parsers in programming languages, which parses source code and confirm
whether it follows the rules of the formal grammar, log parser, on the other hand, trans-
forms unstructured raw log files into a sequence of structured events, to enable automated
analysis of logs. We review the log parsing process later in Section 2.5.4.

15

2.2.3 Program Traces vs. Logs

The term log is often used to represent the way a program is used (such as security
logs), while tracing (not to be confused with “trace” log level in logging libraries such as
Log4j) is used to capture the temporal sequence of events during a particular execution
of a program [228], in contrast to logs which are generally the consolidation of continuous
execution of software systems. Tracing is typically performed by an external program/tool
that instruments the runtime environment, such as network traffic traces, whereas logs
are the direct output of logging statements’ execution inside the software. Moreover, while
traces are typically structured data, logs are free-form and unstructured text. For example,
a trace can contain the software execution paths, the events triggered during the execution,
and the value of variables, which are used for debugging and program understanding. Stack
traces are common examples that are used for function call tree tracing during development
and postmortem debugging. Logs and traces are also different in their analysis difficulty
level. Because traces are inserted by external tools, they are straightforward to comprehend
during analysis as the trace patterns are set by the same tools that inserted them and
will analyze them. In contrast, because log statements are inserted by developers who
are typically not the ones who build log analysis tools, thus, log analysis tools face a
significant challenge in parsing, and further understanding the semantics of the logs. Some
of the well-known tracing systems include Google’s Dapper [286], X-Trace [113], Microsoft’s
Magpie[61], the black-box approach [45], and Casper [310].

2.3 RQ1: How the prior logging research can be cat-

egorized to different topics?

In this section, we provide our findings for the first research question by reviewing the
available literature and categorizing the logging research into its topics (and subtopics),
which enables us to explain the survey scope that follows next.

2.3.1 Survey Methodology

Studying log mining and logging analysis techniques in software systems is a challenging
and widespread topic, and there have been numerous prior studies that focus on log anal-
ysis. Table 2.1 summarizes the databases and keywords used in our survey, and Figure 2.4
provides the flowchart of the steps in the database selection and reference analysis. We

16

Meta-search
allowed?

Springer
(2,447)

Select
databases

Final
count
103

ScienceDirect
(222)

Scopus
(2,055)

ACM
(317)

IEEE
(1,085)

Yes

No

Zotero .csv to
.bib

JabRef to
consolidate and

remove dublicates

6,126

6,126

Exclusion
criteria

Snowballing
Google Scholar

4,906

92

11

Figure 2.4: This figure provides the steps involved in our survey methodology.

start with the established research databases listed in the table and search for the list of
log-related keywords. If the database allows for metadata search (i.e., title, abstract, and
keywords), we limit our search to metadata, to avoid the inclusion of numerous unrelated
research that has the keywords in their main text. However, for Springer, we could not use
meta-search, and thus, the reason behind the high number of returned publications. We
use reference management software, such as Zotero 1 and JabRef 2 to facilitate and auto-
mate our process of reference consolidation from different sources and duplicate removal.

17

Research
databases

ACM Digital Library, IEEE Xplore, ScienceDirect (Elsevier), Scopus,
SpringerLink, and Google Scholar (snowballing).

Keywords ’software AND log AND (statement OR file OR record OR event)’ AND ’Pub-
lication Date: (01/01/2010 TO 05/31/2021)’

Table 2.1: Literature review databases and keywords. We searched in various online re-
search databases for different combinations of log-related keywords.

After duplicate removal, our process resulted in 4,906 papers.

For exclusion criteria, our focus has been on the full (i.e., not short), recent papers
in English in the last decade in the established venues, ranging from very good to flag-
ship ones 3. After the keyword search, we manually investigated the results and included
relevant publications that directly tackle issues associated with log statements or log files,
and excluded the ones which had a weak association with logs. Also, if a research project
has multiple variations, i.e., a conference paper followed by a more comprehensive journal
paper, we only include the more comprehensive version. Additionally, once we find an
influential (i.e., highly-cited) paper, we also check all of its references and its citations,
i.e., snowballing search [308] with Google Scholar. Followed by exclusion criteria, we are
narrowed down to 92 publications, and at last, 11 additional references are added with
snowballing, bringing the total count to 103 publications.

We categorize the selected publications (103) into twelve categorizes after carefully
studying them. Our methodology for categorizing the publications has been based on a
top-down approach. Meaning that, we first were able to draw categorizes that either focus
on logging statements or the ones that focus on log files. We then further narrowed down
each category based on its primary focus. Next, we also extracted subtopics for each paper,
as usually, publications also partially cover some other related topics in their research. For
example, Zhao et al. work [339] primarily focuses on log statement automation, but it
also covers topics related to log cost analysis. The details for each category is available in
Table 2.19 in Section 2.8.

1https://www.zotero.org/
2https://www.jabref.org/
3https://www.core.edu.au/conference-portal

18

https://www.zotero.org/
https://www.jabref.org/
https://www.core.edu.au/conference-portal

2.3.2 Survey Scope

Based on our methodology, the scope of our survey is developed as follows. To the best
of our knowledge, there is no prior work that provides a systematic and comprehensive
coverage on log mining and automation techniques in software systems, covering differ-
ent aspects of logging such as mining source code and log files, automating log printing
statements in the source code, and their evaluation techniques. There are a few exist-
ing surveys on the application of execution logs for anomaly and problem detection [272],
system monitoring [73], and instrumentation [77]. We cover the following sections in our
survey:

� Logs and log files. We explain what are log files, log statements, and log messages,
and what sort of applications and analyses they are leveraged for.

� Logging cost. We point out the quantitative and qualitative costs and benefits
associate with logging.

� Logging statement mining and automating. Logging research aims to un-
derstand current logging practices and use the findings to improve the log printing
statements with automatic log insertion and learning to log techniques. Thus, we
review:

– Logging code practices. This section includes studies that empirically or au-
tomatically investigate how developers insert logging statements into the soft-
ware’s source code and how the logging evolution and improvement can benefit
the usage of the logging code.

– Automatic log insertion and learning. We cover the studies that leverage
static code analysis, heuristics, and machine learning techniques to automati-
cally add (or improve) logging statements in the source code to make them more
effective in failure diagnosis.

– Evaluation. As we study automatic ways of addition and learning of log state-
ments, we introduce several metrics to measure the effectiveness of the proposed
approaches.

� Mining logs. This part provides insight on methods and tools to analyze log mes-
sages and log files. This can be further divided to log management, log parsing, and
their applications.

19

– Log management and maintenance. Management and collection of logs are
important as a pre- or post-step of log analysis.

– Log parsing. To enable log message analysis, we first require to parse the log
messages and extract their templates.

– Application of logs. We review a wide range of applications that leverage
automated log analysis for various software engineering tasks, such as anomaly
detection and failure diagnosis.

� Emerging applications of logs. We review the recent special interest in applica-
tions of logs in other domains such as mobile devices and big data.

� Opportunities for future work. Based on the current log-related research, we
comment on the future directions and opportunities for each category of logging
research.

As our aim is to provide a comprehensive and end-to-end survey of the logging in soft-
ware, we have covered the topics of mining and automation of logging statements
and mining of log files side-by-side in this survey. We have seen that these topics go
hand-in-hand and the synergy between them has resulted in more effective logs and logging
practices. In fact, the ultimate goal of a mountain of studies for logging statement automa-
tion is to improve various log mining tasks (Figure 1.1). For example, ErrLog [324]
and LogEnhancer [326] automatically introduce new logging statements or add additional
variables to the logging statements (i.e., automation of the logging statements) to
improve the quality of logs, and, subsequently, improve log mining tasks such as error
detection and program diagnosability. In another example, authors of Log20 [339], an au-
tomated log placement tool, explain that the main objective of their log placement tool is
to “disambiguate” the execution paths, and consequently, improve the effectiveness of log
mining methods in “debugging real-world failures”. Furthermore, we observe that ignoring
the cross-cutting concerns of logging has resulted in log-related issues in the past, such as
stale and confusing logging statements, and has hindered effective log file mining [277, 170].

It is also important to mention that there exist additional industry products, with an
aggregate market cap beyond $125B, that perform log analysis for various goals such as per-
formance evaluation, cloud monitoring, and data analytics, to name a few: Datadog [32]
($49.7B)4, Splunk [43] ($27.3B), Elasticsearch [22] ($15.5B), Loggly [35] ($5.7B), Dyna-
trace [34] ($22.1B), New Relics Inc. [39] ($4.9B), and XpoLog [44]. However, this chapter

4Values are collected at the time of this survey from Google Finance. For example for Datadog:
https://www.google.com/finance/quote/DDOG:NASDAQ

20

 https://www.google.com/finance/quote/DDOG:NASDAQ

Logging cost
analysis

Log printing
statement (LPS)

Mining log files

Log automation

Automated analysis

Automated log
categories

Log parsingSource code
features

Learning
to log

Performance and
failure diagnosis Application security System's runtime

behavior
User statistics and

behaviour
Duplicate issue

trackingAnomaly detection

Software systems'
logs

Theory

Code coverage

Log files

Management and
maintenance

Compression

Mining
source code

Emerging
applications

Opportunities
for future work

Logging
for mobile

Logging and
big-data

Practices AutomationAnalysis Maintanence

Evaluation

§

§ §

§ § §§

 Rolling Removal

Logging
for embedded

Collections
PracticesIssues

Progression Understanding
of logs

SuggestionEnhancement Insertion
Logging
libraries

Collections

Application
specific

Scalable

Golden quality
LPSs

NLP

Adaptive

Whether
to log

LPS
generation

Figure 2.5: This figure provides a taxonomy of the present-day logging research. After providing an in-
troduction on logs and log messages in §2.2, we explain logging costs and benefits in §2.5.1. Log printing
statement research covers two sections, §2.5.2-2.5.3, followed by log files’ research in §2.5.4. §2.5.5 and §2.6
provide emerging applications and opportunities for future work. We conclude our survey in §2.7.

21

No. Type Name (# of publications) Abbr. References No Type Name (# of publications) Abbr. References

1. J Empirical Software Engineer-
ing (12)

EMSE [269, 318, 79, 279,
170, 196, 142, 194,
193, 319, 86, 330]

10. C IEEE International Conference on
Data Mining (3)

ICDM [205, 116,
106]

2. C International Conference on
Software Engineering (11)

ICSE [291, 203, 315, 325,
78, 81, 117, 250,
346, 278, 62]

11. C Mining Software Repositories (3) MSR [169, 72, 126]

3. J IEEE Transactions on Soft-
ware Engineering (5)

TSE [202, 210, 192, 96,
209]

12. C International Symposium on Soft-
ware Reliability Engineering (3)

ISSRE [65, 84, 251]

4. J Journal of Systems and Soft-
ware (5)

JSS [60, 112, 222, 115,
277]

13. C ACM Joint European Software En-
gineering Conference and Sympo-
sium on the Foundations of Soft-
ware Engineering (2)

ESEC/
FSE

[149, 337]

5. C International Conference on
Automated Software Engineer-
ing (4)

ASE [200, 82, 208, 145] 14. C International Conference on Soft-
ware Analysis, Evolution and
Reengineering (2)

SANER [170, 166]

6. C USENIX Symposium on Oper-
ating Systems Design and Im-
plementation (4)

OSDI [341, 340, 322, 324] 15. C International Conference on Archi-
tectural Support for Programming
Languages and Operating Systems
(2)

ASPLOS [323, 321]

7. C IEEE/IFIP Conference on De-
pendable Systems and Net-
works (4)

DSN [314, 242, 244, 90] 16. C USENIX Annual Technical Confer-
ence (2)

ATC [212, 104]

8. C International Symposium on
Reliable Distributed Systems
(4)

SRDS [118, 332, 135, 87] 17. C ACM Symposium on Applied
Computing (2)

ACM
SAC

[123, 221]

9. C ACM Symposium on Operat-
ing Systems Principles (3)

SOSP [339, 311, 338]

Table 2.2: List of related venues for our survey sorted from the most to least number of references. J stands for journal, and C stands for conference,
symposium, or workshop. The list of additional venues with only one publication include: arXiv [285, 151], CSUR [77], TOCS [326], TPDS [102],
IEEE Software [228], TSMCA [199], TNSM [160], SP&E [175], JCST [349], HiPC [88], CSRD[292], IJCAI [224], NSDI [234], CIKM [294], CCS [107],
SIGKDD [198], IMC [258], MASCOTS [57], WSE [296], IWQoS [343], ICWS[148], ICPC [225], ICSEM [54], ICPE [317], ICC [329], Middleware [313],
VLDB [187], CNSM [300], APSYS [333], HICSS [274], and COMPSAC [184]. The total number of listed papers is 103.

22

mainly focuses on surveying academic works, or peer-reviewed publications from industry.
We acknowledge that there is a mountain of work in industry that perform log analysis,
however, it is mainly outside the scope of this survey. Additionally, logging is also used in
other computing systems, such as embedded, hardware devices/sensors, or mobiles which
are generally outside the scope of this survey, as we mainly focus on software systems.
However, we briefly mention some of the mobile devices studies that are closely related
and have aimed to replicate the efforts in software logging research in Section 2.5.5. Lastly,
Figure 2.5 summarizes a taxonomy of categorization of modern-day logging research in our
survey, and we leverage the classification in this figure to divide the logging research into
subtopics and study them in the upcoming sections.

Finding 1. Based on the taxonomy and our literature review, the logging research
is spread through twelve categories (topics): 1 costs and benefits of logging, 2 logging
practices, 3 logging progression, 4 log-related issues, 5 log printing statement automa-
tion, 6 log maintenance and management, 7 log parsing, 8 log-based anomaly detection,

9 log-based runtime behavior analysis, 10 log-based performance, fault, and failure diag-

nosis, 11 log-based user, business, security, and code-coverage analyses, and 12 emerging
applications of logs.

2.4 RQ2: What are the publication trends based on

venues, topics, and years?

For this RQ, after categorizing the 103 selected publications, we organize the publications
based on their venues and publication years and draw high level trends. Based on our
findings from the trends, we summarize some of the log-related challenges that the prior
research has aimed to address at the end of this section.

2.4.1 Venue Trends

Table 2.2 provides a breakdown of surveyed publications per venue. Although looked
for, we could not find a related work in TOSEM 5. The majority of the research in this
field is published in EMSE, ICSE, TSE, JSS, and ASE. We suggest the authors of future
publications consider the following venues in Table 2.2 for submitting their works, and

5ACM transactions on Software Engineering and Methodology.

23

consider the number of related references that their work aligns with in that venue. This
ensures their works will receive higher visibility and a thorough comparison with the prior
work.

2.4.2 Topic Trends

Figure 2.6 shows the percentage of publications per each topic. Overall, we have divided the
logging research into twelve subcategories (i.e., topics), which we will review throughout
this survey. Table 2.19 (Section 2.8) lists the topics and provides the related references
for each one. The table serves as a quick-access guide to review the research happening
in each topic. Based on our analysis, the top-5 active and popular research topics in the
field of logging based on the number of publications are: 1) log mining for anomaly
detection, 2) log printing statement automation, 3) log mining for performance
and failure diagnosis, 4) log maintenance and management, and 5) log parsing.

2.4.3 Year Trends

Figure 2.7 illustrates the number of conference (blue), journal (orange), and archived (gray)
publications per year till May 31, 2021. The upward trend on the plot suggests the con-
tinuous and growing interest of the research community to explore various dimensions
of logging research. The publications are from both academia and industry such as Mi-
crosoft [117, 346, 62], Twitter [187], Huawei [151], RIM [277], and others [250]. Addi-
tionally, there are valuable research from the synergy between academic researchers and
industry teams which further emboldens the efforts by bringing real-world industry expe-
riences [104, 151, 208]. As such, we foresee the research in this area will continue to grow
and foster in the upcoming years as there are interesting and promising trends for future
research, explained in Section 2.6.

2.4.4 Logging Challenges

Based on the knowledge gained throughout the survey, we summarize the challenges that
the prior literature has aimed to tackle in the following. As a result of a lack of well-
accepted standards and guidelines for logging practices [117, 250, 78], currently, developers
mostly rely on their personal experience or intuition to perform their logging decisions.
However, for this manual process, i.e., developers inserting logging statements into the
source code, to lead to effective logging practices, we are facing four main challenges:

24

7.61%8.70%

7.61%

5.43%

11.96%

5.43% 7.61% 13.04%

9.78%

8.70%

5.43%8.70%

Topics

Cost
Practices
Progression
Issues
LPS automation
Maintenance & Management
Log parsing
Anomaly detection
Peformnce & failure diagnosis
Runtime behavior
User/Business/Security/Code coverage
Emerging

Figure 2.6: Percentage of publications in each topic.

1. The first challenge is where-to-log, which is the decision of selecting appropriate
logging points. Logging statements can be placed in different locations of interest in
the source code, such as inside try-catch block, function return value, etc. Although
log statements provide valuable insight into the running system’s state, they are
I/O intensive tasks and excessive logging can incur performance and maintenance
overhead [104, 339]. Consequently, developers are often faced with the challenge of
making an informed decision for where-to-log in order to avoid introducing unjustified
performance degradation and maintenance overhead.

2. The second challenge, what-to-log, concerns with what information to include in
the log message. As explained in Figures 2.1 and 2.2, the log statement description
provides a brief context of the execution and the internal variables provide more
insights into the dynamic context of the current execution state. Therefore, the
logging description and logged variables should satisfy their purpose and be clear and
informative about the current state of the program. The logging description should
also stay up-to-date and in-sync with the feature code updates, as some developers
fail to update the logging statements as feature code changes [169, 280].

3. The third challenge is how-to-log, which concerns with how the logging code, as a
subsystem, combines with the rest of the software system. As the logging code is
intertwined across different source code modules, some prior researchers have sug-
gested modularizing the logging code, as an independent subsystem, which becomes

25

8

4
5

3

6 6

8 8

5 5

7

4

1

1

2

1

1
2

2

4

6

3

6

3

2

0

2

4

6

8

10

12

14

16

<='10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20 '21

Conference Journal Archived

Figure 2.7: Number of publications per year divided into conference and journal categories.
Publications up to May 31, 2021 has been observed at the time of this survey.

compiled into the feature code in the later stages of the system release [164, 18].
Nevertheless, many industrial and open-source software projects still tend to mix the
logging code with the feature code [250, 79, 325, 78]. As a result, maintaining and
developing high-quality logging code as the feature code evolves remains challenging
and crucial to the overall quality of the software.

4. The fourth, and also the most recent challenge, discusses the question of whether-
to-log, which concerns with dynamically adjusting the degree of logging in response
to the runtime requirements. For example, if a suspected anomaly is detected, the
logging platform can enable more detailed logging, and if the system is acting normal,
it minimizes the number of logs to lessen the overhead.

Figure 2.8 summarizes the logging practices challenges. In the following, we briefly
review the related research concerning each challenge. Later on, we will revisit these
research efforts in more detail in their related section in the survey.

Where to log

The research in this area is interested in finding appropriate logging points. One approach
is to analyze the source code and look for specific types of code blocks, i.e., unlogged ex-

26

Logging practices
challenges

What to log?Where to log? How to log?

The locations
to log

The content of the
log statement

The interaction of the logging
code and the feature code

Whether to log?

Adaptively adjust the
degree of logging

Figure 2.8: Logging practice challenges.

ception code blocks, and insert logging statements inside them [324]. Other log placement
objectives, such as disambiguating execution paths [339], minimizing the I/O and perfor-
mance overhead [104], and feature extraction and learning approaches [117, 346] also exist
in the literature.

What to log

The research in this area is concerned with with what the content of logging statements
should be to make the logs more effective for future system observation purposes, such as
debugging and failure diagnosis. Possible approaches include automatically adding variables
that can clarify execution paths to the LPSs [326, 209]. Additionally, concerns on the
content of logging statements arise when developers neglect to update the LPSs as the
related feature code is updated [169], which is also a common problem in source code
comments [293].

How to log

This avenue is concerned with the problem of how to develop and maintain a high-quality
logging code. Additionally, it pays attention to the interaction and integration of the
logging code as a subsystem with the rest of the software system. Paradigms such as
Aspect Oriented Programming (AOP) [164] aim to look at log statements as a submodule
of the software which is separate from the feature code, and unifies with the rest of the
software at a later time during the development process. However, the current logging
practices in the industry and open-source projects commonly fuse the logging code inside

27

the feature code. Logging libraries and utilities [81] also take part in organizing the logs
and improving their formatting and quality. As such, enhancement of logging libraries can
positively impact on ensuring how we log.

Whether to log

One approach to tackle the challenge of the number of logs is to enable dynamic filtering
of logs during runtime [104, 229]. Enablement of this paradigm would allow to take the
pressure off the developers and enable more conservative addition of log statements in the
source code, without being concerned about the overhead. Thus, depending on the program
state, logs are dynamically discarded or collected if they serve any online or postmortem
analysis purpose.

Finding 2. The top five research topics for logging research are: 1 log mining for
anomaly detection, 2 log printing statement automation, 3 log mining for performance
and failure diagnosis, 4 log maintenance and management, and 5 log parsing.
Finding 3. The top five publications venues for logging research are: 1 Empirical Soft-
ware Engineering (EMSE), 2 International Conference on Software Engineering (ICSE),
3 Transactions on Software Engineering (TSE), 4 Journal of Systems and Software
(JSS), and 5 Automated Software Engineering Conference (ASE).
Finding 4. Due to the challenges associated with logging, i.e., what, where, whether, and
how to log, there exists a continuously growing interest in log-related research and the prior
work is published in top-ranked venues in yearly basis (Figure 2.7 and Table 2.2).

2.5 RQ3: How the research in each topic can be sys-

tematically compared with their approaches, pros

and cons?

In this section, we review the available literature in each category of logging research and
provide a comparative analysis.

2.5.1 Category A: Logging Cost and Benefit Analysis

Although logs are useful and provide insight into the internal state of the running software,
they also impose inherent costs on different subsystems of a computer system. We can

28

assess the costs and benefits of logging both quantitatively and qualitatively, which we
review in the following.

Quantitative assessment

Quantitative assessment for benefits of logging measures to what extent logging improves
a specific debugging task. For example, Yuan et al. [324] observed the benefits of improved
logs, as they contributed to ∼60% faster diagnosis time when compared with the original
logging statements, i.e., prior to the enhancement. Log associated overheads can be also
evaluated quantitatively [104, 329]. Table 2.3 summaries logging cost breakdown on
various subsystems of a computing system [104], including I/O, storage, CPU, and memory.
For example, one approach [339] to simplify and measure the slowdown caused by
logging statements is to calculate the number of times (n) each log statement is being
executed and multiply that with the overhead of a single log statement execution (l), i.e.,
n× l. Other research efforts in this area have measured the overhead of Linux security
auditing through log messages by enabling and disabling audit logging [329], and
statistically mapped logging statements to the performance of the system, i.e.,
CPU usage [317, 318].

Qualitative assessment

In contrast to quantitative metrics for measuring logging overhead, e.g., system slow-
down or I/O cost, qualitative approaches aim to understand the underlying trade-offs from
developers’ perspectives through surveys or questionnaires. A developer survey at Mi-
crosoft [104] uncovered main overheads associated with logging, from developers’ perspec-
tive, as listed as “Details” in Table 2.3. Developers were also inquired about the methods
they use for containing the logging overhead for large-scale online service systems. They
mentioned a variety of methods to limit the logging overhead such as adjusting the log-
ging verbosity level (93% of developers have applied this approach), manual removal
of unnecessary logs (64%), and periodic archiving of log files to save disk space
(43%). Additionally, this study observed the lack of a cost-awareness guideline during log
instrumentation. Some developers often had little idea about the logging overhead when
they planned to add new logging statements to the source code. Thus, developers require
to be more mindful in adding logging statements in scenarios such as a for-loops, which
iterates a large number of times and could cause high overhead, especially on CPU, I/O,
and storage throughput. A recent study [192], qualitatively examined logging cost and
benefits from developers’ perspectives. One qualitative measure of the logging cost, i.e.,

29

Overhead Details

Disk I/O
band-
width

Logging causes additional I/O bandwidth (BW) which may interfere with the required I/O BW
for the system’s core functionality. The BW requirement by enabling all logs (i.e., verbose level
vs. medium level) can become significantly higher than the presumed BW. For example, in [104],
the extra BW by enabling all logs is 8MB/s, which, however, should have been ≤200KB/s.

Storage As the logging BW increases, OS might slow down, and other processes that require disk space
and BW may crash, and even the logging subsystem could crash. Additionally, more logging
requires more storage space.

CPU As the CPU usage of the logging subsystem is increased, service to other processes is slowed
down. Once the CPU usage of logging goes up to double digits, the slowdown of the other
processes becomes significantly noticeable. Ding et al. [104] recommend an overhead of 3-5% as
the CPU usage upper bound for logging.

Memory Developers noticed unexpected increases in memory usage of the logging subsystem, which was
the root cause of one service incident. Additionally, memory leakage of the logging system
caused days of effort in debugging.

Table 2.3: System’s performance overhead associated with logging.

too much logging, causes noisy log files which hinders program comprehension and results
in strenuous log file analysis. In contrast to costs associated with logging, main qualita-
tive benefits of logging communicated by developers include the capability to diagnose
runtime failures with logs, using logs as a debugger, user/customer support,
and system comprehension. Table 2.4 summarizes the research in Category A.

30

Reference - Approach Results Type Pro Con

Yuan et al. [324] - Conservatively
adds log statements to the source
code while aiming to minimize the
introduced execution overhead.

This study categorized seven
generic patterns of error sites
based on the study on 250 failures,
such as exceptions, function return
errors, etc.

Quan./
Qual.

Errlog provides three different
levels of configurable logging
overhead.

Focuses on Error Logging
Statements (ELS).

Zeng et al. [329] - Measures the
overhead of Linux security audit-
ing through log messages.

The authors measured up to 5%
performance overhead when the
audit logging is enabled.

Quan. Proposes an adaptive approach
to reduce the overall system
overhead from 5% to 1.5%

Reduced auditing might result
in a lower level of security pro-
tection for the system.

Ding et al. [104] - Surveys engi-
neers in Microsoft and applies a
constraint solving-based method to
calculate an optimal logging place-
ment.

Maximizes extracted runtime in-
formation and, concurrently, min-
imizes the I/O and performance
overhead.

Quan./
Qual.

Two levels of filtering, i.e., lo-
cal and global filters, to discard
less-informative logging mes-
sages and simultaneously keep
important messages.

Curtailed to performance anal-
ysis of logs, and falls short for
logs recording error and failure
information.

Li et al. [192] - Studies develop-
ers’ logging considerations when it
comes to the costs and benefits as-
sociated with logging.

Main benefits of logging communi-
cated by developers include: diag-
nosing runtime failures, using logs
as a debugger, user/customer sup-
port and system comprehension.

Qual. Survey of 66 developers and
a case study of 223 logging-
related issue reports from the
issue tracking systems.

Limits to open-source projects
and closed-source projects
might evaluate differently
on their logging costs and
benefits.

Yao et al. [318] - Introduces a sta-
tistical approach to map logging
statements to the performance of
the system, i.e., CPU usage.

If the performance model’s predic-
tion error is noticeably impacted, it
implies that the modified log helps
to model the CPU usage properly.

Quan. The approach finds and sug-
gests removing insignificant log
statements.

Logging statements that are
not covered by the perfor-
mance tests cannot be identi-
fied by this approach.

Table 2.4: Logging cost and benefit research - Topic (A). ‘Type’ shows qualitative, quantitative, or both.

31

2.5.2 Mining Log Printing Statements

There has been a significant body of research aiming to mine, understand, and characterize
various source code logging practices [117, 325, 79, 78]. Because, intuitively, understanding
previously applied logging practices is the gateway to help developers improve their current
logging habits. Thus, to derive the in-the-field LPS practices, the first step is to mine the
source code’s logging statements and extract useful insight and observable patterns. Con-
sequently, there are two broad classes of prior studies that have sought after understanding
and mining of the logging practices in both industry and open-source projects: 1) mining
logging code, and 2) mining log files. We review the research for mining logging code
in this section and mining of log files in Section 2.5.4.

Mining log printing statements (LPSs) in the source code principally focuses on under-
standing how developers insert LPSs in to the source code and how logging code evolves
over time to gain insight into the common logging practices. Figure 2.9 shows the cat-
egorization of research for logging code mining of software projects which is divided to
research on logging practices (Category B), logging code progression (Category
C), and logging-code issues (Category D). In the tables that follow, our convention is
that pro signifies an advantage, or an improvement, and con signifies a limitation, room for
improvement, or an avenue for future work. This section includes research in Categories
B, C, and D, that we review in detail.

0LQLP�ORJJLQJ�
FRGH

/RJJLQJ�SUDFWLFHV

2SHQ�VRXUFH
¬SURMHFWV

,QGXVWU\
SURMHFWV

/RJJLQJ�FRGH¬
HYROXWLRQ

Figure 2.9: Logging code mining research in subcategories.

Category B: Logging Practices

Mining logging practices aims to gain insight into the current logging habits of developers
both in open-source and industrial proprietary software projects.

32

Reference - Aim Experiments Results Pro Con

Yuan et al. [325] - Study and
characterize logging practices
in four open-source C/C++
based projects.

Four software
projects: Apache
httpd, OpenSSH, Post-
greSQL, and Squid.

Observes ten findings and their
implications that software log-
ging is pervasive and devel-
opers spend significant time
maintaining logging code.

Provide a simple checker to de-
tect verbosity level inconsisten-
cies.

A follow-up study observed
contradictory findings in some
cases [79].

Fu et al. [117] - Conducts
source code analysis on two
software systems at Microsoft,
to categorize logged and un-
logged snippets.

A questionnaire and
a decision-tree classi-
fier to detect whether a
code snippet requires a
logging statement.

The research uncovers five cat-
egories of logged code snippets,
including return-value-check
and exception-catch snippets.

Extracts contextual features
and proposes a decision-tree
classifier, which can detect
whether a code snippet re-
quires a logging statement.

Logging categories can be bro-
ken down further into subcate-
gories.

Pecchia et al. [250] - Studies
the logging practices on a criti-
cal industrial software at Selex
ES.

Experimented with
the software at Selex
ES in three product
lines, i.e., middleware
(MW), business logic
(BL), and human-
machine interface
(HMI).

The study uncovers three main
reasons for logging in the in-
dustrial domain: state dump,
execution tracing, and event
reporting.

Observed logging is highly
developer-dependent, and
company-wide log policies
and guidelines are needed.

The study is limited to a very
particular closed-source soft-
ware system, and the findings
might not generalize to soft-
ware in other application do-
mains.

Shang et al. [279] - Explores
the relationship between log-
ging characteristics and the
code quality.

A case study on four
releases of Hadoop and
JBoss projects.

Logging characteristics provide
a strong indicator of post-
release defects, i.e., files with
more logging statements have
a higher rate of post-release de-
fect compared to the files with-
out logging.

Developers’ code improvement
efforts should focus more on
the source code files with high
logging density or high rate of
log churn.

The study cannot establish a
causal relationship, i.e., there
might be a large portion of de-
fects not captured due to not
being logged extensively.

Chen and Jiang [79] - A repli-
cation work of Yuan et al.’s
work [325] on 21 Java projects.

21 open-source Java
projects in three dif-
ferent domains: server,
client, and supporting
components.

Similar findings as [79] re-
garding logging pervasiveness
and that developers’ significant
amount of time spent on main-
taining the logging statements.

A high portion of code updates
are for improving the quality of
logs and contrary to [79], this
research finds developers spend
more time fixing reported fail-
ures when log messages are
present.

Contradictory findings com-
pared to the prior work [79]
raises the concern of how useful
the findings are, and if logging
practices are project, program-
ming language, and domain de-
pendent.

Zhi et al. [342] - Conducts
an exploratory study on the
logging configuration practices
and how they evolve over time.

10 open-source and 10
industrial java projects
in various domains and
sizes.

The research’s main findings
show that current practices
of logging configurations con-
cerns with logging manage-
ment, logging storage, log-
ging formatting, and logging-
configuration quality.

Provides a simpler checker to
statically analyze and detect
log configuration issues. The
authors found some issues on
open-source projects by apply-
ing the checker.

Further research to improve
the quality of logging config-
urations is required to detect
and resolve logging configura-
tion smells.

Chen et al. [81] - Studies log-
ging utilities (LUs) usage in
Java project.

Over 11,000 projects
and 3,850 Java LUs
(e.g., SLF4J [29]) from
GitHub.

With a heuristic-based tech-
nique, the study observed a
positive correlation between
the size of the project and the
complexity of LUs.

Some projects still use multiple
LUs to bring in more flexibility,
and, additionally, support and
enable logging behavior of the
imported packages.

Currently, configuring different
LUs is a manual and error-
prone task. Thus, error-free
and automatic checkers and
techniques to configure LUs are
required.

Table 2.5: Logging practices research - Topic (B).

33

Open-source projects. Prior work in this category includes empirical studies to
characterize current logging practices in open-source projects such as Apache Software
Foundation (ASF) [20] projects [325, 79]. Other works [79, 279] aimed to find recurrent
mistakes in the logging code and its relationship to overall source code quality. Another
tread of research [81, 342] has examined logging configurations, libraries, and utilities.

Industry projects. Similar to the open-source software, software logging is a widely
adopted practice in industry projects. Fu et al. [117] conducted a study on logging practices
of two software systems at Microsoft, and Pecchia et al. [250] examined application-critical
software logging practices at Selex ES.

Table 2.5 summarizes and compares the research on mining of the logging source code
for open-source and industrial projects. In sum, logging is a pervasive convention in
various software domains (e.g., server, client, and support applications) and developers
utilize various logging practices and spend a significant amount of time updating
logging statements.

Category C: Logging Code Progression

So far, we have discussed the research investigating logging practices in both open-source
and industry projects. Prior research has also studied the progression (i.e., evolution) of
the logging code in software projects. Progression means that how logging code changes
over time. Prior studies have concluded that logging code evolves significantly (i.e.,
high churn rate), even at a higher rate than the feature code over the lifespan of the
software development [325, 277, 339, 171, 170]. Additionally, many projects go through
logging library migrations throughout their lifetime [169], and research has proposed tools
to predict likely logging code revisions, e.g., LogTracker [197, 196]. Table 2.6 provides
additional details and summarizes the research on the progression of the logging code.

Category D: Log-related Issues

The extensive usage of logs comes with mistakes, improper, and not well-thought logging
practices, which results in logging issues and low-quality logging statements. Some of the
research in this thread overlaps with logging practices and logging code progression, as some
of the logging issues are uncovered during the examination of logging practices and their
evolution. Yaun et al. [322] presented a characteristic study on real-world failures in dis-
tributed systems, and observed that the majority of failures print explicit failure-related
log messages which can be used to replay (i.e., recreate) the failures. However, recorded

34

Reference - Aim Experiments Results Pro Con

Shang et al. [277] - Explores
the progression of logging code
in execution (i.e., log files) and
source code levels.

Two open-source
(Hadoop and Post-
greSQL) and one
industrial (EA) soft-
ware projects.

The logging code changes at
a high rate across versions,
which might break the func-
tionality of log processing ap-
plications (LPA).

Developers could avoid the ma-
jority of the logging code mod-
ifications through better log-
ging designs.

The broad range of the avoid-
able logging code changes
raises the concern of if the ob-
served values are software sys-
tem dependent.

Kabinna et al. [169] - Stud-
ies the logging library migra-
tions in Apache Software Foun-
dation (ASF) projects.

Studies 223 ASF
projects with their
issue tracking systems
in JIRA.

As more flexible logging li-
braries with additional features
emerge, many ASF projects
have undergone logging library
migrations or upgrades.

Although adding more flexibil-
ity and performance improve-
ment are cited as the primary
drivers for logging library mi-
grations, performance after li-
brary migration is rarely im-
proved.

A questionnaire survey from
developers involved in logging
migration efforts can bring ad-
ditional value and more insight
into their rationale behind the
logging updates and best prac-
tices.

Kabinna et al. [170, 171] - In-
vestigates the stability of log-
ging statements over time, i.e.,
whether a logging statement
will go under revisions in the
future.

Four open-source
projects: Liferay,
ActiveMQ, Camel and
CloudStack.

A significant portion of logging
statements change throughout
their lifetime, and factors such
as file ownership can affect the
stability of logging statements.

Developers of LPAs should rely
on more stable logging state-
ments for designing their tools.

The research considers only
the first change of logging
statements. However, the al-
ready changed logging state-
ments might become more sta-
ble after going through modifi-
cations and prior fixes.

Li et al. [197, 196] - Studies
the co-evolution process of log-
ging statements as bug fixes
and feature code updates are
committed.

12 open-source
projects in C/C++
language from various
domains, including
Httpd, Rsync, Collectd,
Postfix, and Git.

Proposes LogTracker, a tool
that proactively predicts log
revisions by correlating the
rules learned from historical
log revisions, e.g., the logging
context, and the feature code.

Utilizes code clones to learn log
revision rules with the insight
that semantically similar codes
will likely require similar log-
ging revisions.

The tool can only guide log
revisions for codes that share
similar logging context, and
the percentage of these revi-
sions is not substantial.

Rong et al. [265] - Investigates
the status of developers’ inten-
tion and concerns (I&C) on
logging practices.

Developers’ interviews
and code analysis on
three industrial soft-
ware projects.

Major gaps and inconsistencies
exist between the developers’
I&C and real log statements in
the source code.

For reasons such as lack of sup-
porting facilities and the ver-
sion evolution of source code,
the developers’ I&C are poorly
reflected in the log statements.

Only missing log statements
are considered as inconsisten-
cies, and unnecessary log state-
ments are not evaluated.

Table 2.6: Logging code progression research - Topic (C).

35

Reference - Aim Experiments Results Pro Con

Yuan et al. [322] - Presents
a characteristic study on real-
world failures in distributed
systems to understand how
faults evolve to user-visible
failures.

198 user-reported
failures that oc-
curred on Cassandra,
HBase, HDFS, Hadoop
MapReduce, and Redis.

The majority of failures print
explicit log messages which can
be used to replay (i.e., recre-
ate) the failures. However,
the recorded log messages are
noisy, which makes the analy-
sis of logs tedious.

Provides a simple rule-based
static checker, Aspirator, to
detect the location of the code
bug patterns, including log-
related issues.

The study limited to a set of
data-intensive systems in their
production quality, i.e., not
during the development phase.

Shang et al. [280] - Utilizes
development knowledge [118],
e.g., JIRA tickets [24] to un-
derstand the intention of log
statements.

300 randomly sampled
logging statements,
and manually examin-
ing the email threads
in the mailing list
for three open-source
systems: Hadoop, Cas-
sandra, and Zookeeper.

Identifies five categories of in-
formation that practitioners
often look for to understand
in log messages: meaning,
cause, context, impact of
the log message, and the solu-
tion for the log message.

The approach can be used to
identify the experts for a par-
ticular log line and seek their
help.

Development knowledge is con-
sidered for log lines at the
method level. The higher
the level, the more devel-
opment knowledge that can
be attached, but the more
overwhelming such attached
knowledge might become.

Chen and Jiang [78] - Charac-
terizes anti-patterns (AP) (i.e.,
recurrent mistakes) in the log-
ging source code.

352 log changes from
three systems: Ac-
tiveMQ, Hadoop, and
Maven.

Finds six different anti-
patterns in the logging code,
such as wrong log levels and
logging nullable objects, and
proposes a tool, LCAnalyzer,
to detect anti-patterns.

The approach learns anti-
patterns from how developers
fix the defects in their logging
code.

The work detects APs based
on the independent historical
changes to the logging code
and falls short in detecting APs
in cases that there has not been
an update to the logging code.

Hassani et al. [142] - Stud-
ies log-related issues for open-
source software projects.

563 log-related JIRA
issues from Hadoop
and Camel projects.

As per authors findings, among
the most common logging code
issues are: 1) inappropriate
log messages, 2) missing log-
ging statements, 3) inappropri-
ate log verbosity levels, and 4)
log library configuration issues.

Developed a tool to detect
incorrect log verbosity levels
based on the words that appear
in the logging statement’s de-
scription.

Log-issue checkers are
threshold-dependent and
in some cases result in a low
number of detected issues.

Li et al. [202, 201] - Studies
issues with duplicate logging
statements, which are logging
statements that have the same
static text messages.

4K duplicate logging
statements in five
open-source projects:
Hadoop, CloudStack,
Elasticsearch, Cassan-
dra, and Flink.

Repetitive logging statement
descriptions can be potential
logging code smells [335], i.e., a
problematic duplicate logging
code, which can have a detri-
mental or misleading effect in
the understanding of the dy-
namic state of the system.

Uncovers five categories of du-
plicate logging code smells and
proposes a static analysis tool,
DLFinder, to automatically
detect duplicate logging code
smells.

The research eliminate the
top 50 most frequent words
when detecting log message
mismatch (LM), which might
cause false negatives.

Table 2.7: Log-related issues research - Topic (D).

36

log messages are noisy, which makes the analysis of logs tedious. Several efforts have aimed
to identify and reduce log-related issues, such as finding recurrent logging mistakes, i.e.,
anti-patters [78], adjusting verbosity levels (sometimes back-and-forth), adding miss-
ing variables, modifying static text to fix inconsistencies [325], and finding logging
code smells [201, 202], i.e., duplicates. Hassani et al. [142] empirically categorized log-
related issues in open-source projects, among them inappropriate log messages and
missing logging statement itself (also [339]) in locations that have to be logged. The
detection of logging code issues would be helpful, as developers can add revisions to logging
statements, and hence improve the quality of log statements. As such, in addition to tools
that automatically detect log-related issues such as DLFinder [201] and LCAnalyzer [78],
future research will benefit from developing tools that can automatically fix log-related
issues. In addition, due to the lack of proper communication with developers of large-scale
software systems, practitioners, who review logs for software maintenance tasks, might
encounter challenges in understanding the logging messages. Such challenges may ham-
per the effectiveness and correctness of leveraging logs. Therefore, utilizing development
knowledge [280], in particular issue reports for log statements, e.g., JIRA tickets [24], can
help practitioners to better understand log messages. Shang et al. [280] identified five
categories of information that practitioners often look for to understand in log messages:
meaning, cause, context, impact of the log message, and the solution for the log mes-
sage. The key takeaway is that leveraging development knowledge, such as issue reports
and code commit information, helps in clarifying the log messages. Table 2.7 summarizes
the research in Category D.

2.5.3 Category E: Log Statement Automation

As mentioned earlier, execution logs, which are the output of logging statements in the
source code, are a valuable source of information for system analysis and software debug-
ging. Thus, high-quality logging statements are the precursor of the effective log file mining
and analysis. Conversely, low-quality LPSs result in log-related issues (Section 2.5.2), and
they hinder the understanding of software problems whenever they happen. Currently,
due to the ad-hoc nature of logging, lack of general guidelines, and because developers
mostly insert logging statements based on their personal experiences, the quality of log
statements can hardly be guaranteed [333]. Therefore, automated logging which aims to
add or enhance log statements inside the source code either proactively or interactively is
a well-motivated effort and can improve the quality of logging statements and, ultimately,
result in more effective log mining tasks.

Figure 2.10 presents the log statements’ research with emphasis on automated logging.

37

Reference - Aim Experiments Results Pro Con

Zhang et al. [333] - Proposes
AutoLog, which generates ad-
ditional informative logs to
help developers discover the
root cause of a software failure.

Performs a proof-of-
concept case study on
Apache Hadoop Com-
mon.

AutoLog embeds a two-stage pro-
cess of log slicing and log refine-
ment of the program to narrow
down the execution paths that
could have led to the system’s fail-
ure.

The approach narrows down
the execution paths that could
have led to a system’s failure.
AutoLog is targeted for inter-
active in-house development.

The program needs to be
re-executed every time new
log statements are added,
which is time-consuming.

Yuan et al. [326] - Proposes
a tool, LogEnhancer, to find
and add useful variables to log
statements.

Evaluated on a total
of 9,125 log messages
from eight applications
in different domains,
including apache httpd,
postgresql, and cvs.

LogEnhancer is effective in auto-
matically adding a high percent-
age of log variables, on average,
95.1%, that programmers manu-
ally included.

The tool performs static anal-
ysis on the source code start-
ing from the log statement
and navigates backward to
find variables that are causally
along the path that results in
the execution of the log state-
ment.

As LogEnhancer’s im-
provement is limited to the
existing log statements, its
effectiveness diminishes if
the logging statements are
missing.

Zhu et al. [346] - Proposes Lo-
gAdvisor, which aims to pro-
vide logging suggestions for ex-
ception and return-value-check
code blocks.

Two industrial soft-
ware systems from
Microsoft and two
open-source software
systems from GitHub
(SharpDevelop and
MonoDevelop).

LogAdvisor achieves a high bal-
anced accuracy, ranging from
84.6% to 93.4%, to match develop-
ers’ logging decisions, and the deci-
sion tree model achieves the high-
est scores.

Trains a machine learning
model (e.g., SVM and decision
trees) to predict whether a fo-
cused code snippet requires a
logging statement.

It is focused and limited to
two categories of code snip-
pets: 1) exception snippets
and 2) return-value-check.

Lal et al. [184] - Introduces Lo-
gOptPlus tool for automated
catch and if code block logging
prediction.

Two open-source
projects: Apache Tom-
cat and CloudStack.

The prediction model with ran-
dom forest achieves the highest F1-
score 80.70% (Tomcat) and 92.25%
(CloudStack) for if-block logging
prediction.

Applies five different learn-
ing techniques, e.g., AdaBoost,
Gaussian Naive Bayesian, and
Random Forests achieve the
highest Precision and Recall.

It is limited to specific code
blocks, i.e., if-block and
catch clause.

Zhao et al.[339] - Introduces
Log20, a tool that finds a place-
ment of logging statements to
minimize execution path ambi-
guity.

Evaluated on four
open-source Java
projects: HDFS,
HBase, Cassandra,
and ZooKeeper.

Log20 achieves a lower logging
overhead with the same level of in-
formativeness (i.e., entropy) com-
pared to existing logging state-
ments by developers.

It applies Shannon’s informa-
tion theory equation to mea-
sure the entropy of the pro-
gram by approximately consid-
ering all of the possible execu-
tion paths.

The approach does not
consider developers’ con-
cerns and practices, does
not explain the static con-
tent of LPSs, and change
of workload can cause ex-
tra logging overhead.

Li et al. [194] - Analyzes
log changes in open-source
projects and proposes commit-
time logging suggestions.

Four open source
projects: Hadoop,
Directory Server,
Commons HttpClient,
and Qpid.

Performs a manual analysis on four
software systems and categorizes
the changes to logging statements
into four major groups: 1) block
change, 2) log improvement, 3)
dependence-driven change, and 4)
logging issues.

Proposes a random forest clas-
sifier for each code commit to
suggest whether a log change
is required. The classifier’s
balanced accuracy for within-
project suggestions is 0.76 to
0.82.

As the model is trained
on prior log changes, it
might miss scenarios that
there are no prior logging
changes to learn from.

Li et al. [193] - Determines
the appropriate log verbosity
level for the newly-developed
logging statement.

Analyzes four open
source projects:
Hadoop, Directory
Server, Hama, and
Qpid.

Collected five categories of quanti-
tative metrics that play important
roles in determining the appropri-
ate log level: logging statements
metrics, containing block metrics,
file metrics, change metrics, and
historical metrics. Achieves AUC
in the range of 0.75 to 0.81 for log
level prediction.

Metrics from the block which
contains the logging statement,
i.e., the surrounding block of
a logging statement, play the
most important role in the or-
dinal regression models for log
levels.

The results show that the
ordinal regression models
for log level prediction are
project-dependent.

Table 2.8: Log printing statement automation research - Topic (E).

38

Reference - Aim Experiments Results Pro Con

Jia et al. [166] - Proposes,
SmartLog, which is an
intention-aware error logging
statement (ELS) suggestion
tool with two intention models:
IDM and GIDM.

Experiments on six
open-source projects
in C/C++: Httpd,
Subversion, MySQL,
PostgreSQL, GIMP,
and Wireshark.

It improves on the Recall val-
ues (average of 0.61) and achieves
higher scores compared to LogAd-
visor [346] (average of 0.45) and
Errlog [324] (average of 0.18).

This work improves on prior
work by going beyond code
patterns and syntax features,
and considers source code in-
tentions, i.e., semantics.

This work is limited to ELS
prediction, i.e., exception and
function return-value logging.

Anu et al. [54] - Proposes a
method to make the logging
level decisions by understand-
ing the logging intentions.

Four open-source soft-
ware projects: Hadoop,
Tomcat, Qpid, and
ApacheDS.

It reaches AUC values higher than
0.9 in log level prediction. The
approach extracts the contextual
features from logging code snip-
pets and leverages a machine learn-
ing model (i.e., a random forest
model) to automatically predict
the verbosity level of logging state-
ments.

As a proof of concept, the au-
thors also implement a proto-
type tool, VerbosityLevelDirec-
tor, to provide guidance on log
verbosity level selection in fo-
cused code blocks.

The work is limited to fo-
cused code blocks: exception
handling blocks and condition
check blocks.

Liu et al. [209] - Presents an
approach to recommend the
variables to include in logging
statements.

Evaluates on nine
open-source Java
projects: ActiveMQ,
Camel, Cassandra,
CloudStack, Direc-
toryServer, Hadoop,
HBase, Hive and
Zookeeper.

The approach first learns “rules”
from existing logged code snippets
by extracting contextual features
with deep learning recurrent neu-
ral networks (RNN). The approach
outperforms five baselines, includ-
ing random guessing and IR meth-
ods in log variable prediction.

The tool provides a ranked list
of variables that probably are
required logging to the devel-
oper.

The method only considers
the code preceding the logging
statement. As such, extend-
ing this approach to include
the code succeeding the logging
statement can improve on log-
ging variable recommendation.

Kim et al.[175] - Proposes an
approach to verify the appro-
priateness of the log verbosity
levels.

22 open-source
projects from three
different domains:
message queuing,
big data, and web
application server.

Applies semantic and syntactic fea-
tures and recommends a new log
level in case the current level is
deemed inappropriate. It reaches
77% precision and 75% recall in log
level validation.

Creates domain word model
from all of the log messages
in application domains, which
enables knowledge sharing be-
tween different projects.

In some cases, the appropriate-
ness of log levels is dependent
on developers’ opinions and is
quite arguable.

Gholamian and Ward [123]
- Proposes a log-aware code
clone detection (LACC) ap-
proach for log suggestions.

Three open-source
Java projects: Tomcat,
Hadoop, and Hive.

Performs an experimental study
of logging characteristics of source
code clones and observes that code
clones match in their logging be-
havior. Achieves 90% accuracy in
log location prediction.

It applies source code features
and machine learning methods
to detect log-aware code clones
for log statement prediction.

The approach can only suggest
logs for code snippets that can
find their clone pairs in the
software code base.

Li et al. [200] - Discusses the lo-
cations that need to be logged,
and proposed a learning ap-
proach to provide code block
level logging suggestions.

Seven open-source
systems: Cassandra,
Elasticsearch, Flink,
HBase, Kafka, Wicket,
and ZooKeeper.

The authors discover six categories
of logging locations in different
types of code blocks from develop-
ers’ logging practices. It achieves
balanced accuracy of 80.1%) using
syntactic source code features.

Utilizes a pipeline of word em-
bedding, RNN layer, and a
dropout layer in its deep learn-
ing model for log location pre-
diction.

The achieves acceptable pre-
diction by leveraging syntac-
tic information only. Addi-
tional studies are required to
combine syntactic and seman-
tic features of the source code
blocks.

Cândido et al. [72] - Proposes a
log suggestion approach based
on machine learning methods.

An enterprise software,
Adyen, and 29 Apache
projects.

The authors extract source code
metrics from methods and evaluate
the performance of five different
learning approaches on log sugges-
tions. The best performing model
achieves 72% of balanced accuracy
on Adyen’s log statements set.

Performs a study on 29 Java
projects and leveraged learning
transfer to generalize to an in-
dustry project.

The applied transfer-learning
approach shows a lower perfor-
mance when trained on open-
source projects and tested on
Ayden enterprise project.

Li et al. [203] - Proposes a deep
learning approach for log level
prediction with an ordinal-
based output layer.

Nine large-scale open-
source projects: Cas-
sandra, ElasticSearch,
Flink, HBase, JMeter,
Kafka, Karaf, Wicket,
Zookeeper.

The authors initially perform a
manual study and categorize five
different logging locations. The
model trained with syntactic fea-
tures achieves an average AUC of
80.8%.

Their findings infer that the log
levels that fall far apart on the
verbosity scale manifest differ-
ent characteristics.

Log levels that are closer in
order, e.g., warn and error
are more difficult to distinguish
with this approach.

Table 2.8: Log printing statement automation research - Topic (E) (continued).

39

Log Printing
Statement (LPS)

Software
system's logs Log automation

Theory

Source code
featuresLearning to log

EvaluationAutomated logging
categories

SuggestionEnhancement Insertion

Figure 2.10: Logging research with the emphasis on logging code automation research,
Category E.

As per this figure, we review the theory behind the automated logging, automated logging
approaches, and how they are evaluated. Prior studies have suggested creating and utilizing
statistical models from common logging practices, and to learn logging heuristics from
experience, and use them to provide new logging suggestions or enhance the already
existing LPSs.

Log Automation - Motivation and Theory

One of the common approaches for log automation is the application of machine learning
methods to predict whether a code snippet needs a logging statement by training a model
on a set of logged code snippets, and testing it on a new unlogged code set, i.e., supervised
learning. In this section, we first review the background and theory for machine learning
methods and continue with automated logging approaches.

Motivation. With the ever-increasing size of software systems, it is most likely that
a single developer is in charge of developing only a small subsystem of the whole software
system. Under this situation, making wise logging decisions becomes quite challenging
as developers do not have full knowledge of the whole system [346]. As logs are quite
pervasive and useful for system maintenance [150], if the logging decisions can be learned
automatically, a log suggestion tool can be constructed to help developers making better
decisions. Ultimately, such a tool can increase the quality of logs and save developers time.

Learning to Log. The idea of learning to log is to construct a machine learning
(ML) model that can learn common logging practices and provide logging suggestions
to the developers or directly make logging decisions and insert logging statements into a
newly-developed source code snippet. A typical learning to log tool [346] is outlined in

40

Figure 2.11. The log learning steps are: 1) code collection from repositories, 2) labeling
the collected source code, 3) feature extraction and selection, 4) feature vectors and model
training, and finally 5) logging enhancement, suggestion or automatic insertion. Based on
this platform, once the training phase is completed, during the testing phase, the learning
model decides whether a new code snippet requires a logging statement by extracting its
features and feeding it to the ML model, and observing the model’s output. Learning
algorithms apply a wide range of techniques such as: pattern or rule-based [324, 326,
91, 339], machine learning such as Naive Bayes, Bayes Net, Logistic Regression, SVM,
and Decision Trees [346], Random Forrest [194, 72], Ordinal Regression [193], and most
recently, Deep Learning [123, 200, 209, 203].

Figure 2.11: Learning to log platform.

Source Code Feature Formulation

In order to be able to learn and predict log statements, prior research [346, 123] have
proposed to define related source code features and utilize them for predicting whether a
code block requires a log statement. Source code features can be structural (type of the
code blocks, e.g., catch clause, if-else), functional (e.g., metrics such as code complexity,
dependencies, fan-in, and fan-out), contextual (e.g., variables and keywords in the code
snippet), and source code semantic features [200, 166], i.e., what the code snippet is trying
to do. What category of features to select and how well they can distinguish the logged and
unlogged code snippet is an active research topic [200, 123, 346, 186, 166]. Additionally,
the logging automation research has benefited from leveraging the findings in adjacent
software tasks such as source code clone detection [270], and code commenting [161] for
feature selection as the idea is that similar code snippets should follow similar logging
patterns. Figure 2.12 shows a log prediction platform based on similar code snippets

41

(i.e., clone pairs), which are then later utilized for log prediction. Source code features
are extracted from method definitions with logging statements. Then, once the machine
learning model is trained and clone pairs are extracted, they are leveraged for log location
prediction.

Source code methods
w/ logging statements

Log-aware source
code features

Machine learning
prediction

Source code of
software projects

Clone pairs

Clone categories

Analysis

Figure 2.12: Log prediction with source code features and code clones.

Automated Logging Categories

Figure 2.13 highlights the research in this area categorized into three subtopics: log en-
hancement, log suggestion, and log insertion. These approaches are primarily concerned
with log location prediction, i.e., where to log, and secondarily the content to include
in the logging statements, i.e., what to log. Log enhancement aims to improve the quality

Automated logging
approaches

Enhancement Suggestion Insertion

Enhancing the currently
existing logging statements

Inserting new logging
statements

Providing suggestions for
new logging statements

Figure 2.13: Auto logging of the software systems’ source code.

of existing logging statements, such as adding more runtime context [326]. Log suggestion
aims to provide suggestions for logging locations that might have been missed, and log in-
sertion aims to proactively insert logging statements into the source code [339]. Although
the goals of these approaches are similar, the intended way of their implementation can be
different. For example, one practical scenario of implementing log suggestion approaches

42

is as IDE plugins that provide just-in-time suggestions [123]. However, the log insertion
techniques are implemented as post-processing tools that scan the source code and insert
logs for various criteria of interest, such as disambiguating execution paths [339] or logging
catch clauses [324]. This categorization is not mutually exclusive and some of the prior
work overlap in their approaches.

Log Verbosity and Description Predictions. In addition to predicting log location,
prior research has also investigated approaches for prediction of the appropriate logging
verbosity level for newly composed logging statements [203, 193, 142, 54, 229]. The
approaches either apply some type of learning to predict the log verbosity level [54], or
perform dynamic adjustment of the log level during the runtime [229]. Other research also
aims to predict the description [145], or variables included in the logging statements [209,
326]. In Table 2.8, we compare and summarize the prior efforts in automated logging.

Evaluation Metrics

After training the learning model, its performance should be evaluated during the testing
phase by applying new code instances as input and find out the prediction outcome that
whether or not this new code snippet requires a logging statement, e.g., Figure 2.11. This is
an example of a binary classification problem [114]. Differently, Log verbosity level predic-
tion is evaluated as a multi-class classification problem [52], as generally several verbosity
levels are available for the log statements, e.g., WARN, INFO, DEBUG, etc. Furthermore,
ordinal multi-class classification [195] considers an order between the possible prediction
labels. For example, for verbosity level prediction, WARN < INFO < DEBUG, such
that WARN < INFO means INFO is more verbose than WARN [203]. Thus, different
evaluation metrics are applied to assess the quality of learning models and their prediction
accuracy. In general, the performance of a logging prediction method is evaluated by first
extracting the confusion matrix.

Model prediction
Positive Negative

Actual (ground truth)
Positive TP FN
Negative FP TN

Table 2.9: Confusion matrix for log prediction.

In Table 2.9, “Model prediction” values are from the learning model and the “Actual”
values are the ground truth. Prior research often considers the developers’ inserted logging
statements as ground truth. To create a set of training and testing data for the machine

43

learning process and have a proper ground truth to compare with, one approach is to
collect all of the code snippets with logging statements, and some samples of unlogged
code, to include both positive and negative cases. Then, after deciding the train-test split
and training the ML model, prior work removes the log statements from the test data.
During the testing phase, the model’s performance is evaluate on the test code snippets
with their logging statements being removed. This way we measure how well the model
can remember which code snippets should have and which ones should not have logging
statements, compared with the developers originally-inserted LPSs. Multiple iterations
of the training-testing can be applied, e.g., cross-validation [71], to confirm the results.
From Table 2.9, TP means that the model correctly predicted a code snippet that requires
a logging statement, and FN denotes that the model incorrectly predicted that a code
snippet does not require a logging statement.

Based on the confusion matrix, we can define some of the common metrics for evaluating
the performance of log learning models in Table 2.10. The definitions for Precision and
Recall are straightforward. In order to ensure a prediction model benefits from equally
good or comparable Precision and Recall values, F-Measure is defined as the harmonic
mean of Precision and Recall. Qualitatively, good performance of F-Measure implies good
performance on both Precision and Recall. Accuracy represents correctly identified logged
instances to the total number of cases. Balanced Accuracy (BA) is the average of the
proportion of logged instances and the proportion of unlogged instances that are correctly
classified. In case there is an imbalance in the data, e.g., in Table 2.9, if TN is much larger
than TP, Balanced Accuracy (BA) is widely used to evaluate the modeling results [336,
346, 194], because it avoids the over-optimism that accuracy might experience. Receiver
Operating Characteristic (ROC) plots true positive rate against false positive rate. AUC
(area under the curve) is the area under the ROC curve. Intuitively, the AUC evaluates how
well a learning method can distinguish logged code snippets and unclogged ones. The AUC
ranges between 0 and 1. A high value for the AUC indicates a high discriminative ability of
the learning model; an AUC of 0.5 indicates a performance that is no better than random
guessing [194]. BLEU [247] and ROUGE [206] scores are equivalent to Precision and
Recall and are leveraged to evaluate the auto-generated text compared to the original text
developed by developers. These scores have applications in evaluating the auto-generated
log statement descriptions (LSDs), which are sequences of tokens, i.e., words. For example,
for a candidate LSD, C and the reference LSD, R, BLEU measures the ratio of tokens of C
that also appear in R (analogous to Precision), and ROUGE measures the ratio of tokens
of R that have appeared in C (analogous to Recall). The range of values for BLEU and
ROUGE is [0,1], with 1 being the perfect score. These two measures combined explain the
quality of the auto-generated LSDs.

44

Metric Formula Description

Precision TP
TP+FP

The ratio of correctly identified positive instances to the num-
ber of all positive predictions.

Recall (a.k.a. sensitivity,
hit rate, and true positive
rate)

TP
TP+FN

The ratio of the correctly predicted instances to the number
of existing positive instances.

False Negative Rate FN
FN+TP

The ratio of false negatives to the total number of existing
positive instances.

True Positive Rate TP
TP+FN

The ratio of true positives to the total number of existing
positive instances.

True Negative Rate (a.k.a.
specificity, and selectivity)

TN
TN+FP

The ratio of true negative to the total number of existing
negative instances.

False Positive Rate (a.k.a.
fall-out)

FP
FP+TN

The ratio of false positives to the total number of existing
negative instances.

F-Measure (a.k.a, F-Score,
F1-Score)

2×Precision×Recall
Precision+Recall

Harmonic mean of Precision and Recall.

Accuracy TP+TN
TP+TN+FP+FN

Accuracy is the proportion of correctly identified logged in-
stances to the total number of cases.

Balanced Accuracy (BA) 1
2
× (TP

TP+FN
+ TN

TN+FP
)

Balanced accuracy (BA) is the average of the proportion of
logged instances and the proportion of unlogged instances that
are correctly classified.

Receiver Operating Char-
acteristic curve (ROC)

TPR
FPR

The plot of the true positive rate against the false positive
rate.

Area Under Curve areaunder(ROC)
Area under the curve is the area under the Receiver Operating
Characteristic curve.

BLEU (BiLingual Evalua-
tion Understudy)

count tokens(C∩R)
count tokens(C)

*
Similar to Precision but for auto-generated text. The ratio
of the candidate tokens (C) that exist in reference tokens (R)
over the total candidate tokens.

ROUGE (Recall-Oriented
Understudy for Gisting
Evaluation)

count tokens(C∩R)
count tokens(R)

*
Similar to Recall but for auto-generated text. The ratio of
the reference tokens that exist in the candidate tokens over
the total reference tokens.

* Simplified formulas are presented. There is also weight corresponding to the size of n-grams that comes in the general
formula for BLEU [247]. Similarly, for ROUGE, refer to [206].

Table 2.10: Evaluation metrics for automated log prediction.

Examples of Metrics Used. Li et al. [201] utilized Precision and Recall to calculate
the performance of DLFinder in detecting logging code smells. Zhu et al. [346] used BA to
evaluate the accuracy of LogAdvisor, which advises the developer if logging statements are
required for a focused code snippet. Li et al. [194, 193, 191] used ROC and AUC to evaluate
their methods in log verbosity level prediction and logging commit change suggestion. Kim
et al. [175] used F-Measure to evaluate their log verbosity level recommendation approach,
and Gholamian and Ward [123] utilized Accuracy to evaluate the performance of their
log-aware clone detection approach. He et al. [145] leveraged BLEU and ROUGE scores
to evaluate the effectiveness of the candidate log statement descriptions when compared
to the developer-inserted log descriptions.

45

2.5.4 Mining Log Files

Priorly, we mentioned the purpose of logging statements added by developers is to expose
valuable runtime information. The output of logging statements is written to log files,
which are used by a plethora of log processing tools to assist developers and practitioners
in different tasks such as software debugging and testing [53, 167], performance monitor-
ing [317], and postmortem failure detection and diagnosis [323, 234, 291, 314]. We review
log mining techniques and approaches in the following.

Category F: Log Maintenance and Management

As the size of logs increases, the job of methods and tools which manage and maintain
logs becomes more crucial, cumbersome, and of value. For example, FLAP [198] provides
an end-to-end platform for log collection, maintenance, and analysis. In the following,
we review log collections, log compression, log rolling, and log removal, and Table 2.11
summarizes the research in this category.

Log Collections. The aim of maintaining a log collection is for auditing [188] or
enabling benchmarking for different types of log analysis [149, 112, 222]. For example,
Loghub [151] provides a repository of logs from various software systems, and Cotroneo
et al. [40] have released an OpenStack failure dataset containing injected faults. The logs
are used in various prior works for evaluating tasks such as compression techniques [319,
287], failure analysis [314, 323, 149] and bug detection [94]. We observe that although
execution logs of different systems are conveniently available, it is difficult to find large-
scale collections of labeled datasets, which are especially crucial for supervised learning of
log mining tasks [311]. This is because manually labeling large datasets of logs is quite
cumbersome. Thus, we see significant value in curating a database of labeled logs (e.g.,
normal vs. anomaly/failure log records), and the development of automated log labeling
techniques [315].

Log Compression. With the continued growth of large-scale software systems, they
tend to generate larger volumes of log data every single day, which makes the analysis
of logs challenging. As such, to cope and contain this challenge, developers and practi-
tioners apply tools for compression and continuous archiving of logs [319, 208]. Hassan
et al. [140] applied log compression to extract common usage scenarios. Yao et al. [319]
studied the performance of general compressors on compressing log data relative to their
performance on compressing natural language data. Their work reviews 12 widely used
general compressors to compress nine log files collected from various software systems.
Because log files generally benefit from higher repetition than natural text [319], there is

46

Reference - Aim Experiments Results Pro Con

Li et al. [199] - Proposes
a data-driven management
framework by knowledge ac-
quisition from historical log
data.

Log files collected from
several Windows ma-
chines in a university
network.

Performs experiments on catego-
rizing dependent and independent
log events, and applies text mining
techniques to categorize log mes-
sages, mines temporal data, and
performs event summarization.

Provides a graphical represen-
tation of temporal relationship
among events as an event rela-
tionship network (ERN) [253].

Common categories of log
messages are manually deter-
mined, which can be auto-
mated from historical data.

Marty [221] - Proposes a proac-
tive logging guideline to sup-
port forensic analysis in cloud
environments.

N/A (the research does
not provide experimen-
tation).

Discusses the challenges of logging
in the cloud environments such as
decentralization and volatility of
logs.

Outlines the guidelines for
when the logging is required:
business relevant, operational,
security, compliance.

The guideline can be expanded
to include forensic timeline
analysis of logs, log review, and
log correlation.

Li et al. [198] - Introduces
FLAP, a web-based integrated
system to utilize data mining
techniques for log analysis and
knowledge discovery.

Network X event logs
at Huawei Technolo-
gies.

Performs a case study and the re-
sults show the approach’s applica-
bility for different tasks, such as
event summarization (graph) and
root cause analysis.

It provides learning-based log
event extraction and provides
event summarization and visu-
alization.

Some of the tasks, e.g., root
cause mining, rely on domain
knowledge to manually diag-
nose possible problems.

Liu et al. [208] - Proposes a
new log compression method,
logzip, to allow for more effec-
tive log compression.

Five log datasets:
HDFS, Spark, Win-
dows, Android, and
Thunderbird.

Achieves higher log compression
ratios compared to general-
purpose compressors, e.g., bzip2,
and can generate compressed
files around half of the size of
general-purpose compressors.

Performs iterative clustering
with template extraction and
parameter mapping and can
compress in three incremental
levels: L1: field extraction, L2:
template extraction, and L3:
parameter mapping.

The performance of the decom-
pression should be also evalu-
ated and compared with other
compressors.

Yao et al. [319] - Studies the
performance of general com-
pressors on compressing log
data relative to their perfor-
mance on compressing natural
language data.

Nine system logs,
such as HDFS and
LinuxSyslogs, and
two natural language
(NL) data, Wiki and
Gutenberg.

Reviews twelve widely used general
compressors to compress nine log
files collected from various software
systems. The observation is that
log data is more repetitive than
natural language, and log data can
be compressed and decompressed
faster than NL with higher com-
pression ratios.

One of the findings is that gen-
eral compressors perform bet-
ter on small log sizes, and their
default compression level is not
optimal for log data.

The findings and implications
of this research have not been
utilized to propose a log-aware
compressor.

Table 2.11: Log maintenance and management research - Topic (F).

47

Reference - Aim Experiments Results Pro Con

Shin et al. [285] - Intro-
duces LogCleaner, which per-
forms periodicity and depen-
dency analyses for removing
repetitive logs.

Two proprietary and
eleven publicly avail-
able log datasets in-
cluding: CVS, Rapid-
Miner.

The approach can accurately de-
tect and remove 98% of the opera-
tional messages and preserve 81%
of the transactional log messages,
and reduces the execution time of
the model inference task from logs.

Segregates and only keeps
transactional messages, which
record the functional behavior
of the system from operational
messages of the system.

The performance of Log-
Cleaner is heavily dependent
on the quality of upstream
log parser and template ex-
traction, and requires manual
analysis and domain knowl-
edge.

He et al. [151] - Provides a
repository, Loghub, of logs from
various software systems.

Provides 17 log
datasets from various
application domains,
including distributed
systems, supercom-
puters, and operating
systems.

Provides a framework for AI-
powered log analysis and ap-
plies a practical usage scenario of
Loghub for anomaly detection for
supervised and unsupervised ap-
proaches.

Loghub datasets have been
widely utilized for research
both in academia and industry.

There is still a shortage of la-
beled datasets to facilitate the
evaluation of supervised log
analysis tasks.

Chen and Jiang [77] - Performs
a survey on log instrumenta-
tion techniques.

N/A (the research does
not provide experimen-
tation).

Focuses on the three log in-
strumentation steps: logging ap-
proaches, logging utility integra-
tion, and logging code composition.

Defines four categorizes of
challenges for instrumentation:
usability, diagnosability, log-
ging code quality, and security
compliance.

The research can be improved
by providing a connection be-
tween logging source code and
its corresponding log messages
in the log files.

Locke et al. [210] - Proposes
LogAssist to assist practition-
ers with organizing and sum-
marizing logs.

Logs from one enter-
prise (ES) and two
open source systems:
HDFS and ZooKeeper.

Groups logs into event sequences
to extract workflows and illustrate
the system’s runtime execution
paths. LogAssist shrinks the log
events by 75.2% to 93.9% and the
unique workflow types by 70.2% to
89.8 in HDFS and Zookeeper logs.

LogAssist is able to reduce the
number of log events of interest
to practitioners, thus it saves
time and improves the practi-
tioners’ experience in log anal-
ysis.

In some cases, the searched
keywords (e.g., “error” or “ex-
ception”) for finding problem-
atic log lines result in a large
quantity of logs for practition-
ers to manually review.

Table 2.11: Log maintenance and management research - Topic (F) (continued).

48

an avenue of outstanding work to develop log-aware compression techniques, that consider
log characteristics in their algorithms and their parameter selections and achieve a higher
compression/decompression performance.

Log Rolling. As log data generally grows rapidly during the system’s execution [189,
319], logging libraries such as Logback [25], Log4j/2 [15], and SELF4J [29] often support
the continuous rolling i.e., archiving of log files as new logs become available. For example,
as the size of the generated log goes beyond a user-defined value on the storage or a specific
time interval has passed (e.g., daily, weekly), a Log4j Appender [37] can zip, rename, and
store the log with a timestamp, e.g., “logs/app-%dMM-dd-yyyy.log.gz”. Log archiving
helps with the long-term maintenance and organization of logs. There is certainly room
for further research on improving and automating log archiving policies and techniques.

Log Removal. Although logs are useful, but due to the large volume of them, they can
become noisy, hard to analyze, and cause inaccuracy in log analysis. As such, prior research
has aimed to detect and remove duplicate log messages [285, 92, 290]. For example, Shin
et al. [285] introduced LogCleaner, which performs periodicity and dependency analyses to
filter out and remove periodic and dependent log messages. In sum, the approaches that
are applied for log maintenance and management facilitate automated analysis of logs, and
furthermore, will yield more accurate log analysis.

Automated Log File Analysis - Challenges and Motivation

Logs record system runtime information and are widely used and examined for assessing the
systems’ health and availability [150]. Traditionally, developers or operators often inspect
the logs manually with keyword searches (e.g., “fail”, “exception”) and rule matching (e.g.,
“grep <RegEx>”) to find any potential problems in case of a system failure. However,
manual or keyword inspection of log files becomes impractical with the ever-increasing
complication of software systems because of the following reasons [150]:

1 As current computer systems generate a massive volume of logs, e.g., at the rate of 50
gigabytes per hour (around 120∼200 million log lines) on Alibaba Cloud Computing
Mailing System (Aliyun Mail) [226], this makes it close to impossible to manually
extract useful information from the log files and track down any system issues.

2 The complex and concurrent nature of software systems makes it unmanageable for
a single developer to comprehend the entire functionality of the system, as a single
developer might be only responsible for the development of a small sub-module of
the entire project. For example, hundreds of developers take part in the development

49

User statistics and
behavior

Duplicate issue
identification

Application
security

Performance and
failures diagnosis

System's runtime
behaviorAnomaly detection Code coverage

Log filesSoftware
system's logs Mining log files

User statistics and
behavior

Application
security

User statistics and
behavior

Application
security

User statistics and
behavior

Application
security

User statistics and
behavior

Application
security

User statistics and
behavior

Application
security

Duplicate issue
identification

User statistics and
behavior

Application
security

Duplicate issue
identification

User statistics and
behavior

Application
security

Duplicate issue
identification

Log parsing

Figure 2.14: Mining of log files for different applications.

of parallel computing platforms, such as Apache Spark [16]; thus makes it quite chal-
lenging, if not impossible, for a single developer to pin down an issue from concurrent
and massive log files.

3 Parallel and distributed software systems generally apply various methods of fault-
tolerant and performance optimization techniques in order to recover from a hardware
failure or perform load-balancing and scheduling. For example, a resource manager
daemon, e.g., on a Hadoop or Spark cluster, may intentionally terminate a running
application and move it to another node in the system in order to expedite the
execution of that task. As a result, the traditional and manual way of searching
in the log files for keywords such as killed, terminated, failure might not be useful
and can lead to multiple false-positive cases [207] and further muddle the manual
inspection.

Moreover, although automatic log analysis helps developers and practitioners signifi-
cantly to speed up the process (e.g., [340, 337, 314]), the automatic log analysis itself is
still very challenging because log messages are usually unstructured free-form text strings,
and application behaviors are often very heterogeneous and complicated [116]. As a re-
sult, effective automated log analysis methods are well sought after. To enable automatic
log analysis, the very first step is log parsing, Category G, followed by applications
of automated log analysis, i.e., anomaly detection, Category H, runtime behavior,
Category I, and performance, failure, and fault diagnosis, Category J, that we
review in the following.

Category G: Log Parsing

Log parsing is the process of converting the free-form text format of log files to structured
events. Figure 2.15 provides an example of a raw log message from a log file that is parsed
to its individual elements. Each log message is printed by a logging statement in the
source code, which records a specific system event. Then, a log parser applies techniques

50

081109 203521 147 INFO dfs.DataNode$DataXceiver: Receiving block blk -1608999687919862906 src:
/10.250.14.224:35754 dest: /10.250.14.224:50010

Parsed log
Timestamp
(date/hour/ms)

081109/203521/147

Log verbosity level INFO
Source dfs.DataNode$DataXceiver
Log template Receiving block <*> src: <*>

dest:<*>
Arguments [“blk -1608999687919862906”,

“/10.250.14.224:35754”,
“/10.250.14.224:50010”]

Figure 2.15: Log parsing for a raw log message to a parsed log from HDFS logs [311].

to convert the free-form text format of the log messages to a structured format, as presented
in Figure 2.15. More specifically, the log parser can extract useful information, such as
timestamp, log verbosity level, variable arguments, and log template. The goal of the
log parser is to convert each log message to a specific log template (e.g., Received block
〈∗〉 src: 〈∗〉 dest: 〈∗〉 in Figure 2.15). Ideally, there is a corresponding logging statement
in the source code for each extracted log template, e.g., log.info(“Received block %s src:
%s dest: %s”, obj.blk id, obj.src, obj.dest). The better the log parser can match the log
templates with actual log printing statements in the source code, the merrier the quality
of log parsing, and consequently, the more accurate log analysis tasks that follow.

Log parsing, traditionally, started with defining manual regular expressions to extract
log templates and arguments. However, this approach alone is no longer efficient due to
the huge number of log templates as well as their continuous evolution [347]. For example,
Xu et al. [311] explained that in a Google’s system, on average, thousands of new logging
statements are added every month. Therefore, automating the log parsing process is very
well obliged. Some studies have also proposed, as an alternative, the use of static methods
to curate the software’s source code and extract log patterns directly from the logging
statements within the source code [311, 233]. These approaches are only useful if the
source code of the system is available. To extend the application of log parsing to the
scenarios that the source code is not available, e.g., proprietary software, other studies
have proposed various data mining approaches to extract log templates from the log files
instead, such as frequent pattern mining in SLCT [299] and its extension, LogCluster [300],

51

Reference - Aim Experiments Results Pro Con

Qiu [258] et al. - Designs
SyslogDigest that extracts log
events from the router’s sys-
logs.

Syslog data from two
large operational net-
works: a tier-1 ISP
backbone network and
a nationwide commer-
cial IPTV backbone
network.

It combines an offline and
online domain knowledge
learning components automat-
ically extracts relevant domain
knowledge from raw syslog
data. The authors showcase
the applications in network
troubleshooting, and health
monitoring and visualization.

Applies associated rule min-
ing, then transforms and com-
presses low-level raw syslog
messages into their prioritized
high-level events.

The work is limited only to
event template extraction from
a specific system, i.e., syslog
messages.

Taerat et al. [292] - Introduces
Baler, a token-based log pars-
ing tool.

Logs of four supercom-
puters: BG/L, Liberty,
Spirit, and Tbird.

For clustering, Baler relies on
token attributes rather than
frequency or entropy of token
positions that are applied in
other log parsers. Baler han-
dles large datasets better than
compared tools and more ef-
ficiently, i.e., faster execution
time.

Requires only one pass to clus-
ter log messages based on their
event templates.

Baler relies on the user to pro-
vide a dictionary of words.

Tang et al. [294] - Pro-
poses LogSig, message signa-
ture based algorithm to gen-
erate events from textual log
messages.

Logs of five real-world
systems, including
FileZilla, PVFS2, and
Hadoop.

It searches for the most fre-
quent message signatures and
then categorizes them into a
set of event types. LogSig per-
forms better in the quality of
the generated log events (F-
Measure) and scalability when
compared to prior work.

LogSig converts each log line
into a set of ordered token pairs
and then partitions log mes-
sages into k different groups
based on the extracted term
pairs.

LogSig has a prolonged execu-
tion time on large log datasets
and reaches low accuracy on
the BGL data [146].

Vaarandi et al. [300] - Presents
LogCluster, a data clustering
and pattern mining algorithm
for textual log lines.

A set of six system
logs from a large na-
tional institution, in-
cluding database sys-
tems, mail servers, and
firewall logs.

LogCluster improves
SLCT [299] such that each
Cluster Ci is uniquely iden-
tified by its pattern Pi, and
each pattern consists of words
and wildcards, which makes
it insensitive to word shifts.
LogCluter performs more
accurate clustering and finds
fewer groups compared to
SLCT.

The support of a cluster
is calculated as the number
of elements in that cluster:
supp(pi) = supp(Ci) = |Ci|.
Finally, clusters with support
of equal or higher than a
threshold value, s, are selected.

The algorithm requires a two-
pass process to categorize the
list of frequent patterns.

Table 2.12: Log parsing research - Topic (G).

52

Reference - Aim Experiments Results Pro Con

Du et al. [106] - Proposes Spell,
an online log parsing method
based on longest common sub-
sequence (LCS).

Two supercomputer
logs: Los Alamos HPC
log and BlueGene/L
log.

Parses unstructured log mes-
sages into structured events
types and parameters in an
unsupervised streaming fash-
ion with linear time complex-
ity. Spell with pre-filtering
has a faster computation time
and achieves a higher accuracy
compared to prior work.

The LCS approach achieves a
faster template searching pro-
cess by enabling subsequent
matching and prefix trees.

The prefix tree depth can
grow arbitrarily without lim-
itation, which can lead to
lengthy computation time on
large datasets.

He et al. [148] - Proposes
Drain, a fixed-depth tree-based
online log parsing method.

Five real-world data
sets: BGL, HPC,
HDFS, Zookeeper, and
Proxifier.

Constructs a tree data struc-
ture and groups the logs that
belong to similar log events
(i.e., templates) into the same
leaf node of the tree. The
approach achieves higher or
equal accuracy and obtains
51.85% to 81.47% faster run-
time compared to other online
log parsers.

Drain is specifically useful for
web services as it enables log
parsing in a streaming man-
ner, and evaluation shows that
Drain outperforms prior of-
fline and online log parsing ap-
proaches.

It appears that Drain does not
fully handle positional shifts in
the log templates, and log mes-
sages that belong to the same
log event but have different
lengths will be grouped sepa-
rately.

Messaoudi et al. [225] - Intro-
duces MoLFI (Multi-objective
Log message Format Identi-
fication), which leverages an
evolutionary algorithm for log
message format identification.

Six real-world datasets:
HDFS, BGL, HPC,
Zookeeper, Proxifier,
and one industrial
software logs.

MoLFI achieves a higher per-
formance than the compared
alternative algorithms in de-
tecting the correct log message
templates.

Formulates the log template
identification task as a multi-
objective optimization problem
and propose a search-based so-
lution based on the NSGA-II
algorithm [100], i.e., a sorting
genetic algorithm.

MolFI suffers from low ef-
ficiency (i.e., high execution
time) on large datasets as
its iterative genetic algorithm,
NSGA-II, is computationally
intensive [347, 110].

Dia [96] - Introduces Logram,
which uses n-grams dictionar-
ies to perform log parsing. Lo-
gram initially calculates the
number of appearance of each
n-gram (i.e., token) in the log
file.

Eventuated on 16
publicly available logs
including Android,
BGL, HDFS, Spark,
and Zookeeper logs.

Achieves a higher parsing accu-
racy than the prior work, and
it is 1.8X to 5.1X faster than in
its calculation when compared
to prior work.

Based on the threshold of an n-
gram occurrence, Logram de-
cides dynamic and static parts
of the log messages and ex-
tracts the log templates.

One caveat for this log parser
is the threshold selection for
n-gram appearance, and if a
dynamic n-gram occurs fre-
quently, it might be mistakenly
picked as a part of the log tem-
plate.

Table 2.12: Log parsing research - Topic (G) (continued).

53

iterative partitioning in IPLoM [217], clustering in LKE [116], longest common subsequence
in Spell [106], search-space multi-objective optimization approach in MoLFI [225], parsing
trees in Drain [148], and n-gram dictionary-based in Logram [96]. Contrary to the regular-
expression-based and static analysis methods, these techniques are capable of extracting
log templates from log files without needing access to the source code. After the logs
are parsed, they are used for various applications, such as anomaly detection and failure
diagnosis. Zhu et al. [347] presented a log parsing benchmark available here [38], and El-
Masri et al. [110] performed a survey of log abstraction techniques. Table 2.12 summarizes
log parsing research and Figure 2.14 categorizes various trends and goals for log file analysis
after log parsing is applied.

Category H: Anomaly Detection

Execution logs are extensively leveraged to monitor the health of software systems, identify
abnormal situations, and detect anomalies that can lead to system failures. Anomaly de-
tection methods include various approaches, such as: 1 creating a state machine of normal
execution and comparing the failure runs with normal models [167, 116], 2 PCA-based
approach which projects event logs to normal and abnormal subspaces [311], 3 deep learn-
ing approaches which learn an LSTM model from normal execution workflows [107], and
unstable logs [337], 4 semi-supervised deep learning approaches with probabilistic label
estimation [315], 5 a statistical approach using probabilistic suffix trees [60], and 6 cloud
deployment by correlating logs and resource metrics [112]. As a reference for further read-
ing, He et al. [150] performed a quantitative comparison of various log-based anomaly
detection approaches. Table 2.13 provides a detailed comparison and pros and cons of
various research for anomaly detention with logs.

Category I: System’s Runtime Behavior

Researchers have also utilized logs for monitoring the system’s runtime behavior. Some of
the research overlaps with approaches for ‘anomaly detection’ and ‘performance and failure
diagnosis’. These approaches include: 1 using logs to customize operational profiles for
industry software [140], 2 web service composition [296], 3 detecting inter-component
interaction [242], 4 mining system events correlation [118, 102], 5 assisting developers in
cloud deployments [278], 6 performance model derivation [57], 7 big-data analytics for
cloud deployment [278], and 8 detecting impactful system problems [149]. We provide
further comparison for this research category in Table 2.14.

54

Reference - Aim Experiments Results Pro Con

Xu et al. [311] - Applies the
Principal Component Analysis
(PCA) method to find unusual
patterns in logs and identifies
log segments that are likely
to indicate runtime anomalies
and system problems.

Logs of the Darkstar
online game server
and HDFS.

PCA extracts k principal
components by finding the
axes with the highest variance
among high-dimensional data.
The approach can detect
anomalous logs with high ac-
curacy and few false positives
while being efficient in its
computation time.

For anomaly detection with
PCA, two subspaces, i.e., nor-
mal, Sn, and abnormal, Sa, are
created. Sn is created with the
first k principal components,
and Sa is constructed with the
remaining components.

Relies heavily on log parsing
step to extract log structure
from the logs and detect event
sequences, and will fail if log
messages do not follow the pre-
ferred structure.

Fu et al. [116] - Introduces
a method to detect anomalies
by converting unstructured log
files to log keys.

Two distributed sys-
tems: Hadoop and
SILK.

The research learns a finite
state automaton (FSA) from
the training set log keys to
model the normal behavior of
the system. The results show
that the approach can detect
system issues, such as workflow
errors.

With the FSA and a per-
formance model, the authors
can identify anomalies in newly
generated log files. The work
detects three types of anoma-
lies: 1) work flow error,
2) transition time low perfor-
mance, and 3) loop low perfor-
mance.

The approach does not work
properly for loop low perfor-
mance detection, results in
false positives, and it is work-
load dependent.

Lou et al. [212] - Proposes an
approach to detect anomalies
by mining program invariants
(IM) that have a clear physical
manifestation.

Experiments on
Hadoop and Microsoft
CloudDB.

It detects anomalies if the new
logs break certain invariants,
e.g., if an “open file” log mes-
sage appears without observ-
ing a “close file”, this invariant
is violated and an anomaly is
detected. Generally, produces
fewer false-positive cases com-
pared to the PCA-based ap-
proach.

Improved upon the PCA-based
method [311], this approach
provides the operators with in-
tuitive insight (i.e., what in-
variant is breached) on anoma-
lies, and, hence, facilitate
faster anomaly track down.

This approach is not able to de-
tect anomalies that no invari-
ant is broken, e.g., many files
are opened and closed continu-
ously.

Chuah et al. [87] - Presents
ANCOR that connects re-
source usage anomalies with
system problems with logs.

Ranger supercomputer
logs in two formats:
syslogs and ratlogs (ra-
tionalized logs) [138].

Evaluates the effectiveness
of three different algorithms,
PCA, ICA, and Mahalanobis
distance. The results reveal a
list of events with a strong cor-
relation with system problems,
such as soft lockup.

Performs anomaly and correla-
tion analyses to detect the clus-
ter nodes and jobs that are as-
sociated with the extra system
resource usage that lead to sys-
tem failures.

The approach cannot detect
system problems that are not
manifested as extra resource
usage.

Du et al. [107] - Presents
DeepLog, an online LSTM-
based approach, to model sys-
tem log files as natural lan-
guage sequences.

HDSF and OpenStack
log datasets.

DeepLog decodes the log mes-
sage, including timestamp, log
key, and parameter values,
and applies both deep learn-
ing and density clustering ap-
proaches. The approach out-
performs PCA and IM meth-
ods and produces a lower num-
ber of false-positive and false-
negative cases.

Learns log patterns from the
normal execution and con-
structs workflows, and detects
anomalies when running log
patterns deviate from the nor-
mal execution.

DeepLog is evaluated on sys-
tems with highly regulated logs
and with a limited log key
space, i.e., Hadoop (29 keys)
and OpenStack (40 key) [282].

Table 2.13: Log anomaly detection research - Topic (H).

55

Reference - Aim Experiments Results Pro Con

Bertero et al. [65] - Lever-
ages natural language process-
ing techniques for anomaly de-
tection.

660 syslog log files, half
of them (330 files) for
normal system execu-
tions, and the other
half are abnormal runs.

Explores the performance of
three learning classifiers, i.e.,
Naive Bayes, Random For-
est (RF), and Neural Net-
works, and evaluates their per-
formance on predicting normal
versus stressed (i.e., abnormal)
log files. RF has the best per-
formance.

Applies a word embedding
technique, i.e., word2vec, to
map log message words to met-
ric space, and then utilizes
machine learning classifiers to
summarize log files to single
points.

The approach is limited to su-
pervised learning and requires
the pre-labeling of log files.

Bao et al. [60] - Utilizes both
the source code analysis and
the log file mining for anomaly
detection.

CloudStack and HDFS
logs.

It presents a probabilistic suffix
tree-based statistical approach
to detect anomalies from con-
sole logs. The results show the
proposed approach can detect
the largest number of anoma-
lies compared to prior work.

The source code analysis em-
ploys control flow and log
statement analysis to extract
“schema” for the subsequent
log parsing stage.

For feature extraction, the ap-
proach only takes into consid-
eration the number of occur-
rences of an event and does
not consider the sequential re-
lationship of the traces.

Farshchi et al. [111, 112] - Pro-
poses a regression-based sta-
tistical approach to correlate
operation behavior with cloud
metrics.

Experiments on Ama-
zon Web Services
(AWS) logs.

For anomaly evaluation, the
work injects faults in 22 itera-
tions of a rolling upgrade task
and utilizes the learned model
for fault prediction. Two-
minute-time-window (2 mTW)
metric observation prior to the
anomaly achieves the highest
F-Measure.

The authors utilize a
regression-based method
to detect the most statisti-
cally significant metrics for
anomaly detection and observe
cloud metrics changes and
signal anomalies in case of
divergence.

The evaluation is performed
with synthetically injected
faults. Further evaluation
on actual system faults can
help to better validate the
approach.

Meng et al. [224] - Proposes
LogAnomaly, an approach to
model log messages as nat-
ural language sequences for
anomaly detection.

Two datasets: BGL
and HDFS.

LogAnomaly achieves a better
F1-Score (0.96 on BGL and
0.95 on HDFS) compared to
DeepLog (0.90 on BGL and
0.88 on HDFS).

It leverages a new word embed-
ding approach, template2Vec,
to model the sequential and
quantitative patterns of logs
and extract the semantic infor-
mation of log templates.

The approach does not take
into account the runtime pa-
rameter values.

Zhang et al. [337] - Proposes
a log-based anomaly detection
approach, LogRobust, which
can handle unstable log lines.

Real and synthetic
HDFS log data, and
Service X logs from
Microsoft.

It extracts semantic informa-
tion of log events as semantic
vectors. LogRobust achieves
the highest F-Measure in de-
tecting anomalous log lines in
unstable datasets, and the per-
formance decreases as the un-
stable logs change further (i.e.,
become more unstable).

It can identify new but seman-
tically similar log events that
emerge from logging evolution
and processing noise.

If there are drastic and sig-
nificant changes to the entire
code base or logging mech-
anism, the LogRobust would
perform poorly in anomaly de-
tection.

Table 2.13: Log anomaly detection research - Topic (H).

56

Reference - Aim Experiments Results Pro Con

Zhang et al. [332] - Proposes
Anomaly Detection by work-
flow Relations (ADR).

BGL and HDFS logs. The approach mines numeri-
cal relations from logs and uses
the relations for anomaly de-
tection. ADR detects a higher
number of relations in less time
compared to the invariant min-
ing (IM) approach.

For faster online anomaly
detection, ADR leverages
an optimization approach,
Particle Swarm Optimization
(PSO) [173], to find the proper
window size to split the log
entries.

The experimentation is per-
formed on highly regulated
logs with a low number of log
keys (i.e., Hadoop and BGL),
and for BGL data, simpler ap-
proaches, e.g., SVM, outper-
form ADR.

Huang et al. [160] - Pro-
poses HitAnomaly, that is
a transformer-based [301] log
anomaly detection method.

Three system logs:
HDFS, BGL, and
OpenStack.

The approach achieves F1-
Scores higher than prior work
for stable logs, and for unsta-
ble logs performs best under
10% instability injection into
the log lines.

The approach allows to cap-
ture the semantic information
in both log template sequence
and parameter values and pro-
vides an attention-based classi-
fier for log anomaly detection.

HitAnomaly’s performance
drops lower than LogRu-
bost [337] for higher rates of
instability in log sequences.

Zhou et al. [343] - Proposes
LogSayer, a log-based anomaly
detection approach with pat-
tern extraction for cloud envi-
ronment.

One HDFS log set
and two OpenStack log
data sets.

The key observation is that
different components of cloud
systems show different lev-
els of system resource us-
age during anomalous behav-
ior. The approach performs
the best in detecting tran-
sient anomalies with an accu-
racy of 93% and outperforms
DeepLog [107] and Cloud-
Seer [321].

Applies a back-propagation
(BP) LSTM-based approach to
learn and correlate the histori-
cal logs with current logs, and
deviations are signaled as po-
tential anomalies.

LogSayer’s performance is de-
pendent on the time window
size, and its performance to-
wards unstable logs [337] is not
evaluated.

Chen et al. [84] - Proposes Log-
Transfer, to transfer anoma-
lous log knowledge from the
source system to the target sys-
tem.

Proprietary switch logs
over a two-year period,
and Hadoop applica-
tion and HDFS logs.

LogTransfer still requires
anomalous instances of the
target system for optimal
performance. It achieves 0.84
F1-score, better results than
unsupervised and supervised
approaches, such as DeepLog
and LogAnomaly.

It applies GloVe [252], an
unsupervised word represen-
tation technique, to convert
words in log templates to fixed-
dimension vectors.

In the comparison section,
unsupervised methods, e.g.,
DeepLog is supposed to be
trained on normal logs and not
on a mix of normal and abnor-
mal logs [107].

Yang et al. 2021 [315] -
Introduces PLELog, a semi-
supervised anomaly detection
through execution logs.

Experimented on BGL
and HDFS logs.

With probabilistic label esti-
mation (PLE), it can automat-
ically assign labels to unlabeled
datasets. PLELog outperforms
compared semi-supervised and
unsupervised anomaly detec-
tion approaches in terms of F-
Measure.

It leverages an attention-based
GRU neural network to detect
anomalies.

The effectiveness of PLELog
falls short compared to some
prior anomaly detection
approaches, e.g., LogRo-
bust [337].

Table 2.13: Log anomaly detection research - Topic (H) (continued).

57

Reference - Aim Experiments Results Pro Con

Tang et al. [296] - Proposes
a log-based approach to iden-
tify service composition pat-
terns by finding associated ser-
vices using Apriori algorithm.

A case study on 74
service-oriented appli-
cations.

The approach can detect ser-
vice composition patterns from
control flow with a high accu-
racy.

The approach first starts with
collecting and preprocessing of
execution logs, and continues
with identification of frequent
web services, and then extrap-
olates the control flows.

The approach fails to extract
service patterns in cases that
control flow has alternative
branches.

Oliner and Aiken [242] - Pro-
poses an approach to infer the
interactions among the compo-
nents of large-scale systems by
analyzing logs.

Log of eight systems:
four supercomputers
(Blue Gene/L, Thun-
derbird, Spirit, and
Liberty), two data
clusters (Mail Cluster
and Junior), and two
autonomous vehicles
(Stanley and SQL
Cluster).

Log data signal compression al-
lows for the scalability of ‘lag’
correlation, and with minimal
loss, this approach identifies
system’s behavioral model.

Performs a two-stage analysis:
1) PCA compression to sum-
marize the anomaly signals,
and 2) lag correlation to iden-
tify if the signals relate to each
other with a time lag.

The extracted signals show
correlation and not a causal
relationship, and in addition,
manual analysis of a system
administrator is required to
make sense of the data.

Fu et al. [118] - Proposes Log-
Master, a tool to mine cor-
relations of events in log files
of large-scale cloud and high-
performance computing (HPC)
systems.

Experimented on three
system logs, namely:
Hadoop, HPC cluster
and BlueGene/L.

Results show the approach is
successful in correlating events
related to failures with accept-
able precision scores but with
lower recall rates.

LogMaster parses the log lines
into event sequences where
each event creates an informa-
tive nine-tuple, and then uses
an algorithm, named Apriori-
LIS, to mine event rules from
logs, and measures the events
correlations.

Experiments on cloud and
HPC systems shows LogMas-
ter can predict failures with
high Precision, however, the
Recall scores are low and re-
quire improvement.

Shang et al. [278] - Suggests
using execution logs from the
cloud environment to assist de-
velopers of Big Data Analytics
(BDA) applications.

A case study on
three Hadoop-based
apps: WordCount,
PageRank, and JACK
(industrial).

The approach reduces the veri-
fication effort and reaches com-
parable precision with tradi-
tional keyword search methods
in verifying cloud deployment
procedures.

This approach exposes the dif-
ferences between pseudo and
large-scale cloud deployments
and it points the developers’
to examine the inconsistencies,
and therefore, facilitates the
deployment verification effort.

The approach suffers from a
high number of false positives
in flagging presumptive prob-
lematic log sequences, and re-
sults in low precision.

Awad and Menascé [57] - Pro-
poses an approach to use sys-
tem logs and configuration files
to automatically extract per-
formance models of the system.

Experiments on
Apache Tomcat access
logs from a multi-tier
server.

The results show the method
is effective in extracting the
workloads and system model
by parsing the system config-
uration files and log files.

The approach extracts the
interaction patterns between
servers and devices and the
probability associated with
each interaction.

The work assumes the log tem-
plates are known for the sys-
tems under analysis.

Di et al. [103, 102] - Pro-
poses LogAider, an analysis
tool that mines potential corre-
lations between various system
events for the diagnosis pur-
pose.

Logs of BlueGene/Q
Mira supercom-
puter [8].

The approach shows effective
correlation between fatal sys-
tem events and job events,
with both high precision and
recall values (99.9-100%).

LogAider can reveal three
types of potential correlations
between log events: across-
field, spatial, and temporal.

It uses a threshold to find cor-
relation candidates, and the
evaluation scores, such as Pre-
cision and Recall, appear to be
threshold dependent and vary
significantly with the thresh-
old.

He et al. et al. [149] - Proposes
Log3C, a clustering-based ap-
proach to detect system prob-
lems.

Three datasets of an
online large-scale ser-
vice system X from Mi-
crosoft (confidential).

Log3C achieves F1-measures
values 0.91, 0.86, and 0.868
for three datasets, and outper-
forms PCA and Invariant Min-
ing approaches.

It applies cascading clustering
to cluster and match the log
sequences efficiently, and then
correlates the log sequence
clusters with KPIs to identify
the impactul problems.

The research only considers a
single KPI, i.e., failure rate,
to correlate with the log se-
quences. The research can be
enriched with the inclusion of
additional KPIs.

Table 2.14: System’s runtime behavior research - Topic (I).

58

Historical
records

Metric
attribution

Classification/
Clustering

New
records Issue1

Issue2

Issue3
U

nknow
n

Figure 2.16: Duplicate and recurrent issue detection tool.

Category J: Performance and Failure Diagnosis

In many cases, log messages are one of the most important clues and often the only avail-
able resource for the system’s failure diagnosis and performance degradation, as it might
be difficult and undeterministic to reproduce a failed scenario by replaying (i.e., rerun-
ning). Developers often have to diagnose a production run performance degradation or
failure based on logs collected in the field and returned by customers without having ac-
cess to the infield user’s inputs. Performance and failure diagnosis approaches include:
1 probable program execution paths investigation with logs [323], 2 machine learning
to compare and classify logs with good and bad performance [234], 3 correlating perfor-
mance counters (e.g., CPU/memory usage) and logs [291], 4 automaton-based workflow
modeling [321], 5 process-oriented dependability analysis [314], 6 control and data flow
analyses to extrapolate causal relations among longs [341, 340, 338], and 7 fault diagnosis
with logs [349]. Table 2.15 summarizes the research on mining of log files for performance
and failure diagnosis.

Category K: User, Business, Security, and Code Coverage

Other applications of log file mining include: analyzing user statistics and behav-
ior [187], application security [244], duplicate issue identification [205], code cov-
erage with logging statements [82], and business analytics [62]. For example, Fig-
ure 2.16 shows how recurrent issues are first classified through historical log records,
and once a new record is available, it is analyzed and compared against the historical
issues [205]. Table 2.16 further explains each research effort.

Implementation and Evaluation

It is worth mentioning that many of the concepts with regards to feature selection, ma-
chine learning implementation, and evaluation metrics that are utilized for designing and

59

Reference - Aim Experiments Results Pro Con

Cinque et al. [90] - Proposes
a software fault injection ap-
proach to assess the effective-
ness of logs in the recording of
software faults in the deployed
environment.

Three open-source
systems: Apache Web
Server, TAO Open
Data Distribution
System, and MySQL
Database Management
System.

Approximately, only 40% of
the injected faults are covered
by the existing logging state-
ments in the three studies sys-
tems.

Faults are intentionally in-
jected into the experimented
software systems to determine
the most common failure se-
quences and identify logging
deficiencies and improve them.

The faults are synthetic (might
not necessarily match real
faults) and it requires access to
the source code of the software.

Chuah et al. [88] - Presents an
approach to reconstruct event
order and establish correla-
tions among log events to dis-
cover the root causes of a given
failure.

Syslogs of Ranger and
Turing supercomput-
ers, and BlueGene/L
RAS logs.

The authors received positive
feedback from system admins
that they have found the tool
analysis useful in facilitating
their diagnosing efforts.

Introduces a Fault Diagnostics
tool FDiag, to discover faults,
which comprises three compo-
nents: a Message Template
Extractor (MTE), a Statistical
Event Correlator (SEC), and
an Episode Constructor.

The approach depends on the
availability of event-specific
keywords as domain knowledge
for correlation, and does not
provide causality.

Yuan et al. [323] - Proposes
SherLog, a tool that leverages
runtime log information and
source code analysis to infer
the probable execution paths
during a failed production run.

Evaluated on eight
real-world software
failures collected from
different application
such as rmdir, Squid,
and ln.

The experiments show the in-
formation inferred by SherLog
is useful to assist developers in
failure diagnosis.

By accepting the execution log
of a failed run and the source
code, SherLog aims to iden-
tify what must or may have
happened along the execution
path.

SherLog relies on the amount
of information available in log
messages to perform its anal-
ysis. As such, log messages
that lack the necessary debug-
ging information will signifi-
cantly limit Sherlog’s effective-
ness.

Pecchia et al. [251] - Conducts
an experimental study to ex-
amine factors from event logs
that help with the detection of
failures.

Performs experiments
on a set of 17,387
instances of injecting
faults into three sys-
tems: Apache Web
Server, TAO Open
DDS, and MySQL
DBMS.

Features such as system archi-
tecture, placement of the log-
ging statements, and support
provided by the execution en-
vironment can have an impact
on the accuracy and effective-
ness of the logs at runtime.

This research additionally in-
vestigates the logging improve-
ment that can potentially in-
crease the usefulness of the ex-
ecution logs.

The approach requires access
to the source code and is only
tested on open-source projects.

Nagaraj et al. [234] - Presents
DISTALYZER, a tool which
utilizes log data to assist de-
velopers in diagnosing perfor-
mance problems.

Case studies on three
systems: TritonSort,
HBase, and BitTor-
rent.

Results show that DIST-
ALYZER is able to uncover
undiagnosed performance
issues for the experimented
systems.

DISTALYZER uses machine
learning techniques (i.e.,
Welch’s t-test [306] and de-
pendency networks [154])
to compare log files with
acceptable and unacceptable
performance.

DISTALYZER leverages ad-
hoc approaches (e.g., thread
id) to group log messages,
which limits its application for
less-structured logs.

Table 2.15: Performance, fault, and failure diagnosis research - Topic (J).

60

Reference - Aim Experiments Results Pro Con

Fronza et al. [115] - Pro-
poses an approach to perform
log-based prediction by ap-
plying Random Indexing (RI)
and Support Vector Machines
(SVMs).

Experimented on log
files of a large Euro-
pean manufacturing
company (anony-
mous).

According to the findings,
weighted SVMs achieve the
best performance by slightly
shrinking specificity (true neg-
ative rate) scores to improve
sensitivity or recall, and speci-
ficity stays greater than 0.8
in the majority of the experi-
mented applications.

It applies weighted SVM,
which utilizes cost-sensitive
learning to achieve balanced
TPR and TNR values, and
makes the method more reli-
able in classifying both failures
and non-failures.

SVM classification performs
well in classifying non-failure
instances, but poor in identify-
ing failures, i.e., low true posi-
tive rate or recall.

Syer et al. [291] - Proposes an
approach that combines per-
formance counters and execu-
tion logs to diagnose memory-
related issues in load tests.

A case study of Word-
Count application on
Hadoop.

The approach flags less than
0.1% of the execution logs with
a high precision of (>80%).

After clustering the events, au-
thors apply scoring techniques
to identify clusters that are ab-
normal and can be associated
with a performance issue.

The approach has limited ap-
plications to memory perfor-
mance issues, such as memory
leaks, spikes, and bloats.

Zhao et al. [341] - Proposes
lprof, a log profiling tool that
recreates the execution flow of
distributed applications.

Evaluated on four
distributed systems:
HDFS, Yarn, Cassan-
dra, and HBase.

lprof’s reaches 88% accuracy in
attributing log messages to re-
quests, and 65% of the diagnos-
tics are helpful for the opera-
tors.

lprof performs control-flow
(CF) and data-flow (DF)
analyses, and infers if log mes-
sages are causally related and
what variables are unmodified
between multiple log printing
statements, and then groups
the logs and use them for
diagnosing performance issues.

The lprof’s static analysis is
limited to a single software
component and needs to be
readjusted for different lan-
guages (bytecode), which is
cumbersome in practice.

Xu et al. [313, 314] - Utilizes
system logs to provision rolling
updates in a cloud environ-
ment for process oriented de-
pendability (POD) analysis.

Experiments with
rolling upgrade on
AWS with injecting 8
different types of faults
into the cloud-based
clusters. Faults include
machine image (MI)
change during upgrade,
key pair management
fault, and security
group configuration
fault.

The evaluation results show ac-
ceptable performance (90+%)
in precision, recall, and accu-
racy scores in diagnosing the
injected sporadic faults.

It creates a process model of
the desired provisioning activ-
ities through log data with
added annotation and check-
points. The deployment logs
are checked and assertions are
raised in case there has been a
deployment violation.

The approach heavily relies on
the specific information in the
logs and the absence of this in-
formation severely impacts the
performance of error detection.
Following research [112] aims
to combine logs with system
metrics for a more robust anal-
ysis.

Russo et al. [269] - Proposes
an approach to mine and learn
error predictors from system
logs, and then applies it to a
real telemetry system for fail-
ure prediction.

Experimented on log
sequences of 25 dif-
ferent applications of
a software system for
telemetry and perfor-
mance of cars.

The evaluation achieves 78%
recall, and 95% precision.

Uses three popular support
vector machines (SVMs): mul-
tilayer perceptron, radial basis
function, and linear kernels -
to learn and predict defective
(i.e., faulty) log sequences.

The study is performed on the
logs of a single system. Thus,
the result of the applicability of
the proposed approach to other
systems and other software do-
mains remains unknown.

Table 2.15: Performance, fault, and failure diagnosis research - Topic (J).

61

Reference - Aim Experiments Results Pro Con

Yu et al. [321] - Introduces
CloudSeer, a lightweight and
non-intrusive approach that
works on interleaved logs for
cloud workflow monitoring.

CloudSeer is proto-
typed and evaluated on
an open-source plat-
form, i.e., multi-user
OpenStack logs.

The approach is accurate
enough to check and infer
workflows for most interleaved
log sequences. Cloudseer
reaches 92+% accuracy in
checking interleaved logs for
six experimented groups with a
satisfactory checking efficiency
(i.e., computation time).

CloudSeer constructs automa-
tons for the workflow of man-
agement tasks based on their
normal execution scenarios,
and later checks log messages
against these automatons to
detect workflow discrepancies
and divergences in an online
approach.

The performance problems are
only detected for log entries
with ‘ERROR’ log verbosity
level, and model creation re-
quires multiple executions of
a single task. For messages
which do not accompany an er-
ror, finding a timeout is not
trivial and requires further dis-
cussion.

Gurumdimma et al. [135] - In-
troduces CRUDE, which com-
bines console logs with re-
source usage data to improve
the error detection accuracy in
distributed systems.

Experimented on Ra-
tionalized logs (ratlogs)
from the Ranger Su-
percomputer contain-
ing four weeks worth
of data: resource usage
data (32GB) and ratio-
nalized logs (1.2GB).

The approach is able to iden-
tify 80% of errors leading
to failures, and achieves f-
measure over 70%.

The approach has three main
steps: it clusters nodes with
similar behavior, then uses an
anomaly detection algorithm
to detect jobs with anoma-
lous resource usage, and finally,
links anomalous jobs with erro-
neous nodes.

The proposed approach does
not model temporal relation-
ships to improve fault identifi-
cation [288].

Zhao et al. [340] - Introduces
Stitch, a distributed and end-
to-end performance profiler by
flow reconstruction.

Evaluated both
through a controlled
user study and lab
experiments on Hive,
Spark, and OpenStack.

On average, Stitch achieves
96% and 95% accuracy for ob-
ject and edge detection, respec-
tively, for workflow reconstruc-
tion.

Stitch aims to construct the
system model and the hi-
erarchical relationship of ob-
jects in a distributed soft-
ware stack without requiring
domain-specific knowledge.

Although Stitch can establish
correlations between different
software’s objects and mod-
ules, it cannot accurately in-
fer causal relationships among
them.

Zou et al. [349] - Proposes
UiLog, which is a fault analysis
tool, to collect logs and their
statistics from various compo-
nents and diagnose the de-
tected faults.

Performs experiments
on logs of components
(e.g., disk, I/O, mem-
ory) of a cloud envi-
ronment, StrongCloud,
collected over a year
period.

Twelve categories of faults are
detected, and fault detection
precision is maxing out at 88%
when the length of logs is more
than 200 words.

The approach classifies logs by
the fault type in real-time and
performs fault correlation anal-
ysis to help administrators and
locate the faults’ root causes.

Requires domain knowledge,
and the precision of fault anal-
ysis is dependent on the size of
the logs.

Zhang et al. [338] - Introduces
Pensieve, a flow reconstruc-
tion tool for performance fail-
ure reproduction through sys-
tem logs and bytecode.

Evaluated on 18 ran-
domly sampled real
failures on four sys-
tems: HDFS, HBase,
ZooKeeper, and Cas-
sandra.

Pensieve is able to reproduce
72% of the sampled failures
within ten minutes of analysis
time.

Pensieve leverages event chain-
ing, and extrapolates a chain
of causally dependent events
leading to the failure while us-
ing partial trace observation
technique, which significantly
limits the execution paths to
observe.

Some domain-specific knowl-
edge or a developer familiar
with the system is needed to
actually describe and diagnose
the failure, and make sense of
the chain of the events.

Table 2.15: Performance, fault, and failure diagnosis research - Topic (J) (continued).

62

Reference - Aim Experiments Results Pro Con

Lee et al. [187] - Employs a uni-
fied logging infrastructure in
Twitter to perform analysis on
the user statistics by the use of
log data.

“Client events” within
Twitter logging frame-
work.

Discusses a variety of ap-
plications for the proposed
approach, such as summary
statistics, event counting, fun-
nel analytics, and user model-
ing.

The research applies tech-
niques from natural language
processing (NLP) to process
the user’s behavior on the web-
site; the user’s behavior right
now is strongly influenced by
immediately preceding actions.

Currently, user session se-
quences only capture event
names and do not provide
enough details for more sophis-
ticated types of analyses.

Lim et al. [205] - Addresses the
problem of automated identi-
fication of recurrent and un-
known performance issues.

Evaluated on two
datasets: Trans-
action Processing
Performance Council
BenchmarkTM W
(TPC-W) [19], and
System X, a real
production system
(confidential).

The results show the approach
achieves higher AUC when
compared to approaches such
as Fingerprint, Signature, K-
means, and Hierarchical ap-
proaches in recurrent and un-
known issues identification.

The approach works based on
the mining and metric extrac-
tion of historical log records,
and utilizes a Hidden Markov
Random Field (HMRF) based
approach for the clustering of
recurrent issues.

The proposed statistical analy-
sis only works if a large amount
of monitoring data over a long
period of time is available.

Oprea et al. [244] - Proposes
a framework that analyzes log
data collected at the enterprise
network borders on a regular
basis (e.g., daily).

Experimented with
DNS logs released by
Los Alamos National
Lab (LANL), and
AC dataset of web
proxies logs generated
at the border of a large
enterprise network
(confidential).

The approach can detect
malicious web domains with
high accuracy and low false-
negative rates. The work also
detects new malicious domains
that are not previously report-
ed/detected by other tools in
the enterprise.

Creates a bipartite graph G =
(V,E), such that hosts and do-
mains are vertices on each side
of the graph. There will be an
edge between a host and a do-
main if the host connects with
the domain.

The approach cannot detect
regular connections to mali-
cious domains which happen in
the training phase.

Barik et al. [62] - Performs
a case study of log utilization
in Microsoft for business deci-
sions and analytics.

Performed interviews
with 28 engineers at
Microsoft, and followed
that up with a survey
of 1,823 respondents to
confirm their findings.

Use of log event data is per-
vasive within the organiza-
tion and the usage primar-
ily falls into eight categories,
among them engineering the
data pipeline, instrumenting
for event data, troubleshooting
problems, and making business
decisions.

This research highlights that
event log data surely plays
an important role in the com-
pany’s decision-making process
as the industry makes a tran-
sition towards a data-driven
decision-making paradigm.

The study is performed on a
single software company and
the findings may not general-
ize to other software and insti-
tutions.

Chen et al. [82] - Presents
an approach, called Log-
CoCo (i.e., Log-based Code
Coverage), to estimate and
measure the source code cover-
age using the readily-available
execution logs.

Five commercial pro-
prietary projects from
Baidu and one open-
source project, i.e.,
HBase.

Measures the accuracy and
usefulness of LogCoCo, and it
achieves high accuracy for dif-
ferent types of code coverage
(Must and May have been exe-
cuted). Additionally, the tool’s
results are useful to evaluate
and improve the test suites for
code coverage.

Using program analysis tech-
niques, LogCoCo matches the
execution logs with their corre-
sponding code paths and esti-
mates three different code cov-
erage criteria: 1) method cov-
erage, 2) statement coverage,
and 3) branch coverage.

The approach cannot accu-
rately infer whether a May ex-
ecuted code region is actually
covered in a test.

Table 2.16: User, business, security, and code coverage research - Topic (K).

63

assessing the log statement automation approaches (Sections 2.5.3-2.5.3) are also leveraged
for designing and evaluating log file mining tasks. For example, DeepLog [107], proposes
a machine learning algorithm for log file mining. LogRobust [337] extracts feature vec-
tors from the log files and implements an LSTM deep learning approach, and evaluates
its anomaly detection approach with Precision, Recall, and F-Measure. Drain [148], a log
parsing tool, evaluates its performance with F-Measure.

2.5.5 Category L: Emerging Applications of Logs

Thus far, we discussed different logging practices and log applications, mainly in large-scale
software systems. However, most recently, there has been a special interest in applications
of logs in other domains such as mobile devices [86, 330], embedded [105, 129, 304], and
big data [228, 274, 222]. We summarize the key findings here:

� Prior studies have proposed the application of logs for emerging areas such as mobile
and big data systems.

� For mobile, developers should be aware of different logging practices that might
apply to alternative platforms with different design criteria and requirements. For
example, because mobile devices operate on battery with limited storage space, the
cost and overhead of logging (e.g., continuously flushing logs) become more exorbitant
and unfavorable than software that is running on a workstation.

� Developers of log analysis tools have considered big-data platforms to scale and
speed up log analysis.

� Natural language attributes of logs [145, 126] open up a new avenue for log
statement automation, e.g., log statement description, and automated log analysis
of logs, e.g., anomaly detection.

Table 2.17 summarizes research in Category L.

Finding 5. Researchers have contributed to logging research in various categories, and
research continues to progress in the existing categories and also grows to the emerging
domains. Prior research spans through logging cost and practices, mining and au-
tomation of logging code, and mining and automated analysis of log files.

64

Reference - Aim Experiments Results Pro Con

Miranskyy et al. [228] - Dis-
cusses the challenges of event
log analysis for big data sys-
tems (BDS), as the logs gener-
ated by a BDS can be big data
themselves.

Categorizes seven chal-
lenges of log analysis
for big data systems.

Highlights currently available
solutions to each challenge and
discusses unanswered ques-
tions, based on the authors’
and industrial experience.

The authors categorize the
challenges of big data log pro-
cessing into seven classes, in-
cluding scarce storage, un-
scalable log analysis, inac-
curate capture & replay,
and inadequate tools for
instrumenting BDS source
code.

Accurate mapping and case
studies and examples of chal-
lenges in real-world big-data
software can further illustrate
the current issues.

Salman et al. [274] - Proposes
PhelkStat, a tool for analysis of
system event logs of large-scale
data centers on Apache Spark’s
big data platform.

A set of public (e.g.,
Spirit, Thunderbird,
and Liberty) and pri-
vate (e.g., Cray and
dartmouth/campus)
log data.

Performs evaluation on a set
of log analysis tasks such
as arrival rate distribution,
anomaly content, and runtime
analysis.

The authors utilized a set of
attributes, i.e., temporal and
spatial metrics such as arrival
rate and byte count, to char-
acterize system event logs and
then correlate the metrics with
the runtime performance of the
system.

Log analysis tasks are partially
correlated with system events,
but are not analyzed meaning-
fully to draw actionable steps
for admins and users of the sys-
tem.

Mavridis et al. [222] - Eval-
uates various log file analysis
tasks with two cloud compu-
tational frameworks, Apache
Hadoop and Apache Spark.

Experiments on log
files of an Apache
HTTP server, and
implemented useful
log analysis tasks
such as checking for
denial of the service
(DoS) attacks from the
available logs.

Compared performance of
Hadoop and Spark by eval-
uating their execution time,
scalability, resource utiliza-
tion, and cost and power
consumption

The research showed the po-
tential of utilizing distributed
big-data platforms for facilitat-
ing log analysis.

The analysis needs to be ex-
panded to designing tools that
can leverage the parallelism of
distributed big-data platforms
to accomplish a faster and scal-
able analysis of logs.

Chowdhury et al. [86] - Per-
forms an exploratory study to
investigate the energy impact
of logging in Android applica-
tions using GreenMiner [156],
an automated energy test-bed
for mobile applications.

Studies approxi-
mately a thousand
versions of 24 An-
droid applications
(e.g., CALCULATOR,
FEEDEX, FIREFOX,
and VLC) with logging
enabled and disabled,
accompanied by a con-
trolled experiment on a
synthetic application.

There is little to no energy
impact when logging is en-
abled for most versions of the
studied applications. However,
about 79% (19/24) of the stud-
ied applications have at least
one version that exhibits a no-
ticeable impact on energy con-
sumption.

The authors found that the
rate of logging, the size of
messages, and the number
of log buffer flushes are sig-
nificant factors of energy con-
sumption attributable to log-
ging on mobile devices.

More accurate models that cor-
relate mobile log events with
the amount of energy con-
sumption are required.

Table 2.17: Emerging log research - Topic (L).

65

Reference - Aim Experiments Results Pro Con

He et al. [145] - Characterizes
natural language attributes of
log statements’ descriptions.

Experiments on ten
Java and seven C++
open-source projects
and answers four
research questions.

Findings confirm the natural
characteristics of logs, such as
endemic and specific.

Proposes an automated ap-
proach for log description pre-
diction based on source code
similarity and edit distance.

The dynamic part of the log
statements is left out, and the
approach for log description
automation is limited to cases
that a similar code snippet is
found.

Zeng et al. [330] - Replicates
the work of Yuan et al. [325]
and investigated the logging
practices in Android applica-
tions.

Performs a case study
on 1,444 open-source
Android applica-
tions in the F-Droid
repository.

Although mobile app logging is
less pervasive than server and
desktop applications, logging is
leveraged in almost all stud-
ied mobile apps, and there are
noticeable differences between
the logging practices applied in
mobile applications versus the
ones in server and desktop ap-
plications, as observed by prior
studies [79, 325].

The majority of the logging
statements in mobile apps are
in debug and error verbosity
levels, while info level logging
statements are the prevailing
level in server and desktop ap-
plications.

The research can be expanded
by providing developers with
guidelines for mobile apps.

Gholamian and Ward [126]
- Performs an experimental
study on natural and local
characteristics of log files.

Experiments on eight
system logs (e.g.,
HDFS and Spark),
and two natural lan-
guage language data
(e.g., Gutenberg and
Wiki).

Six findings confirm that log
messages are natural and local,
even more or so than common
English text.

Applies the findings and pro-
poses an NLP-based anomaly
detection approach from log
files, which utilizes n-gram
models.

More advanced NLP mod-
els (e.g., deep learning and
BERT) need to be investigated
to improve the anomaly detec-
tion task.

Table 2.17: Emerging log research - Topic (L) (continued).

66

2.6 RQ4: Challenges and Opportunities for Future

Work

In the previous sections, we reviewed and discussed the state-of-the-art logging research by
providing an introduction to log messages and log files (2.2), costs and benefits associated
with logging (2.5.1), mining logging statements (2.5.2), automated logging approaches and
their evaluation metrics (2.5.3), mining of log files (2.5.4), and finally, the emerging areas
of log application (2.5.5). In this section, as we revisit each section, we put emphasis on
answering RQ4 and specify future directions and opportunities for each category. We point
out the missing pieces of the puzzle for each area, followed by our intuitive approaches for
tackling those issues, which are inspired by the collective knowledge of the prior work. In
the following, we include opportunities for future work based on the research categories.

2.6.1 Category A: Logging Cost

Adaptive and Constraint-Based Logging

An imperative trend that we foresee as future research is the need for adaptive logging [229].
On the one hand, continuously logging in details (e.g., in trace verbosity level) can incur
performance overhead, and on the other hand, logging very little might degrade the effec-
tiveness of the logs. Therefore, we anticipate further research that will work on dynamically
adjusting the amount of logged data from the least verbose to the most verbose level in
order to help with detailed postmortem analysis, if the system is in a detected anomaly
state, and on the other side, minimize the performance overhead of logging while the system
operates normally and as expected.

Whether to Log?

We mentioned that the prior research has explored various challenges such as ‘what to
log?’, ‘where to log?’, and ‘how to log?’. We see potential for further research on all
challenges of logging and with more emphasis on ‘whether or not to log?’. With the
emergence of adaptive logging and logging less when not needed and log more details
whenever necessary, the idea of whether or not to ultimately print an existing logging
statement becomes important. We foresee future research that explores different scenarios
of whether logging statements are eventually printed or filtered based on the goal of the

67

logging analysis tasks, i.e., performance evaluation or failure diagnosis, and the operating
state of the system, i.e., normal state vs. when a system anomaly is detected.

2.6.2 Categories B, C, D: Logging Practices, progression, and
Issues

Improved Logging Practices

Although logging practices in the software development process have been reviewed and
improved over the past decade [325, 78], there is still room for betterment [142]. Additional
tools that can automatically detect log-related issues are required. Moreover, because the
majority of current logging practices and decisions are ad-hoc and decided by developers
on the spot, the introduction of systematic logging practices that can provide suggestions
to developers while composing the code can ensure a higher quality of logs. Also, further
research that can provide directives and insights for developers with regards to good versus
poor logging practices, and hence help to improve their logging practices and make better
use of logging, is of interest. For example, more effective logging can enable the customers
of the software systems to solve problems themselves using the logs without relying on
developers or avoid unnecessary logging costs, such as exposing users’ sensitive information
in the logs [192]. Another angle for logging practices improvement includes studies that
investigate cost-aware logging, which can help developers to estimate and optimize the cost
of logging while benefiting from the logs. Although efforts such as Log20 [339] have aimed
to address this issue, there is still a sizable room to improve upon. This avenue of future
research can be also expanded to other platforms such as mobile devices as the logging
practices can be different depending on the applications and the system requirements [330].
Prior research has shown other areas such as mobile systems, that are not in the research
community’s spotlight, are even more in dire need of systematic guidance and automated
support tool for assisting in logging practices [330].

Representation of Log Files

It is a safe assumption that the log analysis methods require, or at the very least, perform
better on logs with good quality to conduct meaningful analyses. Therefore, we foresee
future research in improving the formatting and defining universal structure for log mes-
sages, which will directly help in achieving more systematic organization of log files, and
consequently, more effective log analysis with higher Precision and Recall values. This

68

goal is also partially realized with proper selection and improvement of logging libraries
and utilities, e.g., Log4j, SLF4J, and Logback.

Logging Libraries and Utilities

Logging libraries and utilities (LLU) provide additional functionality, structure, and flexi-
bility in logging for developers such as log verbosity levels and thread-safety [81]. Although
LLUs facilitate logging, there has been insufficient research on this topic. Further research
that aims to improve the performance of logging libraries by performing some of the log-
ging tasks during the compile time is necessary [316]. Furthermore, the development of
application-specific logging libraries will provide higher logging flexibility and better API
for developers in a specific domain, similar to Log++ [220] for cloud logging, to perform
workload-related logging. For example, in a cloud deployment and provisioning process,
users are further interested in logging the machine image initialization and termination
steps in more details to enable better debugging in case of failures. Additionally, LLUs can
improve to bring in new configurability, such as supporting different log verbosity levels
for separate parts of a logging statement [192]. Another angle that LLUs can improve is to
provide checks on the format of the developer’s provided logging text and ensure that the
provided content passes a minimum set of standards in order to make logs more useful and
organized. Additionally, logging libraries can help to reduce the overhead of logging. The
way that some of the LLU work is that, during the runtime, all of the logging statements
are executed but based on the verbosity level of the logging statements, some of the logs are
filtered from being written to the log file. This approach can still introduce a considerable
overhead if logging statements make calls to other methods and variables. To cope with
this situation, developers include log statement guarding (e.g., putting the log statement
inside an if-clause) to avoid the logging statement being executed based on whether or not
the level is enabled. Therefore, this type of log guarding improvement would be beneficial
to be implemented inside the LLUs [142].

Application Specific Logging

As logging messages can provide valuable information with regards to the different aspects
of the running software, it is also evident that different tasks and applications that rely
on logs require different types of information from the log files. Therefore, we anticipate
application-specific logging research in the future to grow. That is to say, depending on
the application, we need to log different categories of runtime information. For example,
for a security log, certain values need to be printed while not compromising sensitive

69

information; however, this might not be an issue in postmortem analysis of logs [264].
Additionally, developers of other platforms, such as mobile apps, should be aware of the
differences between desktop/server and mobile practices as it comes to logging, as for
mobile, there is energy overhead concern that should be taken into account [330]. Therefore,
different platforms also might end up logging different information with varied frequencies
of outputting logging statements.

Maintenance of the Logging Code

As the software systems continue to grow, maintaining the logging code becomes more
challenging. Previous studies have observed that the logging code is not maintained as
well as the feature code, as there is no straightforward way to test the correctness of
the logging code [80]. Therefore, we emphasize that further research should consider the
systematic maintenance and testing of logging code alongside the feature code evolution.
Additionally, there are interesting opportunities for developing automated tools that can
read the context of the feature code changes and suggest logging code maintenance and
updates concerning the feature code updates while the new feature code is being checked in.

2.6.3 Category E: Log Printing Statement Automation

Automatic LPS Generation

In contrast to developer-inserted logs, LPS automation aims to auto-generate or suggest
new logging statements or enhance the quality of currently available logs inside the source
code based on various source code and application criteria. Although this topic has been of
interest recently [326, 324, 346, 339, 166, 123, 203], considering the continuous advancement
and birth of new AI and learning methods, we anticipate future research in the development
of machine learning methods to implement and automate logging, with statistical model-
ing, supervised, unsupervised, and deep learning approaches will continue to foster. These
methods should consider automating different aspects of the logging statements, such as
the location, content, and verbosity level. The automated methods can also consider
different criteria for automation, such as diagnosability versus cost-awareness [192]. The
ultimate goal is to achieve an automated approach that can introduce high-quality log
suggestions or enhancements for various applications. Subsequently, assuming the devel-
opment of different approaches, a comparative study of different approaches and the areas
that each one performs better becomes necessary, similar to the comparison of different log
parsing techniques in [347].

70

Constraint-based Logging

The majority of the log automation tools have aimed to mimic developers’ logging habits [123,
166, 346]. In other words, the log learning approaches work to learn developers’ logging
habits to decide if a new unlogged code snippet requires a logging statement. However,
prior work [142] has also shown that developers make mistakes, and in some places, they
even forget to log in the first place. Thus, one remaining important challenge is to develop
constraint-based automated logging approaches to guarantee a particular logging goal, e.g.,
at minimum, one iteration out of 100 iterations of method MtdM() is logged, or a partic-
ular execution path is fully disambiguated with logging, i.e., we can accurately determine
which code segments ‘must’ have been executed. Another example can be ensuring the
beginning and the end of all methods of interest are logged. By doing so, we can guarantee
that at least a minimum quality of logs is granted.

Golden Quality LPSs for Benchmarking

To the best of our knowledge, there is no prior work that quantitatively measures the
quality of logging statements in each software project. Many of the prior work consider
the developers’ inserted logging statements as ground truth to evaluate their automated
logging approach [346, 166, 123]. However, prior research has shown that there is no general
guideline for logging and developers mostly rely on their intuitions and insert logging
statements in an ad-hoc manner [209]. As such, defining a set of quantitative metrics that
can be applied to evaluate the quality of logs on various software projects and give them
scores can be highly beneficial. This allows to find projects with high-quality logs, learn
from them, and use them as a golden benchmark for comparison with auto-generated logs.

2.6.4 Category F: Log Maintenance and Management

Log collections and compressors. Log collections, similar to LogHub [151], are useful
for evaluating various log analyses. Additionally, datasets that are labeled and differentiate
normal against abnormal log records are well sought after, as they enable the application
of supervised and deep learning approaches for log analysis [337, 204, 147]. As such,
we see value in further research to collect log data from various software and application
domains, and develop automatic and accurate probabilistic methods [315] to label the data
to facilitate log analysis and logging practices research. For log compression, because logs
generally benefit from higher repetition than natural text, future research can benefit from
designing and evaluating log-tuned compressors, which not only can result in more effective

71

compression but also more efficient and streamlined decompression, for later auditing and
analysis.

2.6.5 Categories H, I, J, K: Automated Log Analysis Applica-
tions

Log Analysis and Tools

Prior research has proposed plenty of log analysis methods and tools for different applica-
tions, such as anomaly and problem detection [311, 116], performance and failure
diagnosis [341, 340, 321, 338], system’s runtime behavior [140, 149, 278], system
profile building [244], code quality assessment [279], and code coverage [82]. Log
analysis, starting with log parsing, plays an essential role in extracting useful information
from the log files. As logs can be viewed in different ways, such as events, time series, and
feature vectors, this enables different types of analyses. Complementary to the available
research, because logs are non-intrusive and readily available, we anticipate new methods
of log analysis or improvement of the current methods will be sought after for different
applications. The quality of log analysis can directly impact the amount of actionable in-
formation that we can extract from the log files. Therefore, we expect new logging analysis
approaches will emerge that utilize and combine a variety of algorithms to achieve a more
accurate analysis. The approaches might also assume a specific format of logs, e.g., log
messages following a specific template within the log files, to achieve a more personalized
analysis. For example, the research can benefit from considering multiple factors, such
as the content of each log message, the frequency, and the sequencing of log messages in
log analysis tasks, e.g., anomaly detection, in order to achieve a deeper understanding of
what happens in the logs. Lastly, we foresee that future research will benefit from utilizing
AI approaches in understanding and leveraging the hidden semantics of the log messages,
rather than solely focusing on learning log patterns and templates. This will enable a more
sophisticated log analysis.

Scalable and Online Log Processing

In order to keep pace with the massive amount of growing logs in size (at the rate of ap-
proximately multiple terabytes per day [147]) and various formats, which is the by-product
of the software growth as well as the number of software users’ growth, we anticipate fur-
ther research will be conducted to develop and update the current logging processing tools

72

and platforms. Thus, future research should consider leveraging distributed and parallel
processing platforms (e.g., Apache Spark) in conjunction with efficient machine learning
approaches to implement scalable log analysis tools for all stages of the process, i.e., real-
time collection, processing, and storage of voluminous logs [73]. In addition, as many of
the enterprise software platforms require 24/7 up-time and availability, the need for on-
line tools that can perform the log analysis simultaneously as the system generates logs
becomes more apparent. We require the tools to be efficient enough to perform analysis at
the same speed or faster than the log generation rate.

2.6.6 Category L - Emerging Logging Research

Natural Language Processing of Logs

Prior work [155, 298] in software engineering has utilized natural language processing (NLP)
for software tasks such as source code next token suggestion. Recently, there has been a
thread of research on analyzing logging statements as natural language sequences. He et
al. [145] characterized the NLP characteristics of LPS descriptions in Java and C# projects,
and Gholamian and Ward [126] showed software execution logs are natural and local, and
these features can be leveraged for automated log analysis, such as anomaly detection.
We hypothesize that further research is required to confirm the NLP characteristics of
software logs, and eventually, leveraging NLP characteristics of logs will further benefit
automated log generating and analysis of log files. Moreover, the recent advancements
in NLP models, e.g., BERT models [101], calls for further investigation and application
of them in improving the performance of log mining tasks. The intuition is that these
models can embed and learn a higher degree of log semantics, and thus, can better enable
actionable diagnosis from logs.

Log Summarization and Visualization

Prior works [259, 74, 210] have proposed approaches to summarize and visualize console
and security logs. Log summarization and visualization is a natural response to the ever-
growing scale of logs to gain high-level insight into the logs. In large-scale distributed
software systems, as the scale of logs continue to grow, and various subsystems continue to
generate logs in heterogeneous formats and rates, we foresee the development of approaches
and solutions, both in academia and industry, that aim to make high-level sense of logs
and to gain big-picture insight with visualizing logs. In addition, log summarization will
help developers and practitioners to focus their troubleshooting efforts on a smaller set of

73

No. Avenue Rationale Selected research

1. Adaptive logging Dynamic adjustment of the logging level from the least to the most verbose
level helps with detailed postmortem analysis.

[229]

2. Whether to log? Different scenarios of whether LPSs are printed or filtered based on the goal
of the logging analysis tasks should be studied.

[104]

3. Logging practices Future research can improve on logging practices in the software development
process and reduce the ad hoc and forgetful developers’ logging habits.

[325, 78, 142]

4. Representation of
the log files

Further research can improve the formatting and standardization of log mes-
sages, which directly results in more organized log files and more accurate
automated analysis.

[273, 240]

5. Logging libraries
and utilities

Logging libraries and utilities (LLU) can provide additional functionality,
structure, and flexibility in logging for developers.

[81, 316, 220]

6. Application-specific
logging

Research can investigate and ensure that how different tasks and applications
that rely on logs can record application-specific information (i.e., based on
the application needs) into the log files.

[264, 330]

7. Maintenance of log-
ging code

As maintenance of the logging code becomes more challenging, future research
requires to develop automated approaches to ensure up-to-date and issue-free
logging code.

[80, 201, 78]

8. Automated and
constraint-based
log generation

Research requires to improve the quality of auto-generated LPSs and, also,
enhance the quality of the developer-inserted ad-hoc logs by adding additional
variables, etc.

[72, 203, 209, 200, 326,
324, 346, 339, 166, 123]

9. Golden quality log
statements

High quality logs are required to learn from, and use them as a golden bench-
mark for comparison with auto-generated logs.

[209, 346, 166, 123]

10. Log collections There is a need for labeled log data collections and development of automated
log labeling approaches to facilitate automated log analysis.

[151, 40, 94]

11. Log compression Compressors which are designed for logs are needed to improve the com-
pression/decompression efficiency and enable efficient long-term storage and
backup of logs.

[208, 319, 140]

12. Log analysis for var-
ious objectives

Research will actively continue to propose and improve approaches for more
accurate log analysis for different log mining tasks and postmortem debug-
ging.

[315, 311, 116, 341,
340, 321, 338]

13. Scalable and online
log processing

Scalable and real-time log processing is required to keep pace with the massive
amount of growing logs in size, e.g., multiple terabytes per day.

[147]

14. Natural language
processing of logs

Leveraging NLP characteristics of logs will benefit automated log generating
(e.g., log description generation) and NLP processing of log files.

[123, 155, 298, 145]

15. Log summarization
& visualization

Development of approaches that aim to elicit and condense big-picture in-
sights from logs with visualizing and summarization are in demand, and this
will enable practitioner to only focus on significantly smaller but most impor-
tant portion of logs.

[259, 74, 109]

Table 2.18: Summary of avenues for future work in logging research.

74

relevant logs. Knowledge graph representation is a potential candidate for this aim [109].
Lastly, we provide a digest of the avenues for future of logging research in Table 2.18.

Finding 6. Outstanding problems exist for each category of logging research. Future
research can consider and tackle these challenges to improve the quality of log statements
and log files, and thus enable more effective log analysis tasks.

2.7 Conclusions

Logging statements and log files are the inevitable pieces of the puzzle in analyzing and
ensuing various aspects of correct functionality of software systems, such as debugging,
maintaining, and diagnosability. The valuable information gained from logs has motivated
the research and development of a plethora of logging practices, logging applications, and
log automation and analysis tools.

In this survey, we initially started with the basics of log statements and log files and the
involving challenges in extracting useful information from them in Sections 2.1 and 2.2.
As we conduct the survey, we aim to answer four crucial research questions related to
software logging: (RQ1) categories of logging research, (RQ2) publication trends based
on topics, years, and venues, (RQ3) available research in each category, and finally (RQ4)
challenges and opportunities for future logging research. We next reviewed the costs and
benefits associated with logging in Section 2.5.1 and followed that up with research that
mines logging statements to derive logging practices in Section 2.5.2. In Section 2.5.3,
we reviewed the proposed methods for automated logging, and we mentioned evaluation
methods and metrics for auto-generated logs and learning-to-log platforms in Section 2.5.3.
In section 2.5.4, we reviewed log file mining and log analysis research which aims to expedite
and scale up the log processing, and apply logs for different system maintenance tasks
such as anomaly and failure detection/diagnosis, performance issues, and code quality
assessment. We also reviewed the emerging domains and applications for logging, such as
in NLP, mobile, and big data in Section 2.5.5. Finally, we discussed the opportunities for
future research in different aspects of logging statements and log files, their practices, and
their analyses in Section 2.6.

Although current research advances have made logs more useful and effective, there are
still multiple remaining challenges and avenues for future work and improvement. Cate-
gories of challenges remain in various aspects of automated log analysis, LPS auto-
generation, scalable logging analysis and infrastructure, cost-aware logging, log

75

maintenance and management, and improved logging practices. We foresee future
research in multiple directions for logging as follows:

� As the size of computer systems increases, we anticipate the voluminousness and
heterogeneity of logs, which turns it into a big-data problem, will demand further
quantitative cost analysis for collecting, processing, and storing of logs, as logging
can infer computation, storage, and network overhead. Additionally, due to the
voluminousness and heterogeneity of generated logs, and in some cases, the need for
real-time processing of logs, we anticipate the development of efficient, scalable, and
real-time log analysis tools [228].

� We anticipate continued research on current logging practices and log-statement-
related issues, as this will enable improvements of future practices and help to create
guidelines for developers when making logging decisions. We also predict the evolve-
ment of learning and AI-based log recommender tools and IDE plugins, which utilize
the readily available code repositories of open-source projects to provide just-in-time
logging practice suggestions to developers [194, 123]. Additionally, we expect further
work on logging libraries to collaborate with emerging logging practices and bring in
the development of application-specific logging practices [264].

� We foresee automated log file analysis techniques continue to evolve and become more
effective and sophisticated (with machine learning and AI-based techniques) in their
information extraction from log files and log statements. We also see an emerging
trend of new applications that utilize log analysis recently, such as log analysis for
code coverage [82]. Moreover, we predict further research will be performed in en-
abling the analysis of logs for other platforms, such as mobile systems and big-data
applications. Log collections will also continue to grow to help with log analysis.

� With regards to log statement prediction, we anticipate that future research on su-
pervised, unsupervised, and deep learning techniques will continue to benefit logs
and their analyses.

In this study, we aim to systematically summarize, discuss, and critique the state-of-the-
art knowledge in the logging field for experienced researchers, and simultaneously, help
new researchers to get a quick and critical grasp of the available research in this area.
Additionally, we envision the uncovered research opportunities in this survey serve as a
beacon for advancing the logging research.

76

2.8 List of Papers

Table 2.19 provides the list of papers per each category of logging research.

77

Topic Paper title Year Venue Subtopic(s)

(A) Costs and
benefits of
logging (5)

Be Conservative: Enhancing Failure Diagnosis with Proactive Logging [324]. 2012 OSDI (J) (E)
Linux Auditing: Overhead and Adaptation [329]. 2015 ICC (C)
Log2: A Cost-Aware Logging Mechanism for Performance Diagnosis [104]. 2015 ATC (C) (E)
A Qualitative Study of the Benefits and Costs of Logging from Developers’ Perspectives [192]. 2020 TSE (J)
Log4Perf: suggesting and updating logging locations for web-based systems’ performance monitor-
ing [318].

2020 EMSE (J) (E)

(B) Logging
practices (7)

Characterizing Logging Practices in Open-Source Software [325]. 2012 ICSE (C) (C)
Where do developers log? an empirical study on logging practices in industry [117]. 2014 ICSE (C) (A), (E)
Industry Practices and Event Logging: Assessment of a Critical Software Development Process [250]. 2015 ICSE (C)
Studying the relationship between logging characteristics and the code quality of platform soft-
ware [279].

2015 EMSE (J) (D)

Characterizing logging practices in Java-based open source software projects - a replication study in
Apache Software Foundation [79].

2017 EMSE (J) (C)

An Exploratory Study of Logging Configuration Practice in Java [342]. 2019 ICSME (C) (C)
Studying the Use of Java Logging Utilities in the Wild [81]. 2020 ICSE (C) (C), (D)

(C) Logging
progression (5)

An exploratory study of the evolution of communicated information about the execution of large
software systems [277].

2014 JSS (J) (D)

Logging Library Migrations: A Case Study for the Apache Software Foundation Projects [169]. 2016 MSR (C) (B)
Examining the stability of logging statements [170]. 2018 EMSE (J) (B), (D)
Guiding log revisions by learning from software evolution history [196]. 2019 EMSE (J) (D)
Can you capture information as you intend to? A case study on logging practice in industry [265]. 2020 ICSME (C) (B)

(D) Log-related
issues (5)

Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed
Data-Intensive Systems [322].

2014 OSDI (C) (B)

Understanding Log Lines Using Development Knowledge [280]. 2014 ICSME (C) (B)
Characterizing and Detecting Anti-Patterns in the Logging Code [78]. 2017 ICSE (C)
Studying and detecting log-related issues [142]. 2018 EMSE (J) (E)
Studying duplicate logging statements and their relationships with code clones [202]. 2021 TSE (J) (C)

(E) Log printing
statement
automation (15)

AutoLog: Facing log redundancy and insufficiency [333]. 2011 APSys (C) (A)
Improving software diagnosability via log enhancement [326]. 2012 TOCS (J) (J)
Learning to log: Helping developers make informed logging decisions [346]. 2015 ICSE (C) (B)
LogOptPlus: Learning to optimize logging in catch and if programming constructs [184]. 2016 COMPSAC

(C)

Log20: Fully Automated Optimal Placement of Log Printing Statements Under Specified Overhead
Threshold [339].

2017 SOSP (C) (A)

Towards just-in-time suggestions for log changes [194]. 2017 EMSE (J) (C), (D)
Which log level should developers choose for a new logging statement? [193]. 2017 EMSE (J) (B)
SMARTLOG: Place Error Log Statement by Deep Understanding of Log Intention [166]. 2018 SANER (C) (A)
An Approach to Recommendation of Verbosity Log Levels Based on Logging Intention [54]. 2019 ICSME (C)
Which Variables Should I Log? [209]. 2019 TSE (J)
Automatic recommendation to appropriate log levels [175]. 2020 SP&E (J)
Logging Statements’ Prediction Based on Source Code Clones [123]. 2020 SAC (C) (B)
Where Shall We Log? Studying and Suggesting Logging Locations in Code Blocks [200]. 2020 ASE (C) (B)
An Exploratory Study of Log Placement Recommendation in an Enterprise System [72]. 2021 MSR (C) (B)
DeepLV: Suggesting Log Levels Using Ordinal Based Neural Networks [203]. 2021 ICSE (C) (B)

*Snowballing

Table 2.19: A full list of reviewed publications. ‘Subtopic’ column shows what other topics are discussed in the research, if
applicable.

78

Topic Paper title Year Venue Subtopic(s)

(F) Log
maintenance
and
management (9)

An integrated data-driven framework for computing system management [199]. 2010 TSMCA
(J)

(I)

Cloud application logging for forensics [221]. 2011 SAC (C)
FLAP: An end-to-end event log analysis platform for system management [198]. 2017 KDD (C) (I), (J)
Logzip: Extracting hidden structures via iterative clustering for log compression [208]. 2019 ASE (C) (G)
A study of the performance of general compressors on log files [319]. 2020 EMSE (J)

Effective removal of operational log messages: an application to model inference* [285]. 2020 arXiv (A) (I)

Loghub: A large collection of system log datasets towards automated log analytics* [151]. 2020 arXiv (A) (H)
A survey of software log instrumentation [77]. 2021 CSUR (J) (B), (C)
LogAssist: Assisting log analysis through log summarization [210]. 2021 TSE (J)

(G) Log parsing
(8)

What happened in my network: mining network events from router syslogs [258]. 2010 IMC (C) (J)
Baler: deterministic, lossless log message clustering tool [292]. 2011 CSRD (J)
LogSig: Generating System Events from Raw Textual Logs [294]. 2011 CIKM (C)
LogCluster - A Data Clustering and Pattern Mining Algorithm for Event Logs [300]. 2015 CNSM (C)
Spell: Streaming Parsing of System Event Logs [106]. 2016 ICDM (C)
Drain: An Online Log Parsing Approach with Fixed Depth Tree [148]. 2017 ICWS (C)
A Search-based Approach for Accurate Identification of Log Message Formats [225]. 2018 ICPC (C)
Logram: Efficient log parsing using n-gram dictionaries [96]. 2020 TSE (J) (L)

(H) Anomaly
detection (15)

Detecting Large-Scale System Problems by Mining Console Logs* [311]. 2009 SOSP (C) (J)

Execution Anomaly Detection in Distributed Systems through Unstructured Log Analysis * [116]. 2009 ICDM (C) (G)

Mining Invariants from Console Logs for System Problem Detection* [212]. 2010 ATC (C) (G)
Linking Resource Usage Anomalies with System Failures from Cluster Log Data [87]. 2013 SRDS (C) (J)
DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning [107]. 2017 CCS (C) (G), (I), (J)
Experience Report: Log Mining using Natural Language Processing and Application to Anomaly
Detection [65].

2017 ISSRE (C) (J)

Execution anomaly detection in large-scale systems through console log analysis* [60]. 2018 JSS (J) (J)
Metric selection and anomaly detection for cloud operations using log and metric correlation analy-

sis* [112].

2018 JSS (J) (J)

LogAnomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured
logs [224].

2019 IJCAI (C) (G)

Robust Log-Based Anomaly Detection on Unstable Log Data [337]. 2019 ESEC/FSE

(C)

(C)

Anomaly Detection via Mining Numerical Workflow Relations from Logs [332]. 2020 SRDS (C)
HitAnomaly: Hierarchical transformers for anomaly detection in system log [160]. 2020 TNSM (J)
LogSayer: Log pattern-driven cloud component anomaly diagnosis with machine learning [343]. 2020 IWQoS (C) (J)
LogTransfer: Cross-system log anomaly detection for software systems with transfer learning [84]. 2020 ISSRE (C)
Semi-supervised Log-based Anomaly Detection via Probabilistic Label Estimation [315]. 2021 ICSE (C)

*Snowballing

Table 2.19: A full list of reviewed publications (continued). ‘Subtopic’ column shows what other topics are discussed in the
research, if applicable.

79

Topic Paper title Year Venue Subtopic(s)

(I) Runtime
behavior (7)

An approach for mining web service composition patterns from execution logs [296]. 2010 WSE (C)
Online detection of multi-component interactions in production systems [242]. 2011 DSN (C) (H)
Logmaster: Mining event correlations in logs of large-scale cluster systems [118]. 2012 SRDS (C) (J)
Assisting developers of big data analytics applications when deploying on Hadoop clouds [278]. 2013 ICSE (C) (J)
Performance model derivation of operational systems through log analysis [57]. 2016 MASCOTS

(C)

(J)

Exploring properties and correlations of fatal events in a large-scale hpc system [102]. 2018 TPDS (J) (J)
Identifying impactful service system problems via log analysis [149]. 2018 ESEC/FSE

(C)

(J)

(J)
Performance,
fault, and failure
diagnosis (15)

Assessing and improving the effectiveness of logs for the analysis of software faults [90]. 2010 DSN (C) (I)
Diagnosing the root-causes of failures from cluster log files [88]. 2010 HiPC (C)
SherLog: Error Diagnosis by Connecting Clues from Run-time Logs [323]. 2010 ASPLOS (C) (I)
Detection of software failures through event logs: An experimental study [251]. 2012 ISSRE (C) (B)

Structured Comparative Analysis of Systems Logs to Diagnose Performance Problems* [234]. 2012 NSDI (C)
Failure prediction based on log files using random indexing and support vector machines [115]. 2013 JSS (J) (I)
Leveraging Performance Counters and Execution Logs to Diagnose Memory-Related Performance
Issues [291].

2013 ICSE (C)

lprof: A non-intrusive request flow profiler for distributed dystems* [341]. 2014 OSDI (C) (G), (H)

POD-Diagnosis: Error diagnosis of sporadic operations on cloud applications* [314]. 2014 DSN (C)
Mining system logs to learn error predictors: a case study of a telemetry system [269]. 2015 EMSE (J)

Cloudseer: Workflow monitoring of cloud infrastructures via interleaved logs* [321]. 2016 ASPLOS (C) (I)
CRUDE: combining resource usage data and error logs for accurate error detection in large-scale
distributed systems [135].

2016 SRDS (C) (H)

Non-Intrusive Performance Profiling for Entire Software Stacks Based on the Flow Reconstruction
Principle [340].

2016 OSDI (C) (I)

Uilog: Improving log-based fault diagnosis by log analysis [349]. 2016 JCST (J)
Pensieve: Non-intrusive failure reproduction for distributed systems using the event chaining ap-

proach* [338].

2017 SOSP (C)

(K) User,
business,
security, and
code coverage
(5)

The unified logging infrastructure for data analytics at Twitter [187]. 2012 VLDB (C)
Identifying recurrent and unknown performance issues [205]. 2014 ICDM (C) (J)
Detection of early-stage enterprise infection by mining large-scale log data [244]. 2015 DSN (C) (H)
The bones of the system: A case study of logging and telemetry at Microsoft [62]. 2016 ICSE (C) (B), (I)
An automated approach to estimating code coverage measures via execution logs [82]. 2018 ASE (C)

(L) Emerging
applications (7)

Operational-log analysis for big data systems: Challenges and solutions [228]. 2016 IEEE Softw

(J)

(A), (B),
(I)

Designing PhelkStat: Big Data Analytics for System Event Logs [274]. 2017 HICSS (C) (H)
Performance evaluation of cloud-based log file analysis with Apache Hadoop and Apache Spark [222]. 2017 JSS (J) (A)
An exploratory study on assessing the energy impact of logging on android applications [86]. 2018 EMSE (J) (A)
Characterizing the natural language descriptions in software logging statements [145]. 2018 ASE (C) (E)
Studying the characteristics of logging practices in mobile apps: a case study on F-Droid [330]. 2019 EMSE (J) (A), (B)
On the naturalness and localness of software logs [126]. 2021 MSR (C) (H)

Total (103)

*Snowballing

Table 2.19: A full list of reviewed publications (continued). ‘Subtopic’ column shows what other topics are discussed in the
research, if applicable.

80

Part III
Log Prediction

81

Chapter 3

Leveraging Code Clones and Natural
Language Processing for Log
Statement Prediction

Abstract- Software developers embed logging statements inside the source code as an im-
perative duty in modern software development as log files are necessary for tracking down
runtime system issues and troubleshooting system management tasks. Prior research has
emphasized the importance of logging statements in the operation and debugging of soft-
ware systems. However, the current logging process is mostly manual and ad hoc, and thus,
proper placement and content of logging statements remain as challenges. To overcome
these challenges, methods that aim to automate log placement and log content, i.e., ‘where,
what, and how to log’, are of high interest. Thus, we propose to accomplish the goal of this
research, that is “to predict the log statements by utilizing source code clones and natural
language processing (NLP)”, as these approaches provide additional context and advan-
tage for log prediction. We pursue the following four research objectives: (RO1) investigate
whether source code clones can be leveraged for log statement location prediction, (RO2)
propose a clone-based approach for log statement prediction, (RO3) predict log statement’s
description with code-clone and NLP models, and (RO4) examine approaches to automati-
cally predict additional details of the log statement, such as its verbosity level and variables.
For this purpose, we perform an experimental analysis on seven open-source java projects,
extract their method-level code clones, investigate their attributes, and utilize them for log
location and description prediction. Our work demonstrates the effectiveness of log-aware
clone detection for automated log location and description prediction and outperforms the
prior work.

82

Keywords:
software systems, software automation, logging statement, logging prediction, source code,
natural language processing, NLP, deep learning

An earlier version of this chapter is accepted for publication in Automated Soft-

ware Engineering Conference, Doctoral Symposium, 2021 [122].

3.1 Introduction

To gather feedback about computer systems’ running state, it is a common practice for
developers to insert logging statements inside the source code to have running programs’
internal state and variables written to log files. This logging process enables developers and
system administrators to analyze log files for a variety of purposes [65], such as anomaly and
problem detection [311, 116], log message clustering [217, 300], system profile building [140],
code quality assessment [279], and compression of log files [295, 217]. Additionally, the
wealth of information in the logs has also generated significant industrial interest and
thus has initiated the development of commercialized log processing platforms such as
Splunk [43] and Elastic Stack [22].

Due to the free-form text format of log statements and lack of a general guideline,
adding proper logging statements to the source code remains a manual, inconsistent, and
error-prone task [78]. As such, methods to automate logging location and predict the
details, i.e., the ‘static text’ and verbosity level of the logging statement, are well sought
after. For example, the log print statement (LPS): log.warn(“Cannot find BPService for

bpid=” + id), contains a textual part indicating the context of the log, i.e., description,
“Cannot find BPService for bpid=”, a variable part, ‘id’, and a log verbosity level,‘warn’,
indicating the importance of the logging statement and how the level represents the state
of the program [15].

For practical concerns such as I/O and development costs, the quantity, location, and
description of logging statements should be decided efficiently [166]. Logging too lit-
tle may result in missing important runtime information that can negatively impact the
postmortem dependability analysis [324], and excessive logging can consume extra system
resources at runtime and impair the system’s performance as logging is an I/O intensive
task [339, 104]. In addition, due to the current ad hoc logging practices, developers often
make mistakes in log statements or even forget to insert a log statement at all [142, 202].
Therefore, prior studies have aimed to automate the logging process and predict whether a
code snippet requires a logging statement by utilizing machine learning methods to train a

83

model on a set of logged code snippets, and then test it on a new set of unlogged code snip-
pets [117, 346] (supervised learning). A recent work [145] has shown similar code snippets
are useful for log statement description (LSD) suggestions by evaluating their BLEU [247]
and ROUGE [206] scores, similar to Precision and Recall, respectively. Thus, in our re-
search, we specifically seek to utilize source code clones for log statement prediction and
suggestion.

Our goal in this research is to utilize code clones as a paradigm to improve the log
statement automation task. This will ensure consistency and a higher quality of logging
compared to the current developers’ ad hoc logging efforts. To summarize, the objectives of
this research are to first investigate the suitableness of source code clones for log statement
prediction, uncover their shortcomings, and then leverage them for automated log location
and description prediction based on selecting appropriate source code features [123]. In
addition, we utilize deep learning NLP approaches along with code clones to also predict
the log statement’s description. Through an empirical study of seven open-source soft-
ware projects, we demonstrate the applicability of similar code snippets for log prediction,
and further analysis suggests that log-aware clone detection can achieve high BLEU and
ROUGE scores in predicting log statement’s description.

3.2 Motivating Example

Source code clones are exact or similar snippets of the code that exist among one or multiple
source code projects [271]. There are four main classes of code clones [261]: Type-1, which
is simply copy-pasting a code snippet, Type-2 and Type-3, which are clones that show
syntax differences to some extent, and finally Type 4, which represents two code snippets
that are syntactically very different but semantically equal, e.g., iterative versus recursive
implementations of Fibonacci series in Figure 3.1. In this research, we focus on method-
level code clones and call the tuple (MDi, MDj) a ‘clone pair’. Figure 3.1 shows that
the logging pattern in the original code, MDi on Line 3 can be learned to suggest logging
statements for its clone, MDj, which is missing a logging statement.

Practical Scenario. To illustrate how our approach will be useful for developers
during the development cycle of the software, we provide the following practical scenario.
We consider a possible employment of our research as a recommender tool, which can be
integrated as a plugin to code development environments, i.e., IDE software. Alex is a
developer working on a large-scale software system and has previously developed method
MDi in the code base. At a later time, Dave, Alex’s colleague, is implementing MDj.

84

1 / / O r i g i n a l c o d e - M D $ _ i $

2 int fibonacci(int n){

3 log.info("Calculating Fibo

sequence for %d.",n)

4 if(n==0||n==1)

5 return n;

6 else

7 return fibonacci(n-1)+

fibonacci(n-2);

8 }

1 / / C l o n e T y p e 4 - M D $ _ j $

2 int getFibonacci(int n){

3 if(n==0){return 0;}

4 if(n==1){return 1;}

5 int n_2th=0,n_1th=1,nth=1;

6 for(int i=2;i<=n;i++){

7 nth=n_2th+n_1th;

8 n_2th=n_1th;

9 n_1th=nth;}

10 return nth;

Figure 3.1: Example for log prediction with code clones.

Our automated log suggestion1 approach can predict that if this new code snippet, MDj,
requires a logging statement by finding its clone, MDi, in the code base. Then, the tool
can suggest Dave, just in time, to add a log statement based on the prediction outcome.

3.3 Related Work

Prior work has tackled the automation of log statements with various approaches. Yuan et
al. [324] proposed ErrLog, a tool to report error handling code, i.e., error logging, such as
catch clauses, which are not logged and to improve the code quality and help with failure
diagnosis by adding a log statement. Zhao et al. [339] introduced Log20, a performance-
aware tool to inject new logging statements to the source code to disambiguate execution
paths. Log20 introduces a logging mechanism that does not consider developers’ logging
habits or concerns. Moreover, it does not provide suggestions for logging descriptions.
Zhu et al. [346] proposed LogAdvisor, a learning-based framework, for automated logging
prediction which aims to learn the frequently occurring logging practices automatically.
Their method learns logging practices from existing code repositories for exception and
function return-value check blocks by looking for textual and structural features within
these code blocks with logging statements. Jia et al. [166] proposed an intention-aware log
automation tool called SmartLog, which uses an Intention Description Model to explore
the intention of existing logs, and Zhenhao et al. [200] categorized six block-level logging
locations.

1We use ‘suggestion’ and ‘prediction’ interchangeably.

85

Recently, Li et al. [202] showed duplicate logging statements that are the outcome
of shallow copy-pasting result in log-related anti-patterns (i.e., issues). Although their
research has a negative connotation towards copy-pasted logging statements from code
clones, it simultaneously shows the potential of code clones as a starting point for auto-
mated log suggestion and improvement. In other words, by automating and enhancing
the log statements in the clone pairs, we can expedite the development process and avoid
shallow copy-pasting that developers tend to do. Additionally, by automation, we reduce
the risk of irregular and ad hoc developers’ logging practices, e.g., forgetting to log in the
first place.

Based on the findings of He et al.[145] in logging description prediction based on edit
distance [263], we hypothesize that similar code snippets, i.e., code clones, follow similar
logging patterns which can be utilized for log statement location and description prediction.
Formally speaking, assuming set CCMDi

is the set of all code clones of Method Definition
MDi, if MDi has a log print statement (LPS), then its clones also have LPSs:

∃LPSi ∈MDi =⇒ ∀MDj ∈ CCMDi
,∃LPSj ∈MDj

To evaluate the hypothesis, we guide our research with the following research objectives
(ROs):

� RO1: Demonstrate whether code clones are consistent in their logging statements.

� RO2: Propose an approach to utilize code clones for log statement location predic-
tion.

� RO3: Provide logging description suggestions based on code clones and deep learning
NLP models.

� RO4: Utilize clones for predicting other details of log statements such as log verbosity
level and variables.

3.4 Research Approach

Our research design comprises a preliminary data collection phase, Stage 0, and is fol-
lowed by four stages, Stages I-IV, to address RO1-RO4, as illustrated in Figure 3.2. In the
following, we provide the details of our methodology and current results for each RO.

86

Logging
characteristics of

code clones

Data collection

Source
 codeCode

repositories

Log location
prediction

Log description
prediction

Log verbosity and
variables prediction

Stage I Stage II Stage III Stage IV

Stage 0

Match

RO1

Various
types

RO2 RO3 RO4

Log-aware
clone-detection

BLEU and
ROUGE scores

Shortcomings
resolved LSD suggestions

Log descriptions
from the clone pairs

Verbosity level from
the clone pairs

Mnemonic
Done
Ongoing
Finding

Future work
Intermediate data

Clone pairs

Figure 3.2: Research steps, including objectives, intermediate data, and findings.

3.4.1 RO1: Demonstrate whether code clones are consistent in
their logging statements and their log verbosity level.

Motivation. To enable code clones for log suggestion, we first require to compare their
characteristics and show if clone pairs follow similar logging patterns. Approach. For
this purpose, we select seven large-scale open-source Java projects, i.e., Apache Hadoop,
Zookeeper, CloudStack, HBase, Hive, Camel, and ActiveMQ, based on the prior logging
research [78, 145]. These projects are well-logged, stable, and well-used in the software
engineering community, and also they enable us to compare our results with prior work,
accordingly. We extract methods with logging statements and then find their clones.
Evaluation. We evaluate the existence of log statements, their verbosity levels, and clone
types. Results. The results show the majority of method clone pairs are consistent in their
logging statements and their log verbosity levels also match to a high degree. Additionally,
we find that the majority (in the range of 78% to 90%) of code clones are of Types 3 and 4,
while the code pairs are matching in the existence of a logging statement. This observation
signifies the effectiveness of code clones in suggesting the location of log statements in
methods. In other words, although two snippets of clone pairs are syntactically different
to a high degree, they still follow similar logging patterns.

87

3.4.2 RO2: Propose an approach to utilize code clones for log
statement location prediction.

Motivation. Findings from RO1 show matching logging statements between clone pairs
and motivate enablement of logging suggestions with code clones. The automated sugges-
tion approach can help developers in making logging decisions and improve logging prac-
tices. Approach. We initially observe and resolve two shortcomings of general-purpose
clone detectors to make them more suitable for log prediction and reduce false positive and
false negative cases [124]. We then utilize the clone pairs for suggesting logging statements
for the methods which are missing an LPS by finding their clone pairs with a logging state-
ment (Stage II in Figure 3.2). Evaluation. We evaluate the performance of our approach
by measuring Precision, Recall, F-Measure, and Balanced Accuracy (BA) on the set of the
seven selected projects. Results. Considering the average of BA values, our log-aware
clone detection approach, LACCP, brings 15.60% improvement over Oreo [270] across the
experimented projects. With the higher accuracy that LACCP brings, it enables us to
provide more accurate clone-based log statement suggestions.

3.4.3 RO3: Provide logging description suggestions based on
code clones and NLP models.

Motivation. Based on the experiment results for predicting the location of logging state-
ments in RO2 and the additional available context from the clone pairs, i.e., the logging
statement description available from the original method, MDi, we notice it is a valu-
able research effort to explore whether it is also possible to predict the logging statements’
description automatically. With satisfactory performance, an automated tool that can pre-
dict the description of logging statements will be a great aid, as it can expedite the software
development process and improve the quality of logging descriptions. Approach. We base
our method on the assumption that clone pairs tend to have similar logging statement de-
scriptions. This assumption comes from the observations in predicting log statements for
clone pairs. As logging descriptions explain the source code surrounding them, it is in-
tuitive for similar code snippets to have comparable logging descriptions. Based on this
assumption, we propose a deep learning-based method that combines code clones with NLP
learning approaches (NLP CC’d). In particular, to generate the LSD for a logging state-
ment in MDj, we extract its corresponding code snippet and leverage LACCP to locate its
clone pairs. Laterally, the NLP model provides next word suggestions for the LSDs from
the knowledge base available in the training set for each project. Evaluation. To measure
the accuracy of our method in suggesting the log description, we utilize BLEU [247] and

88

ROUGE [206] scores. These scores are well-established for validating the usefulness of an
auto-generated text in prior software engineering and machine learning research, such as
comment and code suggestion [50] and description prediction [145]. Results. We experi-
ment on seven open-source Java systems, and our analysis shows that by utilizing log-aware
clone detection and NLP, our hybrid model, (NLP CC’d), achieves 40.86% higher perfor-
mance on BLEU and ROUGE scores for predicting LSDs when compared to the prior
research [145], and achieves 6.41% improvement over the No-NLP version [124].

3.4.4 RO4: Utilize code clones for predicting other details of log
statements such as log verbosity level and variables.

Motivation. Besides log statement location and its LSD, prediction of other details of log
statements such as Log verbosity level (LVL) and its variables (VAR) are useful research
efforts and the focus of prior research [193, 54, 203], as they further help the developers in
more systematic logging and resolve suboptimal choices of log levels and variables [203].
Approach. Log-aware clone detection, LACCP, is reasonably extendable to predict LVL
and VAR alongside the LSD suggestion. Since we have access to the source code of the
method that we are predicting the logging statement for and its clone pair code snippet, a
reasonable starting point is to suggest the same LVL as of its clone pair, and then augment it
with additional learning approaches such as [193, 54] for more sophisticated LVL prediction.
For VAR prediction, our approach can be augmented with deep learning [209] and static
analysis of the code snippet under consideration [326] to include log variables suggestions
along with the predicted LSD. Preliminary evaluation and results. Our preliminary
analysis for the evaluated projects shows that code clones match in their verbosity levels
in the range of (92, 97)%, which confirms that using the verbosity level of the clone pair,
MDi, is a good starting point for log verbosity level suggestions for MDj. We are pursuing
RO4 as our future work and will provide additional results and findings subsequently.

3.5 Discussion

In this section, we compare and discuss the significance of our approach in relation to other
existing log prediction and suggestion techniques.

Method-level log prediction rationale. Although clone detection (and subse-
quently, log statement prediction) can be performed in different granularity levels, such
as files, classes, methods, and code blocks, however, method-level clones appear to be the

89

most favorable points of re-factoring for all clone types [178]. We emphasize that our ap-
proach also includes all of the logging statements which are nested inside more preliminary
code blocks within method definitions, viz., logging statements nested inside code blocks,
such as if-else and try-catch.

Comparison. Orthogonal to our research, prior efforts such as [346], [166], and [200]
have proposed learning approaches for logging statements’ location prediction, i.e., where
to log. The approaches in [346], [166] are focused on error logging statements (ELS),
e.g., log statements in catch clauses, and are implemented and evaluated on C# projects.
Li et al. [200] provide log location suggestions by classifying the logged locations into
six code-block categories. Different from these works, our approach does not distinguish
between error and normal logging statements, is evaluated on open-source Java projects,
and leverages logging statement suggestions at method-level by observing logging patterns
in similar code snippets, i.e., clone pairs.

Significance. Prior approaches [346, 200] rely on extracting features and training a
learning model on logged and unlogged code snippets. Thus, they can predict if a new
unlogged code snippet needs a logging statement by mapping its features to the learned
ones. Although these methods initially appear similar to our approach in extracting log-
aware features from code snippets [123], we believe our approach has an edge over the prior
work. Because we also have access to the clone pair of the code under development, i.e.,
MDi in (MDi,MDj), this enables us to obtain and leverage the additional data from MDi

to predict other aspects of log statements, e.g., LSD, which the prior work is unable to
do. The significance of our approach becomes apparent in LSD prediction as we utilize the
LSD of the clone pair as a starting point for suggesting the LSD of the new code snippet.
Thus, our approach not only complements the prior work in providing logging suggestions
for developers as they develop new code snippets, but it also has an edge over them by
providing additional context for further prediction of LPS details, such as the LSD and
the log’s verbosity level.

3.6 Summary of Contributions

The contributions that become available as the outcomes of our research are as follows:
1 In RO1, we perform an experimental study on logging characteristics of code clones
and show the potential for utilizing clone pairs for logging suggestions. 2 In RO2, we
introduce a log-aware clone detection tool (LACCP) [123] for log statements’ ‘location’
prediction, and resolve two clone detection shortcomings for log prediction and provide
experimentation on seven projects and compare it with general-purpose state-of-the-art

90

clone detector, Oreo [270]. 3 In RO3, we initially show the natural characteristics of
software logs and that enables us to utilize our findings for the application of NLP for LSD
prediction [126]. We then propose a deep-learning NLP approach, NLP CC’d, to work
in collaboration with LACCP to automatically suggest log statements’ descriptions. We
calculate the BLEU and ROUGE scores for our auto-generated log statements’ descriptions
by considering different sequences of LSD tokens, and compare our performance with the
prior work [145]. 4 Finally, as future work in RO4, we investigate the log verbosity level
and variables prediction based on the information available through code clone pairs.

Thus far, our research findings have been published for RO1 and RO2 in ACM Sym-
posium on Applied Computing (ACM SAC) [123] and IEEE/ACM Conference on Mining
Software Repositories (MSR) [126], respectively. We have also evaluated the trade-offs
associated with the cost of logging statements in our paper accepted in the International
Symposium on Reliable Distributed Systems (SRDS) [127]. Lastly, the research paper sum-
marizing our contributions for RO3 is currently under review [124].

3.7 Conclusions and Future Work

The process of software logging is currently manual and lacks a unified guideline for choos-
ing the location and content of log statements. In this research, with the goal of enhancing
log statement automation, we present a study on the location and description of logging
statements in open-source Java projects by applying code clones and deep-learning NLP
models. We compare the performance of our proposed approaches, LACCP and NLP CC’d,
for log location and description prediction, and show their superior performance compared
to prior work. As our future work in RO4, we will provide automated suggestions for other
details of the LPS, such as its verbosity level and variables.

91

Chapter 4

Code Clones Background

Abstract- Source code clone detection is a well-established area of study for software
systems, and a significant number of detection techniques and tools have been presented
in the literature. Our goal is to illustrate if it is advantageous to utilize code clones for
automatic suggestion and prediction of the location and content of logging statements
inside the source code. In this chapter, we explain the required definitions and provide
the required background to enable source code clones for the purpose of log statement
prediction.

Keywords:
software engineering; source code; code clones; logging statement; automation

4.1 Introduction

Source code clone detection is a well-established area of study for software systems, and
a significant number of detection techniques and tools have been presented in the litera-
ture [261]. One survey conducted by Rattan et al. [261] listed several clone detection tools
existing in the literature. Clone detection is the procedure of locating exact or semantically
similar pieces of source code within or between software systems [270] based on metrics of
the source code snippets. Clone detection is mostly necessary to detect and prevent copy-
paste bugs, maintain software quality, and diminish development costs [271]. Regarding
our research, we demonstrate that searching for similar code snippets (i.e., code clones) is
beneficial in automated log statement placement, and for this reason, we first present the
required background in source code clones.

92

4.2 Source Code Clones

Source code clone detection techniques aim to match exact or similar snippets of code,
called clones, among one or more source code projects [271]. The majority of clones are
created with code reuse or code copy-paste [267]. Clones may have positive and/or negative
impacts. For example, although developers might reuse clones to speed up development
time, this can also introduce copy-paste bugs and introduce development uncertainty and
cost [267, 266]. Clone management and clone research studies depend heavily on the
quality of clone detection tools. In the literature [261], there are four main categories of
code clones, ranging from simply copy-pasting a code snippet (i.e., Type 1 in Listing 4.1),
all the way up to Type 4 which is two code snippets that are syntactically very different
but semantically equal, e.g., implementing a sort method with bubble sort versus merge
sort. The example in Listing 4.1 demonstrates four different types of clones for a function
that implements Fibonacci series :

1. Type 1 - exact clones: two code blocks are exact clones if they are identical with
minor syntactic differences such as in layout, comments, or whitespaces and newlines.
Lines 1-6 in Listing 4.1 show the original function and Lines 9-14 present a Type 1
clone of the original function.

2. Type 2 - renamed clones: two code snippets are renamed clones if they are Type
1 clones with additional modifications such as changes in identifier names, literals
values, etc. As such, a Type 2 clone is called a renamed clone, i.e., renamed variables
(Lines 16-21 in Listing 4.1).

3. Type 3 - near-miss clones: these are clones where the copied fragments are similar
to the original, however, with modifications such as changes in comments, change of
code layout and order of source code elements through blanks and new lines, and
changing the identifiers and literals names and types (Lines 23-30 in Listing 4.1). The
near-miss name comes from the fact that they are nearly missed by clone detection
tools if only looked at syntactical changes of the source code. Very difficult-to-
detect clones in this category, meaning clones that although still exhibit few syntactic
similarities, and they happen to be extremely hard to detect as clones due to their
high degree of syntactic differences, are called twilight zone clones [270] or Type 3+.

4. Type 4 - semantic clones: two pieces of code are semantic clones such as they
implement the same functionally (i.e., similar semantics) but in different syntaxes

93

(Lines 32-42 in Listing 4.1). Line 37 of Listing 4.1 presents a non-recursive imple-
mentation of Fibonacci sequence, compared to the original code at Line 1, which
presents a recursive version.

4.3 Approach

With having the aforementioned types of clones, we hypothesize that if there is a logging
statement in the original implementation of a method snippet, MO, then all of the clones
of MO should also contain a logging statement, as they perform similar functionalities.
Formally speaking, assuming set CCMO

is the set of all code clones of Method MO, i.e.,
CCMO

= {MT1i ,MT2i ,MT3i ,MT4i , ...}, where MTxi is of clone Type x, then:

∃LPSi ∈MO =⇒ ∀MTxi ∈ CCMO
, ∃LPSx ∈MTxi (4.1)

Considering this hypothesis, the idea is if we have an extensive database of logged code,
then we should be able to predict if a newly developed code requires a logging statement
by looking at its clones in the code database. In the upcoming sections, we validate our
hypothesis by an experimental study and predicting if a logging statement is required after
removing the logging statement from the test method and then predicting it through its
clones. Additionally, code clones have symmetry property; meaning that if MTxi is a clone
of MO, MO is also considered a clone of MTxi . Assuming ∼c presents a clone relationship,
then: MO ∼c MTxi =⇒ MTxi ∼c MO; and in a more general term:

∀i, j, Mi ∼c Mj =⇒ Mj ∼c Mi

This attribute implies that it does not matter which of the clones is picked as MO.
Therefore, we define (Mi,Mj), or equally (Mj,Mi), as a clone pair. We utilize this feature
in our experimentation, as for each pair of code clones (Mi,Mj), we initially remove the
logging statement for Mj, and call it M ′

j, i.e., M ′
j ∼c Mj(w/o)LPS, and aim to predict the

existence of a logging statement in M ′
j, with the condition that if we can still match M ′

j

with Mi through code clone features. In the next section, we describe our methodology for
this study.

4.4 Closing Remarks

As we conclude this chapter on the basics of code clones, in the next chapter, we utilize
them for log statement prediction.

94

Listing 4.1: Four different clone categories.

1 / / O r i g i n a l c o d e

2 int fibonacci(int n) {

3 if(n == 0 || n == 1)

4 return n;

5 else

6 return fibonacci(n - 1) + fibonacci(n - 2);

7 }

8 / / C l o n e T y p e 1

9 int fibonacci(int n)

10 {

11 if(n == 0 || n == 1)

12 return n; / / s t o p c o n d i t i o n

13 else

14 return fibonacci(n - 1) + fibonacci(n - 2);

15 }

16 / / C l o n e T y p e 2

17 int CalcFibonacci(int i) {

18 if(i == 0 || i == 1)

19 return i;

20 else

21 return CalcFibonacci(i - 1) + CalcFibonacci(i - 2);

22 }

23 / / C l o n e T y p e 3

24 int calcFibonacci(int i) {

25 if(i == 0)

26 return 0;

27 else if (i == 1)

28 return 1;

29 else

30 return fibonacci(i - 1) + fibonacci(i - 2);

31 }

32 / / C l o n e T y p e 4

33 int getFibonacci(int n){

34 if (n == 0) { return 0; }

35 if (n == 1){ return 1; }

36 int n_2th = 0, n_1th = 1, nth = 1;

37 for (int i = 2; i <= n; i++) {

38 nth = n_2th + n_1th;

39 n_2th = n_1th;

40 n_1th = nth; }

41 return nth;

42 }
95

Chapter 5

Logging Statements Prediction Based
on Source Code Clones

Abstract- Log files are widely used to record runtime information of software systems,
such as the time-stamp of an event, the unique ID of the source of the log, and a part
of the state of task execution. The rich information of logs enables system operators to
monitor the runtime behaviors of their systems and further track down system problems in
production settings. Although logs are useful, there exists a trade-off between their benefit
and cost, and it is a crucial problem to optimize the location and content of log messages
in the source code, i.e., “where and what to log?”

Prior research has analyzed logging statements in the source code and proposed ways
to predict and suggest the location of log statements in order to partially automate log
statement addition to the source code. However, there are gaps and unsolved problems in
the literature to fully automate the logging process. Thus, in this research, we perform an
experimental study on open-source Java projects and apply code-clone detection methods
for log statements’ prediction. Our work demonstrates the feasibility of logging automation
by predicting the location of a log point in a code snippet based on the existence of a
logging statement in its corresponding code clone pair. We propose a Log-Aware Code-
Clone Detector (LACC) which achieves a higher accuracy of log prediction when compared
to state-of-the-art general-purpose clone detectors. Our analysis shows that 98% of clone
snippets match in their logging behavior, and LACC can predict the location of logging
statements by the accuracy of 90+% for Apache Java projects.

An earlier version of this chapter is published in ACM Symposium in Applied

Computing (SAC’2020) [123].

96

Keywords:
software engineering; source code; code clones; logging statement; automation

5.1 Introduction

Gathering feedback about computer systems’ states is a non-trivial task. For this purpose,
it is a common practice to have running programs report on their internal state and vari-
ables, through log files that system administrators can analyze [65] for different purposes in
order to understand system usage in production and postmortem debugging of system fail-
ures. For example, many studies have applied the content of log files to achieve a variety of
goals such as anomaly and problem detection [311, 116], pattern detection and log message
clustering [217, 300], system profile building, and compression of log files [295, 217]. Al-
though there are methods such as aspect-oriented programming [164] (e.g., AspectJ [164])
to support better modularization of the logging code, many industrial and open-source
systems still choose to intertwine the logging code with the feature code [325, 250]. Con-
sequently, the development and maintenance of high-quality logging code as the feature
code evolves is critical to the overall quality of software systems [78].

Listing 5.1 shows an example of a ‘catch clause’ logged from Apache Hadoop project [27].
In this example, two logging statements exist with different ‘severity’ levels on Lines 5 and
8. Log statements can have various severity levels based on their importance and how
the level represents the state of the program. For example, fatal level logging is typically
logged prior to a system failure, and debug level is logged whenever the system debug
mode is active. List of severity levels for Log4j [15], an Apache logging library, includes:
trace, debug, info, warn, error, and fatal. Additionally, each logging statement contains
a static text (e.g., ”Authentication exception:...” on Line 5) and possible variables (e.g.,
ex.getMessage()). This logged information in the ‘catch clause’ will be useful at the time
of debugging in case an exception happens and for failure detection.

Although logs have proven to be useful, adding proper logging statements to the source
code remains a manual, arbitrary, and in some cases an error-prone task [191] due to the
free-form text format of logging statements and lack of a general guideline. Besides, for
practical concerns, the number of logging statements cannot be too few nor too many [166].
On the one hand, logging too little results to miss important runtime information that can
negatively impact the postmortem analysis [324]. On the other hand, too many logging
points can consume extra system resources at runtime, and impair the system performance,
as logging is an I/O intensive task. Therefore, thoughtful log placement methods aim to

97

Listing 5.1: Catch clause logging example from Apache Hadoop.

1 catch (AuthenticationException ex) {

2 errCode=HttpServletResponse.SC_FORBIDDEN;

3 authenticationEx=ex;

4 if (LOG.isDebugEnabled ()) {

5 LOG.debug("Authentication exception: " + ex.getMessage (),ex)

;

6 }

7 else {

8 LOG.warn("Authentication exception: " + ex.getMessage ());

9 }

10 }

record valuable information at log points of interest systematically, and, simultaneously,
not to introduce unnecessary system overhead.

Considering the trade-offs as mentioned above for logging, our goal is to perform an
experimental study to enable predicting the location of log statements based on source code
features in order to automate log statement placement. Prior recent studies have introduced
methods and tools for partially automating the logging process and/or optimizing the
number of log statements. For example, proposed machine learning methods [117, 346]
predict whether or not a code snippet needs a logging statement by training a model on a set
of logged code snippets, and testing it on a new unlogged code set, i.e., supervised learning.
However, prior researches failed to propose a general solution based on an arbitrary code
snippet, as they mostly concentrate on error log statements such as exception handling
logging [346]. Thus, for introducing a general approach for log prediction and automation,
we consider the application of code clone detection methods. Code clone detection is
the task of locating syntactically exact or similar snippets of source code (with equal
semantics) within or between software systems based on contextual metrics of the source
code snippets [270]. Our goal is to predict the location of logging statements within the
source code. As we will show in the following, searching for similar code snippets (i.e.,
code clones) can be beneficial in automating the logging statement generation, and for this
reason, we conduct an experimental study on code clones. We then utilize code clones for
logging statements prediction.

To summarize, the key contributions of this research are:

� We perform an experimental study of logging practices in open-source software sys-
tems, and investigate the possibility of using source code clones for predicting the
location of log statements.

98

� We introduce a set of Research Objectives (ROs) to help us formulate log location
prediction, which we believe is the first work to consider code clones for log location
prediction. Based on the ROs, we then propose our findings in order to utilize code
clones for log statements’ prediction and suggestion.

� We show the feasibility of log statement prediction with a set of experiments by
removing the log statements and then predicting them by utilizing their code clones.

� We propose our log-aware code clone detection tool (LACC) which significantly in-
creases log prediction accuracy when compared against another state-of-the-art clone
detection tool [270].

The rest of this chapter is organized as follows. Section 5.2 describes the related work for
logging prediction and code clone detection. Section 5.3 provides the necessary definitions
and our approach for logging statement prediction. In Section 5.4, we explain our study
methodology and discuss the pertinent research objectives. Then, Section 5.5 explains
our findings from the experimental study, and we introduce LACC in Section 5.6. In
Section 5.7, we mention valid threats to the generalization of our research. Finally, we
present our conclusions and future directions in Section 5.8.

5.2 Related Work

In this section, we discuss the prior work related to our research. In our work, we per-
form an experimental study to predict the location of logging statements by utilizing code
clones. Therefore, we discuss related work along the lines of the empirical analysis of log
statements, logging prediction research, and code clone detection approaches.

5.2.1 Empirical Analysis of Log Statements

Several prior research efforts have explored different logging practices in open-source as well
as proprietary software projects. Yuan et al. [325] studied logging practices in open-source
software systems. It appeared to the authors that software developers spend a significant
amount of time modifying log messages whenever logging issues arise. To facilitate this
concern, they proposed a simple checker to detect logging issues automatically. In a follow-
up study, Yuan et al. proposed LogEnhancer [326], a tool to enhance logging statements by
adding additional information to them (e.g., live variables) in order to improve postmortem

99

analysis. Fu et al. [117] analyzed 100 randomly chosen log statements from two proprietary
software systems from Microsoft written in C#. They classified the log statements into
five usual categories of logging among them exception handling, assertion-check values, and
function return-value checks. They further performed a survey among Microsoft employees
on where do developers put logging statements. In contrast to these studies, our research
focuses on finding code clone features that can help an automatic logger to predict the
location of source code logging statements.

5.2.2 Logging Statement Prediction

Yuan et al. proposed a tool, ErrorLog [324], to report error handling code (e.g., ‘catch
clause’) that is not logged. Then, they would add logging statements to the reported
unlogged catch clauses to improve them and facilitate failure diagnosis. ErrorLog logs
exception code blocks in C# projects, as a partial step towards automating logging state-
ments. Later on, Zhu et al. [346] proposed LogAdvisor, a learning-based framework, for
logging prediction which aims to automatically learn the developers’ common logging prac-
tices. Their method learns logging practices from existing code repositories for ‘focused
code snippets’, i.e., ‘exception’ and ‘function return-value check’ code blocks. LogAdvisor
looks for and extracts textual and structural features within these types of code blocks
with logging statements. As such, LogAdvisor only focuses on exception handling and
function return-value logging which is rather used for error handling than being a general
approach. In a recent work, Lal et al. [185] proposed a feature based method for logging
prediction within ‘catch’ and ‘if-else’ blocks. Our research is different from these works as
we consider logged methods, which is a more generic approach, instead of a particular code
block like catch clause which focuses on error logging. Moreover, we apply clone detection
for identifying similar logging patterns, which we believe is the first work to do so.

5.2.3 Code Clone Detection

Source code clone detection is a well-established area of study for software systems, and
a significant number of detection techniques and tools have been presented in the litera-
ture [261]. Clone detection is the procedure of locating exact or semantically similar pieces
of source code within or between software systems [270] based on metrics of the source
code snippets. Clone detection is mostly necessary to detect and prevent copy-paste bugs,
maintain software quality, and diminish development costs [271]. Regarding our research,
we demonstrated that searching for similar code snippets (i.e., code clones) is beneficial in

100

automated log statement placement, and for this reason, we conducted an experimental
study on code clones for log statement prediction purposes. Additionally, we improved the
accuracy of logging statements prediction with log-aware clone detection (LACC).

5.3 Definitions, Background, and Approach

In this section we first review the required definitions for this work followed by our approach
for applying code clones.

5.3.1 Definitions

Code Blocks. A program’s source code consists of a set of code blocks, CB = {cb1, cb2, ..., cbn},
such as method definition, if-else, switch-case, while-loop, etc.

Log Print Statement (LPS). A log print statement records an event that occurs
in the running software with a severity level, a static text (i.e., description), and optional
variables (Listing 5.1).

Log Point of Interest (LPI). A point of interest for logging is defined as a place in
the source code that has been commonly logged by the developers, and that point follows a
particular pattern. For example, many developers tend to put an error log message inside
the “try-catch” block. In this work, we consider the developers chosen points of logging as
ground truth and evaluate the accuracy of our prediction by comparing with these points.
In this research, we consider LPIs at the method level, i.e., logging statements that exist
inside method definitions code blocks (CBm). This approach also includes all of logging
statements which are nested inside more preliminary code blocks within method definitions,
such as logging statements nested inside code blocks such as if-else, try-catch, etc.

Method Log Placement (MLP). A MLP placement, CBm, is a subset of CB where
at least one LPS exists in each method code block. In our research, considering log pre-
diction at method-level LPI, we consider CBm ⊂ CB as the set of all method definitions
with at least one logging statement in their body. With the definitions mentioned above,
we continue with the problem definition and our solution:

Problem. To automate the log statements placement and predict the proper set,
CBm ⊂ CB, i.e., the set of method definitions with a logging statement, in the software
systems source code.

101

Solution. For this purpose, we first perform an experimental study on the attributes
of method-level code blocks containing a logging statement by use of code clone detection
tools. Then, we define pertinent research objectives (ROs) regarding the logging behaviour,
in the sense of consistency of logging statements among code clones, and whether or not we
can utilize this information for logging automation and prediction. Later on, we predict the
existence of logging statements in methods with having their logging statements removed.

5.3.2 Source Code Feature Formulation

In order to be able to predict log statements, we first need to define pertinent source code
features, which we utilize to predict whether a code block requires a log statement. We
use these features to feed a machine learning tool (Figure 5.1) in order to identify similar
code snippets (i.e., clone pairs), which we argue should follow similar logging patterns.

Functional and structural features are the two main categories of source code features.
For example, many developers tend to put an error-log message inside “try-catch” blocks.
The try-catch block is an example of a structural feature. On the other hand, functional
features are concerned with modules of the system and how they interact with each other.
For example, a code block, cbi, might be logged as other modules have frequently referenced
to it. Functional and structural features can be quantitatively measured by classifying them
based on their types: boolean, numerical, and string features.

Let F be the set of all features for the source code under consideration, i,e., F =
{f1, f2, ..., fn}. For example, Table 5.2 lists several log-related features for our analysis.
Now, let us assume LPS(cbi) to present the existence of a log statement (LPS) in a given
block, cbi. As we mentioned earlier, we focus on method definition code blocks, and we
extract the methods that contain logging statements, i.e., LPS(cbM) == 1. With this
introduction, we define boolean, numerical, and string features as follows:

Boolean features

A boolean feature has values of 0 or 1. If Feature fn exists in Block cbi then:

FrB(cbi, fn) =

{
1, if fn exists in block cbi

0, otherwise

For example, considering the existence of a logging statement in a method definition, if
there is a logging statement in Block cbi then: FrB(cbi, fLPS(cbi)) == 1.

102

Code Clone Detection }

Source Code
Methods w/ Logging
Statements

Hadoop Java
Source Code

Tomcat Java
Source Code

Source Code
Features

Machine
Learning
Prediction

Clone Pairs

Clone
Categories

Analysis

1
2

3

4

Hive Java
Source Code

Figure 5.1: Methodology for the experimental study.

Numeric features

Let nfn(cbi) be the count of occurrence of Feature fn that exists in the code Block cbi,
therefore:

FrN(cbi, fn) =

nfn(cbi), nfn(cbi)>0, the count of

occurrence of fn in block cbi

0, otherwise

Note that FrN(cbi, fn) can be larger than 1, as Block cbi can have multiple occurrence
of this feature. For example, considering the number of statements (NOS) in the method
body (Mi) in Listing 5.2 as the feature, it has eight statements, i.e., FrN(Mi, NOS) == 8.

String features

These features include log related keywords, such as log function wrappers for Log4j [15],
e.g., log.info(*) and logger.info(*), and log severity levels, e.g., error, debug, info, fatal, etc.
These features help with our log-aware clone detection, as we can distinguish the existence
of log statements and calculate specific metrics, such as the number of tokens, NTOK in
Table 5.2, based on the number of logging statement that exists in the method body. In
the next section, we discuss code clones and how we utilize them for logging prediction.

5.4 Study methodology

This section consists of the toolchain steps and our algorithm for log prediction. The
details of each step are as follows.

103

5.4.1 Toolchain

Figure 5.1 illustrates the four steps in our toolchain for log statement prediction:

1. In Step 1, we select and obtain open-source Java projects from their Git repositories.
We picked the projects based on factors of interest such as the age and size of the
project (in the number of source code lines), popularity (being well-established) and
stability of the project, and logging index of the project [78]. After inquiring the long
list of available projects, we selected three Apache Java projects: Hadoop, Tomcat,
and Hive.

2. In Step 2 of Figure 5.1, we extract method definitions containing logging statements
by applying JavaParser [297]. Initially, we parse the source code to its abstract
syntax tree (AST) which is the hierarchical representation of the code. We use the
AST of the source code to access Java method definitions. We look for methods with
a logging statement in the tree, and then pass them to Step 3 for clone detection.
Referring to Formula 4.1, in Step 2, we extract all of the MO methods which have at
least one LPS in their method body.

3. In Step 3, we perform code clone detection [270] on the extracted code snippets
(MO methods) from Step 2. We briefly review clone detection steps in the following.
Initially, we apply SourceCC [271] and Oreo [270], which are the state-of-the-art
general purpose code clone detection tools for code clone analysis on the extracted
Mos in Step 3 of Figure 5.1. Oreo is capable of detecting clones up to Type 3+ which
enables us to compare code clones that contain a logging statement more accurately.
Clone detection tool extracts source code features [270] from the method definition
such as McCabe’s cyclomatic complexity [223], number of statements, number of
expressions, etc. These features are used for detecting Type 1 and 2 clones. In
order to detect Type 3 and higher-level clones, [270] uses a deep learning (DL) model
trained on a massive set of code snippets (50k Java projects from Github). This
extensive training set minimizes the risk of overfitting [75] for the testing set. The
DL model predicts if two code snippets are clones or not, which is then used for our log
statement analysis. We review more details of the DL model training in Section 5.5.6.
The output of Step 3 is the set of all clones for methods with logging statements.
Later on, in Section 5.6, we update source code features to be log-statement-aware
and achieve a higher prediction accuracy.

4. Finally, in Step 4, we perform our analysis on the results of clone detection and
collect statistics on the clone types and log severity levels of the code clones. We

104

also investigate if code clones have similar logging behaviour (i.e., the presence of
a logging statement in both clone pairs), as well as if their logging severity levels
matches or not (e.g., whether or not both clone snippets have info level or not). We
also perform experimentation on the prediction accuracy of logging statements.

5.4.2 Algorithm

Algorithm 1 summarizes our procedure for log prediction. We initially parse the source
code files from Java Git repositories to their AST representations (Line 1). We define
CCMo(pairs) as the set of all clone pairs of MethodMo, i.e.,: CCMo(pairs) = {(Mo,MTxi)|∀MTxi ∈
CCMo}. In Line 2, we extract all method definitions with at least one LPS (log print state-
ment) from the AST. Then, in the for-loop on Lines 4-9, we initially find all clone pairs
for each method definition Mo. Then, we create clone pairs of (Mo,MTxi), and add them
to the set of all clone pairs, Clonepairs. In the for-loop on Lines 7-9, for each clone pair
(Mi,Mj), we initially remove the logging statement from Mj and name it M ′

j. Then, we try
to find clones of M ′

j on Line 11. If we are successful to detect Mi as a clone pair for M ′
j, i.e.,

M ′
j ∼c Mi, then we increment logPredicted on line 12. Otherwise, misPredicted is incre-

mented on line 14. In the set of MlogPred, we keep track of all M ′
js which have been matched,

along with the corresponding logging print statement from their corresponding clone pairs,
Mis. This information can be used at a later time for suggesting a logging statement for
M ′

j based on the logging statement retrieved from its clone, Mi, i.e., LPS(Mi), which we
keep track in MlogPred set. Finally, on Line 16, the algorithm returns the accuracy of the
prediction and MlogPred, the set of M ′

js with the proposed logging statements, LPS(Mi).

An example of how this approach is useful for logging automation is that: “assume Mi

has been previously developed in the code base. Now, another developer is implementing
M ′

j at a later time. An automated log suggestion tool can predict that if this new snippet
of code, M ′

j, needs a logging statement by finding its clone Mi in the code base. Then, the
tool can suggest to the developer to add a log statement based on the prediction outcome.
It can even suggest the static text for the logging by suggesting the text existing in its
clone log statement”. In the next section, we discuss our research objectives as a roadmap
for logging statement prediction.

105

Algo. 1: Log Statement Predictor

Input: Java source code repositories
Output: Log statement prediction, prediction accuracy

1 sourceCodeAST ← Parse(sourceCode);
2 MethodsLPS ← extract(sourceCodeAST , exist(LPS));
3 clonepairs ← {};
4 for (∀Mo ∈MethodsLPS) do
5 CCMo ← findClones(MT ix)|MT ix ∼c Mo;
6 CCMo(pairs)← createPairs(CCMo);
7 clonepairs ← CCMo(pairs)

⋃
clonepairs;

8 logPredicted← 0;
9 misPredicted← 0; MlogPred ← {};

10 for (∀(Mi,Mj) ∈ clonepairs) do
11 Mj′ ← removeLPS(Mj); if Mi ∈ findClones(Mj′) then
12 logPredicted++ ;
13 MlogPred ←MlogPred

⋃
(M ′

j, LPS(Mi)); else
14 misPredicted++ ;

15 Accuracy =
logPredicted

logPredicted+misPredicted
;

16 return MlogPredicted, Accuracy;

5.4.3 Research Objectives on Clone Detection for Logging State-
ment Prediction

In order to utilize code clones for logging prediction, we perform an experimental study on
logging statements in open-source software systems. We examine large and well-established
open-source projects and pursue three research objectives (ROs). As explained, our focus
is on the methods of the source code that contain at least one logging statement. Then,
we can identify method code clones and review their logging characteristics. We plan out
the following research objectives:

1. RO1: demonstrate that code clones are consistent in their logging statements and
their log severity level (e.g., does a clone pair apply a matching info or warn log
severity level?).

2. RO2: extract the categories of code clones with logging statements (i.e., Type 1, 2,

106

or 3+).

3. RO3: apply method level code clone detection for logging statement placement
prediction.

In the following section, we pursue answers for the ROs mentioned above and explain how
these help in logging statement prediction and automation.

5.5 Experimental Study

In this section, we conduct experiments on the proposed ROs as well as the accuracy of
logging statements prediction. First, we explain the rationale behind selecting method-level
logging prediction and review the characteristics of the systems under study.

5.5.1 Method-level clone detection and logging prediction

Clone detection can be done in different levels of granularity, such as files, classes, methods,
if-else blocks, statements, or even sequences of source lines. However, method-level clones
appear to be the most favourable points of refactoring for all clone types. They tend to have
a considerable amount of code in common, and are the meaningful clones which are also
useful for software maintenance and evolution phases [178]. Therefore, in this research,
we consider LPIs at the method level, i.e., logging statements that exist inside method
definitions code blocks (CBm). We emphasize that our approach also includes all of the
logging statements which are nested inside more preliminary code blocks within method
definitions, such as logging statements nested inside code blocks such as if-else, try-catch,
etc.

5.5.2 Systems under study

Based on the prior research on open-source projects in [78], we selected three open-source
Java projects (i.e., Apache Hadoop, Tomcat, and Hive) that are considered logged intensive
and are stable and well-used in the software engineering community. Table 5.1 summarizes
the line number of source code and the number of logging statements in each project. The
last row in Table 5.1 presents the number of logs per thousand lines of code (KLOC). All
of these projects use Apache Log4j library [15] for logging statements, which includes 6

107

log severity levels: fatal, error, warn, info, debug, and trace. We observed that although
all these projects are from the Apache umbrella, they are from different domains and are
developed by different teams, and cover different logging practices. In the following, we
review and explain our findings concerning each RO.

XXXXXXXXXXXXStatistics
Projects

Hadoop Tomcat Hive

total lines of code 2.10M 0.96M 1.60M

of log statements 16,202 5,215 8,312

of log statements per KLOC 7.72 5.44 5.20

Table 5.1: Selected projects statistics for the experimental study.

5.5.3 RO1: demonstrate that code clones are consistent in their
logging statements and their severity level.

Approach

for this RO, we initially analyze the source code of the selected projects and extract the
clone pairs, as plotted in Figure 5.1 and explained in Algorithm 1. Then, for each project,
we calculate the distribution of logging statements severity levels for the clone pairs.

Outcome

in Figures 5.2a and 5.2b, the left vertical axes show the ratio of the number of each log
severity level (i.e., info, debug, etc.) to the total number of logs and the secondary vertical
axis (on the right) presents the accumulative percentage of logs in each category. For
example, in Figure 5.2a, 47.4% of the logging statements in the Hadoop project are of info
severity level and clone pairs are matching in their severity level, i.e., for clonepair (Mi,Mj):
if Mi(LPSinfo) =⇒ Mj(LPSinfo), or generally speaking, for severity level sl :

if Mi(LPSsl) =⇒ Mj(LPSsl)

Figures 5.2a and 5.2b illustrate, for Hadoop and Tomcat respectively, that accumula-
tively over 98% (by adding all the values on the figure and then ratio * 100) of the clones

108

0.474

0.2566

0.1482
0.0988

0.0111 3e-04
0.00

0.25

0.50

0.75

1.00

0

25

50

75

100

info error debug warn trace fatal

R
at
io

P
ercentage

Severity
debug
error
fatal
info
trace
warn

(a) Log severity level breakdown for Hadoop.

0.368

0.2513 0.2107
0.1345

0.0127 0.0025
0.00

0.25

0.50

0.75

1.00

0

25

50

75

100

debug error warn info trace fatal

R
at
io

P
ercentage

Severity
debug
error
fatal
info
trace
warn

(b) Log severity level breakdown for Tomcat.

Figure 5.2: Log severity level breakdown for Hadoop and Tomcat projects.

match in their log severity. We calculate the accumulative value by adding up the per-
centage value of all the severity levels. Therefore, only in ∼2% of the log statements the
severity level differs in clone pairs, plotted in Figure 5.3. We omitted Hive log severity level
breakdown due to limited space, and as we likewise observed similar trends for Hive clone
pairs with error severity level being the highest contributor. This observation signifies that
code clones can be used to predict the severity level of logging statements from one code
clone to its clone pair. One application of this observation is to automatically suggest the
logging severity of a logging statement in a newly developed snippet of code, by searching
for its clone pairs in the repository.

Log severity level mismatch: here mismatch means that both clone pairs have a
logging statement but the severity level is inconsistent, e.g., Mi uses error severity level
and Mj uses warn level instead. Figure 5.3 illustrates, for Hadoop, Tomcat, and Hive that,
respectively, only 1.11%, 2.03%, and 0.06% of the clone pairs mismatch in their log severity
level. Therefore, 98% or higher percentage of the clone pairs follow the same log severity
levels in their logging statements.

Finding 1: clone pairs are consistent in the existence of logging state-
ments in them, and we can use the clones to predict the severity level of
logging statements with a high accuracy.

109

1.11%

2.03%

0.06%
0

1

2

3

4

5

Hadoop Tomcat Hive

P
er
ce
nt
ag
e

Projects
Hadoop
Hive
Tomcat

Figure 5.3: Log severity level mismatch for three Java projects.

5.5.4 RO2: extract the categories of code clones with logging
statements.

Approach

After the clone pairs are extracted, we look into each clone pair to determine their clone
types. We apply Levenshtein distance [190] in conjunction to the output of Step 3 in
Figure 5.1 to categorize clones into different types. In this approach, the entire method code
snippet (i.e., method’s name and method’s body) is treated as a string, and we calculate
the difference using character-based edit distance between Mi and Mj. For example, the
Levenshtein distance between “int fibonacci(int n)” and “int calcFibonacci(int i)” is 6, as
it requires 6 substitutes to make them identical.

Outcome

In Figure 5.4 the vertical axis shows the ratio of the number of each clone type (i.e., Type 1,
2, and 3+) to the total number of code clones for all three projects, i.e., Hadoop, Tomcat,
and Hive. From Figure 5.4 we can observe that the majority (in the range of 78% to
90%) of code clones are of Type 3 or beyond (3+), and the code clones are matching in
the existence of a logging statement. Only a small portion of clones are Type 1 and 2.
This observation signifies the usefulness of clone detection in distinguishing the location
of log statements. In other words, although two snippets of clone pairs are syntactically
different to a high extent in clone Type 3 and beyond (3+), but we can still match their
logging behavior, which is beneficial in predicting the location of a logging statement in an
unlogged code snippet from its clone pairs in the code base.

110

0.8952

0.081
0.0238

0.7824

0.1969

0.0207

0.8619

0.1355

0.0026
0.00

0.25

0.50

0.75

1.00

Hadoop Tomcat Hive

R
at

io

Types
Type 1
Type 2
Type 3+

Figure 5.4: Clone types breakdown for Hadoop, Tomcat, and Hive.

Finding 2: although code clones syntaxes can become significantly dif-
ferent (i.e., Type 3+), they still follow similar patterns of logging state-
ments.

5.5.5 RO3: apply method level code clone detection for logging
prediction.

From previous ROs, we can infer that code clones are helpful in the prediction of logging
statements location, as well as their severity level. These findings can enable us to predict
and suggest logging statements automatically. As we explained briefly before, a practical
scenario can be such as assuming a developer is developing a new snippet of source code.
Being able to identify clone pairs of this new code snippet as the developer is entering it
by looking into the code base, can be beneficial to suggest to the developer if a logging
statement is recommended. This scenario can be even extended to multiple source code
projects, and bring intra- and/or inter-project logging suggestions. The latter is useful for
small projects in which there is not a sufficient prior code base, which is commonly referred
to as the project’s “cold start” phase.

5.5.6 Log Prediction

In this experiment, we initially run the non-modified clone detection tool (i.e., Oreo [270])
on the source code base of three projects. In order to ensure variability in the dataset, the
machine learning engine of the clone detector is trained on 50K randomly selected Java
projects from Github [270]. Randomly, 80% of each project is selected for training and

111

the remaining 20% for testing. Additionally, one million pairs from the training set of 50K
projects are kept separately for validation to avoid bias and overfitting [75]. With this
setup, the authors of [270] showed that Oreo outperforms every other compared tool in the
accuracy of clone detection. We use this model on our testing set (Hadoop, Tomcat, and
Hive projects) such that for each detected code clone pair of (Mi,Mj), we initially remove
the logging statement for Mj and call it M ′

j. Then, we aim to predict the existence of a log-
ging statement in M ′

j if we are still able to match M ′
j with Mi through code clone features.

The result of this experiment is shown in Figure 5.5. Gray bars represent the accuracy of
log statement prediction for three different projects, which is in the range of (43%, 97%)
by applying the state-of-the-art general-purpose clone detection tool, Oreo [270].

5.5.7 A Clone Detection Shortfall

Note that, in the experiment in Section 5.5.6, we used the same source code features as the
general-purpose clone detection tool uses [270]. By manually investigating some of the clone
mismatches, we noticed the main cause for low prediction accuracy in some cases (e.g., in
the Tomcat project) is that the eliminated logging statement(s) contributed to a significant
portion of the method body, and therefore, after their removal, a method’s source code
features significantly changed which resulted in a mismatch from the clone detector. For
example, in Listing 5.2, Methods Mi and Mj are initially considered clone pairs. However,
after removing four logging statements from Mj, on Lines 4, 6, 7, and 9, and resulting in
M ′

j, M
′
j becomes significantly different when compared to Mi, and therefore, it becomes

difficult for general-purpose clone detection techniques [270] to capture the similarity of
the semantics excluding the logging behavior. Therefore, we propose a log-aware clone
detection technique by updating source code features.

5.6 Log-Aware Code Clone Detector (LACC)

As we noticed, the main cause for average accuracy for some projects in Figure 5.5 is that
the eliminated logging statement(s) contributed to a significant portion of the method’s
body, and therefore, after their removal, a method’s source code features significantly
changed which resulted in a mismatch (Listing 5.2). To be more accurate, we also discard
the surrounding code if their sole purpose is for adding a condition for logging, such as if
blocks on Lines 18 and 20 in Listing 5.2. In order to achieve a log-aware clone detection
with higher prediction accuracy, we have remodelled the features in Table 5.2 in the clone

112

Listing 5.2: Clone mismatch example after removing log statements.

1 / / M _ i

2 public Exception doAbortedPOSTTest(AbortedPOSTClient client , int

status , boolean swallow) {

3 Exception ex = client.doRequest(status , swallow);

4 if (log.isDebugEnabled ()) {

5 log.debug("Response line: " + client.getResponseLine ());

6 log.debug("Response headers: " + client.getResponseHeaders

());

7 log.debug("Response body: " + client.getResponseBody ());

8 if (ex != null) {

9 log.info("Exception in client: ", ex);

10 }

11 }

12 return ex;

13 }

14
15 / / M ’ _ j ; i . e . , M _ j a f t e r r e m o v i n g l o g g i n g s t a t e m e n t s

16 public Exception doAbortedUploadTest(AbortedUploadClient client ,

boolean limited , boolean swallow) {

17 Exception ex = client.doRequest(limited , swallow);

18 / / i f (l o g . i s D e b u g E n a b l e d ()) { / / l o g g i n g - d e p e n d e n t c o d e i s

a l s o d i s r e g a r d e d .

19 / / l o g g i n g s t a t e m e n t s r e m o v e d

20 / / i f (e x ! = n u l l) {

21 / / l o g g i n g s t a t e m e n t r e m o v e d

22 / / }

23 / / }

24 return ex;

25 }

113

90%

43%

98%

59%

98%97%

0

25

50

75

100

Tomcat Hadoop Hive

P
er
ce
nt
ag
e

Tools
CC-Oreo
LACC

Figure 5.5: Percentage of log prediction accuracy.

detection algorithm to understand and capture log statements and consider them appro-
priately for the case of clone detection. As such, we introduce LACC for log-aware clone
detection. In Table 5.2, SLOC includes all lines of the source code (such as comments,
brackets({}) for if-else blocks, etc.; however, NOS includes only executable expressions in
the method definition.

By introducing the features in Table 5.2 to be log-aware, we modify the clone detection
phase to understand log statements, and incorporate accordingly in calculating these fea-
tures such that methods are detected as clone pairs regardless of the presence of logging
statements. Concisely, we perform the following steps for LACC:

� Scan the source code AST and locate methods with logging statements, Mis.

� Recalculate the features based on the existence of the logging statements and
logging-related code (Listing 5.2). Features are updated in a way that methods
are detected as clone pairs regardless of the presence of logging statements,
i.e.,
Fr(Mi) ∼ Fr(Mj) =⇒ Frupdated(Mi) ∼ Fr(M ′

j).

� As LACC performs log-aware feature calculation, it understands the log
changes while processing the source code, and it achieves a higher log pre-
diction accuracy.

Figure 5.6 partially depicts LACC, which is similar to our toolchain presented in Fig-
ure 5.1. The green box has been updated to incorporate log-aware feature calculation. For
example, in Listing 5.2, removing {log.debug(”Response line: ” + client.getResponseLine())},
causes the number of tokens for M ′

j (i.e., NTOKM ′j
) to decrease by 5 when compared to

NTOKMi
. Similarly, SLOCM ′j and NOSM ′j values decline as an executable line of M ′

j has
been removed. LMETM ′j and XMETM ′j values also potentially decrease as the omitted

114

Feature Description

NOS Number of method statements

NEXP Number of expressions

NTOK Number of tokens

LMET Number of local method calls

XMET Number of external method calls

SLOC Source lines of code

Table 5.2: Method-level log related features.

line makes references to other methods. The more logging statements exist in Method Mj,
the more source code features will diverge for Mi and M ′

j after log statements are removed.
With the LACC design, we accommodate for these feature changes accordingly.

Yellow bars in Figure 5.5 show the accuracy of our tool, LACC, for log statement
prediction for three different projects, which is in the range of (90%, 98%) and significantly
outperforms CC-Oreo [270], the gray bars in Figure 5.5.

Source code methods
w/ logging statements

Log-aware source
code features

Machine learning
prediction

Fvector(NTOK, SLOC, NEXP,...)

Figure 5.6: LACC updated section.

Finding 3: we can predict and suggest the location and severity level of
logging statements in the source code with high accuracy in the range of
(90%, 98%) through our improved log-aware clone detection tool (LACC).

5.7 Threats to validity

Threats to validity are concerned with the external and internal generalization of our work.
External validity discusses how factors outside our dataset can influence our analysis and
conclusion, and internal validity concerns with internal assumptions that might impact our
analysis. Below, we summarize external and internal threats.

115

5.7.1 External Validity

The external threats to validity reflect on the generalization of our work to other such
software projects and programming languages. In this research, we conducted our log
statement analysis on three open-source Java projects that are considered log intensive
and are well-established projects [78]. We assumed our approach is independent of the
underlying programming language that the source code is written in. However, since other
software systems, as well as other programming languages, may follow different logging
practices, our findings may not accurately extend and generalize to other such systems.

5.7.2 Internal Validity

In this work, we initially depend on the code clone detection accuracy. False positive
clone detection can impact our analysis. The selection of source code features can also
influence the accuracy of log-aware clone detection. In our research, we studied “method-
level” (in this case Java methods) code snippets which prior research has shown are the
most meaningful type of clones for software evolution and maintenance [178]. However,
this assumption might put a limitation on the number of clone snippets that we can detect.
One approach is to generalize this study to an arbitrary code block, and, therefore, be able
to detect more elementary code clone snippets and have better matches on each possible
piece of the source code.

5.8 Closing Remarks

Software developers insert logging statements in the source code in various places in order to
improve software development and diagnosability. Nevertheless, this process is currently
mostly manual, and it does lack a unified guideline for the location and content of log
statements. To contribute to log statement automation, in this chapter, we presented
an experimental study with pertinent ROs on the log statements’ placement in open-
source Java projects with the application of code clones to detect the location of log
statements. Our analysis of three open-source Java systems shows that 98% of code clones
are consistent in their logging statements. Our experiments show understanding, detecting,
and utilizing the clone snippets in the source code is beneficial for predicting the location
of log statements. Hence, we proposed LACC, which achieves a higher accuracy (90%+)
of log prediction when compared to the state-of-the-art clone detectors.

116

As our future work, we look into expanding the log-aware source code features which
incorporate log-related behavior and are beneficial for achieving higher accuracy of log
statements’ placement prediction. We will pursue developing a tool to predict and suggest
not only the location, but also the content and severity level of log statements for an
unlogged code snippet by searching among its logged clone pairs.

117

Chapter 6

Borrowing from Similar Code: A
Deep Learning NLP-Based Approach
for Log Statement Automation

Abstract- Software developers embed logging statements inside the source code as an im-
perative duty in modern software development as log files are necessary for tracking down
runtime system issues and troubleshooting system management tasks. Prior research has
emphasized the importance of logging statements in the operation and debugging of soft-
ware systems. However, the current logging process is mostly manual, and thus, proper
placement and content of logging statements remain as challenges. To overcome these chal-
lenges, methods that aim to automate log placement and predict its content, i.e., ‘where
and what to log’, are of high interest. Thus, we focus on predicting the location (i.e.,
where) and description (i.e., what) for log statements by utilizing source code clones and
natural language processing (NLP), as these approaches provide additional context and
advantage for log prediction. Specifically, we guide our research with three research ques-
tions (RQs): (RQ1) how similar code snippets, i.e., code clones, can be leveraged for log
statements prediction? (RQ2) how the approach can be extended to automate log state-
ments’ descriptions? and (RQ3) how effective the proposed methods are for log location
and description prediction? To pursue our RQs, we perform an experimental study on
seven open-source Java projects. We introduce an updated and improved log-aware code-
clone detection method to predict the location of logging statements (RQ1). Then, we
incorporate natural language processing (NLP) and deep learning methods to automate
the log statements’ description prediction (RQ2). Our analysis shows that our hybrid
NLP and code-clone detection approach (NLP CC’d) outperforms conventional clone de-

118

tectors in finding log statement locations on average by 15.60% and achieves 40.86% higher
performance on BLEU and ROUGE scores for predicting the description of logging state-
ments when compared to prior research (RQ3). Our work demonstrates the effectiveness
of borrowing context from similar code snippets for automated log location and description
prediction.

Keywords:
software systems, software automation, logging statement, logging prediction, source code,
code clones, deep learning, NLP

An earlier version of this chapter is under review in the ACM Journal of Trans-

actions of Software Engineering and Methodology (TOSEM) [124].

6.1 Introduction

Developers embed logging statements into the software’s source code to gather feedback
on the computer systems’ internal state, variables, and runtime behavior as a common
practice. While the system is running, the output of logging statements is recorded in log
files, which developers and system administrators will review at a later time for various
purposes, such as anomaly and problem detection [311, 116], log message clustering [217,
300], system profile building, code quality assessment [279], and code coverage analysis [82].
Additionally, the importance and depth of knowledge available in logs has also flourished
the development of commercial log analysis platforms such as Splunk [43] and Elastic
Stack [22]. Figure 6.1 shows a log print statement (LPS) that contains a textual part
indicating the context of the log, i.e., description, a variable part, and a log verbosity level
indicating the importance of the logging statement and how the level represents the state
of the program. Verbosity levels for Log4j [15], an Apache logging Library, include: trace,
debug, info, warn, error, and fatal.

log.warn(“Cannot find BPService for bpid=” + id);
level | description (LSD) | variable

Figure 6.1: A log example with level, description, and variable parts.

Due to the free-form text format of log statements and lack of a general guideline,
adding proper logging statements to the source code remains a manual, inconsistent, and
often an error-prone task [78, 79]. In addition, in some cases developers forget to even

119

add a log statement in the first place, i.e., missing log statements [142, 202]. Moreover,
because logging inherently introduces development and I/O cost [339, 104, 127], developers
often struggle to decide the number, location, and description of logging statements effi-
ciently [166]. Logging insufficiently may cause missing important runtime information that
can negatively affect the postmortem dependability analysis [324], and unnecessary logging
can consume extra system resources at runtime and impair the system’s performance as
logging is an I/O intensive task [339, 104, 127].

Motivated with the aforementioned challenges, i.e., 1) ad hoc and forgetful logging prac-
tices, and 2) cost associated with inefficient logging, prior methods aiming to automate log-
ging location and predict the log statements’ description (LSD), i.e., the ‘static text’ of
logging statement, are high in demand. These approaches generally aim to automate the
logging process and predict whether or not a code snippet needs a logging statement by
utilizing machine learning techniques to train a model on a set of logged code snippets, and
then test it on a new set of unlogged code [117, 346] (supervised learning). However, prior
research has come short in proposing a general solution based on an arbitrary code snippet,
as they mostly concentrate on error log statements, such as exception handling [346]. An-
other group of studies [145, 123] have shown the feasibility of predicting the log statements
by the use of similar code snippets or code clones1. Most recently, Gholamian [122]
produced a research plan and presented the motivation behind using code clone detection
and NLP approaches to automate logging statements for new code snippets by borrowing
the logging context from an already-existing similar code. In summary, the idea is that
similar code snippets, i.e., clone pairs, follow similar logging patterns.

Accordingly, for introducing a general approach for log prediction and automation in
our work, we study the application of similar code snippets and natural language processing
(NLP) techniques for suggesting logging statements. In addition, our approach provides
additional context to also predict other details of log statements, such as the LSD, which
other log prediction approaches are unable to do. Initially, our study reveals that although
using similar code snippets facilitates log automation, however, currently available tools
for similar code detection (i.e., general-purpose clone detectors, such as Oreo [270]) cannot
be used out-of-the-box for log statement automation. Thus, we first show that in order
to enable log statement borrowing from similar code snippets, general-purpose code clone
detectors require to be updated to understand logging statements. We perform this task
by introducing LACCP (log-aware code clone plus), an improved code clone-based log
location predictor (Finding 1). We then enable predicting the log statements’ description
based on borrowing the logging statement from its clone pair and applying NLP and deep

1For code clones, we consider a wide range of similar code snippets, i.e., this includes copy-pasted code
clones up to semi semantic clones in the twilight zone [270].

120

learning approaches (Finding 3). Finally, we evaluate the effectiveness of our proposed
approaches for log location and description automation with prior work and show that our
approach outperforms conventional clone detectors in finding code snippets which require
logging statement on average by 15.60% and achieves 40.86% higher performance on BLEU
and ROUGE scores for predicting the description of logging statements (Findings 2 &
4). In sum, our contributions in this research are as follows:

� We propose an improved log-aware clone detection tool (LACCP), which was ini-
tially introduced as LACC [123] for log statements’ ‘location’ prediction, by resolving
two of the clone detection shortcomings (§ 6.3).

� We introduce an algorithm to utilize LACCP for LSD prediction and introduce a
deep-learning NLP-based approach, “(NLP CC’d)”2, to work in collaboration with
LACCP, and to improve the performance of log statements’ description prediction
(§ 6.4). We make our data available for both LACCP and NLP CC’d to encourage
comparison and further research [12].

� We provide experimentation on several projects and measure Precision, Recall, F-
Measure, and Balanced Accuracy, and compare LACCP’s performance with general-
purpose state-of-the-art clone detectors, Oreo [270] and LACC [123]. In addition,
we calculate the BLEU and ROUGE scores for our auto-generated log statements’
descriptions with considering different sequences of LSD tokens, and compare our
performance with the prior work [145] (§ 6.5).

� We present a case study of the application of our tool for log description prediction
in the real world and show how (NLP CC’d) can facilitate the software development
process (§ 6.6).

The rest of this chapter is organized as follows. Section 6.2 explains our motivation
and methodology for log prediction with borrowing from similar code, and in Sections 6.3,
6.4, and 6.5, we investigate RQ1, RQ2, and RQ3, respectively. We then provide a case
study of the application of our approach in Section 6.6, and discuss the applicability of
our approach in Section 6.7. We provide the threats to the validity of our research in
Section 6.8 and review related work in Section 6.9. At last, we present our conclusions and
future directions in Section 6.10.

2The name resembles NLP-aware Code-Clone-based LSD suggestion.

121

6.2 Motivation and Methodology

This section describes the motivation behind utilizing similar code snippets for log predic-
tion followed by our methodology.

6.2.1 Motivation

Improving logging quality with automated approaches is a crucial problem in software
development as it helps to enhance the overall code quality [279] and makes the system
easier to debug [324]. Thus, ‘where and what to log’ are the major challenges to tackle
when developing tools to help developers with better logging. Prior research [123, 122]
shows that code clones resemble similar logging patterns and proposes an approach that
utilizes them for log statement prediction by extracting features from method-level code
blocks containing a logging statement.

6.2.2 Code Clones

Similar code snippets (i.e., code clones) are code snippets that semantically are similar
but can be syntactically different [270]. There are four main classes of code clones [261]:
Type-1, which is simply copy-pasting a code snippet, Type-2 and Type-3, which are clones
that show syntax differences to some extent, and finally Type 4, which represents two code
snippets that are semantic clones, i.e., they are syntactically very different but semantically
equal [122]. Figure 6.2 shows the recursive versus iterative implementations of the binary
search (BS). The logging pattern in the original code, MDi on Line 9 can be learned to
suggest logging statements for its clone, MDj, which is missing a logging statement.

Thus, to predict log statements, we define relevant log-aware source code features and
employ them for predicting whether a newly composed method code block requires a log
statement. We use method-level clones (rationale explained in the following) and apply
different categories of source-code features and feed them into a machine learning tool to
identify similar code snippets (i.e., clone pairs), which also follow similar logging patterns.
Formally speaking, assuming set CCMDi

is the set of all code clones of Method Definition
MDi, if MDi has a log print statement (LPS), then its clones also have LPSs:

∃LPSi ∈MDi =⇒ ∀MDj ∈ CCMDi
,∃LPSj ∈MDj.

122

1 / / O r i g i n a l c o d e - M D _ i

2 int BS_recursive(A[], Key , l, h)

3 {

4 if(l<=h)

5 {

6 mid=(l+h)/2;

7 if(Key==A[mid])

8 {

9 log.info("Found Key %d at Index %d.

",Key ,mid)

10 return mid;

11 }

12 else if(Key <A[mid])

13 return BS_resursive(A[], Key , l,

mid -1);

14 else if(Key >A[mid])

15 return BS_resursive(A[], Key , mid ,

h);

16 }

17 return -1 / / n o t f o u n d

18 }

1 / / C l o n e T y p e 4 - M D _ j

2 int BS_iterative(A[], Key , l, h

)

3 {

4 while (l<=h)

5 {

6 mid=(l+h)/2;

7 if(Key==A[mid])

8 return mid;

9 else if (Key >A[mid])

10 l=mid+1;

11 else

12 h=mid -1;

13 }

14 return -1; / / n o t f o u n d

15 }

Figure 6.2: Log prediction with similar code snippets, i.e., semantic clones. On the left
side, we observe the recursive psuedocode implementation of the binary search (MDi),
and on the right the iterative version (MDj). Borrowing from similar code, the logging
statement for MDj can be learned from its clone logging statement on Line 9 of MDi.

6.2.3 Why Leveraging Code Clones for Log Prediction?

We observe the benefits of using our approach in utilizing similar code snippets to borrow
logging patterns are threefold:

1 Clone detection methods are already a part of the software maintenance process.
Therefore, it is beneficial if we rely on approaches that already exist in the de-
velopment process. It enables the reuse of stable tools and techniques, saves on
development cost, and expedites the process.

2 Although we acknowledge that in some cases, code clones are the outcome of shallow

123

copy-pasting which results in log-related anti-patterns (i.e., issues) [202], this, simul-
taneously, shows the potential of code clones as a starting point for automated log
suggestion and improvement. In other words, by automating and enhancing the log
statements in the clone pairs, we can expedite the development process and avoid
shallow copy-pasting that developers tend to do. Additionally, by automation, we
reduce the risk of irregular and ad hoc developers’ logging practices, e.g., forgetting
to log in the first place.

3 A significant amount of research is conducted towards improving clone detection in
identifying semantic clones [121, 320, 303]. Thus, we foresee our approach becomes
emboldened as clone detection approaches grow to be more elaborate, and code reuse
and context borrowing will further facilitate and expedite the software development
process [121].

6.2.4 Method-Level Log Prediction Rationale

In our approach, we decide whether a method code block requires a logging statement, i.e.,
method-level log decisions. Although finding similar code snippets, and subsequently, log
statement prediction can be performed in different granularity levels, such as files, classes,
methods, and code blocks, however, method-level clones appear to be the most favorable
points of re-factoring for all clone types [178, 122]. This approach also includes all of the
logging statements which are nested inside more preliminary code blocks within method
definitions, viz., logging statements nested inside code blocks, such as if-else and try-catch.
We also hypothesize that the core idea of our research, i.e., context borrowing from similar
code snippets, can be extended to an arbitrary code snippet without major changes.

6.2.5 Practical Scenario

A practical scenario that showcases the usability of our approach for log statement location
and description during the software development cycle is as follows. We consider a possible
employment of our research as a recommender tool, which can be integrated as a plugin
to code development environments, i.e., IDE software. Alex is a developer working on
a large-scale software system, and he has previously developed method MDi in the code
base. At a later time, Sarah, Alex’s colleague, is implementing MDj, which does not
have a logging statement yet. Our automated log suggestion3 approach can predict that

3We use ‘automation’, ‘suggestion’, and ‘prediction’ interchangeably.

124

if this new code snippet, MDj, requires a logging statement by finding its clone, MDi, in
the code base. Then, the tool can suggest Sarah, just in time, to add a logging statement
based on the prediction outcome. Although prior work has shown the majority of the clone
pairs match in their logging behavior [123], when there is a conflict among clones, we can
return a list of suggestions to the developer and in the end, the developer will make the
final decision. This approach can likewise recommend the logging statement description
by retrieving the text existing in its clone log statement and the description predicted by
the NLP model. This situation can be extended to several source code projects, and bring
intra- and inter-project logging suggestions. The latter is useful for small projects where
there is not a sufficient prior code base, which is commonly referred to as the project’s
“cold start” phase [134].

6.2.6 Research Questions

We guide our study with the following research questions (RQs):

(RQ1) How code clones can be used for automated log location prediction?

(RQ2) How the available context from clone pairs can be borrowed for log description pre-
diction?

(RQ3) How the accuracy of both log location and description prediction can be evaluated
and compared with prior work?

For RQ1, we first expose two shortcomings of general-purpose clone detection, and then
improve on the performance of clone detection methods to make them more suitable for
effective log statement location prediction (§ 6.3). For RQ2, we predict the description
of logging statements in methods without logging statements by searching for the logging
descriptions that we can obtain from their clone pairs. Additionally, to enhance the LSD
prediction, we apply NLP-based deep learning (DL) methods (NLP CC’d) and further
improve the LSD prediction when compared to the LSD retrieved from the clone pair
(§ 6.4). Finally, we evaluate the performance of both log location and description prediction
in RQ3 (§ 6.5).

125

6.3 RQ1: How code clones can be used for automated

log location prediction?

6.3.1 Motivation and Approach

Prior work has shown similar code snippets have similar logging characteristics [145, 123,
122]. This finding opens up a potential way to automate logging statements’ locations [122].
The approach in essence is to find similar code snippets to the code that is currently being
developed, and make a logging decision for the new code by observing the logging patterns
of its similar code. This automated log suggestion approach can help developers in making
logging decisions and improve logging practices.

6.3.2 Findings

Although the proposed approach has potential for log automation, during our initial man-
ual scrutiny of detected and undetected similar code snippets, we observe that due to two
shortcomings that exist in the prior work, we have not been able to gain the full ben-
efit of the log automation through similar code. In particular, we discover that although
prior work [123] observed satisfactory prediction scores for the projects under study with
LACC and outperforms Oreo [270], it falls short in balancing the Precision and Recall of
predictions. As such, we hypothesize that the log-prediction performance of LACC can be
improved by recognizing some of the ‘undetected (false negative)’ and ‘mis-detected (false
positive)’ cases of clone detection, which are directly pertinent to the existence or absence
of the logging statements. In the following, we assume (MDi,MDj) are methods with
logging statements that initially detected as clone pairs, and the prime-symbol version (′),
e.g., MDj′ , is obtained from the method after removing its logging statement.

Shortcoming I (SI) - high rate of undetected clones.

This scenario happens when the logging statement(s) from the method definition in the
code base (MDi) contribute to a significant portion of the method body. (MDi,MDj)
are detected as clone pairs, because both of them have a logging statement and thus their
code feature values match. However, in a real-world scenario, when MDj′ is being just
developed and does not have a logging statement yet, the method’s source code metrics
for MDj′ will be significantly different from MDi, which results in MDi and MDj′ to not
be detected as clone pairs (i.e., false negative) [123].

126

Shortcoming II (SII) - high rate of mis-detected clones.

Because log statements do not change the semantics of the source code, we argue that
two code snippets should be clones regardless of the existence of their log statements. We
notice there are a considerable number of code clones that are not matched as clone pairs
after the log statements (including the log statement static text) are removed from both
clone pairs, MDi′ and MDj′ , i.e., false positive. In other words, log statements had a
critical role in matching the clone pairs, and if log statements are removed from both code
snippets, then the code snippets are no longer detected as clone pairs. Considering that log
statements are for book-keeping purposes, and do not change the semantics of the program,
we reckon this case as a false positive clone detection that only relies on the similarities
of log statements rather than the semantic-effective lines of the source code. Listing 6.1
illustrates this case as MDi and MDj are only matched because of the similarity in their
logging statements, which is a book-keeping aspect and does not change the semantics of
the code.

Overcome the Shortcomings

The observations from SI and SII confirm that general-purpose clone detection cannot
readily be applied for log suggestion, as we are looking to suggest a log statement for
a newly-developed code snippet (i.e., without a logging statement) by finding its clone
pairs that already have logging statements. As such, with log-aware feature calculation in
LACCP, we aim to achieve a higher performance in clone-based log statement automation.

Table 6.1 presents log-related features which are utilized for detecting method clones
with a logging statement. These features are in three main categories: numeric, boolean,
and string. For example, LWK represents log related keywords and wrappers, e.g., ‘log.info’
and ‘logger.debug’ as string features. The selected features in Table 6.1 enable us to
recognize the logging statements and consider them respectively in source code feature
calculation. We have surveyed the features used in prior work [275, 270] and experimented
with them, i.e., with feature selection and extraction [174], and measured the performance
metrics such as Precision and Recall, and picked the features which help the most with log
prediction accuracy.

6.3.3 Log-Aware Feature Calculation Illustrative Example

To elaborate further on the inner workings of LACCP, we provide the following exam-
ple. The idea is to examine how the method-level features from Table 6.1 are calcu-

127

Listing 6.1: Wrong clone detection because of log statements.

1 / / M D _ i , l o g g i n g s t a t e m e n t s a r e c o m m e n t e d .

2 protected byte[] createPassword(NMTokenIdentifier identifier)

{

3 / / L O G . d e b u g (" c r e a t i n g p a s s w o r d f o r { } f o r u s e r { } t o r u n o n

N M { } " ,

4 / / i d e n t i f i e r . g e t A p p l i c a t i o n A t t e m p t I d () ,

5 / / i d e n t i f i e r . g e t A p p l i c a t i o n S u b m i t t e r () , i d e n t i f i e r .

g e t N o d e I d ()) ;

6 readLock.lock();

7 try {

8 return createPassword(identifier.getBytes (),

9 currentMasterKey.getSecretKey ());

10 } finally {

11 readLock.unlock ();

12 }

13 }

14
15 / / M D _ j , l o g g i n g s t a t e m e n t s a r e c o m m e n t e d .

16 protected byte[] retrivePasswordInternal(NMTokenIdentifier

identifier ,

17 MasterKeyData masterKey) {

18 / / L O G . d e b u g (" r e t r i v i n g p a s s w o r d f o r { } f o r u s e r { } t o r u n o n

N M { } " ,

19 / / i d e n t i f i e r . g e t A p p l i c a t i o n A t t e m p t I d () ,

20 / / i d e n t i f i e r . g e t A p p l i c a t i o n S u b m i t t e r () , i d e n t i f i e r .

g e t N o d e I d ()) ;

21 / / L O G . d e b u g (" R e s p o n s e l i n e : " + i d e n t i f i e r . g e t R e s p o n s e L i n e ()

) ;

22 return createPassword(identifier.getBytes (), masterKey.

getSecretKey ());

23 }

128

Feature Description Type

ELPS Existence of an LPS Boolean

NTOK Number of tokens Numerical

NOS Number of statements Numerical

NEXP Number of expressions Numerical

LMET Number of local methods called Numerical

XMET Number of external methods called Numerical

SLOC Source lines of code Numerical

LWK Logging wrappers and keywords String

Table 6.1: Method-level log related features.

lated with and without LACCP. In Table 6.1, SLOC includes all lines of the source code,
such as comments, brackets ({}) for if-else blocks, etc.; however, NOS includes only ex-
ecutable expressions in the method definition. Following examples are based on Line 21:
“LOG.debug(”Response line: ” + identifier.getResponseLine())” from Listing 6.1.

ELPS: there exists logging statements for this method, therefore, ELPSMDi
= True.

NTOK: in Listing 6.1, removing this line causes the number of tokens for MDj′ (i.e.,
NTOKMDj′

) to decrease by 6 when compared to NTOKMDi
; tokens are ‘LOG’, ‘debug’,

‘Response’, ‘line’, ‘identifier’, and ‘getResponseLine’.

SLOC, NOS, and NEXP: similar to NTOK, SLOCMDj′
, NOSMDj′

, and NEXPMDj′

values reduce by one as an executable line of MDj′ has been removed.

LMET and XMET: these values represent the number of local and external method
calls. LMETMDj′

andXMETMDj′
values also decrease as the omitted line makes references

to other methods, both internal, ‘getResponseline’, and external, ‘debug’.

LWK: we also search and find a comprehensive set of log related keywords, e.g.,
‘log.info’, ‘logger.debug’, etc., as string features, which come into consideration in LACCP.
Table 6.2 summarizes the changes in feature values for MDj and MDj′ .

In a real scenario, MDi is previously developed and is in the code base, and we are
looking to automate logging for its clones which are being currently developed without
logging statements (i.e., MDj′). Thus, the more logging statements exist in method MDi,
the more source code features will diverge for MDi and MDj′ , and thus it becomes more
troublesome for general-purpose clone detectors to detect them as clone pairs. In LACCP’s
design, for each method MDi with a logging statement, we calculate the features by rec-

129

Feature Value (MDj) Value (MDj′)

ELPS True Flase

NTOK NTOKMDj
NTOKMDj

− 6

SLOC SLOCMDj
SLOCMDj

− 1

NOS NOSMDj
NOSMDj

− 1

NEXP NEXPMDj
NEXPMDj

− 1

LMET LMETMDj
LMETMDj

− 1

XMET XMETMDj
XMETMDj

− 1

LWK LOG.debug None

Table 6.2: Log-related features comparison with (MDj) and without (MDj′) the log state-
ment.

ognizing the logging code first and then exclude its impact on the values of the features
in Table 6.1. Feature values are updated such that methods are detected as clone pairs
regardless of the presence of logging statements, i.e.:

Fr(MDi) ∼clone Fr(MDj) =⇒ FrLACCP (MDi) ∼ Fr(MDj′) =⇒ FrLACCP (MDi′) ∼ Fr(MDj′).

We then add the methods which satisfy the above condition to the set of clone pairs
for MDi. In addition to the features in Table 6.1, we also utilize the other features listed
in [270] for general clone detection, however, we only perform log-aware feature calcu-
lation on features in Table 6.1. Since log statements do not directly change other feature
values, we refer the reader to [270] for further details. An example of features that log
statements do not generally have impact on is the number of loops, i.e., for and while.

6.3.4 Approach Significance

Prior approaches [346, 200] rely on extracting features and training a learning model on
logged and unlogged code snippets. Thus, they can predict if a new unlogged code snippet
needs a logging statement by mapping its features to the learned ones. Although these
methods initially appear similar to our approach in extracting log-aware features from
code snippets, i.e., Table 6.1, we believe our approach has an edge over the prior work.
Because we also have access to the clone pair of the code under development, i.e., MDi

in (MDi,MDj′), this enables us to obtain and borrow the additional context from MDi

to predict other aspects of log statements, e.g., the LSD, which the prior work is unable

130

to do. The significance of our approach becomes apparent in LSD automation (§6.4) as
we utilize the LSD of the clone pair as a starting point for suggesting the LSD of the
new code snippet. Thus, our approach not only complements the prior work in providing
logging suggestions for developers as they develop new code snippets, but it also has an
edge over them by providing additional context for further prediction of LPS details, such
as the LSD and the log’s verbosity level. Moreover, prior research has shown [123] that
there exists a significant portion of clone pairs of Type 3 and above, i.e., code pairs that
are considerably different in syntax or they are semantic pairs. Although later on we eval-
uate and show the applicability of our approach on a set of limited projects, we envision
that our approach would be of a greater significance for a large collection of software, e.g.,
thousands of projects from GitHub. This way, semantic clone pairs can be found across
different projects and used to borrow and predict log statements.

6.4 RQ2: how the available context from clone pairs

can be borrowed for log description prediction?

6.4.1 Motivation

Based on the approach for predicting the location of logging statements with similar code
snippets in RQ1 and the additional available context from the clone pairs, i.e., the log-
ging statement description available from the original method, MDi, we hypothesize it
is a valuable research effort to explore whether it is also possible to predict the logging
statements’ description automatically. With satisfactory performance, an automated tool
that can predict the description of logging statements will be a great aid, as it can expedite
the logging process and improve the quality of logging descriptions.

6.4.2 NLP for LSD Prediction - Theory

The predictable and repetitive characteristics of common English text, which can be ex-
tracted and modeled with statistical natural language processing (NLP) techniques, have
been the driving force of various successful tasks, such as speech recognition [59] and
machine translation [219]. Prior research [155, 298, 51, 126] has shown that software
systems are even more predictable and repetitive than common English, and language
models perform better on software engineering tasks than English text; tasks such as code
completion [262] and suggestion [66]. Most recently, He et al. [145] and Gholamian and

131

Ward [126] showed that logging descriptions in the source code and log files also follow nat-
ural language characteristics. Thus, we introduce a deep learning (DL) natural language
model to auto-generate the log statements descriptions. Intuitively, if there is observable
repetitiveness in logging descriptions, the trained model should have acceptable prediction
performance for new logging statements.

There are two main categories of language models (LMs): 1) statistical LMs which
utilize n-gram [9] and Markovian distribution [7] to learn the probability distribution of
words, and more recently, 2) deep learning (DL) LMs which have surpassed the statistical
LMs in their prediction performance, as they can capture more long-range token dependen-
cies [307, 97]. Thus, in this research, we utilize deep learning LMs. Once LMs are trained
on sequences of tokens or n-grams (e.g., words), they can assign scores and predict the
probability of new sequences of words. Considering a sequence of tokens in a text (in our
case, logging statement description, LSD), S = a1, a2, ..., aN , the LM statistically estimates
how likely a token is to follow the preceding tokens. Thus, the probability of the sequence
is estimated based on the product of a series of conditional probabilities [155]:

Pθ(S) = Pθ(a1)Pθ(a2|a1)Pθ(a3|a1a2)....Pθ(aN |a1...aN−1)

which is equal to:

Pθ(S) = Pθ(a1).
N∏
t=2

Pθ(at|at−1, at−2, ..., a1), (6.1)

where a1 to aN are tokens of the sequence S and the distribution of θ is estimated from
the training set. Given a sequence of log description tokens a1, ..., at, we seek to predict
the next M tokens at+1, ..., at+M that maximize Equation 8.2 [66]:

Pθ(S) = arg max
at+1,...,at+M

Pθ(a1, ..., ai, ai+1, ..., ai+M) (6.2)

As such, an LSTM implementation of the LM to maximize the probability of observing
token at in Equation 6.2 at time step t is:

Pθ(at|at−1, ..., a1) =
exp(υTatht + bat)∑
at′
exp(υTat′ht + bat′)

(6.3)

where ht is the output of the hidden state vector at time t, υTat is a parameter vector
associated with token at in the vocabulary and bat is a constant value. Intuitively, in
Equation 6.3, υTatht + bat is a function that shows how much the model favors in observing
at after the sequence of at−1, ..., a1, and the exp() function assures the values are always
positive. The summation in the denominator calculates the probability values of each token
over all tokens out of the maximum probability value of 1.

132

LACCP
Source code methods
w/ logging statements

Log-aware source
code features

Extract logging
statements

NLP CC'd

TrainingData collection
New unlogged method

Testing

Logging
desciption

suggestions

BLEU
ROUGESource

 codeCode
repositories

Figure 6.3: The toolchain for log statement description prediction. The approach shows
how both LACCP and NLP CC’d collaborate for LSD prediction.

6.4.3 Methodology

We base our method on the assumption that clone pairs tend to have similar logging
statements’ descriptions. This assumption comes from the observations in predicting log
statements for clone pairs. As logging descriptions explain the source code surrounding
them, it is intuitive for similar code snippets to have comparable logging descriptions.
Based on this assumption, we propose a deep learning method that borrows the LSD
from similar code snippets and leverages NLP approaches (NLP CC’d). In particular,
to generate the LSD for a logging statement in MDj, we extract its corresponding code
snippet (i.e., the method without the log statement, MDj′) and leverage LACCP to locate
its clone pairs. Laterally, the NLP model is trained on the logging descriptions available
in the training set for each project. To ensure the training and testing sets are mutually
exclusive, for all of the clone pairs of (MDi,MDj), the LSDs of MDis and MDjs create the
training and testing data, respectively. During the testing, the retrieved logging description
from the clone pair (LSDMDi

) is served as a starting input point for the NLP model to
propose a set of description suggestions. Then, we evaluate the similarity between the
NLP-generated descriptions with the LSD provided by the developers (LSDMDj

) (ground
truth). Our methodology resembles the scenario that while the developer is creating a
new snippet of the source code, we look for its similar code snippets with LACCP, and in
case a clone is found (MDi), we work further to provide predictions on the description of
the logging statement by generating suggestions from the available clone’s LSD (LSDMDi

)
combined with the collective knowledge of LSDs available in the code base.

133

6.4.4 Toolchain

Figure 6.3 presents our toolchain for log statement description prediction. In the data
collection phase, we select open-source Java projects from their Git repositories, based
on factors of interest such as age and size of the project (in source lines of code), popularity
(being well-established), stability, and logging index of the projecst [78]. Listed in Table 6.3,
we select seven Apache Java projects. Next, commencing in the training phase, we extract
method definitions (MDs) containing logging statements by applying JavaParser [297].
Initially, we parse the source code to obtain the abstract syntax tree (AST), which is the
hierarchical representation of the code. We use the AST to access Java method definitions
with logging statements. We then extract method-level code features to perform log-aware
clone detection (LACCP) on the extracted method definitions and leverage LACCP to
find clone pairs with logging statements. Next, for each detected clone pair, we use the
descriptions obtained from MDis to train the NLP model. Finally, in the testing phase,
we use the MDj′s as test-case inputs to LACCP. The NLP model, upon the clone pair
detection of (MDi,MDj′), receives the LSD from MDi and suggests descriptions with
the highest probability for MDj′ . Then, we compare the NLP-generated LSDs with the
logging statement originally placed by developers in MDj, and calculate the BLEU and
ROUGE scores.

6.4.5 Implementation

The recent advancements in deep learning (DL) approaches have provided a new avenue
for log analysis and automation. DL models used in prior logging research [107, 337, 200,
203] have enabled more accurate and elaborate analysis of logs when compared to prior
approaches. For our NLP approach, we utilize Long Short-Term Memory (LSTM) [158]
deep learning models which are recurrent neural networks (RNNs) capable of capturing
long-term dependencies in a sequence of tokens through their internal memory. This feature
makes them suitable for LSD prediction in our research, as we are pursuing to predict
a sequence of words for the LSDs. Figure 6.4 shows the overall layout of our model,
which has an input layer, two hidden layers, a dense layer with Rectified Linear Unit
(relu) [235, 260] as the activation function (relu(x) = max(0, x)), and an output layer
with softmax activation. The layers are sized as: input layer is the ‘vocabulary size’, the
LSTM layers 1 and 2 are ‘500 cells’, the dense layer is ‘250 cells’, and the output layer has
the same size as the input layer. During the training phase, in the first layer of the model,
we map the LSD sequences to vectors of integers by leveraging an ‘embedding layer’. The
embedding layer infers the relationships among tokens in the LSD input sequences, and

134

outputs a set of lower-dimension vectors, called word embeddings [227]. The embedded
vectors then pass through two layers of LSTM and allow the model to learn the relationship
between the sequence of words in the LSD and assign probabilities. Followed by LSTM
layers 1 and 2, the dense layer is placed with relu activation function. Finally, the output
layer produces softmax probabilities for each next token prediction in the suggested LSD.

For the DL implementation, we use Python’s Keras library [36]. The relu activation
function allows achieving a non-linear transformation of data, which results in learning
more sophisticated patterns and relationships among log statement description tokens. We
utilize a softmax activation function [70, 312] on the output layer such that the network
can learn and output probability distribution over possible next tokens in the sequence of
words within the LSD. The softmax layer converts the output of the dense layer to a prob-
ability distribution of tokens in the log vocabulary. This ensures that the LSTM outputs
are all in the range of [0,1], and their summation is equal to one in every prediction [131].
We also apply 10% dropout on the hidden layers as a common practice [289, 248]. With
this measure, the output of the 10% of the hidden layer nodes, which are randomly selected
during each iteration of the model training, is ignored. This process ensures that the model
is generalizable and avoids its overfitting to the training data [289]. We train the model for
200 epochs and set the batch size to 64. During the testing, from the outputted LSDs of the
DL model, we pick the highest (NLP-1) or top-3 (NLP-3) softmax probabilities and provide
them as suggestions. We have been partially deliberate in the selection of the hyperparam-
eters, and as an avenue for future work, different layouts or hyperparameters’ setup, such as
more memory cells or deeper layers of LSTM network, may achieve a better performance.

6.4.6 LSD Prediction Algorithm and Steps

We follow the steps outlined in Algorithm 2 for LSD suggestion for a method based on
the LSD borrowed from its clone pair. After collecting the source code projects from their
git repositories, we then parse the source code to its abstract syntax tree (AST) [1], and
search for methods with logging statements (Lines 1-2). We define CCMDi

as the set of
all clone pairs of Method MDi, i.e.,: CCMDi

(pairs) = {(MDi,MDj)|∀MDj ∈ CCMDi
}.

On Line 2, after extracting all method definitions with at least one LPS from the AST, we
find all clone pairs for each method definition MDi, by applying LACCP, in the for-loop
on Lines 4-9. After finding clones of MDi and creating (MDi,MDj) pairs on Line 6, we
add MDis to the training and MDj′s to the testing sets on Lines 8-9 for NLP CC’d to use
later for LSD prediction. We also add the pair to the sets of nlptraining and nlptesting on
Lines 8 and 9. Before training the LSTM model on the retrieved LSD data, we perform
pre-processing on the LSDs (Line 12) such as tokenization, mapping punctuation to the

135

Input layer
size: vocab.

embedding: 100 LSTM layer 1
size: 500

dropout = 10%

Dense layer
size: 250
act.: relu

Output layer
size: vocab.
act.: softmax LSTM layer 2

size: 500
dropout = 10%

LSDs in the
training set

RNN
Cell

RNN
Cell

RNN
Cell

Training

LSDs in the
training setLSDs in the
training set

LSD from the
clone

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell

Softmax
probabilities

Testing

Figure 6.4: The figure shows the inside of NLP CC’d, our deep learning long short-term
memory (LSTM) model for log description prediction.

vocabulary space, cleaning of special characters (e.g., Unicode) and removing the LSD
parts related to the dynamic variables. On Line 13, we train the NLP model by using the
logging descriptions collected in the training set. Then, in the for-loop on Lines 14-18, for
predicting the LSD for MDj′ , we feed in the logging description from MDi to the NLP
model, and the trained model returns LSD suggestions.

6.5 RQ3: how the accuracy of both log location and

description prediction can be evaluated and com-

pared with prior work?

In this section, we evaluate the performance of LACCP (RQ3.I) and NLP CC’d (RQ3.II).

6.5.1 Systems Under Study

Based on the research on open-source projects by Chen and Jiang [78] and He et al. [145],
we choose seven open-source Java projects. These projects are well-logged, stable, and
well-used in the software engineering community, and this selection also enables us to

136

Algo. 2: Log Location & Description Predictor (LACCP & NLP CC’d)

Input: Java source code repositories
Output: BLEUlist and ROUGElist scores

1 sourceCodeAST ← Parse(sourceCode)
2 Methodsw/LPS ← extractMD(sourceCodeAST , exist(LPS));
3 nlptraining ← {}; nlptesting ← {};
4 for (∀MDi ∈Methodsw/LPS) do
5 CCMDi

← findClonesLACCP(MDi)

6 CC pairs(MDi,MDj)← createPairs(CCMDi
)

7 for (∀(MDi,MDj) ∈ CC pairs(MDi,MDj)) do
8 nlptraining ← MDi

⋃
nlptraining;

9 nlptesting ← MDj′
⋃
nlptesting;

10 BLEUlist ← {};
11 ROUGElist ← {};
12 nlptraining ← preProcess(nlptraining);
13 nlpModel ← train(∀MDi ∈ nlptraining);
14 for (∀(MDi,MDj′)|MDj′ ∈ nlptesting) do
15 nlpLSD ← nlpPredic(LSP (MDi));
16 for ∀LSDi ∈ nlpLSD do
17 BLEUlist ← calcBLEUScores(LSDi, LPS(MDj));
18 ROUGElist ← calcROUGEScores(LSDi, LPS(MDj));

19 return BLEUlist, ROUGElist;

compare our research with prior work, accordingly. Table 6.3 summarizes the line number
of source code (LOC), the number of logging statements (LPS) in each project, and the log
density in a thousand lines of code (KLOC). All of the selected projects use Apache Log4j
library [15] as the logging statements’ wrapper function, which includes six log verbosity
levels: fatal, error, warn, info, debug, and trace. We observed that although all these
projects are from the Apache umbrella, they are from different domains, are developed by
different teams, and incorporate different logging practices.

137

Project (abrv.) Description # LOC # LPS # of LPS per KLOC

Hadoop (HD) Distributed Computing 2.10M 16,202 7.72

Zookeeper (ZK) Configuration management 94,434 1,885 19.96

CloudStack (CS) Cloud deployment 739,732 12,237 16.54

HBase (HB) Distributed database 949,310 9,264 9.76

Hive (HI) Data warehouse 1.84M 10,640 5.78

Camel (CL) Integration platform 2.2M 9,682 4.40

ActiveMQ (MQ) Message broker 464,632 6,442 13.86

Table 6.3: The table lists the details for the studied project. The projects are well-
established software from different application domains. The table also lists the number of
lines of code (LOC), number of log print statements (LPS), and number of log statements
per thousand lines of code (KLOC).

6.5.2 RQ3.I: LACCP Evaluation

Evaluation Metrics.

For evaluating the performance of the logging statement prediction, we utilize Precision,
Recall, F-Measure, and Balanced Accuracy.

� Precision is the ratio of the correctly predicted log statements (tp) to the total number
of predictions (tp + fp), Precision = tp

tp+fp
.

� Recall is the ratio of tp over the total number of log statement instances detected
and undetected (tp + fn), Recall = tp

tp+fn
.

� In order to confirm the balance between the Precision and Recall values, we also
calculate F-Measure which is the harmonic average of the Precision and Recall, F −
Measure = 2×

(
Recall×Precision
Recall+Precision

)
.

� In addition, to ensure our results are impartial towards the imbalanced datasets [346],
we also measure Balanced Accuracy (BA), which is the average of logged and unlogged
methods that are correctly predicted, BA = 1

2
× (tp

tp+fn
+ tn

tn+fp
).

For method-level clone detection in our studied systems, we use the same pre-trained
learning model provided in [270] as our baseline. To ensure variability in the dataset, the

138

machine learning engine of the clone detector is trained on 50K randomly-selected Java
projects from Github [270]. Randomly, 80% of each project is selected for training and
the remaining 20% for testing. Additionally, one million pairs from the training set of 50K
projects are kept separately for validation to avoid bias and overfitting [75]. To ensure
a fair comparison, all of the approaches use the same trained model for clone detection,
and theretofore, the advantage of LACCP becomes visible from its log-aware source code
feature selection and calculation.

Experiments and Results.

Our goal in this experiment is to show LACCP’s performance in predicting the log locations
for clone pairs compared to LACC and Oreo. For experiment design, we first extract all
the methods with logging statements and then remove their logging statements. Next, we
check which pairs are detected as pairs after their logging statemented are removed, i.e.,
(MDi′ ,MDj′), which serves as actual true positive cases, tp, and which method are not
detected as clone pairs, i.e., tn. This process ensures that the methods are detected as
clones regardless of their logging statements, which are considered as ground truth for our
comparison. In this case that there are no logging statements in the methods, all of the
approaches (Oreo, LACC, and LACCP) will have similar performance in clone detection
as log-aware feature calculation will have an effect on the feature values only if logging
statements are present in the code snippet. Later, we run Oreo, LACC, and LACCP on
the collected pairs as (MDi,MDj′) and evaluate their performance compared to the ground
truth. The experimented scenario resembles the situation when the developer is composing
a new source code snippet without a logging statement (MDj′), and we look in the code
base to find clones with logging statements (MDi) and provide logging suggestions to the
developer.

Table 6.4 shows Precision, Recall, F-Measure, and BA for the three approaches. For
log statement prediction for seven different projects, the measured values for BA are in
the range of (78%, 92%) for Oreo, (81%, 97%) for LACC, and (95%, 100%) for LACCP. For
example, for Hadoop project, with the number of ground truth positive cases of 879, and
ground truth negative cases of 235, after removing logging statements for MDjs, Oreo had
16 false positives (fp), a significant number (319) of false negatives (fn), and 560 true posi-
tives (tp), achieving ‘imbalanced’ Precision and Recall of 97.22% and 63.71%, respectively.
In comparison, for LACCP: (fp = 18), (fn = 17), and (tp = 862), yielding Precision and
Recall of 97.95% and 98.07%. Although LACC improves on Oreo by partially reducing the
number of false negatives, it still suffers from a high rate of false negatives, which hurts its
Recall scores when compared to LACCP. Overall, considering the average of BA values,

139

LACCP brings 15.60% and 5.93% improvement over Oreo and LACC, respectively, across
the experimented projects. The higher accuracy that LACCP brings enables us to provide
more accurate clone-based log statement suggestions.

Qualitative Comparison.

Intuitively, because LACCP performs log-aware feature selection and calculation, it under-
stands the log feature changes while processing the source code, and it achieves a higher
log-aware clone prediction performance compared to the general-purpose clone detector,
Oreo [270]. In addition, LACCP, in contrast to LACC that only addresses SI and still
suffers from a significant number of mis-detected and undetected clones, seeks to simulta-
neously address both SI and SII and reaches balanced Precision and Recall scores, and
therefore, higher F-Measure and Balance Accuracy (BA) values compared to LACC.

Orthogonal to our research, prior efforts, such as [346], [166], and [200], have proposed
learning approaches for logging statements’ location prediction, i.e., where to log. The ap-
proaches in [346], [166] are focused on error logging statements (ELS), e.g., log statements
in catch clauses, and are implemented and evaluated on C# projects. Li et al. [200] provide
log location suggestions by classifying the logged locations into six code-block categories.
Different from these prior works, our approach does not distinguish between error and
normal logging statements, is evaluated on open-source Java projects, and leverages log-
ging statement suggestions at method-level by observing logging patterns in similar code
snippets, i.e., clone pairs. In addition, none of the aforementioned studies have tackled
the automation of the log statements descriptions, which we have also proposed in this
research, and will evaluate in the following.

Finding 1. Augmenting general-purpose clone detection approaches with log-aware
features is necessary and beneficial for log statement automation, as we aim to predict
a logging statement for a code snippet that is unlogged, by looking for its similar
clones, which are logged.

Finding 2. Our results show that LACCP outperforms Oreo and LACC in Balanced
Accuracy values by 15.60% and 5.93%, respectively.

140

Proj.\Tool Oreo [270] (X) LACC [123] (Y) LACCP (Z) Improvement %
tp tn fp fn P R F BA tp tn fp fn P R F BA tp tn fp fn P R F BA Z(over)X Z(over)Y

HD 560 219 16 319 97.22 63.71 78.98 78.45 825 218 17 54 97.98 93.86 95.87 93.31 862 217 18 17 97.95 98.07 98.01 95.20 21.35 2.03

ZK 47 33 0 17 100 73.44 84.68 86.72 62 27 6 2 91.18 96.86 93.94 89.35 61 32 1 3 98.39 95.31 96.83 96.14 10.86 7.60

CS 430 222 22 184 95.13 70.03 80.68 80.51 441 223 21 173 95.45 71.82 81.97 81.61 610 239 5 4 99.19 99.35 99.27 98.65 22.53 20.88

HB 377 182 13 115 96.67 76.62 85.49 84.98 479 190 5 13 98.97 97.36 98.16 97.04 492 195 0 0 100 100 100 100 17.67 3.05

HI 586 99 6 66 98.99 89.88 94.21 92.08 643 100 5 9 99.22 98.62 98.92 96.93 648 100 5 4 99.23 99.39 99.31 97.31 5.68 0.39

CL 633 270 17 164 97.38 79.42 87.49 86.75 746 285 2 51 99.73 99.73 96.57 96.45 797 285 2 0 99.75 100 99.87 99.65 14.87 3.32

MQ 338 207 4 131 98.83 72.07 83.35 85.09 423 210 1 46 99.76 90.19 94.74 94.86 463 209 2 6 99.57 98.72 99.14 98.89 16.22 4.25

Total/
Avg

2971123278 996 97.75 75.02 84.98 84.94 3619125357 348 97.47 92.63 94.31 92.79 3933127733 34 99.15 98.69 98.92 97.98 15.60 5.93

Table 6.4: The table shows the value of tp, tn, fp, and fn for the three approaches. We also show Precision
(P), Recall (R), F-Measure (F), and BA for the three methods of log prediction. The general trend on
how the methods perform is observable on F-Measure, and BA metrics, as the values increase, i.e., Oreo <
LACC < LACCP.

141

6.5.3 RQ3.II: LSD Evaluation

In this section, we measure the performance of (NLP CC’d) for logging statements’ descrip-
tion prediction. If we can achieve a satisfactory performance, an automated log description
predictor that can suggest the description of logging statements will be of great help, as
it can significantly expedite the software development process and improve the quality of
logging descriptions. To measure the accuracy of our method in suggesting the log descrip-
tion, we utilize BLEU [247] and ROUGE [206] scores. The rationale behind using these
scores is that they are well-established for validating the usefulness of an auto-generated
text [58, 268, 206, 344, 130]. In particular, prior software engineering and machine learning
research have used these scores for tasks such as comment and code suggestion [50] and
description prediction [145]. In addition, they are intuitively equivalent to Precision and
Recall for evaluating auto-generated text.

BLEU Score

BLEU, or the Bilingual Evaluation Understudy, is a score for comparing a candidate text
to one or more reference texts. BLEU score is used to evaluate text generated for a series
of natural language processing tasks [58, 215]. BLEU score can measure the similarity
between a candidate and a reference sentence. In our experiments, we regard the logging
description generated by finding the code clone pair snippet and then predicted by the
NLP model as the candidate description, while we refer to the original logging description
written by the developer as the reference description. BLEU measures how many n-grams
(i.e., tokens) in the candidate logging description appear in the reference, which makes it
comparable to ‘Precision’. BLEU is evaluated as:

BLEU = BP × exp
(N∑

n=1

wn × log pn

)
(6.4)

where BP is a ‘brevity penalty’ that penalizes if the length of a candidate (in number of
tokens) is shorter than the reference:

BP=

1 if c > r

e1− r
c if c ≤ r

where r is the length of the reference, and c is the length of the candidate. In Formula 6.4,
N is the maximum number of n-grams used in the experiment; pn is the modified n-gram
Precision, which is the ratio of the number of tokens from the candidate logging description

142

which occur in the reference description to the total number of token in the candidate; and
wn is the weight of each pn. For example, BLEU-1 means the BLEU score considering only
the 1-grams in the calculation, where w1 = 1 and w2 = w3 = w4 = ... = 0.

From the definition of BLEU, we know that the higher the BLEU, the better the log-
ging statement description prediction performance. The range of BLEU is [0, 1], or as
a percentage value (i.e., [0, 100]). Thus, if the candidate logging description does not
contain any of the reference’s n-grams, then the BLEU score is 0. On the contrary, if all
of the candidate tokens appear in the reference, the BLEU score is 100. An additional
enhancement to the BLEU score is to calculate cumulative scores as it gives a better sense
of the sentence level structure similarity between the candidate and reference descriptions.
Cumulative BLEU scores refer to the calculation of individual n-gram scores at all orders
from 1 to N and weighting them by calculating the weighted geometric mean. The cumu-
lative and individual 1-gram BLEU use the same weights, e.g., (1, 0, 0, 0). The 2-gram
weights assign a 50% to each of 1-gram and 2-gram (e.g., (0.5, 0.5, 0, 0)), and the 3-gram
weights are 33% for each of the 1, 2 and 3-gram scores (0.33, 0.33, 0.33, 0).

We provide two sets of BLEU scores: 1) the BLEU scores generated by simply borrowing
the LSD from the clone pair as it is (i.e., the LSD of MDi as a candidate, and the LSD of
MDj as reference), No-NLP, and 2) the BLEU scores for the LSD predicted by the NLP
CC’d model by considering only one previous token of the input LSD string, LSD(MDi),
for predicting the next token, i.e., NLP-1. The NLP-1 is the output of the LSTM model,
and the original LSD of MDj is considered as the reference for score evaluation. The No-
NLP (X) and NLP-1 (Y) columns in Table 6.5 outline the cumulative BLEU scores for
No-NLP and NLP-1. The BLEU-1 scores for all of the evaluated projects are higher than
47%. The highest BLEU-1 score belongs to Hive, 92.50%, which means that 92.50% of the
tokens in the generated logging description of the candidate can be found in the ground
truth, i.e., the logging description placed in by the developer. This observation implies
that in most cases for this project (Hive), developers have reused the logging descriptions
from the existing log statements with minor modifications. The NLP-1 model improves
the performance of the LSD prediction across all projects.

ROUGE Score

ROUGE [206] stands for Recall-Oriented Understudy for Gisting Evaluation. It includes
measures to automatically determine the quality of an auto-generated description by com-
paring it to other (ideal) descriptions created by humans, i.e., developers in our case.
Formally, ROUGE-N is an n-gram Recall between a candidate description and a reference

143

description. ROUGE-N is computed as follows:

ROUGE−N =

∑
gramN∈Ref

Countmatch(gramN)∑
gramN∈Ref

Count(gramN)

where N represents the number of overlapping grams that have to match in reference and
candidate descriptions; Ref is the reference description; countmatch (gramN) is the maxi-
mum number of n-grams co-occurring in the candidate and the reference; and count(gramN)
is the number of n-grams in the reference. ROUGE is similar to ‘Recall’, which measures
how many n-grams in the reference appear in the candidate logging statement. For ex-
ample, ROUGE-2 explains the overlap of 2-grams between the candidate and reference
descriptions. ROUGE-L is a statistic calculated based on the Longest Common Subse-
quence (LCS). ROUGE-L takes into account the sentence level structure and similarity,
and thus, identifies the longest co-occurring sequence of continuous n-grams. Analogous
to BLEU, the range of ROUGE is [0, 1], with 1 being the perfect score, i.e., the candi-
date description contains all of the reference’s n-grams. Similar to BLEU, we provide two
sets of ROUGE scores: 1) No-NLP, and 2) NLP-1. Table 6.5 compares ROUGE scores
for No-NLP versus NLP-1. Similar to BLEU, the NLP model suggests LSDs with higher
ROUGE scores in all cases when compared to the LSD obtained from the clone pair.

NLP Prediction Example

To illustrate how the NLP model can improve BLEU and ROUGE scores, we provide the
following real example. In the training set for CloudStack we have the following LSDs:
“successfully deleted condition” (1x), “elastistor volume successfully deleted” (3x),
and ‘‘successfully created floating ip” (1x). During testing, the retrieved LSD from
the clone pair, MDi, is “successfully created floating ip”, and the original LSD that we are
aiming to predict, i.e., the reference LSD of MDj, is “successfully deleted floating ip”.
Because in the training set the token “deleted” appears four times (i.e., 1x+3x=4x) right
after the token “successfully”, whereas “created” appears only once (1x) immediately after
“successfully”, the NLP model assigns a higher probability for observing “deleted” after
“successfully”. Therefore, the NLP model allows us to see highly probable next tokens
that appear in the training set as a whole that might not necessarily happen in the LSD
retrieved from the clone pair.

144

LSD Sequence Prediction - NLP-1 vs. NLP-3

Because LSDs are a sequence of natural language tokens [145, 126], we hypothesize that
considering additional prior tokens for predicting the next token will achieve higher per-
formance. As such, in NLP-3, in contrast to NLP-1 that we consider only the one prior
token, we take into account the sequence of three prior tokens in predicting the next to-
ken. Additionally, because the outputs of the NLP CC’d model are softmax probabilities
(Figure 6.4), we report the top-3 probabilities for recommending the next token and then
confirm which one achieves higher BLEU and ROUGE scores. This approach resembles the
scenario in which a list of high probable next tokens is suggested to the developer while
composing the LSD. In Table 6.5, NLP-3 (Z) illustrates the improvement that NLP-3
brings compared to NLP-1. The rationale behind choosing three prior tokens and not
considering longer sequences for LSD prediction is that LSDs are naturally shorter than
English text sentences and considering more than four continuous tokens, i.e., three prior
tokens and the one token under prediction, would result in a minimal gain or even might
cause inaccuracies for shorter than four-token LSDs. In sum, our LSTM model generates
candidate LSDs with higher BLEU and ROUGE scores in all cases when compared to the
LSD borrowed from the clone pair, and additionally, we enhance the NLP CC’d perfor-
mance by leveraging a sequence of tokens for LSD prediction. Our experiments signify the
benefits of the collaboration of LACCP and NLP CC’d for LSD prediction.

Results Review and Comparison

In Table 6.5, the BLEU and ROUGE scores gradually decrease as the n-grams grow longer.
For example, for NLP-1, BLEU-1 for Hadoop is 58.87, while the corresponding BLEU-4
is 33.27. This observation is expected because the BLEU-4 score considers the match of 4
consecutive tokens (i.e., 4-grams) versus BLEU-1, which only considers matching 1-grams.

To provide an intuitive understanding of how good our BLEU and ROUGE scores are,
we compare as follows: the BLEU-4 scores of our NLP method outperform prior efforts
in [213] and [145]. From a practitioner perspective, the satisfactory BLEU-4 scores reported
in the state-of-the-art code summarization paper [213], ranges from 6.4% to 34.3%, which
are lower than our reported values. The authors in [213] showed that with their achieved
BLEU scores, their auto-generated code summaries are both fluent and informative for
the human reader.

For a direct comparison, we use He et al.’s sample data available in [33]. The scores only
exist for five projects of our interest (Hadoop, CloudStack, HBase, Hive, and Camel) [145],
and their approach includes pairs of ‘(code, log)’, with ‘code’ indicating the ten lines of code

145

Prj. No-NLP % (X) NLP-1 % (Y) NLP-3 % (Z) Improv. Z(over)X
B-1 B-2 B-3 B-4 R-1 R-2 R-3 R-L B-1 B-2 B-3 B-4 R-1 R-2 R-3 R-L B-1 B-4 R-1 R-L B-4 R-L

HD 58.42 48.09 39.43 32.91 59.22 36.00 20.13 59.07 58.87 48.63 40.18 33.27 53.77 32.89 59.40 58.92 60.22 34.97 62.39 62.18 6.26 5.26

ZK 64.15 56.85 47.02 41.59 63.45 46.31 25.64 63.45 65.15 58.26 48.53 43.35 66.41 50.00 30.44 66.41 66.05 43.46 68.53 68.53 4.50 8.01

CS 47.45 39.50 33.98 29.42 49.16 33.30 22.23 48.68 47.87 39.89 34.38 29.79 50.45 34.50 23.19 49.97 49.92 32.26 53.53 53.02 9.65 8.92

HB 82.67 77.37 71.78 56.80 83.15 71.68 60.86 83.06 83.18 78.02 72.40 47.38 84.32 73.37 62.15 84.23 83.67 58.38 84.64 84.53 2.78 1.77

HI 92.50 91.07 89.62 70.57 92.61 88.21 85.36 92.57 92.55 91.10 89.64 70.58 92.65 88.30 85.41 92.61 92.64 70.61 92.73 92.69 0.06 0.13

CL 66.36 55.65 49.15 41.17 65.34 42.48 25.24 64.65 66.51 55.71 49.20 41.20 65.56 42.68 25.50 64.87 67.40 43.12 67.31 66.59 4.74 3.00

MQ 69.94 60.14 47.54 38.86 68.43 43.56 22.58 68.27 70.51 60.40 47.74 39.04 69.55 44.00 22.58 69.39 71.15 40.18 71.25 71.08 3.40 4.12

Avg. 68.78 61.24 54.07 44.47 68.77 51.65 37.43 68.54 68.39 59.25 57.23 47.08 68.96 52.25 44.10 69.49 70.15 46.14 71.48 71.23 4.48 4.46

Table 6.5: BLEU (B) and ROUGE (R) scores for No-NLP, NLP-1, and NLP-3 are included side-by-side for
each project. The NLP model improves the scores across the board. For example, for MQ, the No-NLP B-1
and R-1 scores are 69.94 and 68.43, respectively, and the values increase to 70.51 and 69.55 for the NLP-1
model, and furthermore, rise to 71.15 and 71.25 for the NLP-3 model.

Projects He et al. [145] % (W) No-NLP % (X) NLP-1 % (Y) NLP-3 % (Z) Improvement %
B-1 B-4 R-1 R-L B-1 B-4 R-1 R-L B-1 B-4 R-1 R-L B-1 B-4 R-1 R-L X(over)W Z(over)X

HD 36.59 16.96 36.88 36.24 51.74 30.21 56.97 56.49 52.95 31.27 58.72 58.22 53.77 32.89 59.40 58.92 54.27 4.90
CS 47.60 27.57 47.11 46.05 50.20 33.11 55.81 54.78 50.99 33.95 57.60 56.68 53.89 37.21 61.07 59.98 15.19 9.41
HB 37.69 18.28 38.47 37.71 49.70 30.06 56.98 56.59 50.31 30.75 58.50 58.08 52.32 33.67 60.00 59.61 46.30 6.35
HI 40.78 23.04 40.58 40.08 51.99 36.13 54.95 53.36 52.47 36.31 55.43 53.84 54.16 38.74 58.70 56.85 34.31 6.12
CL 51.98 30.74 50.23 49.62 60.03 34.77 63.86 63.02 60.56 35.01 63.97 63.13 62.54 38.44 66.79 65.91 21.42 5.41

Average 43.06 23.18 42.85 42.11 52.73 32.86 57.71 56.84 53.46 33.46 58.84 57.99 55.34 36.19 61.19 60.25 32.38 6.41

Table 6.6: BLEU (B) and ROUGE (R) scores comparison for [145], the LSD from code clone with no
modification, i.e., No-NLP, considering only one prior token in prediction, NLP-1, and considering a sequence
of three prior tokens, NLP-3. The ‘Improvement’ column shows the percentage that No-NLP improves on
prior work, and how much NLP-3 improves over No-NLP. On average, NLP-3 makes 40.86% improvement
over [145] (Z(over)W).

146

preceding the logging statement ‘log’. As such, to employ our approach, we perform initial
preprocessing to wrap the ‘code’ segment inside a dummy method, and then we utilize
LACCP and NLP CC’d for LSD suggestions, and then compare them with the provided
‘log’. Table 6.6 summarizes the scores for [145] and our approach. He et al. [145] achieve
36.59 and 37.69 BLEU-1 scores for Hadoop and HBase, respectively. In comparison, our
No-NLP approach achieves 51.74 and 49.70 for BLEU-1 scores for Hadoop and HBase,
respectively. Similarly, our ROUGE scores outperform prior work. We contribute this
higher performance to the more sophisticated search of clone pairs compared to employing
the ten preceding lines of the code utilized in [145]. Table 6.6 also provides the NLP-1
and NLP-3 scores, which further improve the No-NLP ones. The NLP model is successful
in remembering the general LSD patterns in each project and further enhances the LSD
suggestions. Another observation we made is that NLP CC’d values are generally lower on
the sample data [33] in Table 6.6 than the values in Table 6.5, as we hypothesize method-
level clone detection provides a better context for LSD prediction than selecting the ten
preceding lines of code in the sample data [145].

Finding 3. The additional context provided through finding similar code snippets
can be borrowed as a starting point for LSD automation and further augmented with
deep-learning NLP approaches.

Finding 4. Our LSD prediction approach, on average, achieves 32.38% improvement
over the prior work (X

W
) and 6.41% improvement over the No-NLP version (Z

X
).

6.6 Case Study

Yuan et al. [325] showed that developers spend a significant amount of time revising logging
statements for system dependability tasks, such as postmortem failure analysis. In this
case study for the Hadoop project (Listing 6.2), we investigate the code snippets that
have logging statements updates or revisions after a problem was detected in the software
systems. Then, we try to find code clones based on that snippet of the source code and
see if we could have predicted the logging statement description prior to the failure that
could have saved engineering time and trial-and-error cycle. We use ‘git blame’ to assign
commit number and data and time of the commit, and we look for clones in the portion
of the code which was developed and checked in prior to the log statement fixes (i.e., for
clone detection we rely on the code which was previously developed while the new code is

147

being composed). We found a JIRA ticket for the YARN subsystem of Hadoop, YARN-
985 [136]. Code Snippets 1 and 2 are clone pairs in Listing 6.2. Snippet 2 went through two
logging updates in two different git commits in the Year 2014, highlighted in orange and
red, respectively. These modifications could have been avoided if the engineer developing
the logging statement to Code Snippet 2 had access to observe the logging description from
its clone pair, Code Snippet 1 and NLP CC’d predictions for LSD suggestions.

148

Listing 6.2: Case study from JIRA; two log changes.

1 / / S n i p p e t 1 , F a i r S c h e d u l e r . j a v a .

2 2013 -12 -13 private synchronized void removeApplicationAttempt

(

3 2012 -07 -13 ApplicationAttemptId applicationAttemptId ,

4 2014 -01 -10 RMAppAttemptState rmAppAttemptFinalState ,

boolean keepContainers) {

5 2012 -07 -13 LOG.info("Application " +

applicationAttemptId + " is done." +

6 2012 -07 -13 " finalState=" + rmAppAttemptFinalState);

7 2014 -08 -12 SchedulerApplication <FSAppAttempt >

application =

8 2014 -01 -10 applications.get(applicationAttemptId.

getApplicationId ());

9 2014 -08 -12 FSAppAttempt attempt = getSchedulerApp(

applicationAttemptId);

10 ...

11 / / S n i p p e t 2 , C a p a c i t y S c h e d u l e r . j a v a .

12 2013 -12 -13 private synchronized void doneApplicationAttempt(

13 2011 -08 -18 ApplicationAttemptId applicationAttemptId ,

14 2014 -01 -10 RMAppAttemptState rmAppAttemptFinalState ,

boolean keepContainers) {

15 2014 -01 -02 LOG.info("Application Attempt " +

applicationAttemptId + " is done." +

16 2014 -09 -12 " finalState=" + rmAppAttemptFinalState);

17 2014 -01 -10 FiCaSchedulerApp attempt =

getApplicationAttempt(applicationAttemptId);

18 2014 -05 -22 SchedulerApplication <FiCaSchedulerApp >

application =

19 2014 -01 -10 applications.get(applicationAttemptId.

getApplicationId ());

20 ...

149

6.7 Discussion

6.7.1 Log Verbosity Level (LVL) and Variables (VAR)

Our approach is reasonably extendable to predict LVL and VAR alongside the LSD sug-
gestion. Since we have access to the source code of the method that we are predicting
the logging statement for and its clone pair, a reasonable starting point is to suggest the
same LVL as of its clone pair, and then augment it with additional learning approaches
such as [193, 54, 203] for more sophisticated LVL prediction. For example, our analysis for
the evaluated projects in Figure 6.5 shows that code clones match in their verbosity levels
in the range of (92, 97)%. In addition, we also hypothesize that some of the LVL mis-
matches in the clone pair LVLs are due to the log-related issues [142] that our clone-based
approach has uncovered. For VAR prediction, our approach can be augmented with deep
learning [209] and static analysis of the code snippet under consideration [326] to include
log variables suggestions alongside the predicted LSD.

6.7.2 Practicality in Software Engineering

We note that the ideas similar to our approach for automated log generation have been
already applied and proven to be effective in adjacent software engineering tasks such
as automated commit message [302] and comment [305] generation. For example, Wei et
al. [305] used comments of similar code snippets as ‘exemplars’ to assist in generating com-
ments for new code snippets. Both papers’ ideas and application scenarios are analogous
to a large extent to those of our work. Similarly, both approaches utilize BLEU [305, 305]
and ROUGE-L [305] scores for evaluating the quality of the auto-generated text.

6.8 Threats to validity

We categorize external and internal threats to the validity of our research.

6.8.1 External Threats

External threats to the validity reflect on the generalization of our work to other such
software projects and programming languages. In this research, we conducted our log

150

●

●

●

●

●

●error(51%)

info(22%)

debug(11%) warn(9%)
trace(4%)

mismatch(3%)0

200

400

600

.25

.51

0.97

HBase

●

●

●

●
●

●info(52%)

debug(16%) error(15%)

warn(10%)
trace(1%)

mismatch(7%)

0

200

400

600

.25

.5

0.93

Hadoop

●

●

●

●

●

●

debug(41%)

error(20%)

warn(18%)

info(9%) trace(5%)

mismatch(8%)

0

100

200

300

400

.25

.5

0.92
Cloudstack

●

●

●

●
●

●info(46%)

warn(22%)

error(13%) debug(13%)

trace(1%)
mismatch(6%)

0

20

40

.25

.5

0.94

Zookeeper

Figure 6.5: Percentage values for each verbosity level. For each project, only a small
percentage of clones have a ‘mismatch’ in their log verbosity levels.

statement analysis on seven open-source Java projects that are well-established and con-
tinuously maintained, and used in prior logging research [78, 145]. We assumed our ap-
proach is independent of the underlying programming language that the source code is
implemented with. However, since other software systems, and other programming lan-
guages, may follow different logging practices, our findings may not accurately extend and
generalize to other such systems.

6.8.2 Internal Threats

Regarding internal threats, our approach relies on the clone detector to find a clone pair for
providing logging suggestions, which implies that we cannot suggest a logging statement
for a newly-developed code snippet if it is not similar to a priorly-developed code snippet.
In fact, we argue this threat is not exclusive to our approach but also exists for all other log
prediction approaches that rely on learning from logged snippets of source code [346, 200],
as a learning model can only predict a logging statement for a new code snippet if it can
find a feature mapping to its learned logged code base. To mitigate this concern, we suggest
curating a database of available open-source code that can be readily parsed and become

151

available for clone detection. This database could be used to improve the hit-rate of the
clone detection approach when searching for similar code snippets [155, 145]. Additionally,
the architecture of the LSTM model and tuning of its hyperparameters [132] can have an
impact on the BLEU and ROUGE scores for different software projects.

6.9 Related Work

We categorize the prior work into three main areas: log prediction, code clone detection,
and NLP research in software systems.

6.9.1 Log Prediction

Yuan et al. proposed ErrorLog [324], a tool to report error handling code, i.e., error log-
ging, such as catch clauses, which are not logged, and to improve the code quality and help
with failure diagnosis by adding log statements to these unlogged code snippets. Zhao et
al. [339] introduced Log20, a performance-aware tool to inject new logging statements to
the source code to disambiguate execution paths. Log20 introduces a logging mechanism
that does not consider developers’ logging habits or concerns. Zhu et al. [346] proposed
LogAdvisor, a learning-based framework, for automated logging prediction which aims to
learn the frequently occurring logging practices automatically. Their method learns log-
ging practices from existing code repositories for exception and function return-value check
blocks by looking for textual and structural features within these code blocks with log-
ging statements. Jia et al. [166] proposed an intention-aware log automation tool called
SmartLog, which uses an Intention Description Model to explore the intention of existing
logs. Li et al. [200] categorized six block-level logging locations, and Cândido et al. [72]
performed an exploratory study of log placement with transfer learning for an enterprise
software. We discussed how our approach differs from these works during the discussion in
Section 6.5.2. Also, our research is the only one that tackles both log location and descrip-
tion automation. Gholamian and Ward [123] showed that code clones follow similar logging
patterns and investigated the feasibility of predicting the “location” of log statements in
an experimental study, but failed to fully observe the clone-detection shortcomings for log
prediction. Another research also proposed steps involved in leveraging similar code snip-
pets for log statement prediction [122]. The author also discusses the practicality of their
approach during the software’s development cycle. Our goal in this study is to improve
on the performance of log-aware clone detection and also predict the “description” of log
statements by utilizing code clones and deep-learning NLP approaches.

152

6.9.2 Code Clone Detection

Source code clone detection is a well-established area of study for software systems, and
a significant number of detection techniques and tools have been presented in the lit-
erature [261, 47]. Code-clone detection is the task of identifying syntactically exact or
similar snippets of source code (with equal semantics) within or between software sys-
tems [270, 271] based on contextual features of the source code snippets. We demon-
strated that searching for similar code snippets, i.e., clone pairs, is beneficial in automated
log statement generation. We initially observed the shortcomings of the generic state-
of-the-art clone detection methods [270] for log automation, and then improved on by
our log-aware method (LACCP), and proposed an approach to suggest log statements’
description (NLP CC’d).

6.9.3 NLP in Software Systems

Prior research has widely utilized natural language attributes for various applications in
software engineering. For example, natural language exists in software source code and
identifier names, design documents, bug reports [55], and code suggestion [66]. To enable
NLP for software systems, prior research [119, 155] has shown the source code is redundant
and repetitive, which can be utilized to model the source code with n-gram language
models. Tu et al. [298] further explored the localness of software characteristics in order
to utilize regularities that can be captured in a locally estimated cache and leveraged for
software engineering tasks. Most recently, research has shown that logging statements’
descriptions [145] and execution log files [126] manifest natural language features, similar
to other software artifacts, such as source code itself. Inspired by the prior NLP research,
in this work, we utilize a deep-learning NLP model for logging statements’ description
prediction, and outperform the results in prior work [145].

6.10 Conclusions and Future Directions

Software developers insert logging statements in the source code in various places to im-
prove the software development process and its diagnosability. Nevertheless, this process
is currently manual, and it does lack a unified guideline for the location and content of
log statements. In this chapter, with the goal of log automation, we presented a study
on the location and description of logging statements in open-source Java projects by ap-
plying similar code snippets and NLP models. We initially improved the performance

153

of the log-aware code clone detector (LACCP) by 15.6% compared to Oreo, and then
augmented the performance of log description prediction with the deep learning natural
language processing approaches. We experimented on seven open-source Java systems,
and our analysis shows that by utilizing log-aware clone detection and NLP, our hybrid
model, (NLP CC’d), achieves 40.86% higher performance on BLEU and ROUGE scores
for predicting LSDs when compared to the prior research (Z(over)W), and achieves 6.41%
improvement over the No-NLP version (Z(over)X). We also included a case study of logging
issues in Hadoop, a discussion on the applicability of our approach and prediction of the log
verbosity level and its variables, and threats to the validity of our research. As future work,
we look into further incorporating the source code surrounding the logging statements for
additional context in log automation.

6.11 Repository Explained

We provide a repository [12] to make our data available. The main folders are LACCPlus
and NLPCCd for RQ1 and RQ2, respectively. Under each folder, there are subfolders for
each software project, e.g., Zookeeper. Inside each subfolder, we have provided clone pairs
for methods that we have examined in our study. The naming convention for each method
consists of its id (i.e., method id) and an index for each method snippet, such that (id 1,
id 2) forms a clone pair.

154

Part IV
Log Natural Language Processing

155

Chapter 7

What Distributed Systems Say: A
Study of Seven Spark Application
Logs

Abstract- Execution logs are a crucial medium as they record runtime information of soft-
ware systems. Although extensive logs are helpful to provide valuable details to identify
the root cause in postmortem analysis in case of a failure, this may also incur performance
overhead and storage cost. Therefore, in this research, we present the result of our ex-
perimental study on seven Spark benchmarks to illustrate the impact of different logging
verbosity levels on the execution time and storage cost of distributed software systems. We
also evaluate the log effectiveness and the information gain values, and study the changes
in performance and the generated logs for each benchmark with various types of distributed
system failures. Our research draws insightful findings for developers and practitioners on
how to set up and utilize their distributed systems to benefit from the execution logs.

Keywords:
logging statement, log verbosity level, log4j, logging cost analysis, information gain, en-
tropy, distributed systems, system failure, Apache Spark, HDFS

An earlier version of this chapter is published in the International Symposium

on Reliable Distributed Systems (SRDS) 2021 [127].

156

7.1 Introduction and Motivation

The rapid growth of processing requirements and data scale in computing systems has
contributed to the development and adaptation of large-scale, parallel, and distributed
computation and storage platforms, e.g., Apache Spark and Hadoop Distributed File Sys-
tem (HDFS). Laterally, as the size of the data and computing systems grow, and they
become more distributed in nature, evaluating their reliability and performance becomes
more daunting. As such, execution log files and instrumentation of the source code are
important origins of information for dependability analysis and gaining insight into the
runtime state of the system. Execution logs have advantages over instrumentation, as they
are readily available, do not require access to the source code, and do not introduce per-
turbation [218]. However, instrumentation requires access to the source code, and it incurs
perturbation due to the added instrumentation code.

Logging is an important integral part of the software development process to record
necessary run-time information [117, 141]. Software developers insert logging statements
into the source code to record a wealth of information such as variable values, state of
the system, and error messages. Developers and system operators use this information for
different purposes, among them failure and performance diagnosis [311, 104]. Although
logging has proven benefits, it can incur system costs. Excessive logging can cause system
overhead, such as CPU and I/O consumption. Contrarily, logging too little may miss
important information and degrade the usefulness of execution logs [117]. Authors of [149]
described a typical online system at Microsoft that could produce execution logs in the
terabyte order-of-magnitude per day. As such, this high volume of logs can impair the
quality of service for such systems. To address the trade-offs associated with the overhead
of logging, well-known libraries, such as Apache Log4j [15] and SLF4j [26], provide facilities
for different levels and granularities of logging. The libraries provide different verbosity
levels to dynamically control the number of logging statements being ultimately outputted
to the log file on the storage medium. As each logging statement comes with a verbosity
level, the logging library filters log messages by comparing the log statement’s level with
the dynamic log level specified by the user. Log4j has six verbosity levels available to
the developers by default: fatal, error, warn, info, debug, and trace. Figure 7.1 shows an
example of a logging statement from Spark with info verbosity level and its end product in
the log file. In addition, each logging statement consists of a constant part, i.e., “Executor
added: on with core(s)”, and a variable part, i.e., “fullId”.

Log levels represent a measure of the importance of the messages. For example, less
verbose levels (i.e., fatal, error, and warn) are used to warn the user when a potential
problem happens in the system. On the other side, more verbose levels such as info, debug,

157

20/02/21 13:47:49 INFO StandaloneAppClient$ClientEndpoint: Executor added: app-20200221134749-0004/0
on worker-20200220231425-xxx.xxx.xxx.xxx 34881 (xxx.xxx.xxx.13:34881) with 8 core(s)

logInfo("Executor added: %s on %s (%s) with %d core(s)"
.format(fullId, workerId, hostPort, cores))

Log statement in the source code

The corresponding log message in the log file

Figure 7.1: Log statement and end product in the log file.

and trace are utilized to track more general system events and information or detailed de-
bugging. Considering the flexibility that each log level brings, our goal in this research is to
quantitatively measure the cost, in terms of storage, execution overhead, and information
gain (IG) of log files while the distributed system is running under different log verbosity
levels. Ultimately, we aim to reach a guideline on implications for developers and practi-
tioners on how to utilize the logs in different verbosity level decisions while developing or
operating distributed software systems in normal scenarios and in presence of failures. We
guide our research with the following research questions (RQs):

� RQ1: what is the quantitative cost of logging in terms of computation time (CT) and
storage overhead (SO)? (§7.3)

� RQ2: how much information is gained from different log verbosity levels (VLs)?
(§7.4)

� RQ3: how the characteristics of logs change with distributed failures, i.e., distributed
computation and storage failure? Does the entropy of logs increase when a failure
happens? (§7.5)

For each RQ, we discuss the practical findings of our analysis and their implications for
developers and practitioners on how to utilize the execution logs. Our research provides
insight on how to choose the level of logging, and ultimately control the amount of gen-
erated logs and the information gain, and how the failures can be detected with entropy
values. In addition, we provide a discussion on our findings and the implications for fu-
ture improvements in distributed systems and their scheduling in case of system failures
(§7.5.4). With the motivation of helping developers and practitioners to gain more insight
into the content of execution logs, and to make more deliberate logging level decisions,
we pursue the following contributions in this chapter: (1) We evaluate the performance
and cost of logging for Spark under a set of batch and iterative workloads with different

158

characteristics to calculate the overall execution time overhead and volume of generated
logs (RQ1). (2) We calculate the information gained from the log files in different VLs
based on their entropies and natural language processing (NLP) of logs with n-gram mod-
els and provide insights on how to make logging level decisions based on the observed cost
and information gain from the log files (RQ2). (3) We introduce a comprehensive set of
distributed system failures and evaluate the changes in execution log characteristics and
entropy values, and provide insights on practical outcomes of our analysis for how to utilize
execution logs to pinpoint failures (RQ3). Lastly, we release our labeled failure logs to
encourage and enable further research in this field [6].

7.2 Approach and Setup

In this section, we present our approach and characterize the systems, their configurations,
and the workloads that we use to conduct our study. Figure 7.2 outlines the steps involved
in our study. We categorize the logging cost into two system aspects: 1) execution overhead
and 2) storage cost. We run seven Spark benchmarks with different log verbosity levels and
calculate the execution times and the size of the generated logs. We then utilize Shannon’s
entropy theory [281] and n-gram models [9] to measure the information gain by calculating
entropies for different log levels with and without failures.

Spark
Seven Spark
benchmarks

Execution
time

Log vebosity
 level

Log size

n-gram model
training

Entropy
calculation

Failures

Execution
logs

Figure 7.2: Our approach for measuring the cost and effectiveness of the logs.

Apache Spark. Since its introduction, Spark has been widely adopted as a big-data,
distributed, and parallel processing framework. Spark builds upon Hadoop’s MapReduce
model and brings extra flexibility and improved performance. Additionally, Spark provides
interfaces to other big-data platforms such as Hadoop’s distributed file system, HDFS. To

159

achieve higher performance and as an improvement to Hadoop MapReduce, Spark utilizes
Resilient Distributed Datasets (RDDs) [327], which retain the intermediate results in main
memory, and therefore, reduces the overhead caused by the disk and network [328]. This op-
timization benefits Spark the most in iterative tasks (e.g., Transitive Closure), as the follow-
ing stages of the task rely on the intermediate results from the prior stages. Because of its
improved performance and widespread use, we deploy a Spark cluster to perform our study.

Hardware. Table 7.1 and Fig. 7.3 show the main hardware characteristics and the
architecture of our deployed cluster, respectively. Each node in the cluster has 12 (12*2
hyper-threaded) cores, 32 GBs of memory, and 2 storage disks of 1 TB each. We evaluate
the benchmarks on a cluster of 4 commodity machines illustrated in Fig 7.3. Each ma-
chine is equipped with dual 2.40GHz Intel Xeon E5-2620 CPUs, supporting a total of 24
hyperthreads per machine and a 1Gbps NIC. All servers run Ubuntu Server 16.04.6 LTS
64-bit with kernel version 4.4.0-159-generic.

Name Role Cores Memory Disk Local IP

styx01 Master/NameNode 12 (24 HT) 64 GB 2*1 TB 192.168.210.11

styx02 Worker/DataNode 12 (24 HT) 64 GB 2*1 TB 192.168.210.12

styx03 Worker/DataNode 12 (24 HT) 64 GB 2*1 TB 192.168.210.13

styx04 Worker/DataNode 12 (24 HT) 64 GB 2*1 TB 192.168.210.14

Table 7.1: Styx cluster for Spark computation and HDFS.

Spark master
HDFS namenode

Spark slave
HDFS datanode
192.168.210.12

Spark slave
HDFS datanode
192.168.210.13

Spark slave
HDFS datanode
192.168.210.14

Figure 7.3: Design of the distributed cluster, consisting of one master/name node and
three slave/data nodes.

Framework setup. In our experiments, we use Spark 2.4.4 and Hadoop 2.9.2. We
use styx01 as a dedicated server for the Spark master and HDFS name node, while having
one Spark slave and HDFS data node on each of the three other machines, styx02, styx03,

160

Framework Parameter Value
HDFS block size 128 MBs
HDFS Replication factor 3
Spark Worker/Executor per node 1
Spark Cores per executor 24 HT
Spark Memory per executor 32 GBs
Spark Driver memory 10 GBs

Table 7.2: Main Spark and HDFS settings.

and styx04. Hadoop file system block size is 128 MBs and replication is set to 3. We set up
each Spark slave to use 12 available cores and up to half of the available memory (i.e., 32
GBs out of 64 GBs) on each of the nodes. The frameworks have been carefully configured
according to their corresponding user guides and the characteristics of the system (e.g.,
number of CPU cores and memory size). Table 7.2 summarizes the related configurations
for HDFS and Spark nodes.

Benchmarks. In this research, we experiment on seven different Spark benchmarks
and provide a brief explanation of each one in the following:

1 WordCount (WC), which counts the number of times each word appears in the
input dataset. By applying transformations such as ‘.reduceByKey()’ on RDDs,
WordCount outputs a dataset of (word, value) pairs, saved to a file on HDFS. Word-
Count is a popular Spark’s benchmark that allows us to assess CPU and I/O costs
associated with different levels of logging.

2 TeraSort (TS), which sorts randomly generated rows of key-value (KV) pairs with
each KV being 100 bytes. The TeraSort implementation and its random data gener-
ator engine, TeraGen, are both adopted from [41].

3 TransitiveClosure (TC), checks and implements linear transitive closure (LTC)
on a graph, iteratively. For example, if x, y, and z are three vertices, and (x,y) and
(y,z) represent edges between x and y, and y and z, respectively, for satisfying the
transitive closure property, a new edge is added between x and z. LTC grows paths
by one edge, by joining the graph’s edges with the already-discovered paths in each
iteration. TC is an iterative CPU-intensive workload.

4 PageRank (PR) is an iterative graph algorithm that ranks URLs by considering the
number and rank of URLs referring to it. For example, the more URLs with higher
ranks refer to a URL under consideration (URLUC), the URLUC’s rank increases.

161

For the PageRank’s implementation, we use the implementation provided with the
Spark’s example package.

5 TestDFSIO (DF), which is a benchmark designed to evaluate the I/O (read/write)
performance by using Spark’s tasks to read and write multiple files in parallel. The
benchmark aims to read and write an even amount of data to HDFS on each node
in the cluster. The implementation is adapted from [42].

6 GradientBoostingClassificationTrees (GC), which is a machine learning algo-
rithm for classification, that generates a prediction model as an ensemble of decision
trees. In this use case, the number of classes is set to two, the depth of the trees is
set to five, and we perform 200 iterations for the model training.

7 LinearDiscriminantAnalysisClustering (LD), which implements LDA cluster-
ing algorithm, i.e., unlabeled data, that clusters the input documents into three
different topics.

Table 7.3 summarizes the benchmarks used in the experiments, along with their char-
acterization such as CPU or I/O (disk and network) intensive, and if the computation
happens iteratively. The sizes of the input datasets are also shown, and we refer to the
benchmarks with their abbreviation in the rest of the chapter, as shown in Table 7.3. Dur-
ing the benchmark selection, we were deliberate to include a variety of workloads such as
Spark’s conventional benchmarks, e.g., WC and PR, and machine learning ones, e.g., GC
and LD.

162

Benchmark (ab-
brv.)

Task type Input data
size

Notes

WordCount (WC) CPU and I/O intensive 52 GBs The output is pairs of (word, count) writ-
ten to HDFS.

TeraSort (TS) Iterative, I/O, and CPU
intensive

2 GBs Sorts randomly generated (key, value)
pairs, and the size of each pair is 100 bytes.

TransitiveClosure
(TC)

Iterative and CPU inten-
sive

small (few
KBs)

Calculates the transitive closure on a ran-
domly generated graph with 200 edges and
100 vertices.

PageRank (PR) Iterative and CPU inten-
sive

40 MBs Ranks web pages based on their popularity.

DFSIO (DF) I/O intensive 20 × 1 GB Writes and then reads 20 files of one GB
each to HDFS.

GradientBoosting
Classification Trees
(GC)

Iterative and CPU inten-
sive

small (205
KBs)

Trains 200 decision trees with the depth of
five for classification of a decision problem,
i.e., yes (1) or no (0).

LinearDiscriminant
Analysis Clustering
(LD)

Iterative and CPU inten-
sive

21 MBs Clusters the input data into three topics
using LDA.

Table 7.3: Benchmark characteristics.

163

Kruskal−Wallis, p = 0.04

3.79 3.83
3.85

3.7

3.8

3.9

4.0

OFF INFO TRACE

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

(a) WC CT.

0.57 0.58

6.76
Kruskal−Wallis, p = 6e−05

0.5

1.0

3.0

5.0

OFF INFO TRACE

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

(b) TS CT.

Kruskal−Wallis, p = 2.6e−05

3.36
3.41

4.07

3.25

3.50

3.75

4.00

4.25

OFF INFO TRACE

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

(c) TC CT.

Kruskal−Wallis, p = 0.00097

2.55 2.57 2.66

2.4

2.5

2.6

2.7

2.8

2.9

OFF INFO TRACE

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

(d) PR CT.

Kruskal−Wallis, p = 1.3e−05

2.46
2.52

2.68

2.4

2.5

2.6

2.7

2.8

OFF INFO TRACE

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

(e) DF CT.

Kruskal−Wallis, p = 1.1e−05

2.65 2.72

3.03

2.6

2.8

3.0

OFF INFO TRACE

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

(f) GC CT.

Kruskal−Wallis, p = 0.031

2.43

2.6 2.78

2.0

2.5

3.0

3.5

OFF INFO TRACE

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

(g) LD CT.

0.153
2.343

1073.424

0

400

800
1200
1600

OFF INFO TRACE

Lo
g

si
ze

 (
M

B
)

(h) WC SO.

0.4 0.57

5193.04

0

2000

4000
6000

OFF INFO TRACE

Lo
g

si
ze

 (
M

B
)

(i) TS SO.

0.2

313.2

1942.25

0

1000

2000

OFF INFO TRACE

Lo
g

si
ze

 (
M

B
)

(j) TC SO.

0.2

5.75

323.26

0

100

200

300

OFF INFO TRACE

Lo
g

si
ze

 (
M

B
)

(k) PR SO.

0.42 0.51

546.96

0

200

400
600

OFF INFO TRACE

Lo
g

si
ze

 (
M

B
)

(l) DF SO.

0.2

17.09

141.57

0

50

100

150

OFF INFO TRACE

Lo
g

si
ze

 (
M

B
)

(m) GC SO.

0.2
1.02

8.29

0

3

6

9

OFF INFO TRACE

Lo
g

si
ze

 (
M

B
)

(n) LD SO.

Figure 7.4: Computation time (CT) and storage overhead (SO) for WordCount and K-Means tasks.

164

7.3 RQ1: Cost of Logging

There exists various qualitative and quantitative metrics for assessing logging cost. Quan-
titative metrics consider the overhead of logging on different subsystems of the computing
systems, e.g., CPU and I/O overhead [104], and qualitative metrics assess the cost of
logging in terms of developer and user experience, such as the cost of revealing private
information through logs [192]. In our work, we focus on quantitative measurement of
the logging cost and for this purpose, we conduct a set of experiments to evaluate the
impact of logging verbosity level on the size of the generated logs, as well as the effect
on the performance of the Spark. To measure the cost of logging, we run multiple Spark
benchmarks on our commodity cluster and calculate the logging cost in terms of the size of
the generated log and the execution time for each benchmark. The measured computation
time and storage values in this section serve as a baseline for comparison on further RQs.

7.3.1 Computation time (CT)

Figures 7.4a-7.4g show the violin chart and interquartile range with mean values (noted in
text) for execution time of different benchmarks. We also perform Kruskal-Wallis test [182]
to reject the null hypothesis and ensure statistically significant values, i.e., p ≤ 0.05. Violin
chart improves on boxplot chart by providing the width in the graph as the density of
points in the experiments. The vertical axes represent the execution time in minutes,
and the horizontal axes show different verbosity levels (VLs). We select to show info and
trace VLs as the former is generally enabled by default and presents the normal mode of
logging, and the latter represents the maximum amount of logging which is widely utilized
during failure diagnosis [83, 345]. This provides a picture of the lower and upper bounds
of logging. Besides, we present the data for logging off to present the other end of the
spectrum (least amount of logging) compared to the trace level (most amount of logging).
The overall trend shows the more verbose VLs result in higher execution times. Because
trace VL enables more detailed logging and executes additional lines of code (and more
I/O system calls), it incurs a minor but noticeable execution time overhead across different
benchmarks, when compared to info level.

7.3.2 Storage overhead (SO)

Figures 7.4h-7.4n show the size of generated execution logs for different benchmarks. The
vertical axes represent the size of the log file in MB, and the horizontal axes show different

165

verbosity levels. The sizes show the aggregated logs for all the nodes (i.e., master and
workers) of the Spark cluster. Similar to computation times, trace level enables more
detailed logging, which results in significantly higher volumes of log data when compared
with less verbose log levels.

Results review. Based on the conducted experiments, we observe that the execution
time of the benchmarks increases as the log level becomes more verbose. This observation is
congruent with the knowledge that the execution of logging messages infers extra CPU, I/O,
and storage cost. Overall, excluding TS, we see on average 8.01% overhead in execution
time when the trace log level is enabled versus the info level. For the log file size, we
notice on average a ∼268X increase in the volume of the generated logs for the trace log
level versus the info verbosity level. We did a further investigation to better understand
the ∼12X increase in computation time for TS, and we observed the significant amount
of generated logs for TS in trace level when compared to info (i.e., 5 GBs vs. 0.5 MBs).
Because TS is a CPU-intensive benchmark, we rationalize that its CT suffers noticeably
due to the significant amount of logs outputted in the trace level. Comparing CT and SO
values for different benchmarks, we observe that the amount of generated logs in different
VLs is benchmark dependent, and CPU-intensive applications (e.g., TS, TC) observe a
higher slowdown due to more verbose logging.

SO mitigation. Prior work has shown that due to the high level of repetitiveness in
log files, they can benefit from large compression ratios, up to 84% [319]. Therefore, the
noticeable difference in storage cost can be mitigated by the compression of log files to
∼43X.

Finding 1. Overall, we observe on average 8.01% and ∼268X overhead in the execution
time and storage when the trace log level is enabled versus the info level, respectively, and
CPU-intensive workloads suffer more from a higher degree of logging.
Implications. Considering the trade-offs, if the worst-case 8.01% execution time is accept-
able, by utilizing log rolling, compression, and continuous achieving, the storage overhead
of more verbose logging can be further lowered.

7.3.3 RAM Disk

We used the hard disk drive (HDD - TOSHIBA MG04ACA200E - 7,200 RPM) as the
storage medium for collecting the logs. Because we observed significant degradation for
the performance of some of the CPU-intensive applications such as TeraSort when the
trace level is enabled, we further investigate the impact of utilizing faster storage systems

166

for log collection. Because developers and practitioners mostly utilize trace log level for
debugging, we rationalize that the debugging data can be saved in memory temporarily
to expedite the debugging process and the final debugging outcome can be transferred
to the disk when the debugging is finalized. In addition, although memory storage is
volatile and there is a risk of debugging data loss due to power outage, we presume this
risk is manageable as we are concerned with debugging data in contrast to the actual
execution logs, and the experiments can be repeated in case the debugging data is lost.
Additionally, as new storage technologies become faster, e.g., solid-state drive (SSD), and
its latency edges closer to the main memory speed, this data point shows the maximum
potential improvement that comes in from a faster storage paradigm, i.e., a latency lower
bound and a ‘hypothetical’ storage medium that is as fast as the main memory. Table 7.4
compares the CT values for HDD versus RAM Disk for benchmarks that we observed a
noticeable increase in CT when trace level is enabled. RAM Disk is a utility that allows us
to map a portion of RAM as disk space and redirect benchmark logs to the space on RAM.
Our goal is to show how much of the extra CT introduced because of the slow storage
medium can be recovered by leveraging a faster storage medium, assuming non-volatile
storage mediums become as fast as RAMs.

CT (min) TS TC PR DF GC LD

HDD 7.40 4.07 2.66 2.68 3.03 2.78

RAM Disk 5.73 3.99 2.61 2.64 2.99 2.68

CT reduction (%) 22.62 2.05 2.02 1.38 1.19 3.60

Table 7.4: Computation time values for RAM Disk vs. HDD for trace level.

Finding 2. TeraSort, which generates a significantly higher amount of logs in trace level
compared to info level, shows the highest CT reduction while using RAM Disk.
Implications. Faster storage mediums can mitigate some of the overhead associated with
logging for CPU-intensive workloads that generate a significant amount of logs in more
verbose log levels.

7.4 RQ2: Log Effectiveness

In RQ2, we evaluate the relationship between the log verbosity levels and their effectiveness.
Although more verbose logs are used generally for debugging, there has not been any effort

167

to quantitatively assess the effectiveness of logs in more verbose levels. In other words,
although the common perception is that a higher degree of logging translates to more
effectiveness of the logs, this assumption might not completely hold true. For this purpose,
we introduce a new metric for calculating the effectiveness of logs based on entropy values
and investigate whether or not more verbose VLs are more effective.

Log effectiveness (LE). LE is a quantitative measure of logs’ effectiveness in achieving
their goals, which is mainly problem diagnosis and troubleshooting. For example, Yuan
et al. [325] showed that in their experiments when log statements exist, developers could
diagnose system problems 2.2X faster compared to not having the logs. In this study, LE
is directly related to Entropy (i.e., LE ∝ Entropy) that we clarify in the following. As
illustrated in Figure 7.1, log statements consist of two parts: static and dynamic content.
Static content of log statements originates from the source code, and dynamic content is
the value of variables that are printed in the log files as the system is running. As such,
the dynamic content of the logs can be different in each iteration, whereas the static part
is unchanged and has the same value in every iteration of the program. Therefore, for
more verbose VLs to be more effective than less verbose ones, they should result in higher
Entropy values and information gain (IG), as this signifies more unique runtime content.
In other words, higher dynamic content translates to more runtime information and value
of variables, which is positively related to higher values of entropy, IG, and LE:

(↑Dynamic content) → (↑Entropy) → (↑IG) → (↑LE)

Shannon’s entropy. We use entropy as a metric to measure the dynamic content and
effectiveness of the log records. Shannon’s entropy [281] is used to measure the amount
of information that is contained in an information source (e.g., a text file). Entropy is

calculated as: H = −
∑N

n=1 p(i) log2 p(i) , where p(i) is the probability of a possible char-

acter happening in the log data [281]. The more random (i.e., less repetitive) the content
of the log file, the higher the entropy. For the purpose of experimentation, we focus on
the info and trace log levels as they are used during the deployment and development of
the software, respectively, to gain insight from the end user and developer perspectives.
Because Spark generates only a few MBs of logs in info level for some benchmarks and to
perform the experimentation on equal log sizes, we randomly sample 1 MB size of Spark’s
logs for both trace and info levels for each benchmark and measure the entropies. Table 7.5
shows the entropy values per character for log files in trace and info verbosity levels. The
character-level entropy values are slightly higher for the trace log level, which partially
signifies higher information gain (IG) and less repetitiveness for this level.

168

Entropy WC TS TC PR DF GC LD

Info 5.24 5.31 5.16 5.21 5.26 5.23 5.26

Trace 5.41 5.39 5.38 5.40 5.37 5.34 5.40

Table 7.5: Shannon’s entropies for info and trace for various applications.

N-gram model. Although character level entropy explains the randomness of single
characters in logs, it does not provide insight on the sentence level repetitiveness of log
messages. It is more reasonable to calculate the entropies for a sequence of words, as log
statements are inserted as a sequence of tokens (i.e., words and variables) in the source
code. To accommodate for a sequence of words, which bears higher semantic meanings
for log messages, entropy is also used for a sequence of grams (i.e., words or tokens),
such as calculating the probabilities of a sequence of tokens in the English language. For
this purpose, prior research has suggested the use of n-gram models [155], to capture
the repetitiveness of a sequence of words. The n-gram model captures the probability
distribution of the log data, and once trained, it can predict the probability distribution
of the next token in new log sequences by utilizing order-n Markov model approximation.
This approximation considers the probability of ith element in the sequence of n tokens
to be predicted based on n − 1 preceding tokens [168]. Therefore, we can estimate the
probability of ai succeeding tokens ai−1, ai−2, ..., ai−n+1 with:

p(ai|ai−1ai−2...ai−n+1) =
count(aiai−1ai−2...ai−n+1)

count(ai−1ai−2...ai−n+1)
(7.1)

Based on this model, the entropy for a sequence of tokens is:

H = − 1

N

N∑
n=1

log p(ai|ai−1ai−2...ai−n+1) (7.2)

To measure the sentence-level information gain from the logs, we evaluate the entropy
of a sequence of log tokens in both info and trace levels with n-gram models and compare
it with common English text such as Gutenberg [10] and Wiki. Gutenberg is a collection
of English books, and Wiki is the English articles from Wikipedia. To train and test the
n-gram models on the sequences of logs, we randomly sample 1 MB of data from each
benchmark and perform a 90%-10% train-test split. We run ten-fold cross-validation to
avoid overfitting [239] and plot the average entropies of 10 iterations for n-gram models in
the range of n ∈ (1, 8) in Figure 7.5. English text entropies stabilize around eight as the
size of n-gram increases, and the median values for trace and info stabilize at 0.975 and

169

0.982, respectively. Our experiment reveals that English text has higher entropy than log
files, and hence it has less repetitiveness, which is also observed in prior research on the
naturalness of software artifacts [155, 298, 120, 126]. Lower baseline entropy of software
logs compared to natural language text is beneficial as it results in ‘distinguishable’ entropy
changes while detecting anomalous log lines (i.e., peaks in entropy values) [126], which can
be utilized for log failure detection. Interestingly enough, our comparison shows, in Spark’s
case, the n-gram entropies are comparable for trace level when compared to the info level.
This suggests that although trace level logging results in a higher volume of logs, trace
log sequences are not necessarily less repetitive, and trace does not benefit from noticeable
higher information gain values, as IG from an event (e.g., log event) is directly related to
its entropy [246]. In addition, a higher amount of repetition that results in larger log files
might decrease their effectiveness. Redundancy is an undesirable feature of logs since it
adds noise to the log files and complicates the understanding of the program’s behavior
and hinders problem diagnosis through logs [325, 140].

Finding 3. Although trace level generates a larger volume of logs, trace data does not pro-
vide a noticeable higher entropy, and hence, does not necessarily carry higher information
gain and effectiveness when compared to less verbose log levels.
Implications. We presume trace logs show comparable IG to info because they contain
higher repetition rather than unique dynamic values.

7.5 RQ3: Failure Assessment

Logs are widely utilized in failure detection and performance diagnosis [311, 104]. There-
fore, in this section, we study the effectiveness of the information gain approach in system
failure detection. To evaluate the effect of system failures on the generated logs, we design
a framework to inject different types of distributed failures and measure their impact on
logs and how the IG approach can be applied to extract log lines related to the failures.
As numerous failure scenarios exist, our goal is not to provide a comprehensive list, but to
investigate common failures in a distributed environment. We categorize the distributed
failures in four main categories:

1. Compute node failure happens when a compute resource becomes unavailable.
We synthesize this scenario by terminating one of the Spark’s worker nodes.

2. Storage node failure in a distributed environment happens when a storage medium
becomes unavailable. As we utilize HDFS with the replication factor of three, the

170

0.5

1.0

2.0

3.0

4.0

6.0

8.0

10.0

1 2 3 4 5 6 7 8

E
nt

ro
py

Wiki
Gutenberg

INFO
TRACE

Figure 7.5: Entropy for n-gram models for Spark logs and English text.

integrity of the data remains intact in case of a single node failure, however, the
latency of reads and writes to the storage will increase for some compute nodes
that require access to data on non-local HDFS nodes. We synthesize this failure by
terminating one of the HDFS data nodes.

3. Communication interference, which resembles a scenario in the distributed net-
work with variable latency and a probability of packet loss. This category can be
initially observed as a performance degradation, and eventually may lead to a com-
plete failure if the communication delay between distributed compute and storage
nodes surpasses a system’s predefined timeout.

4. Combined failure resembles a scenario in which multiple nodes become unavailable
simultaneously for various reasons such as power outages. We simulate this scenario
by terminating a cluster node that hosts both Spark compute and HDFS storage
nodes.

With this failure categorization, our goal is to observe the changes in the content of
the logs files and apply information gain approaches to detect failures. The hypothesis is
that we should observe a higher information gain during a failure, as the failure related
logs should resemble different dynamic content. As such, we evaluate the entropy of logs
during their normal and abnormal (i.e., failure) time intervals. Because we noticed compa-
rable entropy values for info and trace log levels (Figure 7.5), in the following, we focus on
info verbosity level as it is the default log level during the deployment, and, additionally,

171

TC

DF GC LD

WC TS PR

0 250 500 750 1000

5 10 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
1
2
3
5
7

10
14

1
2
3
5
7

10
14

1
2
3
5
7

10
14

Log windows

E
nt

ro
py

 (
lo

g
sc

al
e)

Figure 7.6: Entropy values for log windows for different applications with Spark’s compute
node failure.

storage overhead of logs becomes more manageable. We run each Spark’s benchmark in
info level for ten iterations with and without the aforementioned failures and evaluate the
changes in execution time and the storage overhead for the generated logs. In addition, we
also evaluate the changes in information gain (entropy) with the normal and failure logs.
For entropy calculation, the n-gram model is trained on the normal execution runs (i.e.,
without failures) and tested on runs with failures. We choose n = 5 for the n-gram model,
as according to Figure 7.5, entropy values are stabilized for n ≥ 5.

7.5.1 Compute Node Failure

Figure 7.6 shows the entropy values over time for different benchmarks. The x-axis shows
sequential log windows of 4 KBs in size, as suggested by prior work for log analysis time
window ([126]), and the y-axis shows the entropies. As the size of the generated logs varies

172

for each benchmark, we show the timeline of entropy changes for each benchmark from the
start to the end of its execution. The spikes in the entropy values are the manifestation
of failures in the Spark’s logs. Once a failure happens, the system first detects the failure
and then plans a set of recuperating actions to recover from the failure. For example,
for a distributed system such as Spark, the task manager resubmits the tasks previously
assigned to a failed node to other nodes in the distributed cluster. This results in several
log lines in the log files, which we call failure manifestation log region, that have higher
than normal entropy values. As the failure happens, the benchmarks also show noticeable
prolonged computation time and additional logs compared to the baseline scenario (i.e.,
with no failure in Figure 7.4).

Detailed analysis of TransitiveClosure. We observed that failures can result in
different manifestations in the execution logs, and the manifestation can be relatively
benchmark dependent. To provide further insight, we review the interesting scenario of a
Spark compute node (CN) failure for the TransitiveClosure benchmark, which goes through
the following four failure stages: (S1) Failure detection. Upon a CN failure, the Spark’s
Master (SM) observes this as “a CN has been disassociated”, and subsequently, SM observes
that the tasks associated with that CN are also lost. This results in a set of log records
with high IG, and the first region of spikes in entropy values for TC in Figure 7.6 right
after x=500. (S2) Interleaving logs. In addition, due to the interleaving of logs in the
distributed system, other components in the system still continue to generate normal logs.
This is manifested in the entropy drop after the initial spike. (S3) Recovery attempts.
Happens when SM makes several unsuccessful attempts to recover from the failed state
and reconnect to the lost CN. This is manifested as the second high entropy region in
Figure 7.6 that ends just before x=750. (S4) Cleaning and back to normal. After
S3, SM gives up attempting to reconnect to the failed CN and continues the execution
by reassigning the failed tasks to the remaining CNs. In the meanwhile, it clears the
data structure allocated to the failed CN. It should be noted that the outlined stages can
manifest differently depending on the applications. For example, at info level, TS generates
far fewer log lines (0.57 MBs) than TC (313 MBs). As such, TS observes less interleaving
of logs compared to TC, and S1 and S3 manifest as one spike region in the logs.

Finding 4. A compute node failure with manifestation in log files would result in higher
entropy values than normal entropies, and different runs show extended computation time
and additional logs related to the failure. CT of CPU-intensive applications suffers more
from compute node failure than I/O intensive benchmarks.
Implications. Sudden changes in the entropy values of log records can signify a system
failure.

173

7.5.2 Storage Failure

To gain insight into storage failures, we investigate the entropy changes of HDFS logs. All
nodes within the HDFS file system (i.e., name node and data nodes) generate logs. We
perform the experimentation for all the benchmarks and review the logs from all the nodes
and measure the entropy changes as the failure happens. Due to the limited space, we
focus on the entropy value changes of WordCount and DFSIO as they are I/O intensive
benchmarks, and they make the most use of HDFS compared to other benchmarks. Fig-
ure 7.8 shows the entropy values over time for the name node (WC NN), and three data
nodes (WC DNx) as the failure happens. When DN4 fails at log window 69, we observe a
delayed manifestation of entropy changes in other data nodes (DN2 and DN3) which starts
at x=100. We observe that DN2 and DN3 directly contact DN4 (which is not available)
to retrieve some blocks of data, and hence this results in failure log messages and hence
higher entropies. By default, DNs are configured to send heartbeat signals to NN every
3 seconds. However, in case of a DN failure, NN marks an unresponsive DN dead after
10mm:30ss1, which at that time manifests in high entropy values in NN logs. The log
windows in Figure 7.8 show the entire execution span for WC, which on average finishes
within four minutes, and hence, we do not observe entropy value changes in NN in the
plotted timeline. Similarly, Figure 7.9 represents the entropies for DFSIO, another I/O
intensive task in our benchmark set when a data node (DN4) fails. We have also shown
the entropy values for DN2 and DN3 during a normal run for comparison. The peaks show
failure log messages with some normal interleaving logs. Failure for DN4 happens very
close to the start of the x-axis and thus the initial peaks for DN2 and DN3.

Finding 5. We observe noticeable entropy changes in the HDFS logs of I/O intensive
benchmarks as the storage failure occurs. CPU-intensive benchmarks that have minimal
interaction with HDFS do not generate enough HDFS logs for a meaningful log analysis.
Finding 6. I/O intensive applications that read and write large volumes of data to the
distributed storage will be negatively affected the most as a result of a storage node failure,
whereas CPU-intensive applications (i.e., with minimal R/W to the storage) will be less
impacted. Thus, CT of I/O tasks becomes prolonged due to the storage failure and the
application’s log size is also partially increased as it captures extra failure log records.
Implications. As failures are manifested as higher information gain, entropy-based
anomaly detection approaches can be applied for online log analysis to isolate the higher
entropy regions and further investigate the failures.

1https://issues.apache.org/jira/browse/HDFS-3703

174

https://issues.apache.org/jira/browse/HDFS-3703

p

1-p
Good
(1-k)

r
1-rBad

(1-h)

Figure 7.7: Gilbert-Elliot communication interference model.

7.5.3 Communication Interference Modeling

If the network connection between distributed nodes permanently disconnects, the observ-
able failure outcome would be similar to the permanent failure of the compute/storage
node, as that node becomes unreachable from the cluster manager. In contrast to perma-
nent failures in Sections 7.5.1-7.5.2, we here investigate intermittent network interference,
e.g., packet loss, to gain insight into non-permanent failures which are manifested as per-
formance degradation . To emulate a realistic network traffic model, we implement
Gilbert-Elliot capacity modeling approach [231, 143], which is comprised of Good and Bad
states (Figure 7.7). This model offers a more realistic emulation for network impairments,
rather than simple packet loss.

An example usage configuration for Gilbert-Elliot scheme would be as follows: ‘‘tc

qdisc add dev dev name root netem loss gemodel 2% 15% 30% 1%.’’ In this exam-
ple, the error rate in Good (1-k) and Bad (1-h) states are 1% and 30%, respectively, and
the probability of transitioning to Good (r) and Bad (p) states are 2% and 15%, respec-
tively. In the following experiments, we vary the error rate in Bad state, i.e., (1-h), in
the range of (0%, 45%) and measure the computation time. In addition, we also evaluate
the ‘combined failure’ (Case 4 in Section 7.5) by disconnecting one of the machines in the
cluster that hosts both compute and data nodes.

Heterogeneous cluster. For the purpose of experimentation, we also define a new
configuration that has three slave/data nodes but one node is smaller as it is using half of
the cores and memory (i.e., 12 cores and 16 GBs of memory instead of 24 cores and 32 GBs
of memory). This is in contrast to the homogeneous cluster (Figure 7.3) that all the three
slave/data nodes are the same size (24 cores and 32 GBs of memory). The rationale to
include the heterogeneous configuration is to compare it with the performance degradation
scenario that appears as a result of network interference.

Results. Figures 7.10a and 7.10b show the evaluation for communication inter-
ference and combined failure for WordCount and TransitiveClosure as examples of

175

WC_DN4

WC_DN3

WC_DN2

WC_NN

0 100 200 300

0 100 200 300

0 100 200 300

0 100 200 300
1
23
57

10
14

1
23
57

10
14

1
23
57

10
14

1
23
57

10
14

Log windows

E
nt

ro
py

 (
lo

g
sc

al
e)

Figure 7.8: Entropy values for log windows for WordCount with HDFS’s data node failure.

I/O intensive, and iterative and CPU-intensive benchmarks, respectively. We refer to the
graphs by their labels in the figures, i.e., (A)-(E). Graph (A) shows the computation time
as a result of a combined failure for a cluster with 2 nodes, i.e., two compute nodes and
two storage nodes after a machine that hosts both compute and storage nodes fails. Graph
(B) shows a homogeneous cluster with three nodes, and Graph (C) shows a heterogeneous
cluster in which the third node is smaller (‘3Nodes-1small’). No network interference is ap-
plied to (A), (B), and (C). Graphs (D) and (E) are equivalent to (B) and (C), respectively,
but with added network interference. In Figure 7.10, as the communication interference in-
creases, the CT time for (D) and (E) increases, and for values higher than 15% for WC and
10% for TC, the computation time of a cluster with interference surpasses a cluster with
combined failure, Graph (A), i.e., two nodes in the cluster. We also observe that I/O in-
tensive benchmarks that require to transfer a large amount of data among the nodes in the
cluster suffer more than CPU-intensive benchmarks that use the network to a lesser degree.

176

DF_DN4_failed

DF_DN3_failure

DF_DN3_normal

DF_DN2_failure

DF_DN2_normal

DF_NN

0 50 100

0 50 100

0 20 40 60 80

0 50 100

0 20 40 60 80

0 50 100
123
5710

123
5710

123
5710

123
5710

123
5710

123
5710

Log windows

E
nt

ro
py

 (
lo

g
sc

al
e)

Figure 7.9: Entropy values for log windows for DFSIO with HDFS’s data node failure. We
have also shown the entropy values for DN2 and DN3 during a normal run for comparison.
The peaks show failure log messages with some normal interleaving logs. Failure for DN4
happens very close to the start of the x-axis and thus the initial peaks for DN2 and DN3.

Finding 7. As the communication interference increases, the computation time increases,
and communication interference is manifested as a performance degradation and not a
complete failure.
Finding 8. When the interference increases beyond a certain threshold, the negative impact
of the performance degradation surpasses the impact of a complete failure because, for each
stage of the computation, the faster nodes are awaiting the completion of the slow node.
Implications. Distributed scheduling algorithms that can detect slow nodes in the system
and remove them from the computation can benefit the entire system’s performance.

Entropy values. Figure 7.11 shows the effect of drop rate in Bad state (1-h) for

177

5

10

20

30

40

0 5 10 15 20 25 30 35 40 45
Loss probability

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

2Nodes (A)
3Nodes (B)
3Nodes−1small (C)
3Nodes−1slow (D)
3Nodes−1small&slow (E)

(a) WordCount

5

10

15

0 5 10 15 20 25 30 35 40 45
Loss probability

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

2Nodes (A)
3Nodes (B)
3Nodes−1small (C)
3Nodes−1slow (D)
3Nodes−1small&slow (E)

(b) TransitiveClosure

Figure 7.10: Execution time for WC and TC during the communication interference and
combined failure.

WordCount logs. The top-left graph (‘w/o’) shows the entropy of Spark’s logs with zero
communication interference, and we gradually increase the drop rate from 5% to 45% (in
steps of 5%) and plot the entropy values from the start to the end of the execution for
selected percentages, i.e., (20, 25, 30, 35, and 45)%. Our observation is that due to the
non-deterministic nature of network interference, performance degradation is indirectly
manifested in the logs and their corresponding entropy values, in contrast to having clear
regions with high entropies (Figures 7.6-7.8). We also observe that entropy values start
to climb as the interference percentage increases. In addition, higher entropy values are
manifested with a delay towards the end of the execution as the system experiences timeouts
and aims to reestablish the connection with the unstable node or resubmit the failing tasks
to other nodes in the distributed system. Therefore, we hypothesize that a combination
of execution log records and system metrics, such as average task completion time for
speculative execution (Section 7.5.4), are required to identify performance degradation
cases [162].

Finding 9. As the communication interference increases, the entropy values gradually
increase with a delay.
Implications. Failures that manifest as a gradual system slowdown and performance
degradation are harder to detect than complete failures solely with logs. As such, other
system metrics, e.g., average task completion time, can be applied in conjugation with logs.

178

30 35 45

w/o 20 25

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

0 100 200 300 0 100 200 300 400 0 100 200 300 400

1

2

3

5

7

10

1

2

3

5

7

10

Log windows

E
nt

ro
py

 (
lo

g
sc

al
e)

Figure 7.11: Entropy values for log windows for WordCount for different values of drop
rate (1-h).

7.5.4 Discussion

Speculative execution. Findings 7-9 imply that since communication interference is
manifested as intermittent failures, as opposed to a complete compute or data node fail-
ure, they are harder to detect and diagnose from the log files. Therefore, we suggested
the usage of distributed scheduling algorithms that can detect the slow nodes and utiliza-
tion of system metrics (e.g., average task’s computation time) in conjunction with logs for
more effective problem diagnosis. Spark provides a feature known as speculative execution
(spark.speculation) [13] that if enabled, allows resubmitting slow tasks to other nodes
in parallel, and proceeds as soon as any of the task instances completes its execution. Fig-
ure 7.12 shows the non-speculative (‘w/o’) and speculative (‘w/’) runs for WC, TS, TC, and
DF. For WC, although the computation is moved to another node, because large amounts of
data are being shuffled through the network interference to the new node, speculation would
not show a noticeable improvement. For DF, we observe as the network interference in-

179

1

2

5

10

20

30
40

0 5 10 15 20 25 30 35 40 45
Loss probability

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

TS_w/o
TS_w/
WC_w/o
wc_w/

(a) WC and TS

5

10

20

30
40

0 5 10 15 20 25 30 35 40 45
Loss probability

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

TC_w/o
TC_w/
DF_w/o
DF_w/

(b) TC and DF

Figure 7.12: Speculative execution for different benchmarks.

creases, without speculative execution, the write pipeline2 fails more often, and this results
in a noticeable increase in the execution time of this benchmark. With speculative execu-
tion, the slow tasks are moved to other nodes, hence with a different write pipeline, which
significantly helps with containing the network failures. In short, the main benefit from
speculative execution in the distributed environment comes from moving tasks from the
faulty node with network interference to other nodes, which helps to avoid task re-execution
and data re-transfer due to the network uncertainty. Our observation is that speculative ex-
ecution only marginally improves the execution time, and in general, after a certain level,
even with speculative execution enabled, the distributed systems performance becomes
slower than removing the node with lower performance completely from the cluster.

Cluster heterogeneity. We experimented with homogeneous and heterogeneous clus-
ters in Section 7.5.3. Although heterogeneity by design, i.e., having a machine smaller than
other machines in the cluster, is well understood [245], heterogeneity that is the result of
performance degradation and partial failure is left untreated. In our case, the rationale to
include experiments with a heterogeneous cluster is to simulate a scenario that heterogene-
ity is introduced in the distributed platform because of performance degradation. In other
words, although the original design is homogeneous, heterogeneity can still happen due
to a variety of reasons, such as communication interference, which can negatively impact
the entire system’s performance. Also, one of the factors that limits Spark speculation
performance is its assumption about operating in a homogeneous environment, which is
not the case in a performance-impaired cluster. This would encourage further research to

2https://stackoverflow.com/questions/37531946/what-is-hdfs-write-pipeline

180

https://stackoverflow.com/questions/37531946/what-is-hdfs-write-pipeline

investigate possible scenarios and solutions for failure-induced heterogeneity.

Slow distributed file system. Although with the replication factor of three in HDFS,
there is no single point of failure, partial failures can negatively affect the performance of
the entire file system. In our case, the slow network connection for one of the data nodes
due to an induced drop rate negatively impacts the performance of the entire HDFS. A
slow data node still continues to send heartbeats successfully, and the HDFS name node
will keep redirecting clients to the slow DN, and therefore, degrade the performance of
the entire cluster. Although HDFS provides few settings to detect and report slow data
nodes, it does not provide a mechanism to automatically bypass the slow DNs, as they
are still sending heartbeat signals to the name node. Thus, we foresee further research
to investigate mechanisms, similar to Spark’s speculative execution, to obtain data from
other available data nodes in case a data node becomes intermittently unavailable or slow.

Implications on fault tolerance. Our observation is that information gain is helpful
in zooming in the failure regions (i.e., spikes in the entropy values), which means that
these regions of logs with higher IG can be isolated and quickly reviewed by users and
practitioners for failure diagnosis, which then results in faster system recovery from a
failure. Additionally, we emphasize that although the spark cluster is fault-tolerant by
design, its performance is impaired due to the failures. Thus, we envision that quicker
detection and recovery of failed compute and storage nodes directly connects with and
benefits the robustness and fault-tolerance of the system. A speedy return to the normal
state will allow the system to tolerate additional failures.

Scope of our study and threats to validity. Our experiments are conducted on a
limited commodity cluster and on different categories of Spark benchmarks, as a popular
and commonly-used parallel and distributed platform. To generalize our findings, further
research may consider deployment of large-scale and commercial clusters for analysis, and
on other common distributed platforms. Moreover, although we simulated various types
of distributed failures, it is still required to obtain real-world failures and analyze the logs
to confirm our findings.

7.6 Case study

In this section, we use logs from real abnormal scenarios for labeled OpenStack logs [107].
We first parse the logs to extract their templates and then group the logs based on their
instance id. instance id serves as an identifier for a particular task execution sequence.
Figure 7.13 shows the timeline of 52 log windows with 4 injected abnormal OpenStack

181

0.0

0.5

1.0

1.5

0 10 20 30 40 50
Log windows

E
nt

ro
py

 (
lo

g
sc

al
e)

Figure 7.13: Openstack entropy values for log sequences with four anomalous VM log
records.

VM sequences in the center for x ∈ [24, 27]. There is also one false positive high entropy
value at x = 17. By leveraging the Hampel filter and outlier detection approach proposed
in prior work [126], we can reach F-Measure (2×precision×recall

precision+recall
) and Balanced Accuracy

(TP
2(TP+FN)

+ TN
2(TN+FP)

) of 0.89 and 0.98, respectively. This signifies the effectiveness of the

information gain approach that is achieved by measuring entropy values of log sequences
in detecting OpenStack’s abnormal scenarios.

Computation time. In our analysis, the training of the natural language model
happens only once on normal logs. Then, testing the log records while they are generated
is rather fast. We performed a quick measurement and received on average 2.4 milliseconds
execution time (as a single thread executed on 2.40GHz Intel Xeon E5-2620) for a 4KB
log window. Relatively, the execution time for testing logs is faster than the rate of log
generation, thus, the log records can be tested in real-time and observed for information
gain and potential anomalies.

7.7 Related work

Logging cost and gain. Prior work on assessing logging cost does not quantitatively
evaluate the system performance overhead contributed to logging levels. Ding et al. [104]
performed a survey of logging practices among Microsoft developers and listed their find-
ings on overheads associated with logging reported by the developers. Mizouchi et al. [229]
presented PADLA, an online method to dynamically adjust the logging level, and, conse-

182

quently, limit the logging cost. Miranskyy et al. [228] reviewed challenges for log analysis
of big-data systems, among them limited storage and unscalable log analysis. Goshal et
al. [128] discussed the provenance, i.e., the origin, of logs and how it correlates with log
levels and types of applications in large-scale systems. Different from the prior research,
our study aims to quantitatively analyze the costs and benefits associated with the level
of logging and the information gain.

Spark’s performance evaluation. Spark [327] has been introduced for massively
parallel data analytics, which improves on its predecessor, Hadoop MapReduce [99], by
utilizing in-memory storage of intermediate results for iterative applications, and bring-
ing more flexibility in performance and the programming model [283, 254]. Mavridis and
Karatza [222] evaluated various log file analyses with the cloud computational frameworks,
Apache Hadoop and Apache Spark, and, experimentally, Spark achieved the best perfor-
mance. Lu et al. [214] performed log-based anomaly detection for Spark. Our study is
different as we leverage Spark’s logs to evaluate the cost and IG associated with log levels.

Information gain and NLP. In this research, we propose a new perspective along
with validated metrics to evaluate the impact of different verbosity levels on cost and in-
formation gain from log statements with natural language processing (NLP) approaches.
Compared with related research [54, 193, 123], our approach is orthogonal to such efforts
that aim to suggest the proper logging statement or its VL by extracting features from
the source code. These works rely on the existing logging statements to suggest logs for
newly composed instances of code. However, we aim to bring attention to the trade-offs
between logging cost and the information gain, and that failures are manifested as higher
information gain in logs.

7.8 Closing Remarks

The goal of our work is to provide a quantitative assessment of logging cost in different
verbosity levels and how that translates to information gain in distributed systems. There-
fore, we evaluate the impact of log verbosity levels on performance and storage overhead,
and the information gain from logs for various Spark Benchmarks. We also experiment
with synthesizing various categories of distributed failures for compute and data nodes, and
network interference, and measure the effect of failures in execution time, the volume of the
generated logs, and the information gain. Lastly, we provide a case study of the application
of our approach on OpenStack real failure logs. Our findings are helpful for developers and
practitioners to better evaluate the costs and benefits of logging when choosing different
verbosity levels and how failures can be tracked down with IG approaches. As future work,

183

we will look into evaluating logs of other distributed software systems and investigate how
IG can be translated to more effective troubleshooting by leveraging the execution logs
and system metrics.

184

Part V
Logging Cost and Gain Analysis

185

Chapter 8

On the Naturalness and Localness of
Software Logs

Abstract- Logs are an essential part of the development and maintenance of large and
complex software systems as they contain rich information pertaining to the dynamic
content and state of the system. As such, developers and practitioners rely heavily on the
logs to monitor their systems. In parallel, the increasing volume and scale of the logs,
due to the growing complexity of modern software systems, renders the traditional way
of manual log inspection insurmountable. Consequently, to handle large volumes of logs
efficiently and effectively, various prior research aims to automate the analysis of log files.
Thus, in this chapter, we begin with the hypothesis that log files are natural and local and
these attributes can be applied for automating log analysis tasks. We guide our research
with six research questions with regards to the naturalness and localness of the log files,
and present a case study on anomaly detection and introduce a tool for anomaly detection,
called ANALOG, to demonstrate how our new findings facilitate the automated analysis
of logs.

Keywords:
software systems, logging statements, log files, entropy, natural language processing, nat-
uralness, localness, NLP, anomaly detection

An earlier version of this chapter has been published in IEEE/ACM Conference

on Mining Software Repositories [126].

186

8.1 Introduction

Logging is an everyday programming practice and of great importance in modern software
development, as software logs are widely used in various software maintenance tasks. Based
on its granularity, logging allows developers and practitioners to investigate the inner-
workings of software systems, and track down problems as they arise. Because of the
rich information that resides in logs and the pervasiveness of logging, logs enable a wide
range of tasks such as system provisioning, debugging, management, maintenance, and
troubleshooting. Examples of prior research threads associated with logs include analyzing
user statistics [187], identifying performance anomalies [85, 234], diagnosing system errors
and crashes [323, 314], and ensuring application security [244]. Fig. 8.1 illustrates an
example of a logging statement and its end product written to a log file1.

logger.info("Registered executor {} with {}", fullId, executorInfo);

Log statement in the source code.

16/04/07 10:46:15 INFO cluster.YarnClusterSchedulerBackend: Registered
executor NettyRpcEndpointRef(null) (mesos-slave-06:51722) with ID 13

The coresponding log message in the log file.

Figure 8.1: A log example from an Apache Spark application.

A Log statement is commonly supplemented with a verbosity level (e.g., error/de-
bug/info), a constant part (e.g., “Registered executor with” in Fig. 8.1; also called ‘log
statement description’), and a variable part (e.g., fullId and executorInfo in Fig. 8.1).
Additionally, logging libraries and wrappers such as Log4j [15] accompany the log state-
ment with extra information as it is written to the log file, such as its timestamp and
the component generating the log. Due to the free-form text format of the log messages
written by developers, it is often an involved task to extract meaning from the log mes-
sages. Furthermore, the dynamic nature of variables, which may yield a different output
in each iteration of the program, brings additional irregularity and adds to the complexity.
In a parallel angle, due to the sheer volume of logs that modern software systems rou-
tinely produce, in the scale of tens of gigabytes of data per hour for a commercial cloud
application [347, 226, 151], it is unfeasible to inspect log messages for crucial diagnostic
information with traditional methods such as manual checks or searches with search and

1We use logs and log files interchangeability.

187

grep scripts. As such, although tremendous system diagnosis and maintenance advantage
is beclouded in the logs, how to effectively and efficiently analyze the logs remains a great
challenge, and subsequently, automatic log analysis tools and approaches are highly sought
after [347].

To fill in this gap and pave the way towards the goal of automated log analysis, prior
research has proposed multiple avenues of work to automate analysis, which relies on finding
patterns in logs. The analysis usually starts with log parsing [347], which aims to extract
structured templates from unstructured log data. Following this step, prior research has
applied a wide variety of pattern mining and machine learning approaches, to name a few,
PCA-based dimension reduction [242], execution path and variable value inference [323],
learning model [234], event correlation graphs [118], and temporal correlation mining [103].

Despite the presence of prior log analysis approaches, we believe prior research has
not fully utilized the natural language attributes of software systems [155, 298] for log
file analysis. Therefore, in this study, we focus on the natural language processing (NLP)
characteristics of log files, and our main hypothesis is:

Logs, as an artifact of software systems, similar to programming languages and
source code, are natural and locally repetitive and predictable. Thus, natural lan-
guage models can capture these attributes and leverage them for automated analysis
of log files.

Prior research such as [155] and [298] have shown that software’s source code, similar
to natural language (NL) corpus, is repetitive, predictive, and local. As such, statisti-
cal language models yield promising results once applied in software engineering tasks.
Authors in [155] and later in [298] showed that n-gram language models perform well in
the source code’s modeling and leveraged this fact to propose a cache language model for
code suggestion. Most recently, He et al. [145] showed that logging descriptions within
the source code also follow the natural language repetitiveness observed in the software
systems. In this study, inspired by the prior work, we investigate if log files possess NLP
characteristics and how to leverage this feature for automated analysis of logs.

There are several findings and implications stemming from our study. We observed
that log files show a high degree of repetitiveness and regularity (Finding 1), and the
regularity is project-dependent (Finding 2). Zipf’s law shows the high-rank tokens happen
more often in the logs than in English text (Finding 3). Findings 4 and 5 shed light on
the log localness and confirm that logs are endemic and specific. At last, our NLP-based
anomaly detection approach achieves high F-Measure and Balance accuracy scores, which

188

illustrates an application of NLP in log analysis (Finding 6). In summary, our study makes
the following contributions:

� We conduct the first empirical study on the utilization of natural language for log
files by evaluating eight system logs and two English corpora. We have provided our
dataset to encourage and facilitate further research [5].

� We demonstrate the naturalness and localness of logs through several research ques-
tions (RQs) by utilizing n-gram models and self- and cross-project entropy calcula-
tions.

� We introduce ANALOG, an NLP-based log file anomaly detector, to illustrate the
potential benefits of NLP in log analysis.

We organize the rest of this chapter as follows. Section 8.2 reviews the background and
motivation. Section 8.3 presents our research questions (RQs), and we quantitatively ana-
lyze the naturalness and localness of logs in Sections 8.4 and 8.5. Section 8.6 demonstrates
the use of language models (LMs) in a case study for anomaly detection. Related work
and threats to validity are in Sections 8.7 and 8.8. Finally, we conclude the study with
some avenues for future work in Section 8.9.

8.2 Background and Motivation

Natural language processing (NLP) models (e.g., the n-gram model [9]) are statistical mod-
els that estimate and evaluate the probability of a sequence of words or tokens. During
estimation, the model assigns a probability to sequences of words (or tokens) with maxi-
mum likelihood estimation (MLE). During evaluation, the model predicts the probability
of whether the sequence under test belongs to the training corpus. The predictable and
repetitive characteristics of common English corpora, which statistical NLP techniques ex-
tract and model, have been the driving force of various successful tasks, such as speech
recognition [59] and machine translation [219]. Subsequently, software engineering re-
searchers [155, 298, 51] have shown that software systems are even more predictable and
repetitive than common English text, and language models perform better on software
engineering tasks than English text. As such, tasks such as code completion [262] and
code suggestion [66] utilize n-gram models for their predictions. Recently, He et al. [145]
showed that log statements’ descriptions (LSDs) within the source code (Fig. 8.1) also
follow natural language characteristics. Because LSDs in the source code are considered in

189

isolation and they do not completely determine what is in the log files, which is an arbitrary
sequence (i.e., not isolated) of log prints with LSDs and, additionally, the dynamic runtime
value of the variables included by virtue of the execution of log statements, the naturalness
of LSDs in the source code does not guarantee the naturalness of log files. Thus, our goal is
to validate the NLP attributes of logs and foster research and employment of NLP methods
for automated log analysis.

N-gram language models. Formally, considering a sequence of tokens in the corpus
under consideration (in our case, log files), S = a1, a2, ..., aN , the n-gram model statistically
estimates how likely a token is to follow preceding tokens. Thus, the probability of the
sequence is estimated based on the product of a series of conditional probabilities [155]:

Pθ(S) = Pθ(a1)Pθ(a2|a1)Pθ(a3|a1a2)....Pθ(aN |a1...aN−1) (8.1)

which is equal to:

Pθ(S) = Pθ(a1).
N∏
i=2

Pθ(ai|ai−1, ai−2, ..., a1) (8.2)

where a1 to aN are tokens of the sequence S and the distribution of θ is estimated from
the training set with MLE2. The metric to assess the performance of an n-gram modelM
is perplexity (PP), which is the inverse probability of the test sequence:

PPM(S) = N

√
1

P (a1).
∏N

i=2 P (ai|ai−1, ai−2, ..., a1)
(8.3)

For model M’s performance evaluation, perplexity and its log-transformed version,
cross-entropy3, HM [4] are often used interchangeably: HM(S) = log2 PPM(S) . Equa-
tion 8.3 explains that the higher the probability of a sequence, the lower the PP value will
be. In other words, the lower the perplexity (and likewise cross-entropy), the less surpris-
ing the new token sequence is for the modelM, and hence the higher probability that the
token sequence under investigation belongs to the same corpus. Thus, an appropriately
trained n-gram model will predict with low probabilities (and high perplexity values) if it
deems that the content of a test sequence does not belong to the corpus used for training.

Motivation. Encouraged by the prior work in the utilization of NLP for software engi-
neering systems, in this work, we investigate the natural language characteristics of log files.
More specifically, we aim to answer the question of “are log files natural and local?”. Intu-
itively, if there are discernible repetitiveness and predictability in logs, a suitably trained

2For simplicity, we drop the θ in the notation onward.
3Often, simply called entropy.

190

language model should yield acceptable performance in distinguishing the log messages
belonging to a specific system’s log from the ones which look unfamiliar. We speculate this
feature will benefit automated analysis of logs, and we aim to use it for software engineer-
ing tasks such as anomaly detection since anomalous log messages generally look different
from normal logs. For this purpose, we exploit the n-gram language models, measure the
perplexity and entropy values for different logs, and analyze our findings from the RQs.

8.3 Natural Language Processing for Logs

To investigate whether log files are natural and local, we analyze both natural English
corpora and a collection of logs from various systems available online and applied by prior
research [151, 319]. We guide our research with the following research questions (RQs) for
the naturalness of logs:

� RQ1: does a natural repetitiveness and regularity exist in log files?

� RQ2: is the regularity that the statistical language models capture merely log-nature
specific, or is it also project-specific?

� RQ3: how does Zipf ’s law capture the repetitiveness of high-rank tokens in log files?

Next, for localness of logs, we investigate:

� RQ4: are log n-grams endemic to their projects4?

� RQ5: are log n-grams specific to their projects?

Finally, we provide a case study of the applications of NLP attributes of logs in the final
RQ:

� RQ6: how the logs’ NLP characteristics5 can help with automated analysis of log files?

4We use project and system interchangeably, as software systems are commonly referred to as projects
during their developments, e.g., Apache Hadoop project.

5We use ‘natural language characteristics or NLP characteristics’ to cover both of naturalness and
locallness.

191

Clarifying the above research questions with quantitative analysis for logs and English
corpora enables us to find supporting evidence on our hypothesis on the naturalness and lo-
calness of logs, which we later use for anomaly detection. We continue with the description
of the dataset that we used in our analyses.

Data description. We utilize the data publicly available by prior research [319, 151]
as the base for our analyses. In summary, we select eight log files from a wide range of
computing systems and two English corpora. We briefly review each of the analyzed logs
in the following.

1 HDFS. The HDFS [23] log is generated from a Hadoop cluster. HDFS is a distributed
and resilient-to-failure file system for commodity servers, which brings in reliability.
Prior research [347, 319] has used this data set for log parsing and compression.

2 Spark. Apache Spark [16] is a popular and efficient big-data processing framework.
This log data is aggregated from event logs of a spark cluster of 32 machines. Prior
research has utilized this data for log message pattern extraction [150, 347].

3 Firewall. Firewall log is the collection of firewall process activities during the net-
work operation of operating systems, such as Windows’s firewall process. Prior work
has used this type of data for frequent pattern extraction and compression [319, 144].

4 Windows. The Windows log belongs to Windows 7’s component-based servicing
(CBS) initially stored at C:/Windows/Logs/CBS, which collects logs on package and
driver installations and updates. It is used for log parsing and anomaly detection in
prior studies [347, 151].

5 Linux Syslog. The Linux Syslog is the standard logging system in Linux which
collects logs from various concurrently running applications on a single machine,
such as networking and cron logs, and Linux kernel logs. Syslog is used to analyze
compression on log data in prior research [319].

6 Thunderbird. The Thunderbird dataset is collected from a Linux supercomputer
cluster from Sandia National Labs (SNL), which is the aggregation of Syslogs from
different machines. This dataset is used in prior work for log compression and log
analysis [241, 319].

7 Liberty. The Liberty log is an aggregated dataset of Syslog-based events on a
supercomputer system, which was examined for log analysis and alert detection in
previous studies [241, 243].

192

8 Spirit. Similar to Thunderbird and Liberty, Spirit is also a supercomputer log data
from the Spirit supercomputer system, used for gaining insight on failure diagnosis
of large-scale systems [241].

Besides the log data, we also analyze two natural language corpora:

1 Gutenberg. Project Gutenberg corpus [10] is a collection of over 60,000 English
books [11]. The Gutenberg corpus has been studied to examine the performance of
natural language tools [67], and NLP evaluation of software systems [145, 155].

2 Wiki. The Wikipedia corpus is the data collected from English articles of Wikipedia.
This data has been previously applied to evaluate the performance of different text
compressors [120].

Logs Category Lines
Tokens

Total Unique

HDFS (HS) Distributed system 7527525 259293940 875434

Spark (SP) Distributed system 13221789 308093706 673725

Firewall (FW) Operating system task 4763441 418012413 2655410

Windows (WD) Operating system 4408109 338718867 37023

LinuxSyslog (LS) Operating system 5315580 348036971 454755

Thunderbird (TB) Supercomputer 6018428 357613165 102699

Liberty (LB) Supercomputer 7316856 352384327 216946

Spirit (ST) Supercomputer 7983346 366526309 320426

English corpora Description Lines
Tokens

Total Unique

Gutenberg English books 20867266 232266714 370164

Wiki English articles 5815221 173380056 3963045

Table 8.1: System logs and English corpora statistics.

Table 8.1 summarizes the system logs and the English corpora that we studied. We
categorize logs based on their domains such as distributed system, operating system (OS),
OS task, and supercomputer. In order to make a fair comparison among different log files
and between log files and natural language corpora, all the files are curtailed at the same
size of 1 GB. We show the number of lines, calculated using Unix “wc -l” on each file,

193

and the number of tokens. For tokens, we have listed the total number of tokens, and the
unique tokens count for each file.

Data preprocessing. Prior to the application of NLP models, we require performing
some pre-processing steps on the raw log data and English corpora. In order to be case-
insensitive, we initially normalize all the letters to lower cases. We then tokenize all the
data to extract words and special symbols. For n-gram model training and testing, we use
Kenlm [152, 153] library. For different analyses that follow later in this study, we create
n-gram models for different sizes of n in the range of n ∈ (1, 10) for each data file, i.e., for
unigrams (single tokens), bigrams (pairs of adjacent tokens), and so on.

8.4 Naturalness of Logs

In this section, we investigate the naturalness of log files guided with a set of RQs which
follows.

8.4.1 RQ1: does a natural repetitiveness and regularity exist in
log files?

Prior research has leveraged the natural predictability of n-grams in English corpora in
applications, such as speech and handwriting recognition [59, 255], and machine transla-
tion [219]. This observation is also noteworthy for artifacts of software systems, such as
user documents, repositories, and logs. It is beneficial to explore whether similar repeti-
tiveness and predictability of n-grams exist in log data as it benefits the automated analysis
of logs, and it is the focus of our research.

We showed in Equation 8.2 the probability estimated by the n-gram model M for
sequence S = a1, a2, ..., aN . For simplifying the computation, n-gram models often assume
a Markov property, which states that for a language model of order n, token occurrences are
approximated only by the n − 1 tokens that precede the token under consideration [168].
For example, for a 5-gram model, the probability of ai appearing after the sequence of
a1, a2, ..., ai−1 is approximated by the probability of the four prior tokens:

P (ai|a1...ai−1) ∼= P (ai|ai−4ai−3ai−2ai−1) (8.4)

To calculate the probabilities, the NLP model is estimated on a training set using the
maximum likelihood-based frequency-counting of token sequences. Therefore, we estimate

194

the probability of ai, ith element in Sequence S, which follows tokens ai−1, ai−2, ..., ai−n+1

and order n model with:

p(ai|ai−1ai−2...ai−n+1) =
count(aiai−1ai−2...ai−n+1)

count(ai−1ai−2...ai−n+1)
(8.5)

Based on this estimation, the cross-entropy (or entropy, used interchangeably), HM,
evaluated for model M for a sequence of n tokens is:

HM = − 1

N

N∑
n=1

log2 p(ai|ai−1ai−2...ai−n+1) (8.6)

A subtle detail worth mentioning about the n-gram model is that, in practice, the n-gram
model often encounters some unseen sequences during prediction. This results in the prob-
ability p(ai|ai−1ai−2...ai−n+1) = 0, and undefined values for HM. Smoothing is a technique
that handles such cases and assigns reasonable probabilities to unseen n-grams. In this
study, we use Modified Kneser-Ney Smoothing [179] available with Kenlm [153], which
is a standard smoothing technique and gives acceptable results for software corpora, i.e.,
sufficient statistical rigour [155]. On the other side of the spectrum, a perfect n-gram
model correctly predicts all the next tokens, i.e., p(ai) = 1, and therefore, HM = 0. In
general, lower entropy values imply that the n-gram model is more effective in predicting
the sequence of tokens and capturing the regularity and repetitiveness of the corpus.

Experiment. To evaluate the repetitiveness and regularity in logs, we measure cross-
entropy by averaging over 10-fold cross-validation: we randomly select 10 MB from each
log file, ∼59,000 lines of logs, which falls well within a ±2.5% margin of error and 95%
confidence interval [180, 119]. We then organize each of the log files and English corpus
to a 90%–10% train-test split at ten random locations, and train the n-gram model for
different values of n ∈ (1, 10) on the 90% train split, and then test it on the remaining 10%
split by measuring the average cross-entropy with Formula 8.6.

Result. In Figure 8.2, boxplots display the cross-entropy results for system log files,
and the blue line shows the average cross-entropy for the two English corpora. Comparing
the values of entropy for log data and English corpora provides an intuitive understanding of
the repetitiveness and regularity of tokens in log data and common English. The horizontal
axis shows the n-gram model trained with different numbers of n and the vertical axis
presets the entropy. Both the single line and boxplot manifest similar trends: as the order
of n-gram increases, the entropy values decrease, which implies that using larger values of n
(viz., more preceding tokens in Formula 8.4) yields more accurate predictions for both log
data and English Corpora. 4- or 5-gram models are the optimal choice for the studied logs
considering the trade-off between the entropy and model memory usage, as cross-entropy

195

saturates around n ∈ (4, 5). The English corpora entropy starts at 10.19 for 1-gram models
and trails down to 8.09 for 10-gram models, compared to logs entropies median that falls
just below 1.8. Thus, quantitatively, the log data manifests lesser entropies, and as such,
less perplexing to predict when compared to English corpora. This observation paves the
way to utilize n-gram models for automated analysis of logs. Additionally, our findings are
consistent with prior research on the naturalness of software source code [155, 145].

●

●
● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

2

4

8

10

12

1 2 3 4 5 6 7 8 9 10
Order of n−grams

E
nt

ro
py

●

Log file entropy
English entropy

Figure 8.2: Entropy values for a sequence of n-grams for log data (boxplot) and English
corpora (blue line).

8.4.2 RQ2: is the regularity that the statistical language model
captures merely log-nature specific, or is it also project-
specific?

In RQ1, we showed LMs accurately capture the repetitiveness within log files even better
than English corpora. However, as we know, software systems, and subsequently, their
artifacts, such as log files, have a smaller set of vocabulary when compared to the English
language [155]. Thus, there exists a valid concern that the lower entropy values for logs
might be the outcome of their limited vocabulary and not their regularity and repetitive-
ness. If this concern proves to be valid, viz., if the captured regularity from the logs is solely

196

the result of their limited vocabulary, then we should observe similar lower entropies for
cross-project evaluation. In other words, if we train the n-gram model on one log file, and
then test it on another system’s log, we should observe comparable entropies with inner-
project entropies. As such, in RQ2, we investigate this concern by training and testing the
model on different projects.

Experiment. In this experiment, we measure self- and cross-project entropy values
by averaging over 10-fold cross-validation. We randomly sample 10 MB of data from the
available 1 GB for each system and English corpora. Without loss of generality [180],
we selected this sample size to make the training overhead manageable. Additionally, to
confirm the results, we run some limited experiments with various sizes to confirm the
results are consistent. Similar to RQ1, we split each of the samples to a 90%–10% split at
ten random locations, train the n-gram a 5-gram model on the 90%, and then test it on the
remaining 10%, and measured the average self entropy. As observed in RQ1, entropy values
stabilize beyond 5-gram models. As such, we use 5-gram models to reach faster training
and save on the memory footprint. To calculate the cross-project entropy, once we train
the project on one system, we test it on all the other projects and average the values of
entropies through 10-fold cross-validation, to minimize the risk of over-fitting [239].

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

0

3

5

9
10

15
16

HS FW LS TB LB SP ST WD
Log files for different systems

E
nt

ro
py

●

●

Cross−project entropy
Self entropy

Figure 8.3: Entropy values for 5-grams cross-project versus self-project.

197

Result. Fig. 8.3 shows the self- and cross-project entropies. The x-axis lists the
different logs, and for each log, the boxplot shows the range of cross-project entropies with
the other seven projects. The blue line at the bottom shows the average self entropy of the
project against itself (i.e., training and testing on the same system’s log). From this plot,
the self-entropy values are always lower, indicating that the repetitive n-gram patterns are
not the artifact of limited log vocabulary but because of the regularity and repetitiveness
in each system. This regularity is different across different projects, and hence, we observe
higher cross-project entropies, implying that the n-gram patterns noticeably disagree across
project logs.

8.4.3 RQ3: how does Zipf’s law capture the repetitiveness of
high-rank tokens in log files?

Zipf’s [348, 256] law is an empirical theorem which states that given a large sample of
words in a corpus (in our case, hundreds of millions of words/tokens in Table 8.1), the
probability of any word is inversely proportional to its rank in the corpus. Thus, the
word rank r has a probability proportional to 1

r
. In other words, the rank of the word

(r) times its probability p(r) is approximately a constant (r × p(r) ' const). For the

classic version of Zipf’s law we have: p(r) =
1
r∑N

n=1(1
N

)
, where N is the population of unique

tokens. Considering that Zipf’s law is not an exact value but a statistical measurement, it
gives an intuitive understanding that the repetition of the high-rank tokens occupies what
percentage of the document. For example, in English, the top 50 words accumulate to
35–50% of total word occurrences [331].

Experiment & Result. We measure the token frequency (TF) for logs and English
text and then sort the tokens based on their frequencies to study Zipf’s law for log files.
Figure 8.4 plots the rank of tokens on the horizontal axis and the frequency counts on
the vertical axis for average of Logs (red) and English text (blue) and gives us an idea
of the TF distribution in a given document. Logs’s TF starts higher than English and
drops below as the rank increases. The top-50 tokens contribute to 70% and 51% of the
entire document for Logs and English, respectively. This result is encouraging for more
accurate adaptation of LMs for logs, as prior research [256] has suggested that smoothing
algorithms for n-gram models, such as Good-Turing [89], and Kneser-Ney [89], could lead
to better smoothing with more predictive high-rank tokens.

198

●

●

● ●

●
●

●

● ●
● ● ●

● ● ●
●

●
●●

●●●●●●●●
●
●●●

●●●●●●●●●●●●
●●●●●●●●

●●
●●

●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

●●●

●●●

●●●

●●

●●

●

●

●

● ●

●
●

● ●

● ●
● ●

●
● ●

●●●●●●
●●

●●●
●●●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●

●●

●●

●●●

●●●

●●●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●

●●●
●●

●●
●●●

●●●
●●

1

100

1000
2000

10000

.25

.51

.70
1

1 50 10
0

10
00

40
00

Token rank (log cale)

To
ke

n
fr

eq
ue

nc
y

(lo
g

sc
al

e)
C

om
m

ulitive frequency ratio

●●

●●

Logs
English

Figure 8.4: Frequency of tokens for Logs and English text.

8.5 Localness of Logs

In this section, we investigate the localness of log files. The localness attribute builds upon
the naturalness of logs, such that besides being repetitive and predictable, logs tend to take
on a specific form of repetitiveness in the local context. Here, a local context is a system’s
logs versus other systems. For this purpose, we investigate endemism and specificity of
n-grams in different logs.

8.5.1 RQ4: are log n-grams endemic to their projects?

The n-grams that only appear in a single project log file (i.e., local context) are called
endemic, i.e., they are endemic to that specific project’s log file. In this RQ, we investigate
whether there exist n-grams that are found exclusively in a local context and are endemic
to a system. More specifically, we investigate what percentage of n-grams happen only
in one system logs. Table 8.2 lists the average percentage of the endemic n-grams in the
log files and English corpora. For both system logs and English corpora, the first row
with (Freq > 1) shows the percentage of endemic n-grams that appear at least once in a
system, and the second row with (Freq > 2) represents the percentage of endemic n-grams

199

that appear at least twice in a system logs. For example, 90.24% and 80.74% of 2-grams
with (Freq > 1) are endemic for system logs and English corpora, respectively. Similarly,
39.20% and 8.57% of 5-grams with (Freq > 2) are endemic for system logs and English
corpora, respectively. The percentage of the endemic n-grams for (Freq > 2) generally
increases for higher orders of n, because it becomes less likely to observe a large sequence
of tokens repeatedly. For (Freq > 2), we observed that for n > 3, because there is a very
limited number of n-grams that appear more than once compared to the total number of n-
grams in the same order of n, the percentage shrinks slightly onwards. By comparison, the
percentage of the endemic n-grams in English corpora is noticeably lower than system logs.
This observation validates the hypothesis that log files are local in the context of n-grams,
even to a higher extent than natural language corpora. As such, we point out, similar to
prior research [298], we can leverage this localness attribute to improve the performance
of language models for logs by augmenting them with caching mechanism and store the
n-grams in the local context for quick access.

Freq. 1-gram 2-gram 3-gram 5-gram 8-gram 10-
gram

System logs >1 69.09% 90.24% 95.44% 97.37% 99.60% 99.79%

>2 38.02% 49.63% 48.59% 39.20% 30.66% 26.00%

English cor-
pora

>1 56.74% 80.74% 93.13% 99.63% 99.97% 99.98%

>2 26.38% 21.79% 15.68% 8.57% 6.34% 5.77%

Table 8.2: System logs and English endemic n-gram stats.

8.5.2 RQ5: are log n-grams specific to their projects?

In RQ4, we experimented with endemic n-grams which happen only in one system’s log.
Although endemism provides insight into exclusive n-grams, we still lack insight into the
overall distribution of non-endemic n-grams. This is where specificity comes into effect.
Specificity explains whether non-endemic n-grams favor specific system logs, viz., whether
non-endemic n-grams happen more often in one system than another, which sheds light
on the system-wide locality of n-grams. For example, if n-gram σ is uniformly distributed
across different log files, then all the files contain an equal number of the n-gram σ. Con-
versely, the more skewed the distribution becomes, the more specific and localized the
n-gram σ becomes to a specific log file. For example, an n-gram that happens 100 times
in all the log files, if it happens 93 times in one file and only once in the rest of the files, is

200

highly skewed. For a set of log files F = {f1, f2, ..., f|F |}, each non-endemic n-gram σ can
happen in more than one file with probability distribution of p(fi(σ)):

p(fi(σ)) =
count (n-gram σ in fi)

count (n-gram σ in Set F)
(8.7)

As such, to measure the skewness of the distribution of n-gram σ in the set of log files F,
defined as locality entropy [298, 145], HL(σ), the formula is as follows:

HL(σ) = −
∑
fi∈F

p(fi(σ)) log2 p(fi(σ)) (8.8)

Similar to cross-entropy values, the more skewed the distribution of the non-endemic n-
grams is, the lower the locality entropy values will be. In the extreme case, i.e., HL(σ) ==
0, then σ is an endemic n-gram, and it happens only in one system logs. HL(σ) reaches its
max (i.e., log2 |F |) when the n-gram σ is uniformly distributed across F , i.e., all the files
in F contain equal number of n-gram σ.

●

●

●

●

●

●

●

0

1

log3

2

log5

log6

log7

3

2 3 4 5 6 7 8
Number of files

Lo
ca

lit
y

en
tr

op
y

●●●

●●●

Uniform
1−gram
2−gram
5−gram

Figure 8.5: Distribution of entropies for non-endemic n-grams, grouped by the number of
files. “Uniform” represents that n-grams are distributed uniformly in the files.

201

Fig. 8.5 shows the values of locality entropy for different n-gram orders for file sizes,
|F | ∈ (2, 8). The horizontal axis represents the number of files (|F |) that contain the non-
endemic n-grams, and the vertical axis shows the locality entropy, HL. The n-gram with
varying orders, which are marked by different colors, share similar trends. According to this
figure, non-endemic n-grams’ entropies commonly fall below the uniform distribution (the
solid black line in the figure), and as the number of files and the order of n-grams increases,
the skewness becomes more apparent, which affirms the local tendencies of n-grams.

8.6 RQ6: Log File Anomaly Detection

In the previous sections, we demonstrated the NLP characteristics of the log files. Based
on our findings, we believe it is a valuable effort to explore how the NLP findings would
help in the automated analysis of log files. As such, in the following, we focus on anomaly
detection (AD) through log files by utilizing NLP. As modern large-scale computer systems
continue to expand and service millions of users, their dependability becomes even more
critical, and any noticeable downtime could result in millions of revenue and quality-of-
service loss [151, 14, 2]. Consequently, to improve reliability, online observation of running
systems for unforeseen abnormal behavior and potential problems has been the focus of
prior research [68, 107, 116, 150, 207, 212, 311]. As log files contain information on the
dynamic state of the system, prior research has utilized logs for AD [181, 212, 337, 332].
Log-based AD’s goal is to accurately detect runtime system anomalies by processing the
rich data gathered in the log files. AD is often modeled as a binary (i.e., yes or no) decision
problem such that the input to the AD algorithm is a vector (or matrix) of events or time
intervals, and the algorithm decides whether each event or interval is normal or abnormal.
Encouraged by our findings from the naturalness and localness of the logs, we introduce
ANALOG (Anomaly detection with NAtural language and LOGs) in the following.

Approach. We propose to utilize NLP techniques and consider log files as natural
language sequences. Figure 8.6 shows the steps involved in our ANALOG approach:

� Initially, we collect the log files for the system under analysis during its normal behavior,
i.e., no anomalies. Similar to the approach in RQ1, we divide parts of the logs for training
and testing of the n-gram model. We then preprocess and tokenize the logs and feed them
into the n-gram model.

� Next, we train the n-gram model on the training data for an order of n which results
in a good balance of performance and memory footprint. In our analysis, values in the
range of n ∈ (4, 5) are sufficient. During the training phase, we establish a baseline for

202

entropy values for each system. Our analysis shows that normal log sequences result in
entropy values, which are ‘distinguishably’ lower than entropy values for abnormal log
sequences. In this step, we also establish a threshold (Th) for the maximum value of
normal entropies.

� Later, during the testing phase, we look for anomalies as the test log data is fed into the
NLP model, and if no anomaly is detected, we achieve comparable to baseline perplexity
or entropy values. On the other hand, if the test log data contains abnormal sequences,
which appears surprising and perplexing to the n-gram model, the entropy values will be
higher than the established baseline. Then these log sequences are singled out for further
analysis by practitioners or developers.

Preprocessing/
Tokenizing

n-gram model

Entropy/Perplexity
calculation

Training logs

New normal log

Testing phaseTraining phase

Entropy higher than normal - potential anomalies

New abnormal log

Figure 8.6: ANALOG steps for anomaly detection through log files.

Usage scenario. The way we imagine practitioners and developers will use our ap-
proach for anomaly detection is as follows: during the training phase , initially, we acquire
a set of normal operational log files to train the n-gram model. This process also involves
choosing a proper order for the n-gram model (e.g., n ∈ (4, 5)), and detecting the baseline
values of entropies. Based on the baseline range of entropy values, we use the Hampel Filter
approach (Section 8.6.1) to assign a threshold (Th) for alarming an anomaly in case the
entropy values go beyond Th during the testing phase. While in the testing phase, as the
system is running and continuously generating new log records, we define an observation
window (ow) for the recently generated logs. The length (in bytes) of ow can vary from
a single log message up to chuck of log file (e.g., 16 KB), depending on the volume of the
logs and the desired granularity of the log analysis. During the continuous testing, the
content of ow is fed into the NLP model, and the entropies (E) are evaluated. If E > Th,

203

this chunk of log data ow is isolated as it potentially contains an anomalous log message.
Because this usage scenario is an online approach, the ow moves to the next chuck of the
log file as soon as new log messages are available. Regarding the granularity of ow, ideally,
we will be able to test each line of the log file against the NLP model, as it is written to the
storage medium, as the testing is quite fast compared to the training of the n-gram model.
An incremental enhancement that can be implemented is to periodically retrain the NLP
model on the most recent log data once every cycle, such as daily, overnight, weekly, to
align the model with recent normal log changes, if any.

Figure 8.7 shows entropy values (i.e., log(perplexity)) for distinct orders of n-grams for
both normal and abnormal log windows. Solid lines show normal log windows, and dashed
lines represent anomalous log windows for 2-, 3-, and 5-gram models. The horizontal axis
shows the size of the log window (in KB) that we inspect for perplexity calculation. For
creating an abnormal log window, we synthetically inject an error message into the log file.
Across the board, once there is an anomaly, the perplexity, and therefore entropy values
increase, which signals that we have detected an anomalous log window.

●

●

●

●

●

16

32

1K 2K 4K 8K 16
K

Size of window (log scale)

P
er

pl
el

xi
ty

 (
lo

g
sc

al
e)

●●●●● no−Anomaly_2gram
Anomaly_2gram
no−Anomaly_3gram
Anomaly_3gram
no−Anomaly_5gram
Anomaly_5gram

Figure 8.7: Anomaly detection with perplexity values for HDFS.

204

8.6.1 Hampel Filter for Threshold Selection

Hampel filter [249] is a decision filter (viz., yes or no) that detects anomalies in the data
vector if they lie far enough from the median to be deemed as an outlier. This filter
depends on both the entropy vector width and an additional tuning parameter t, which
explains the margins from the median. For a vector of entropy values (E = {e1, e2, ..., en})
measured from the training data, we can calculate the threshold (Th) according to the
following formula: Th = median(E) + t×MAD, where MAD stands for median absolute
deviation and is defined as the median of the absolute deviations from the data’s median
Ẽ = median(E): MAD = median(|ei − Ẽ|). The value of t is chosen based on the range
of values in E, and according to our experiment on the eight projects, it falls in the range
of t ∈ [1, 8]. As such, threshold Th is in the range of:

Ẽ + 1×MAD ≤ Th ≤ Ẽ + 8×MAD (8.9)

Table 8.3 summarizes the t values for different systems. System abbreviations are from
Table 8.1. For each project, we evaluated different values of thresholds, and we chose
the value of t, as an agreeable practice [257], to balance Precision and Recall and achieve
the highest F-Measure, which we discuss in the following section. It is admissible to use
different values of t to achieve a particular goal, such as maximizing Precision or Recall.

System HS SP FW WD LS TB LB ST

t 3.0 4.5 8.0 6.0 3.1 1.7 2.8 1.4

Table 8.3: Values of t for different systems.

8.6.2 Evaluation

To evaluate the accuracy of anomaly detection approaches, we use Precision, Recall, Fall-
out, F-measure, and Balanced Accuracy, which are the commonly used metrics for evalu-
ating anomalies in prior work [337, 151, 346]. These metrics are based on the confusion
matrix[3], composed of four values: 1 true positive (tp) is the correctly identified abnor-
mal log windows by the n-gram model. 2 False positive (fp) is the number of incorrectly
identified normal log windows as abnormal ones. 3 False negative (fn) is the number of
incorrectly identified abnormal log windows as normal ones. 4 True negative (tn) is the
correctly identified not abnormal (i.e., normal) log windows by the n-gram model.

205

Based on the confusion matrix, the definitions of the metrics are: Precision is the
percentage of log test windows that are correctly identified as anomalies over all the log
test windows that are identified as anomalies: tp

tp+fp
. Recall (or true positive rate) is the

percentage of log test windows that are correctly identified as anomalies over all log windows
containing anomalies: tp

tp+fn
. Fallout (or false positive rate) is the percentage of log test

windows that are incorrectly identified as anomalies over all normal log windows: fp
fp+tn

.

F-Measure is the harmonic mean of Precision and Recall:2×precision×recall
precision+recall

. Balanced

Accuracy (BA) is the average of the proportion of anomalous and normal log windows
that are correctly classified: 1

2
× (TP

TP+FN
+ TN

TN+FP
). BA is important for our analysis as

only 10% of the synthetically generated cases are anomalous, e.g., tn is ∼10X greater than
tp. In case there is an imbalance in the data (anomalous scenarios happen less often than
normal scenarios [151]), BA is widely used [336, 346] for evaluation because it avoids over-
optimism that traditional accuracy might suffer from. We perform two sets of experiments:
1) synthetic anomalies, 2) comparison with PCA [311].

Synthetic anomalies. For each log data, we randomly sample 512 MB of logs. We
then train a 5-gram model on 90% of the data and keep the rest for testing. Next, we split
the test data into 400 sequential samples of 4KB log windows. The idea is to simulate
the continuous generation of log windows while the system is running. We then randomly
inject anomalous messages in 10% (anomalyfreq. � normalfreq.) of the test windows. We
calculate the entropy for each log window and detect an anomaly if the entropy is higher
than the baseline threshold (Th).

Comparison with PCA. In this part, we compare our approach with the PCA-based
anomaly detection and their provided labeled dataset [311], which is the log of HDFS sys-
tem operations on various blocks. Although plenty of logs are available, this dataset is one
of the few available labeled ones. Initially, to make the log parsing and template extraction
manageable (required for [311]), we randomly select 20 MB of log data (∼105K log lines
and within 95% confidence [180]) and parse them with IPLoM [217] to extract event log
templates belonging to each block (i.e., session; denoted by blk -id in the logs). Then, for
each block, we create the sequence of events, i.e., log window, and for each window, a label
of normal or abnormal is provided with the dataset. We then split the data in 90%-10%
for train-test and evaluate both PCA and ANALOG. PCA, like the majority of anomaly
detection methods, requires both normal and abnormal samples to fit log windows into
two sub-spaces, viz., normal space, Sn, and anomaly space, Sa. ANALOG does not require
historical abnormal instances, as it builds the n-gram model based on the normal instances,
which provides a clear advantage for ANALOG over the majority of the anomaly detection

206

methods [311, 204, 83, 68], which rely on witnessing anomalous instance in the training
data to function.

System tp fp tn fn Precision % Recall % Fallout % F-Measure % Balanced Accuracy %

HDFS (HS) 41 4 356 0 91.11 100 1.12 95.35 94.44

Spark (SP) 41 6 354 0 87.23 100 1.67 93.18 99.17

Firewall (FW) 41 3 357 0 93.18 100 0.83 96.47 99.58

Windows (WD) 27 6 354 14 81.81 65.85 1.67 72.97 82.09

LinuxSyslog (LS) 35 29 331 6 54.69 85.37 8.05 66.70 88.66

Thunderbird (TB) 23 24 336 18 48.93 56.10 6.67 52.27 74.72

Liberty (LB) 33 15 345 8 68.75 80.49 4.17 74.16 88.16

Spirit (ST) 28 22 338 13 56.00 68.29 1.67 61.54 81.09

Average 34 14 346 7 72.71 82.01 3.23 76.58 88.49

Table 8.4: Performance of anomaly detection with NLP models for different system logs.

8.6.3 Results

Synthetic anomalies. Figure 8.8 shows the entropy vector values for the logs of eight
systems in our study. The x-axes show the log windows, and the y-axes represent the
perplexity (PP) values. The horizontal blue line shows the overall trend-line for the PP
values of the 400 log windows. The random sudden spikes in the PP values indicate that
the n-gram model considers the content of these log windows surprising and not similar to
the normal logs. As such, it identifies them as abnormal. Table 8.4 shows the result of our
anomaly detection for different systems. Figure 8.9 plots receiver operating characteristic
(ROC) graph, which is the true positive rate against false positive rate. ROC illustrates the
ability of our approach in classifying anomalies. The black line corresponds to randomly
classifying normal and abnormal log windows, and the red dot on the top left corner shows
the perfect classifier (PC), and the blue labels show the performance of ANALOG for eight
evaluated projects (two labels, SP and ST, are overlapping). Our evaluations all fall on
top of the random line, and closer to PC.

Comparison with PCA. In the second part of the experimentation, we compare our
approach with the PCA-based anomaly detection approach proposed in [311]. Fig.8.10a
shows the perplexity values for 795 test samples of log windows, with 32 anomalies gathered
on the left side of the chart, and 763 normal samples. As observed from the blue trend
line, the perplexity is lower for normal samples. Fig.8.10b summarizes the evaluation
metrics for ANALOG, which are higher when compared with PCA across the board. We
rationalize that because ANALOG assigns probabilities for the sequences of log events, i.e.,
the sequences of n-grams, it can better distinguish normal and abnormal sequences when

207

compared to PCA. We believe our anomaly detection results in Table 8.4 and Fig. 8.10
are encouraging, and we expect further adaptation and continuation of our NLP-based
research for other software engineering tasks.

Summary of the findings. Lastly, Table 8.5 provides a synopsis of our main findings
and their implications from studying the NLP characteristics of logs.

8.7 Related Work

NLP in software engineering tasks. Prior work has considered natural language
processing techniques for software engineering (SE) tasks. Initial SE research in this
field [119, 155] showed that the software’s source code is regular and repetitive. As such,
these works aimed to represent the sequences of the source code with n-gram language
models. Consequently, applications of this representation emerged in software-related
tasks such as bug reports [137], identifier name, class name, and next token code sug-
gestion [48, 49, 66]. Following the work of Hindle et al. [155], Tu et al. [298] explored the
idea of the localness of the source code and leveraged it to improve the performance of n-
gram language models by introducing a local cache. Focusing on the source code’s logging
statements, He et. [145] investigated the NLP features of logging descriptions and used
them to answer the question of “what to log?”. Inspired by and orthogonal to prior work,
in this research, we utilize n-gram models to characterize the naturalness and localness of
log files and to improve automated log analysis by leveraging these attributes.

Automated log analysis. As software logs contain rich information on the runtime
state of the systems, their analysis has been the focal point of various prior research to
improve systems’ reliability and user experience, such as anomaly detection [311, 116],
user statistics [187], fault detection and diagnosis [349]. These works typically employ
data mining and learning algorithms to efficiently analyze a large scale of logs, which also
involves log collection [104] and log parsing [146]. For example, Xu et al. [311] leveraged
a dimension reduction algorithm (PCA) to distinguish normal and abnormal events in
distributed systems. In this study, however, we propose to uncover the NLP characteristics
of logs, and we leverage them for benefiting automatic log analysis.

Anomaly detection with logs. Anomaly detection refers to the task of uncovering
events that do not follow the expected behavior in the system [76]. Possibly, an anomaly
in the system might turn to a fault, an error, and eventually to a system failure, if left
untreated [56]. As such, log files, because of their rich content of runtime information and
events, are widely utilized for computer systems’ anomaly detection [68, 337, 69, 107]. Dif-
ferent from the prior work, we present an NLP-based method to investigate anomalies in

208

15

20

25

0 100 200 300 400
HDFS

P
er

pl
el

xi
ty

Prep. values over time

4

5

6

7

0 100 200 300 400
Firewall

P
er

pl
el

xi
ty

Prep. values over time

0

25

50

75

100

0 100 200 300 400
LinuxSyslog

P
er

pl
el

xi
ty

Prep. values over time

25

50

75

0 100 200 300 400
Thunderbird

P
er

pl
el

xi
ty

Prep. values over time

5.0

7.5

10.0

12.5

15.0

17.5

0 100 200 300 400
Liberty

P
er

pl
el

xi
ty

Prep. values over time

15

20

25

30

35

0 100 200 300 400
Spark

P
er

pl
el

xi
ty

Prep. values over time

30

60

90

120

0 100 200 300 400
Spirit

P
er

pl
el

xi
ty

Prep. values over time

2

3

4

5

0 100 200 300 400
Windows

P
er

pl
el

xi
ty

Prep. values over time

Figure 8.8: Perplexity values for different projects.

209

● ●●

●

●

●

●

●

●●

●●●

●●

●

better
worse

●

HS

SPFW

WD

LS

TB

LB

ST

PC

0

0.
2

0.
50.
6

0.
8

1

0
0.

05 0.
1

0.
2

False positive rate (Fallout)

Tr
ue

 p
os

iti
ve

 r
at

e

random guess

Figure 8.9: ROC for performance of ANALOG. The black line (random guess) shows y = x,
i.e., 45°angle; however, the x-axis is stretched to provide a better separation on the ROC
values of the evaluated projects.

2.5

5.0

7.5

10.0

0 200 400 600 800
Log event windows

P
er

pl
el

xi
ty

Prep. values over log windows

(a) Perplexity values for log windows. Anomalous logs are
presented at the beginning of the graph to show how overall
perplexity trend changes for abnormal against normal logs.

74.93

62.43 65.31

39.02

94.18
88.89

50.00

25.00

0

25

50

75

100

BA F−Measure Precision Recall
Metric

V
al

ue
 (

%
)

PCA
ANALOG

(b) This chart compares the values for Bal-
anced Accuracy (BA), F-Measure, Recall, and
Precision for ANALOG vs. PCA.

Figure 8.10: PCA versus ANALOG performance comparison.

210

Research questions (RQs) Findings (Fs) Implications (Is)

RQ1: does a natural repetitive-
ness and regularity exist in log
files?

F1: language n-gram models capture a
high degree of repetitiveness in software
systems’ logs, even to a higher degree
than in common English corpora.

I1: compared with common English, the
repetitiveness of log data can be better cap-
tured by statistical language models.

RQ2: is the regularity that the
statistical language models cap-
ture merely because of the limited
language of logs, or it is also a
project-specific characteristic?

F2: n-gram-based statistical language
models capture a high level of regular-
ity and repetitiveness in within-project
analysis and less cross-project regular-
ity.

I2: the lower entropy values of log data are
the outcome of the predictable repetitiveness
within each system’s logs, and not the lim-
ited language of logs.

RQ3: how does Zipf’s law cap-
ture the repetitiveness of high-
rank tokens in log files?

F3: from Zipf’s law calculation, log
files illustrate a higher concentration of
high-rank tokens when compared to the
English corpora.

I3: logs are more predictable, and language
models potentially perform better in predict-
ing the next token of a sequence when applied
on log data.

RQ4: are log n-grams endemic to
their projects?

F4: a significant percentage of endemic
n-grams are repetitively used in the lo-
cal context of logs.

I4: log files are locally endemic. Endemic n-
grams in logs are the artifact of endemic n-
grams in the source code and software itself.

RQ5: are log n-grams specific to
their projects?

F5: each system tends to use its own
set of n-grams more frequently, which
is reflected in its logs.

I5: log files are locally specific. F4 and F5
enable more efficient analysis of logs with lo-
calized caching models.

RQ6: how the logs’ natural-
ness and localness can help with
the automated analysis of the log
files?

F6: with an n-gram model that is
trained on normal logs, abnormal logs
result in higher-than-normal entropy
values during testing.

I6: this finding opens up an avenue of re-
search to utilize NLP attributes for auto-
mated log analysis tasks, such as anomaly
detection.

Table 8.5: Summary of RQs and our findings.

211

software logs. As an advantage, because we utilize NLP features of logs, our approach does
not require a log parsing step, which is the first step of every log analysis approach [146].
Two main categories of anomaly detection include supervised (e.g., [68, 116, 107]) and
unsupervised (e.g., [311, 207, 212]) methods. In industry settings, a system may encounter
only very few anomalies per year [151]. As such, a long list of prior methods [68, 311, 204,
334, 65], which relies on seeing anomalous instances in the training data, becomes ineffec-
tive. We believe because ANALOG does not require historical abnormal instances, as it
builds the n-gram model based on the normal instances, it has an edge on such approaches.

8.8 Threats to Validity and Discussion

External threats to the validity reflect on the generalization of our work to other such
software projects and log files. In this research, we conducted our NLP analysis on logs of
eight software systems. We picked the systems from different domains and assumed our
approach is independent of the underlying programming language, source code, and the
software architecture that the system is implemented with. However, since other software
systems may follow different logging practices, our findings may not accurately extend and
generalize to logs of such other systems. Regarding internal threats to the validity, we
rely on the accuracy of the n-gram model to calculate the entropies. Additionally, the
threshold selection, and false positive and false negative values can affect the accuracy of
our anomaly detection approach. Finally, due to the limited availability of labeled datasets,
although we conducted experimentation on HDFS and synthetic anomaly datasets, future
opportunities that give access and enable us to evaluate ANALOG on logs of large-scale
and enterprise software systems would further solidify our findings.

8.9 Closing Remarks

This chapter explores the natural language attributes of software logs. Guided by a set of
research questions, our findings confirm that log files, as an artifact of software systems,
are natural and local, even more so than common English corpora. We show how the NLP
characteristics of log files can be leveraged for log analysis tasks, and we present ANALOG,
an anomaly detection tool that is built upon NLP features and outperforms the prior work.

In this research, our primary focus has been to show the NLP characteristics of the
logs and illustrate the potential applications of NLP for log analysis while not limiting
our approach to anomaly detection techniques. Therefore, as a future direction, besides

212

anomaly detection, we look into extending our work to other software analysis tasks, such as
extracting system security infringements from the system and network logs. Additionally,
we also aim to leverage deep learning (DL) language models to potentially improve our
approach and have a comparison against DL anomaly detection approaches.

213

Chapter 9

L'PERT: Log Parsing with BERT

Abstract- As software systems continuously record important runtime information for
various dependability analyses in unstructured log records format, log parsing has become
a crucial first step to extract organization and interpret the log lines in an automated
fashion. As log parsing is the prerequisite of downstream log analysis tasks, e.g., anomaly
detection, even small inaccuracies in log parsing can hinder and ultimately nullify the
benefits of downstream automated log analysis tasks. Thus, the design and performance
improvement of log parsing tools remains a consistent challenge. As log lines show natural
language (NLP) attributes, the recent advancement of natural language models motivates
the application of them for achieving more accurate log parsing. Thus, in this research,
we investigate the application of the state-of-the-art language models, i.e., transformers,
for log parsing. We also show how our approach provides additional flexibility in the
tokenization step and its design when compared to prior work. In sum, our research
enables the application of transformer-based language models for log parsing and exhibits
promising performance.

Keywords:
log parsing, software systems, transformers, BERT, language models, natural language
processing

9.1 Introduction

As computing systems continue to grow not only in size but also in the number of their
users, their management, maintenance, and dependability analysis become more daunting

214

and calls for more sophisticated approaches. Therefore, system operators and practitioners
more recently look for AI-enabled solutions to facilitate more effective and scalable analysis
of large-scale computing systems. A common way to enable system dependability analysis
is through the runtime software execution logs [347]. The rich information that resides in
the logs plays a crucial role in runtime or postmortem dependability analysis of computing
systems, and has enabled various system dependability and management tasks such as
anomaly detection [107, 337, 224, 133, 160], user statistics [187], application security [244],
performance problems and system failures [104, 321, 341].

Although logs contain valuable information, efficient and effective analysis of logs re-
mains a twofold challenge:

1 Due to the increasing size of software systems and their user base, they tend to
generate a significant amount of logs. Research [347] has reported that business
cloud environments generate several terabytes of log data every single day. The
sheer size of logs makes it practically impossible to rely on traditional and manual
ways of looking in logs for problem diagnosis.

2 As manual analysis of logs becomes ineffective, proposing automated log analysis
tools is still a daunting challenge. Log records are intrinsically un- or semi-structured
statements inserted by developers in the source code. Meaning that logs are primarily
designed to be a natural language sequence [145, 126], conveniently readable and
fathomable by a human log reviewer. This adds additional difficulty and puts it at
odds with automated analysis of logs.

Motivated by the aforementioned challenges, many prior efforts both in academia, e.g.,
Deeplog [107], and industry, e.g., ELK Stack[30] and Splunk [43] have examined approaches
and proposed tools to automate log analysis. Prompted by the need for effective and ef-
ficient downstream log mining tasks, “log parsing” is the first major step to enable auto-
mated log analysis. Log parsing is essentially the task of extracting organization (i.e., log
template) from raw log records to make them machine readable, i.e., in contrast to the
free-form human-readable log records. A log parser aims to extract the logging template
for the corresponding line of the source code that the logging statement is originated from.

Traditionally, log parsing methods relied on handcrafting regular expressions (RegEx)
by a system expert with domain knowledge. This way of hard coding RegExes can no
longer be leveraged as different modules of large-scale software systems often generate
logs in different formats, and it is also hardly possible to find an expert knowledgeable
and responsible with the entire system. Additionally, log statements tend to continu-
ously evolve [277]. As such, hard coding the templates renders them inflexible to these

215

changes. Several log parsing approaches apply various clustering approaches to extract
templates [116, 294, 230, 284, 139]. Other approaches utilize associate rule and frequent
pattern mining [232, 236], an evolutionary approach [225], and longest common subsequent
approach [106]. Heuristic-based approaches, such as Drain [148], produce the best results
when compared to other approaches [347]. More recently, deep-learning neural-based ap-
proaches [238] have shown superior performance in the log parsing task.

As log messages are natural language [145, 126], and in parallel, because of recent
advancements of NLP models [301, 101], we hypothesis that the application of NLP ap-
proaches has the potential to result in more accurate log parsing. As such, in this research,
we employ transformer models for extracting log templates. We leverage Masked Language
Model (MLM) task to extract log templates. This task aims to predict the tokens that
belong to the log template by masking them and then predicting them with a high prob-
ability. We also discuss how our approach brings additional flexibility by removing the
required domain knowledge in defining RegExes and its design.

The remainder of the chapter is organized as follows. Section 9.2 provides the necessary
background, and Section 9.3 explains our approach for log parsing. In Section 9.4, we
present an evaluation of our study compared to prior work, and we discuss some of the
advantages of our work in Section 9.5. We review the prior work in Section 9.6, and finally,
we conclude this chapter in Section 9.7.

9.1.1 Contributions

The main contributions of our research in this chapter are:

1. We propose L'PERT, a novel deep learning-based approach that can extract log
templates without any supervision and system knowledge.

2. We then evaluate the performance of L'PERT with prior work and discuss the flexi-
bility that our approach brings in design and tokenization.

9.2 Background

The goal of log parsing is to extract log templates. Put formally, a temporally ordered
log sequence, lsk, of log messages, mis, for a specific run, k, of the system is a subset of
the entire finite set of log messages (LS) available for the system. Each mi corresponds

216

to a specific log statement in the source code, e.g., log.info() and printf(). mi consists
of a sequence of ordered tokens, tis, some of them belonging to the static content of log
statement, tsij of log statement, and some of them are dynamic variables, tdij. j is the index
of the token in ti, i.e., j = 0, 1, 2, ..., N and N is the length of ti, N = |ti|. Thus the task
of log parsing is to for each log token sequence, ti, find the tuple, (tsi , t

d
i), such that:

∀mi ∈ lsk : parse(ti)−− > (tsij, t
d
ij), j = 0, 1, 2, ..., N

For example, for the logging statement from Blue Gene/L (BGL) supercomputer logs [241,
151] “CE sym 20, at 0x1438f9e0, mask 0x40”, the template is “CE sym 〈∗〉, at 〈∗〉, mask
〈∗〉”. Static parts of the log message are reflected without change and the dynamic pa-
rameters of the logging statement, i.e., [20, 0x1438f9e0, 0x40] are substituted with 〈∗〉,
as the same logging statement in the source code can be printed with different dynamic
parameter values in its every iteration. The better the log parser can distinguish the static
parts and dynamic values of the log message, the higher the quality of log parsing.

9.3 Approach

Figure 9.1 shows the high-level design of L'PERT. The input log line is “162 duble-hummer”
alignment exceptions”.

9.3.1 Pre-processing

In order to prepare the log data to be fed into the learning process, first we extract the
content of each log message from the log header. In the provide example above, the
log line from the log file is: - 1117842974 2005.06.03 R24-M0-N1-C:J13-U11 2005-06-03-
16.56.14.254137 R24-M0-N1-C:J13-U11 RAS KERNEL INFO 162 double-hummer align-
ment exceptions . The log header generally contains the source id, date and timestamp,
and the log verbosity level. The separation of the header from content is consistent with
the common practice in the prior work [347, 238]. In addition, the header log template
is the same for all log messages, i.e., it is trivial, and it is decided by the logging library,
more specifically, the logging library appenders [37].

9.3.2 Tokenization

After the log content is extracted for each log line, we tokenize the log content to its
individual tokens by whitespaces. All the tokens are added to build a vocabulary for each

217

system’s log. The start and the end of the log message are marked with two dedicated
tokens, [SOS] for the start of the string, and, [EOS], for the end of the string. The idea is to
enable the model to clearly distinguish the start and the end of each log message. During
the training, each token of the log message is being masked ([MASK]) for each iteration.
The goal is to train the transformer model to predict the masked token by paying attention
to the other tokens that exist in the context of the log message.

We also augment our tokenization process with Byte-Pair Encoding (BPE) [276] to
enable a suitable balance of intra-word tokenization. This also makes our approach more
flexible than prior work [238] that uses a set of pre-defined filters (i.e., RegExes) to tokenize
log statements. The filters are system-dependent and require some domain knowledge.
Thus, our approach has an obvious advantage over prior work and it can parse a new
system’s log without requiring hard-coding log message filters.

9.3.3 Word Embedding and Axial Positional Embedding

After tokenization, we embed the tokens to vector of values. Because all of the operations
in transformers happen on numerical values, we initially convert tokens to embedding
vectors. Each token in the input vocabulary (e.g., in our case, the vocabulary of the entire
log sequences) is represented by a unique embedding vector. The embedded vectors are
numerical arrays X ∈ Rd, i.e., X = (x1, x2, ..., xd) where d is the size of the embedding
layer, e.g., d == 256 in our design. The values of the embedded vectors are adjusted during
training phase to minimize the model loss function. Following the word embedding layer,
we apply axial embedding to encode the positional embedding of tokens.

Word
embedding

[SOS]

[EOS]

162

double-hummer
 [MASK]

alignment

exceptions

Q

V
K

Axial
positional

embedding

Multi-head
attention

Add and
normalize

Feed-forward
layer

Nx

Softmax
probabilities

Add and
normalize

Figure 9.1: High level design for L'PERT.

Because the attention-based model does not have a mechanism to incorporate the order

218

of the tokens in the sequence and performs the computation for all the tokens in parallel,
we leverage axial positional embedding (APE) [157, 176] to preserve and incorporate the
positional order of tokens in the log messages. As such, APE encodes and integrates
the positional information with word embedding to preserve the context. Assuming X
is the word embedding vector, and X ′ will be the output after the APE module, then:
X ′ = APE(X) +X

9.3.4 Multi-Head Attention and Feed Forward

The output of the APE is fed into the multi-head attention layer. Intuitively, the multi-
head attention finds the relationship of the embedded vector for the masked token with
the embedded vectors for other tokens in the log message. The multi-head aspect of the
design allows the model to pay attention to multiple tokens simultaneously, instead of
paying attention to the token relationships individually. The attention score is evaluated
by multiplying the query (Q), value (V), and key (K) matrices as the inputs of the attention
layer. The attention layer is followed by add and normalize (AddNorm) layer. This
layer is leveraged to improve the performance of the transformer to address training phase
deficiencies such as vanishing gradients [93] and covariate shift [163]. Assuming the output
of the attention layer is X ′′, thus, the output of the add and normalize layer is X ′′′ =
norm(X ′ +X ′′).

Following the AddNorm layer, there exists a position-wise feed-forward (PFF) layer,
which comprises a fully-connected feed-forward neural network that enables the model to
calculate the combination of different attentions. Finally, the weights of the model are
passed through to another AddNorm layer followed by a Softmax layer. In the Softmax
layer, we look for the top p% of the tokens which are predicted as the [MASK] token. If
the masked token (e.g., double-hummer) is among them, we then classify the masked token
as a static part of the log template. Otherwise, the masked token is considered a dynamic
parameter of the log message and is replaced with 〈∗〉 in the log template. The optimal
value of p is selected during hyperparameter tuning as we train the model with different
values of p and evaluate the results. Our approach provides additional flexibility in this
regard compared to prior work that introduces project-dependent thresholds [238].

The block that contains multi-head attention, PFF, and AddNorm layers (highlighted
with light blue) can be repeated N times (Nx), to achieve a deeper model and potentially
improve the performance of the learning task, which simultaneously lengthens the training
time. In our design, N == 1, and deeper models are left as future work.

219

9.4 Evaluation

We guide our evaluation with the following research question (RQ): How effective is
L'PERT in log template extraction?

9.4.1 Evaluation Dataset

We evaluate our approach on the BGL dataset that is collected by Lawrence Livermore
National Labs (LLNL) from the BlueGene/L supercomputer system.

9.4.2 Evaluation Metrics

To measure the effectiveness of L'PERT, we calculate the Precision, Recall, F-Measure,
Parsing Accuracy, and Edit Distance scores for log parsing. These scores are defined as
follows:

� Precision. The ratio of correctly detected log templates amongst all detected log
templates is Precision = TP

TP+FP
.

� Recall. The ratio of correctly detected log templates over all ground truth log
templates is Recall = TP

TP+FN
.

� F-Measure. The harmonic mean of Precision and Recall is F−Measure = 2×Precision×Recall
Precision+Recall

.

� Parsing Accuracy (PA). The ratio of correctly parsed log messages over the total
number of log messages. We consider a log message correctly parsed if and only if its
template belongs to the same group of logs as the ground truth [347]. For example,
if a ground truth log sequence [E1, E2, E1] is parsed as [E1, E2, E3], then PA is
2
3
, since the 1st and 3rd log messages are not grouped together. The institution is

that we evaluate the ratio of logs that belong to the same template (i.e., cluster) in
ground truth are also detected to belong to the same template in the parsed logs.

� Edit Distance (ED). Although PA is commonly used for evaluating the perfor-
mance of clusters, it does not capture the similarity of the parsed log templates to
the ground truth log templates. Thus, it is inaccurate as it does not capture the
differences that might exist in the tokens of each log template. For example, if the
log parser parses all the occurrences of “CE sym 〈∗〉, at 〈∗〉, mask 〈∗〉” as “〈∗〉 〈∗〉 〈∗〉,

220

〈∗〉 〈∗〉, 〈∗〉 〈∗〉”, PA achieves perfect accuracy, despite the obvious error. Thus, in
our design we focus on minimizing the Levenshtein edit distance [190], i.e., the exact
number of character changes that are required to convert the parsed log template to
the ground truth template. As such, the lower the ED, the higher the similarity of
the parsed template and the ground truth.

Table 9.1 summarizes the result for BGL dataset for both L'PERT and Nulog.

9.5 Discussion

9.5.1 Flexibility

An important point to emphasize is that our approach does not require any domain knowl-
edge about the format of log statements and does not receive any RegExes on possible
log patterns of log messages, i.e., fully unsupervised. On the contrary, prior work relies
on regular expressions and filters on log messages format for each system log to perform
tokenization. As such, we observe the significant flexibility that our approach brings,
and, simultaneously, achieves comparable log parsing performance when compared to prior
work.

In addition, regarding the threshold selection for [MASK] token identification, our
approach provides additional flexibility compared to prior work that introduces project-
dependent thresholds [238].

9.5.2 Tokenization

Through manual scrutiny of some of the inaccurately extracted log templates, we ob-
serve that some of the inaccuracies are because of wrong tokenization. One key obser-
vation is that punctuation marks generally have different interpretations in log files com-
pared to general text. For example, in IP addresses that often happen in log messages
(e.g., 10.251.91.229), the ground truth for the template is 〈∗〉. However, because the
general-purpose tokenizer treats ‘.’ as a punctuation mark, the extracted template is
〈∗〉.〈∗〉.〈∗〉.〈∗〉. For example, almost all HDFS log lines contain an IP address, as data
is transferred from a source IP to a destination IP. As such, for these systems, the exact
match accuracy is low, although the log parser has done a satisfactory performance in de-
tecting the overall log template. This also brings attention to the need for the development

221

Parser Precision Recall F-Measure PA ED (mean)

Nulog 1.0000 0.9992 0.9996 0.9550 2.4365

L'PERT 1.0000 0.9969 0.9985 0.9425 3.096

Table 9.1: Log parsing results for BGL dataset.

of a log-aware tokenizer that understands and treats punctuation marks in the context of
logs and not in general-purpose English text.

9.6 Related Work

9.6.1 Log Parsing

Prior research has dedicated a noticeable number of studies to propose different techniques
for log parsing [347, 146]. He et al. showed the importance of log parsing, and that even
small errors as low as 4% in the performance of log parser in template extraction can result
in an order of magnitude degradation in the performance of downstream log mining tasks.
As such, many of the prior work aims to improve the log template extraction accuracy
with different approaches.

To overcome the shortcomings of prior work, we propose L'PERT that is different from
prior work as it uses a self-attention mechanism from transformers. L'PERT leverages
masked language model (MLM) task from transformers architecture by masking every
single token in the log message and then it looks for predicting it based on its “attention”
with other tokens in the log message. Our evaluation illustrates that L'PERT achieves
comparable performance with prior work and brings in additional flexibility.

9.6.2 NLP for Software Engineering Tasks

Prior research has shown that logging statements within the software’s source code and
their end-products, i.e., logging messages in the log file exhibit natural language char-
acteristics [126, 145]. More specifically, logs are natural and local, and are even more
repetitive than natural text. This implies that the sequence of log tokens in log messages
within log files can be predicted based on the context surrounding the tokens. As such,
we utilized the state-of-the-art NLP models to perform log parsing. Recent advances in
NLP models [301, 101] have shown that attention-based transformers have outperformed

222

Long Short-Term Memory (LSTM) [158] and other traditional NLP models in a variety of
NLP tasks. Transformer-based NLP models consider the content from both left and right
of the token and can pay attention to multiple points in the log message simultaneously,
whereas LSTM-based models only consider the preceding context while making a decision
for the token under consideration. As such, transformers incorporate more context and
semantic from log sequences, and thus, outperform LSTM designs in NLP tasks. Recently,
Nedelkoski et al. [238] have introduced the application of attention-based models for log
parsing with Nulog. In contrast, our approach performs fully unsupervised log parsing,
whereas prior work relies on domain-dependent regular expressions to tokenize the log
messages. Thus, our approach brings a higher degree of flexibility and removes the manual
process of RegEx definition, and still achieves comparable performance.

9.7 Conclusion and Future Directions

In this chapter, we showed how transformer-based log parsing can incorporate additional
log message context and perform better in log parsing. We introduced L'PERT, a log
parsing tool that applies attention-based transformers to achieve high parsing performance
and removes the need for manual filters for log tokenization. As future work, we look into
fine-tuning transformers by using pre-trained BERT models.

223

Part V
Epilogue

224

Chapter 10

Conclusions and Future Work

In this thesis, we studied approaches for automating logging statements and analysis of
logs with data mining and machine learning approaches. For this purpose, we started
with explaining the importance of logging, log statements, and log files, and then proposed
novel approaches for automating the logging processes. Our research provides significant
value as it focuses on software logs, which play an important role in system debugging and
dependability analysis.

10.1 Summary of Findings

10.1.1 Part II

We initially conducted a comprehensive systematic literature review and mapping of log-
related research in Chapter 2. Our findings in this chapter shed light on the ongoing logging
research and provide promising opportunities for future work.

10.1.2 Part III

As we uncovered some of the challenges of logging, in Part III of the thesis and in Chap-
ters 3, 4, 5, and 6, we tackled the log statement automation challenges with the help
of similar code snippets. More specifically, we provided deep learning and NLP-based
techniques to predict the location and content of logging statements.

225

10.1.3 Part IV

In Part IV of the thesis, we provided an analysis of cost and gain associated with logging
in distributed systems with and without failures in Chapter 7. Our findings provide insight
for developers and practitioners on selecting the proper log verbosity level and then how
to connect that with the amount of information gained for each log verbosity level.

10.1.4 Part V

Next, in Part V of our research, we showed the natural language characteristics of logs
and how they can be leveraged for automated analysis of logs in downstream log mining
tasks in Chapter 8. We then showed how NLP characteristics and language models can be
applied for log parsing in Chapter 9. More specifically, we applied the SOTA transformers
architecture for this task.

10.2 Avenues for Future Work

10.2.1 Chapter 2 - Survey of Logging Research

Our survey on logging research in software systems uncovered several avenues for future
work. For example, future research can consider and tackle challenges in adaptive logging,
logging practices, automated and constraint-based log generation and automated analysis of
log files. The continuation of these research avenues will help to improve the quality of log
statements and log files, and thus will enable more effective log analysis tasks.

10.2.2 Chapters 3, 4, 5, and 6 - Log Statement Prediction

Our work on automating log statements can be further augmented with predicting other
details of log statements, such as log verbosity level and its variables. In addition, a
potential way to improve our proposed approach is to not only train the NLP model on the
log descriptions, but also on the source code context surrounding the logging statements.
For example, prior research has used the source code context to suggest auto-generated
comments [159].

226

10.2.3 Chapter 7 - Logging Cost and Benefit

The work on logging cost and benefits can be extended to compare quantitative measures
of logging cost with qualitative measurements, i.e., surveying developers’ opinions on log-
related costs and benefits. In addition, future work can look into evaluating logs of other
software systems, and investigate how the information gain metric can be translated to
more effective troubleshooting by leveraging the combination of execution logs and system
runtime metrics.

10.2.4 Chapter 8 - Naturalness and Localness of Logs

The work on NLP models for log analysis can be extended to capture semantics from log
files and apply that for sophisticated log analysis such as anomaly or failure detection. In
addition, as a future direction, besides anomaly detection, research efforts can look into
extending our work to other software analysis tasks, such as extracting system security
infringements from the system and network logs. Moreover, future work may also consider
leveraging deep learning (DL) language models, in lieu of the n-gram model, to poten-
tially improve our approach and have a comparison against other DL anomaly detection
approaches from logs.

10.2.5 Chapter 9 - L'PERT

Future research can investigate further fine-tuning of transformers by using pre-trained
BERT models. Potentially, this will allow for more accurate log parsing. In addition,
domain-specific pre-training of BERT models, i.e., training on a large set of software logs,
can further enhance their effectiveness for log parsing tasks. This is because we showed
that there are some differences between log messages, and normal text, e.g., ‘.’ punctuation
mark in 〈∗〉.〈∗〉.〈∗〉.〈∗〉 for IP addresses has a different meaning than normal text. Thus, we
hypothesize starting from a large database of system logs can be beneficial for pre-training
of BERT models as an avenue for future work.

227

References

[1] Abstract syntax tree. https://www.eclipse.org/articles/

Article-JavaCodeManipulation_AST/.

[2] Amazon’s one hour of downtime on Prime Day may have cost it up
to $100 million in lost sales. https://www.businessinsider.com/

amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7.

[3] Confusion matrix. https://en.wikipedia.org/wiki/Confusion_matrix.

[4] cross-entropy. http://en.wikipedia.org/wiki/Cross_entropy.

[5] Data for log naturalness analysis. https://github.com/sgholamian/naturalness_
of_software_logs.

[6] Dataset for logging cost research. https://github.com/sgholamian/logging_

cost.

[7] Markov property. https://en.wikipedia.org/wiki/Markov_property.

[8] Mira System. https://www.alcf.anl.gov/alcf-resources/mira.

[9] N-gram model. https://en.wikipedia.org/wiki/N-gram.

[10] Project Gutenberg. https://www.gutenberg.org/.

[11] Project Gutenberg on Wikipedia. https://en.wikipedia.org/wiki/Project_

Gutenberg.

[12] Replication package for log-aware clone detection. https://github.com/

sgholamian/log-aware-clone-detection.

228

https://www.eclipse.org/articles/Article-JavaCodeManipulation_AST/
https://www.eclipse.org/articles/Article-JavaCodeManipulation_AST/
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://en.wikipedia.org/wiki/Confusion_matrix
http://en.wikipedia.org/wiki/Cross_entropy
https://github.com/sgholamian/naturalness_of_software_logs
https://github.com/sgholamian/naturalness_of_software_logs
https://github.com/sgholamian/logging_cost
https://github.com/sgholamian/logging_cost
https://en.wikipedia.org/wiki/Markov_property
https://www.alcf.anl.gov/alcf-resources/mira
https://en.wikipedia.org/wiki/N-gram
https://www.gutenberg.org/
https://en.wikipedia.org/wiki/Project_Gutenberg
https://en.wikipedia.org/wiki/Project_Gutenberg
https://github.com/sgholamian/log-aware-clone-detection
https://github.com/sgholamian/log-aware-clone-detection

[13] Spark scheduling. https://spark.apache.org/docs/latest/configuration.

html#scheduling.

[14] When It Goes Down, Facebook Loses $24,420 Per Minute.
https://www.theatlantic.com/technology/archive/2014/10/

facebook-is-losing-24420-per-minute/382054/.

[15] The Apache Software Foundation. logging services project. http://logging.

apache.org/, 2019.

[16] Apache Spark. https://spark.apache.org/, 2019.

[17] Monitoring Petabytes of Logs per Day at eBay with Beats. https://www.elastic.
co/blog/monitoring-petabytes-of-logs-at-ebay-with-beats, 2019.

[18] The AspectJ Project. https://eclipse.org/aspectj/, 2019.

[19] TPC Benchmark. http://www.tpc.org/tpcw/, 2019.

[20] Apache Software Foundation. www.apache.org, 2020.

[21] Centralize, transform and stash your data. https://www.elastic.co/products/

logstash, 2020.

[22] Elasticsearch, the heart of the Elastic Stack. https://www.elastic.co/

elasticsearch/, 2020.

[23] Hadoop Distributed File System. hhttps://hadoop.apache.org/docs/r1.2.1/

hdfs_design.html, 2020.

[24] Jira — Issue and Project Tracking Software. https://www.atlassian.com/

software/jira, 2020.

[25] Logback Logging Framework. http://logback.qos.ch/, 2020.

[26] Simple Logging Facade for Java (SLF4j). http://www.slf4j.org/, 2020.

[27] The Apache Hadoop Project. https://hadoop.apache.org/, 2020.

[28] The Epic Guide to Artificial Intelligence for DevOps Automation. https://www.

targetprocess.com/blog/artificial-intelligence-devops-automation/,
2020.

229

https://spark.apache.org/docs/latest/configuration.html#scheduling
https://spark.apache.org/docs/latest/configuration.html#scheduling
https://www.theatlantic.com/technology/archive/2014/10/facebook-is-losing-24420-per-minute/382054/
https://www.theatlantic.com/technology/archive/2014/10/facebook-is-losing-24420-per-minute/382054/
http://logging.apache.org/
http://logging.apache.org/
https://spark.apache.org/
https://www.elastic.co/blog/monitoring-petabytes-of-logs-at-ebay-with-beats
https://www.elastic.co/blog/monitoring-petabytes-of-logs-at-ebay-with-beats
https://eclipse.org/aspectj/
http://www.tpc.org/tpcw/
www.apache.org
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
hhttps://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
hhttps://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
http://logback.qos.ch/
http://www.slf4j.org/
https://hadoop.apache.org/
https://www.targetprocess.com/blog/artificial-intelligence-devops-automation/
https://www.targetprocess.com/blog/artificial-intelligence-devops-automation/

[29] The Simple Logging Facade for Java (SLF4J). www.slf4j.org, 2020.

[30] What is the ELK Stack? https://www.elastic.co/what-is/elk-stack, 2020.

[31] Your window into the Elastic Stack. https://www.elastic.co/kibana, 2020.

[32] Datadog: Cloud Monitoring as a Service. https://www.datadoghq.com/, 2021.

[33] Datasets. https://github.com/logpai/LoggingDescriptions, 2021.

[34] Dynatrace: The Leader in Cloud Monitoring. https://www.dynatrace.com/, 2021.

[35] Fast, powerful searching over massive volumes of log data. https://www.loggly.

com/, 2021.

[36] Keras: the Python deep learning API. https://keras.io/, 2021.

[37] Log4j Appenders. https://logging.apache.org/log4j/2.x/manual/appenders.

html, 2021.

[38] LogPai Log Parse Benchmark. https://github.com/logpai/logparser, 2021.

[39] NewRelic: Real-time insights for the modern enterprise. https://newrelic.com/,
2021.

[40] OpenStack Fault Injection Dataset. https://github.com/dessertlab/

Fault-Injection-Dataset, 2021.

[41] TeraSort for Spark. https://github.com/ehiggs/spark-terasort, 2021.

[42] TestDFSIO for Spark. https://github.com/BBVA/spark-benchmarks, 2021.

[43] The Data-to-Everything Platform Built for the Cloud. https://www.splunk.com/,
2021.

[44] XpoLog: Log management & analysis automations. http://www.xplg.com, 2021.

[45] Marcos K Aguilera, Jeffrey C Mogul, Janet L Wiener, Patrick Reynolds, and Athicha
Muthitacharoen. Performance debugging for distributed systems of black boxes.
ACM SIGOPS Operating Systems Review, 37(5):74–89, 2003.

230

www.slf4j.org
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/kibana
https://www.datadoghq.com/
https://github.com/logpai/LoggingDescriptions
https://www.dynatrace.com/
https://www.loggly.com/
https://www.loggly.com/
https://keras.io/
https://logging.apache.org/log4j/2.x/manual/appenders.html
https://logging.apache.org/log4j/2.x/manual/appenders.html
https://github.com/logpai/logparser
https://newrelic.com/
https://github.com/dessertlab/Fault-Injection-Dataset
https://github.com/dessertlab/Fault-Injection-Dataset
https://github.com/ehiggs/spark-terasort
https://github.com/BBVA/spark-benchmarks
https://www.splunk.com/
http://www.xplg.com

[46] Michal Aharon, Gilad Barash, Ira Cohen, and Eli Mordechai. One graph is worth a
thousand logs: Uncovering hidden structures in massive system event logs. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 227–243. Springer, 2009.

[47] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque Azam, and
Bilal Maqbool. A systematic review on code clone detection. IEEE access, 7:86121–
86144, 2019.

[48] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Learning
natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 281–293, 2014.

[49] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Suggesting
accurate method and class names. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 38–49, 2015.

[50] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A
survey of machine learning for big code and naturalness. ACM Computing Surveys
(CSUR), 51(4):1–37, 2018.

[51] Miltiadis Allamanis and Charles Sutton. Mining idioms from source code. In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 472–483, 2014.

[52] Mohamed Aly. Survey on multiclass classification methods. Neural Netw, 19:1–9,
2005.

[53] James H Andrews. Testing using log file analysis: tools, methods, and issues. In
Proceedings 13th IEEE International Conference on Automated Software Engineering
(Cat. No. 98EX239), pages 157–166. IEEE, 1998.

[54] Han Anu, Jie Chen, Wenchang Shi, Jianwei Hou, Bin Liang, and Bo Qin. An ap-
proach to recommendation of verbosity log levels based on logging intention. In 2019
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 125–134. IEEE, 2019.

[55] Venera Arnaoudova, Sonia Haiduc, Andrian Marcus, and Giuliano Antoniol. The
use of text retrieval and natural language processing in software engineering. In
Proceedings of the 37th International Conference on Software Engineering-Volume 2,
pages 949–950, 2015.

231

[56] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE transactions on dependable
and secure computing, 1(1):11–33, 2004.

[57] Mahmoud Awad and Daniel A Menascé. Performance model derivation of opera-
tional systems through log analysis. In 2016 IEEE 24th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 159–168. IEEE, 2016.

[58] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

[59] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yoshua
Bengio. End-to-end attention-based large vocabulary speech recognition. In 2016
IEEE international conference on acoustics, speech and signal processing (ICASSP),
pages 4945–4949. IEEE, 2016.

[60] Liang Bao, Qian Li, Peiyao Lu, Jie Lu, Tongxiao Ruan, and Ke Zhang. Execution
anomaly detection in large-scale systems through console log analysis. Journal of
Systems and Software, 143:172–186, 2018.

[61] Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan. Magpie:
Online modelling and performance-aware systems. In HotOS, pages 85–90, 2003.

[62] Titus Barik, Robert DeLine, Steven Drucker, and Danyel Fisher. The bones of the
system: A case study of logging and telemetry at Microsoft. In 2016 IEEE/ACM
38th International Conference on Software Engineering Companion (ICSE-C), pages
92–101. IEEE, 2016.

[63] Victor R Basili, Forrest Shull, and Filippo Lanubile. Building knowledge through
families of experiments. IEEE Transactions on Software Engineering, 25(4):456–473,
1999.

[64] Roman Beck, Jacob Stenum Czepluch, Nikolaj Lollike, and Simon Malone.
Blockchain–the gateway to trust-free cryptographic transactions. 2016.

[65] Christophe Bertero, Matthieu Roy, Carla Sauvanaud, and Gilles Trédan. Experience
Report: Log Mining using Natural Language Processing and Application to Anomaly
Detection. In 28th International Symposium on Software Reliability Engineering
(ISSRE 2017), page 10p., Toulouse, France, October 2017.

232

[66] Avishkar Bhoopchand, Tim Rocktäschel, Earl Barr, and Sebastian Riedel. Learn-
ing python code suggestion with a sparse pointer network. arXiv preprint
arXiv:1611.08307, 2016.

[67] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python: analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,
2009.

[68] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B Woodard, and Hans Ander-
sen. Fingerprinting the datacenter: automated classification of performance crises.
In Proceedings of the 5th European conference on Computer systems, pages 111–124.
ACM, 2010.

[69] Jakub Breier and Jana Branǐsová. A dynamic rule creation based anomaly detection
method for identifying security breaches in log records. Wireless Personal Commu-
nications, 94(3):497–511, 2017.

[70] John S Bridle. Probabilistic interpretation of feedforward classification network out-
puts, with relationships to statistical pattern recognition. In Neurocomputing, pages
227–236. Springer, 1990.

[71] Michael W Browne. Cross-validation methods. Journal of mathematical psychology,
44(1):108–132, 2000.

[72] J. Cândido, J. Haesen, M. Aniche, and A. van Deursen. An exploratory study of log
placement recommendation in an enterprise system. In 2021 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR), pages 143–154,
Los Alamitos, CA, USA, may 2021. IEEE Computer Society.

[73] Jeanderson Candido, Mauŕıcio Aniche, and Arie van Deursen. Contemporary soft-
ware monitoring: A systematic literature review. arXiv preprint arXiv:1912.05878,
2019.

[74] Songfei Cao, Xiaoqiang Di, Yue Gong, Weiwu Ren, and Xingxu Zhang. Knowl-
edge extraction and knowledge graph construction based on campus security logss.
In International Conference on Artificial Intelligence and Security, pages 354–364.
Springer, 2020.

[75] Rich Caruana, Steve Lawrence, and C Lee Giles. Overfitting in neural nets: Back-
propagation, conjugate gradient, and early stopping. In Advances in neural informa-
tion processing systems, pages 402–408, 2001.

233

[76] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[77] Boyuan Chen and Zhen Ming Jiang. A survey of software log instrumentation. ACM
Computing Surveys (CSUR), 54(4):1–34, 2021.

[78] Boyuan Chen and Zhen Ming Jack Jiang. Characterizing and detecting anti-patterns
in the logging code. In Proceedings of the 39th International Conference on Software
Engineering, pages 71–81. IEEE Press, 2017.

[79] Boyuan Chen and Zhen Ming Jack Jiang. Characterizing logging practices in java-
based open source software projects–a replication study in apache software founda-
tion. Empirical Software Engineering, 22(1):330–374, 2017.

[80] Boyuan Chen and Zhen Ming Jack Jiang. Extracting and studying the logging-code-
issue-introducing changes in java-based large-scale open source software systems.
Empirical Software Engineering, 24(4):2285–2322, 2019.

[81] Boyuan Chen and Zhen Ming Jack Jiang. Studying the use of java logging utilities
in the wild. 2020.

[82] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming Jack Jiang. An au-
tomated approach to estimating code coverage measures via execution logs. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 305–316. ACM, 2018.

[83] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. Failure
diagnosis using decision trees. In Autonomic Computing, 2004. Proceedings. Inter-
national Conference on, pages 36–43. IEEE, 2004.

[84] Rui Chen, Shenglin Zhang, Dongwen Li, Yuzhe Zhang, Fangrui Guo, Weibin Meng,
Dan Pei, Yuzhi Zhang, Xu Chen, and Yuqing Liu. Logtransfer: Cross-system log
anomaly detection for software systems with transfer learning. In 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE), pages 37–47.
IEEE, 2020.

[85] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F Wenisch.
The mystery machine: End-to-end performance analysis of large-scale internet ser-
vices. In 11th {USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 14), pages 217–231, 2014.

234

[86] Shaiful Chowdhury, Silvia Di Nardo, Abram Hindle, and Zhen Ming Jack Jiang. An
exploratory study on assessing the energy impact of logging on android applications.
Empirical Software Engineering, 23(3):1422–1456, 2018.

[87] Edward Chuah, Arshad Jhumka, Sai Narasimhamurthy, John Hammond, James C
Browne, and Bill Barth. Linking resource usage anomalies with system failures from
cluster log data. In 2013 IEEE 32nd International Symposium on Reliable Distributed
Systems, pages 111–120. IEEE, 2013.

[88] Edward Chuah, Shyh-hao Kuo, Paul Hiew, William-Chandra Tjhi, Gary Lee, John
Hammond, Marek T Michalewicz, Terence Hung, and James C Browne. Diagnosing
the root-causes of failures from cluster log files. In 2010 International Conference on
High Performance Computing, pages 1–10. IEEE, 2010.

[89] Kenneth W Church and William A Gale. A comparison of the enhanced good-
turing and deleted estimation methods for estimating probabilities of english bigrams.
Computer Speech & Language, 5(1):19–54, 1991.

[90] Marcello Cinque, Domenico Cotroneo, Roberto Natella, and Antonio Pecchia. As-
sessing and improving the effectiveness of logs for the analysis of software faults.
In 2010 IEEE/IFIP International Conference on Dependable Systems & Networks
(DSN), pages 457–466. IEEE, 2010.

[91] Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia. Event logs for the
analysis of software failures: A rule-based approach. IEEE Transactions on Software
Engineering, 39(6):806–821, 2012.

[92] Raffaele Conforti, Marcello La Rosa, and Arthur HM ter Hofstede. Filtering out in-
frequent behavior from business process event logs. IEEE Transactions on Knowledge
and Data Engineering, 29(2):300–314, 2016.

[93] Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron
Courville. Recurrent batch normalization. arXiv preprint arXiv:1603.09025, 2016.

[94] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella, and Nema-
tollah Bidokhti. How bad can a bug get? an empirical analysis of software failures
in the openstack cloud computing platform. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 200–211, 2019.

235

[95] Daniel Cukier. Devops patterns to scale web applications using cloud services. In
Proceedings of the 2013 companion publication for conference on Systems, program-
ming, & applications: software for humanity, pages 143–152, 2013.

[96] Hetong Dai, Heng Li, Che Shao Chen, Weiyi Shang, and Tse-Hsun Chen. Logram:
Efficient log parsing using n-gram dictionaries. IEEE Transactions on Software En-
gineering, 2020.

[97] Subhasis Das and Chinmayee Shah. Contextual code completion using machine
learning. Technical report, Technical Report. Stanford University, CA, USA, 2015.

[98] T. Davis and G. Shaw. SQL Server Transaction Log Management. Stairways hand-
book. Red Gate Books, 2012.

[99] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[100] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002.

[101] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[102] Sheng Di, Hanqi Guo, Rinku Gupta, Eric R Pershey, Marc Snir, and Franck Cappello.
Exploring properties and correlations of fatal events in a large-scale hpc system. IEEE
Transactions on Parallel and Distributed Systems, 30(2):361–374, 2018.

[103] Sheng Di, Rinku Gupta, Marc Snir, Eric Pershey, and Franck Cappello. Logaider:
A tool for mining potential correlations of hpc log events. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages
442–451. IEEE, 2017.

[104] Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei Lin, Qiang Fu,
Dongmei Zhang, and Tao Xie. Log2: A cost-aware logging mechanism for perfor-
mance diagnosis. In USENIX Annual Technical Conference, pages 139–150, 2015.

[105] Wei Dong, Luyao Luo, and Chao Huang. Dynamic logging with dylog in networked
embedded systems. ACM Transactions on Embedded Computing Systems (TECS),
15(1):1–25, 2015.

236

[106] Min Du and Feifei Li. Spell: Streaming parsing of system event logs. In 2016 IEEE
16th International Conference on Data Mining (ICDM), pages 859–864. IEEE, 2016.

[107] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection
and diagnosis from system logs through deep learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 1285–
1298, 2017.

[108] Andrej Dyck, Ralf Penners, and Horst Lichter. Towards definitions for release en-
gineering and devops. In 2015 IEEE/ACM 3rd International Workshop on Release
Engineering, pages 3–3. IEEE, 2015.

[109] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. SE-
MANTiCS (Posters, Demos, SuCCESS), 48:1–4, 2016.

[110] Diana El-Masri, Fabio Petrillo, Yann-Gaël Guéhéneuc, Abdelwahab Hamou-Lhadj,
and Anas Bouziane. A systematic literature review on automated log abstraction
techniques. Information and Software Technology, 122:106276, 2020.

[111] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John Grundy. Experience
report: Anomaly detection of cloud application operations using log and cloud metric
correlation analysis. In Software Reliability Engineering (ISSRE), 2015 IEEE 26th
International Symposium on, pages 24–34. IEEE, 2015.

[112] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John Grundy. Metric se-
lection and anomaly detection for cloud operations using log and metric correlation
analysis. Journal of Systems and Software, 137:531–549, 2018.

[113] Rodrigo Fonseca, George Porter, Randy H Katz, and Scott Shenker. X-trace: A
pervasive network tracing framework. In 4th {USENIX} Symposium on Networked
Systems Design & Implementation ({NSDI} 07), 2007.

[114] Elizabeth A Freeman and Gretchen G Moisen. A comparison of the performance of
threshold criteria for binary classification in terms of predicted prevalence and kappa.
Ecological modelling, 217(1-2):48–58, 2008.

[115] Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Mikko Terho, and Jelena Vlasenko.
Failure prediction based on log files using random indexing and support vector ma-
chines. Journal of Systems and Software, 86(1):2–11, 2013.

237

[116] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution anomaly detection
in distributed systems through unstructured log analysis. In Data Mining, 2009.
ICDM’09. Ninth IEEE International Conference on, pages 149–158. IEEE, 2009.

[117] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dong-
mei Zhang, and Tao Xie. Where do developers log? an empirical study on logging
practices in industry. In Companion Proceedings of the 36th International Conference
on Software Engineering, pages 24–33. ACM, 2014.

[118] Xiaoyu Fu, Rui Ren, Jianfeng Zhan, Wei Zhou, Zhen Jia, and Gang Lu. Logmaster:
Mining event correlations in logs of large-scale cluster systems. In 2012 IEEE 31st
Symposium on Reliable Distributed Systems, pages 71–80. IEEE, 2012.

[119] Mark Gabel and Zhendong Su. A study of the uniqueness of source code. In Pro-
ceedings of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering, pages 147–156, 2010.

[120] Evgeniy Gabrilovich and Shaul Markovitch. Wikipedia-based semantic interpretation
for natural language processing. Journal of Artificial Intelligence Research, 34:443–
498, 2009.

[121] Mohammad Gharehyazie, Baishakhi Ray, Mehdi Keshani, Masoumeh Soleimani Za-
vosht, Abbas Heydarnoori, and Vladimir Filkov. Cross-project code clones in github.
Empirical Software Engineering, 24(3):1538–1573, 2019.

[122] Sina Gholamian. Leveraging Code Clones and Natural Language Processing for Log
Statement Prediction. In ASE ’21: Proceedings of the 36th IEEE/ACM International
Conference on Automated Software Engineering - Doctoral Symposium, November
2021.

[123] Sina Gholamian and Paul AS Ward. Logging statements’ prediction based on source
code clones. In Proceedings of the 35th Annual ACM Symposium on Applied Com-
puting, pages 82–91, 2020.

[124] Sina Gholamian and Paul AS Ward. Borrowing from similar code: A deep learning
nlp-based approach for log statement automation. arXiv preprint arXiv:2112.01259,
2021.

[125] Sina Gholamian and Paul AS Ward. A comprehensive survey of logging in software:
From logging statements automation to log mining and analysis. arXiv preprint
arXiv:2110.12489, 2021.

238

[126] Sina Gholamian and Paul AS Ward. On the naturalness and localness of software logs.
In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR), pages 155–166. IEEE, 2021.

[127] Sina Gholamian and Paul AS Ward. What distributed systems say: A study of seven
spark application logs. In 2021 40th International Symposium on Reliable Distributed
Systems (SRDS), pages 222–232. IEEE, 2021.

[128] Devarshi Ghoshal and Beth Plale. Provenance from log files: a bigdata problem. In
Proceedings of the Joint EDBT/ICDT 2013 Workshops, pages 290–297, 2013.

[129] Andres Gomez, Lukas Sigrist, Thomas Schalch, Luca Benini, and Lothar Thiele.
Efficient, long-term logging of rich data sensors using transient sensor nodes. ACM
Transactions on Embedded Computing Systems (TECS), 17(1):1–23, 2017.

[130] Yvette Graham. Re-evaluating automatic summarization with bleu and 192 shades
of rouge. In Proceedings of the 2015 conference on empirical methods in natural
language processing, pages 128–137, 2015.

[131] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidi-
rectional lstm and other neural network architectures. Neural networks, 18(5-6):602–
610, 2005.

[132] Klaus Greff, Rupesh K Srivastava, Jan Koutńık, Bas R Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks
and learning systems, 28(10):2222–2232, 2016.

[133] Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection via
bert. arXiv preprint arXiv:2103.04475, 2021.

[134] Jin Guo, Mona Rahimi, Jane Cleland-Huang, Alexander Rasin, Jane Huffman Hayes,
and Michael Vierhauser. Cold-start software analytics. In Proceedings of the 13th
International Conference on Mining Software Repositories, pages 142–153, 2016.

[135] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward Chuah, and James
Browne. Crude: Combining resource usage data and error logs for accurate error de-
tection in large-scale distributed systems. In 2016 IEEE 35th Symposium on Reliable
Distributed Systems (SRDS), pages 51–60. IEEE, 2016.

[136] Apache Hadoop. A JIRA Issue for Hadoop. https://issues.apache.org/jira/

browse/YARN-985, 2016.

239

https://issues.apache.org/jira/browse/YARN-985
https://issues.apache.org/jira/browse/YARN-985

[137] Sonia Haiduc, Venera Arnaoudova, Andrian Marcus, and Giuliano Antoniol. The
use of text retrieval and natural language processing in software engineering. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion,
pages 898–899, 2016.

[138] John L Hammond, Tommy Minyard, and Jim Browne. End-to-end framework for
fault management for open source clusters: Ranger. In Proceedings of the 2010
TeraGrid Conference, pages 1–6, 2010.

[139] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and Ab-
dullah Mueen. Logmine: Fast pattern recognition for log analytics. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge Man-
agement, pages 1573–1582, 2016.

[140] Ahmed Hassan, Daryl Martin, Parminder Flora, Paul Mansfield, and Dave Dietz.
An industrial case study of customizing operational profiles using log compression.
In 2008 ACM/IEEE 30th International Conference on Software Engineering, pages
713–723. IEEE, 2008.

[141] Ahmed E Hassan. The road ahead for mining software repositories. In 2008 Frontiers
of Software Maintenance, pages 48–57. IEEE, 2008.

[142] Mehran Hassani, Weiyi Shang, Emad Shihab, and Nikolaos Tsantalis. Studying and
detecting log-related issues. Empirical Software Engineering, 23(6):3248–3280, 2018.

[143] Gerhard Haßlinger and Oliver Hohlfeld. The gilbert-elliott model for packet loss
in real time services on the internet. In 14th GI/ITG Conference-Measurement,
Modelling and Evalutation of Computer and Communication Systems, pages 1–15.
VDE, 2008.

[144] Kimmo Hätönen, Jean François Boulicaut, Mika Klemettinen, Markus Miettinen,
and Cyrille Masson. Comprehensive log compression with frequent patterns. In Inter-
national Conference on Data Warehousing and Knowledge Discovery, pages 360–370.
Springer, 2003.

[145] Pinjia He, Zhuangbin Chen, Shilin He, and Michael R Lyu. Characterizing the nat-
ural language descriptions in software logging statements. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 178–189.
IEEE, 2018.

240

[146] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. An evaluation
study on log parsing and its use in log mining. In 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 654–
661. IEEE, 2016.

[147] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. Towards automated
log parsing for large-scale log data analysis. IEEE Transactions on Dependable and
Secure Computing, 15(6):931–944, 2017.

[148] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain: An online log
parsing approach with fixed depth tree. In 2017 IEEE International Conference on
Web Services (ICWS), pages 33–40. IEEE, 2017.

[149] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R Lyu, and Dong-
mei Zhang. Identifying impactful service system problems via log analysis. In Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 60–
70, 2018.

[150] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience report: System
log analysis for anomaly detection. In 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE), pages 207–218. IEEE, 2016.

[151] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Loghub: a large col-
lection of system log datasets towards automated log analytics. arXiv preprint
arXiv:2008.06448, 2020.

[152] Kenneth Heafield. Kenlm: Faster and smaller language model queries. In Proceedings
of the sixth workshop on statistical machine translation, pages 187–197, 2011.

[153] Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H Clark, and Philipp Koehn. Scalable
modified kneser-ney language model estimation. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 690–696, 2013.

[154] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounth-
waite, and Carl Kadie. Dependency networks for inference, collaborative filtering,
and data visualization. Journal of Machine Learning Research, 1(Oct):49–75, 2000.

241

[155] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
On the naturalness of software. In 2012 34th International Conference on Software
Engineering (ICSE), pages 837–847. IEEE, 2012.

[156] Abram Hindle, Alex Wilson, Kent Rasmussen, E Jed Barlow, Joshua Charles Camp-
bell, and Stephen Romansky. Greenminer: A hardware based mining software repos-
itories software energy consumption framework. In Proceedings of the 11th working
conference on mining software repositories, pages 12–21, 2014.

[157] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial atten-
tion in multidimensional transformers, 2019.

[158] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[159] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment genera-
tion. In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC), pages 200–20010. IEEE, 2018.

[160] Shaohan Huang, Yi Liu, Carol Fung, Rong He, Yining Zhao, Hailong Yang, and
Zhongzhi Luan. Hitanomaly: Hierarchical transformers for anomaly detection in
system log. IEEE Transactions on Network and Service Management, 17(4):2064–
2076, 2020.

[161] Yuan Huang, Xinyu Hu, Nan Jia, Xiangping Chen, Yingfei Xiong, and Zibin Zheng.
Learning Code Context Information to Predict Comment Locations. IEEE Transac-
tions on Reliability, 2019.

[162] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez, and Erik Elmroth. Perfor-
mance anomaly detection and bottleneck identification. CSUR, 48(1):1–35, 2015.

[163] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[164] John Irwin, Gregor Kickzales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, and J Loingtier. Aspect-oriented programming. Proceedings
of ECOOP, IEEE, Finland, pages 220–242, 1997.

[165] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. What is De-
vOps? A systematic mapping study on definitions and practices. In Proceedings of
the Scientific Workshop Proceedings of XP2016, pages 1–11, 2016.

242

[166] Zhouyang Jia, Shanshan Li, Xiaodong Liu, Xiangke Liao, and Yunhuai Liu. Smartlog:
Place error log statement by deep understanding of log intention. In 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 61–71. IEEE, 2018.

[167] Zhen Ming Jiang, Ahmed E Hassan, Gilbert Hamann, and Parminder Flora. Auto-
matic identification of load testing problems. In 2008 IEEE International Conference
on Software Maintenance, pages 307–316. IEEE, 2008.

[168] Dan Jurafsky. Speech & language processing. Pearson Education India, 2000.

[169] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E Hassan. Logging
library migrations: a case study for the apache software foundation projects. In
Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working Conference
on, pages 154–164. IEEE, 2016.

[170] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, Mark D Syer, and Ahmed E Has-
san. Examining the stability of logging statements. Empirical Software Engineering,
23(1):290–333, 2018.

[171] Suhas Kabinna, Weiyi Shang, Cor-Paul Bezemer, and Ahmed E Hassan. Examining
the stability of logging statements. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 326–
337. IEEE, 2016.

[172] Staffs Keele et al. Guidelines for performing systematic literature reviews in software
engineering. Technical report, Citeseer, 2007.

[173] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings
of ICNN’95-international conference on neural networks, volume 4, pages 1942–1948.
IEEE, 1995.

[174] Samina Khalid, Tehmina Khalil, and Shamila Nasreen. A survey of feature selec-
tion and feature extraction techniques in machine learning. In 2014 science and
information conference, pages 372–378. IEEE, 2014.

[175] Taeyoung Kim, Suntae Kim, Sooyong Park, and YoungBeom Park. Automatic recom-
mendation to appropriate log levels. Software: Practice and Experience, 50(3):189–
209, 2020.

243

[176] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient trans-
former. In International Conference on Learning Representations, 2020.

[177] Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. Evidence-based soft-
ware engineering and systematic reviews, volume 4. CRC press, 2015.

[178] Egambaram Kodhai and Selvadurai Kanmani. Method-level code clone detection
through lwh (light weight hybrid) approach. Journal of Software Engineering Re-
search and Development, 2(1):12, 2014.

[179] Philipp Koehn. Statistical machine translation. Cambridge University Press, 2009.

[180] Robert V Krejcie and Daryle W Morgan. Determining sample size for research
activities. Educational and psychological measurement, 30(3):607–610, 1970.

[181] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-based attacks.
In Proceedings of the 10th ACM conference on Computer and communications secu-
rity, pages 251–261, 2003.

[182] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion variance anal-
ysis. Journal of the American statistical Association, 47(260):583–621, 1952.

[183] Marcin Kubacki and Janusz Sosnowski. Holistic processing and exploring event logs.
In International Workshop on Software Engineering for Resilient Systems, pages
184–200. Springer, 2017.

[184] Sangeeta Lal, Neetu Sardana, and Ashish Sureka. Logoptplus: Learning to optimize
logging in catch and if programming constructs. In 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC), volume 1, pages 215–220. IEEE,
2016.

[185] Sangeeta Lal, Neetu Sardana, and Ashish Sureka. Logging analysis and prediction
in open source java project. In Optimizing Contemporary Application and Processes
in Open Source Software, pages 57–85. IGI Global, 2018.

[186] Sangeeta Lal and Ashish Sureka. Logopt: Static feature extraction from source code
for automated catch block logging prediction. In Proceedings of the 9th India Software
Engineering Conference, pages 151–155. ACM, 2016.

[187] George Lee, Jimmy Lin, Chuang Liu, Andrew Lorek, and Dmitriy Ryaboy. The
unified logging infrastructure for data analytics at twitter. Proceedings of the VLDB
Endowment, 5(12):1771–1780, 2012.

244

[188] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. LogGC: garbage collecting
audit log. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 1005–1016, 2013.

[189] Mouad Lemoudden and Bouabid El Ouahidi. Managing cloud-generated logs using
big data technologies. In 2015 International Conference on Wireless Networks and
Mobile Communications (WINCOM), pages 1–7. IEEE, 2015.

[190] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet physics doklady, (8):707–710, 1966.

[191] Heng Li, Tse-Hsun Peter Chen, Weiyi Shang, and Ahmed E Hassan. Studying
software logging using topic models. Empirical Software Engineering, pages 1–40,
2018.

[192] Heng Li, Weiyi Shang, Bram Adams, Mohammed Sayagh, and Ahmed E Hassan. A
qualitative study of the benefits and costs of logging from developers’ perspectives.
IEEE Transactions on Software Engineering, 2020.

[193] Heng Li, Weiyi Shang, and Ahmed E Hassan. Which log level should developers
choose for a new logging statement? Empirical Software Engineering, 22(4):1684–
1716, 2017.

[194] Heng Li, Weiyi Shang, Ying Zou, and Ahmed E Hassan. Towards just-in-time sug-
gestions for log changes. Empirical Software Engineering, 22(4):1831–1865, 2017.

[195] Ling Li and Hsuan-Tien Lin. Ordinal regression by extended binary classification.
2007.

[196] Shanshan Li, Xu Niu, Zhouyang Jia, Xiangke Liao, Ji Wang, and Tao Li. Guid-
ing log revisions by learning from software evolution history. Empirical Software
Engineering, pages 1–39, 2019.

[197] Shanshan Li, Xu Niu, Zhouyang Jia, Ji Wang, Haochen He, and Teng Wang. Log-
tracker: learning log revision behaviors proactively from software evolution history.
In Proceedings of the 26th Conference on Program Comprehension, pages 178–188,
2018.

[198] Tao Li, Yexi Jiang, Chunqiu Zeng, Bin Xia, Zheng Liu, Wubai Zhou, Xiaolong
Zhu, Wentao Wang, Liang Zhang, Jun Wu, et al. FLAP: An end-to-end event log
analysis platform for system management. In Proceedings of the 23rd ACM SIGKDD

245

International Conference on Knowledge Discovery and Data Mining, pages 1547–
1556, 2017.

[199] Tao Li, Wei Peng, Charles Perng, Sheng Ma, and Haixun Wang. An integrated
data-driven framework for computing system management. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(1):90–99, 2010.

[200] Zhenhao Li, Tse-Hsun Chen, and Weiyi Shang. Where shall we log? studying and
suggesting logging locations in code blocks. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 361–372. IEEE, 2020.

[201] Zhenhao Li, Tse-Hsun Chen, Jinqiu Yang, and Weiyi Shang. Dlfinder: Characterizing
and detecting duplicate logging code smells. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 152–163. IEEE, 2019.

[202] Zhenhao Li, Tse-Hsun Peter Chen, Jinqiu Yang, and Weiyi Shang. Studying duplicate
logging statements and their relationships with code clones. IEEE Transactions on
Software Engineering, 2021.

[203] Zhenhao Li, Heng Li, Tse-Hsun Peter Chen, and Weiyi Shang. DeepLV: Suggest-
ing Log Levels Using Ordinal Based Neural Networks. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 1461–1472. IEEE,
2021.

[204] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. Failure predic-
tion in ibm bluegene/l event logs. In Data Mining, 2007. ICDM 2007. Seventh IEEE
International Conference on, pages 583–588. IEEE, 2007.

[205] Meng-Hui Lim, Jian-Guang Lou, Hongyu Zhang, Qiang Fu, Andrew Beng Jin Teoh,
Qingwei Lin, Rui Ding, and Dongmei Zhang. Identifying recurrent and unknown
performance issues. In 2014 IEEE International Conference on Data Mining, pages
320–329. IEEE, 2014.

[206] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. Text
Summarization Branches Out, 2004.

[207] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. Log
clustering based problem identification for online service systems. In Proceedings of
the 38th International Conference on Software Engineering Companion, pages 102–
111. ACM, 2016.

246

[208] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R Lyu.
Logzip: Extracting Hidden Structures via Iterative Clustering for Log Compression.
In 2019 34th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pages 863–873. IEEE, 2019.

[209] Zhongxin Liu, Xin Xia, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shanping
Li. Which variables should i log? IEEE Transactions on Software Engineering, 2019.

[210] Steven Locke, Heng Li, Tse-Hsun Peter Chen, Weiyi Shang, and Wei Liu. LogAssist:
Assisting Log Analysis Through Log Summarization. IEEE Transactions on Software
Engineering, 2021.

[211] Dionysios Logothetis, Chris Trezzo, Kevin C Webb, and Kenneth Yocum. In-situ
mapreduce for log processing. 2011.

[212] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. Mining invari-
ants from console logs for system problem detection. In USENIX Annual Technical
Conference, pages 23–25, 2010.

[213] Pablo Loyola, Edison Marrese-Taylor, and Yutaka Matsuo. A neural architecture for
generating natural language descriptions from source code changes. arXiv preprint
arXiv:1704.04856, 2017.

[214] Siyang Lu, BingBing Rao, Xiang Wei, Byungchul Tak, Long Wang, and Liqiang
Wang. Log-based abnormal task detection and root cause analysis for spark. In
ICWS, pages 389–396. IEEE, 2017.

[215] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches
to attention-based neural machine translation. arXiv preprint arXiv:1508.04025,
2015.

[216] James MacQueen et al. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[217] Adetokunbo A.O. Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios. Clus-
tering event logs using iterative partitioning. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’09, pages 1255–1264, New York, NY, USA, 2009. ACM.

247

[218] Allen D. Malony and et al. Performance measurement intrusion and perturbation
analysis. IEEE Computer Architecture Letters, 3(04):433–450, 1992.

[219] José B Marino, Rafael E Banchs, Josep M Crego, Adrià de Gispert, Patrik Lambert,
José AR Fonollosa, and Marta R Costa-jussà. N-gram-based machine translation.
Computational linguistics, 32(4):527–549, 2006.

[220] Mark Marron. Log++ logging for a cloud-native world. In Proceedings of the 14th
ACM SIGPLAN International Symposium on Dynamic Languages, pages 25–36,
2018.

[221] Raffael Marty. Cloud application logging for forensics. In proceedings of the 2011
ACM Symposium on Applied Computing, pages 178–184, 2011.

[222] Ilias Mavridis and Helen Karatza. Performance evaluation of cloud-based log file
analysis with apache hadoop and apache spark. Journal of Systems and Software,
125:133–151, 2017.

[223] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engi-
neering, (4):308–320, 1976.

[224] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. LogAnomaly: Unsupervised De-
tection of Sequential and Quantitative Anomalies in Unstructured Logs. In IJCAI,
volume 19, pages 4739–4745, 2019.

[225] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and Rai-
mondas Sasnauskas. A search-based approach for accurate identification of log mes-
sage formats. In 2018 IEEE/ACM 26th International Conference on Program Com-
prehension (ICPC), pages 167–16710. IEEE, 2018.

[226] Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael Rung-Tsong Lyu, and Hua Cai.
Toward fine-grained, unsupervised, scalable performance diagnosis for production
cloud computing systems. IEEE Transactions on Parallel and Distributed Systems,
24(6):1245–1255, 2013.

[227] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[228] Andriy Miranskyy, Abdelwahab Hamou-Lhadj, Enzo Cialini, and Alf Larsson.
Operational-log analysis for big data systems: Challenges and solutions. IEEE Soft-
ware, 33(2):52–59, 2016.

248

[229] Tsuyoshi Mizouchi, Kazumasa Shimari, Takashi Ishio, and Katsuro Inoue. Padla: a
dynamic log level adapter using online phase detection. In Proceedings of the 27th
International Conference on Program Comprehension, pages 135–138. IEEE Press,
2019.

[230] Masayoshi Mizutani. Incremental mining of system log format. In 2013 IEEE Inter-
national Conference on Services Computing, pages 595–602. IEEE, 2013.

[231] Mordechai Mushkin and Israel Bar-David. Capacity and coding for the Gilbert-Elliott
channels. IEEE Transactions on Information Theory, 35(6):1277–1290, 1989.

[232] Meiyappan Nagappan and Mladen A Vouk. Abstracting log lines to log event types
for mining software system logs. In 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), pages 114–117. IEEE, 2010.

[233] Meiyappan Nagappan, Kesheng Wu, and Mladen A Vouk. Efficiently extracting
operational profiles from execution logs using suffix arrays. In 2009 20th International
Symposium on Software Reliability Engineering, pages 41–50. IEEE, 2009.

[234] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured comparative anal-
ysis of systems logs to diagnose performance problems. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation, pages 26–
26. USENIX Association, 2012.

[235] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In ICML, 2010.

[236] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta, and Subhrajit
Bhattacharya. Anomaly detection using program control flow graph mining from
execution logs. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 215–224, 2016.

[237] Bianca Napoleão, Katia Romero Felizardo, Érica Ferreira de Souza, and Nan-
damudi L Vijaykumar. Practical similarities and differences between systematic lit-
erature reviews and systematic mappings: a tertiary study. In SEKE, pages 85–90,
2017.

[238] Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and Odej
Kao. Self-supervised log parsing. arXiv preprint arXiv:2003.07905, 2020.

249

[239] Andrew Y Ng et al. Preventing” overfitting” of cross-validation data. In ICML,
volume 97, pages 245–253. Citeseer, 1997.

[240] David Ogle, Heather Kreger, Abdi Salahshour, Jason Cornpropst, Eric Labadie,
Mandy Chessell, Bill Horn, John Gerken, James Schoech, and Mike Wamboldt.
Canonical situation data format: The common base event v1. 0.1. International
Business Machines Corporation, 2004.

[241] Adam Oliner and Jon Stearley. What supercomputers say: A study of five system
logs. In Dependable Systems and Networks, 2007. DSN’07. 37th Annual IEEE/IFIP
International Conference on, pages 575–584. IEEE, 2007.

[242] Adam J Oliner and Alex Aiken. Online detection of multi-component interactions in
production systems. In 2011 IEEE/IFIP 41st International Conference on Depend-
able Systems & Networks (DSN), pages 49–60. IEEE, 2011.

[243] Adam J Oliner, Alex Aiken, and Jon Stearley. Alert detection in system logs. In
2008 Eighth IEEE International Conference on Data Mining, pages 959–964. IEEE,
2008.

[244] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and Sumayah Alrwais. Detection
of early-stage enterprise infection by mining large-scale log data. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, pages
45–56. IEEE, 2015.

[245] Andrew J Page, Thomas M Keane, and Thomas J Naughton. Multi-heuristic dy-
namic task allocation using genetic algorithms in a heterogeneous distributed system.
JPDC, 70(7):758–766, 2010.

[246] Nikhil R Pal and Sankar K Pal. Entropy: A new definition and its applications.
IEEE transactions on systems, man, and cybernetics, 21(5):1260–1270, 1991.

[247] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th annual
meeting on association for computational linguistics, pages 311–318. Association for
Computational Linguistics, 2002.

[248] Sungheon Park and Nojun Kwak. Analysis on the dropout effect in convolutional
neural networks. In Asian conference on computer vision, pages 189–204. Springer,
2016.

250

[249] Ronald K Pearson, Yrjö Neuvo, Jaakko Astola, and Moncef Gabbouj. Generalized
hampel filters. EURASIP Journal on Advances in Signal Processing, 2016(1):1–18,
2016.

[250] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo. Industry practices and event
logging: Assessment of a critical software development process. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, volume 2, pages 169–
178, May 2015.

[251] Antonio Pecchia and Stefano Russo. Detection of software failures through event logs:
An experimental study. In 2012 IEEE 23rd International Symposium on Software
Reliability Engineering, pages 31–40. IEEE, 2012.

[252] Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[253] Chang-Shing Perng, David Thoenen, Genady Grabarnik, Sheng Ma, and Joseph
Hellerstein. Data-driven validation, completion and construction of event relationship
networks. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 729–734, 2003.

[254] Panagiotis Petridis, Anastasios Gounaris, and Jordi Torres. Spark parameter tuning
via trial-and-error. In INNS Conference on Big Data, pages 226–237. Springer, 2016.

[255] Thomas Plötz and Gernot A Fink. Markov models for offline handwriting recognition:
a survey. International Journal on Document Analysis and Recognition (IJDAR),
12(4):269, 2009.

[256] David MW Powers. Applications and explanations of zipf’s law. In New methods in
language processing and computational natural language learning, 1998.

[257] David MW Powers. Evaluation: from precision, recall and F-measure to ROC, in-
formedness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.

[258] Tongqing Qiu, Zihui Ge, Dan Pei, Jia Wang, and Jun Xu. What happened in my
network: mining network events from router syslogs. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, pages 472–484, 2010.

[259] Ariel Rabkin, Wei Xu, Avani Wildani, Armando Fox, David A Patterson, and
Randy H Katz. A graphical representation for identifier structure in logs. In SLAML,
2010.

251

[260] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation func-
tions. arXiv preprint arXiv:1710.05941, 2017.

[261] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software clone detection: A
systematic review. Information and Software Technology, 55(7):1165–1199, 2013.

[262] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statis-
tical language models. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 419–428, 2014.

[263] Eric Sven Ristad and Peter N Yianilos. Learning string-edit distance. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(5):522–532, 1998.

[264] Fanny Rivera-Ortiz and Liliana Pasquale. Towards automated logging for forensic-
ready software systems. In 2019 IEEE 27th International Requirements Engineering
Conference Workshops (REW), pages 157–163. IEEE, 2019.

[265] Guoping Rong, Yangchen Xu, Shenghui Gu, He Zhang, and Dong Shao. Can You
Capture Information As You Intend To? A Case Study on Logging Practice in
Industry. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 12–22. IEEE, 2020.

[266] Chanchal K Roy, Minhaz F Zibran, and Rainer Koschke. The vision of software clone
management: Past, present, and future (keynote paper). In 2014 Software Evolu-
tion Week-IEEE Conference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), pages 18–33. IEEE, 2014.

[267] Chanchal Kumar Roy and James R Cordy. A survey on software clone detection
research. 2007.

[268] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for
abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

[269] Barbara Russo, Giancarlo Succi, and Witold Pedrycz. Mining system logs to learn
error predictors: a case study of a telemetry system. Empirical Software Engineering,
20(4):879–927, 2015.

[270] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V
Lopes. Oreo: Detection of clones in the twilight zone. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 354–365, 2018.

252

[271] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. Sourcerercc: scaling code clone detection to big-code. In Software Engineering
(ICSE), 2016 IEEE/ACM 38th International Conference on, pages 1157–1168. IEEE,
2016.

[272] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure prediction
methods. ACM Computing Surveys (CSUR), 42(3):10, 2010.

[273] Felix Salfner, Steffen Tschirpke, and Miroslaw Malek. Comprehensive logfiles for
autonomic systems. In 18th International Parallel and Distributed Processing Sym-
posium, 2004. Proceedings., page 211. IEEE, 2004.

[274] Mohammed Salman, Brian Welch, David Raymond, Randy Marchany, and Joseph
Tront. Designing phelkstat: Big data analytics for system event logs. HICSS Sym-
posium on Cybersecurity Big Data Analytics, 2017.

[275] Ioannis Samoladas, Georgios Gousios, Diomidis Spinellis, and Ioannis Stamelos. The
sqo-oss quality model: measurement based open source software evaluation. In IFIP
International Conference on Open Source Systems, pages 237–248. Springer, 2008.

[276] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. arXiv preprint arXiv:1508.07909, 2015.

[277] Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Michael W Godfrey,
Mohamed Nasser, and Parminder Flora. An exploratory study of the evolution of
communicated information about the execution of large software systems. Journal
of Software: Evolution and Process, 26(1):3–26, 2014.

[278] Weiyi Shang, Zhen Ming Jiang, Hadi Hemmati, Brain Adams, Ahmed E Hassan,
and Patrick Martin. Assisting developers of big data analytics applications when
deploying on hadoop clouds. In 2013 35th International Conference on Software
Engineering (ICSE), pages 402–411. IEEE, 2013.

[279] Weiyi Shang, Meiyappan Nagappan, and Ahmed E Hassan. Studying the relationship
between logging characteristics and the code quality of platform software. Empirical
Software Engineering, 20(1):1–27, 2015.

[280] Weiyi Shang, Meiyappan Nagappan, Ahmed E Hassan, and Zhen Ming Jiang. Un-
derstanding log lines using development knowledge. In Software Maintenance and
Evolution (ICSME), 2014 IEEE International Conference on, pages 21–30. IEEE,
2014.

253

[281] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMO-
BILE mobile computing and communications review, 5(1):3–55, 2001.

[282] Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gianluca Stringhini. Tire-
sias: Predicting security events through deep learning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pages 592–
605, 2018.

[283] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold
Reinwald, and Fatma Özcan. Clash of the titans: Mapreduce vs. spark for large
scale data analytics. Proceedings of the VLDB Endowment, 8(13):2110–2121, 2015.

[284] Keiichi Shima. Length matters: Clustering system log messages using length of
words. arXiv preprint arXiv:1611.03213, 2016.

[285] Donghwan Shin, Domenico Bianculli, and Lionel Briand. Effective removal of
operational log messages: an application to model inference. arXiv preprint
arXiv:2004.07194, 2020.

[286] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a large-scale
distributed systems tracing infrastructure. 2010.

[287] Przemys law Skibiński and Jakub Swacha. Fast and efficient log file compression. In
proceedings of 11th east-European conference on advances in databases and informa-
tion systems (ADBIS), pages 330–342, 2007.

[288] Niyazi Sorkunlu, Varun Chandola, and Abani Patra. Tracking system behavior from
resource usage data. In 2017 IEEE International Conference on Cluster Computing
(CLUSTER), pages 410–418. IEEE, 2017.

[289] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[290] Xiaoxiao Sun, Wenjie Hou, Dongjin Yu, Jiaojiao Wang, and Jianliang Pan. Filtering
out noise logs for process modelling based on event dependency. In 2019 IEEE
International Conference on Web Services (ICWS), pages 388–392. IEEE, 2019.

[291] Mark D Syer, Zhen Ming Jiang, Meiyappan Nagappan, Ahmed E Hassan, Mohamed
Nasser, and Parminder Flora. Leveraging performance counters and execution logs to

254

diagnose memory-related performance issues. In 2013 IEEE international conference
on software maintenance, pages 110–119. IEEE, 2013.

[292] Narate Taerat, Jim Brandt, Ann Gentile, Matthew Wong, and Chokchai Leangsuk-
sun. Baler: deterministic, lossless log message clustering tool. Computer Science-
Research and Development, 26(3):285–295, 2011.

[293] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /* iComment: Bugs
or bad comments?*. In Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, pages 145–158, 2007.

[294] Liang Tang, Tao Li, and Chang-Shing Perng. Logsig: Generating system events
from raw textual logs. In Proceedings of the 20th ACM international conference on
Information and knowledge management, pages 785–794. ACM, 2011.

[295] Liang Tang, Tao Li, and Chang-Shing Perng. LogSig: Generating System Events
from Raw Textual Logs. In Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, CIKM ’11, pages 785–794, New York,
NY, USA, 2011. ACM.

[296] Ran Tang and Ying Zou. An approach for mining web service composition patterns
from execution logs. In 2010 12th IEEE International Symposium on Web Systems
Evolution (WSE), pages 53–62. IEEE, 2010.

[297] JavaParser Development Team. Java parser. https://github.com/javaparser/

javaparser, 2019.

[298] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. On the localness of software.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 269–280, 2014.

[299] Risto Vaarandi. A data clustering algorithm for mining patterns from event logs.
In Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM
2003)(IEEE Cat. No. 03EX764), pages 119–126. IEEE, 2003.

[300] Risto Vaarandi and Mauno Pihelgas. Logcluster-A data clustering and pattern min-
ing algorithm for event logs. In Network and Service Management (CNSM), 2015
11th International Conference on, pages 1–7. IEEE, 2015.

[301] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

255

https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser

[302] Haoye Wang, Xin Xia, David Lo, Qiang He, Xinyu Wang, and John Grundy. Context-
aware retrieval-based deep commit message generation. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 30(4):1–30, 2021.

[303] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. Detecting code clones with graph
neural network and flow-augmented abstract syntax tree. In 2020 IEEE 27th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 261–271. IEEE, 2020.

[304] Wenshuo Wang and Ding Zhao. Extracting traffic primitives directly from natural-
istically logged data for self-driving applications. IEEE Robotics and Automation
Letters, 3(2):1223–1229, 2018.

[305] Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. Retrieve and refine: exemplar-
based neural comment generation. In 2020 35th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 349–360. IEEE, 2020.

[306] Bernard L Welch. The generalization ofstudent’s’ problem when several different
population variances are involved. Biometrika, 34(1/2):28–35, 1947.

[307] Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshy-
vanyk. Toward deep learning software repositories. In 2015 IEEE/ACM 12th Work-
ing Conference on Mining Software Repositories, pages 334–345. IEEE, 2015.

[308] Claes Wohlin. Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In Proceedings of the 18th international conference
on evaluation and assessment in software engineering, pages 1–10, 2014.

[309] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and An-
ders Wesslén. Experimentation in software engineering. Springer Science & Business
Media, 2012.

[310] Rongxin Wu, Xiao Xiao, Shing-Chi Cheung, Hongyu Zhang, and Charles Zhang.
Casper: An efficient approach to call trace collection. ACM SIGPLAN Notices,
51(1):678–690, 2016.

[311] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. Detect-
ing large-scale system problems by mining console logs. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, pages 117–132. ACM,
2009.

256

[312] Wei Xu and Alex Rudnicky. Can artificial neural networks learn language models?
In Sixth international conference on spoken language processing, 2000.

[313] Xiwei Xu, Ingo Weber, Len Bass, Liming Zhu, Hiroshi Wada, and Fei Teng. Detecting
cloud provisioning errors using an annotated process model. In Proceedings of the 8th
Workshop on Middleware for Next Generation Internet Computing, page 5. ACM,
2013.

[314] Xiwei Xu, Liming Zhu, Ingo Weber, Len Bass, and Daniel Sun. POD-Diagnosis:
Error diagnosis of sporadic operations on cloud applications. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, pages
252–263. IEEE, 2014.

[315] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong,
and Wenbin Zhang. Semi-supervised log-based anomaly detection via probabilistic
label estimation. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pages 1448–1460. IEEE, 2021.

[316] Stephen Yang, Seo Jin Park, and John Ousterhout. Nanolog: a nanosecond scale
logging system. In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC}
18), pages 335–350, 2018.

[317] Kundi Yao, Guilherme B de Pádua, Weiyi Shang, Steve Sporea, Andrei Toma, and
Sarah Sajedi. Log4Perf: Suggesting Logging Locations for Web-based Systems’ Per-
formance Monitoring. In Proceedings of the 2018 ACM/SPEC International Confer-
ence on Performance Engineering, pages 127–138. ACM, 2018.

[318] Kundi Yao, Guilherme B de Padua, Weiyi Shang, Catalin Sporea, Andrei Toma, and
Sarah Sajedi. Log4perf: suggesting and updating logging locations for web-based
systems’ performance monitoring. Empirical Software Engineering, 25(1):488–531,
2020.

[319] Kundi Yao, Heng Li, Weiyi Shang, and Ahmed E Hassan. A study of the performance
of general compressors on log files. Empirical Software Engineering, pages 3043–3085,
2020.

[320] Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and Qianxiang Wang. Neural de-
tection of semantic code clones via tree-based convolution. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC), pages 70–80. IEEE,
2019.

257

[321] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and Guofei Jiang.
Cloudseer: Workflow monitoring of cloud infrastructures via interleaved logs.
44(2):489–502, 2016.

[322] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U Jain, and Michael Stumm. Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-intensive systems.
In 11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14), pages 249–265, 2014.

[323] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. Sherlog: error diagnosis by connecting clues from run-time logs. In ACM
SIGARCH computer architecture news, volume 38, pages 143–154. ACM, 2010.

[324] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M Lee, Xiaoming Tang,
Yuanyuan Zhou, and Stefan Savage. Be conservative: enhancing failure diagnosis
with proactive logging. In Presented as part of the 10th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 12), pages 293–306, 2012.

[325] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging practices
in open-source software. In Proceedings of the 34th International Conference on
Software Engineering, pages 102–112. IEEE Press, 2012.

[326] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Improv-
ing software diagnosability via log enhancement. ACM Transactions on Computer
Systems (TOCS), 30(1):4, 2012.

[327] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In
Presented as part of the 9th {USENIX} ({NSDI} 12), pages 15–28, 2012.

[328] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion Stoica,
et al. Spark: Cluster computing with working sets.

[329] Lei Zeng, Yang Xiao, and Hui Chen. Linux auditing: overhead and adaptation. In
2015 IEEE International Conference on Communications (ICC), pages 7168–7173.
IEEE, 2015.

258

[330] Yi Zeng, Jinfu Chen, Weiyi Shang, and Tse-Hsun Peter Chen. Studying the char-
acteristics of logging practices in mobile apps: a case study on f-droid. Empirical
Software Engineering, pages 1–41, 2019.

[331] ChengXiang Zhai and Sean Massung. Text data management and analysis: a practi-
cal introduction to information retrieval and text mining. Association for Computing
Machinery and Morgan & Claypool, 2016.

[332] Bo Zhang, Hongyu Zhang, Pablo Moscato, and Aozhong Zhang. Anomaly detection
via mining numerical workflow relations from logs. In 2020 International Symposium
on Reliable Distributed Systems (SRDS), pages 195–204. IEEE, 2020.

[333] Cheng Zhang, Zhenyu Guo, Ming Wu, Longwen Lu, Yu Fan, Jianjun Zhao, and
Zheng Zhang. Autolog: facing log redundancy and insufficiency. In Proceedings of
the Second Asia-Pacific Workshop on Systems, page 10. ACM, 2011.

[334] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechrinis,
and Hui Zhang. Automated it system failure prediction: A deep learning approach.
In 2016 IEEE International Conference on Big Data (Big Data), pages 1291–1300.
IEEE, 2016.

[335] Min Zhang, Tracy Hall, and Nathan Baddoo. Code bad smells: a review of current
knowledge. Journal of Software Maintenance and Evolution: research and practice,
23(3):179–202, 2011.

[336] Steve Zhang, Ira Cohen, Moises Goldszmidt, Julie Symons, and Armando Fox. En-
sembles of models for automated diagnosis of system performance problems. In 2005
International Conference on Dependable Systems and Networks (DSN’05), pages
644–653. IEEE, 2005.

[337] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang, Chunyu
Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. Robust log-based anomaly detection on
unstable log data. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 807–817, 2019.

[338] Yongle Zhang, Serguei Makarov, Xiang Ren, David Lion, and Ding Yuan. Pensieve:
Non-intrusive failure reproduction for distributed systems using the event chaining
approach. In Proceedings of the 26th Symposium on Operating Systems Principles,
pages 19–33, 2017.

259

[339] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan
Zhou. Log20: Fully automated optimal placement of log printing statements under
specified overhead threshold. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 565–581, New York, NY, USA, 2017. ACM.

[340] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. Non-intrusive
performance profiling for entire software stacks based on the flow reconstruction
principle. In 12th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16), pages 603–618, 2016.

[341] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding Yuan,
and Michael Stumm. lprof: A non-intrusive request flow profiler for distributed
systems. In 11th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 14), pages 629–644, 2014.

[342] Chen Zhi, Jianwei Yin, Shuiguang Deng, Maoxin Ye, Min Fu, and Tao Xie. An ex-
ploratory study of logging configuration practice in java. In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 459–469. IEEE,
2019.

[343] Pengpeng Zhou, Yang Wang, Zhenyu Li, Xin Wang, Gareth Tyson, and Gaogang Xie.
LogSayer: Log Pattern-driven Cloud Component Anomaly Diagnosis with Machine
Learning. In 2020 IEEE/ACM 28th International Symposium on Quality of Service
(IWQoS), pages 1–10. IEEE, 2020.

[344] Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang, Ming Zhou, and Tiejun Zhao.
Neural document summarization by jointly learning to score and select sentences.
arXiv preprint arXiv:1807.02305, 2018.

[345] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and
Chuan He. Latent error prediction and fault localization for microservice applications
by learning from system trace logs. In Proceedings of FSE/ESCE, pages 683–694,
2019.

[346] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R Lyu, and Dongmei
Zhang. Learning to log: Helping developers make informed logging decisions. In
Proceedings of the 37th International Conference on Software Engineering-Volume 1,
pages 415–425. IEEE Press, 2015.

[347] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, and Michael R
Lyu. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM 41st

260

International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 121–130. IEEE, 2019.

[348] George Kingsley Zipf. Human behavior and the principle of least effort: An intro-
duction to human ecology. Ravenio Books, 2016.

[349] De-Qing Zou, Hao Qin, and Hai Jin. Uilog: Improving log-based fault diagnosis by
log analysis. Journal of computer science and technology, 31(5):1038–1052, 2016.

261

Chapter 11

Summary of Publications

This research has contributed to the following publications which are either, published,
accepted, or under review. I was the Principal Investigator and first author of all co-
authored contributions.

� The systematic literature review that I have conducted in Chapter 2 is in the second
review phase in IEEE Journal of Transactions on Software Engineering [125].

� My work in Chapter 3 for clone-based log prediction has been accepted in 2021 36th
IEEE/ACM International Conference on Automated Software Engineering, Doctoral
Symposium (ASE) [122].

� My research on log location prediction in Chapter 5 has been published in 2020 35th
ACM/SIGAPP Symposium On Applied Computing (ACM SAC) [123].

� My work on log description prediction in Chapter 6 is under review [124].

� My research in Chapter 8 for NLP attributes of log files is published in 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR) [126].

� My study in Chapter 7 on logging cost and benefit is published in 2021 The 40th
International Symposium on Reliable Distributed Systems (SRDS) [127].

262

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Research Motivation
	Thesis Outline
	Chapter 2: Literature Review
	Chapter 3: Research Plan for Log Prediction
	Chapter 4: Clone Detection Background
	Chapter 5: Log Location Prediction
	Chapter 6: Log Content Prediction
	Chapter 7: Cost and Gain from Logs
	Chapter 8: Naturalness of Logs
	Chapter 9: Natural Language Models for Log Parsing
	Chapter 10: Conclusions and Future Work
	Chapter 11: Summary of Publications

	Contributions
	Closing Remarks

	A Comprehensive Survey of Logging in Software: From Logging Statements Automation to Log Mining and Analysis
	Introduction
	Terminology
	Research Questions
	Survey Organization

	Log statements and Log Files
	Transaction Logs
	Log Example
	Program Traces vs. Logs

	RQ1: How the prior logging research can be categorized to different topics?
	Survey Methodology
	Survey Scope

	RQ2: What are the publication trends based on venues, topics, and years?
	Venue Trends
	Topic Trends
	Year Trends
	Logging Challenges

	RQ3: How the research in each topic can be systematically compared with their approaches, pros and cons?
	Category A: Logging Cost and Benefit Analysis
	Mining Log Printing Statements
	Category E: Log Statement Automation
	Mining Log Files
	Category L: Emerging Applications of Logs

	RQ4: Challenges and Opportunities for Future Work
	Category A: Logging Cost
	Categories B, C, D: Logging Practices, progression, and Issues
	Category E: Log Printing Statement Automation
	Category F: Log Maintenance and Management
	Categories H, I, J, K: Automated Log Analysis Applications
	Category L - Emerging Logging Research

	Conclusions
	List of Papers

	Leveraging Code Clones and Natural Language Processing for Log Statement Prediction
	Introduction
	Motivating Example
	Related Work
	Research Approach
	RO1: Demonstrate whether code clones are consistent in their logging statements and their log verbosity level.
	RO2: Propose an approach to utilize code clones for log statement location prediction.
	RO3: Provide logging description suggestions based on code clones and NLP models.
	RO4: Utilize code clones for predicting other details of log statements such as log verbosity level and variables.

	Discussion
	Summary of Contributions
	Conclusions and Future Work

	Code Clones Background
	Introduction
	Source Code Clones
	Approach
	Closing Remarks

	Logging Statements Prediction Based on Source Code Clones
	Introduction
	Related Work
	Empirical Analysis of Log Statements
	Logging Statement Prediction
	Code Clone Detection

	Definitions, Background, and Approach
	Definitions
	Source Code Feature Formulation

	Study methodology
	Toolchain
	Algorithm
	Research Objectives on Clone Detection for Logging Statement Prediction

	Experimental Study
	Method-level clone detection and logging prediction
	Systems under study
	RO1: demonstrate that code clones are consistent in their logging statements and their severity level.
	RO2: extract the categories of code clones with logging statements.
	RO3: apply method level code clone detection for logging prediction.
	Log Prediction
	A Clone Detection Shortfall

	Log-Aware Code Clone Detector (LACC)
	Threats to validity
	External Validity
	Internal Validity

	Closing Remarks

	Borrowing from Similar Code: A Deep Learning NLP-Based Approach for Log Statement Automation
	Introduction
	Motivation and Methodology
	Motivation
	Code Clones
	Why Leveraging Code Clones for Log Prediction?
	Method-Level Log Prediction Rationale
	Practical Scenario
	Research Questions

	 RQ1: How code clones can be used for automated log location prediction?
	Motivation and Approach
	Findings
	Log-Aware Feature Calculation Illustrative Example
	Approach Significance

	RQ2: how the available context from clone pairs can be borrowed for log description prediction?
	Motivation
	NLP for LSD Prediction - Theory
	Methodology
	Toolchain
	Implementation
	LSD Prediction Algorithm and Steps

	RQ3: how the accuracy of both log location and description prediction can be evaluated and compared with prior work?
	Systems Under Study
	RQ3.I: LACCP Evaluation
	RQ3.II: LSD Evaluation

	Case Study
	Discussion
	Log Verbosity Level (LVL) and Variables (VAR)
	Practicality in Software Engineering

	Threats to validity
	External Threats
	Internal Threats

	Related Work
	Log Prediction
	Code Clone Detection
	NLP in Software Systems

	Conclusions and Future Directions
	Repository Explained

	What Distributed Systems Say: A Study of Seven Spark Application Logs
	Introduction and Motivation
	Approach and Setup
	RQ1: Cost of Logging
	Computation time (CT)
	Storage overhead (SO)
	RAM Disk

	RQ2: Log Effectiveness
	RQ3: Failure Assessment
	Compute Node Failure
	Storage Failure
	Communication Interference Modeling
	Discussion

	Case study
	Related work
	Closing Remarks

	On the Naturalness and Localness of Software Logs
	Introduction
	Background and Motivation
	Natural Language Processing for Logs
	Naturalness of Logs
	RQ1: does a natural repetitiveness and regularity exist in log files?
	RQ2: is the regularity that the statistical language model captures merely log-nature specific, or is it also project-specific?=-1
	RQ3: how does Zipf’s law capture the repetitiveness of high-rank tokens in log files?

	Localness of Logs
	RQ4: are log n-grams endemic to their projects?
	RQ5: are log n-grams specific to their projects?

	RQ6: Log File Anomaly Detection
	Hampel Filter for Threshold Selection
	Evaluation
	Results

	Related Work
	Threats to Validity and Discussion
	Closing Remarks

	LPERT: Log Parsing with BERT
	Introduction
	Contributions

	Background
	Approach
	Pre-processing
	Tokenization
	Word Embedding and Axial Positional Embedding
	Multi-Head Attention and Feed Forward

	Evaluation
	Evaluation Dataset
	Evaluation Metrics

	Discussion
	Flexibility
	Tokenization

	Related Work
	Log Parsing
	NLP for Software Engineering Tasks

	Conclusion and Future Directions

	Conclusions and Future Work
	Summary of Findings
	Part II
	Part III
	Part IV
	Part V

	Avenues for Future Work
	Chapter 2 - Survey of Logging Research
	Chapters 3, 4, 5, and 6 - Log Statement Prediction
	Chapter 7 - Logging Cost and Benefit
	Chapter 8 - Naturalness and Localness of Logs
	Chapter 9 - LPERT

	References
	Summary of Publications

