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Abstract

As we progress further into the era of precision cosmology, new avenues to test our
fundamental models of the Universe are opening up. This PhD thesis is concerned with
the development and understanding of a technique known as kinetic Sunyaev-Zel’dovich
(kSZ) velocity reconstruction, which aims to extract information about the Universe on
the largest accessible scales using measurements of the Cosmic Microwave Background
(CMB) anisotropies sourced by the kSZ effect and data from galaxy redshift surveys. kSZ
velocity reconstruction estimates the remote CMB dipole, i.e. the ` = 1 multipole moment
of the observed CMB sky as seen by observers on our past lightcone. This observable
probes cosmological perturbations on scales of several Gpc, and thus has the potential
to be a valuable source of information on the fundamental early Universe phenomena
that leaves imprints on such scales. Preliminary forecasts from the foundational literature
on kSZ velocity reconstruction indicate that high signal to noise reconstructions of the
remote dipole will be possible in the context of next generation CMB experiments and
galaxy surveys. The goal of this thesis is to further develop the technical details of the
technique and provide motivation for its use as a tool to probe physics on ultra-large
scales. Chapter 1 elaborates on the motivation behind this thesis and provides a review of
the key material necessary to understand kSZ velocity reconstruction. Chapter 2 presents
an extended formalism for kSZ velocity reconstruction, which describes new sources of
noise and bias and incorporates more realistic experimental conditions. Forecasts for the
reconstruction of the remote dipole are presented in the same chapter, and these show
that high signal to noise is still achievable using the new estimators. Chapter 3 presents
the first suite of N-body simulations of remote dipole reconstruction on our past lightcone,
which implement a novel methodology to treat the wide range of scales involved in kSZ
velocity reconstruction (tens of Mpc to tens of Gpc). These simulations were used to
test the robustness of the reconstruction technique against the effects of gravitational non-
linearities, redshift space distortions, and CMB lensing. Additionally, these simulations
were used to demonstrate the relevance of large scale contributions to the remote dipole that
are not captured by other approaches to kSZ velocity reconstruction. Chapter 4 presents an
analysis of parameter constraints on CMB anomalies models, aimed to demonstrate that
the reconstructed remote CMB dipole and the reconstructed remote CMB quadrupole
(obtained using a similar technique to kSZ velocity reconstruction) can help us go beyond
the constraints achievable with traditional probes of the anomalies like the primary CMB
temperature, primary CMB polarization, and large-scale galaxy distribution.
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Chapter 1

Introduction and review

1.1 Motivation

Cosmology, the field of research that studies the evolution and structure of the Universe, has
gone though an unprecedented period of growth in the last several decades as a consequence
of our ability to observe the cosmos with increasing amount of detail. The collection of
observations we have gathered so far, especially those from the Planck satellite mission
measuring the Cosmic Microwave Background radiation (CMB) [4], has lead us to establish
a baseline or standard model of Cosmology: Lambda Cold Dark Matter or ΛCDM for
short. Armed with only six parameters, ΛCDM offers the most consistent explanation for
current observational data, including statistical properties of the CMB sky, large-scale
distribution of galaxies and expansion history of the Universe. The words baseline and
current are intentionally highlighted; despite its success, ΛCDM is just a model and, if
history is any indication, it will face some shortcomings under the scrutiny of more precise
data.

There already exist some indications that the standard model might be incomplete or
not fully consistent with observations. On large angular scales, the CMB sky presents
a series of anomalous features that could indicate deviations from the standard slow roll
inflation and violations to statistical isotropy on large scales [5]. Puzzling as well is the
tension between measurements of the Hubble constant derived from CMB observations and
those derived from distance measurement of standard candle supernovae [6]. The weight
and significance of these discrepancies is still under debate. The CMB anomalies are only
marginally significant in the statistical sense due to cosmic variance on large angular scales,
and current analysis has not been conclusive enough to point towards a particular early
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Universe model or mechanism for isotropy breaking that could explain these anomalies [7].
Regarding the Hubble tension, it is possible that unaccounted for large-scale structures or
multiple systematic errors could be behind the discrepancy. Still, many proposals for new
physics both at late and early time have been put forward as an alternative explanation
[8]. The belief that ΛCDM is an incomplete model of the Universe also finds support on
the theory front. Two crucial components of the model, dark matter and dark energy in
the form of a cosmological constant, are far from being completely understood. It is also
a possibility that the introduction of these dark substances is an indication that General
Relativity, a central piece of ΛCDM, is not entirely correct and it fails to describe the
effects of gravity on cosmological scales.

In order to decidedly identify the shortcomings of the ΛCDM model, larger and more
detailed datasets are needed. Fortunately, we find ourselves on the brink of an era of
promising experiments in Cosmology. Tens of millions to billions of galaxies will be ob-
served with instruments like the Dark Energy Spectroscopic Instrument (DESI) [9] , the
Vera C. Rubin Observatory (Rubin) [10], and the EUCLID satellite [11]. The 3-dimensional
maps constructed in these experiments will allow us to further constraint the physics of
dark energy and modified gravity, study the nature of massive neutrinos, better understand
the clustering properties of dark matter and look for imprints of inflation on large angular
scales. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) [12] and the
Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) [13, 14] radio telescopes
will measure the properties of large-scale structures and dark energy not by observing
individual galaxies, but by mapping the large-scale 21 cm neutral hydrogen emission, a
technique known as Hydrogen Intensity Mapping. This technique measures linear pertur-
bation modes without the need of measuring individual galaxy redshifts, which will result
in deeper and wider survey volumes. A new frontier of high precision CMB experiments
is also in our immediate future. The Simons Observatory collaboration (SO) [15] and the
fourth-generation ground-based CMB experiment (CMB-S4) [16] will measure the tem-
perature and polarization of the CMB to new levels of sensitivity and pursue a series of
exciting science goals: to search for gravitational wave signatures from inflation in the B-
mode polarization of the CMB; to improve the reconstruction of the CMB lensing potential
(a powerful probe of the matter distribution between us and the last scattering survey),
which will allow for better constraints on primordial gravitational waves from delensing,
neutrino masses, dark energy and high redshift astrophysics; to further characterize the pri-
mordial spectrum of scalar perturbations and achieve stronger constraints on inflation from
the CMB bispectrum; to provide new measurements of the Hubble constant H0 at higher
statistical significance than previous probes and using multiple observables (temperature
and E-mode polarization auto and cross-spectra) for a strong check of consistency; and to
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measure the CMB anisotropies arising from the thermal and kinetic Sunyaev-Zel’dovich
effects to high levels of sensitivity.

Each one of these experiments by themselves will provide rich data to further test the
validity of ΛCDM. Still, much more information is to be gained if we adopt a multi-tracer
approach to data analysis by combining the observations from different experiments. For
example, the reconstructed lensing potential from SO and the galaxy maps from Rubin can
be combined to determine the galaxy bias on large scales [15] (essentially, the difference
in clustering properties of galaxies and dark matter). The scale dependence of this bias
can reveal the presence of local primordial non-Gaussianities, a signature of multi-field
inflation models. When it comes to studying large-scale properties of the Universe, multi-
tracer analysis offers a powerful mechanism to surpass the limitations of cosmic variance
present in single-probe analysis: sample variance cancellation [17]. For example, given two
biased tracers of the same underlying dark matter perturbation, a multi-tracer analysis
yields better constraints on the relative bias by directly comparing modes compared to
what is achievable from constraining each bias independently. Apart from the benefits of
sample variance cancellation, combining multiple observables that probe perturbations on
ultra-large scales can serve as a consistency check for the existence of features like the CMB
anomalies; if the anomalies are truly of primordial origin, counterpart imprints should be
present in other probes.

Finding new observables that can inform us of the largest accessible scales will certainly
increase the benefits of multi-tracer analysis. An interesting approach to do this, which
doesn’t rely on direct observations of long-range patterns in wide cosmic volumes or angles
on the sky, is to reconstruct large-scale fields using statistical properties of small-
scale fields. The canonical example of this approach is the reconstruction of the CMB
lensing potential: the statistical properties of the small-angle temperature anisotropies
generated by gravitational lensing can be used to infer the large-angle features of the lensing
potential. This thesis is concerned with the study and exploration of a similar technique,
here referred to as kinetic Sunyaev-Zel’dovich velocity reconstruction, also known
in previous literature as kSZ tomography or remote dipole reconstruction [18, 19,
20, 21]. In simple terms, the idea is to use measurements of the kinetic Sunyaev-Zel’dovich
(kSZ) effect together with tracers of the electron distribution on our past lightcone in
order to reconstruct information about the peculiar velocity of these electrons on large
scales. The principle behind kSZ velocity reconstruction is the following: the kSZ signal
originates from the Doppler shift of CMB photons when they are scattered by electrons
with peculiar motion respect to the CMB rest frame [22, 23]. This process leads to new
temperature anisotropies and the accumulation of these along our past lightcone sums
up to become the the dominant contribution to the blackbody spectrum of the CMB for
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multipoles ` & 4000 (scales of a few arcminutes). One can show that the cross-correlation
between the kSZ signal and a tracer of the electron distribution on small scales carries
information about the large-scale bulk motion of the electrons projected along the line
of sight. In analogy with lensing potential reconstruction, this velocity information can
be recovered by constructing quadratic estimators based on the statistical properties of
the CMB-LSS correlation. The tracer of the electron distribution (a galaxy survey for
example) can be a 3-dimensional probe separated into multiple redshift bins. If this is the
case, a tomographic separation of the total kSZ signal can be achieved by cross-correlating
the temperature with the electron tracers at multiple redshifts (a technique known as kSZ
tomography [24, 25, 26, 27, 28]) and kSZ velocity reconstruction can be applied for each
one of these set of correlations. The result is a collection of sky maps carrying the large-
angle features of the radial peculiar velocity on our past lightcone. The large-scale velocity
field directly traces the underlying dark matter density field and thus can be a powerful
additional probe of the large-scale perturbations in the Universe and their evolution.

The new generation of CMB and galaxy survey experiments will bring an exciting op-
portunity to apply kSZ velocity reconstruction and this has motivated a deeper study into
its technical details, as well as its potential. Several approaches have been developed to
formalise the reconstruction procedure, test its validity with simulations, and forecast its
capabilities in next generation experiments. The research presented in this thesis utilizes
the “Lightcone Picture” of kSZ velocity reconstruction, introduced in Refs.[18, 19]. This
approach incorporates the geometry of the past lightcone and its projection effects on ob-
servables. A detailed discussion about its advantages and disadvantages with respect to
other approaches will be provided later in the text. Preliminary forecasts for a Lightcone
Picture reconstruction indicate that high signal to noise can be achieved for the large-angle
radial velocity for a variety of redshift bin configurations, assuming SO-like measurements
of the kSZ effect and Rubin-like galaxy maps [19]. These results, although promising, were
obtained under a series of simplifying assumptions both at the level of the experimental
conditions and the theoretical modelling of the reconstruction machinery. The research
presented in this thesis expands on the baseline results from [19] in multiple ways. More
realistic experimental conditions are considered by including frequency dependent temper-
ature foregrounds and instrumental noise, incorporating the effects of photometric redshift
errors in the galaxy survey, and evaluating the impact of masking of the sky. On the
theory side, an extended formalism for the Lightcone Picture is presented. This formalism
brings an improved understanding of sources of bias to the velocity reconstruction as well
as the effects of coarse-graining of 3-dimensional information on the lightcone. Moreover,
the theoretical tools presented are general enough to be applied to other CMB-LSS cross-
correlation pairs that carry information about large scale fields, and have been implemented
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in the publicly available code “ ReCCO”.

In addition to the extended Lightcone Picture formalism, this thesis presents two other
studies on kSZ velocity reconstruction. The first one consists on a validation of the prin-
ciples behind the technique using N-body simulations. A challenging aspect of simulating
velocity reconstruction on the lightcone is the wide range of scales that need to be sim-
ulated: from several Gpc scales for the large-scale velocity field, down to Mpc scales for
the small-scale density field. Evolving such large volumes on the lightcone with enough
small-scale resolution is currently a computationally intractable task. To work around this
challenge, the simulations presented in this text utilize a ”box-in-box” approach: an N-
body simulation in a Gpc size volume is embedded in a larger volume containing large-scale
modes evolved using linear theory. This approach not only facilitates the construction of
properly correlated temperature and density maps that contain the information from large-
scale modes, but also allows for the inclusion of a contribution to the kSZ signal coming
from the intrinsic CMB dipole, a feature that is easily described in the Lightcone Pic-
ture. Overall, these simulations served as a test of robustness against previously neglected
effects such as gravitational non-linearities, redshift space distortions and CMB lensing.
The second study presented in this thesis explores the potential of using the reconstructed
large-scale velocity to further constraint some of the CMB anomalies models. Any physical
model constructed to explain the existence of anomalous features in the CMB temperature
should produce predictable signatures on other observables, such as the large-angle CMB
polarization or the large-angle distribution of distant galaxies [29, 30, 31, 32, 33, 34]. The
objective of the study presented here is to determine if constraints on anomaly models
coming from joint analysis of CMB temperature, CMB E-mode polarization, and galaxy
surveys can be improved by adding the reconstructed velocity. This study also considered a
second observable that can be added to the list: the remote CMB quadrupole. When CMB
photons are scattered by free electrons, a polarization signal arises and this signal depends
on the CMB quadrupole observed by the electrons [35]. This remote CMB quadruple can
be reconstructed on the lightcone using an appropriate modification of kSZ velocity recon-
struction [36], and has been identified as a promising probe of the largest scales that can
be observed [37].

This thesis is organized as follows: the rest of Chapter 1 consists of a review of the key
concepts involved in kSZ velocity reconstruction. Chapter 2 presents the extended Light-
cone Picture of kSZ velocity reconstruction and an analysis of the new contributions to the
formalism. Chapter 3 presents the “box-in-box” simulations of kSZ velocity reconstruction
on the lightcone using N-body simulations. Chapter 4 analyses improvement on parame-
ter constraints in CMB anomaly models that can be achieved by using the reconstructed
large-scale velocity in combination with standard probes of the anomalies. Chapter 5 sum-
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marizes the results of this thesis and discusses future goals for the development of kSZ
velocity reconstruction.

1.2 Conventions

1.2.1 Units

Unless stated otherwise, we work in natural units with ~ = c = GN = 1.

1.2.2 Lightcone parametrization

Our past lightcone defines a 3-dimensional surface on spacetime. We parametrize events
on the lightcone using a unit direction vector n̂ and a radial coordinate χ, corresponding
to the comoving distance from the origin (us) to the event. With this parametrization,
(n̂, χ) represents the spacetime event (η(χ),x), where η(χ) is the conformal time of the
event and x = χ(η)n̂ is the spatial comoving position of the event. The value of a field F
at the spacetime event (η(χ),x) is expressed as F (n̂, χ).

1.2.3 Gauge choice

Where necessary, we present relations in the Newtonian gauge, where at late-times when
we can neglect anisotropic stress, the metric is:

ds2 = a(η)2
(
− [1 + 2Ψ(η,x)] dη2 + [1− 2Ψ(η,x)] dx2

)
(1.1)

1.3 The primary and secondary CMB anisotropies

The Cosmic Microwave Background is the oldest electromagnetic signal that we can ob-
serve, a remnant of the hot and dense beginnings of our Universe. Originating around 13.8
billion years ago, it is detected today as an extremely isotropic radiation coming from ev-
ery direction on the sky, with tiny anisotropies that can be resolved with sensitive enough
instruments. The origin of the CMB can be traced back to the epoch of recombination,
when the first neutral hydrogen atoms in the Universe started forming and photons decou-
pled from the baryonic matter. At earlier times, photons would be tightly coupled to free
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electrons via Compton scattering and couldn’t travel unimpeded for long distances. Once
the ratio of free electrons to photons had drastically decreased due to recombination, light
was able to propagate freely and carry with itself an imprint of the small perturbations
from homogeneity that existed in the early Universe. The process of decoupling occurred
relatively fast in cosmic terms, defining a region of space-time known as the last-scattering
surface. The perturbations on the photon field shortly after decoupling can be modelled
as a combination of: a primordial component with origins in some high energy process
in the very early Universe; the effects of gravity captured by the Sachs-Wolfe effect and
the early Integrated Sachs-Wolfe (ISW) effect; the Doppler effect arising from peculiar
motions of the last-scattering surface sourced by density perturbations; the imprints of
acoustic oscillations in the photon-baryon fluid; and small-scale damping of perturbations
due to imperfect coupling between baryon and photons during recombination and due to
the non-negligible thickness of the last-scattering surface. The anisotropies associated to
these perturbations are referred to as the primary CMB anisotropies, or primary CMB
for abbreviation.

The different sources of primary CMB anisotropies can be more or less relevant depend-
ing on the angular scale of observation. For large-angles, anisotropies are dominated by
gravitational and Doppler effects, which offer a cleaner window into the primordial pertur-
bations. As smaller angular scales are inspected, the imprints from the acoustic oscillations
and damping start dominating and drastically depart from the primordial perturbations.
This last fact does not render the small-angle anisotropies useless or uninteresting for Cos-
mology; to the contrary, the imprints from the photon-baryon physics have been crucial
sources of information to determine the relative proportions of mark matter and baryonic
matter in the Universe. When we measure the CMB today, part of what we see are these
primary anisotropies from the time of decoupling, but we also see anisotropies that are
sourced by multiple physical processes the CMB photons go through in their journey from
the last-scattering surface to our location. These additional anisotropies are referred to as
the secondary CMB anisotropies, or secondary CMB for abbreviation. An example of
these are the temperature anisotropies sourced by gravitational lensing of the CMB: the
path of photons travelling through the Universe can be deflected by intervening matter,
leading to modifications of the primary CMB anisotropies on arcminute scales.

The secondary CMB signals provide new ways to study cosmological perturbations
through their ability to probe large volumes of our observable Universe. In contrast to the
primary CMB, which is mostly sourced in a 2-dimensional surface, the secondary CMB
carries 3-dimensional integrated information, thus probing more linear modes. Moreover,
these line of sight integrated signals offer an additional avenue to probe the expansion
history of the Universe and evolution of large-scale structure. We continue our discussion
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of the CMB secondaries by briefly reviewing the different types of signals that arise when
primary CMB photons travel across the Universe. We will pay a special amount of detail
to the kSZ signal as it is a central piece of this thesis.

1.3.1 The late-time ISW effect

Photons travelling through time evolving gravitational potentials suffer a shift in energy
due to the unequal energy modifications from entering and exiting the potentials. We can
write this signal as a line of sight integral on our past lightcone:

ΘISW (n̂) = −2

∫ χls

0

dχ
dΨ

dχ
(n̂, χ) (1.2)

where χls is the conformal distance to last scattering. An early component of the ISW
effect is sourced around the time of decoupling, when the Universe is not fully matter
dominated and the gravitational potentials decay under the influence of radiation. Once
the Universe becomes matter dominated, linear perturbations of the density grow as fast
as the scale factor, leading to non-evolving gravitational potential and therefore no ISW
effect. The situation changes either when dark energy starts dominating the expansion of
the Universe or when non-linear perturbations of the gravitational potential start to grow
considerably. These conditions lead to the late-time ISW effect. The classical approach
to detect the linear ISW effect is to cross-correlate CMB temperature maps with large-
scale structure tracers like galaxies, a technique first implemented in [38]. This detection
approach, as well as others using correlations with the CMB lensing potential and stacking
CMB anisotropies associated with supervoids and superclusters, have been used with more
recent data from the Planck mission and a series of large scale structure surveys [39].
The linear ISW effect leads to a small additional signal to the CMB power spectrum on
the largest angular scales we observe. Understanding and properly modelling the ISW
effect allows for a clearer differentiation of this signal from early Universe contributions
to the large angle CMB. The linear ISW signal is also interesting for its sensitivity to the
properties of dark energy, as it can serve as a complementary source of (not extremely
competitive) constraints on dark energy model parameters.

The non-linear extension of the late-time ISW effect is often referred as the Rees-Sciama
(RS) effect [40]. When density perturbations evolve non-linearly, the gravitational poten-
tials change differently than they would if they where only under the effect of dark energy.
The signatures generated by the RS effect have been studied using N-body simulations in
[41]. The authors identify that the origin of the non-linear ISW effect is mostly sourced
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by the non-linear relation between the density field and the velocity field:

ΘISW−NL(n̂) ≈ 2

∫ χls

0

dχ ∇xΨ(n̂, χ) · v(n̂, χ) (1.3)

which manifests as ring like features surrounding clusters and voids, and dipole features
sourced by the transverse motion lumps of dark matter respect to the line of sight. This
last signature is usually referred in the literature as the moving lens effect [42, 43, 44, 45].
The temperature anisotropies coming from the non-linear ISW start becoming important
respect to the linear ISW ones for multipoles ` > 80 and are completely dominant for
` > 200. A detection of the RS effect is still to be achieved. According to another study
using N-body simulations [46], detecting the RS signal through cross-correlation with LSS
tracers is difficult at low redshifts (z < 4) due to the small contribution to the signal
coming from those redshifts, and a lack of suitable LSS tracers makes the task difficult at
higher redshifts (4 < z < 30) where most of the signal is sourced. A direct detection of
the RS signal in the CMB temperature power spectrum is also difficult due to its small
amplitude respect to the primary anisotropies and other secondary anisotropies like CMB
lensing and the kSZ effect.

1.3.2 CMB lensing

As CMB photons travel across the Universe, their paths can be deflected by the gravita-
tional influence from intervening matter. These deflections are integrated along the line of
sight and translate to distortions of the observed CMB temperature and polarization. For
the temperature we have:

ΘL(n̂) = ΘpCMB (n̂ + α(n̂)) (1.4)

where the deflection angle can be expressed in terms of a lensing potential φ:

α(n̂) = ∇⊥φ(n̂) , φ(n̂) = −2

∫ χls

0

dχ
χls − χ
χls χ

Ψ(n̂, χ) (1.5)

where ∇⊥ is the angular gradient in the unit 2-sphere. In terms of the lensing potential,
the lensed CMB can be expanded as:

ΘL(n̂) ≈ ΘpCMB(n̂) +∇⊥ΘpCMB(n̂) · ∇⊥φ(n̂) (1.6)

and a similar expansion can be written for the polarization using appropriate tensor objects.
Understanding the signatures from CMB lensing is of importance for cosmology for several
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reasons. Lensing leads to a B-mode polarization signal that can dominate over a possible
polarization signal originated by primordial gravitational waves from inflation. The effects
of lensing can be alleviated by “delensing procedures”, which can undo the distortions in
the CMB sky if a good enough estimate of the lensing potential is available. Interestingly
enough, an estimate of the lensing potential can be obtained using the lensed CMB itself:
the non-Gaussianities induced by lensing can be used to construct a quadratic estimator
of the lensing potential [47]. This type of estimation procedure, which takes small angular
data to reconstruct large-angle features of an underlying field, will be exemplified in high
detail later in the text in the context of kSZ velocity reconstruction. Apart from facilitating
delensing, the reconstructed lensing potential is also a useful probe of cosmology due to
its simple relation to the matter power spectrum. It can be used in cross-correlation with
other probes of dark matter to better characterize the matter power spectrum and its
evolution, as well as providing stronger constraints on relative large-scale biases between
probes through sample variance cancellation [17].

1.3.3 Thermal Sunyaev-Zel’dovich effect

Primary CMB photons can be scattered into our line of sight by free electrons on our
past lightcone. The scattered CMB radiation from a cloud of hot electrons suffers a small
distortion of its original blackbody energy spectrum. Accumulated along the line of sight,
these distortions translate to a change in CMB temperature given by:

ΘtSZ,ν(n̂) = f(x)y(n̂) (1.7)

where x is the dimensionless frequency parameter x = hν
kBTCMB

, the frequency dependence
is f(x) = x coth(x

2
)− 4, and y(n̂) is the Compton-y parameter, given by:

y(n̂) =

∫
dχ a(χ) ne(n̂, χ)

kBTe(n̂, χ)

me

σT (1.8)

where ne(n̂, χ) is the electron number density, Te(n̂, χ) is the electron temperature, me is
the electron mass, and σT is the Thompson cross-section. In contrast to the late-time ISW
and lensing signals, the tSZ effect can be separated from the blackbody CMB due to its
particular frequency spectrum. The tSZ signal has been identified as an extremely useful
probe to find galaxy clusters and characterize their abundances. One of the reasons is
that it facilitates the detection of clusters at higher redshifts than other sources: because
the tSZ is a fractional change in the CMB temperature, the amplitude of the change
is redshifted along with the baseline temperature of the CMB which leads to a surface
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brightness that does not fade as (1 + z)−4. The tSZ signal provides other advantages for
the characterization of cluster abundance: the selection function as a function of redshift
is generally well behaved and, because the signal probes the intra-cluster medium, a larger
portion of the baryonic matter can be detected compared to observations of objects like
galaxies. This makes the tSZ signal a better proxy of the total cluster mass. Using methods
to calibrate the observable-mass relation, the cluster abundances measured with tSZ can be
used to constrain cosmology using forward modelling techniques [48, 49, 50]. Near future
measurements of the tSZ effect by the SO collaboration forecast the detection of tens of
thousands of clusters, roughly an order of magnitude more than current datasets, as well
as measurements of the tSZ power spectrum with total signal to noise ≈ 250, which can be
used as an additional route to measure the sum of neutrino masses and other cosmological
parameters [15, 51, 52] .

1.3.4 Kinetic Sunyaev-Zel’dovich effect

The scattering of primary CMB photons by free electrons can lead to additional signals
apart from the one described by the tSZ effect. Sunyaev and Zel’dovich predicted that the
bulk peculiar velocity of a cloud of electrons would lead to new temperature anisotropies
in the scattered CMB light [22, 23]:

∆TkSZ
TCMB

= −vcτc (1.9)

where τc is the optical depth of the cloud and vc is the peculiar motion of the cloud,
projected along the line of sight. These Doppler shifts of energy preserve the Planckian
spectrum of the CMB radiation, and manifest in the temperature map as cold (hot) spots
for clusters with positive (negative) line of sight velocity. When integrated along the line
of sight, the kSZ signal is given by:

ΘkSZ(n̂) = −
∫
dχ (v(n̂, χ) · n̂) τ̇(n̂, χ) (1.10)

where τ̇(n̂, χ) is the differential optical depth:

τ̇(n̂, χ) = σTa(χ)ne(n̂, χ) (1.11)

and v(n̂, χ) is the peculiar velocity field along our past lightcone. A correction to this
temperature distortion can come if the CMB sky observed by the electron, which we refer
as the remote CMB, has contributions to the dipole anisotropy apart from the velocity
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induced kinematic dipole. This “non-kinematic” or “stationary” dipole, which we will
describe in detail in Sec.1.5, is typically small compared to the largely dominant peculiar
velocity sourced term (except on scales of several Gpc), and we will refer to the combination
of both sources as an “effective” velocity. The projection of the effective velocity along the
line of sight leads to the temperature anisotropy:

ΘkSZ(n̂) = −
∫
dχ veff(n̂, χ) τ̇(n̂, χ) (1.12)

with

veff(n̂, χ) =
3

4π

∫
d2n̂e Θ(x, n̂e) (n̂ · n̂e). (1.13)

where Θ(x, n̂e) is the remote CMB at the spacetime position (η(χ),x = χn̂) , containing
both stationary and kinematic dipole anisotropy as observed by the electrons. Due to its
small contribution to the total integrated signal, the stationary remote dipole contribution
is often not accounted for in studies of the kSZ signal. In Sec.1.5, we will argue that
taking into consideration the stationary dipole terms is important when using kSZ velocity
reconstruction to probe of the homogeneity of the Universe on ultra large scales. For the
moment, we concentrate on the dominant peculiar velocity term. The lightcone geometry
for the kSZ effect is depicted in Fig.(1.1).

Given that the kSZ effect arises due to the presence of free electrons, this signal is
sensitive to the history of reionization. In fact, the kSZ signal generated from a fully reion-
ized Universe has different characteristics that the one arising as the Universe reionizes
[53], and this has motivated a separation between the so called reionization kSZ and the
late-time kSZ. Measuring and distinguishing these two signals would bring valuable cosmo-
logical information: the reionization kSZ can inform us about the patchiness and duration
of reionization, while the late-time kSZ can serve as a probe of the large scale velocity field
and distribution of electrons in dark matter halos. Detecting the kSZ signal from individ-
ual clusters can be challenging for several reasons: for large clusters the tSZ signal can be
dominant over the kSZ and removing it requires sensitive multi-frequency measurements
in addition to modelling of the electron environment in the cluster; for smaller clusters,
where kSZ and tSZ can be comparable, the sensitivity of current experiments is not enough
for a clear separation. Beyond individual cluster signals, the kSZ effect could also be de-
tected statistically by measuring its angular power spectrum. For ` & 4000, the blackbody
CMB is dominated by the kSZ effect, with same order of magnitude contributions from
the reionization and late-time signals. Although current measurements of the kSZ power
spectrum are of low significance [54], next generation CMB experiments with arcminute
resolution will allow for precise measurements of the power spectrum, assuming successful
enough foreground removal and degeneracy breaking with the primary CMB [55].
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Figure 1.1: Points along the lightcone are parametrized by an angular direction n̂ and the
comoving distance χ. Electrons at spacetime position (η(χ),x = χn̂) observe the remote
CMB sky Θ(x, n̂e), and will scatter some of the incoming CMB into our line of sight. The
temperature distortions induced by the kSZ effect are sourced by the remote CMB dipole
observed by the electrons, projected along the line of sight n̂.

A whole new world of possibilities for detecting and using the kSZ signal opens up if we
have external measurements of a tracer of the electron distribution on our past lightcone,
like a galaxy redshift survey for example. Evidence for the late-time kSZ effect has been
obtained using statistics based on the pairwise motion of galaxy clusters [56, 57, 58, 59]:
gravity induces correlations on the relative bulk velocities of galaxy clusters as a function of
their comoving distance. These relative motions between galaxy clusters lead to patterns
in the CMB temperature that can be picked up by specially tailored statistics. A galaxy
survey can also be used to create a template for the kSZ signal that can later be cross-
correlated with the temperature to pick up the kSZ effect [25, 26, 27, 28]. Using the galaxy
distribution as a tracer of dark matter, one can estimate the large-scale velocity using the
linear relation between velocity and density perturbations. The estimated velocity and
the galaxy distribution, together with some modelling of the relation between electron and
galaxy perturbations, can then be used to construct a template of the kSZ signal and
cross correlate it with the CMB to yield a detection. A similar statistical approach based
on estimated velocities was derived in [60], where the temperature field is filtered in a
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particular way that enhances its small correlation with the velocity field at each cluster
location. The different statistical approaches described above (collectively referred as to
kSZ tomography) were eventually found to be connected in [20], were it is shown that they
are equivalent formulations of an optimal bispectrum estimator with two powers of the
galaxy field and one power of the temperature field 〈ggT 〉. The technique of interest of
this thesis, kSZ velocity reconstruction, is another example of an approach that exploits the
statistics between the kSZ signal and a galaxy survey [18, 19, 20, 21]. As we will discuss later
in the text, the kSZ effect leads to a statistical anisotropy in the galaxy-temperature cross-
correlation 〈gT 〉, and this anisotropy encodes information about the large scale velocity
field inside the volume of the survey. Using the structure of the statistical anisotropy, a
quadratic estimator v̂ for the large scale velocity can be constructed using products of the
galaxy and temperature field. kSZ velocity reconstruction is also discussed in [20], as the
cross-correlation between the reconstructed velocity (gT) and the galaxy survey used for
its reconstruction (g) is also the optimally estimated bispectrum 〈ggT 〉. We leave a more
detailed discussion of kSZ velocity reconstruction for Sec.1.4

1.3.5 Polarized Sunyaev-Zel’dovich effect

We conclude our summary of the secondary CMB by considering the polarization anisotropies
that arise due to scattering with free electrons on the past lightcone. In the presence of a
local CMB quadrupole, the scattered photons are endowed with a polarization [23, 35]. The
polarized component of the CMB arising after reionization, primarily from collapsed struc-
tures, is known as the polarized Sunyaev-Zel’dovich (pSZ) effect (as opposed to the com-
ponent sourced near decoupling and at reionization, which is simply CMB polarization).
The pSZ effect can be expressed in terms of the contributions to the Stokes parameters
Q± iU from scattering events along the line of sight:

(Q± iU)pSZ(n̂) = −
√

6

10

∫
dχ

2∑
m=−2

Θm
2 (n̂, χ)±2Y2m (n̂)× τ̇(n̂, χ) (1.14)

where Θm
2 (n̂, χ) are the remote ` = 2 CMB multipoles observed by electrons at spacetime

position (η(χ),x = χn̂) on our past lightcone:

Θm
2 (n̂, χ) =

∫
d2n̂ Θ(x, n̂)Y ∗2m (n̂) (1.15)

and ±2Y2m (n̂) are spin-2 weighted spherical harmonics. The pSZ signal has been proposed
as a gateway to measure the remote CMB quadrupole [61], which probes different sections
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of the last-scattering surface than our locally observed quadrupole and thus can offer
additional information on large-scale inhomogeneities within our lightcone. For moving
clusters, electrons observe additional contributions to their observed quadrupole coming
from the Doppler leakage of other remote CMB multipoles, and the frequency dependence of
these contributions could be used to separate and measure them [62]. These corrections are
not likely to be measured in the near future, given that even the leading order contribution
will be challenging to measure with CMB Stage 4 experiments [63], having a forecasted
signal to noise of 0.5% for individual clusters and a 3σ detection for cumulative signal,
although 9σ detection are possible for observations in the 150 GHz band (corresponding
to a 9-meter mirror). It was shown in [19] that these levels of detection still allow for a
reconstruction of the remote quadrupole in a similar fashion to kSZ velocity reconstruction,
the details of which we will review in the following section. The reconstruction of the remote
quadrupole is reviewed separately in Appendix A.1

1.4 kSZ velocity reconstruction in the Lightcone Pic-

ture

In this section, we review the details of kSZ velocity reconstruction. The basic principle
behind the method was briefly mentioned in Sec.1.3.4: the kSZ effect induces a statisti-
cal anisotropy in the cross-correlation between the CMB temperature and tracers of the
electron density on our past lightcone:〈

ΘkSZ
`m δ`′m′

〉
6= 0 for ` 6= `′,m 6= m′. (1.16)

where ΘkSZ
`m are the multipole moments of the kSZ signal on the whole sky and δ`′m′ are the

multipole moments of the electron density tracer on the full sky. On small angular scales
(`, `′ � 1), this statistical anisotropy is mostly sourced by the large-scale modes of the
remote dipole field defined in Eq.(1.13). kSZ velocity reconstruction utilizes the structure
of the statistical anisotropy to estimate the remote dipole field.

Several approaches have emerged to describe the reconstruction procedure. Two de-
scriptions of kSZ velocity reconstruction that have received attention are the so called
“Box Picture” [20], and “Lightcone Picture” [18, 19] . In the Box Picture, the kSZ effect
is estimated from the momentum field along one direction in a 3D box at the median
redshift of a galaxy survey. The box formulation is convenient since it sidesteps spherical
projection effects and allows one to work in the familiar Fourier domain. This approach
is a good approximation for reconstruction on relatively small sky areas and over limited

15



ranges in redshift, for which the underlying geometry of the lightcone can be ignored. For
this same reason, it is cumbersome to accurately incorporate redshift evolution, relativistic
contributions to the kSZ effect, and large sky area in the Box Picture.

In the Lightcone Picture , kSZ velocity reconstruction is formulated in terms of ob-
servables on our past light cone, which facilitates the incorporation of redshift evolution
and relativistic contributions to the radial velocity field (promoting it to the remote dipole
field). The Lightcone Picture has its own drawbacks when compared to the Box Picture:
computing observables is usually more expensive due to the cumbersome projection in-
tegrals on the lightcone, and the incorporation of photometric redshift errors and other
systematics is less straightforward. However, in an application to future datasets, the
Light Cone Picture has a number of advantages compared to the Box Picture. First, it
is formulated in terms of direct observables (e.g. fields on the sphere), making contact
between theory and observation precise. Second, the signal to noise of the reconstruction
is estimated to be largest on the largest scales, where the redshift evolution and projection
effects captured by the Lightcone Picture are most important.

The research presented in this thesis was done in the Lightcone Picture of kSZ velocity
reconstruction. In order to provide context to the reader and properly identify the new
contributions to the formalism that are presented in this work, we dedicate the rest of this
section to review the foundations of the Lightcone Picture presented in Refs. [18, 19]. The
exposition pays special attention to the assumptions and approximations made, with the
ultimate purpose of highlighting avenues for the improvement of the technique.

1.4.1 Observables

Let us assume that we have full sky measurements of the CMB where the only contribu-
tions are the primary CMB anisotropies (lensed) and kSZ effect, and measurements are
limited only by instrumental noise. The spherical harmonic moments for the temperature
anisotropies are given by:

Θ`m = Θp,lens
`m + ΘkSZ

`m + n`m (1.17)

where the multipoles ΘkSZ
`m are given by the spherical harmonic transform of Eq.(1.12):
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ΘkSZ
`m =

∫
d2n̂ ΘkSZ(n̂)Y ∗`m(n̂)

= −
∫
d2n̂

∫
dχ veff(n̂, χ)τ̇(n̂, χ)Y ∗`m(n̂)

= −
∫
dχ v`1m1(χ)τ̇`2m2(χ)

∫
d2n̂Y`1m1(n̂)Y`2m2(n̂)Y ∗`m(n̂)

= −
∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−m

∫
dχ v`1m1(χ)τ̇`2m2(χ) (1.18)

where

W `a,`b,`c
ma,mb,mc

=

√
(2`a + 1) (2`b + 1) (2`c + 1)

4π

(
`a `b `c
0 0 0

)(
`a `b `c
ma mb mc

)
(1.19)

is the multipole coupling constructed with 3-j Wigner symbols resulting from the angular
integral, v`1m1(χ) are the spherical harmonic moments of the remote dipole veff(n̂, χ) along
the lightcone (subscript eff is suppressed for ease of notation), and τ̇`2m2(χ) are the spherical
harmonic moments of the differential optical depth τ̇(n̂, χ).

We assume we have full-sky measurements of a tracer of the electron distribution on
the past lightcone, such as a redshift galaxy survey g(n̂, χ(z)), and we also assume we can
subdivide the survey by taking averages inside N top-hat bins of equal size in comoving
space:

gα(n̂) =

∫
dχ Πα(χ)g(n̂, χ) (1.20)

where

Πα(χ) =

{
1

∆χ
, χmin + α∆χ ≤ χ < χmin + (α + 1)∆χ,

0, otherwise
(1.21)

with α in (0, . . . , N − 1). For this idealized scenario we assume perfect redshift measure-
ments, ignore for the moment the effects of redshift spatial distortions so that we can have a
one to one correspondence between the comoving distance χ and the cosmological redshift
z of the galaxies, and assume the only source of noise is shot noise.

1.4.2 CMB-LSS statistical anisotropy

The cross-correlation between the multipole moments of the CMB temperature and the
binned galaxy survey shows a statistical anisotropy sourced by the kSZ signal:
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〈
Θ`m gα`′m′

〉
= −

∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−m

∫
dχ
〈
v`1m1(χ)τ̇`2m2(χ)gα`′m′

〉
. (1.22)

The three-point function in Eq.(1.22) can be approximated in the limit that two of the
(`1, `2, `

′) multipoles are far greater than the remaining multipole (squeezed limit). Below,
we assume that the dominant contribution to the three-point function comes from the
squeezed limit where `1 � `, `2. Furthermore, we will consider a fixed realization for the
large scale field v`1m1(χ) and take the the statistical average of the three-point function
only over small angular scales. With these assumptions we can approximate:〈

v`1m1(χ) τ̇`2m2(χ) gα`′m′
〉
≈ v`1m1(χ)

〈
τ̇`2m2(χ) gα`′m′

〉
. (1.23)

Following [19], we approximate the continuous fields v`1m1(χ) and τ̇`2m2(χ) by their bin
averages:

v`1m1(χ) ≈ ∆χ
N−1∑
α′=0

vα
′

`1m1
Πα′(χ) with vα

′

`1m1
=

1

∆χ

∫ χα
′
max

χα
′
min

dχ v`1m1(χ), (1.24)

τ̇`2m2(χ) ≈ ∆χ
N−1∑
α′=0

τ̇α
′

`2m2
Πα′(χ) with τ̇α

′

`2m2
=

1

∆χ

∫ χα
′
max

χα
′
min

dχ τ̇`2m2(χ). (1.25)

Using
〈
τ̇α
′

`2m2
gα`′m′

〉
= C τ̇αgα

`′ δαα′ δ`2`′ δm2m′ , we arrive to the final expression for the

CMB-LSS statistical anisotropy :〈
Θ`m gα`′m′

〉
= −

∑
`1m1

(−1)mW `1,`′,`
m1,m′,−m vα`1m1

C τ̇αgα

`′ ∆χ. (1.26)

The calculation above shows that the statistical anisotropy on small angular scales (`, `′ �
1) between the CMB temperature and a galaxy survey averaged inside a comoving bin
α is sourced by the low-`1 moments of the remote dipole field, averaged inside the same
comoving bin.

1.4.3 Quadratic estimator for the remote dipole

The structure of Eq.(1.26) can be used to construct a quadratic estimator for the large
angle multipoles of the remote dipole inside each comoving bin. Reference [19] considers
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the quadratic sum:

v̂αLM = AαL
∑

`m;`′m′

(−1)M
(
` `′ L
m m′ −M

)
Gα
``′L Θ`mg

α
`′m′ (1.27)

and chooses the weights AαL and Gα
``′L such that the estimator is unbiased

〈
v̂αLM

〉
= vαLM

and has minimum variance. The first requirement leads to the following constraint:

AαL = (2L+ 1)

(∑
`;`′

Gα
``′Lf

α
`L`′

)−1

. (1.28)

where fα`L`′ is given by:

fα``1`′ ≡
√

(2`+ 1)(2`1 + 1)(2`′ + 1)

4π

(
` `′ `1

0 0 0

)
C τ̇ g
α,`′ ∆χ. (1.29)

As part of the calculation to find the minimum variance estimator, we need to compute a
four-point function of the form 〈ΘgΘg〉. Reference [19] approximates this 4-point function
as 〈ΘΘ〉〈gg〉 and finds the weights that lead to a minimum variance estimator subject to
Eq.(1.28):

Gα
``′L =

fα`L`′

CΘΘ
` Cgαgα

`′

. (1.30)

where CΘΘ
` is the full CMB power spectrum including instrumental noise, and Cgαgα

`′ is
the galaxy power spectrum in bin α including shot noise. With this choice of weights, the
variance of the estimator gives:〈

v̂αL′M ′ v̂
β∗
LM

〉
= Cvαvβ

L δLL′δMM ′ +Nαβ
L δLL′δMM ′ (1.31)

where Cvαvβ

L is the bin-bin covariance matrix of the remote dipole multipoles v̂αLM and Nαβ
L

is the reconstruction noise matrix given by:

Nαβ
L = AαL δαβ. (1.32)

For CMB noise levels in the ballpark of next-generation CMB Stage 4 experiments and
galaxy surveys with specifications similar to Rubin, the analysis in [19] forecasted the
possibility of high signal to noise reconstruction for the multipoles v̂αLM (several thousands
for the lowest multipoles) for 6 and 12 bins of equal comoving size in the redshift range
(0,6).
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1.4.4 Discussion of assumptions

The formalism and results from [19] served as a baseline to investigate the potential of
kSZ velocity reconstruction on the lightcone. The promising forecasts that were obtained
motivated a more detailed study of the assumptions made and led to the research presented
in this thesis. Here are listed the aspects of the Lightcone Picture that required revisions
and extensions:

1. Assumptions about the CMB temperature: Eq.(1.17) assumes full-sky mea-
surements of the blackbody CMB spectrum limited only by instrumental noise. In-
complete sky coverage is a feature that realistic experiments often have to operate
with, and multiple frequency dependent foregrounds are present in measurement of
the CMB temperature anisotropies, like the tSZ effect, the Cosmic Infrared Back-
ground (CIB), and radio point sources. Instrumental noise also depends on the
frequency of observation. A realistic application of kSZ velocity reconstruction will
certainly involve some multi-frequency foreground removal procedure which could
deteriorate the signal to noise ratio. Eq.(1.17) also ignores additional contributions
to the blackbody CMB temperature like the linear and non-linear ISW effects.

2. Assumptions about the galaxy survey: Realistic galaxy surveys are subject
to redshift errors, redshift spatial distortions and limitations on how many custom
redshift bins the survey can be divided into. To see how this effects can impact the
reconstruction, consider the cross-correlation between galaxies in two redshift bins:〈

gα`m g∗β`m

〉
=

∫
dχ1

∫
dχ2 Πα(χ1)Πβ(χ2)Cgg

` (χ1, χ2), (1.33)

with

Cgg
` (χ1, χ2) =

2

π

∫ ∞
0

dk

k
k3Pgg (k, χ1, χ2) j` (kχ1) j` (kχ2) (1.34)

where Pgg is the underlying galaxy-galaxy power spectrum in Fourier space and j` are
spherical Bessel functions. Since kSZ reconstruction is concerned with small angular
scale galaxy perturbations (` � 1) we can study the equations above using the

Limber approximation [64, 65], which picks out the χ1 = χ2 =
`+ 1

2

k
part of the radial

integrals. In the absence of redshift errors, the window functions Πα(χ1) and Πβ(χ2)
don’t overlap for α 6= β and the correlation vanishes. Redshift errors, like the ones
expected in photometric redshift surveys like Rubin, lead to a smearing of the window
functions, allowing for non vanishing overlaps for α 6= β and thus galaxy correlation
between bins. The reconstruction noise for the remote dipole would not be diagonal,
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reflecting the mixing of radial information due to redshift errors. Imperfect redshift
measurements also lead to biases in the reconstructed remote dipole. The smearing

of the window functions introduces α 6= α′ correlation in
〈
τ̇α
′

`2m2
gα`′m′

〉
, which changes

the final statistical anisotropy Eq.(1.26) to:

〈
Θ`m gα`′m′

〉
= −

N−1∑
α′=0

∑
`1m1

(−1)mW `1,`′,`
m1,m′,−m vα

′

`1m1
C τ̇α

′
gα

`′ ∆χ. (1.35)

Thus, we see that redshift errors, by mixing radial information, bias the remote dipole
reconstruction by mixing different bins.

Redshift spatial distortions are expected to be less of a problem, due to the fact that
their effect modifies the galaxy-galaxy angular power spectrum at multipoles that
are far smaller than the ones needed for velocity reconstruction.

3. Assumptions about the CMB-LSS statistical anisotropy: Eq.(1.22) assumes
that the only source of statistical anisotropy in the temperature-galaxy cross-correlation
is sourced by the kSZ signal. In reality, other statistically anisotropic terms will be
present, sourced by CMB lensing and the non-linear ISW effect. Both of these terms
lead to a three-point function when correlated with the galaxy moments which can
be approximated in a squeezed limit similarly to the kSZ-g term. For example, the
lensing term leads to the following statistical anisotropy:〈

Θp,lens
`m gα`′m′

〉
=

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fα``1`′ Θ

p
`1m1

(1.36)

where Θp
`1m1

are the unlensed primary CMB moments and the couplings fα``1`′ are
given by:

fα``1`′ ≡ [`1(`1 + 1) + `′(`′ + 1)− `(`+ 1)] (1.37)

×
√

(2`+ 1)(2`1 + 1)(2`′ + 1)

16π

(
` `′ `1

0 0 0

)
Cφgα

`′ (1.38)

where Cφgα

`′ is the angular cross-spectrum between the lensing potential Eq.(1.5) and
the binned galaxy moments. Systematic errors in the galaxy survey can also lead to a
statistical anisotropy in the CMB-LSS cross-correlation, a possibility we will explore
in the Chapter 2.
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4. Assumptions about the reconstruction noise: The variance of the estimator
involves a four-point function of the form 〈ΘgΘg〉. The contribution from the kSZ
effect to this four-point function can be expressed as a six-point function of the
form 〈vτ̇gvτ̇g〉. Assuming Gaussian fields, we see that the approximation 〈ΘgΘg〉 ≈
〈ΘΘ〉〈gg〉 used in [19] is considering only a subset of the 15 possible contractions
of the 6-point function. These ignored terms could lead to underestimations of the
reconstruction noise. For non-Gaussian fields, one must additionally compute the
connected part of the six-point function.

5. Assumptions about the coarse graining procedure: Eqs.(1.24) and (1.25)
expand the radial dependence of the remote dipole field and the differential optical
depth along the interval (χmin, χmax) of the line of sight in terms of a finite set of
top hat functions Πα(χ). This set of functions does not form a complete set, so
the expansion used in [19] does not account for contributions to the kSZ line of
sight integral that do not come from the bin-averages of the remote dipole. In the
limit of N → ∞ such contributions should be negligible, but for realistic numbers
of galaxy redshift bins the neglected terms could introduce a significant bias in the
reconstructed average dipoles.

6. Assumptions about the galaxy-electron cross-correlation: In order to con-
struct the quadratic estimator, the couplings fα``1`′ defined in Eq.(1.29]) have to be
modelled from theory. The underlying quantity that needs to be modelled is the
Fourier-space power spectrum Peg between electrons and galaxies. Reference [19]
use the model Peg = bPmm where Pmm is the nonlinear matter power spectrum and
b is the scale independent the galaxy bias on large scales. As the authors rightly
pointed out, this approximation ignores baryonic feedback effects that make the elec-
tron distribution differ from the dark matter one on small scales, and also neglects
the scale dependence of the galaxy bias. The uncertainty in the Peg modelling leads
to what is referred in the kSZ velocity reconstruction literature as the optical depth
bias [20, 21, 66].

The list above points towards many aspects of the Lightcone Picture of kSZ velocity
reconstruction that require revisions. Chapter 2 addresses these issues and develops an
extended formalism to account for the additional sources of noise, sources of bias, and
modelling of more realistic experimental conditions. An issue that is not treated in this
thesis is that of the non-Gaussian contributions to the estimator variance. The extra
contributions to the variance beyond the 〈ΘΘ〉〈gg〉 term were explored in the context of
the Box Picture formalism in Ref.[21] using a suite of N-body simulations. The terms
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coming from the disconnected 6-point function were referred to as the N (1) bias and the
terms coming from the connected part were referred as the N ( 3

2
) bias. It was shown that

the N ( 3
2

) is far larger than the N (1), and can even become comparable to the 〈ΘΘ〉〈gg〉
term is signal to noise ratio is high enough. As we will discuss in Chapter 2, we expect the
Lightcone Picture equivalent of N ( 3

2
) to be small for the fiducial experimental conditions

we explored. However, as the authors of [21] point out, futuristic experiments might be

sensitive enough to make the N ( 3
2

) term important, and its calculation in the Lightcone
Picture will be necessary.

1.5 The remote dipole as a probe of the large-scale

Universe

In the sections above, we have discussed how kSZ velocity reconstruction allows us to
estimate the large angular features of the remote CMB dipole veff(n̂, χ) defined in Eq(1.13).
We conclude this introductory chapter by discussing the different contributions to the
remote dipole and how they inform us about cosmological perturbations on the largest
accessible scales. We follow the description of the remote dipole presented in [18]. Freely
falling electrons located along our past lightcone observe a CMB dipole that is sourced
by the Sachs-Wolfe effect, the integrated Sachs-Wolfe effect and the Doppler effect. With
these contributions, the line of sight projected remote dipole is given by

veff(n̂, χ) =
3

4π

∫
d2n̂e

[
ΘSW (x, n̂e) + ΘISW (x, n̂e) + ΘD(x, n̂e)

]
(n̂ · n̂e) (1.39)

We can express each one of these contributions in terms of the Newtonian gauge gravita-
tional potential Ψ (neglecting anisotropic stress is a good approximation for the large scale
modes of interest [67]). The Fourier modes of the gravitational potential can be expressed
in linear theory in terms of their primordial values at a→ 0 using appropriate transfer and
growth functions. For modes that enter the horizon well after matter radiation equality,
the gravitational potential Ψ(a,k) can be related to its primordial value Ψp(k) by:

Ψ(a,k)

Ψp(k)
= DΨ̄(a) =

16
√

1 + y + 9y3 + 2y2 − 8y − 16

10y3
×
[

5

2
Ωm

E(a)

a

∫ a

0

da

E3(a)a3

]
(1.40)

with y = a(1 + zeq) and E(a) =
√

Ωma−3 + ΩΛ is the normalized Hubble parameter. The
first factor is takes care of the matter-radiation equality crossing and the second factor
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takes care of late time evolution. In order to accommodate for evolution on sub-horizon
scales, we can introduce a transfer function:

Ψ(a,k) = Ψp(k)T (k)DΨ(a) (1.41)

where

T (k) =
ln[1 + 0.171x]

0.171x

[
1 + 0.284x+ (1.18x)2 + (0.399x)3 + (0.49x)4

]−0.25
(1.42)

with x = k/keq and keq = aeqH (aeq) ' 82.5H0. In terms of this quantities, the remote
dipole can be written as an integral on Fourier space:

veff(n̂, χ) = i

∫
d3k

(2π)3
T (k)Ψp(k)Kv (k, χ)P1

(
k̂ · n̂

)
eiχk·n̂ (1.43)

where P1 is the ` = 1 Legendre polynomial and Kv is an integral kernel with contributions
from the SW, ISW, and Doppler effects:

Kv (k, χ) = KSW (k, χ) +KISW (k, χ) +KD (k, χ) (1.44)

given by

KSW (k, χ) ≡ 3

(
2DΨ (als)−

3

2

)
j1 (k(χls − χ))

KISW (k, χ) ≡ 6

∫ a(χ)

als

da′
dDΨ

da′
j1(k(χ(a′)− χ))

KD (k, χ) ≡ kDv (als) j0 (k(χls − χ))− 2kDv (als) j2 (k(χls − χ))− kDv (a(χ))

(1.45)

where Dv(a) is a velocity growth function defined as:

Dv(a) ≡ 2a2H(a)

H2
0 Ωm

y

4 + 3y

[
DΨ +

dDΨ

d ln a

]
. (1.46)

The last term of the Doppler integral kernel, −kDv (a(χ)), is the only term that is
typically considered when modelling the kSZ signal. We refer to this term as the “local
Doppler” term and denote it by KLD. In what follows, we discuss how the other contri-
butions to the remote dipole become important when a kSZ based observable probes large
enough volumes of the Universe. We refer to these additional contributions, which source
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the entire CMB dipole for observers with no peculiar velocities, as the “stationary dipole”
and denote it by KSt. The left panel of Fig.(1.2) depicts the behaviour of the full integral
kernel as a function of the scale and for several redshift values; the right panel shows the
relative size of the local Doppler term to stationary dipole term. We can see that for
scales k & 1[Gpc−1] the linear behaviour of the local Doppler term is dominant and the
stationary dipole contributions to the kernel manifest as oscillations that become negligible
as we go to smaller scales. For scales k . 1[Gpc−1] the situation is more interesting: the
contributions beyond the local Doppler term become more relevant and, as shown in [18],
precisely cancel the local Doppler term in the limit k → 0 and leave O (k3) residuals1. It is
clear that when large enough volumes of the Universe are studied, the local Doppler term
becomes insufficient to describe the remote CMB dipole.

Figure 1.2: Left panel: Remote dipole integral kernel as a function of scale, for redshifts
z = 1, 3, 6. As k increases, the linear behaviour of the local term Doppler dominates.
For k → 0, the integral kernel goes as O (k3) due to the precise cancellation of the local
Doppler by the O (k) pieces of other contributions to the kernel. Right panel: Relative
size of local Doppler term respect to the other contributions to Kv. The dominance of the
local Doppler terms falls as we go to larger scales.

For most of the kSZ statistics discussed in Sec.(1.3.4), the scales that are probed are
largely dominated by the local Doppler contribution to the remote dipole. The Lightcone

1This cancellation occurs because a pure gradient in the gravitational potential, which can be removed
by a gauge transformation, should not contribute to observable quantities.
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Picture of kSZ velocity reconstruction is the only approach with an adequate infrastruc-
ture to describe the signal sourced by the stationary dipole, which depends strongly on
the lightcone geometry. Moreover, the formulation in the Ligthcone Picture allows for
estimations of the remote dipole on larger portions of the sky compared to other methods,
allowing us to access the scales at which the corrections coming from the stationary dipole
terms become more relevant. We can inspect the typical size of these corrections by looking
at the harmonic moments of the remote dipole:

veff;LM(χ) = i

∫
d2n̂

∫
d3k

(2π)3
T (k)Ψp(k)Kv (k, χ)P1

(
k̂ · n̂

)
eiχk·n̂Y ∗LM (n̂) (1.47)

=

∫
d3k

(2π)3
∆v
L (k, χ) Ψp(k)Y ∗LM(k̂) (1.48)

where we have defined the remote dipole transfer function:

∆v
L (k, χ) ≡ 4πiL

2L+ 1
Kv (k, χ) [LjL−1 (kχ)− (L+ 1)jL+1 (kχ)]T (k) (1.49)

In Fig.(1.3) we compare two versions of the transfer function: in solid lines we plot the
transfer function when only the local Doppler term sources the remote dipole and in dashed
lines we plot the full transfer function which contains local Doppler and stationary con-
tributions to the remote dipole. We do the comparison at redshifts z = 1, 3, 6 and for
multipoles L = 1, 3, 5. As expected, the large angular scales of the remote dipole are the
ones more sensitive to the stationary dipole, and this sensitivity increases with redshift as
larger volumes of the Universe are being probed. Fig.(1.3) tells us two important things
about kSZ velocity reconstruction in the Lightcone Picture: first, the lowest reconstructed
multipoles (which are forecasted to have the highest signal to noise [19]) can inform us
about cosmological perturbations on scales of several Gpc; second, proper modelling of the
stationary dipole contribution plays an important role in interpreting measurements on
these scales. If the signal is modelled only with the local Doppler term, one would infer in-
correctly the features of the underlying primordial perturbations. Due to its sensitivity to
Gpc-scale physics, the remote dipole could provide additional statistical power to test the
nature of the CMB anomalies and determine if the anomalies are the result of deviations
from the ΛCDM primordial spectrum of perturbations on ultra-large scales. We discuss
more about this potential use of the remote CMB dipole in Chapter 4.
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Figure 1.3: Transfer function ∆v
L (k, χ) for the remote dipole spherical harmonic moments

as a function of the scale k, for redshifts z = 1, 3, 6 and for multipoles L = 1, 3, 5. Solid
lines are obtained when only the local Doppler term KLD is considered as a source for
the remote dipole. Dashed lines corresponds to the full transfer function, including local
Doppler and stationary sources to the remote dipole.
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Chapter 2

The extended Lightcone Picture
formalism

2.1 Chapter summary

The kSZ effect carries significant cosmological information through its dependence on the
large-scale peculiar velocity field. Previous work identified promising means of extracting
this cosmological information using a set of quadratic estimators for the radial component
of the velocity field [18, 19, 20]. These estimators are based on the statistically anisotropic
components of the cross-correlation between the CMB and a tracer of large-scale structure,
such as a galaxy redshift survey. In this chapter, we assess the challenges posed by various
foregrounds and systematics in the CMB and galaxy surveys, as well as biases in the
estimator. We work in the context of the Lightcone Picture approach for kSZ velocity
reconstruction described in Sec.(1.4) of Chapter 1.

A primary goal of this chapter is to further develop the formalism for the Lightcone
Picture. We begin by developing a self-consistent theoretical framework based on the halo
model [68] for predicting the auto and cross-spectra of fields on the lightcone, including dark
matter density, electron density, velocities, galaxy number counts, the Newtonian potential
and its time derivative, as well as the frequency-dependent contribution to the CMB from
the thermal Sunyaev Zel’dovich (tSZ) effect and the Cosmic Infrared Background (CIB).
We employ a coarse-graining scheme in radial distance along the lightcone based on Haar
wavelets and use this complete basis to perform line of sight integrals for the kSZ, ISW,
lensing, tSZ, CIB, and binned galaxy number counts. The contributions we include for the
CMB represent the most important (in terms of the amplitude of power spectra) blackbody
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and frequency dependent components. A challenging aspect of kSZ velocity reconstruction
is that large-scale fields are reconstructed from small angular scale anisotropies, and so
we develop tools to accurately compute spectra from the dipole down to sub-arcminute
angular scales. We quantify the level of coarse graining given a fiducial CMB experiment
and galaxy survey that will be necessary to capture the relevant cosmological information
accessible using kSZ velocity reconstruction.

Another goal of this chapter is to assess the impact of various foregrounds and sys-
tematics on kSZ velocity reconstruction. Previous work has largely neglected these effects
in forecasts. We assess the impact of extragalactic foregrounds by forecasting the level
of residuals in auto and cross-spectra given a fiducial CMB experiment and the resulting
effect on the variance of the quadratic estimators. We develop a formalism, analogous to
bias hardening in CMB lensing [69], to remove biases associated with photometric redshift
errors, and compute the variance of the resulting unbiased estimators in both a redshift-
binned and principal component basis. The radial velocity quadratic estimators are biased
by other sources of statistical anisotropy in the CMB-galaxy cross-power such as CMB
lensing and the non-linear ISW signal. We confirm that these biases are small enough
to be neglected in near-term experiments. A related systematic arises from redshift cal-
ibration errors on large angular scales, or any other effect that modulates the amplitude
of the underlying statistically isotropic CMB anisotropies or galaxy number counts. This
leads to a statistically anisotropic modulation of the CMB-galaxy cross-power induced by
foreground residuals that can bias the radial velocity quadratic estimators. While this is
the dominant source of estimator bias, we determine that it is below the estimator variance
for the fiducial CMB experiment we consider.

To assess the impact of partial sky coverage for the CMB experiment and galaxy survey,
we work with simulations in map space. We develop a numerical framework to produce sets
of properly correlated CMB maps and redshift-binned galaxy number counts, assuming the
underlying fields are Gaussian. We derive and implement a set of real space quadratic esti-
mators and an associated pipeline to reconstruct the radial velocity field from an ensemble
of simulated CMB maps (including both blackbody components and foreground residuals)
and correlated binned galaxy number count maps. We find that no significant bias is intro-
duced by masking, and confirm that the reconstructed power spectra are essentially scaled
by the fraction of the sky that remains unmasked.

Our results suggest that the main limitations on kSZ velocity reconstruction will be
various modelling errors that give rise to a biased reconstruction of the velocity field.
The largest among these are biases introduced by photometric redshift errors and mis-
modelling of the galaxy-electron cross-power spectra, highlighting areas for future work.
With a fixed experimental setup, improvements in the fidelity of the reconstruction can
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be made through better foreground removal techniques on small angular scales. However,
our investigations have not found any effect that seriously impacts the performance of kSZ
velocity reconstruction as presented in previous literature, which is good news for this
technique.

The plan of this chapter is as follows: Sec.2.2 presents the extended Ligthcone Picture
formalism. Sec.2.3 describes our modelling of the many observables involved in kSZ velocity
reconstruction. Sec.2.4 presents a forecast for the reconstruction of the radial velocity and
an analysis of the new sources of bias and noise described in the extended formalism.
Sec.2.5 presents our pipeline for generating realizations of properly correlated CMB maps
and redshift-binned galaxy number counts, assuming the underlying fields are Gaussian,
and use this to validate a velocity reconstruction pipeline and assess map-based systematics
such as masking. We summarize our conclusions in Sec.2.6.

2.2 Formalism

In this section, we describe the extended formalism for kSZ velocity reconstruction in the
Lightcone Picture. We begin by reviewing the projection of cosmological fields onto our
past lightcone. Coarse-grained cosmological fields on the lightcone constitute the inputs to
our estimator formalism, and we describe a coarse graining scheme as well as the statistics
of the coarse grained fields. We outline the quadratic estimator formalism, proceeding from
the simplest to the most realistic scenario.

2.2.1 Continuous fields on the lightcone

Continuous fields defined on our past lightcone constitute some of the basic building blocks
of our formalism. A simple way of constructing a field on the lightcone is to take the
projection of an underlying 4-dimensional space time field U(η,x), where η is the conformal
time coordinate and x are the comoving spatial coordinates. If one parametrizes the
lightcone with a unit direction vector n̂ and a comoving distance χ, then the projected
field is defined by:

F(n̂, χ) ≡ U(η(χ),x = χn̂). (2.1)

In many cases, it is convenient to express F(n̂, χ) in terms of the spatial Fourier moments
of the field U, defined by:

U(η,x) =

∫
d3k

(2π)3
Ũ(η,k) eik·x, (2.2)
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which gives

F(n̂, χ) =

∫
d3k

(2π)3
Ũ(η(χ),k) eik·χn̂. (2.3)

The direction dependence of the lightcone field can be expanded in terms of spherical
harmonics:

F(n̂, χ) =
∑
`m

F`m(χ)Y`m(n̂) (2.4)

and we will refer to the coefficients F`m(χ) as the lightcone moments (LC moments for
short) of the field F. The LC moments can be expressed as:

F`m(χ) =

∫
d2n̂

(2π)3
Y ∗`m(n̂)

∫
d3k

(2π)3
Ũ(η(χ),k) eik·χn̂, (2.5)

and, using properties of the spherical harmonics and eik·χn̂, we can further simplify the
expression to:

F`m(χ) =

∫
d3k

(2π)3
4π(i)` j`(kχ) Ũ(η(χ),k)Y ∗`m(k̂), (2.6)

where j`(kχ) is a spherical Bessel function. It is possible to define fields on the lightcone
using a more complex projection of the underlying field U than the one used in Eq.(2.1). For
example, the projection could depend on the direction n̂ or introduce weights depending
on the conformal time η. A more general expression for the LC moments is then:

F`m(χ) =

∫
d3k

(2π)3
K`(χ, k) Ũ(η(χ),k)Y ∗`m(k̂), (2.7)

where K`(χ, k) is an integral kernel determined by the particular observable and typically
containing linear combinations of spherical Bessel functions.

2.2.2 Integrated and coarse grained fields on the lightcone

A second type of building block of our formalism are line-of-sight integrals of continuous
fields on the lightcone. Given a generic window function W (χ) we define the windowed F
field:

FW (n̂) ≡
∫
dχW (χ) F(n̂, χ), (2.8)

and its spherical harmonic moments:

FW`m ≡
∫
dχ W (χ) F`m(χ). (2.9)
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where F`m(χ) are the LC moments defined in the previous section. Given a finite portion
of the lightcone determined by an interval [χmin, χmax], we can consider a complete set of
normalized functions µi(χ) and expand the LC moments of the field F:

F`m(χ) =
∑
i

Fi`m µ
i(χ) (2.10)

where the coefficients Fi`m are obtained using Eq.(2.9) with W (χ) = µi(χ). From now on,
we refer to these coefficients as the µ-binned LC moments of the field F. In this work,
we choose to expand the LC moments in the radial direction using the Haar basis. Haar
wavelets are defined on the interval χmin ≤ χ ≤ χmax by:

hs(χ) =
1√

χmax − χmin


2p/2, (q − 1) 2−p ≤ ( χ

χmax−χmin
) < (q − 1/2) 2−p

−2p/2, (q − 1/2) 2−p ≤ ( χ
χmax−χmin

) < q 2−p

0, otherwise

(2.11)

with s = 2p + q − 1 for integer p, q for s > 0; for s = 0, the Haar wavelet is h0(χ) =
1√

χmax−χmin
. Visually, Haar wavelets consist on a sequence of re-scaled top-hat functions

(see Fig.2.1). The scale is determined by p and the location is determined by q; for each
value of s there is a unique choice of p, q. The Haar basis functions are orthonormal over
the interval χmin ≤ χ ≤ χmax: ∫ χmax

χmin

dχ hs(χ)hs
′
(χ) = δss′ (2.12)

We choose the the Haar basis to expand the LC moments because conveniently the
truncated Haar expansion up to s = N − 1 is equivalent to representing the LC moments
by their average values in comoving bins of equal size ∆χ = χmax−χmin

N
:

N−1∑
s=0

Fs`m hs(χ) =
N−1∑
α=0

Fα`m Πα(χ) (2.13)

where

Πα(χ) =

{
1

∆χ
, χmin + j∆χ ≤ χ < χmin + (j + 1)∆χ,

0, otherwise
(2.14)

and Fα`m are the Π-binned LC moments (we reserve Greek letters to index the Π-binned LC
moments and Latin letters to index the Haar-binned LC moments). This property allows
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Figure 2.1: s = 1, 9, 56 Haar wavelets hs(χ) for the interval χ ∈ [840, 7900] Mpc.

us to express the LC moments in a way that coarse-graining in the radial direction is clear:

F`m(χ) =
N−1∑
α=0

Fα`m Πα(χ) +
∞∑
s=N

Fs`m h
s(χ) (2.15)

where the first sum represents the “coarse” or ”bulk” radial modes and the second sum,
orthogonal to the first, represents the “fine” modes that don’t contribute to the bulk
averages. We note that the spherical Fourier-Bessel decomposition (see e.g. [70]) could
have been chosen instead of the Haar basis used here. In the context of galaxy redshift
surveys, a comparison between the spherical Fourier-Bessel decomposition and the redshift-
binned approach employed here can be found in Ref. [71]. Exploring the advantages of
various choices of basis is deferred to future work.

2.2.3 Statistically isotropic correlations

The statistically isotropic correlations between µ-binned or integrated lightcone moments
can conveniently be expressed in terms of a set of angular auto and cross-spectra that
depend on ` and the window labels only. Let’s consider two fields F and G on the lightcone,
constructed from underlying 4-dimensional fields UF and UG as described in 2.2.1, and
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integrated on the line of sight with windows W and W ′ respectively. The cross-spectra is:

CFWGW
′

` ≡
〈

FW`mGW ′

`m

〉
=

∫
dχ1dχ2 W (χ1)W ′(χ2)

〈
F`m(χ1)G`m(χ2)

〉
=

∫
dχ1dχ2 W (χ1)W ′ (χ2)

×
∫

k2dk

(2π)3
KF` (χ1, k)KG` (χ2, k) PFG(χ1, χ2, k), (2.16)

where we have assumed a statistically isotropic cross-correlation power spectrum between
the underlying 4-dimensional space time fields:〈

ŨF (η(χ1),k)∗ŨG(η(χ2),k′)
〉

= (2π)3PFG(χ1, χ2, k)δ(3)(k− k′). (2.17)

Although a brute force computation of the integrals in Eqs.(2.16) is feasible for certain
values of ` and certain χ ranges, the oscillatory behaviour of the integral kernels makes a
brute force approach a rather cumbersome one if accuracy across a wide range of multipole
moments and redshifts is desired. This is exactly our case, as we aim to have consistent
modelling of large-angle and small-angle observables across a large redshift range. The
Limber approximation (see e.g. [72]) can be used to simplify the oscillatory integrals and
provide accurate spectra under certain circumstances. For our purposes, an implementation
of the Limber approximation is challenged by several factors: first, part of our calculations
require narrow window functions, which can drive the Limber approximation beyond its
regime of validity if the multipole ` is not high enough. Second, the Limber approximation
only picks up the equal-time contribution to the cross-correlation power spectra (χ1 = χ2),
and does not capture non-negligible contributions from unequal-time correlations [73]. Here
we adopt the “Beyond Limber approximation” method from [74], which separates (2.16)
into a term suitable for the Limber approximation and a term with separable structure
that allows for fast Bessel integrations. We briefly summarize this method in Appendix
B.1.

2.2.4 Statistically anisotropic cross-correlations

We now discuss our modelling for anisotropic cross-correlations between the temperature
field and a windowed density tracer on the lightcone. We write the observed temperature
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field as the sum of two contributions:

Θ(n̂) = I(n̂) +

∫
dχ M(χ, n̂)B(χ, n̂) (2.18)

where the first term I(n̂) represents all the contributions to the temperature coming from
integrated lightcone fields:

I(n̂) =
∑
a

∫
dχWa(χ) Fa(n̂, χ), (2.19)

and the second term consists on the line of sight integration of the product of two lightcone
fields. Consider as well a large scale structure tracer obtained as a line of sight integration
of a density field δ(χ, n̂) on the lightcone:

δW (n̂) =

∫
dχW (χ) δ(n̂, χ), (2.20)

and we assume that I(n̂), M(χ, n̂), G(χ, n̂) and δW (n̂) are isotropically correlated among
each other as described in Sec. 2.2.3.

The second term in Eq.(2.18) leads to a statistical anisotropy when the temperature
harmonics are correlated with the harmonics of the density field:〈

Θ`m δW`′m′
〉

= (−1)mCIδW

` δ``′δmm′

+
∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−m

∫
dχ
〈
M`1m1(χ) B`2m2(χ)δW`′m′

〉
(2.21)

where W `a,`b,`c
ma,mb,mc

is an angular mode coupling matrix containing Wigner 3-j symbols;
M`1m1(χ) and B`1m1(χ) are the LC moments of the fields M(χ, n̂) and B(χ, n̂) as de-
fined in Sec.2.2.1. The type of mode coupling matrices that we will use in this chapter
have the following structure:

W `a,`b,`c
ma,mb,mc

= ω(`a, `b, `c)

√
(2`a + 1) (2`b + 1) (2`c + 1)

4π

×
(
`a `b `c
0 0 0

)(
`a `b `c
ma mb mc

)
(2.22)

were ω(`a, `b, `c) is an extra scale dependence that appears only for some of the signals we
consider. The three-point function in Eq.(2.21) can be approximated in the limit that two
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of the (`1, `2, `) multipoles are far greater than the remaining multipole (squeezed limit).
In the squeezed limit where `1 � `, `2, we consider the field M`1m1(χ) to be deterministic,
and therefore approximate:〈

M`1m1(χ)B`2m2(χ) δW`′m′
〉
≈ M`1m1(χ)

〈
B`2m2(χ) δW`′m′

〉
. (2.23)

Inserting the expression above into Eq.(2.21) and expanding M`1m1(χ) and B`2m2(χ) using
the Haar basis gives:〈

Θ`m δW`′m′
〉

= (−1)mCIδW

` δ``′δmm′

+
∞∑
s=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

sW
``1`′ M s

`1m1
(2.24)

where we have the defined the coupling:

fM
sW

``1`′ ≡ ω(`, `1, `
′)

√
(2`+ 1)(2`1 + 1)(2`′ + 1)

4π

(
` `′ `1

0 0 0

)
CBsδW

`′ . (2.25)

Eq.(2.24) tells us that the statistical anisotropy in the small angular scale temperature-
density cross-correlation `, `′ � 1 is modulated by the large angular scale field M . More
precisely, each separate Haar-binned LC moment M s

`1m1
sources an independent statisti-

cally anisotropic term.

As discussed in Sec. 2.2.2, it is possible to use a mixed Π-binned and Haar-binned
expansion by choosing a truncation value s = N − 1:〈

Θ`m δW`′m′
〉

= (−1)mCIδW

` δ``′δmm′

+
N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

αW
``1`′ Mα

`1m1

+
∞∑
s=N

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

sW
``1`′ M s

`1m1
(2.26)

where

fM
αW

``1`′ ≡ ω(`, `1, `
′)

√
(2`+ 1)(2`1 + 1)(2`′ + 1)

4π

(
` `′ `1

0 0 0

)
CBαδW

`′ ∆χ. (2.27)

36



Eq.(2.26) tells us that some of the statistical anisotropy comes from the ’coarse’, ’bulk’
radial modes Mα

`1m1
and the rest of the statistical anisotropy comes from the ‘fine’, small-

scale modes M s
`1m1

that don’t contribute to the bulk averages. Our formalism builds upon
previous literature [19] in which the contribution from fine modes on the lightcone has
not been considered and the statistical anisotropy is approximated as only sourced by the
bulk modes. This can be a good approximation if N is high enough (how high depends on
the radial profile of M`1m1(χ)); in this work we will keep these terms and quantify their
relevance in the modelling of the temperature-density statistical anisotropy.

We can add more generality to our modelling of the temperature-density cross-correlation
by adding additional contributions to the temperature signal:

Θ(n̂) = I(n̂) +

∫
dχ M(χ, n̂)B(χ, n̂) +

∫
dχ Q(χ, n̂)D(χ, n̂) + . . . (2.28)

which translate to:〈
Θ`m δW`′m′

〉
= (−1)mCIδW

` δ``′δmm′

+
N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

αW
``1`′ Mα

`1m1

+
∞∑
s=N

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

sW
``1`′ M s

`1m1

+
N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fQ

αW
``1`′

Qα
`1m1

+
∞∑
s=N

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fQ

sW
``1`′

Qs
`1m1

+ . . . (2.29)

2.2.5 Quadratic estimator

In this subsection we discuss how the Π-binned modes appearing in the statistical anisotropy
Eq.(2.29) can be estimated by constructing appropriately weighted sums of products of
temperature and density multipoles. The most general case discussed in the previous
subsection included statistical anisotropies sourced by the Π-binned and Haar-binned LC
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moments of a series of modulating fields (M(n̂, χ) , Q(n̂, χ) , . . . ). We will first consider
the simplified case in which there is only one modulating field M(n̂, χ) and a single Π
mode α and show how the estimation works. After that, we progressively add layers of
complexity until we reach the most general case.

Case 1: Single modulating field and single Π mode

Let’s start by considering the simple case in which there is only one modulating bulk mode
Mα

`1m1
sourcing the statistical anisotropy in the temperature-density cross-correlation.

Starting from Eq.(2.18), we write the temperature multipoles as:

Θ`m = I`m +
∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−mM

α
`1m1

Bα
`2m2

∆χ (2.30)

and write the temperature cross-correlation as:〈
Θ`m δW`′m′

〉
= (−1)mCIδW

` δ``′δmm′

+
∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

αW
``1`′ Mα

`1m1
(2.31)

Let’s construct a quadratic sum of temperature and density multipoles with the follow-
ing structure

M̂α
LM = AM

α

L

∑
`m;`′m′

(−1)M
(
` `′ L
m m′ −M

)
GMαW
``′L Θ`mδ

W
`′m′ (2.32)

and choose weights GMαW
``′L such that the estimator is unbiased:〈

M̂α
LM

〉
= Mα

LM (2.33)

and has minimum variance. The first condition translates to

AM
α

L = (2L+ 1)

(∑
`;`′

GMαW
``′L fM

αW
`L`′

)−1

. (2.34)

The minimum variance estimator can be found using the Lagrange multiplier method
subject to the constraint Eq.(2.34), which gives:

GMαW
``′L ≡ CΘΘ

`′ C
δW δW

` fM
αW

`L`′ − (−1)`+`
′+LCIδW

` CIδW

`′ fM
αW

`′L`

CΘΘ
` CΘΘ

`′ C
δW δW
` CδW δW

`′ −
(
CIδW
`

)2(
CIδW
`′

)2 (2.35)
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where CΘΘ
` is the full temperature power spectrum. A complete derivation can be found

in Appendix B.2. In the computation of the estimator variance used to derive GMαW
``′L , we

have only included the disconnected part of the temperature-galaxy-temperature-galaxy
four-point function. Under this approximation, the estimator variance is given by:〈

M̂α
L′M ′M̂

α∗
LM

〉
= CMαMα

L + AM
α

L (2.36)

However, looking in more detail at the estimator variance:

〈
M̂α

LMM̂
α∗
L′M ′

〉
= AM

α

L AM
α

L′

∑
`ama;`bmb

∑
`cmc;`dmd

(−1)M+M ′
(
`a `b L
ma mb −M

)(
`c `d L′

mc md −M ′

)
×GMαW

`a`bL
GMαW
`c`dL′

〈
Θ`amaδ

W
`bmb

Θ∗`cmcδ
W∗
`dmd

〉
= AM

α

L AM
α

L′

∑
`ama;`bmb

∑
`cmc;`dmd

(−1)M+M ′
(
`a `b L
ma mb −M

)(
`c `d L′

mc md −M ′

)

×GMαW
`a`bL

GMαW
`c`dL′

[ 〈
I`amaδ

W
`bmb

I∗`cmcδ
W∗
`dmd

〉
+ (∆χ)2

∑
`1m1

∑
`2m2

∑
`′1m

′
1

∑
`′2m

′
2

× (−1)ma+mcW `1,`2,`a
m1,m2,−maW

`′1,`
′
2,`c

m′1,m
′
2,−mc

〈
Mα

`1m1
Bα
`2m2

δW`bmbM
α∗
`′1m

′
1
Bα∗
`′2m

′
2
δW∗`dmd

〉]
(2.37)

we see that the estimator variance depends on a six-point function of the underlying
fields. Therefore, even if all the fields are Gaussian, the disconnected four-point function is
not a complete description of the estimator variance – one must in principle include the 15
terms that contribute to the disconnected six-point function. Fortunately, as we describe
in Appendix B.3, for the observables considered in this work the relevant components of
the six-point function do not yield any significant additional variance beyond the terms in
Eq. 2.36. This additional contribution to the variance was computed for kSZ tomography in
the box formalism in Ref. [21], where in analogy with lensing reconstruction, it was referred
to as the N (1) bias. For non-Gaussian fields, one must additionally compute the connected
part of the six-point function. This was also computed in Ref. [21], where it was shown
that this ”N (3/2) bias” is far larger than the N (1) bias, and can even become comparable
to AM

α

L at sufficiently high SNR. A full computation of these additional contributions to
the variance within the Lightcone Picture will appear in future work. Moving forward, we
will only consider the contribution from CMαMα

L and AM
α

L in our estimator variance.
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Case 2: Single modulating field and multiple Π modes

The next step to add more realism is to have multiple Π-binned LC moments from a single
modulating field. In this case we have:

Θ`m = I`m +
N−1∑
α=0

∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−mM

α
`1m1

Bα
`2m2

∆χ (2.38)

and 〈
Θ`m δW`′m′

〉
= (−1)mCIδW

` δ``′δmm′

+
N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

αW
``1`′ Mα

`1m1
(2.39)

We want to construct N unbiased quadratic estimators, one for each modulating source
Mα

`1m1
. The strategy we choose is to first construct N biased estimators, by taking N

versions of the single field estimator Eq.(2.32) described in Case 1:

M̂0
LM = AM

0

L

∑
`m;`′m′

(−1)M
(
` `′ L
m m′ −M

)
GM0W
``′L Θ`mδ

W
`′m′

...

M̂N−1
LM = AM

N−1

L

∑
`m;`′m′

(−1)M
(
` `′ L
m m′ −M

)
GMN−1W
``′L Θ`mδ

W
`′m′ (2.40)

where the weights AM
α

L , GMα,W
``′L are chosen exactly as if Mα

`1m1
was the only source of

statistical anisotropy. These estimators will be biased:〈
M̂0

LM

〉
= M0

LM +
∑
α6=0

M̂α
LM

AM
0

L

2L+ 1

∑
``′

GM0W
``′L fM

αW
`L`′ (2.41)

...〈
M̂N−1

LM

〉
= MN−1

LM +
∑

α 6=N−1

M̂α
LM

AM
N−1

L

2L+ 1

∑
``′

GMN−1W
``′L fM

αW
`L`′

(2.42)
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We can define a “rotation matrix”:

(RL)XY ≡
∑

``′ G
XW
``′L f

YW
`L`′∑

``′ G
XW
``′L f

XW
`L`′

(2.43)

with indices X, Y in (M0, . . . ,MN−1). With this matrix we write the system Eqs.(2.41)
as: 〈

d̂LM

〉
= RL · dLM , (2.44)

where d̂LM = (M̂0
LM , . . . , M̂

N−1
LM ) and dLM = (Mα

LM , . . . ,M
N−1
LM ). If the rotation matrix is

invertible, we can now define unbiased estimators d̃LM for dLM :

d̃LM ≡ R−1
L · d̂LM (2.45)

The procedure above serves as an example of bias hardening the quadratic estimators [69]
in the presence of multiple sources of statistical anisotropy in the temperature-density
cross-correlation1.

The two point function for the unbiased estimator is:〈
d̃LM d̃†LM

〉
= R−1L ·

〈
d̂LM d̂†LM

〉
· (R−1L)† (2.46)

where
〈
d̂LM d̂†LM

〉
is the two point function of the biased estimator; note that this is a

matrix containing all auto and cross-spectra. Similarly to Case 1, the biased two point
function can be written in terms of 4-point and 6-point functions and broken down into

1It is important to highlight that these unbiased estimators won’t necessarily be the minimum variance
estimators for MLM . It is possible to construct an unbiased and minimum variance estimator by correlating
linear combinations of δW maps with Θ. However, as we demonstrate below, the simpler approach taken
here of deriving separate estimators and then rotating yields very good results in practice. Exploring such
new estimators is deferred to future work.
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signal and noise terms:〈
(d̂LM)X(d̂∗L′M ′)

Y
〉

= AXLA
Y
L′

∑
`ama;`bmb

∑
`cmc;`dmd

(−1)M+M ′
(
`a `b L
ma mb −M

)(
`c `d L′

mc md −M ′

)
× GXW

`a`bL
GYW
`c`dL′

〈
Θ`amaδ

W
`bmb

Θ∗`cmcδ
W∗
`dmd

〉
= AXLA

Y
L′

∑
`ama;`bmb

∑
`cmc;`dmd

(−1)M+M ′
(
`a `b L
ma mb −M

)(
`c `d L′

mc md −M ′

)

× GXW
`a`bL

GYW
`c`dL′

[ 〈
I`amaδ

W
`bmb

I∗`cmcδ
W∗
`dmd

〉
+
∑
`1m1

∑
`2m2

∑
`′1m

′
1

∑
`′2m

′
2

× (−1)ma+mcW `1,`2,`a
m1,m2,−maW

`′1,`
′
2,`c

m′1,m
′
2,−mc

×
〈

(X`1m1 ·Y`2m2) δ
W
`bmb

(
X∗`′1m′1 ·Y

∗
`′2m

′
2

)
δW∗`dmd

〉]
(2.47)

where X, Y are indices in (M0, . . . ,MN−1) and X`m,Y`m are the vectors:

X`m = (M0
`m, . . . ,M

N−1
`m ) (2.48)

Y`m = (∆χB0
`m, . . . ,∆χB

N−1
`m ) (2.49)

The dominant terms of the 2-point function of the bias estimator are:〈
d̂LM d̂†LM

〉
= RLCMM

L (RL)† + N0
L + . . . (2.50)

where CMM
L is the modulating field covariance matrix and the elements of the N0

L matrix
are given by:

(N0
L)αβ =

AM
α

L AM
β

L

2L+ 1

∑
`1`2

GMαW
`1`2L

[
GMβW
`1`2L

CΘΘ
`1
CδW δW

`2
+ (−1)`1+`2+LGMβW

`2`1L
CΘδW

`1
CΘδW

`2

]
(2.51)

It is easy to check that the diagonal elements satisfy (N0
L)αα = AM

α
. This is to be

expected because we constructed the Case 2 estimators as collections of the Case 1 estima-
tor. Eq.(2.50) has further contributions from the 6-point function: some relatively simple
terms proportional to the covariances CBB

L ,CδW δW

L ,CδWB
L , etc., and more complicated terms

coming from various contractions of the 6-point function. Again, these contributions are
expected to be small enough to be neglected.
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Case 3: Single modulating field, multiple Π and Haar modes

The estimators constructed in Case 2 ignore the contributions to the temperature mul-
tipoles and temperature-density statistical anisotropy coming from the Haar-binned LC
moments of the field M(n̂, χ):

Θ`m = I`m +
N−1∑
α=0

∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−mM

α
`1m1

Bα
`2m2

∆χ (2.52)

+
smax∑
s=0

∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−mM

s
`1m1

Bs
`2m2

(2.53)

〈
Θ`m δW`′m′

〉
= (−1)mCIδW

` δ``′δmm′

+
N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

αW
``1`′ Mα

`1m1

+
smax∑
s=N

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

sW
``1`′ M s

`1m1
(2.54)

.

where smax is chosen such that Haar expansion is mostly converged. If we follow the same
steps as in Case 2 to construct N biased estimators, the Haar modes lead to an additional
bias:

〈
M̂0

LM

〉∣∣∣
Case 3

→
〈
M̂0

LM

〉∣∣∣
Case 2

+
smax∑
s=N

M s
LM

AM
0

L

2L+ 1

∑
``′

GM0W
``′L fM

sW
``2`′

...〈
M̂N−1

LM

〉∣∣∣
Case 3

→
〈
M̂N−1

LM

〉∣∣∣
Case 2

+
smax∑
s=N

M s
LM

AM
N−1

L

2L+ 1

∑
``′

GMN−1W
``′L fM

sW
``2`′ (2.55)

The relevance of this bias depends on the truncation number N , which in principle can
be chosen to be high enough such that the contribution from Haar modes can be ignored.
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Thus, quantifying the size of these terms as a function of N is a useful way of determining
the level of coarse graining that we need to model our observables with.

The 2-point function of the estimator can be computed using the same expression
Eq.(2.47) as in Case 2 just by expanding the vectors X,Y defined in Eqs.(2.48-2.49):

X`m = (M0
`m, . . . ,M

N−1
`m ,M s=N

`m , . . . ,M s=smax
`m ). (2.56)

Y`m = (∆χB0
`m, . . . ,∆χB

N−1
`m , Bs=N

`m , . . . , Bs=smax
`m ). (2.57)

The resulting 2-point function contains three terms which we identify as dominant:〈
d̂LM d̂†LM

〉
= RLCMM

L (RL)† + N0
L + NMM fine

L + . . . (2.58)

where RL is the rotation matrix defined in Eq.(2.43), CMM
L is the modulating field covari-

ance matrix, N0
L computed exactly as in Case 2, and NMM fine

L is given by:

(
NMM fine
L

)αβ
=

kmax∑
s,s′=N

〈
M s

LMM
s′∗
LM

〉
×

(∑
`1`2

AM
α

L

2L+ 1
GMαW
`1`2L

fM
sW

`1L`2

)(∑
`1`2

AM
β

L

2L+ 1
GMβW
`1`2L

fM
s′W

`1L`2

)
(2.59)

We call this term the fine mode noise, as it is sourced by the Haar modes of the modulating
field above the truncation number N . NMM fine

L can become comparable to N0
L for low

enough N . Conversely, one can find a high enough truncation number N such that the
fine mode noise can be neglected. In a realistic scenario, the truncation number is limited
by the details of the 3-dimensional large-scale structure survey that is being used for the
reconstruction. In further sections we will show the size of the fine mode noise in the
estimation of the radial velocity Π-binned LC moments.

Case 4: Multiple modulating fields, multiple Π and Haar modes

Generalizing the results from the previous cases to the multiple field case is straightforward.
The temperature and the statistical anisotropy are:
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Θ`m = I`m +
N−1∑
α=0

∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−mM

α
`1m1

Bα
`2m2

∆χ (2.60)

+
smax∑
s=N

∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−mM

s
`1m1

Bs
`2m2

+
N−1∑
α=0

∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−mQ

α
`1m1

Dα
`2m2

∆χ

+
smax∑
s=N

∑
`1m1

∑
`2m2

(−1)mW `1,`2,`
m1,m2,−mQ

s
`1m1

Ds
`2m2

...

〈
Θ`m δW`′m′

〉
= (−1)mCIδW

` δ``′δmm′

+
N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

αW
``1`′ Mα

`1m1
(2.61)

+
smax∑
s=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

sW
``1`′ M s

`1m1

+
N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fQ

αW
``1`′

Qα
`1m1

+
smax∑
s=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fQ

sW
``1`′

Qs
`1m1

...

Similarly to the previous cases, we can construct N biased estimators for the Π-binned
LC moments of the M field. The 2-point function is calculated using Eq.(2.47) as in Case
2 just by expanding the vectors X`m,Y`m space to:

X`m = (M0
`m, . . . ,M

N−1
`m ,Mk=N

`m , . . . ,Mk=kmax

`m , Q0
`m, . . . , Q

N−1
`m , Qk=N`m , . . . , Qk=kmax

`m , . . . ) (2.62)

Y`m = (∆χB0
`m, . . . ,∆χB

N−1
`m , Bk=N`m , . . . , Bk=kmax

`m ,∆χD0
`m, . . . ,∆χD

N−1
`m , Dk=N

`m , . . . , Dk=kmax

`m , . . . )
(2.63)
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The number of terms contributing to the 2-point function will clearly increase with the
introduction of new modulating fields. In addition to the terms from Case 3, each new
modulating field Q will introduce a term NQQ

L given by:

(
NQQ
L

)αβ
=

N−1∑
α′,β′=0

〈
Qα′

LMQ
β′∗
LM

〉
×

(∑
`1`2

AM
α

L

2L+ 1
GMαW
`1`2L

fQ
α′W

`1L`2

)(∑
`1`2

AM
β

L

2L+ 1
GMβW
`1`2L

fQ
β′W

`1L`2

)
, (2.64)

as well as other less significant terms with a similar structure. In principle, there is no
immediate way to determine if NQQ

L are negligible respect to N0
L and NMM fine

L , as this
depends on the specific details of the modulating fields giving rise to the temperature
signal. We show examples comparison in Sec.2.4, where we compute the reconstruction
noise for the remote CMB dipole.

Multiple density windows

Our formalism so far has discussed the construction of estimators for Π-binned LC moments
of a lightcone field M(n̂, χ) using only one window window function W (χ) for the density
tracer. We remind the reader that the window function shows up in the coupling Eq.(2.27)
through the cross-spectra CBαδW

`′ ≡
〈
Bα
`mδ

W
`m

〉
, where B(n̂, χ) is the field integrated together

with M(n̂, χ) to form a temperature signal. Since the estimator utilizes large multipoles
`, `′, the cross-spectra will be non-negligible only if the window function W (χ) overlaps
with Πβ(χ). A density window function with a wide support on the lightcone will lead to
well defined couplings and estimators for all the Π-bins, but at the same time leads to a
increased mix in the 3-dimensional information we are trying to reconstruct. In contrast,
more localized density window functions will be better at isolating contributions coming
from different redshifts, but can lead to ill-defined estimators for Π-bins with zero overlap
with the density window. One can remediate this last issue by constructing estimators
with a changing density window function:
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M̂0
LM = AM

0W 0

L

∑
`m;`′m′

(−1)M
(
` `′ L
m m′ −M

)
GM0W 0

``′L Θ`mδ
W 0

`′m′

...

M̂N−1
LM = AM

N−1WN−1

L

∑
`m;`′m′

(−1)M
(
` `′ L
m m′ −M

)
GMN−1WN−1

``′L Θ`mδ
WN−1

`′m′ (2.65)

such that Πα(χ) andWα(χ) are overlapped. One intuitive choice is to takeWα(χ) ≡ Πα(χ),
which could be a possibility if one has 3 dimensional measurements of the large scale
structure that can be separated into custom redshift bins 2. The rotation matrix is defined
similarly as in Eq.(2.43), where the only difference comes from adequately changing the
window functions involved in each component to match the one used in the estimators:

(RL)XY ≡
∑

``′ G
XWX

``′L fYW
Y

`L`′∑
``′ G

XWX

``′L fXW
X

`L`′

(2.66)

where WX is the density window function associated to the observable X. The 2-point
function introduced in Case 2 can be easily generalized to include the varying density
window functions:

〈
d̂XLM d̂Y ∗L′M ′

〉
= AXW

X

L AYW
Y

L′

∑
`ama;`bmb

∑
`cmc;`dmd

(−1)M+M ′
(
`a `b L
ma mb −M

)(
`c `d L′

mc md −M ′

)
× GXWX

`a`bL
GYWY

`c`dL′

〈
Θ`amaδ

WX

`bmb
Θ∗`cmcδ

WY ∗
`dmd

〉
= AXW

X

L AYW
Y

L′

∑
`ama;`bmb

∑
`cmc;`dmd

(−1)M+M ′
(
`a `b L
ma mb −M

)(
`c `d L′

mc md −M ′

)

× GXWX

`a`bL
GYWY

`c`dL′

[〈
I`amaδ

WX

`bmb
I∗`cmcδ

WY ∗
`dmd

〉
+
∑
`1m1

∑
`2m2

∑
`′1m

′
1

∑
`′2m

′
2

× (−1)ma+mcW `1,`2,`a
m1,m2,−maW

`′1,`
′
2,`c

m′1,m
′
2,−mc

〈
(X`1m1 ·Y`2m2) δ

WX

`bmb

(
X∗`′1m′1 ·Y

∗
`′2m

′
2

)
δW

Y ∗
`dmd

〉]
(2.67)

2Surveys with big redshift errors can make this separation more difficult
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The advantage of using multiple localized density window functions over fewer, wider ones,
is clear: more 3-dimensional information of the lightcone fields is retained. However,
realistic large-scale structure surveys might be limited to the second scenario. In this work
we will explore both strategies for density windows.

Principal component analysis

Consider a set of estimators for the Π-binned LC moments of a field M(n̂, χ), constructed
using the methods described above. The variance of the estimator is given by:〈

d̂LM d̂∗LM

〉
= RLCMM

L (RL)† + N (2.68)

where N is the sum of all sources of noise. Although the Π basis is useful when it comes to
separation of scales and localization on the lightcone, it can be less useful when it comes to
separate the independent information contained in the 2-point function of the estimator.
Using a principal component analysis, we can find the uncorrelated linear combinations of
bins that yield the highest signal to noise. We use the following:

• Transform to a basis in which the noise matrix is diagonal.

• Perform a second transformation to a basis in which the noise matrix is the Identity.

• Perform a third transformation to a basis in which the signal matrix is diagonal.
The noise matrix, due to being equal to the identity, is unchanged by the third
transformation. The resulting signal matrix Cpp

L is diagonal and contains the signal
to noise for the different uncorrelated principal components.

The linear combinations of bins associated to the principal components can be found using
the transformation matrices T1,T2,T3 and the rotation matrix RL:

Xp = T3 ·T2 ·T1 ·RL ·X (2.69)

where X = (M0
LM , . . . ,M

N
LM). The j-th principal components then is characterized by a

set of N coefficients cjβL such that:

(Xp)jLM =
∑
β

cjβL M
β
LM (2.70)
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The signal to noise per mode for the j-th principal component is simply given by the
diagonal element (Cpp

L )jj. We define a signal to noise per harmonic LM mode as

SNLM =
∑
j

(Cpp)jjL . (2.71)

We define the total signal to noise as a sum over all principal components and harmonic
modes:

SNtot =
∑
j

∑
L

(2L+ 1)(Cpp)jjL (2.72)

Multiplicative bias from theory modelling

In order to construct the quadratic estimators, one has to assume a model for the couplings
Eq.(2.27), which depend on CBαδW

`′ (χ). If an incorrect C̃BαδW

`′ is used instead of the true
physical CBαδW

`′ , a multiplicative bias will be introduced:〈
d̂XLM

〉
=
∑
Y

ΓXY
L

(
R̃L

)XY
dYLM + ∆̃ (2.73)

where R̃L is the rotation Eq.(2.66), ∆̃ is the reconstruction noise, and ΓXY
L is the multi-

plicative bias:

ΓXY
L =

∑
``′ G̃

XWX

``′L fYW
Y

`L`′∑
``′ G̃

XWX

``′L f̃YW
Y

`L`′

(2.74)

where fYW
Y

`L`′ is the true physical coupling. The bias Eq. 2.74 is not symmetric in the
indices X, Y so in principle there are N2 bias parameters at each scale L. In the context
of kSZ velocity reconstruction, where the B-field is the differential optical depth, this
multiplicative factor is commonly referred as the optical depth bias; see e.g. [75, 20, 21,
66]. As discussed in more detail in Sec. 2.4.1, the bias does not depend on the scale
L over the relevant range for reconstruction, leaving a total of N2 bias parameters to
account for. Note that in the absence of off-diagonal terms in the rotation matrix Eq. 2.66
(or if these terms are very small), there would only be N bias parameters. This is the
assumption that has been made in previous literature utilizing the Lightcone Picture to
forecast cosmological constraints, e.g. Refs. [76, 77] (and Chapter 4 of this thesis). We
comment on this assumption and the general problem of mitigating the optical depth bias
in Sec. 2.4.1.
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2.3 Modeling of Observables

In this work, we will be interested in statistically anisotropic correlations between various
contributions to the observed CMB and a tracer of large scale structure (LSS). Our goal
is to use such statistical anisotropies to reconstruct (on large angular scales) a set of
modulating fields – here, our focus is on the radial velocity field. Our prototype tracer
is a photometric galaxy survey, as considered in e.g. Refs. [18, 19, 20, 78]; other tracers
such as spectroscopic surveys [20, 78], the Cosmic Infrared Background (CIB) [79], or line-
intensity maps [13, 80] are other interesting candidates. Throughout the this chapter, we
assume a fiducial cosmological model consistent with Planck 2018 [4]; in particular, we
set: {109As = 2.2, ns = 0.965,Ωm = 0.31,Ωb = 0.049, H0 = 68 km s−1 Mpc−1, τ = 0.06}.
There is no strong dependence on cosmological parameters for any of our conclusions.

Where necessary relations are presented in the Newtonian gauge, where at late-times
when we can neglect anisotropic stress, the metric is:

ds2 = a(η)2
(
− [1 + 2Ψ(η,x)] dη2 + [1− 2Ψ(η,x)] dx2

)
(2.75)

Because our halo model code calculates perturbations in the synchronous gauge defined
by the cold dark matter frame, we need to relate Newtonian gauge quantities to syn-
chronous gauge ones. For late-times, simple relations can be written for the Newtonian
gauge gravitational potential Ψ and the peculiar velocity field v of dark matter in terms
of the synchronous gauge dark matter perturbations in Fourier space:

Ψ(η,k) = −3ΩmH
2
0

a2(η)k2
δ(sync)
m (η,k) (2.76)

v(η,k) = i
k

k2
f(η)H(η)a(η)δ(sync)

m (η,k) (2.77)

where H is the Hubble rate and f is the growth rate, defined as a
D
dD
da

, with D(a) the linear
theory growth factor of dark matter perturbations. Given that perturbations of the galaxy
and electron fields are only needed on small scales for the reconstruction procedure, we
approximate δ

(Newt)
g ≈ δ

(sync)
g and δ

(Newt)
e ≈ δ

(sync)
e .

2.3.1 Constructing observables

All of the observables presented below are constructed from a set of fundamental cosmolog-
ical fields, which we compute using linear cosmological perturbation theory and the halo
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model for large-scale structure. Combining Eqs.(2.7) and (2.9), a field on the lightcone can
be characterized by specifying a window function W (χ), an integral kernel KF` (χ, k) and
an underlying perturbation field in Fourier space ŨF (η(χ),k) :

FW`m ≡
∫
dχ W (χ)

∫
d3k

(2π)3
K`(χ, k) ŨF (η(χ),k)Y ∗`m(k̂). (2.78)

Below, we refer to these function as the “building functions” and we specify them for each
observable we construct.

2.3.2 The CMB

The de-beamed CMB temperature measured in a frequency band ν through an instrument
with an isotropic beam (BΘ

` )ν and noise nν`m has contributions from a variety of sources.
As a baseline model, we take:

Θν
`m = ΘpCMB

`m + ΘISW,lin
`m + ΘISW,nlin

`m + ΘkSZ
`m + ΘReI

`m + ΘL
`m + (ΘXG

`m )ν + (ΘG
`m)ν +nν`m/(B

Θ
` )ν

(2.79)
There are blackbody contributions including: ΘpCMB

`m which contains the SW, Doppler,

and early ISW contributions to the primary CMB, ΘISW,lin
`m the linear contribution to the

late-time ISW component, ΘISW,nlin
`m the non-linear contribution to the late-time ISW com-

ponent (also referred to as the moving lens effect, Rees-Sciama effect), ΘkSZ
`m the late-time

kSZ component, ΘReI
`m the reionization kSZ, and ΘL

`m the lensing contribution to the primary
CMB. There are frequency-dependent extragalactic components (ΘXG

`m )ν , whose dominant
components for the experimental configurations considered below include the CIB and the
thermal Sunyaev-Zel’dovich effect (tSZ). Finally, there is a frequency-dependent galactic
component (ΘG

`m)ν .

Below we describe in detail the components which have significant cross-correlation with
late-time tracers of LSS, since such components must be computed in a self-consistent way.
The SW, Doppler, and early ISW contributions ΘpCMB

`m to the primary CMB do not con-
tribute to the cross-correlation with tracers of LSS; we compute their power spectra using
CAMB [81]. The reionization kSZ component ΘReI

`m is modelled as a Gaussian field with
power spectrum `2Crei

` /2π = 1µK2. If higher redshift tracers of LSS are considered, then
the reionization kSZ can be used to reconstruct the radial velocity field as described in
Ref. [82]; in this work, we focus on tracers of LSS that do not have any significant cross-
correlation with reionization kSZ. For the fiducial CMB experiments considered below,
including reionization kSZ does not affect any of our results below, and we therefore ne-
glect this contribution in our analysis. Galactic foregrounds on the small angular scales
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Freq. [GHz] FWHM [arcmin] Nwhite [µK-arcmin] Nred [µK2 s]
27 7.4 71 100
39 5.1 36 39
93 2.2 8 230
145 1.4 10 1,500
225 1.0 22 17,000
280 0.9 54 31,000

Table 2.1: CMB experimental noise parameters consistent with Simons Observatory Large
Area Telescope.

relevant to the reconstruction considered below are generally sub-dominant to extragalactic
foregrounds on a line of sight away from the galactic plane (see e.g. Ref. [83]). We assume
that regions with significant contamination can be masked. Other than considering the ef-
fect of a mask, we therefore neglect galactic foregrounds. We model instrumental noise nν`m
as a frequency-dependent constant and the beam (BΘ

` )ν as a Gaussian with a frequency-
dependent Full Width at Half-Maximum (FWHM) θνFWHM. Our fiducial CMB experiment
is consistent with the properties of the Simons Observatory Large Area Telescope [15],
with:

nν`m = Nred

(
`

1000

)−3.5

+Nwhite (2.80)

where Nred describes the level of 1/f atmospheric noise and Nwhite describes the sensitivity
of the frequency band. The frequencies, beam, and noise levels are collected in Table 2.1.
We assume an observation time of 5 years when computing the level of 1/f noise, and
choose the “baseline” values for noise found in [15].

In Fig. 2.2, we summarize the blackbody components of our CMB model: the primary
CMB, late-time ISW (linear and non linear), lensed CMB, and kSZ. At low-`, the dom-
inant components are the primary CMB and late-time linear ISW effects. Crucially, at
high-` (` & 4000), kSZ is the dominant blackbody component of the CMB. Each of these
contributions is discussed in more detail in the following sub-sections. In the left panel
of Fig. 2.3, we show the frequency-dependent components of our CMB model, including
extragalactic foregrounds and instrumental noise – as mentioned above, we do not con-
sider a galactic component because it will not be an important contaminant for velocity
reconstruction. In the right panel of Fig. 2.3, we compare the effective noise obtained by
using multi-frequency information with the blackbody component of the CMB and with
the noise and foregrounds in the “cleanest” channel of our fiducial experiment (for veloc-
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ity reconstruction), at 145 GHz. Note that the blackbody CMB dominates the noise and
foregrounds below ` & 3000. We assume that multi-frequency information can be used
to clean foregrounds using a standard harmonic space internal linear combination (ILC)
procedure, described in more detail below. Such a procedure can reduce the level of noise
and foregrounds by roughly a factor of 2 at high-` when compared to the 145 GHz channel.
Unless otherwise specified, in the analyses to follow we will use the ILC-cleaned CMB gen-
erated with the specifications in Table 2.1; we consider a maximum value of `max = 6000
which roughly corresponds to maps with a Healpix resolution NSIDE of 2048.

Figure 2.2: Contributions to blackbody CMB.

We now describe in more detail how we model the various CMB components listed
above.

Late-time ISW (linear)

Gravitational potentials that evolve in time induce a temperature anisotropy known as the
integrated Sachs-Wolfe (ISW) effect. The late-time ISW contribution to the CMB is given
by

ΘISW
`m = −2

∫ χmax

0

dχ
∂Ψ`m

∂χ
(χ) (2.81)

where χmax is a fiducial maximum range in comoving distance large enough to capture
the majority of the late-time decay of the potential due to the presence of a cosmological
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Figure 2.3: Left panel: Frequency dependent components of CMB compared to the
blackbody component. Colored solid lines correspond to the de-beamed instrumental noise
and dashed lines correspond to the CIB+tSZ contributions (including their cross-spectra).
Right panel: the ILC-cleaned power spectrum compared to the blackbody component
and the full 145 Ghz channel.

constant. The building functions (see Eq. 2.78) for the linear late-time ISW effect are:

W ISW,lin(χ) =

{
1, 0 ≤ χ < χmax,

0, otherwise
(2.82)

KISW,lin` (χ, k) = 4πi`
j`(kχ)

k2

3ΩmH
2
0

a2(χ)

(
−da
dχ

(χ) + a(χ)
d

dχ

)
(2.83)

ŨISW,lin(η(χ),k) = δ(lin)
m (η(χ),k) (2.84)

where δ
(lin)
m are the Fourier modes of the linear dark matter perturbations. The power

spectrum of the linear late-time ISW is calculated using Eq.(2.16).

Non-linear ISW

At the non-linear order, the ISW effect can be sourced on small-scales by the long-
wavelength peculiar velocities of gravitational potentials. Taking the limit k′ � k, the
non-linear evolution of the gravitational potential due to a long wavelength velocity modes
can be approximated as:
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Ψ̇NL(k) ∼ ikΨ(k) ·
∫

d3k′

(2π)3
v(k′) (2.85)

which translates in real space to :

Ψ̇NL(η,x) ∼ ∇ΨNL(η,x) · v(η,x) (2.86)

Simulations of the non-linear ISW effect indicate that the line of sight integral will be
mostly sourced by motions transverse to the line of sight (see Sec. 4.1 of [41] for more
details). With this approximation, the non-linear ISW effect contribution is given by

ΘISW,nlin(n̂) ≈ 2

∫ χls

0

dχ
(∇⊥Ψ)

χ
(n̂, χ) · v⊥(n̂, χ), (2.87)

where v⊥ is the peculiar (comoving) transverse velocity and ∇⊥ is the gradient on 2-sphere.
In this work, we assume that the large-scale velocity is pure-gradient, and therefore the
transverse velocity component can be expressed as v⊥ = ∇⊥Υ(n̂, χ). We refer to Υ as the
transverse velocity potential. In spherical harmonics, the effect on the CMB temperature
takes the form

ΘISW,nlin
`,m =

∫ χls

0

dχ
∑

``′mm′

Υ`′m′(χ)ψ`′′m′′(χ)

∫
d2n̂ Y ∗`m∇iY`′m′∇iY`′′m′′ , , (2.88)

where

ψ`m(χ) ≡ 2
Ψ`m(χ)

χ
, (2.89)

and we will refer to this quantity as the moving lens potential (in reference to the mani-
festation of the non-linear ISW effect through the moving lens effect). We can expand the
signal in terms of the Haar-binned LC moments of Υ and ψ:

ΘISW,nlin
`,m =

∞∑
s=0

∑
``′mm′

Υs
`′m′ψ

s
`′′m′′

∫
d2n̂ Y ∗`m∇iY`′m′∇iY`′′m′′ . (2.90)

For the transverse velocity potential we use the following building functions:

WΥs(χ) = hs(χ) from Eq.(2.11) (2.91)

KΥs

` (χ, k) = 4πi`
j`(kχ)

k2

f(χ)H(χ)a(χ)

χ
(2.92)

ŨΥs(η(χ),k) = δm(η(χ),k) (2.93)
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For the moving lens potential we use the following building functions:

Wψs(χ) = hs(χ) from Eq.(2.11) (2.94)

Kψ
s

` (χ, k) = −4πi`
j`(kχ)

k2

3ΩmH
2
0

a(χ)χ
(2.95)

Ũψs(η(χ),k) = δm(η(χ),k) (2.96)

The angular integral in Eq.(2.90) is given by:∫
d2n̂ Y ∗`m∇iY`′m′∇iY`′′m′′ =

1

2
[`(`+ 1) + `′(`′ + 1)− `′′(`′′ + 1)]

×
√

(2`+ 1)(2`′ + 1)(2`′′ + 1)

4π

×
(
` `′ `′′

m m′ m′′

)(
` `′ `′′

0 0 0

)
(2.97)

The non-linear ISW power spectrum can be calculated in terms of the auto and cross-
spectra of the Haar-binned moments of Υ and φ.

CISW,nlin
` =

∑
`′,`′′

(2`′ + 1)(2`′′ + 1)

4π

1

4
[`′(`′ + 1) + `′′(`′′ + 1)− `(`+ 1)]2

×
(
` `′ `′′

0 0 0

)2 ∞∑
s,s′=0

[
(CΥΥ)ss

′

`′ (Cψψ)ss
′

`′′ + (CΥψ)ss
′

`′ (CΥψ)ss
′

`′′

]
(2.98)

where (CΥΥ)ss
′

`′ , (Cψψ)ss
′

`′′ , (CΥψ)ss
′

`′ , and (CΥψ)ss
′

`′′ are calculated using the building functions
and Eq.(2.16). In the squeezed limit where `′ � `′′, we can set ` ' `′′ and neglect cross-
correlations between the bins s and s′ as well as the cross-power between Υ and ψ:

CISW,nlin
` =

1

4

∞∑
s=1

[∑
`′

(2`′ + 1)

4π
[`′(`′ + 1)]2(CΥΥ)ss`′

]
(Cψψ)ss` . (2.99)

Defining a potential θ⊥ ≡ 1
2
∇2
⊥Υ, and taking the continuum limit of the sum, we obtain:

CISW,nlin
` =

∫
dχ 〈θ⊥(0, χ)2〉Pψψ(

`

χ
, χ). (2.100)

We demonstrate the convergence of the non-linear ISW signal with number of bins in
Fig. 2.4.
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Figure 2.4: Convergence of non-linear ISW power with number of bins.

The kSZ effect

The contribution to the CMB temperature from the late-time kSZ effect is:

ΘkSZ(n̂) = −
∫ χmax

0

dχ veff(n̂, χ)τ̇(n̂, χ) (2.101)

where τ̇(n̂, χ) is the differential optical depth and veff(n̂, χ) is the remote dipole field. The
differential optical depth is

τ̇(n̂, χ) = σTa(χ)n̄e(χ)(1 + δe(n̂, χ)) (2.102)

where σT is the Thompson cross section, a(χ) the scale factor, n̄e(χ) the average electron
density, and δe(n̂, χ) the electron overdensity field. The remote dipole field is defined as

veff(n̂, χ) =
3

4π

∫
d2n̂e Θ(x, n̂e) (n̂ · n̂e). (2.103)

where Θ(x, n̂e) is the remote CMB at the spacetime position (η(χ),x = χn̂) along our past
lightcone. The dominant contribution to the remote dipole comes from the radial peculiar
velocity of electrons, and corrections to the dipole relevant on large scales come from the
stationary dipole components discussed in Sec.1.5. In general, the correction coming from
the stationary components can be safely neglected, only becoming significant enough when
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inspecting the correlations of the remote dipole field on large enough scales. For simplicity,
we will only consider the dominant kinetic term in this chapter, and use the terminology
radial velocity in lieu of remote dipole.

We will focus on the late-time kSZ effect here, where the limits of integration extend
from the origin out to a radial comoving distance χmax after reionization ended. We assume
a fiducial value of χmax = 8.4 Gpc, which corresponds to a redshift zmax = 6 in our fiducial
cosmology. Computing the multipoles of the kSZ temperature anisotropies Eq. 2.101 in
terms of the Haar-binned LC moments, we have:

ΘkSZ
`m =

∑
`1m1;`2m2

(−1)m
√

(2`+ 1)(2`1 + 1)(2`2 + 1)

4π

×
(
`1 `2 `
0 0 0

)(
`1 `2 `
m1 m2 −m

) ∞∑
s=1

vs`1m1
τ̇ s`2m2

(2.104)

For the radial velocity moments we use the following building functions:

W vs(χ) = hs(χ) from Eq.(2.11) (2.105)

Kvs` (χ, k) = 4πi`
f(χ)H(χ)a(χ)

(2`+ 1)k
[`j`−1(kχ)− (`+ 1)j`+1] (2.106)

Ũvs(η(χ),k) = δm(η(χ),k) (2.107)

where H(χ) is the Hubble rate and f(χ) is the growth rate, defined as a
D
dD
da

, with D(a(χ))
the linear theory growth factor of dark matter perturbations. For the differential optical
depth we use the following building functions:

W τ̇s(χ) = hs(χ) from Eq.(2.11) (2.108)

Kτ̇s` (χ, k) = 4πi`j`(kχ)σTa(χ)n̄e(χ) (2.109)

Ũτ̇s(η(χ),k) = δe(η(χ),k) (2.110)

The kSZ temperature power spectrum is

CkSZ
` =

∑
`1m1;`2m2

∑
`′1m

′
1;`′2m

′
2

(2`+ 1)

√
(2`1 + 1)(2`2 + 1)

4π

√
(2`′1 + 1)(2`′2 + 1)

4π
(2.111)

×
(
`1 `2 `
0 0 0

)(
`′1 `′2 `
0 0 0

)(
`1 `2 `
m1 m2 −m

)(
`′1 `′2 `
m′1 m′2 −m

)
×

∞∑
s,s′=1

〈(vs`1m1
)∗(τ̇ s`2m2

)∗vs
′

`′1m
′
1
τ̇ s
′

`′2m
′
2
〉 (2.112)
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Keeping the disconnected parts of the four-point function only, the power spectrum is:

CkSZ
` =

∑
`1;`2

(2`1 + 1)(2`2 + 1)

4π

(
`1 `2 `
0 0 0

)2

×
∞∑

s,s′=1

[
(Cvv)ss

′

`1
(C τ̇ τ̇ )ss

′

`2
+ (Cvτ̇ )ss

′

`1
(Cvτ̇ )ss

′

`2

]
(2.113)

where (Cvv)ss
′

`1
, (C τ̇ τ̇ )ss

′

`2
, (Cvτ̇ )ss

′

`1
, and(Cvτ̇ )ss

′

`2
are calculated using the building functions

and Eq.(2.16). Focusing on ` � 1, the majority of the power will come from `1 � `
where `2 ∼ `. In this regime, we also expect that there is little bin-bin correlation in the
differential optical depth, so we can take (C τ̇ τ̇ )ss

′

`2
' (C τ̇ τ̇ )ss`2 δss′ . Finally, the first term in

parentheses above will dominate the second on small angular scales. In this limit, the kSZ
power can be approximated by:

CkSZ
` '

smax∑
s=1

[∑
`1

(2`1 + 1)

4π
(Cvv)ss`1

]
(C τ̇ τ̇ )ss` (2.114)

=
smax∑
s=1

〈v̄s(0)2〉(C τ̇ τ̇ )ss` (2.115)

Taking smax →∞, this is equivalent to the expression:

CkSZ
` =

∫
dχ 〈v(0, χ)2〉 τ̇(χ)2 P ee(

`

χ
, χ) (2.116)

which is consistent with previous literature [84].

In Fig. 2.5 we show the coarse grained kSZ power spectrum for χmax = 8.4 Gpc (corre-
sponding to a redshift zmax = 6 in our fiducial cosmology) with kmax = 32, 64, 128, 256 and
512 bins (corresponding to ∆χ = 263, 131, 66, 33, 17 Mpc). We compare with the contin-
uum expression Eq. 2.116. It can be seen from this figure that ∼ 512 bins, corresponding
of a coarse graining scale of ∼ 17 Mpc is sufficient to capture the majority of the kSZ
power. Based on this, below we take 512 bins to correspond to the continuum limit.

Lensing of the primary CMB

We approximate the lensing of the primary CMB by the first order term:

ΘL(n̂) = (∇⊥φ) · (∇⊥ΘpCMB) (2.117)
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Figure 2.5: Convergence of kSZ power with number of bins.

where ∇⊥ is the angular gradient in the unit 2-sphere and φ(n̂) is the lensing potential,
defined as:

φ(n̂) = −2

∫ χls

0

dχ
χls − χ
χlsχ

Ψ(n̂, χ). (2.118)

In terms of the multipole moments of the primary CMB and the lensing potential, the
lensed CMB contribution is written as:

ΘL
`m =

∑
``′mm′

φ`′m′Θ
pCMB
`′′m′′

∫
d2n̂ Y ∗`m∇iY`′m′∇iY`′′m′′ (2.119)

where the primary CMB is computed using CAMB and the lensing potential moments
are computed using the building functions:

W φ(χ) =

{
1, 0 ≤ χ < χls,

0, otherwise
(2.120)

Kφ` (χ, k) = 4πi`
j`(kχ)

k2

3ΩmH
2
0

a(χ)

χls − χ
χlsχ

(2.121)

Ũφ(η(χ),k) = δm(η(χ),k) (2.122)

The power spectrum calculation is similar to the one for the non-linear ISW effect, and
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yields:

CL
` =

∑
`′,`′′

(2`′ + 1)(2`′′ + 1)

4π

1

4
[`′(`′ + 1) + `′′(`′′ + 1)− `(`+ 1)]2

×
(
` `′ `′′

0 0 0

)2 [
(Cφφ)`′(C

ΘΘ)`′′ + (CφΘ)`′(C
φΘ)`′′

]
(2.123)

Extragalactic foregrounds

There are a number of extragalactic foregrounds that contribute to the CMB, whose relative
importance depends on the frequency and scale being observed. At low frequencies (.
150 GHz) on arcminute scales , the thermal Sunyaev Zel’dovich (tSZ) effect and radio
point sources dominate. At high frequencies (& 150 GHz) on the same scales, the CIB is
the dominant extragalactic foreground. Below, we assume that enough radio point sources
can be masked to make tSZ the dominant source at low frequencies. With this assumption,
we include the tSZ and CIB only in our extragalactic foreground model.

We model the CIB and tSZ using the Halo Model for large scale structure, combining
elements of the models described in Refs. [20, 79, 85, 86, 87, 88]. Our assumptions are
outlined in detail in Appendix B.4. In Fig. 2.3, we show angular power spectra of the CIB
and tSZ at several frequencies for our fiducial CMB experiment. Since all observables are
computed within the same halo model, it is possible to capture the correlations between
the CIB, tSZ, and galaxy number counts – e.g. the spectra in Fig. 2.3 include the CIB-
tSZ cross-power. We discuss the detailed properties of the galaxy-foreground cross-spectra
below in Sec. 2.3.6.

2.3.3 Foreground Cleaning of the CMB

To access the blackbody components of the CMB necessary for velocity reconstruction, we
can estimate how well one can use the multi-frequency information in the CMB to clean
the extragalactic foregrounds in our model. Here, we use the harmonic Internal Linear
Combination (ILC) algorithm [89].

We write the covariance between the de-beamed CMB at different frequencies as a
matrix:

C` = CTT
` ee† + CXG

` + (B−1N)` (2.124)

where CTT
` contains the blackbody components of the CMB (primary CMB, kSZ, ISW,

etc.), e = {1, 1, 1, . . .}, CXG
` contains the CIB, tSZ, and the cross-correlations between
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these various components at the measured frequencies, and (B−1N)` is the de-beamed
instrumental noise covariance (assumed diagonal). Following the ILC method in harmonic
space [89], we estimate the blackbody component as:

Θ̂`m = w†` Θ`m (2.125)

where the weights w` that minimize the variance of the resulting multipole moments Θ̂`m

are given by:

w` =
(C`)

−1e

e†(C`)−1e
(2.126)

The ensemble averaged power spectrum of the cleaned map is:

CΘΘ;clean
` = CTT

` + w†`
(
CXG
` + (B−1N)`

)
w` (2.127)

To the extent that the second term is small, we have successfully isolated the blackbody
component of the CMB in the resulting map. Note that the residuals represented by the
second term include both foreground residuals as well as an effective noise for the lin-
ear combination of maps. In the right panel of Fig. 2.3, we show Cclean

` for our fiducial
CMB experiment. For the fiducial experimental parameters we choose, from the left panel
of Fig. 2.3, we see that the experimental noise is somewhat larger than the extragalac-
tic foregrounds. Therefore, much of the improvement of the cleaned CMB over the 145
GHz channel comes from a lower effective noise rather than the removal of extragalactic
foregrounds.

We can also estimate the cleaned galaxy-Temperature cross-power:

CΘδW
α

;clean
` = CISW,lin δW

α

` + w†`C
XG δW

α

` (2.128)

Here, because the CMB noise is uncorrelated with the galaxy field, there is no effective
noise term. The ILC algorithm in this case reduces the variance of the cross-power due to
the removal of extragalactic foregrounds.

2.3.4 Galaxy number counts

We now consider a tracer of the electron overdensity field, which for the purposes of the
present work we take to be the galaxy overdensity field, measured using a photometric
redshift survey. Other tracers such as the redshifted 21cm Hydrogen line (or transitions
such as CII) measured by line intensity mapping surveys [13, 80], the CIB [79], or the
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dispersion measure of Fast Radio Bursts [66] have been considered as well. Spectroscopic
surveys were considered in Refs. [78, 20, 21], which may be more computationally feasible to
analyze in the Box Picture; we defer a discussion of spectroscopic surveys in the Lightcone
Picture to future work.

For the purposes of velocity reconstruction, the three dimensional information in a
galaxy redshift survey is used to construct a series of 2-dimensional fields that are later
cross-correlated with CMB temperature data. In harmonic space, these 2-dimensional
fields can be expressed as integrals over redshift space:

gW
α

`m =

∫
dzoW

α(zo)g`m(zo) (2.129)

where zo denotes the observed redshift for the galaxies in the survey, g`m(zo) are spherical
harmonic coefficients of the measured 3-dimensional galaxy overdensity field, and Wα(zo)
is the window function used to construct the average. The equation above is not imme-
diately related to the comoving space integral Eq.(2.9) of a lightcone field introduced in
section 2.2. First, the observed redshift zo of a galaxy may be subject to instrumental
errors and therefore different from the actual redshift z′. Second, due to redshift space
distortions, the redshift z′ can be different from the background cosmological redshift z of
the galaxy (which is simply related to the comoving distance χ). The second issue can be
safely ignored for high enough multipoles, where the RSD correction to the power spec-
trum is unimportant [20, 90]. Since only small angular scale galaxy data is necessary for
velocity reconstruction, we don’t include RSD in our modelling (for the impact of RSD
on correlations between velocity reconstruction and number counts see [76]) and will treat
the actual redshift z′ as the cosmological redshift z. The issue of measurement errors is
discussed below in the context of a redshift galaxy survey subject to photometric redshift
errors. In our analysis below, we consider two prototype galaxy surveys: a Rubin-like
survey with many photometric redshift bins and a WISE-like survey with a single wide
photometric redshift bin. For velocity reconstruction, these two surveys will be used as
prototypes for the ’multiple density window’ and ’single density window’ cases for the
quadratic estimators described in Sec. 2.2.5.

Rubin-like survey

For the Rubin-like survey, we consider Gaussian errors on photometric redshifts, with the
probability of assigning redshift zo to a galaxy with true redshift z (following Ref.[10])
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given by:

P (z, zo) =
exp

[
− (zo−z)2

2σ2
z

]
∫∞

0
dz̃ exp

[
− (z̃−z)2

2σ2
z

] (2.130)

where σz = σ0(1 + z) with σ0 parametrizing the size of the photometric errors. We assume
a fiducial value of σ0 = 0.05. With this probability distribution, the galaxy average for the
window Wα(zo) can be expressed as an integral over the actual redshifts z:

gW
α

`m =

∫
dz

[ ∫
dzoW

α(zo)P (z, zo)

]
g`m(z), (2.131)

and in terms of the comoving distance

gW
α

`m =

∫
dχ Wα

eff(χ) g`m(χ), (2.132)

where we have defined the effective window function

Wα
eff(χ) = H(z(χ))

∫
dzoW

α(zo)P (z(χ), zo), (2.133)

and g`m(χ) are the lightcone moments of the underlying galaxy overdensity field. The
angular power spectrum between two galaxy redshift bins coming from a photometric
survey can then be expressed using Eq.(2.16) plus a shot noise term:

CgW
α
gW

β

` =

∫
dχ1dχ2 W

α
eff (χ1)W β

eff (χ2)

×
∫

k2dk

(2π)3
Kg` (χ1, k)Kg` (χ2, k) Pgg(χ1, χ2, k) + δαβ

1

n̄gα
(2.134)

where Pgg(χ1, χ2, k) is the galaxy-galaxy power spectrum computed using the halo model
(consistent with Refs. [78, 20]; see Appendix B.4 for a summary), Kg` (χ, k) = 4πi`j`(kχ) is
the galaxy projection kernel from three dimensional Fourier space onto the sky, and n̄g

α

is the number of galaxies per steradian in redshift bin α. We assume shot noise that is
uncorrelated between redshift bins, and compute the number density per bin assuming the
galaxy number density n(z) per square arcmin is [10]

n(z) =
ng

2z0

(
z

z0

)2

exp

(
z

z0

)
, (2.135)

64



with z0 = 0.3 and ng = 40/arcmin2. We construct the effective window functions using:

Wα(zo) =
Πα(χ(zo))

H(zo)
(2.136)

with Πα(χ) defined as in Eq.(2.14). In the limit of σ0 → 0, where photometric redshift
errors can be neglected, these window functions correspond to normalized top-hat windows
in comoving space. We show the effects of the photometric errors in the galaxy-galaxy
covariance matrix in Fig. 2.6. Bin-bin correlations are enhanced as expected and the auto-
power at a particular bin is reduced due to the contamination from distant bins. The
principal components of the galaxy survey can be founds using the procedure described in
Sec.2.2.5 just by appropriately replacing the signal and noise matrices. Fig. 2.7 compares
the effect of different photometric redshift error levels on the total signal to noise Eq.(2.72)
of the galaxy survey as a function of the number of bins N . As expected, we observe that
the photometric errors put a limit on how much radial resolution our galaxy survey can
have. For our fiducial value of σ0 = 0.05, the signal to noise is mostly saturated for more
than 32 redshift bins.

unWISE-like survey

For the unWISE-like survey considered in this chapter, we model the ”blue” sample used
in Refs. [91, 92, 93] from the unWISE catalogue [94], which is based on data from the
WISE mission [95]. This sample is characterized by a median redshift of z̄ ∼ 0.6 and is
reasonably uniform over a redshift range of δz ∼ 0.3. The number density of the resulting
map is n̄ ' 0.95/arcmin2.

Following Ref. [91], we model the unWISE blue sample as a linearly biased tracer of
dark matter plus shot noise. In particular, we model the galaxy-galaxy angular power
spectrum as

CgW gW

` =

∫
dχ1dχ2 Weff (χ1)Weff (χ2)

×
∫

k2dk

(2π)3
Kg` (χ1, k)Kg` (χ2, k) Pgg(χ1, χ2, k) +

1

n̄g
(2.137)

where the power spectrum is:

Pgg(χ1, χ2, k) = b(χ1)b(χ2)Pmm(χ1, χ2, k), b [z(χ)] = 1.2z(χ) + 0.8 (2.138)
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Figure 2.6: Section of the 32×32 redshift bins galaxy-galaxy covariance matrix, for different
values of σ0 and multipole `.

Here, Pmm(χ1, χ2, k) is computed in the halo model as described in Appendix B.4. The
galaxy window function Weff is simply the normalized comoving galaxy density

Weff (χ) = H (z (χ))
dN

dz
(2.139)

where the redshift distribution of galaxies dN/dz is defined to be normalized as 1 =∫
dz dN/dz and is reasonably uniform within a range δz ∼ 0.3 of the median redshift

z̄ ∼ 0.6; the redshift distribution is shown in Fig. 2.16. The total number of galaxies in
the survey is ∼ 1.4 × 108, yielding a shot noise of 1/n̄g = 9.2 × 10−8. When performing
velocity reconstruction, we must also compute the cross-power with the Π-binned optical
depth and potential. In these cases, it is convenient to expand the observed moments of

66



Figure 2.7: Total signal to noise for a photometric galaxy survey as a function on the
number of redshift bins and for different error levels.

the galaxy overdensity as:

gW`m =

∫
dχ H(χ)

dN

dz
g`m(χ) (2.140)

=
∑
α

∫
dχ

[
H
dN

dz
∆χ Πα

]
g`m(χ) (2.141)

and define a set of window functions

Wα
eff (χ) = H

dN

dz
∆χ Πα (2.142)

We then define a set of binned galaxy moments as in Eq. 2.132 using the window functions
Eq. 2.142. These binned galaxy moments are used to compute the cross-power with other
Π-binned LC moments.

2.3.5 Galaxy survey systematics

Aside from the photometric redshift errors described above, one must consider a wide
variety of systematics associated with a galaxy survey, many of which manifest on large
angular scales (see e.g. [96, 97, 98, 99, 100]). Systematics that modulate the observed
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number counts of galaxies are most problematic for velocity reconstruction, as they lead to a
statistically anisotropic cross-power between the galaxy overdensity and CMB temperature
that mimics the signal of interest. Additive effects that are uncorrelated with extragalactic
sources, e.g. mis-identified stars included in the sample, are less problematic, adding only
noise to the estimators but not bias. Starting from the observed number counts (following
Refs. [98, 99, 100]), we model systematics effects as:

NWα

obs (n̂) = (1 + c(n̂))NWα

(n̂) (2.143)

where NWα

g (n̂) are the number counts of galaxies in a bin defined by the window function
Wα. The modulating field c(n̂) encodes calibration errors which we might expand as
a sum of effects associated with the instrument/observation strategy, extinction due to
galactic dust, etc. Defining the underlying galaxy overdensity field gW

α
(n̂) by NWα

(n̂) =
N̄Wα

(1 + gW
α
(n̂)), with N̄Wα

the mean number of objects on the sky, the moments of the
observed galaxy overdensity field are:

(gW
α

`m )obs = gW
α

`m + c`m +
∑

`1,m1;`2,m2

(−1)m
√

(2`+ 1)(2`1 + 1)(2`2 + 1)

4π

×
(
`1 `2 `
0 0 0

)(
`1 `2 `
m1 m2 −m

)
c`1m1g

Wα

`2m2
+O(εgW

α

`m ) (2.144)

where gW
α

`m is defined as above in Eq. 2.132 and

ε =
1

N̄Wα

∑
`m

c`m〈NWα

(n̂)Y`m(n̂)〉sky (2.145)

is the correction to the mean number counts from each moment c`m. Below, we neglect
this correction to the mean. To model the form of the large-angular scale systematics, we
assume that the modulating field c(n̂) is a Gaussian random field with power spectrum:

Cc
` = Ace−(`/10)2 (2.146)

where we set the fiducial value for the amplitude Ac such that the variance of c(n̂) satisfies
: ∑ (2`+ 1)

4π
Ace−(`/10)2 = 10−4 (2.147)

which corresponds to a level of calibration errors somewhere between the best current
datasets and futuristic datasets (see Fig. 3 of [99])
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2.3.6 CMB temperature-galaxy cross-power

As discussed above, there are a number of components of the CMB temperature that are
correlated with tracers of large scale structure, such as the galaxy surveys considered above.
Some of these contributions, such as the late-time linear ISW and extragalactic foregrounds,
have a statistically isotropic cross-power. On the other hand, secondary components of the
CMB such as lensing, kSZ, and late-time non-linear ISW will have a statistically anisotropic
cross-power with the galaxy survey. Indeed, this statistical anisotropy is the basis for
velocity reconstruction. We now consider these two cases in tern.

Statistically isotropic cross-correlations

The observed CMB anisotropies have contributions that are isotropically correlated with
galaxies, including: extragalactic foregrounds (CIB, tSZ) and the late time linear ISW
effect. To calculate isotropic cross-correlations we use Eq. 2.16:

CFWGW
′

` =

∫
dχ1dχ2 W (χ1)W ′ (χ2)

×
∫

k2dk

(2π)3
KF` (χ1, k)KG` (χ2, k) PFG(χ1, χ2, k), (2.148)

and therefore we need to specify the window functions, integral kernels, and underlying
power spectra for each of the temperature-galaxy signals. For the galaxies, we use the
window functions introduced in Sec. 2.3.4 and the integral kernel Kg` (χ, k) = 4πi`j`(kχ).

Extragalactic foregrounds are themselves tracers of large scale structure, and therefore
are well-correlated with binned galaxy number density. We assume that extragalactic
foregrounds can be described by random Gaussian fields. For this signals we use trivial
window functions W (χ1) = 1, kernels Kextra` (χ, k) = 4πi`j`(kχ) and underlying spectra
P ν
CIBg(χ, k) and P ν

tSZg(χ, k) computed at each frequency ν using the halo model. In the left
panel of Fig. 2.8, we show the cross-correlation between the extragalactic foregrounds at
different frequencies and a Rubin-like galaxy survey in the redshift bin z = (0.20, 0.26). We
show as well the cross-power between the ILC cleaned temperature discussed in Sec. 2.3.3
and the galaxy survey in that same bin. The right panel shows the cross-power between
cleaned temperature and galaxies at different redshift bins together with the cross-power
between the linear late-time ISW signal and galaxies. The linear ISW-g correlation is
calculated using Eq.(2.16) with the corresponding building functions.
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Figure 2.8: Left panel: Extragalactic foregrounds cross galaxies at redshift bin z =
(0.20, 0.26) and ILC cleaned temperature cross galaxies (solid line). Right panel: ILC
cleaned temperature cross galaxies for several redshift bins compared to the linear-ISW
cross galaxies.

Anisotropic cross-correlations

The main focus of this chapter are the statistically anisotropic cross-correlations between
the CMB and galaxy surveys, as these are what allow us to perform radial velocity re-
construction. We work in the basis introduced in Sec. 2.2.5, expanding in terms of Π and
Haar-binned LC moments to define the ’bulk’ and ’fine’ modes, respectively. Apart from
the galaxy fields, the statistical anisotropies are expressed in terms of a series of fields
described in Sec.2.3, namely: the radial velocity v, the differential optical depth τ̇ , the
transverse velocity potential Υ, the moving lens potential ψ, the lensing potential φ, the
primary CMB anisotropy ΘpCMB and the photometric calibration c.

For the kSZ-galaxy cross-power we have:

〈
ΘkSZ
`m gW`′m′

〉
=

N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
f v

αW
``1`′ v

α
`1m1

+
∞∑
k=N

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
f v

kW
``1`′ v

k
`1m1
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where the bulk mode couplings f v
αW

``1`′
and the fine mode couplings f v

kW
``1`′

are given by:

f v
αW

``1`′ ≡
√

(2`+ 1)(2`1 + 1)(2`′ + 1)

4π

(
` `′ `1

0 0 0

)
C τ̇αgW

`′ ∆χ. (2.149)

and

f v
kW

``1`′ ≡
√

(2`+ 1)(2`1 + 1)(2`′ + 1)

4π

(
` `′ `1

0 0 0

)
C τ̇kgW

`′ . (2.150)

The kSZ cross-power with galaxies forms the basis of the estimators used for radial
velocity reconstruction. However, there are additional sources of statistical anisotropy in
the cross-power that potentially introduce biases on the reconstructed velocity fields. Here,
we focus on non-linear ISW, CMB lensing, and large angular scale calibration error in the
galaxy survey. For the non-linear ISW-galaxy cross-power we have:

〈
ΘISW,nlin
`m gW`′m′

〉
=

N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fΥαW
``1`′ Υα

`1m1

+
∞∑
k=N

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fΥkW
``1`′ Υk

`1m1

where the bulk mode couplings fΥαW
``1`′

and the fine mode couplings fΥkW
``1`′

are given by:

fΥαW
``1`′ ≡ [`1(`1 + 1) + `′(`′ + 1)− `(`+ 1)]

×
√

(2`+ 1)(2`1 + 1)(2`′ + 1)

16π

(
` `′ `1

0 0 0

)
CψαgW

`′ ∆χ (2.151)

and

fΥkW
``1`′ ≡ [`1(`1 + 1) + `′(`′ + 1)− `(`+ 1)]

×
√

(2`+ 1)(2`1 + 1)(2`′ + 1)

16π

(
` `′ `1

0 0 0

)
CψkgW

`′ . (2.152)

For the CMB lensing-galaxy cross-power we have:

〈
ΘL
`m gW`′m′

〉
=

N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fΘW
``1`′ Θ

pCMB
`1m1

(2.153)
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where the couplings fΘW
``1`′

are given by:

fΘW
``1`′ ≡ [`1(`1 + 1) + `′(`′ + 1)− `(`+ 1)]

×
√

(2`+ 1)(2`1 + 1)(2`′ + 1)

16π

(
` `′ `1

0 0 0

)
CφgW

`′ (2.154)

For the calibration error contribution we have:〈
Θν
`m gW`′m′

〉∣∣∣
cal

=
N−1∑
α=0

∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
f cW``1`′ c`1m1 (2.155)

where the couplings f cW``1`′ are given by:

f cW``1`′ ≡ [`1(`1 + 1) + `′(`′ + 1)− `(`+ 1)]

(
` `′ `1

0 0 0

)
CIgW

`′ (2.156)

where I stands for the CMB components isotropically correlated with the galaxies. Other
effects leading to a statistically anisotropic cross-power which we anticipate will be less
important, and which we do not compute here, include: relativistic aberration of the
CMB [101] (similar effect as calibration error, but with a smaller magnitude), SZ effects
at higher order in velocity and temperature (see e.g. Refs. [102, 103, 104, 105, 62, 106]),
anisotropic/ill-characterized beam patterns in the CMB experiment (see e.g. Ref. [107] for
an assessment of the impact on lensing reconstruction), and perhaps others. In the case of
CMB lensing, note that the modulating field is the primary CMB temperature. Although
we do not explore it further here, we note that a quadratic estimator for the low-` primary
CMB can be formulated from the CMB-galaxy cross-power using the formalism introduced
in Sec. 2.2.5. A similar estimator was introduced in Ref. [108] as a means to reconstruct
the primary CMB dipole, which is not directly measurable due to the contribution from
our local peculiar velocity.

2.4 Reconstruction analysis

In Section 2.2.5, we discussed the details involved in constructing quadratic estimators
for fields sourcing a statistical anisotropy in the CMB-LSS cross-correlation. We showed
that information about these fields can be reconstructed up to a series of noise terms.
The purpose of this section is to analyse the relations between signal and noise for the
reconstruction of the Π-binned LC moments of the radial velocity, which act as sources for
the kSZ-LSS statistical anisotropy. We estimate the signal and noise for a reconstruction
using the modelling for the CMB, LSS, and their correlation presented in Section 2.3.
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2.4.1 Radial velocity reconstruction for SO x Rubin

Applying the formalism of Section 2.2.5 to the reconstruction of (vαeff)LM leads to a collec-
tion of estimators with the following two point function:〈

ˆ(vαeff)LM
ˆ

(vβeff)
∗

LM

〉
=

(
RLCvv

L (RL)†
)αβ

+
(
N0
L

)αβ
+
(
Nfine
L

)αβ
+

(
Ncal
L

)αβ
+
(
NΥ
L

)αβ
+
(
Nlens
L

)αβ
(2.157)

where the various terms are defined by:

• RLCvv
L (RL)†: the covariance matrix of Π-binned LC moments of the radial velocity

field. The rotation matrix RL encodes the bin-bin mixing of the signal covariance
due to the redshift error in the galaxy survey.

• N0
L: the Gaussian reconstruction noise Eq. 2.51, with coupling functions defined

by Eq. 2.149. This term comes from the disconnected contractions in Eq.(2.67)
(e.g. 〈ΘΘ〉 〈δδ〉 and 〈Θδ〉 〈Θδ〉). Note that we do not include the non-Gaussian
contributions to the estimator noise in the present analysis (e.g. the N3/2 and N1

noise terms, in the terminology of Ref. [21]); see Appendix B.3 for discussion.

• Nfine
L : the estimator variance coming from the fine mode bias Eq. 2.59, with coupling

functions for the bulk and fine modes of the radial velocity field defined by Eq. 2.149
and 2.150, respectively. The relative importance of this term decreases with an
increasing number of bins; we explore this in detail below.

• NΥ
L : the estimator variance due to the non-linear ISW effect, defined by Eq. 2.64

using the coupling function for the transverse velocity potential Eq. 2.149.

• Ncal
L : the estimator variance due to galaxy survey calibration error systematics, de-

fined by Eq. 2.64 using the coupling function for the calibration error Eq. 2.156.

• Nlens
L : the estimator variance due the lensing of the primary CMB, defined by Eq. 2.64

using the coupling function for the lensing potential Eq. 2.154.

Note that we refer to the contribution RLCvv
L (RL)† as the “signal” and all other terms as

the “noise” in the discussion that follows.

In Fig.2.9 we show a few diagonal elements (e.g. α = β) of Eq.(2.157) for a near bin
at z ∼ 0.5 and far bin at z ∼ 1.5. The dominant source of reconstruction noise is the
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N0
L term, followed by the fine mode and calibration error contributions to the variance.

The variance arising from the transverse velocity potential and lensing are negligibly small
compared to the Gaussian estimator noise; we therefore neglect these terms in our analysis
below.

Figure 2.9: Radial velocity signal and noise sources at redshift bins z = (0.44 , 0.50) and
z = (1.46 , 1.58), corresponding to bins 4 and 16 of 32.

There are significant bin-bin correlations in the estimator variance both due to the
signal and the various noise terms. Photometric errors in the galaxy surveys lead to mixing
of radial information that contributes to the bin-bin correlation, and this radial mixing is
captured by the rotation matrix RL. In Fig. 2.10 we show, for fixed L, the radial mixing for
a set of redshift bins and illustrate how the mixing decreases when the photometric errors
are less severe. The rotation matrix is found to be largely independent of the multipole L
for L . 200 .

In Fig. 2.11 we show, for fixed L, the contributions to the bin-bin covariance from the
various noise terms. The Gaussian reconstruction noise is correlated between bins, mainly
due to the the correlation between structures in nearby bins induced by the redshift error in
the galaxy survey. This is the largest contribution to the bin-bin covariance in nearby bins,
independent of L. There is a less significant, but non-negligible, short-range correlation
induced by the fine-mode noise which is most important at low-L. We observe that the bias
from the calibration error induces long-range bin-bin correlations in the estimator variance,
as expected due to our assumption that the calibration error is the same for each bin. Had
we assumed a different calibration error in each bin, there would be no such correlation.
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Figure 2.10: Rows 4, 16, 24, and 28 of the rotation matrix, corresponding to redshift bins
with central redshifts 0.47, 1.52, 2.78 and 3.78. Solid (dashed) lines are obtained using the
photometric redshift error model described in Sec.2.3.4 with σ0 = 0.05 (σ0 = 0.025). As
expected, the mixing of radial information reduces for less severe redshift errors.

Principal components

In light of the significant bin-bin covariance present at all scales L in both the signal and
the noise terms in the bin basis, it is instructive to consider the principal component basis
where there is no covariance. The transformation to the principal component basis was
outlined above in Sec. 2.2.5 and defined by:

(v̂P
j

eff )LM =
∑
β

cjβL (v̂βeff)LM (2.158)

Note that we employ the full signal covariance and all noise terms in Sec. 2.157 to define the
principal components. In Fig. 2.12 we show the j = 1, 2, 3 principal component coefficients
cjβL as a function of bin β for N = 64 bins at L = 1, 2, 5, 10. Note that at each scale L, the
weight for the most significant principal components receives support primarily from lowest
redshifts. This is where the galaxy density is relatively high (hence the reconstruction noise
is minimized) and the amplitude of velocities is relatively large (e.g. due to linear growth).
In addition, the number of nodes along the radial direction increases with L and for the
lower signal to noise principal components at fixed L.

In the principal component basis, we can define a measure of the total signal to noise
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Figure 2.11: Contributions to the noise covariance matrix from the Gaussian reconstruction
noise N0

L, the fine mode noise Nfine
L , and the calibration error noise Ncal

L . We show rows
4 (top panels) and 16 (bottom panels) of the noise matrices for multipoles L = 2, 20.

per mode LM by

SNLM =
N∑
j=1

(〈v̂P jeff )LM(v̂P
j

eff )†LM〉 (2.159)

We evaluate this quantity in Fig. 2.13. Each panel of that figure compares, for a recon-
struction with N redshift bins, the effect of adding the Nfine

L and Ncal
L compared with

the Gaussian reconstruction noise N0
L. As expected, with an increasing number redshift

bins, the fine mode contribution becomes less important and the calibration error becomes
the leading correction to the Gaussian reconstruction noise. The reconstruction of the
Π-binned LC moments of the radial velocity suffer a considerable loss of signal to noise per
mode as we reduce the number of bins even when only including the Gaussian reconstruc-
tion noise. For our binning scheme, N = 64 corresponds to redshift bins of equal coming
size of approximately 110 Mpc. The coherence length of the velocity field is around 70
Mpc, and therefore it makes sense that the fine modes become more relevant for N = 32
and smaller, as the size of the bins are considerably larger than 70 Mpc. Even with N = 64
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Figure 2.12: Coefficients cjβL for the three largest signal to noise principal components∑
β c

jβ
L (v̂βeff)LM for a reconstruction with 64 redshift bins, at various L multipoles.

bins, comparing the orange and green curves, we see that calibration error leads to a signif-
icant degradation in SNLM of greater than 10%. Efforts to mitigate systematics in galaxy
surveys on large angular scales can therefore meaningfully impact the fidelity of the re-
construction. Regardless, we see that velocity reconstruction with SO x Rubin will have
exceedingly high SNR on large angular scales, with SNLM > 1 for L < 30 with the most
significant principal component.

Optical depth bias

As discussed in Sec.2.2.5, incorrect modelling of the correlation between the electron and
the galaxy distribution leads to a multiplicative bias in the reconstructed radial velocity,
commonly referred to as the optical depth bias. We illustrate how the bias shows up in
our formalism by considering a one parameter toy model for the electron-galaxy correlation
function, based on the halo model. If we fix the model parameters determining how galaxies
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Figure 2.13: Signal to noise per mode as defined in Eq.(2.71), as a function of L, for
different binning and sources of noise. The loss of signal to noise due to the fine mode
noise accentuates for wider redshift bins.

inhabit dark matter halos, the electron-galaxy cross-power is determined by the model for
the electron density profile inside dark matter halos (see Appendix B.4 for more details).
Due to physical processes such as AGN feedback, baryonic matter does not track dark
matter inside of halos. In Fourier space, this translates into an electron density profile
ue(k,M, z) that is different from the dark matter density profile u(k,M, z). To explore
a one-parameter family of models, we construct the following toy model for the electron
density profile :

u(toy)
e (k,M, z) =

ue(Ak,M, z)

u(Ak,M, z)
u(k,M, z) (2.160)
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where A is a continuous parameter that interpolates between the dark matter profile (A =
0) and our fiducial model (A = 1) that incorporates feedback. If we take our fiducial model
to be the true model for the electron density, we can explore the optical depth bias when
‘incorrect‘ A 6= 1 profiles are used for velocity reconstruction.

Fig. 2.14 shows the behaviour of the elements of the bias matrix Eq. 2.74 as a function of
the angular scale (left panel) and redshift (right panel). We find that the bias is practically
independent of L for large angular scales L . 200 (in accordance to what was found in [21])
and that it is less significant at higher redshifts, were the difference between electron and
dark matter perturbations is less pronounced. The off-diagonal elements of the bias matrix
are similarly scale-independent and approach one at high redshift. The L independence on
large angular scales is a feature that we expect to be robust independently of the models
under consideration. Note that the bias is always less than one for this family of models.
This is because feedback in the fiducial model causes the electron halo profiles to be more
diffuse than their host dark matter halos, leading to a power suppression at high-k, and
therefore on small angular scales where the sums in Eq. 2.74 receive the most weight. Even
in the extreme case where baryons are assumed to trace dark matter, the magnitude of the
bias over the entire range of redshifts lies within a reasonably small range 0.6 . ΓXY

L < 1.

To obtain cosmological constraints from velocity reconstruction using future datasets,
it will be necessary to incorporate the optical depth bias into the analysis. For example,
if we wish to obtain constraints on a set of cosmological parameters m appearing in the
radial velocity power spectrum Cvv

L (m), it is necessary to compare (via e.g. a likelihood
function) the measured velocity spectra to the model:

(Crecon)αβL =
[
(ΓR) Cvv

L (ΓR)†
]αβ

+ (NL)αβ (2.161)

where (NL)αβ includes the most relevant noise terms (e.g. N (0), fine-mode, calibration)
and (ΓR)ij = Γij(ue)R

ij(σz), where we assume the optical depth bias and rotation matrix
are independent of L (a good approximation, as shown above) and indicate explicitly
the dependence on the electron profile ue and redshift error σz. To get access to the
cosmological information contained in Cvv

L (m) it is necessary to encapsulate the redshift
errors and electron profile into a set of nuisance parameters that can be marginalized over.
In the absence of any modelling, there are N2

bin nuisance parameters. This is the same
number of independent entries in Cvv

L (m) that determine redshift-redshift correlations,
implying that the only residual cosmological information is in the shape of the velocity
power spectrum. This impedes one’s ability to learn about e.g. the growth function
using the reconstructed velocity field. But this scenario is far too pessimistic, as it does
not incorporate information from other sources, or physical constraints present in the
modelling.
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Optimistically, it may be sufficient to characterize redshift errors and the electron pro-
file by a small number of model parameters. For example, the fiducial model of Gaussian
redshift errors considered above contains a single parameter σ0. Assuming for the moment
that this is an accurate model for Rubin redshift errors, there is a single model parameter
associated with the rotation matrix. In addition, one can put a prior on the ranges this
parameter might take by using other available information: the galaxy-galaxy power spec-
trum itself, simulations, comparing with a spectroscopic survey, etc. Likewise, if Eq. 2.160
is a reasonable description of the range of possible electron profiles, then a single model
parameter would determine the optical depth bias. Again, one could incorporate addi-
tional measurements to provide a prior on A, for example by independently measuring
the galaxy-electron cross-power using Fast Radio Bursts [66] or by correlating the recon-
structed velocity field with the galaxy survey [109, 20, 76] or, if available, the transverse
velocity field [110]. In reality, there are likely more than two model parameters to consider
to fully characterize redshift errors and the electron profiles. But by evaluating a range of
physical models and finding complementary observations, one can likely put an informative
prior on the N2

bin degrees of freedom in the rotation matrix and optical depth bias.

In a number of previous analyses, e.g. Refs. [77, 76, 111] it was assumed that the
rotation matrix was diagonal, and therefore that the optical depth bias consisted of Nbin

parameters to be marginalized over. In the presence of photometric redshift errors, we
have seen that this assumption does not hold. – the off-diagonal nature of the rotation
matrix gives rise to greater than Nbin parameters. How many additional parameters need
to be incorporated depends on how dominant the diagonal terms in (NL)αβ are compared
with the off-diagonal terms, since small off-diagonal terms can be neglected. This depends
primarily on the magnitude of redshift errors, so more accurate photometric redshifts, or
spectroscopic redshifts can simplify the analysis of the reconstructed velocity field. In
future work, cosmological forecasts and analyses should take into account the off-diagonal
terms in the optical depth bias, either through a physical model or by marginalizing over
a sufficient number of degrees of freedom.

2.4.2 “Double” SO and pre-reconstruction vs post-reconstruction
cleaning

In this section, we investigate two scenarios related to the effect of foregrounds on the
reconstruction. First, we investigate whether or not additional frequency channels can
help with mitigating the effect of foregrounds on the reconstruction. To do so, we define
a hypothetical experiment we refer to as “Double” SO, which has a set of channels (in
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Figure 2.14: Left panel: Diagonal elements of the optical depth bias matrix as a function
of the multipole L. Bin 4 and bin 16 correspond redshifts ranges (0.44, 0.50) and (1.46, 1.58)
respectively. Solid (dashed) lines correspond to A = 0.5 (A = 0). Right panel: Diagonal
and some off-diagonal elements of the bias matrix as a function of redshift. Bias tends to
1 for higher redshifts as electrons trace dark matter more closely at earlier times.

GHz) at: 47, 52, 63, 75, 91, 109, 131, 158, 190, 228, 275, 330, 397, 478, 575, 691, 831,
1000. The boundaries and spacing of this selection were chosen to minimize residuals in
the cleaned CMB temperature spectrum for our foreground model. Including frequencies
below ∼50 GHz and above ∼1000 GHz provides no improvement for removing extragalac-
tic foregrounds. Our choice of 12 frequency channels in the relevant range is somewhat
arbitrary, and is simply meant to be representative of a reasonable number of detectors as
compared to SO. To define the noise properties of Double SO, we first take the SO LAT
TT noise model [15] assumed above and define a linear interpolating function on the three
free parameters in the noise model, extrapolating when necessary to higher frequencies
that are not in the SO selection. We then analyzed the reconstruction noise for the fiducial
N = 64 bin case assumed for SO x Rubin above. In Fig.(2.15) we show the signal to noise
for the first two principal components over a range of scales for SO and Double SO and
Rubin. It can be seen that the Double SO experiment (true to its name) yields a signal to
noise that is about twice as good as SO. This is due to a combination of a lower effective
noise in the auto-power as well as a reduction of foreground residuals in the cross-power.

Above, we considered the scenario where a linear combination of CMB maps was used
to remove foregrounds before velocity reconstruction. It is also possible to perform velocity
reconstruction on each frequency map, and then find the linear combination of reconstruc-
tions that minimizes the variance of the reconstruction. To do so, we describe the power
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Figure 2.15: SNR of principal components 1 and 2 of velocity reconstruction.

spectrum of the reconstruction as

C` = Cvv
` eet + N` (2.162)

We can then apply the same harmonic space ILC method defined above to find a map that
minimizes the variance due to reconstruction noise:

Cclean
` = w†`N`w` + Cvv

` (2.163)

where the ILC weights w` are defined using the reconstructed spectra:

w` =
C−1
` e

etC−1
` e

(2.164)

Since we know the signal Cvv
` we can subtract this from the reconstruction in the pre-

reconstruction cleaning scenario to arrive at the residual noise, which we compare directly
to w†`N`w` from the post-reconstruction cleaning scenario. We find that the residuals for
pre-reconstruction cleaning are smaller than the residuals for post-reconstruction cleaning.
Therefore, we focus on the scenario where foregrounds are mitigated before reconstruction
is performed.

2.4.3 Radial velocity reconstruction for SO x unWISE

We now turn to the second scenario we consider, where velocity reconstruction is performed
with SO and data currently available from the unWISE blue sample. Here, there is a
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single galaxy window function, which is plotted in Fig. 2.16. We consider a reconstruction
using 8 bins in the redshift range between 0.2 < z < 1.5 corresponding to a comoving
bin width of ∆χ ' 450 Mpc. To compute the fine mode noise, we use 512 bins in the
same redshift range. We increase the calibration error from our Rubin framework by a
factor of 102 to account for the difference in precision of redshift measurement between
the two experiments. Because there is a single galaxy window function, the reconstructed
velocity field and reconstruction noise will be highly correlated among the 8 bins in which
we perform the reconstruction. Therefore, it is crucial in this case to use the principal
component basis. Fig. 2.16 shows the α = 1 principal component coefficients cαβL both
with and without the inclusion of fine-mode noise and calibration errors for L = 1 and
L = 5. Note that for L = 1, the first principal component roughly traces out the unWISE
window function dN/dz when the fine-mode noise and calibration errors are neglected.
However, the first principal component becomes oscillatory once the additional noise is
included. This is due to the redshift-redshift correlations of the noise terms obscuring the
redshift correlations in the signal. The signal to noise of the first principal component at
L = 1 drops from 25 to 16.4 as the additional noise terms are added. At L = 5, the first
principal component has an oscillatory structure in redshift both with and without the
additional sources of noise. The signal to noise of the first principal component at L = 5 is
1.7 and 1.3 with and without the additional noise terms. Therefore, most of the signal lies
at the lowest L. Analyzing the higher principle components, they make an insignificant
contribution to the signal to noise at all scales. We therefore can focus on the first principle
component only.

We explore the effect of changing the number of bins used in the analysis by computing
the signal to noise SNLM defined in Eq. 2.71, summing over principal components at fixed
L. We find that it is numerically difficult to consider greater than 8 bins. Large bin-
bin correlations in the signal covariance and Gaussian reconstruction noise, especially in
bins where the redshift distribution is small, lead to poorly conditioned rotation matrices
(Eq.2.43) that spoil the construction of the principal component basis. Therefore, we
consider scenarios with 4 and 8 bins. The result for the signal to noise per mode, summed
over principal components, is shown in Fig. 2.17. Here, the dependence of the signal to
noise on the number of bins is less dramatic than for SO x Rubin. This is to be expected,
since not much information is gained by finer sampling in redshift due to the fact that
there is a single wide galaxy window function. In this figure, we also demonstrate the
effect of fine mode noise. For 4 bins, there is a significant correction beyond the Gaussian
reconstruction noise. However, we see that for 8 bins, we are able to improve on the signal
to noise in the presence of fine mode noise.

Finally, in Fig. 2.15 we compare the SNα
LM attainable for SO x unWISE compared
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with SO x Rubin. The signal to noise per mode for the first principle component for SO
x unWISE is roughly an order of magnitude lower than for SO x Rubin; for the second
principle component the difference is three orders of magnitude. Although there is a
significant galaxy density in the unWISE sample, yielding a small Gaussian reconstruction
noise (at least over some range in L for the first principal component), there is little
redshift information. We therefore can only expect to obtain coarse-grained knowledge
of the velocity field from such an analysis. Nevertheless, this is in principle important
information, and the reconstruction of the first principle component at signal to noise
greater than unity can be obtained for L . 10. This represents a modest, but non-trivial,
number of well measured modes.

Figure 2.16: First principal component of the velocity reconstruction for SO x unWISE.
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Figure 2.17: SNR per multipole for SO x unWISE for 4 and 8 coarse bins and 512 fine
bins. SNR with and without fine mode contributions are shown.

2.5 Velocity reconstruction pipeline

In this section we assess the performance of radial velocity reconstruction with future
datasets using a suite of simulations and a reconstruction pipeline based on the quadratic
estimators described in previous sections. Previous work has demonstrated the effective-
ness of the quadratic estimator for reconstruction of the radial velocity field using N-body
simulations in the box geometry [21], and in Chapter 3 we present simulations for the
lightcone geometry. Here, we focus on simulated data that consists of properly correlated
random Gaussian fields including: the radial velocity field, galaxy number counts with
photometric redshift errors, the electron density field, the primary CMB, the kSZ contri-
bution to the CMB, and extragalactic foreground contributions to the CMB. We develop
a reconstruction pipeline for the radial velocity field using fast real-space versions of the
quadratic estimators described above. Theoretical modelling is an important component
of velocity reconstruction, since it appears in the estimator for the Π-binned moments of
the velocity fields and also in the rotation matrices required to de-bias the estimators. This
makes a combined pipeline including both the simulation of the maps and the application
of the estimators essential.

The benefit of using a Gaussian simulation framework is that the ensemble-average
properties of the estimator are well-understood on the full sky using the results of previous
sections, which allows us to validate the analysis pipeline. Another benefit is that we
can isolate and investigate the effect of map-based systematics such as masking on the
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reconstruction to compare with results on the full sky. Since the generation of correlated
random Gaussian fields is far less computationally intensive than running a suite of N-
body simulations, it is possible to explore ensemble averages, and quantify underlying
numerical inaccuracies or biases. A disadvantage of this approach is that we miss important
non-linear contributions to the reconstruction. As shown in Ref. [21], for radial velocity
reconstruction this includes a contribution to the reconstruction noise analogous to the
N (3/2) bias in lensing reconstruction [112]. At the resolutions considered in Ref. [21],
this was in fact larger than the Gaussian contributions to the reconstruction noise by
a factor of ∼ 2. At the somewhat lower resolution and higher instrumental noise we
consider, we expect this contribution to be smaller, and sub-dominant to the Gaussian
contributions. Another non-linear effect included in the simulations presented in Chapter 3
is redshift space distortions, which were found to have minimal impact on the reconstruction
at the resolutions simulated. All previous work has relied on dark matter-only N-body
simulations, making the approximation that baryons follow the N-body particles. This
assumption will fail on the small scales relevant for velocity reconstruction. Under the
assumption of statistical isotropy made above, this mis-modelling of baryons shows up as a
multiplicative bias (see Sec. 2.4.1 for a discussion), but at the non-linear level there may be
additional effects. Future work with simulations should certainly include baryonic effects
to explore the impact on simulations at the non-linear level.

2.5.1 Simulations

In this work, we approximate the primary CMB, galaxy number counts, components of
the velocity field, electron density, and extragalactic foreground contributions to the CMB
as correlated random Gaussian fields. Using the complete set of spectra and cross-spectra
between these fields, we can construct a multivariate Gaussian distribution from which
to drawn properly correlated realizations. These realizations can be used to compute
the kSZ contribution to the CMB. Signals constructed this way will show the expected
statistical anisotropy when correlated with the galaxy density. For each set of realizations,
the quadratic estimator for the underlying radial velocity can be applied, allowing us
to validate the statistics of the estimators by averaging over many realizations. Here is
the list of steps we take to generate a suite of Gaussian simulations for radial velocity
reconstruction:

1. Determine fields for simulation: The first step we take is to determine which
fields need to be simulated “simultaneously”, that is, from a single multivariate Gaus-
sian distribution capturing all the crucial correlations. Ideally, all of the cosmological
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fields we consider in this work should be simulated simultaneously. This can become
a difficult computational task if we want to simulate the Π-binned moments of vari-
ous fields in many redshift bins, which translates into large covariance matrices with
non-vanishing off-diagonal terms and many high-resolution maps. The smaller the
covariance matrix, the more likely it is that numerical errors can be avoided, so there
is good motivation to be as economical as possible. We can ask ourselves, for ex-
ample, which fields are necessary for a simulation of the kSZ signal. Certainly, joint
simulations of the Π-binned moments of the radial velocity v, the differential optical
depth τ̇ , and the galaxy fields g are necessary if we want to ensure that the kSZ-g
cross-correlation has the correct statistical anisotropy. Having identified these com-
pletely necessary fields for velocity reconstruction, we can ask ourselves if the fields
that source other forms of temperature-galaxy statistical anisotropy should also be
considered in the multivariate Gaussian distribution. The analysis of Sec.2.4 answers
this question for us: the bias introduced by the non-linear ISW effect and the CMB
lensing are negligible. This means that, for simulating radial velocity reconstruction,
the non-linear ISW and the CMB lensing signals can be simply treated as “effective”
sources of CMB anisotropies with no statistical correlation with the galaxy distri-
bution. Finally, we ask ourselves if the fields that are isotropically correlated with
the galaxy distribution need to be simulated together with v, τ̇ and g. These are
the linear late-time ISW signal and the frequency cleaned extragalactic temperature
foregrounds. The isotropic correlation between temperature and galaxies appears
in the estimator weights Eq.(2.35). A quick inspection shows that, for our fiducial
experimental noise levels, the relative difference in these weights when the small-
angle (` > 200) temperature-galaxy cross-power is ignored is at most 3%. Thus, we
consider it to be safe to ignore all isotropic correlations between temperature and
galaxies in the reconstruction pipeline. Summarizing, we only need to generate si-
multaneous simulations of the Π-binned moments of v, τ̇ , and g in order to capture
all the important correlations for radial velocity reconstruction. The non-kSZ CMB
anisotropies can be simulated separately from a single temperature spectra and later
combined with the kSZ map from the joint simulations.

2. Simulate the fields: Once we determine which fields have to be simulated from
a single multivariate Gaussian distribution, we construct a joint covariance matrix
C` for 0 < ` ≤ `max including all spectra and cross-spectra. Our fiducial resolution
is Nbin = 32 and `max = 6144 (corresponding to the band-limited multipole for a
Healpix map of Nside = 2048). The choice of number of bins and angular resolution
are fixed by computational resources; it would be desirable to include more bins when
possible to incorporate the effects of fine-mode noise. At each ` we find the Cholesky
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decomposition L`L
†
` = C` and generate data vectors a`m corresponding to the 2`+ 1

spherical harmonic coefficients at fixed ` of for all maps using the relation:

a`m = L` ·X`m (2.165)

where X is a vector of random Gaussian numbers with zero mean and unit vari-
ance. In general we find good agreement between the ensemble-average spectra and
cross-spectra from simulations and the input spectra. At ` . 30 the built-in rou-
tine for generating Gaussian maps in Healpix (which generates realizations using a
Cholesky decomposition as above) performs somewhat better than our algorithm.
For large `, the Healpix algorithm performs worse than ours. We therefore employ a
hybrid method, generating low-` moments using Healpix and high-` moments using
our algorithm. In either case, it is necessary to compute spectra and cross-spectra
at sufficiently high accuracy to ensure that C` is numerically positive definite and
therefore the Cholesky decomposition well-defined. In this respect, our code for com-
puting spectra is sufficiently accurate at the resolutions we have explored, but we
expect increasingly accurate spectra are necessary for larger numbers of radial bins.

3. Construct the temperature signals: For radial velocity reconstruction, the kSZ
signal is constructed from products of the simulated maps as:

ΘkSZ(n̂) = −
∑
α

∆χ vα(n̂)τ̇α(n̂) (2.166)

The part of the CMB temperature that we approximate as uncorrelated with galax-
ies is simulated as above, using a single temperature spectrum including: primary
CMB, lensing contribution, linear and non-linear ISW contribution, and ILC cleaned
extragalactic + instrumental noise components. The total temperature map is the
sum of the uncorrelated map and the kSZ signal.

We apply a mask corresponding to an SO-like experiment, consisting of a cut between
a declination of -70 degrees and +20 degrees and a Galactic mask that removes ∼ 30%
of the sky. The total sky fraction covered by the joint mask is fsky = 0.45.

4. Run the estimator pipeline: The galaxy maps and temperature maps generated
this way are processed using the real space estimators described below.

2.5.2 Real-space estimators

The harmonic-space quadratic estimators for the radial velocity field cannot be imple-
mented efficiently at the resolutions we wish to explore. We therefore derive mathematically
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equivalent real-space estimators that take advantage of fast forward- and inverse-spherical
harmonic transforms, which can be efficiently implemented (with a few caveats explored
below).

Radial velocity estimator

To derive an efficient real-space estimator for the radial velocity, we first re-write Gα
``′L as:

Gα
``′L =
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Next, we use the relation∫
d2n̂ Y`mY`′m′Y

∗
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√
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and the definitions:
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The real-space estimator is given by:

dαLM = Nα
L

∞∑
n=0

∫
d2n̂ Y ∗LM(n̂)

[
ξαn (n̂)ζαn (n̂)− ξ̄αn (n̂)ζ̄αn (n̂)

]
(2.171)

For the simulations presented below, where we effectively set CgW
α

Θ
` = 0 by not including

the statistically isotropic correlations between the galaxy and temperature fields (as argued
above, these contributions are insignificant for our fiducial CMB experiment), and therefore
we can work at the n = 0 level. For different experimental configurations, it may become
necessary to consider higher order terms in the sum over a number of n. So long as

(CgW
α

Θ
` )2 � CΘΘ

` CgW
α
gW

α

` , it is sufficient to consider the n = 0 and n = 1 terms in the
sum only.

Note that the fields ξαn (n̂), ζαn (n̂), ξ̄αn (n̂) and ζ̄αn (n̂) are convolutions of an azimuthally
symmetric function and the moments of the CMB and galaxy density maps. In pixel-space,
we can therefore write e.g.:

ξαn (n̂) =

∫
d2n̂′ Bξαn (|n̂− n̂′|)Θ(n̂′) (2.172)

where the “beam” Bξαn (|n̂ − n̂′|) for the field ξαn (n̂), and the beams for the other filtered
fields, are given by:
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and
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Some insight into the map-based properties of the estimator can be gained by examining
the shape of these functions, which we plot in Fig. 2.18 for the redshift bin z = (0.44, 0.50)
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and in the n = 0 case. The beams receive support only over a scale of ∼ 4 arcmin
for the experimental parameters considered here, corresponding to ∼ 3 pixels at Healpix
resolution Nside = 2048. This implies that the quadratic estimator is highly local, and that
systematic errors due mixing information from masked or contaminated regions of the sky
will be minimal. Unlike the case of CMB lensing (see e.g. [47]), we therefore expect that
there is only a very small bias from the mask on the reconstructed velocity field.

Figure 2.18: Different beams defined in Sections 2.5.2, normalised at θ � 1, for bin α cor-
responding to redshift range z = (0.44, 0.50). The beams receive support only over a scale
of few arcmins and highly localised with enhanced scaling (equivalently blue spectrum) on
smallest scales corresponding to . 2 arcmin, similar to the the pixel resolution ∼ 1.7 armin
at Healpix resolution Nside = 2048.

2.5.3 Reconstruction on simulated maps

We now present the results obtained by applying the real-space estimators derived above to
the simulated maps for the fiducial data combination of SO x Rubin employed in previous
sections. We generated a set of 30 realizations, each with 32 bins in the redshift range 0.2 ≤
z ≤ 5 and output resolutions of NSIDE 2048. The resolution and number of simulations
were dictated by available computational resources. Note that our reconstructions will not
include fine-mode noise, since the simulations are constructed using a limited number of
bins. We show examples of the reconstruction in Fig.(2.19), where we compare the rotated
true velocities RL · vLM to the output of the estimator v̂LM at two representative redshift
bins located at z ∼ 0.5 and z ∼ 1.5. These maps have been filtered to show only the largest
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angular scales, where the reconstruction is signal-dominated. A visual inspection of these
maps indicates that a successful reconstruction of the radial velocity has been achieved.
A comparison of the angular power spectra for the reconstruction and the masked actual
velocity field indicate good quantitative agreement. Before undertaking a full quantitative
analysis of the full set of realizations, and comparing to theoretical expectations, we take
a brief digression to discuss the effects of the mask on the reconstruction.

Figure 2.19: Top panels: Low-multipole filtered maps of the true rotated velocities.
Middle panels: Low-multipole filtered reconstructed maps. Bottom panels: power
spectra comparison between true and reconstructed maps.

As we discussed in Sec. 2.5.2, we expect contamination from masked regions to extend
only a few pixels from the mask boundary due to the local nature of the radial velocity
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estimator. We can corroborate this by fixing the realization and subtracting the full-sky
reconstruction noise (defined as the reconstruction minus the actual radial velocity) from
the masked-sky reconstruction noise and studying the residuals, which we refer to as the
mask bias. We can see from Fig. 2.20 that the dominant effect of mask in concentrated on
the edge of the unmasked region as expected, and that this contamination can be removed
post-reconstruction by extending the mask by a few pixels. As can be seen by comparing
the maps in the top and middle panels, extending the mask by a single pixel (at Nside = 64)
removes the majority of contaminated pixels. In the bottom panel of Fig. 2.20, we see that
the mask bias is always below the reconstruction noise, and that extending the mask by
one pixel decreases the mask bias by orders of magnitude. We conclude that one need
not worry about mask bias for reconstruction of the radial velocity. Note that the story
presented here will become more complicated for apodized maps, since apodization will
introduce a statistical anisotropy that may be picked up by the estimator and which must
be accounted for in the reconstruction.

Returning to our ensemble of simulations, we now confirm that the statistics of the
ensemble are as expected from the analytic estimates presented in Sec.2.4. On the full
sky this can be thought of as a validation exercise for our simulations and reconstruction
pipeline, since in the absence of numerical errors, the agreement should be perfect. On the
masked sky, we can determine what the effect of the mask is on the reconstructed power
spectrum. To mitigate the mask bias, we extend the mask post-reconstruction by one pixel
in the results presented below.

The top panel of Fig. 2.21 compares the ensemble average reconstruction signal and
noise to the theoretical expectations. Comparing the theory signal (blue) to the simulated
signal (green dashed), there is excellent agreement in both redshift bins. Comparing the
power spectrum of the reconstruction (red dot-dashed) to the theory signal and the theory
noise (orange), we see excellent agreement in the signal-dominated and noise-dominated
regimes as well. We also compute the power spectrum of the reconstruction minus the
actual signal (purple dots) and the result of applying the estimator to a temperature map
whose kSZ component is uncorrelated with the galaxy density (brown squares). In both
cases, the agreement with the theory reconstruction noise is excellent, aside from some
excess in the power spectrum of the reconstruction minus the theory signal at low-L, at
the level of about one percent of the signal. This result is a powerful validation of our
simulation and reconstruction pipeline.

The bottom panel of Fig. 2.21 shows the comparison between the theory and ensemble-
averaged reconstruction on the masked sky. We make no attempt here to de-project the
mask, and simply find the power spectra of the masked maps. The theory curves (signal and
noise) have been multiplied by fsky = 0.44 to account for the loss of variance from masking.
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Comparing the theory signal multiplied by fsky (blue) to the simulated masked signal (green
dashed) the scale-dependent effect of the mode-coupling with the mask is evident, especially
at low redshift. Nevertheless the factor of fsky gives a reasonable estimate of the power
spectrum of the velocity field on the masked sky. Comparing the reconstruction on the
masked sky to the masked actual velocity and the theory noise reduced by fsky, we see good
agreement at both high- and low-L. Checking this in more detail by finding the difference
between the reconstruction and the actual masked signal (purple dots), we again find good
agreement with the expected reconstruction noise aside from a few percent excess at low-L
and low redshift.

The collection of reconstructed maps are not statistically independent of each other
due to velocity correlations along the lightcone. On the full-sky, harmonic moments with
different multipoles L,M are independent from each other and only correlated in the radial
direction. Using the principal component decomposition described in Sec. 2.2.5, we can
construct Nbin linear combinations of Π-binned harmonic multipoles ajLM =

∑
α c

jβ
L a

β
LM

such that ajLM and aiLM are uncorrelated for all i 6= j. Note that the transformation coef-
ficients depend on the multipole L. The maps constructed using these rotated harmonic
moments at each L constitute the principal components of the radial velocity on the light-
cone. The power spectrum of the principal components at each multipole L is diagonal and
is obtained by rotating the bin basis power spectrum cLCL(cL)†, where cL is the matrix
defined by the coefficients cjβL . Fig.(2.22) shows the true maps, reconstructed maps and
spectra for the 2 highest signal to noise principal components from a single realization. The
‘unit’ of the principle component power spectra and maps is signal to noise, since the noise
has been normalized to unity. Clearly, the fidelity of the principle component reconstruc-
tion is far higher than for the single bins presented in Fig. 2.19 (although the information
in the set of principle component maps is equivalent to the information in the set of bin
maps), making the principle component basis desirable for a visual representation of the
results. In the top panel of Fig. 2.23, we show the ensemble-averaged power spectra of the
first two principle components without masking. Performing the comparisons described
above in the bin basis between theoretical expectations and data from the reconstructions,
we again find excellent agreement, aside from sub-percent level effects at the lowest L.

The principal component analysis discussed here is subject to some complications when
a mask is introduced. Statistical isotropy is broken for the masked map, which introduces
L 6= L′ correlations at each bin and between bins. Using the cjβL coefficients defined for
the full-sky scenario would not lead to statistically independent maps. A more rigorous
procedure to find the uncorrelated combinations of the data could be done in pixel space
rather than harmonic space. Such a procedure would involve the construction and di-
agonalization of a huge matrix containing the covariance between every pair of pixels at
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every pair of redshift bins, a task that is computationally demanding. Here, we consider
a “pseudo” principal component transformation at the level of the power spectra of the
reconstructions with mask. As we discussed in the previous subsection, the power spec-
trum of reconstructed maps with a mask traces the underlying full-sky spectra up to a
factor of fsky and some scale-dependent corrections due to convolution with the mask. For
multipoles where the scale dependent correction is small at all redshifts, the masked CL is
approximately proportional to the unmasked one and therefore can be diagonalized using
the full-sky transformation matrix cL. In the bottom panel of Fig. 2.23 we compare the
theory signal and noise (in this case, the noise is the identity matrix) reduced by a factor
of fsky to the actual masked velocity and reconstructed velocity for the first two principal
components. Despite the complications from mode coupling with the mask, there is reason-
able agreement with the theory curves. Finally, we can explicitly check that the rotation

associated with the principal components cL take the reconstructed spectra
〈
v̂LMv̂†LM

〉
to a close-to diagonal form. This is shown in Fig. 2.24. where we plot

〈
v̂LMv̂†LM

〉
aver-

aged over 30 masked reconstructions. The rotation associated with the pseudo principal
component basis does indeed result in a more diagonal signal covariance matrix even in
the presence of a mask.

2.6 Conclusions

This chapter has outlined the formalism for velocity reconstruction in the Lightcone Pic-
ture using CMB experiments and galaxy surveys. One of the main goals of developing
this formalism has been to explore some of the challenges posed by systematics and fore-
grounds for velocity reconstruction. The range of effects we have explored include: properly
correlated extragalactic foregrounds, large-angular scale systematics in the galaxy survey,
photometric redshift errors, masking of regions contaminated by galactic emission, mod-
elling errors in the galaxy-electron correlation function (the optical depth degeneracy),
biases introduced due to additional physical effects that lead to a statistically anisotropic
CMB-galaxy correlation (e.g. lensing of the primary CMB), biases introduced by coarse
graining on the lightcone (e.g. the ’fine mode’ noise), CMB instrumental noise and beam,
choice of frequency channels for cleaning extragalactic foregrounds in the CMB, and the
effect of performing foreground cleaning on reconstructed maps. We have developed a
numerical pipeline to compute the properly correlated auto and cross-spectra necessary to
assess this range of effects. We have also developed a real-space reconstruction pipeline
that we have validated using Gaussian simulations. This pipeline was used to assess the
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impact of systematics in real-space such as masking. The good news is that none of the
systematic effects we have explored seriously degrade the fidelity of the reconstruction, in-
dicating the promise of velocity reconstruction for extracting new cosmological information
from future datasets.

Our fiducial datasets were a Rubin-like galaxy survey and an SO-like CMB experiment.
We also considered the data combination of the existing unWISE galaxy catalogue with
SO. These choices determine factors such as: redshift error, depth of the survey, galaxy
shot noise, the level of large-angular scale systematics, frequency channels assumed for
the CMB experiment, the associated level of instrumental noise and resolution, and sky
coverage. For these datasets, some of the take-away points of our analysis include:

• The total information available in the reconstructed velocity fields (quantified by
the total signal to noise) is limited mainly by the redshift error, sky coverage, and
factors contributing to the Gaussian reconstruction noise (CMB instrumental noise
and beam, foreground residuals, and the level of galaxy shot noise).

• It is essential to incorporate the “fine mode” noise associated with coarse-graining
fields on the lightcone into the estimator formalism for velocity reconstruction. This
source of bias can be mitigated by ensuring that velocity reconstruction is performed
in a sufficient number of bins along the radial direction. For radial velocity recon-
struction in the fiducial SO x Rubin scenario, it is necessary to use around 64 bins
to mitigate this bias and include most of the signal to noise in the reconstruction.

• For radial velocity reconstruction, large-scale systematics in the galaxy survey have
a significant (∼ 10%-level) effect on the total signal to noise due to the additional
bin-bin correlations it introduces.

• The biases induced by CMB lensing and non-linear ISW on radial velocity recon-
struction are negligible.

• From the principle components of the radial velocity reconstructions (see Figs. 2.16),
most of the signal to noise in the reconstruction comes from large angular scales
L . 30 and redshifts z . 1.

• For SO x unWISE, it is possible to reconstruct a single principal component on the
very largest angular scales that roughly follows the unWISE redshift distribution.
This demonstrates that even for a single broad photometric redshift bin it is possible
to reconstruct the large-scale radial velocity field.
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• The real space estimators for velocity reconstruction are highly local, and contam-
ination from masking is restricted to the region in close proximity to the mask. It
is therefore possible to remove the mask bias by extending the mask by a few pixels
post-reconstruction.

• We have demonstrated a pipeline for velocity reconstruction which performs as ex-
pected for Gaussian simulations. This pipeline can serve as a prototype for analysis
of future datasets.

A fundamental assumption of the quadratic estimator formalism explored in this chap-
ter is that the underlying fields are Gaussian. On the small-scales that contribute the most
to the quadratic estimators, this assumption is far from accurate. One consequence is the
presence of the ’N3/2 bias’, explored by Ref. [21] in the Box Picture. We have not performed
an analysis of this contribution in the Lightcone Picture, although a similar computation
based on the halo model could in principle be performed (albeit with complex projection
integrals to contend with). This is a necessary ingredient for using velocity reconstruction
in the Lightcone Picture to measure and constrain cosmological parameters. Aside from
this bias Refs. [21] demonstrated that velocity reconstruction in the Box Picture essentially
works as advertised even for non-linear N-body simulations. Chapter 3 addresses the im-
pact of non-linearities in the Ligthcone Picture using N-body simulations. An important
future analysis will be to directly compare the importance of the various systematic effects
discussed in this chapter between Gaussian and non-linear N-body simulated datasets.

In the future, our framework can be extended to assess velocity reconstruction using
different tracers such as the CIB [79] or intensity maps [80]. Other extensions include
velocity reconstruction using reionization kSZ and 21cm maps [82] or reconstruction of the
remote quadrupole field [36, 19]. Having a unifying framework, or at least a unifying basis,
allows one to combine the cosmological information from these various probes. Examples
where this may be important include constraints on modified gravity [77] and various early-
Universe scenarios (see Chapter 4). The reconstruction tools described in this chapter can
be found in the publicly available code ReCCO. This code calculates angular spectra for
a variety of fields on the lightcone and uses them to compute the numerous signals, noises
and biases described in this chapter. We expect this code to become a useful tool for the
future of kSZ velocity reconstruction and other methods involving CMB secondaries.
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Figure 2.20: Top panels: Mask bias at Nside 64 when no edge pixels are removed. Middle
panels: mask bias after removing a 1-pixel thick border at Nside = 64, which leads to
a reduction of fsky from 0.45 to 0.44. Bottom panels: power spectrum of the mask
bias with and without an extended mask compared to the N0 noise for radial velocity
reconstruction.
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Figure 2.21: Average power spectrum from 20 simulated reconstructions on the full-sky
(top panels) and on masked-sky (bottom panels). Solid lines correspond to signal and noise
from theory, dashed lines show simulated radial velocities (rotated by RL ), dot-dashed
lines shows the estimator output, circles show the difference between the estimator output
and the simulated rotated velocities, and squares shows the estimator noise.
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Figure 2.22: Top panels: Low-multipole filtered maps of the 2 highest signal to noise
true principal components on the full sky. Middle panels: Low-multipole filtered recon-
structed principal components. Bottom panels: power spectra comparison between true
and reconstructed maps.
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Figure 2.23: Signal and noise averages for the pseudo principal component transformation
of reconstructed spectra on the full-sky (top panels) and masked sky (bottom panels).
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Figure 2.24: Pseudo principal component transformation of the reconstructed spectra〈
v̂LMv̂†LM

〉
at different L multipoles, averaged over 30 simulations.
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Chapter 3

Simulated reconstruction of the
remote dipole

3.1 Chapter summary

In Chapter 2, a series of extensions and additional layers of realism were incorporated into
the Ligthcone Picture formalism of kSZ velocity reconstruction. The quadratic estimator
for the radial velocity field was validated using a numerical framework to produce sets
of properly correlated CMB maps and redshift binned galaxy number counts, assuming
Gaussian underlying fields. Despite being practical for testing many aspects of the recon-
struction machinery, these mock datasets do not inform us about the robustness of kSZ
velocity reconstruction in the presence of non-linear evolution of structure. Moreover, the
simulation pipeline from Chapter 2 is somewhat agnostic of the remote dipole power spec-
trum on large angular scales: Cvαvβ

L is simply an input that we aim to reconstruct using
small-angle CMB and galaxy power spectra; any reasonable model for the low-L Cvαvβ

L

would lead to a successful reconstruction as long as the CMB-galaxy correlation shows a
kSZ induced statistical anisotropy consistent with a remote dipole field sampled from the
input model. Indeed, the reconstruction presented in Chapter 2 assumed for simplicity a
remote dipole sourced only by the local Doppler term and ignored the stationary dipole
contributions which become important at the lowest multipoles (see Sec.1.5 for a discussion
of the many contributions to the remote CMB dipole).

This chapter, which corresponds to a study done before the development of the extended
formalism of Chapter 2, explores the previously neglected effects of gravitational non-
linearities and demonstrates the relevance of the stationary dipole contributions to the
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remote CMB dipole using a set of mock CMB and LSS maps generated from a suite
of N-body simulations. Additionally, such simulations allow us to explore the effects of
redshift space distortions and CMB lensing (predicted to be negligible in Chapter 2).
Simulating kSZ velocity reconstruction on the light cone while properly treating all of
the relevant physics is intrinsically challenging. One must model both the dipole field,
which receives important contributions from scales of order the size of the observable
Universe, as well as the density fields, which depend on small scales and include baryonic
physics. Evolving a standard N-body simulation incorporating such a large range of scales is
currently computationally intractable. To overcome this limitation, we develop a novel box-
in-box simulation framework which consistently embeds a ∼Gpc-sized N-body simulation
inside of a box whose volume is larger than the observable Universe, and which contains
large-scale modes evolved using linear theory. This box-in-box procedure allows us to use
the data from both of these simulations to produce properly correlated maps of the lensed
primary CMB temperature anisotropies, kSZ temperature anisotropies, the dipole field,
and the dark matter overdensity field. We do not model baryonic physics in the present
analysis, and therefore use the dark matter density as a proxy for the electron density.
N-body simulations including baryonic physics will be incorporated in the future.

We find that the quadratic estimator efficiently reconstructs the remote dipole field over
a range of angular scales and redshift bins, indicating that kSZ tomography is generally
robust. However, we present evidence for a bias due to non-linear structure at low redshifts.
We demonstrate the ability of kSZ tomography to reconstruct the fundamental component
of the observed CMB dipole, supporting the suggestion in previous work [19] that this
could be an early application of kSZ tomography on large angular scales. The results we
present here are intended primarily as a proof-of-principle both of the simulation framework
and remote dipole reconstruction. To lay the groundwork for the analysis of near-term
datasets, various layers of realism will be added to our simulation framework in future
work, including the construction of mock galaxy catalogs, improved resolution, inclusion
of baryonic physics, correlated foregrounds such as thermal SZ, and partial sky data. Some
of these aspects have already been explored in Chapter 2.

3.2 A brief review

In this section we briefly review the expressions for the kSZ signal, the remote dipole
field, its theoretical power spectrum, and the real-space quadratic estimator that we use to
reconstruct the dipole field. The kSZ effect can be expressed as the line of sight integral:
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ΘkSZ(n̂) = −
∫
dχ veff(n̂, χ) τ̇(n̂, χ) (3.1)

where τ̇(n̂, χ) is the differential optical depth defined in Eq.(1.11) and veff(n̂, χ) is the
remote CMB dipole field defined as

veff(n̂, χ) =
3

4π

∫
d2n̂e Θ(x, n̂e) (n̂ · n̂e). (3.2)

where Θ(x, n̂e) is the remote CMB at the spacetime position (η(χ),x = χn̂), which receives
contributions from the Sachs-Wolfe effect, the integrated Sachs-Wolfe effect due to the
evolution of the gravitational potential along the line of sight, and the Doppler effect:

Θ(x, n̂e) = ΘSW (x, n̂e) + ΘISW (x, n̂e) + ΘD(x, n̂e) (3.3)

In order to work with a binned version of Eq. 3.1, we consider a bin-averaged (Π-binned
as defined in Sec.2.2.2) remote dipole field:

vαeff(n̂) =
3

4π

1

∆χα

∫ χαmax

χαmin

dχ

∫
d2n̂e Θ(x, n̂e) (n̂ · n̂e), (3.4)

Here, the index α labels each bin, which extend over the range in comoving distance
χαmin < χ < χαmax, and where ∆χα = χαmax−χαmin. The binned power spectrum is given by

Cvαvβ

L =

∫
d3k

(2π)3
PΨp(k)∆vα∗

L (k)∆vβ

L (k), (3.5)

where Greek indices denote redshift bins, PΨp(k) is the power spectrum of the Newtonian
gauge primordial gravitational potential Ψp, and ∆vα

L (k) is bin averaged remote dipole
transfer function (non-averaged function defined in Eq.(1.49)). As shown in [19], the pres-
ence of a large scale dipole will manifest in the cross correlation between the kSZ contribu-
tion to the CMB temperature and the moments of a redshift binned density distribution
δα defined by

δα(n̂) =
1

∆χα

∫ χαmax

χαmin

dχ δ(n̂, χ). (3.6)

We use the real-space optimal quadratic estimator for the Π-binned LC moments of
the remote dipole field defined in Sec.2.5.2. At leading order, the real space estimator is
given by:

v̂αeff,LM =
(
N0
L

)αα ∫
d2n̂ Y ∗`m(n̂)ξ(n̂)ζα(n̂). (3.7)

105



ξ(n̂) =
∑
`m

Θ`m

CΘΘ
`

Y`m(n̂) (3.8)

ζα(n̂) =
∑
`m

C τ̇αδα

` δα`m
Cδαδα
`

Y`m(n̂) (3.9)

where (N0
L)
αα

are the diagonal elements of the Gaussian reconstruction noise given by
Eq.(2.34), and τ̇α denotes the Π-binned differential optical depth. We remind the reader
that this form for the real space quadratic estimators is obtained when the statistically
isotropic correlations between the density tracer and temperature fields CδαΘ

` is not in-
cluded. This approximation is valid as long as (CδαΘ

` )2 � CΘΘ
` Cδαδα

` on small angular
scales, which we found to be true to the percent level in Chapter 2 in the presence of
cleaned extragalactic foregrounds. For the simulations below, which do not include such
foregrounds, the approximation is expected to be even more accurate. With this approxi-
mation, the diagonal elements of the reconstruction noise are given by:

(
N0
L

)αα
= (2L+ 1)

(∑
l1l2

f v
α

`1L`2
f v

α

`1L`2

CΘΘ
`1
Cδαδα
`2

)−1

. (3.10)

where

f v
α

``1`′ ≡
√

(2`+ 1)(2`1 + 1)(2`′ + 1)

4π

(
` `′ `1

0 0 0

)
C τ̇αgW

`′ ∆χα. (3.11)

are the f -couplings defined in Eq.(2.27).

Because the simulations presented below do not contain baryons, we assume that the
electron density field traces the dark matter density field.

3.3 Simulations

Our simulation framework includes two components: a small-scale N-body simulation and
a large-scale random field evolved using linear perturbation theory. We explore the idea
of “sewing” these simulations together in order to accurately model physics on both large
and small scales, thereby obtaining consistent realizations of both the primary CMB and
angular, projected matter fields.

In order to obtain lightcone data on small scales, we use the publicly available L-
PICOLA code [113]. L-PICOLA is a “Lightcone-enabled Parallel Implementation of the
COLA” method, providing an efficient means for generating both data on an observer’s
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past lightcone and data on spatial hypersurfaces. The COmoving Lagrangian Acceleration
(“COLA”) method [114, 115] works by solving the second-order Lagrangian perturbation
theory (2LPT) equations in order to generate an initial guess for the motion of particles in
the simulation, and subsequently solves a set of equations describing the difference between
the 2LPT solution and the full N-body equations in order to improve the accuracy of the
2LPT solution. This method allows L-PICOLA to obtain results with an accuracy similar
to full N-body simulations on the scales we are interested in, but with a substantially larger
simulation timestep, and therefore at a substantially reduced computational cost. In the
limit of many timesteps, the output from L-PICOLA should be equivalent to a traditional
N-body simulation.

Although these N-body simulations are able to provide us with particular realizations
of physics on small-scales, we are interested in modeling both the primary CMB and kSZ
temperature fields. In order to obtain contributions to the kSZ temperature from the full
dipole field (Eq. 3.4) in a manner consistent with the small-scale L-PICOLA data, as well
as to generate the primary CMB, we utilize a novel “box-in-box” technique. This technique
is similar in spirit to the mode-adding procedure (MAP) described in [116, 117], in that
information about large scales is added to a small-scale simulation. However, the technique
we utilize differs in several important regards. Similar to [118], we add information at the
level of the density and peculiar velocity fields directly in Eulerian or configuration space,
rather than in either Fourier space or Lagrangian space; additionally, no information is
removed from the small-scale simulation.

We utilize N-body simulations with a number of particles Np = 12803 in a comoving
volume (2Gpc/h)3, corresponding to a maximum simulation redshift of z ∼ 0.37 and
particle mass 2 × 1012 M�. While this coarse resolution does not allow us to resolve the
structure of small mass halos, and also does not necessarily result in high-fidelity simulation
data on the associated length scales, we find that the data we do obtain is sufficient for
use in producing maps at angular resolutions of interest to us. We require the large-scale
random field to encompass a volume containing the CMB (and ideally larger modes), so
we utilize a large-scale “box” with volume (32Gpc/h)3, resolved by 3203 grid points.

The “box-in-box” method should be valid in a regime similar to the MAP method, which
itself has been shown to perform well when linear theory provides a good description of the
field content. This is a somewhat stronger condition than requiring mode amplitudes or
the power spectrum to be well-described by linear theory. While the linear and nonlinear
matter power spectra agree to within a few percent down to scales of order 10 Mpc,
mode coupling can exist – nonlinear terms of order δρ2 can constitute percent or larger
corrections to evolution of the density field on scales of order a few hundred Mpc. So
long as we remain in a regime where the field configuration is sufficiently well-described by
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(only) linear theory, we can expect the box-in-box technique to work. For the Gpc-scale
N-body box sizes we employ here, this is the case.

3.3.1 Simulating small scales using L-PICOLA

We make use of both the lightcone output from L-PICOLA as well as data from spatial
slices. The particle data from spatial slices is used to compute both primordial and large-
scale components of the kSZ and primary CMB, and will be discussed in Section 3.3.2. The
lightcone data is used to construct lightcone-projected sky maps of the density contrast
field, velocity, and momentum fields, as well as convergence maps.

We generate radially binned maps of various fields, both in order to examine the un-
derlying physics of the simulations, as well as to test reconstruction techniques at various
redshifts. We divide the lightcone data into a number of radial bins between us and
the largest redshift probed by the simulation. These radial bins can then be selectively
integrated over to construct the contributions to a given field, such as density or kSZ
temperature, from a given redshift range.

In order to produce density maps in both radial and angular bins, we bin particle data
by noting that

δbin =
ρbin − ρ̄bin

ρ̄bin

=
nbin

n̄bin

− 1 , (3.12)

where ρ is the physical density inside a radial-angular-bin on the lightcone with comoving
volume Vbin = Ωbin

3
(χ3

B − χ3
A), where the bin has radial boundaries at χA and χB, and

subtends a solid angle Ωbin. The number of simulated particles of mass m in a bin is
n = ρ/m, and the average/expected/background number of particles in a pixel is

n̄bin = Nsim
Vbin

Vsim

=
Nsim

Vsim

Ωbin

3
(χ3

B − χ3
A)

in the case of discrete bins, or

n̄bin =
Nsim

Vsim

Ωbin

3
3χ2dχ

in the continuum limit, with Nsim the total number of particles in a simulation of comoving
volume Vsim. The overdensity is then given by taking nbin to be the number of particles in
a given bin, so explicitly,

δbin = −1 +
∑

particles∈bin

1

n̄bin

. (3.13)
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This expression is similar in spirit to that of [119], although not identical. We also integrate
the density contrast along a line of sight – or in a pixel subtending some solid angle on the
sky; this can be written as a sum over the densities of all bins along the line of sight of the
pixel,

δ =

∫
dχδ(χ) =

∑
bin∈pix

δbindχbin , (3.14)

where the bins that lie along the direction of the pixel on the sky are summed over. For
different choices of radial binning, the sum will agree up to terms O(dχ2).

We are additionally interested in accounting for redshift-space distortions (RSDs) within
this framework, requiring a small modification to the density field used in the reconstruc-
tion, Eq. 3.6. In order to take RSDs into account, we perturb particle positions by a small
amount corresponding to the mis-inferred distance. Quantitatively, we compute

χRSD = χFRW(zFRW(χ) + vDoppler) , (3.15)

where functions with the FRW subscripts indicate the background FRW cosmology has
been used, and where we then bin particles using Eq. 3.13 but according to their position
χRSD. During the later discussion of reconstruction in this work, the density field used in
reconstruction is the one that accounts for RSDs.

The convergence, formally written as

κ =
3

2
H2

0 Ωm,0

∫ χls

0

dχ
χ(χls − χ)

χls

δ(χ)

a(χ)
, (3.16)

can similarly be binned. An expression for convergence binned in discrete angular pixels
that is independent of radial binning is used [120, 121], allowing contributions to be placed
into radial bins that can be summed over later to examine the convergence contribution
from a given radial bin or range of radial bins,

κbin =
3

2
H2

0 Ωm,0
Vsim/Nsim

Ωbin

∑
particles, p,∈bin

1

χpa(χp)

χls − χp
χls

, (3.17)

so that for each angular pixel on the sky the total convergence will be

κpix =
∑

bin∈pix

κbin . (3.18)

We use this convergence map to lens the primary CMB.
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There are several ways to compute the kSZ temperature fluctuations from particle
data. The kSZ temperature fluctuations given by Eq. 3.1 can be evaluated by binning
the components of the fields v and δ separately. However, the peculiar velocity field can
be severely undersampled in simulated data, with nonzero velocities determined by only
a single particle, or not at all in some pixels. In the case of the density field the issue is
not as severe, as a lack of particles is merely indicative of an underdense region, where the
density should be small anyways. A standard practice is therefore to write the integral in
terms of a sum over peculiar particle momenta [122],

ΘkSZ = −σTfbµ
Ωpix

∑
particles p∈bin

mpv

D2
A,p

. (3.19)

In standard techniques used to construct kSZ temperature maps, the only contribution
to the temperature field considered is the peculiar velocity of matter in Newtonian gauge
projected along the line of sight, v = vDoppler,N−body. Thus, important contributions to the
observed kSZ temperature perturbations on large angular scales from ISW, SW, or large-
scale velocity modes (modes larger than the simulation volume) have not been modeled,
each of which will contribute to the kSZ temperature fluctuations as described by Eq. 3.3.

In Section 3.3.2 we discuss more precisely how we model these additional contributions,
however at the level of binning, we have two options. We can include these fields at the
level of the already-binned lightcone data, replacing v with

v → veff = vDopp,N−Body + vDopp,LS + vISW + vSW (3.20)

where the ISW and SW components are given by the respective contributions of the effects
(Eq. 3.3) to the temperature perturbation (Eq. 3.1), and where the Doppler contributions
are from both the N-body simulation and large-scale (LS) modes not included in the N-
body simulation. Alternatively, we can compute the overdensity δbin and the velocity vbin

eff in
each bin, and evaluate Eq. 3.1 directly. We find that both methods result in nearly identical
kSZ temperature maps and power spectra for the angular resolutions we are interested in,
although for the final maps we use Eq. 3.19 and 3.20.

The final quantity we compute using lightcone data is the peculiar velocity field, taking
the velocity in each bin to simply be the average velocity of particles within each bin.
At low angular resolutions, which for our simulations means a healpix [123] resolution
of Nside=1024, the narrowest redshift-angular bins we consider will typically contain at
least one particle. At higher resolutions, artifacts become apparent in velocity maps due
to undefined velocities in cells without particles [124]. However, for the dipole field in
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particular, it is sufficient to compare low-Nside maps to our reconstructed velocity maps
as we are interested in reconstructing the dipole field on large angular scales (` . 20).

As a final point of note, and as a check that the temperature maps and especially the
dipole field reconstruction is insensitive to the precise binning method used, we employ
binning using both a “nearest gridpoint” assignment scheme, and a “cloud-in-cell”-type
assignment scheme where contributions from individual particles of fields are distributed
to a weighted average of nearby cells, both radially and in an angular direction. The latter
of these methods introduces additional smoothing, or aliasing, on bin-sized scales; this
suppresses power on these scales, but also suppresses the effects of shot noise. Despite this
difference, we find that the performance of the dipole field reconstruction presented below
is largely insensitive to this detail.

3.3.2 Large scales: “box-in-box”

We formally describe the process of sewing the N-body data and the large-scale modes
together using a “coloring” operator CPc(f) that rescales a stochastic field f (with its own
power spectrum Pf ) by a power spectrum Pc,

CPc(f) =

∫
d3k

(2π)3
ei
~k~xf(~k)P 1/2

c (k) (3.21)

so the power spectrum of the resulting field is given by PfPc. For a coloring spectrum
Pc = P−1

f , the field will be whitened. We additionally make use of an “inlay” operator,
I(f1, f2), which acts in configuration space to replace values in the interior of a (large-scale)
field by values of a second (coarsened, small-scale) field. The procedure of sewing a small
field into another larger field then consists of the following operations:

fsewn = CPf (I(CP−1
f

(flg), CP−1
f

(fsm))) (3.22)

Evaluating the above expression entails taking Gaussian random fields fsm and flg, both
with statistical properties described by Pf , whitening these fields, replacing values of the
lg field by ones from the sm field, and finally de-whitening the fields.

The result of this procedure on the lg field is that the small-scale modes in the region
of replacement are now given by modes from the sm field, while large-scale modes have
been preserved and superimposed upon the small-scale field.

Although L-PICOLA provides us with information about the density field, we are
ultimately interested in obtaining the primordial potential, from which we can compute
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corrections to the velocity field using linear theory. In order to obtain the primordial
potential on large scales, we extract the potential on the initial slice using the density field
and Poisson equation1,

∇2Φ = 4πGa2δsim
ρ . (3.23)

The potential can then be evolved back in time using the transfer function for the potential,
T (φsim → φprim), and corrections to the velocity field then found using the velocity growth
function defined in [18].

We are therefore interested in computing

φsewn = T (φsim → φprim)
4πGa2

∇2
CPδ(I(CP−1

δ
(δBox), CP−1

δ
(δLP))) (3.24)

where the L-PICOLA density field is noted by the LP subscript, and the Box subscript
refers to a random realization of a density field with power spectrum Pδ. Written in
Fourier space, the outermost coloring operation, transfer function operation, and the in-
verse Laplacian operation can all be combined into an operation equivalent to coloring by
the primordial spectrum. Coloring the large-scale Box modes with its inverse spectrum is
also equivalent to simply generating a field of white noise, Nwhite. Thus the final operation
we perform in order to obtain a large-scale primordial potential consistent with the density
field from the L-Picola simulation is

φsewn = CPφ,prim(I(Nwhite, CP−1
δ

(δLP)) . (3.25)

The power spectra for the comoving density field is obtained using the CLASS code [128],
and the primordial Newtonian potential is chosen to be the usual scale-invariant one. We
show snapshots of various steps of this procedure in Fig. 3.1

Once we have the primordial potential, we use the CMB radiation transfer functions
to obtain the primary CMB, and velocity transfer functions to compute the contributions
to the dipole field due to large-scale modes2. From the large-scale modes, we can then
compute the contributions to veff from Eq. 3.20, and thus their contribution to the observed

1As a technical note, we can safely interpret output from the L-PICOLA simulations in a standard way
without worrying about relativistic effects given our accuracy requirements for the scales we are interested
in [125, 126, 127]: the density field is interpreted as the comoving synchronous gauge one, while the
velocity and metric fields are interpreted as the Newtonian ones. The evolution of large-scale modes is
then determined using linear cosmological perturbation theory in the appropriate gauge, which takes into
account relativistic effects at linear order in metric and density perturbations.

2We could also modulate large-scale modes in the density field, however long-wavelength density per-
turbations contribute negligibly to the cross correlation between the kSZ temperature and density field
[18], so we do not include this modulation.
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Figure 3.1: Slices of spatial hypersurfaces of simulations during various parts of the
sewing-in procedure described by Eq. 3.25. Top left: the initial L-Picola density contrast
field at z = 9, with comoving box size L = 2 Gpc/h. Top right: the density field at z = 0.
Middle left: the initial z = 9 density field, whitened using the matter power spectrum,
averaged over (coarsened) so the resolution is the same as that of the box containing large-
scale modes. Middle right: A random realization of white noise for large-scale modes, with
L = 32 Gpc/h. The central 2 Gpc/h region that will be replaced has been outlined with a
yellow border. Bottom left: The primordial potential with white-noise values in the large
box replaced using the whitened L-PICOLA field, then colored using the primordial power
spectrum. Bottom right: The central 5 Gpc/h, with the colored small-scale box values
directly subtracted. Small residual large-scale modes can be seen in the center. The region
where the subtraction has been performed is outlined.
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kSZ temperature fluctuations. When computing large-scale contributions to veff , we also
need to ensure we do not double-count modes already accounted for by the N-body sim-
ulation. Therefore, when computing the large-scale Doppler contribution to veff , we only
integrate over modes with wavelengths larger than the N-body simulation volume.

The CMB multipoles are then computed using the large-volume simulated primordial
potential up to ` = 28. In principle we could generate additional CMB modes using
simulated data, however they will not be correlated with the remote dipole field or the
density field. We therefore use a random realization of the primary CMB alms at ` > 28,
based on the theoretical power spectrum obtained from CLASS.

We also include lensing of the primary CMB, utilizing the convergence maps generated
from the lightcone data. From the maps we can compute the lensing potential φ in harmonic
space as

φ`m =
2κ`m
`(`+ 1)

. (3.26)

The lensed CMB temperature is then given by

T (n̂)→ T (n̂+∇φ) ' T (n̂) +∇φ∇T (n̂) . (3.27)

Although the CMB is lensed, the kSZ temperature is not. In principle, there could be
lensing of the kSZ temperature fluctuations due to any structures between kSZ sources
and an observer, however we do not model this. The lensing we compute is also derived
from only the N-body volume we simulate, thus in a more realistic treatment, structure
at higher redshifts and on large scales would need to be included. However, the small-
scale density-temperature correlations induced by lensing from the density field we use for
reconstruction are accounted for. In future work, we would nevertheless prefer to include
lensing (and kSZ) contributions from additional redshifts.

To model kSZ temperature anisotropies sourced at redshifts beyond our N-body sim-
ulation, we include Gaussian random noise on angular scales ` & 1000 with amplitude
∼ 2 µK.

In Figure 3.2, we show various outputs of our simulation pipeline. Of particular note is
that the that the projected density is properly correlated with the convergence field and the
kSZ temperature anisotropies, and the dipole field is properly correlated with the primary
CMB and the kSZ temperature anisotropies. Focusing on the kSZ map, both the large-
scale contributions and large-scale modulation of power from the dipole field are visible. In
addition, the primordial components of the dipole field (i.e. contributions from modes in
the big box) are visible as responsible for the structure of the dipole field on large angular
scales. On these scales, the primordial contributions can dominate the power, resulting in
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a temperature asymmetry that can be seen “by eye”. The particular north-south direction
of the asymmetry in Figure 3.2 is peculiar to the realization.

Figure 3.2: Hammer-Aitoff projections of different fields on the sky from the box-in-box
simulations; all fields are properly correlated. Top left: the total CMB temperature fluc-
tuations, including kSZ contributions. The CMB dipole is not included. Top right: the
contribution of the kSZ effect to temperature fluctuations. Middle left: the binned, aver-
age density field (Eq. 3.6); middle right: the binned, average dipole field; bottom left: the
binned convergence field; bottom right: the contribution to the remote dipole field from
the big-box modes. Binning is performed over a redshift range z = 0.18 to z = 0.27.
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3.4 Results

3.4.1 Reconstruction using a quadratic estimator

We now analyze data from an ensemble of ten simulations to assess the performance of
the quadratic estimator, Eq. 3.7. We utilize two radial binning schemes, with the density
field on the light cone of each simulation arranged into either a single bin or eight bins of
equal radial comoving width. For each simulation and bin we construct maps of ξ defined
in Eq. 3.8 and ζα defined in Eq. 3.9. The power spectra CΘΘ

` , Cδαδα

` , and C τ̇αδα

` used in
Eqs. 3.8, 3.9, 3.10 to generate the ξ, ζα fields and reconstruction noise are the sample
variances from each realization. We then obtain the estimated moments of the binned
dipole field from Eq. 3.7, and generate a map of the reconstructed average dipole field in
each bin.

In Figure 3.3 we compare the reconstructed and actual bin-averaged dipole fields for a
single bin and for the 8th bin of the eight bin configuration. All maps are filtered to contain
only multipoles ` < 28. “By-eye,” the reconstruction performs well on large angular scales.
We quantify the agreement between the reconstructed and actual dipole field in two ways.

First, we make a comparison at the level of the power spectra in Fig. 3.4. We compute
the mean and standard deviation of the reconstructed dipole field power (with the noise
bias removed) and the actual dipole field power (total, and separate contributions from the
small and big box modes), as well as the prediction from linear theory using Eq. 3.5. In
this figure, we plot these quantities for the single bin (top left) and bins 2, 4, and 8 of the
eight bin configuration. In general, the agreement between the mean reconstructed and
the mean actual power is quite good at low multipoles, within a single standard deviation.
For higher multipoles, the reconstruction is poor and there is an excess of power due to
the reconstruction noise. In addition, there appears to be a systematic bias towards extra
power in the reconstructed field at low multipoles, especially in the single-bin configuration
and the lowest redshift bins of the eight bin configuration; the agreement with linear theory
becomes better at higher redshift. This is consistent with a bias due to gravitational non-
linearities, which we expect to be more important at low redshift. A similar bias exists in
CMB lensing [112], and we hope to investigate this possibility in future work.

As an additional diagnostic of the performance of the reconstruction, we compute the
correlation coefficient between the reconstructed and the original field, which we refer to
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as the reconstruction efficiency

rL ≡
Ĉ v̂v̄
L(

Ĉ v̂v̂
L Ĉ

v̄v̄
L

)1/2
, (3.28)

where v̂ denotes the reconstructed field and v̄ the actual field. The efficiency is not sensitive
to an overall change in normalization, but instead provides us with a measure of how
strongly correlated reconstructed and simulated modes are. In general, we find that the
reconstructed modes agree well with the simulated modes on the largest angular scales.
The reconstruction efficiency is found to be better at higher redshift, again we expect this
due to a lack of nonlinear effects. Reconstruction is also found to perform better in smaller
bins, an effect we can at least partially attribute to the increased information content:
information from small-scale modes has not been so heavily averaged away. However, in
larger redshift bins, the correlation with primordial modes is larger, as discussed in the
next section.

3.4.2 CMB-kSZ Dipole Correlation

We now consider how well we can determine the “intrinsic” CMB dipole using information
from the reconstructed large-scale velocity field, as suggested in Ref. [19]. This idea is not
without ambiguity – because one can arbitrarily change the CMB dipole by performing
a boost, there is no unique definition of the intrinsic dipole. Instead, one must settle on
a definition universal and specific enough to facilitate a meaningful comparison. We can
make progress by noting that the local CMB dipole should, to an extent depending on
one’s definition of the intrinsic CMB dipole, be correlated with the ` = 1 moments of the
remote dipole field. The contributions to our measured CMB dipole and the remote dipole
field of a nearby observer are determined primarily by small-scale modes which source
local peculiar velocities. However, there are also subdominant contributions to the CMB
dipole from larger-scale (but still local) velocity modes and other effects both along our
past lightcone and at the CMB last scattering surface. In Sec.1.5 of Chapter 1, we referred
to the dipole sources beyond the local Doppler as the “stationary dipole” sources.

A standard definition of the fundamental CMB dipole is obtained by boosting to a
reference frame in which the relativistic aberration of the CMB vanishes (see e.g. [129]). In
Newtonian gauge, this aberration-free dipole is calculated in the frame where an observer
has vanishing local peculiar velocity, altering the Doppler term in Eq. 3.3. This definition
of the fundamental CMB corresponds to the stationary dipole from Sec.1.5. A more general

117



definition of the fundamental CMB dipole is obtained by applying a low-pass filter to the
Fourier modes contributing to local peculiar velocities. The aberration-free dipole is a
special case, where all modes contributing to the local Doppler term are filtered out. This
more general definition is also more closely related to the dipole field obtained in kSZ
tomography, since the bin-averaging effectively imposes a low-pass filter on radial peculiar
velocities. We will refer to this as the large-scale Doppler dipole.

We can quantitatively express the correlation between the remote dipole field and the
various definitions of the CMB dipole in terms of transfer functions, with the CMB transfer
function filtered below a given scale kcut,

CTvα

1 =

∫
d3k

(2π)3
PΨ(k)∆vα∗

1 (k)∆T
filt,1(k) , (3.29)

where as before, α labels a redshift bin in which the remote dipole field v is averaged. The
filtered CMB transfer function for the dipole is given by

∆T
filt,1 = Θ(kcut − k)∆T

dopp, local,1(k) + ∆T
dopp,CMB,1(k) + ∆T

ISW,1(k) + ∆T
SW,1(k) (3.30)

where Θ is the Heaviside step function, and the individual contributions to the radia-
tion transfer function include ISW, SW, and both local and last-scattering-surface (CMB)
Doppler contributions. For the large-scale Doppler dipole, we choose a filtering scale equal
to the N-body simulation volume (Lcut ∼ 2π/kcut ∼ 3 Gpc). For the aberration-free dipole,
kcut → 0.

In Figure 3.6, we plot the theoretical prediction for the correlation coefficient (e.g.
Eq. 3.28) using linear theory between the ` = 1 moment of the bin-averaged remote dipole
field and three definitions of the CMB dipole: the observed CMB dipole (“all Doppler”),
the aberration-free or stationary dipole, and the large-scale Doppler dipole. We plot the
theory prediction for a single redshift bin (0, z) of varying radial extent. In addition, we
show the mean and standard deviation of the correlation coefficient calculated from ten
simulations for redshift bins of two different size using the simulated CMB large-scale-
filtered dipole and the reconstructed dipole field. As expected from the discussion above,
the correlation between the observed CMB dipole and the bin-averaged dipole field is small
for all but the smallest bins. Because they are composed primarily of large-scale modes, the
correlation between the bin-averaged dipole field and the aberration-free and large-scale
Doppler dipoles improves with bin width. However, the dipole field has a finite correlation
length, and therefore the correlation coefficient eventually goes down. We find that the
large-scale Doppler dipole can in principle be determined with a maximum correlation
coefficient of r ∼ 0.9 while the aberration-free dipole can be determined with a maximum
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correlation coefficient of r ∼ 0.65. The optimal reconstruction bin width corresponds to a
redshift of z ∼ 0.4. In conclusion, our simulations indicate that constraints on the intrinsic
CMB dipole should reasonably be attainable in individual realizations.

3.5 Discussion and Conclusions

kSZ tomography is a useful tool for probing the largest observable scales in our Universe,
providing information in addition to what the primary CMB and large-scale density sur-
veys alone can tell us. In this chapter we have explored the ability of a quadratic estimator
to reconstruct the remote dipole field using simulated maps of the CMB and density field.
We have found that the reconstruction process is able to capture highly significant in-
formation about large scales, even in the presence of physical effects with the potential
to contaminate our ability to reconstruct, including nonlinear growth of structure, RSDs,
lensing, and contributions to the kSZ temperature from structures outside the range of
redshifts considered for reconstruction.

We have accomplished this using a novel simulation technique, in which a small-scale
N-body simulation is sewn into a large-scale volume evolved with linear theory, allowing us
to generate self-consistent maps of kSZ temperature fluctuations, the primary CMB, CMB
lensing, density, and dipole fields. In turn, the consistency of these components allows us
to explore the ability of reconstruction techniques to probe fundamental physics such as
determining the intrinsic CMB dipole. More generally, the reconstructed remote dipole
can be used as a general-purpose cosmological observable, and is in principle a powerful
probe of primordial non-Gaussianity [78], relativistic effects in galaxy surveys [76], modified
gravity [77], isocurvature perturbations [111, 80], and CMB anomalies, which we discuss
in Chapter 4.

While this work furthers our confidence in the ability of the reconstruction procedure
to work in practice, it will be important that future simulations of remote dipole recon-
struction on the lightcone account for the many additional physics discussed in Chapter 2
in order to make future predictions as realistic and robust as possible. In the big picture,
Chapters 2 and 3 have laid the groundwork for simulations of kSZ velocity reconstruction
that incorporate the effects of multi-frequency CMB foregrounds, the impact of the mod-
elling of the electron distribution on small scales through the optical depth bias, the effects
of photometric redshift errors and calibration errors in galaxy surveys. and the impact of
partial coverage of the sky.
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Figure 3.3: The remote dipole field obtained from simulations compared to the recon-
structed remote dipole field. The maps do not include modes higher than ` > 28. The
reconstruction of the top two plots was done using a single redshift bin from z = 0.086
to z = 0.37, while the bottom plots are a redshift bin from z = 0.33 to z = 0.37. By
eye, it is noticeable that large angular modes between the two maps tend to agree, while
smaller-scale modes only do to a moderate extent. The reconstruction of smaller scales
is also found to be better in the smaller, higher-redshift bin. This is in agreement with
results obtained by looking at the reconstruction efficiency, shown in the top left panel
of Figure 3.5. Excess power can also be seen on small scales, consistent with the spectra
found in Figure 3.4.

120



Figure 3.4: The velocity power spectra from simulated data, compared to the theoretical
and reconstructed spectra. Contributions to the spectra from the N-body simulation are
shown in red, contributions from the large-scale box modes in blue, and the total in purple.
The reconstructed spectra with noise subtracted is in green, and linear theory prediction in
black. Lines indicate the mean spectrum from our simulations, while solid bands indicate
the variance. The reconstruction is performed using redshift data in bins over a redshift
range of z = 0.086 to z = 0.37, subdivided into one or eight bins of equal comoving
distance. Reconstruction efficiencies are shown in Figure 3.5.
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Figure 3.5: The reconstruction efficiency for the runs in Figure 3.4. The solid line indicates
the mean reconstruction efficiency in each bin for each simulation realization, and the solid
band the standard deviation.
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Figure 3.6: The reconstructed velocity field and CMB temperature dipole correlation coef-
ficient, CT v̄

1 /
√
CTT

1 C v̄v̄
1 , computed using different CMB dipoles. The theoretical correlation

using the full CMB transfer function is shown in blue, correlation with the aberration-free
dipole in red, and the correlation with “filtered” CMB dipole shown in green. Data point
show the correlation of the simulated CMB dipole filtered on 3 Gpc (box-sized) scales for
two redshift bin sizes. The points are the mean correlation from all simulations we perform,
and error bars denote the standard deviation.
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Chapter 4

Testing anomalies

4.1 Chapter summary

Anisotropies in the Cosmic Microwave Background (CMB) are a powerful probe of early
Universe physics. On large angular scales, these anisotropies encode primordial density fluc-
tuations, which may ultimately have been produced at energy scales far beyond the reach of
any terrestrial particle accelerator. Interestingly, a series of anomalous large angular scale
features in the microwave sky have been reported by the WMAP and Planck [130, 131]
satellite missions, offering what could be hints of physics beyond the standard model of
cosmology, ΛCDM. Several notable anomalies include: a hemispherical power asymmetry,
a lack of correlations on large angular scales, features in the angular power spectrum, and
an alignment of multipoles; see [5] for a recent review. As the statistical significance of
each of these anomalies is rather modest, the most conservative position is to attribute
them to statistical flukes, given the a posteriori nature of their discovery, systematics or
foregrounds. Unfortunately, as a stand-alone probe, the CMB temperature has already
reached the limit imposed by cosmic variance on large angular scales, so new informa-
tion can only come from alternative or complementary probes of the largest scales in the
Universe.

Several observables have been identified as potential probes of physical models of the
CMB anomalies, including: CMB polarization (see e.g. Refs. [132, 133, 134, 135, 136, 137,
138, 139]), CMB lensing (see e.g. [140, 141]), the integrated Sachs-Wolfe (ISW) effect (see
e.g. [100, 142, 143]), and probes of large scale structure in the late Universe (see e.g. [144,
145, 146, 147]). Each of these observables has both advantages and disadvantages. CMB
polarization can access scales comparable to those in the CMB temperature. On the largest
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angular scales, however, the mapping between the observed polarization anisotropies and
physical scales is dependent on the (relatively poorly constrained) history of reionization.
In addition, on large scales galactic foregrounds are challenging (though not impossible)
to remove [4]. The lensing potential can be reconstructed with high fidelity using future
CMB datasets (e.g. Simons Observatory [15] or CMB-S4 [16]), however there is limited
support from the physical scales associated with many of the CMB anomalies (see [141]).
If the (late time) ISW contribution to the CMB temperature can be isolated (e.g. using
the technique of [143]), this could contribute a modest number of modes probing large
scales. Finally, future galaxy surveys (e.g. Rubin [10], Euclid [11], Spherex [148]) or 21cm
experiments (e.g. CHIME [12], HIRAX [14]; see also [13]) can reach large enough volumes
to offer new information on some of the CMB anomalies. While promising the measurement
of a huge number of modes on linear scales, there will be limited support on physical scales
responsible for the lowest multipoles of the CMB temperature, and measurement of the
largest modes will be noisy and plagued by various systematics (see e.g. [149]).

The goal of this chapter is to explore a new set of observables that may become im-
portant tools in the study of the physical nature of CMB anomalies: the remote dipole
and quadrupole fields, i.e. the ` = 1, 2 moments of the microwave sky measured through-
out our observable Universe (see Secs.1.3.4 and 1.3.5). We remind the reader that the
remote dipole manifests itself through the kinetic Sunyaev Zel’dovich (kSZ) effect [23]:
the dominant blackbody temperature contribution to our CMB sky on angular scales cor-
responding to multipoles ` & 4000 originates from free electrons on our past light-cone
scattering their locally observed CMB dipole. Similarly, in the presence of a local CMB
quadrupole, the scattered photons are endowed with a polarization. The polarized compo-
nent of the CMB arising after reionization, primarily from collapsed structures, is known
as the polarized Sunyaev Zel’dovich (pSZ) effect (as opposed to the component sourced
near decoupling and at reionization, which is simply CMB polarization). Information of
the remote dipole and quadrupole on our past lightcone can be reconstructed using the
techniques of kSZ velocity reconstruction (thoroughly discussed throughout Chapters 1,2
and 3) and pSZ quadrupole reconstruction (reviewed in Appendix A.1). Below, we refer
to these two techniques more generally as SZ tomography. Previous forecasts and analyses
[18, 19, 20, 21, 36], as well as the results presented so far in this thesis, have established
the feasibility of the reconstruction techniques with future datasets.

Being primarily sensitive to inhomogeneities on large physical scales, these new observ-
ables that will become accessible with the next generation of CMB and galaxy surveys
stand as potential candidates to further extend our understanding of the CMB anomalies.
The remote quadrupole field receives support from the same scales contributing to the
low-` moments of the CMB temperature. Although at low redshift and on large angular
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scales the remote quadrupole field is strongly correlated with the primary CMB tempera-
ture quadrupole [37, 150], there is significant new information on moderate angular scales
and at high redshift [36, 151, 19, 63]. The remote dipole field is dominated by the coarse-
grained line-of-sight peculiar velocity field, and is therefore sensitive to somewhat smaller
scales than the remote quadrupole. However, it can be reconstructed at far higher signal
to noise, and carries a significant amount of information on scales relevant to a variety
of CMB anomalies. As general probes of physics on large scales, the remote dipole and
quadrupole fields can yield improved constraints on: primordial non-Gaussianity [78], pri-
mordial gravitational waves [152, 151], and pre-inflationary relics [153].

The central question we wish to address in this work is whether or not the remote
dipole and quadrupole fields could serve as alternative and complementary probes of the
CMB anomalies to more traditionally considered tracers: the large scale E-mode CMB
polarization and 3-dimensional galaxy maps on our past light-cone. An important fact
to highlight is that measurements of these observables significantly differ in their nature:
a key feature of SZ tomography is that it reconstructs large-scale inhomogeneities from
anisotropies on the smallest angular scales. The fidelity of the reconstruction improves
with the sensitivity and resolution of the CMB experiment and the depth and redshift
errors of the galaxy survey. Therefore, the information accessible using SZ tomography
will improve greatly with time, while direct probes of the largest scales are already close to
the cosmic variance limit. Apart from offering an alternative way of measuring the large
scale properties of the Universe, the remote dipole and quadrupole fields may also capture
new independent information to that already available through the traditional probes.

Our methodology to estimate how informative the remote dipole and quadrupole fields
could be for the study of the CMB anomalies consists of forecasting parameter constraints
for physical models of the anomalies under the experimental conditions of idealized next-
generation CMB experiments and galaxy surveys. We compare the performance of different
combinations of the primary CMB temperature, CMB polarization, galaxy clustering and
the remote dipole and quadrupole fields. We assume that foreground-cleaned data is ac-
cessible for the CMB polarization on large scales, for the galaxy survey and also for the
kSZ and pSZ effects on small angular scales. The limiting experimental factors that we
do take into account are CMB noise levels as expected for Stage-4 CMB experiments and
Rubin-like specifications for the galaxy survey, as well as calibration errors on large scales
for the latter. We perform our forecast using a Fisher matrix formalism on a series of
physical models for three representative CMB anomalies: the power asymmetry, the lack
of power on large angular scales, and a feature in the temperature power spectrum at
multipoles around ` ∼ 20− 30. We find that the remote CMB dipole and quadrupole can
yield constraints on anomalies models significantly beyond what can be done with CMB
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temperature and polarization on large scales, and comparable to what is possible with a
large photometric galaxy survey. The best constraints are obtained from a multi-tracer
analysis including the primary CMB, remote fields, and galaxy survey. It is important to
mention that the work presented in this chapter was done prior to the extended formalism
presented in Chapter 2, and thus follows the treatment for the quadratic estimators from
[19] (reviewed in Sec.1.4 and Appendix A.1) plus some additions like the optical depth
bias marginalization and the impact of photometric calibration errors on the galaxy red-
shift survey. Still, the goal of this study was to provide evidence of the sensitivity of the
reconstructed remote dipole and quadrupole to the physics involved in CMB anomalies
models, and identify them as valuable probes to include in a multi-tracer analysis. The
extended extended formalism will serve as a new platform for future forecasts and the
eventual analysis of real data.

The plan of the chapter is as follows. In Sec. 4.2, we review SZ tomography and
describe the properties of the remote dipole and quadrupole fields. In Sec. 4.3, we describe
the details of our forecast and introduce a figure of merit which is used to quantify the
potential constraining power with different combinations of observables. In Sec. 4.4 we
present the results of our forecast, and we conclude in Sec. 4.5.

4.2 The remote dipole and quadrupole fields

In this section, we review the details of the remote dipole and quadrupole fields and argue
for their utility as probes for the CMB anomalies. Contributions to the CMB temperature
and polarization generated via the kinetic and polarized SZ effects can be expressed through
the line of sight integrals

ΘkSZ(n̂) = −
∫
dχ veff(n̂, χ) τ̇(n̂, χ), (4.1)

veff(n̂, χ) ≡ 3

4π

∫
d2n̂e Θ(x, n̂e) (n̂ · n̂e) =

1∑
m=−1

Θm
1 (n̂, χ)Y1m (n̂) (4.2)

(Q± iU)pSZ(n̂) = −
√

6

10

∫
dχ q±eff (n̂, χ) τ̇(n̂, χ), (4.3)

q±eff (n̂, χ) ≡
2∑

m=−2

Θm
2 (n̂, χ) ∓2Y2m (n̂) (4.4)
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where n̂ denotes the line of sight direction, χ the comoving distance to the scatterer,
Θm
` (n̂, χ) are the moments of the CMB temperature at the position of the scatterer, and

τ̇ (n̂, χ) is the differential optical depth defined as

τ̇ (n̂, χ) ≡ σTa(χ)ne(n̂, χ) = σTa(χ)n̄e(χ) [1 + δe (n̂, χ)] (4.5)

with a (χ) the scale factor, σT the Thompson cross-section and δe (n̂, χ) the perturbations
about the average electron number density n̄e(χ).

Figure 4.1 depicts the basic spacetime geometry of the SZ effect. The remote dipole field
veff (n̂, χe) is a projection of the CMB dipole Θm

1 (n̂, χ) as observed along the past light cone.
The dominant contribution is from the line-of-sight component of the peculiar velocity field
(as it is for our own observed CMB dipole), although there are subdominant contributions
that come from the Sachs-Wolfe (SW), Integrated Sachs-Wolfe (ISW), and primordial
Doppler (velocities of the plasma at last-scattering). In this thesis, these dominant and
subdominant contributions are referred to as the kinematic or local Doppler dipole, and
stationary or fundamental CMB dipole, respectively (see Sec.1.5 for details). The remote
quadrupole field q±eff (n̂, χ) is a projection of the CMB quadrupole Θm

2 (n̂, χ) as observed
along the past light cone. The remote quadrupole receives contributions from both scalar
and tensor fluctuations, although we consider only scalar modes in the present context.
In this case, q+

eff = q−eff , and the remote quadrupole is curl-free. As such, we will denote
the pure scalar remote quadrupole field as “qE”. The remote quadrupole is sourced by the
SW, ISW, and primordial Doppler effects.

SZ tomography works by first inferring the fluctuations in the optical depth in a set of
redshift bins labeled by α from a tracer of structure such as a galaxy survey. A quadratic
estimator for the bin-averaged dipole and quadrupole fields is then constructed from the
CMB temperature or polarization and each redshift bin of the galaxy survey. We work
in harmonic space for the reconstructed fields, denoting the moments of the dipole or
quadrupole fields in each bin as vαLM and qαE;LM respectively. The reconstruction noise on
the remote dipole and quadrupole fields depends on the specifications of the CMB experi-
ment and the volume and shot noise of the galaxy survey. We discuss our assumptions for
the reconstruction noise in detail in the following section, which correspond to the choices
made in Ref. [19] (see Sec.1.4 and Appendix. A.1 for a review). An additional consid-
eration is the so-called “optical depth degeneracy” (see e.g. [154, 75] and our discussion
from Sec.2.4.1), which is a consequence of the necessarily imperfect inference of the fluc-
tuations in the optical depth from the galaxy survey. This manifests itself as an overall
multiplicative bias on the remote dipole and quadrupole fields in each redshift bin that
must be marginalized over [20]. Direct measurements of the distribution of free electrons,
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for example using fast radio bursts as proposed in Ref. [66], can mitigate the optical depth
degeneracy.

Figure 4.1: Photons travelling from the last scattering surface can be re-scattered by free
electrons once the Universe is reionized. The small scale CMB signal generated through
this process can be combined with a redshift dependent tracer of the electron density to
reconstruct the moments vαLM and qαE;LM of the dipole and quadrupole field.

The remote dipole and quadrupole fields provide new information about the Universe
on large scales. The primary CMB photons, travelling to us directly from the last scat-
tering surface, probe the largest accessible scales. The information they provide, however,
is somewhat obscured due to the fact that we observe the projection of 3-dimensional in-
homogeneities onto a 2-dimensional surface. As illustrated in Fig. 4.1, the remote dipole
and quadrupole fields accessed through SZ tomography provide additional information in
a number of ways. First, due to the tomographic nature of the reconstruction, we ob-
tain coarse-grained three-dimensional information. Furthermore, the remote dipole and
quadrupole fields are sensitive to inhomogeneities inside our past light cone, implying that
they can access different information than what is encoded in the primary CMB temper-
ature. In the case of the remote dipole field, which is dominated by the local peculiar
velocity, it is possible to study bulk motion on scales comparable to the size of the observ-
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able Universe using long-range correlations.

To go beyond these qualitative remarks, we inspect the scales probed by the remote
dipole and quadrupole fields using linear theory, which is a good approximation for the
scales under consideration. The various observables under consideration can be related to
primordial gravitational potential in Newtonian gauge Ψi(k) using a set of (bin-averaged)
transfer functions ∆X,α

` (k)

aX,α`m =

∫
d3k

(2π)3
∆X,α
` (k)Ψi(k)Y ∗lm(k̂), (4.6)

where X = T,E, v, qE,G for the observables we consider in this work (primary CMB
temperature, E-mode polarization, remote dipole, remote quadrupole and redshift galaxy
distribution, respectively); for X = T,E the index α is superfluous. Expressions for the
remote dipole and quadrupole transfer functions, which capture the contributions coming
from the SW, ISW and Doppler effects, can be found in Sec.1.5 and Appendix A.2.

The transfer functions reveal to us which scales the remote dipole and quadrupole
are sensitive to. As an example, we show in Figure 4.2 the ΛCDM transfer functions
(e.g. using parameters from Planck 2018 [4]) in the (`, k) plane for the primary CMB
temperature, E-mode polarization and the remote fields at a few different redshifts. For
the CMB temperature and remote dipole field, we plot the range 1 ≤ ` ≤ 30, which
roughly encompasses the range of scales relevant to the CMB anomalies we consider. For
the CMB E-mode polarization and remote quadrupole, we restrict the range to 1 ≤ ` ≤ 10,
as this is the range over which the remote quadrupole receives significant support. There
are a few things to note from this figure. Comparing with the CMB temperature transfer
function, we see that the remote dipole and quadrupole fields have good support over a
comparable range of wavenumbers. Because it is sourced mostly by fluctuations near the
time of last scattering, the remote quadrupole is relatively more sensitive to large scales
than the remote dipole. However, the amplitude of the remote quadrupole falls sharply
with `, implying (correctly) that there will be a limited number of measurable modes. It
can also be noted that the remote dipole field probes larger scales at higher redshift; this
is due to the larger physical distances in the peculiar velocity field which are sampled.

Based on these observations, the observables returned by SZ tomography appear to
have the potential to add statistical power into the analysis of CMB anomalies due to their
sensitivity to large scale inhomogeneities. However, the amount of new information that
can be added will depend on the correlations that exist amongst all the observables we
consider. Indeed, some correlations are expected to be there by construction. For example,
at low redshift the ` = 2 moments of the remote quadrupole field are perfectly correlated
with the CMB temperature quadrupole [37, 150, 36].
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In Figure 4.3 we plot the correlation coefficient between the remote fields and the
primary CMB, defined by

rX,Yαβ,``′,mm′ =
CX,Y
αβ,``′,mm′√

CX,X
αα,``,mmC

Y,Y
ββ,`′`′,m′m′

, (4.7)

where

CX,Y
αβ,``′,mm′ =

∫
d3k

(2π)3

∫
d3k′

(2π)3
∆∗X,α` (k) ∆Y,β

`′ (k′)
〈
Ψ∗i (

~k)Ψi(
~k′)
〉
Y`m(k̂)Y ∗`′m′(k̂

′
) (4.8)

are the elements of the covariance matrix. In the top panel, we show the correlations
between the CMB temperature and remote fields at a few values of `. For ` = 1, the CMB
temperature is the aberration-free dipole (see e.g. Refs. [108, 129, 155, 156] for a summary
of the various frames for the CMB dipole), not the dipole observed in the Earth’s rest
frame. There is . 10 − 20% correlation between the CMB temperature and the remote
dipole field over a range of redshifts and multipoles. There is a far higher correlation
between the CMB temperature and the remote quadrupole field. As expected, there is
nearly perfect correlation between the CMB quadrupole and the ` = 2 moment of the
remote quadrupole field, except at the highest redshifts. The remote dipole field has little
correlation with the CMB E-mode polarization. However, at the highest redshift, there
is a near-perfect correlation between the E-mode polarization and the remote quadrupole
field. This is expected, since at high redshift the CMB polarization is sourced by the same
remote quadrupole field that is being reconstructed by SZ tomography (see Ref. [151] for
further discussion). Significant correlations will also exists between the galaxy redshift
distribution and the reconstructed dipole field, as the latter is dominated by the line of
sight peculiar velocity field, which certainly has a tight relationship with the density field
itself.

In conclusion, including the full covariance between the various observables can be
important in a joint analysis, such as the one we present below. This is particularly
important at low-multipoles/low-redshift for the CMB temperature, at high-redshift for the
CMB E-mode polarization and in general for the galaxy-velocity correlations. Conversely,
we see that over a wide range of multipoles and redshifts, the remote dipole and quadrupole
fields carry significant independent information beyond the primary CMB temperature and
polarization. For the case of the remote dipole, velocities are sensitive to the gradient of
the gravitational potential and thus can probe inhomogeneities on slightly larger scales
than the directly observed densities.
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4.3 Forecast setup

The reconstruction of the the remote dipole and quadrupole fields using SZ tomography
opens the possibility of bringing new information into the study of the large scale CMB
anomalies. Determining how informative a data set is will depend, of course, on the
type of questions we are trying to answer. From the Bayesian perspective, we might
strive for model-selection: How would adding a new observable change the odds-ratio
between the anomaly model and ΛCDM in a future experiment (see e.g. [157])? Such
an approach requires a motivated set of theoretical priors, as well as an understanding of
the full likelihood function over model parameters. Due to the lack of strongly motivated
models and the computational complexity of evaluating the full likelihood function, we
do not pursue this approach here. Another possibility (less computationally expensive
than model selection) for predicting how informative a data set can be is to determine its
constraining power on the parameters of a model using a Fisher matrix-based approach. In
general, such results are not sufficient to decide if a future experiment could choose among
competing theoretical models. However, this approach does offer a way of quantifying the
additional constraining power a new observable might add. We will adopt this methodology
in order to study the information content of the remote dipole and quadrupole field on a
series of models for CMB anomalies, and compare it to what is achievable using the primary
CMB temperature, E-mode polarization and galaxy clustering on large angular scales. We
now proceed to describe our definitions for information content and modelling for the signal
and noise covariance.

4.3.1 Fisher analysis, figure of merit and parameter space

Given a cosmological model with parameters {λi}, one can forecast how well these param-
eters can be constrained using different set of observables by implementing a Fisher matrix
analysis. The elements of the Fisher matrix are given by the following expression:

Fij =
1

2
Tr[(C + N)−1C,λi(C + N)−1C,λj ] (4.9)

where C is the signal covariance matrix (whose elements are defined by Eq. 4.8), C,λj

denotes its derivative respect to λj, and N is the noise covariance matrix. The Fisher matrix
encodes information about the curvature of the likelihood function around its maximum
in parameter space, and this information can be turned into fully marginalized constraints
on the model parameters:

σλi =
√(

F−1
)
ii
. (4.10)
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A good way of comparing the results of the Fisher matrix analysis among models with
different number of parameters is to define a single quantity that condenses the information
of how well the model parameters are constrained. For a forecast using a set {X} of
observables, we define the figure of merit FoM for a subset of N parameters:

FoM(X) =

(
1√

det(F−1N )

) 1
N

. (4.11)

where F−1N is the part of the inverse Fisher matrix containing information about the fully
marginalized constraints on the subset of parameters. Furthermore, since we want to
highlight the relative performance respect to the primary CMB, we will express our results
in terms of a figure of merit ratio, defined by :

FoMr(X) =
FoM(X)

FoM(T )
(4.12)

The figure of merit ratio encodes the geometrical mean improvement on model parameter
constraints. Similar figure of merit ratios have been used in previous literature, e.g. as
a measure of improvement in constraints on CMB anomalies parameters when comparing
current to future missions [158].

Apart from the standard ΛCDM parameters and the extra parameters ai present in any
of its extensions, it is important to marginalize over other “nuisance” parameters that can
be introduced depending on our set of observables {X}. For the case of the remote fields,
we need to include a bias parameter bdα multiplying the multipole coefficients av,αLM and
aqE,αLM in each bin α due to the optical depth degeneracy in kSZ/pSZ : having incomplete
inference of the electron-galaxy cross spectrum, we can only reconstruct the remote dipole
and quadrupole inside each redshift bin up to an overall amplitude. We refer the reader
to [20] for a more detailed discussion of the optical depth degeneracy. Modelling of galaxy
clustering also involves the introduction of other nuisance parameters: galaxies are biased
tracers of the dark matter distribution, so its necessary to include a galaxy bias bG(z)
which will depend on the details of the galaxy survey and can also be marginalized over.
On large scales, there are as well contributions to the observed galaxy number counts
which come from redshift spatial distortions, lensing and GR effects on very large scales.
These contributions have their own internal biases (intrinsic alignment bias, evolution bias,
magnification bias) for which we provide references in the following section. The fiducial
values for the ΛCDM cosmology we take are Ωb = 0.049, Ωc = 0.263, h = 0.675, τ = 0.054,
109As = 2.096 and ns = 0.965. Fiducial values for each of the anomalies model parameters
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are presented together with the models in the next section and Appendix C.1. The bias
parameters bdα are assigned fiducial values of unity. Priors on bdα can come from other
astrophysical probes [66], but for the anomaly models under consideration we find that
the constraints are relatively insensitive to the addition of such a prior. Parameters bGα
are obtained by averaging the galaxy bias bG(z) over the survey redshift bins. The fiducial
values we use for this bias are bG(z) ' 0.95 + 0.67z as quoted in the LSST science book
[10].

4.3.2 Modelling of the signal

The signal covariance matrix C we construct is split into two pieces: Clow and Chigh.
For multipoles ` ≤ 60, corresponding to Clow, we investigate different combinations of all
observables under consideration, accounting for the auto and cross-correlations between
the primary CMB temperature and E-mode polarization, remote dipole/quadrupole fields
and galaxy number counts. For multipoles 60 < ` < `high, where the reconstruction of
the remote dipole and quadrupole fields is poor, and where correlations with the primary
CMB are vanishingly small, we include only the CMB temperature and polarization (and
their covariance) in Chigh. We choose `high = 3000 since for higher multipoles the primary
CMB becomes a subdominant contribution to the measured microwave sky. With these
assumptions, the Fisher matrix factorizes into the sum of a low-` and high-` piece, Flow

and Fhigh, respectively. The main effect of Fhigh is to constrain the ΛCDM parameters.
We further assume that Fhigh is zero for the entries corresponding to the anomaly model
parameters ai, since the anomaly models under consideration will have little to no effect
on these scales. The elements of the covariance matrix are computed using Eq. 4.8. We
obtain the primary CMB temperature and polarization transfer functions using the publicly
available Code for Anisotropies in the Microwave Background (CAMB) [81]. We use the
same conventions and definitions for the remote fields transfer functions as in [19] (Sec.1.5
and Appendix A.2), and for the galaxy number counts we follow what is done in related
work [76] (Appendix A) where dipole reconstruction is put together with galaxy number
counts to determine if large scale general relativistic effects could be detected with near
future surveys.

4.3.3 Modelling of the noise

The noise covariance matrices for the primary CMB fields and for galaxy number counts
are constructed under the assumption of idealized next generation CMB experiments and
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galaxy surveys. We assume CMB temperature and polarization data on the full sky with
noise

NCMB
` = η2 exp

(
θ2

FWHM

8log2
`(`+ 1)

)
. (4.13)

We choose fiducial values of η = 1µK-arcmin and θFWHM = 1 arcmin, representative of
Stage-4 CMB-like experiments, and explore how constraints vary for larger (5µK-arcmin),
smaller (0.1µK-arcmin) noise and increased beam size ( θFWHM = 5 arcmin). To determine
the galaxy survey shot-noise, we assume an Rubin-like number density per arc-minute
square given by :

n(z) = ngal
1

2z0

(
z

z0

)2

exp (−z/z0) . (4.14)

where z0 = 0.3 and ngal = 40 arcmin−2. In addition to the shot noise we also account
for photometric calibration errors, which introduce additional biases to the large galaxy
power spectrum, and we base our parametrization on previous studies on the impact of
these systematics in the reconstruction of the ISW effect from galaxy surveys [100, 99].

Calibration errors introduce extra power Ccal
` which can be modelled by:

Ccal
` = Acale

−(`/10)2 (4.15)

for multipoles ` < 30 and zero otherwise, where Acal is a normalization constant cho-
sen such that the variance of the calibration error field defined on the sky is equal to a
desired value. We choose this variance to be equal to 10−4 which corresponds to a level of
calibration of ≈ 0.01 magnitudes and is a rather conservative value for what is expected
from future surveys. We do not marginalize over the calibration error parameters.

For the remote fields, the reconstruction noise is computed as in Ref. [19]. The in-
strumental CMB noise discussed above is one of the necessary pieces to calculate the
reconstruction noise for the dipole and quadrupole correlations appearing in Clow. Multi-
poles up to ` = 9000 (assumed to be accessible with next generation experiments) are used
to calculate the reconstruction noise, and thus different choices of the CMB noise level η
and beam size θFWHM will have an impact on the signal to noise for the low-` dipole and
quadrupole fields. The galaxy shot noise enters into the calculation in a similar way, but we
have kept the parameters appearing in Eq.4.14 fixed in order to focus on improvements on
constraints due to the reconstructed fields and their dependence on CMB noise parameters.

The construction of both the signal and noise covariance matrices also involves a choice
of redshift binning for the galaxy survey, which determines how coarse-grained the recon-
structed remote dipole and quadrupole fields are. The thinner the binning is, the more
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information can be collected. Clearly all independent information would be captured in
the limit of having infinitely small redshift bins, but the redshift resolution of the (photo-
metric redshift) surveys used in the reconstruction process imposes a limit on how many
redshift bins can be used. We use 45 redshift bins of equal comoving radial width be-
tween Z = [0.1, 3], which, translating to redshift, is roughly consistent with the expected
photometric redshift errors for Rubin [10].

4.4 Information content forecast

In what follows we present the Fisher forecast for constraints on models of the large scale
CMB anomalies using different subsets of observables: X = (T,E), X = (T,E,R), X =
(T,E,G) and X = (T,E,R,G). We first introduce two general classes of physical models:
models that break statistical isotropy, which could be responsible for the power asymmetry,
and models that deviate from a nearly scale-invariant primordial power spectrum, which
could be responsible for a lack of power on large scales and a feature in the power spectrum
at ` ∼ 20−30. While this is a small subset of physical models considered to explain only a
subset of the CMB anomalies, we hope that the cases we do consider are illustrative of the
potential utility of SZ tomography for providing further insight into the nature of the CMB
anomalies. Following this we present the figure of merit ratio FoMr given by Eq. (4.12)
for each model, which provides a quantitative measure of the overall improvement on
parameter constraints relative to what is achievable with measurements of the primary
CMB temperature only. The fully marginalized parameter constraints for each model can
be found in Appendix C.1.

4.4.1 Statistical isotropy breaking

A subset of the observed CMB anomalies suggest the existence of statistical anisotropies [159]:
unexpected alignment between the low multipole moments, a hemispherical power asym-
metry, parity asymmetry of the CMB etc. It is still not known whether or not these features
are due to foregrounds, local cosmic structure or possible statistical flukes present our ob-
served realization of ΛCDM. However, if due to true physical departures from ΛCDM, the
underlying model must break statistical isotropy.

We consider phenomenological models of spontaneous isotropy breaking [160] (see also
e.g. [161, 162, 163, 164]), in which local observers would detect statistical anisotropy, while
the Universe as a whole is globally statistically homogeneous and isotropic. Following
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Ref. [132], we include a field h(~x) with super horizon fluctuations that modulates the
potential g1(~x) only on large scales, leaving small scale fluctuations described by g2(~x)
unaffected:

Ψi(~x) = g1(~x)(1 + h(~x)) + g2(~x), (4.16)

Here, g1(~x) and g2(~x) are random Gaussian fields, while h(~x) is deterministic within our
Hubble volume. It is the slow variation of h(~x) inside our Hubble volume that is respon-
sible for the existence of statistical anisotropy in the CMB. Such a modulation can occur,
for example, in inflation models with more than one field contributing to the primordial
curvature perturbations. Here, rather than focusing in a particular early Universe mecha-
nism for generating the modulation, we are interested in determining how the imprints of
a preferred direction on the remote dipole and quadrupole fields can help to constrain the
amplitude of the modulation.

The effect on the primordial power spectrum is given by:〈
Ψ∗i (

~k)Ψi(
~k′)
〉

= (2π)3δ(~k − ~k′)(Pg1(k) + Pg2(k
′))

+ (Pg1(k) + Pg1(k
′))h(~k − ~k′)

+

∫
d3k̃

(2π)3
Pg1(k̃)h(~k − ~̃k)h(~k′ − ~̃k), (4.17)

where Pg1(k) and Pg2(k) are the power spectra for g1(~x) and g2(~x). We will fix these power
spectra to that Pg1(k) + Pg2(k) = PΛCDM(k) when h(~x) = 0. The second and third term
will induce couplings between different (`,m) multipoles and this manifests the breaking
of statistical isotropy for local observers.

For this work consider a dipolar modulation given by a super-horizon scale mode varying
in the direction of the Z axis:

h(~x) = A
sin(~k0 · ~x)

k0 χdec
≈ A

Z

χdec
(4.18)

This physical model could explain the observed power asymmetry [132] (see also e.g. [165,
141, 137]); we do not consider other modulation models here, which could be responsi-
ble for the observed alignment of low-` multipoles (see e.g. [132]) or other observed CMB
anomalies. For the modulating field Eq. 4.18, expressions for elements of the covariance
matrix up to second order in A can be obtained analytically and are presented in Ap-
pendix C.2. Analysis of temperature data by Planck suggests a phenomenological dipole
modulation up to ` ∼ 60 with a value for the amplitude parameter of approximately [159]
A = 0.07 ± 0.02. An open question is to what scales the asymmetry might persist, e.g.
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where the cross-over occurs from the observed fluctuations being sourced by g1 to being
sourced by g2. There is a hard upper bound implied by the low hemispherical asymmetry
of the distribution of high redshift quasars [166] of k . 1 Mpc−1. In the following we treat
the cross-over to statistical homogeneity as in Ref. [141], were a new set of parameters
describing the cross-over is introduced:

Pg1(k) =
1

2
PΛCDM(k)

[
1− tanh

(
ln k − ln kc

∆ ln k

)]
, (4.19)

with kc a cutoff scale with fiducial value 7.83 × 10−3Mpc−1 and ∆ ln k = 0.5 a parameter
controlling the steepness of the cross-over.

4.4.2 Deviations from ΛCDM power law

The other class of models we consider involves possible deviations from the ΛCDM power
law primordial power spectrum. On large angular scales it has been observed by WMAP
and Planck that the CMB temperature shows an unexpected lack of variance compared to
ΛCDM. Features in the temperature power spectrum have also been identified, remarkable
ones being a low quadrupole and a lack of power at multipoles ` ∼ 20−30. One simple and
theoretically interesting possibility is that these CMB anomalies are due to corresponding
features in the primordial power spectrum of curvature fluctuations. Such features can
arise as a signature of: the onset of inflation (e.g. [167, 168, 169]), oscillations [170, 171] or
sharp steps [172] in the inflaton potential, steps in the sound speed [173] or DBI inflation
warp factor [174], among other scenarios. In this section, we determine the additional
constraining power offered by SZ tomography for a subset of these feature models, choosing
a few representative examples that have previously been investigated by Planck [175].

Phenomenological models for large scale power suppression

Following Ref. [175], we consider a set of two-parameter phenomenological models for
the suppression of power on large angular scales in the primary CMB temperature. The
first model we consider [169] implements an exponential suppression of power below a
wavenumber kc:

Ps1(k) = PΛCDM(k)

(
1− exp

[
−
(
k

kc

)λ])
(4.20)
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where PΛCDM(k) = As

(
k
k∗

)ns−1

and the best-fit model parameters from Planck 2015 [175]

are kc = 3.74× 10−4 Mpc−1 and λ = 0.53. The second model has a break in the power law
at a scale kb:

Ps2(k) =

As
(
kb
k∗

)−δ(
k
k∗

)ns−1+δ

if k ≤ kb,

As

(
k
k∗

)ns−1

if k ≥ kb,
(4.21)

The best-fit model parameters from Planck 2015 [175] are kb = 5.26 × 10−4 Mpc−1 and
δ = 1.14. In both cases, we choose the central values for the model parameters as the
best-fit Planck values and we fix the pivot scale to k∗ = 0.05 Mpc−1. We plot the two
fiducial models in Fig. 4.4.

Features in the power spectrum

We now review two physical scenarios that give rise to features in the primordial power
spectrum. In the first model, we consider a period of kinetic domination preceding slow-roll
inflation. This gives rise to a suppression of power on large scales, as well as oscillations
in the power spectrum on intermediate scales [169]. The one parameter in this model is a
scale kc, roughly corresponding to the comoving size of the horizon when slow-roll begins.
Clearly, we are able to constrain this model only when there are a minimal number of
e-folds of inflation, in which case kc is on observable scales. The full form of the power
spectrum is given by:

lnPc(k) = lnP0(k) + ln

(
π

16

k

kc

|Cc −Dc|2
)
, (4.22)

where
Cc = exp

(
−ik
kc

) [
H

(2)
0

(
k

2kc

)
−
(
kc
k

+ i
)
H

(2)
1

(
k

2kc

)]
,

Dc = exp
(
ik
kc

) [
H

(2)
0

(
k

2kc

)
−
(
kc
k
− i
)
H

(2)
1

(
k

2kc

)]
,

(4.23)

and H
(2)
n denotes the Hankel function of the second kind. We assume the best-fit value

from Planck 2015 [175] of kc = 3.63 × 10−4 Mpc−1 as the central values in our analysis
below. The second model we consider arises when there is a tanh-shaped step in the
inflaton potential as in Ref. [176], which gives rise to oscillations in the primordial power
spectrum. This is a three-parameter model, which, at the level of the inflaton potential,
correspond to the location, height, and width of the step. The resulting power spectrum
is given by

lnPs(k) = exp
[
lnP0(k) + I0(k) + ln

(
1 + I2

1 (k)
)]

(4.24)
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where

I0(k) =
As

2x3

[(
18x− 6x3

)
cos 2x+

(
15x2 − 9

)
sin 2x

] ∣∣∣
x=(k/ks)

×D
(
k/ks

xs

)
(4.25)

I1(k) =
1√
2

[
π

2
(1− ns)−

As

x3
(4.26)
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]} ∣∣∣
x=(k/ks)

×D
(
k/ks

xs

)]
. (4.27)

D(x) =
x

sinhx
(4.28)

(4.29)

We assume the best-fit value from Planck 2015 [175] of As = 0.374, ks = 7.94×10−4 Mpc−1,
and xs = 1.41. We plot the power spectra for the two models in Fig. 4.5. As commented
on in Ref. [175], for these choices of parameters both of these models give rise to a deficit
in the CMB temperature power spectrum at ` ∼ 20− 30, similar to what is observed.

4.4.3 Results

In Table 4.1 we present the results of our multi-tracer analysis. For each model we show the
FoMr that captures how constraints on model parameters improve when the observable set
is extended beyond the primary CMB temperature T . For those cells that correspond to
a set including the remote fields R we have included two values: the FoMr when the small
scale CMB noise has beam size θFWHM equal to 5 arcminutes and 1 arcminute. This further
emphasizes the dependence of the reconstruction signal to noise ratio on the instrumental
noise of the high resolution CMB experiment.

The results displayed on Table 4.1 tell us a consistent story across the different models.
The inclusion of the E mode polarization into the analysis of CMB anomalies brings
substantial constraining power, here represented by a FoMr ranging from 1.5 to 3.0. Beyond
this, the following two questions are important to address: How do constraints improve if
we add the remote dipole and quadrupole fields, and how does this improvement relate to
what can be done by instead choosing galaxy clustering on large scales as the additional
observable? We can see that depending on the noise conditions for the small scale CMB
experiment, the remote fields compete with the large scale galaxy clustering in improving
the FoMr beyond the (T,E) combination, with a tendency of the galaxies to be superior
than the dipole and quadrupole except for very sensitive CMB experiments. However,
the remote fields contain a significant amount of new information, as evidenced by the
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Model Noise [µ-Karcmin] FoMr(T,E) FoMr(T,E,R) FoMr(T,E,G) FoMr(T,E,R,G)

Dipolar modulation 5.0 1.48 1.60 - 2.37 2.90 2.90 - 3.02

1.0 1.48 1.87 - 2.67 2.90 2.93 - 3.13

0.1 1.48 2.27 - 2.72 2.90 3.00 - 3.17

Exponential suppression 5.0 1.46 1.48 - 1.63 1.69 1.69 - 1.75

1.0 1.46 1.55 - 1.70 1.69 1.72 - 1.81

0.1 1.46 1.63 - 1.78 1.69 1.76 - 1.86

Broken power law 5.0 1.69 1.76 - 1.79 1.90 1.94 - 1.98

1.0 1.69 1.78 - 1.83 1.90 1.97 - 1.99

0.1 1.69 1.82 - 1.92 1.90 1.99 - 2.02

Cutoff 5.0 2.05 2.14 - 2.46 2.60 2.63 - 2.74

1.0 2.05 2.27 - 2.63 2.60 2.68 - 2.82

0.1 2.05 2.46 - 2.77 2.60 2.75 - 2.92

Step in inflaton potential 5.0 3.09 3.25 - 3.81 3.88 3.89 - 4.08

1.0 3.09 3.50 - 4.07 3.88 3.98 - 4.24

0.1 3.09 3.78 - 4.18 3.88 4.09 - 4.31

Table 4.1: Figure of merit ratio for different combinations of observables. We present
results for different levels of CMB noise. Columns that involve the remote fields (R) show
two values corresponding to CMB experiments with θFWHM = 5 − 1 arcmin. Columns
involving only combinations of T,E, and G do not depend on the details of the small scale
CMB noise levels and beams and therefore show unchanged values.

last column of Table 4.1. Adding the dipole and quadrupole fields on top of (T,E,G) can
increase the FoMr by∼ 10% percent. Given that observations of the large scale polarization
or galaxy clustering can be limited by different systematics and foregrounds than the high
angular resolution measurements necessary for SZ tomography and vice versa,the remote
dipole and quadrupole are an “extra handle” to work with when other tracers fall short,
and which has prospects of becoming increasingly informative as detector technology keeps
developing.

The FoMr gives us a general idea of how constraints improve for different datasets, but
its also useful to look directly at parameter constraints (Appendix C.1) to see how helpful
these combinations of observables can be in the task of determining the physical nature
of the CMB anomalies. Keeping in mind that ultimately only a full likelihood analysis
will reveal if departures of ΛCDM are favoured by data, we can see that the full set of
observables here considered can push marginal 1σ-3σ constraints to tighter ones. For the
dipolar modulation model, constraints on the amplitude of modulation can be pushed from
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3σ to 8σ and for the cross-over scale constraints can be pushed from the 1σ to the 3σ level.
For the generic suppression models constraints on the characteristic scale of suppression
can be pushed from the 1σ to 2σ level, and in the case of the step model the amplitude
As of the step and the parameter xs controlling its shape see constraints jumping from
marginality to above the 4σ level. These results indicate a much more optimistic possibility
of studying the CMB anomalies beyond what the primary CMB temperature allows for.
The reconstructed dipole and quadrupole will therefore form part of a set of observables
that can provide stronger evidence to favour or rule out new early Universe physics.

4.5 Conclusions

Determining whether or not the observed large angular scale anomalies in the CMB are
indications of physics beyond ΛCDM is a matter of great interest and intense debate.
Faced with the obstacle imposed by cosmic variance on our study of the largest scales in
the Universe, we are driven to analyze datasets that incorporate additional observables on
top of the primary CMB temperature in order to favour or rule out the different hypotheses
for the origin of the anomalies.

In this chapter we explored the constraining power on CMB anomalies models provided
by a new set of observables: the remote CMB dipole and quadrupole fields. These fields,
which correspond to the projected ` = 1, 2 moments of the microwave sky as measured at
different locations in the Universe, can be reconstructed using SZ tomography. The remote
dipole and quadrupole fields carry 3-dimensional information about large scale fluctuations
in the Universe, and a significant number of independent modes can in principle be recon-
structed from next-generation CMB and galaxy surveys. This additional information is
largely independent of the primary CMB, and can therefore offer more statistical power
for the analysis of physical models of large scale CMB anomalies.

Our methodology consisted of deriving forecasted constraints on a series of anomalies
models using different combinations of observables probing the largest scales, including the
primary CMB temperature (T ), E-model polarization (E), galaxy clustering on large-scales
(G) and the remote dipole and quadrupole fields (R). The improvement on constraints
relative to what is achievable with the primary CMB temperature serves as a measure
of how informative additional observables can be, and this was expressed in terms of
appropriate figure of merit ratios (FoMr); see Eq. 4.12. We assumed access to data on the
full sky, with no systematics (aside from CMB instrumental noise, photometric redshift
errors, and photometric calibration errors) or foregrounds, in each of our forecasts.
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We considered a series of representative models for CMB anomalies, capturing de-
partures from statistical isotropy and the standard inflationary ΛCDM primordial power
spectrum. These modifications have been considered as possible explanations for the sta-
tistically marginal power asymmetry on the CMB sky, as well as features and lack of power
in the temperature power spectrum on large angular scales. Based on our analysis, we can
make a number of general statements about the utility of SZ tomography for address-
ing the possible physical nature of the CMB anomalies. As many previous analyses have
shown [132, 133, 134, 135, 136, 137, 138, 139], E-mode polarization has been identified as a
powerful discriminator for physical models of CMB anomalies. We found that one can go
beyond the (T,E) combination by adding the reconstructed remote dipole and quadrupole
field, as it was expected due to their 3-dimensional nature. A comparable amount of in-
formation can also be accessed using a more commonly considered 3-dimensional probe:
galaxy clustering on our past lightcone. Because of this, we explored the ability of the
remote fields to improve over the (T,E,G) constraints, finding that typically one can
achieve higher FoMrs up to ten percent, with better results for more sensitive CMB ex-
periments. This means that there is new information on the large scale Universe that
becomes available through SZ tomography. Overall, our results suggest that the remote
dipole/quadrupole fields could play the role of an alternative and complementary probe
of the CMB anomalies, affected by different systematics or foregrounds that make diffi-
cult a cosmic variance limited measurement of large scale E-mode polarization or galaxy
clustering. SZ tomography also offers the possibility to systematically improve constraints
on CMB anomaly models in the current era of rapidly evolving high-resolution, low-noise
CMB experiments. All together, the observable set that we considered here was able to
push several marginal parameter constraints on anomaly models to above the 3σ level and
even higher. This indicates that next-generation CMB experiments and galaxy surveys
will allow for an enhanced testing of the nature of the large scale CMB anomalies.

Our analysis has a number of shortcomings. First, our Fisher-based analysis is in-
sensitive to the shape of the likelihood function, which can deviate significantly from a
Gaussian for many of the models considered here. A future investigation could improve
upon this by sampling the full likelihood function; however given the size of the covariance
matrix including all observables and the dimensionality of the parameter space, there will
be computational challenges for doing so. Future analyses should also incorporate realistic
foregrounds and systematics in the CMB and galaxy surveys, and investigate their impact
on the reconstruction of the remote dipole and quadrupole fields. In addition, the effects
of masking should be taken into account, which will degrade the information available on
the largest angular scales. Despite these limitations, our analysis highlights there is useful
information on the physical nature of the observed CMB anomalies that is in principle
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accessible using SZ tomography. This provides a useful target for future analyses and
observations.
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Figure 4.2: On the top panels, the transfer functions for the primary CMB temperature
(` = 1 is not plotted here) and E-mode polarization. On the middle and bottom, the
bin averaged transfer functions for the remote dipole (left) and quadrupole (right) for bins
centered on redshifts z = 0.1 and z = 2.5. The binning scheme used for this figure consisted
on 60 bins of equal comoving size between 0.1 ≤ z ≤ 6.
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Figure 4.3: Correlation coefficient between the primary CMB fields and the remote dipole
an quadrupole fields. As expected, the ` = 2 moment of the primary CMB temperature is
perfectly correlated with the very low redshift remote quadrupole (top panel, black dashed
line) and the remote dipole captures the primordial contributions to the ` = 1 aberration-
free CMB dipole measured at z = 0 (top panel, black solid line). The remote quadrupole
exhibits longer range correlations with the primary CMB than the remote dipole does
(bottom panel).

146



Figure 4.4: Primordial power spectrum for the exponential suppression model and the
broken power law model together with the standard ΛCDM spectrum. The first model
shows suppression starting at scales of several hundred Mpc while the second one deviates
from the standard power law on scales of several Gpc.

Figure 4.5: Primordial power spectrum for the cutoff model and the step model together
with the standard ΛCDM spectrum.

147



Chapter 5

Conclusions

In this thesis, we have presented advances in the development and use of kSZ velocity
reconstruction, a technique that proposes using next-generation measurements of the CMB
anisotropies from the kinetic Sunyaev-Zel’dovich effect in combination with tracers of the
large-scale structure of the Universe to reconstruct a new observable to do cosmology with:
the remote CMB dipole. The research discussed in this thesis stands as a continuation of
the foundational work presented in [18, 19], which introduced an approach to kSZ velocity
reconstruction referred to as the “Lightcone Picture”. In Chapter 1 we discussed the basic
features of this approach and pointed out a series of avenues to improve the modelling of
the technique and account for more realistic experimental scenarios. Later in the same
chapter, we took a closer look at the remote CMB dipole and argued for its use as a probe
of cosmological perturbations on scales of several Gpc.

Chapter 2 presented an extended formalism for the Lightcone Picture of kSZ velocity
reconstruction which expands on the results from [19] in several ways:

1. First, additional sources of bias and noise for the reconstructed dipole were identi-
fied. It was found that photometric redshift errors in the galaxy survey, which cause
a mixing of the radial information along the lightcone, lead to biases in the recon-
structed remote dipole; for a given photometric redshift bin, the estimated remote
dipole moments carry information about the dipole in neighbouring bins. This mix-
ing of radial information can be undone if a good enough model for the photometric
redshift errors is available. The multiplicative bias coming from the improper mod-
elling of the galaxy-electron correlation on small scales, known as the optical depth
bias, was also described for the extended Lightcone Picture formalism using a simple
toy model. We found that this bias is largely scale independent for the reconstruction
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of the remote dipole and we discussed how to model the uncertainty introduced by
it in cosmological parameter constraints analyses. Additional sources of bias coming
from calibration errors for the galaxy surveys on large angular scales, CMB lensing,
and the non-linear ISW signal were also studied and it was determined that only
the first of these can lead to noticeable reductions in the total signal to noise for the
reconstructed dipole. We also found that the coarse graining of radial information
can lead to a significant error in the remote dipole reconstruction if wide enough red-
shift bins are used, a feature we refer to as the “fine mode” noise. We characterized
the size of this new noise term and determined the level of radial resolution that is
needed to safely ignore it.

2. Second, temperature foregrounds from the CIB and tSZ effect were included at mul-
tiple frequency bands, as well as a more realistic instrumental noise model consistent
with the properties of the Simons Observatory Large Area Telescope [15]. The in-
formation from multiple frequency bands can be used to clean the temperature fore-
grounds before implementing the quadratic estimator. We found that the cleaning
procedure is good enough to still produce high signal to noise reconstructions of the
remote dipole, but lower than those predicted in [19].

3. Third, we tested the validity of the estimator using a suite of Gaussian simulations.
We implemented a method to construct properly correlated Gaussian maps of all
the fields involved in kSZ reconstruction and demonstrated good agreement with
theory expectations. The suite of Gaussian simulations also allowed us to test the
reconstruction in the presence of a mask. Using appropriate real space versions of
the quadratic estimator we showed that, apart from some effects at the edge of the
mask (which can be easily removed), the reconstruction performs well in unmasked
regions of the sky.

In Summary, our analysis shows that forecasts for kSZ velocity reconstruction in the Light-
cone Picture are still promising in the presence of more realistic experimental conditions.
The extended formalism has been developed with the knowledge that it will soon play an
important role for achieving the SO collaboration goal to constrain the local primordial
non-Gaussianity parameter fNL to the σ(fNL) ≈ 1 level using the reconstructed radial
velocity field [15]. The extended formalism presented in this chapter is general enough
to be applied to the reconstruction of other observables, such as the transverse velocity
field which sources the moving lens effect. The tools presented in this chapter have been
implemented in ReCCO, a publicly available code which will enable the broader research
community to further explore the potential uses of velocity reconstruction and other similar
methods.
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Chapter 3 presented the results from N-body simulations of kSZ velocity reconstruction
on the lightcone. In order to construct properly correlated mock data on scales ranging
from a few Mpc to several Gpc, we developed a “Box in box” method to combine small-
scale perturbation modes evolved with an N-body code and large-scale perturbation modes
evolved using linear theory. One of the objectives of this study was to test the robustness
of the remote dipole estimator against the effects of redshift space distortions, gravitational
lensing and non-linear evolution of structure. To concentrate on these features, we assumed
electrons trace dark matter, ignored the effect of photometric redshift errors, and did not
include CMB temperature foregrounds. Additionally, the suite of simulations allowed us
to study the stationary contributions to the remote dipole described in Sec.(1.5). We
found that high fidelity reconstructions of the low-` multipole moments of the remote
dipole are achievable for redshifts z & 0.2, and that the reconstruction improves as we
approach our redshift limit of z = 0.37. For redshifts z . 0.2 the fidelity decreases, which
we attribute to non-linear effects. We also demonstrated that the reconstructed dipole
contains information from the stationary dipole defined in Sec.1.5.

In Chapter 4 we explored the possibility of using the reconstructed remote dipole and
reconstructed remote quadrupole to improve constraints on CMB anomalies models beyond
what is achievable with traditional probes of the anomalies, like the primary CMB temper-
ature, E-mode CMB polarization and large-angle distribution of galaxies. For a series of
representative anomaly models, we constructed a figure of merit which quantifies improve-
ments on parameter constraints and found that the remote dipole and quadrupole can lead
to a ≈ 10% increase in the figure of merit in a scenario consistent with next-generation
CMB and galaxy survey experiments. Moreover, since the large-angle information of the
remote dipole and quadrupole is inferred from data on small angular scales, these observ-
ables are not subject to the same systematics as traditional probes of anomalies and thus
play an important complementary role in the analysis of the CMB anomalies. The results
from this chapter validate the idea that the remote dipole reconstructed with kSZ velocity
reconstruction is sensitive to physics on ultra-large scales and justifies the need for the
appropriate modelling of all the contributions to the CMB dipole.

Overall, the research progress on kSZ velocity reconstruction presented in this thesis
will play an important role in realizing the full potential of the technique. With regards to
the road ahead, there are several avenues for future research and further development of
the technique. Non-Gaussian contributions to the reconstruction noise, which have been
identified as significant in the Box Picture approach for the high signal to noise limit
[21], still need a description in the Lightcone Picture. A deeper understanding of the
optical depth bias could be achieved using N-body simulations that include the physics
of electrons. With respect to the CMB anomalies, a more exhaustive Bayesian model
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comparison approach could be used to determine if the remote dipole and quadrupole
fields can favor or disprove the physical reality of the anomalies.

We foresee a bright future for the application of kSZ velocity reconstruction. Regarding
the near future, this technique is a clear example of extracting “free” or extra information
from datasets that will come from already planned CMB experiments and galaxy surveys.
Eventually, the potential of using kSZ velocity reconstruction to test fundamental physics
may motivate an even stronger push towards the low-noise, high-resolution frontier of CMB
experiments. In the big picture, we expect techniques like kSZ velocity reconstruction, pSZ
quadrupole reconstruction and lensing potential reconstruction to become the flagships of
a new paradigm in cosmology, one based on harnessing the wealth of information contained
in CMB secondaries and use it to test our fundamental models of the Universe in new ways.
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[80] Gabriela Sato-Polito, José Luis Bernal, Kimberly K. Boddy, and Marc
Kamionkowski. Kinetic Sunyaev-Zel’dovich tomography with line-intensity mapping.
11 2020.

[81] Antony Lewis, Anthony Challinor, and Anthony Lasenby. Efficient computation of
CMB anisotropies in closed FRW models. , 538:473–476, 2000.

[82] Selim C. Hotinli and Matthew C. Johnson. Reconstructing large scales at cosmic
dawn. 12 2020.

[83] Steve K. Choi et al. The Atacama Cosmology Telescope: a measurement of the
Cosmic Microwave Background power spectra at 98 and 150 GHz. JCAP, 12:045,
2020.

[84] Chung-Pei Ma and James N. Fry. Nonlinear kinetic Sunyaev-Zeldovich effect. Phys.
Rev. Lett., 88:211301, 2002.

[85] J. Colin Hill and Enrico Pajer. Cosmology from the thermal Sunyaev-Zel’dovich
power spectrum: Primordial non-Gaussianity and massive neutrinos. Phys Rev. D,
88(6):063526, September 2013.

[86] Cien Shang, Zoltán. Haiman, Lloyd Knox, and S. Peng Oh. Improved models for
cosmic infrared background anisotropies: new constraints on the infrared galaxy
population. , 421(4):2832–2845, April 2012.

[87] Planck Collaboration. Planck 2013 results. XXX. Cosmic infrared background mea-
surements and implications for star formation. , 571:A30, November 2014.

[88] Fiona McCarthy and Mathew S. Madhavacheril. Improving models of the cos-
mic infrared background using CMB lensing mass maps. arXiv e-prints, page
arXiv:2010.16405, October 2020.

[89] Max Tegmark, Angelica de Oliveira-Costa, and Andrew Hamilton. A high resolution
foreground cleaned CMB map from WMAP. Phys. Rev. D, 68:123523, 2003.

159



[90] Anthony Challinor and Antony Lewis. Linear power spectrum of observed source
number counts. , 84(4):043516, August 2011.

[91] Alex Krolewski, Simone Ferraro, Edward F. Schlafly, and Martin White. unWISE
tomography of Planck CMB lensing. JCAP, 05:047, 2020.

[92] Alex Krolewski, Simone Ferraro, and Martin White. Cosmological constraints from
unWISE and Planck CMB lensing tomography. 5 2021.

[93] Aleksandra Kusiak, Boris Bolliet, Simone Ferraro, J. Colin Hill, and Alex Krolewski.
Constraining the baryon abundance with the kinematic Sunyaev-Zel’dovich effect:
Projected-field detection using Planck, WMAP, and unWISE. Phys. Rev. D,
104(4):043518, 2021.

[94] Edward F. Schlafly, Aaron M. Meisner, and Gregory M. Green. The unwise catalog:
Two billion infrared sources from five years of wise imaging. The Astrophysical
Journal Supplement Series, 240(2):30, Feb 2019.

[95] Edward L. Wright, Peter R. M. Eisenhardt, Amy K. Mainzer, Michael E. Ressler,
Roc M. Cutri, Thomas Jarrett, J. Davy Kirkpatrick, Deborah Padgett, Robert S.
McMillan, Michael Skrutskie, and et al. The wide-field infrared survey explorer
(wise): Mission description and initial on-orbit performance. The Astronomical Jour-
nal, 140(6):1868–1881, Nov 2010.

[96] Boris Leistedt, Hiranya V. Peiris, Daniel J. Mortlock, Aurélien Benoit-Lévy, and
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Appendix A

A.1 Quadratic estimator for the remote quadrupole

In this appendix, we review the main details of the remote quadrupole field reconstruction
described in [36, 19]. The polarized Sunyaev-Zel’dovich signal (discussed in Sec.1.3.5),
expressed in terms of the contributions to the Stokes parameters Q± iU , is related to the
remote CMB quadrupole by:

(Q± iU)pSZ(n̂) = −
√

6

10

∫
dχ q±eff (n̂, χ) τ̇(n̂, χ), (A.1)

q±eff (n̂, χ) ≡
2∑

m=−2

Θm
2 (n̂, χ) ∓2Y2m (n̂) (A.2)

where Θm
2 (n̂, χ) are the remote ` = 2 CMB multipoles observed by electrons at spacetime

position (η(χ),x = χn̂) on our past lightcone:

Θm
2 (n̂, χ) =

∫
d2n̂ Θ(x, n̂)Y ∗2m (n̂) (A.3)

and ±2Y2m (n̂) are spin-2 weighted spherical harmonics. The remote quadrupole receives
contributions from both scalar and tensor fluctuations. Restricting only to scalar modes,
q+

eff = q−eff , and the remote quadrupole is curl-free. In this thesis, we only will consider the
scalar sourced remote quadrupole, which we denote by qE. However, one should notice
that a pure scalar remote quadrupole still leads to a B-mode for the pSZ signal due to the
spatial variation of the optical depth [152]. The E-mode and B-polarization arising from a

170



scalar sourced remote quadrupole are given in harmonic space by:

aE,pSZ`m = −
√

6

10

∫
dχ

∑
L1,M1,L2,M2

(−1)m
(

` L1 L2

−m M1 M2

)
F`,L1,L2

× α`,L1,L2qE;L1M1(χ)τ̇L2M2(χ) (A.4)

aB,pSZ`m = −
√

6

10

∫
dχ

∑
L1,M1,L2,M2

(−1)m
(

` L1 L2

−m M1 M2

)
F`,L1,L2

× γ`,L1,L2qE;L1M1(χ)τ̇L2M2(χ) (A.5)

where

F`,L1,L2 =

√
(2`+ 1) (2L1 + 1) (2L2 + 1)

4π

(
` L1 L2

2 −2 0

)
(A.6)

α`,L1,L2 =
1

2

(
1 + (−1)`+L1+L2

)
(A.7)

γ`,L1,L2 =
1

2i

(
1− (−1)`+L1+L2

)
(A.8)

and qE;`m(χ) and τ̇`m(χ) are the spherical transforms of the fields qE(n̂, χ) and τ̇(n̂, χ).
These continuous fields can be approximated by their bin averages:

qE;`m(χ) ≈ ∆χ
N−1∑
α′=0

qα
′

E;`mΠα′(χ) with qα
′

E;`m =
1

∆χ

∫ χα
′
max

χα
′
min

dχ qE;`m(χ), (A.9)

τ̇`m(χ) ≈ ∆χ
N−1∑
α′=0

τ̇α
′

`mΠα′(χ) with τ̇α
′

`m =
1

∆χ

∫ χα
′
max

χα
′
min

dχ τ̇`m(χ). (A.10)

where Π is the top-hat window defined in Eq.(2.14). The pSZ signal can be expressed as
a sum over bin averages:

aE,pSZ`m = −
√

6

10

∑
α,L1,M1,L2,M2

(−1)m
(

` L1 L2

−m M1 M2

)
F`,L1,L2

× α`,L1,L2 q
α
E;L1M1

τ̇αL2M2
∆χ (A.11)

aB,pSZ`m = −
√

6

10

∑
α,L1,M1,L2,M2

(−1)m
(

` L1 L2

−m M1 M2

)
F`,L1,L2

× γ`,L1,L2 q
α
E;L1M1

τ̇αL2M2
∆χ (A.12)
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It was shown in [36, 19] that, given a tracer δβ`2m2
of the electron distribution in bin β (a

galaxy redshift survey for example), the remote quadrupole leads to a statistical anisotropy
in the pSZ-density correlation:

〈
aE,pSZ`1m1

δβ`2m2

〉
= −

√
6

10

∑
α,L1,M1,L2,M2

(−1)m1

(
`1 L1 L2

−m1 M1 M2

)
F`1,L1,L2

× α`1,L1,L2 q
α
E;L1M1

〈
τ̇αL2M2

δβ`2m2

〉
(A.13)〈

aB,pSZ`1m1
δβ`2m2

〉
= −

√
6

10

∑
α,L1,M1,L2,M2

(−1)m1

(
`1 L1 L2

−m1 M1 M2

)
F`1,L1,L2

× γ`1,L1,L2 q
α
E;L1M1

〈
τ̇αL2M2

δβ`2m2

〉
(A.14)

Assuming
〈
τ̇αL2M2

δβ`2m2

〉
= C τ̇αδα

`2
δαβδL2`2δM2m2 , one can use this statistical anisotropy to

construct quadratic estimators for the bin averaged multipoles: qαE;LM :

q̂α`m = NEα
`

∑
`1m1`2m2

(−1)mf
qαE
`1``2

(
`1 `2 `
m1 m2 −m

)

×
(
α`,`1,`2a

E
`1m1
− γ`,`1,`2aB`1m1

)
δα`2m2(

|α`,`1,`2|
2 C̃EE

`1
+ |γ`,`1,`2|

2 C̃BB
`1

)
C̃δαδα
`2

(A.15)

were aE`1m1
and aB`1m1

are the measured CMB polarization E and B modes with power

spectra C̃EE
`1

and C̃BB
`1

, including noise and any other source of CMB polarization. The
f -coupling is given by:

f
qαE
`1``2

= −
√

6

10

√
(2`+ 1) (2`1 + 1) (2`2 + 1)

4π

(
`1 ` `2

2 −2 0

)
C τ̇αδα

`2
(A.16)

and the reconstruction noise NEα
` is given by:

NEα
` = (2`+ 1)

∑
`1`2

f
qαE
`1``2

f
qαE
`1``2(

|α`,`1,`2|
2 C̃EE

`1
+ |γ`,`1,`2|

2 C̃BB
`1

)
C̃δαδα
α`2

−1

(A.17)
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A.2 Transfer function for the remote quadrupole

Similarly to the the remote dipole field, the remote quadrupole field can be expressed as a
Fourier space integral:

qE;LM(χ) =

∫
d3k

(2π)3
∆qE
L (k, χ)Ψp(k)Y ∗LM(k̂) (A.18)

where the remote quadrupole transfer function ∆qE
L (k, χ) is given by :

∆qE
L (k, χ) = −5iL

√
3

8

√
(L+ 2)!

(L− 2)!

jL(kχ)

(kχ)2
T (k)

[
GSW (k, χ) + GISW(k, χ) + GD(k, χ)

]
(A.19)

where T (k) is defined by Eq.(1.42) in Sec.1.5 and

GSW (k, χ) ≡ −4π

(
2DΨ (als)−

3

2

)
j2 (k(χls − χ))

GISW (k, χ) ≡ −8π

∫ a(χ)

als

da′
dDΨ

da′
j2(k(χ(a′)− χ))

GD (k, χ) ≡ 4π

5
kDv (als)

[
3j3 (k(χls − χ))− 2j1 (k(χls − χ))

] (A.20)

are the remote quadrupole integral kernels (equivalent to those for the remote dipole,
defined in Eqs.(1.45)) which capture the contributions from the Sachs-Wolfe effect (SW),
integrated Sachs-Wolfe effect (ISW) and Doppler effect (D) due to the peculiar velocity of
the last scattering surface.
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Appendix B

B.1 Beyond Limber approximation

B.1.1 The general picture

We review the “Beyond Limber approximation” method from [74], which we use to evaluate
angular power spectra that take the form Eq.(2.16):

CFWGW
′

` =

∫
dχ1dχ2 W (χ1)W ′ (χ2)

∫
k2dk

(2π)3
KF` (χ1, k)KG` (χ2, k) PFG(χ1, χ2, k),

The method aims to separate the integral above into a piece suitable for the Limber approx-
imation, and a piece that can be expressed as a simple Hankel transform. The separation
occurs at the level of the power spectrum PFG(χ1, χ2, k) by defining a ”non-linear” power
spectrum

P
(nlin)
FG (χ1, χ2, k) = PFG(χ1, χ2, k)− P (lin)

FG (χ1, χ2, k). (B.1)

where PFG(χ1, χ2, k) is the full power spectrum we calculate using the halo model described

below and P
(lin)
FG (χ1, χ2, k) is the linear theory power spectrum. The non-linear power

spectrum defined this way is negligible on large scales and starts becoming important for
scales and redshifts at which non-linearity kicks in. It is argued in [74] that the Limber

approximation of the nonlinear correction term (PFG − P
(lin)
FG ) is sufficiently accurate in
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realistic cases and therefore the angular power spectrum integral can be rearranged as :

CFWGW
′

` = Limber

[ ∫
dχ1dχ2W (χ1)W ′ (χ2) (B.2)

×
∫

k2dk

(2π)3
KF` (χ1, k)KG` (χ2, k) P nlin

FG (χ1, χ2, k)

]
+

∫
dχ1dχ2 W (χ1)W ′ (χ2)

×
∫

k2dk

(2π)3
KF` (χ1, k)KG` (χ2, k) P lin

FG(χ1, χ2, k) (B.3)

The linear power spectrum can be related to its value at redshift zero using a growth factor.
Ignoring any scale dependent growth for the moment, the linear power spectrum can be
expressed as:

P lin
FG(χ1, χ2, k) = P lin

FG(0, 0, k)gF (χ1)gG(χ2), (B.4)

which allows us to separate the χ1 and χ2 dependence in the second term of Eq.(B.2):

CFWGW
′

` = Limber

[ ∫
dχ1dχ2 W (χ1)W ′ (χ2)

×
∫

k2dk

(2π)3
KF` (χ1, k)KG` (χ2, k) P nlin

FG (χ1, χ2, k)

]
+

∫
k2dk

(2π)3
P lin
FG(0, 0, k)

×
[∫

dχ1W (χ1) g(χ1)KF` (χ1, k)

] [∫
dχ2W

′ (χ2) g(χ2)KG` (χ2, k)

]
(B.5)

For kernels K`(χ, k) of the form f1(χ)f2(k)f3(`)j`′(kχ), where f1, f2, f3 are arbitrary func-
tions and j`′(kχ) is a spherical Bessel function1, the χ space integrals between brackets can
be expressed in terms of Hankel transforms, which can be calculated much faster and with
more accuracy than brute force integrations of spherical Bessel functions. If the growth
factors gF , gG are scale dependent,

P lin
FG(χ1, χ2, k) = P lin

FG(0, 0, k)gF (χ1, k)gG(χ2, k) (B.6)

then the terms in brackets in the second line of Eq.(B.5) cannot be expressed as Hankel
transforms. The authors of [74] work around this problem by splitting the χ space integra-
tions into narrow enough bins such that the evolution of the scale dependence inside each

1All the integral kernels we consider in this work can be expressed as sums of terms with this form.
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bin can be ignored. Inside each bin, the growth factor can be approximated as :

g(χ, k) = g(χ̄, k)
g(χ, k)

g(χ̄, k)
≈ g(χ̄, k)geff(χ̄, χ) (B.7)

where χ̄ is the mean χ in the bin and the approximation comes from ignoring the evolution
of the k-dependence. With this, we can approximate the linear power spectrum for χ1 and
χ2 inside bins with mean χ̄1 and χ̄2 as:

P lin
FG(χ1, χ2, k) = P lin

FG(0, 0, k)gF (χ1, k)gG(χ2, k)

≈ P lin
FG(χ̄1, χ̄1, k)geff

F (χ̄1, χ1)geff
G (χ̄2, χ2) (B.8)

and this allows us to restore the separability necessary to construct the Hankel transforms:

CFWGW
′

` = Limber

[ ∫
dχ1dχ2 W (χ1)W ′ (χ2)

×
∫

k2dk

(2π)3
KF` (χ1, k)KG` (χ2, k) P nlin

FG (χ1, χ2, k)

]
+

∫
k2dk

(2π)3

∑
i

∑
j

P lin
FG(χ̄i, χ̄j, k)

×
[∫

dχiW (χi) g
eff
F (χ̄i, χi)KF` (χi, k)

] [∫
dχjW

′ (χj) g
eff
G (χ̄j, χj)KG` (χj, k)

]
(B.9)

where the sums are over the auxiliary bins constructed to do the approximation. Since
there is no limitation on how small these auxiliary bins can be, this approximation can be
made as accurate as necessary.

B.1.2 Our implementation

In our implementation of the Beyond Limber method, we define the non-linear piece of the
power spectrum in the following ways depending on the particular observables involved:

• For power spectra involving only dark matter, electrons or galaxies, we define the
non-linear spectrum as:

P
(nlin)
FG (χ1, χ2, k) = P 1h+2h

FG (χ1, χ2, k)− bF (χ1, k)bG(χ2, k)P lin
mm(χ1, χ2, k) (B.10)
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where P 1h+2h
FG (χ1, χ2, k) is the full power spectrum computed using the halo model

containing the 1-halo term and 2-halo term (see Appendix B.4), P lin
mm(χ1, χ2, k) is

the linear dark matter power spectrum from CAMB, and bX(χ, k) is the large scale
linear bias function computed with the halo model, only different from 1 for galaxies
(we assume electron perfectly trace dark matter for linear modes).

• For power spectra involving at least one power of the CIB or tSZ effect,we define the
non-linear spectrum as:

P
(nlin)
FG (χ1, χ2, k) = P 1h+2h

FG (χ1, χ2, k)− P 2h
FG(χ1, χ2, k) (B.11)

where P 2h
FG(χ1, χ2, k) is the 2-halo term computed using the halo model. Effectively,

we are treating the 1-halo term as the non-linear piece and the 2-halo term as the
linear piece. This is not entirely correct, because the 2-halo term does account for part
of the non-linearities on small scales and it is not strictly separable as in Eq.(B.6).
However, a detailed inspection reveals that the 2-halo term is separable on the scales
for which the second term of Eq.(B.9) finds most of its support, and that the 1-halo
term dominates the regime for which the Limber approximation is adequate.

B.2 Quadratic estimators

In this appendix, we derive the unbiased and minimum variance quadratic estimator
Eq. 2.32 for a modulating field Mα

`1m1
. The starting point is the statistically anisotropic

cross-power Eq. 2.31:〈
Θ`m δW`′m′

〉
= (−1)mCIδW

` δ``′δm−m′ +
∑
`1m1

(−1)m1

(
` `′ `1

m m′ −m1

)
fM

αW
``1`′ Mα

`1m1
(B.12)

where the form of fM
αW

``1`′
depends on the observable. The quadratic estimator is of the

form:

M̂α
LM = AM

α

L

∑
`m;`′m′

(−1)M
(
` `′ L
m m′ −M

)
GMαW
``′L Θ`mδ

W
`′m′ (B.13)

Our goal is to find the appropriate weights GMαW
``′L such that we minimize 〈M̂α

LMM̂
α
LM〉

subject to the constraint 〈M̂α
LM〉 = Mα

LM .
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First, we find the mean of the estimator:

〈M̂α
LM〉 = AM

α

L

∑
`m;`′m′

(−1)M
(
` `′ L
m m′ −M

)
GMαW
``′L 〈Θ`mδ

W
`′m′〉

= AM
α

L

∑
`′m′

(−1)M−m
′
(

`′ `′ L
−m′ m′ −M

)
GMαW
``′L CIδW

`

+ AM
α

L

∑
`m;`′m′;L′M ′

(−1)M+M ′
(
` `′ L
m m′ −M

)
×

(
` `′ L′

m m′ −M ′

)
GMαW
``′L fM

αW
`L′`′ Mα

L′M ′ (B.14)

We now use:

(−1)−m
′
(

`′ `′ L
−m′ m′ −M

)
= (−1)−m

′
(

`′ `′ L
−m′ m′ 0

)
δM0 (B.15)

as well as the following properties of 3j symbols:∑
m′

(−1)−m
′
(

`′ `′ L
−m′ m′ 0

)
= (−1)`

′√
2`′ + 1δL0 (B.16)

and ∑
m,m′

(
` `′ L
m m′ −M

)(
` `′ L′

m m′ −M ′

)
=
δLL′δMM ′

2L+ 1
(B.17)

Substituting these relations into the estimator, we obtain:

〈M̂α
LM〉 = AM

α

L

∑
`

(−1)`
√

2`+ 1 GMαW
``′L CIδW

` δL0δM0

+ Mα
LM

AM
α

L

2L+ 1

∑
`;`′

GMαW
``′L fM

αW
`L`′ (B.18)

Aside from the monopole, we can make the estimator unbiased so long as:

AL = (2L+ 1)

(∑
`;`′

GMαW
``′L fM

αW
`L`′

)−1

(B.19)
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We can now fix GMαW
``′L by minimizing the variance of the estimator. We compute:

〈M̂α∗
LMM̂

α
LM〉 = A2

L

∑
`1m1;`2m2

∑
`′1m

′
1;`′2m

′
2

(
`1 `2 L
m1 m2 −M

)(
`′1 `′2 L
m′1 m′2 −M

)
× GMαW

`1`2L
GMαW
`′1`
′
2L
〈Θ∗`1m1

δW∗`2m2
Θ`′1m

′
1
δW`′2m′2〉 (B.20)

The four-point function can be decomposed into a connected and disconnected piece:

〈Θ∗`1m1
δW∗`2m2

Θ`′1m
′
1
δW`′2m′2〉 = 〈Θ∗`1m1

δW∗`2m2
Θ`′1m

′
1
δW`′2m′2〉con

+ 〈Θ∗`1m1
δW∗`2m2

Θ`′1m
′
1
δW`′2m′2〉discon (B.21)

Here, we minimize the variance considering the disconnected contribution only:

〈Θ∗`1m1
δW∗`2m2

Θ`′1m
′
1
δW`′2m′2〉discon = 〈Θ∗`1m1

δW∗`2m2
〉〈Θ`′1m

′
1
δW`′2m′2〉

+ 〈Θ∗`1m1
Θ`′1m

′
1
〉〈δW∗`2m2

δW`′2m′2〉
+ 〈Θ∗`1m1

δW`′2m′2〉〈Θ`′1m
′
1
δW∗`2m2

〉

= (−1)m2δ`1`2δm1−m2C
ΘδW

`1
(−1)m

′
1δ`′1`′2δ−m′1m′2C

ΘδW

`′1

+ δ`1`′1δm1m′1
CΘΘ
`1
δ`2`′2δm2m′2

CδW δW

`2

+ δ`1`′2δm1m′2
CΘδW

`1
(−1)m2+m′1δ−m2−m′1δ`2`′1C

ΘδW

`′1
(B.22)

Contributions to the connected piece are discussed in Sec.B.3.2. Plugging this expression
into the variance:

〈M̂α∗
LMM̂

α
LM〉 = A2

L

∑[(
`1 `2 L
m1 m2 −M

)2

(GMαW
`1`2L

)2CΘΘ
`1
CδW δW

`2

+ (−1)m2+m′1

(
`2 `2 L
−m2 m2 −M

)(
`′1 `′1 L
m′1 −m′1 −M

)
GMαW
`2`2L

GMαW
`′1`
′
1L
CΘδW

`2
CΘδW

`′1

+

(
`1 `′1 L
m1 m′1 −M

)(
`′1 `1 L
m′1 m1 −M

)
GMαW
`1`′1L

GMαW
`′1`1L

CΘδW

`1
CΘδW

`′1

]
(B.23)

We now perform the sums over m. Using Eq. B.16, the second term in parentheses con-
tributes only to the monopole. We neglect this term in the following. To evaluate the third
term, we use (

`′1 `1 L
m′1 m1 −M

)
= (−1)`1+`′1+L

(
`1 `′1 L
m1 m′1 −M

)
(B.24)
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Changing dummy indices, the variance is

〈M̂α∗
LMM̂

α
LM〉 = A2

L

∑
`1m1;`2m2

[(
`1 `2 L
m1 m2 −M

)2

(GMαW
`1`2L

)2CΘΘ
`1
CδW δW

`2

+ (−1)`1+`′1+L

(
`1 `2 L
m1 m2 −M

)2

GMαW
`1`2L

GMαW
`2`1L

CΘδW

`1
CΘδW

`2

]
(B.25)

Using Eq. B.17, we can perform the sums over m1,m2 to obtain:

〈M̂α∗
LMM̂

α
LM〉 =

1

2L+ 1

∑
`1;`2

ALG
MαW
`1`2L

[
ALG

MαW
`1`2L

CΘΘ
`1
CδW δW

`2

+ (−1)`1+`2+LALG
MαW
`2`1L

CΘδW

`1
CΘδW

`2

]
(B.26)

To minimize the variance, we can use the Lagrange Multiplier method. First, let’s
define

F`1`2L ≡ ALG
MαW
`1`2L

(B.27)

The variance can therefore be written as:

〈M̂α∗
LMM̂

α
LM〉 =

1

2L+ 1

∑
`1;`2

F`1`2L

[
F`1`2LC

ΘΘ
`1
CδW δW

`2
+ (−1)`1+`2+LF`2`1LC

ΘδW

`1
CΘδW

`2

]
(B.28)

We want to minimize the variance subject to the constraint that the estimator is unbiased,
which is enforced by Eq. B.19. This condition translates to:

1

2L+ 1

∑
`1;`2

F`1`2Lf
MαW
`1L`2

− 1 = 0 (B.29)

We therefore want to evaluate:

0 =
δ

δF`1`2L

(
1

2L+ 1

∑
`1;`2

F`1`2L

[
F`1`2LC

ΘΘ
`1
CδW δW

`2
+ (−1)`1+`2+LF`2`1LC

ΘδW

`1
CΘδW

`2

]
+ λ

[
1

2L+ 1

∑
`1;`2

F`1`2Lf
MαW
`1L`2

− 1

])
(B.30)

where λ is the Lagrange multiplier. Evaluating the derivative yields

F`1`2LC
ΘΘ
`1
CδW δW

`2
+ (−1)`1+`2+LF`2`1LC

ΘδW

`1
CΘδW

`2
+ λfM

αW
`1L`2

= 0 (B.31)
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Multiplying by CΘΘ
`2
CδW δW

`1
and subtracting (−1)`1+`2+LCΘδW

`1
CΘδW

`2
times Eq. B.31 with

permuted indices `1 ↔ `2 we obtain:

F`1`2L + λ
CΘΘ
`2
CδW δW

`1
fM

αW
`1L`2

− (−1)`1+`2+LCΘδW

`1
CΘδW

`2
fM

αW
`2L`1

CΘΘ
`1
CΘΘ
`2
CδW δW
`1

CδW δW
`2

− (CΘδW
`1

)2(CΘδW
`2

)2
= 0 (B.32)

For now, let’s define a new function:

h`1`2L ≡
CΘΘ
`2
CδW δW

`1
fM

αW
`1L`2

− (−1)`1+`2+LCΘδW

`1
CΘδW

`2
fM

αW
`2L`1

CΘΘ
`1
CΘΘ
`2
CδW δW
`1

CδW δW
`2

− (CΘδW
`1

)2(CΘδW
`2

)2
(B.33)

so that:
F`1`2L = −λh`1`2L. (B.34)

Multiplying by fM
αW

`1L`2
and using the no bias condition Eq. B.29, we can solve for the

Lagrange multiplier:

λ = −(2L+ 1)

[∑
`1`2

h`1`2Lf
MαW
`1L`2

]−1

(B.35)

Substituting this into Eq. B.34, we have

F`1`2L = (2L+1)h`1`2L

[∑
``′

h``′Lf
MαW
`L`′

]−1

= (2L+1)GMαW
`1`2L

[∑
``′

GMαW
``′L fM

αW
`L`′

]−1

(B.36)

and so we can identify GMαW
`1`2L

= h`1`2L as the choice that minimizes the variance:

GMαW
`1`2L

≡
CΘΘ
`2
CδW δW

`1
fM

αW
`1L`2

− (−1)`1+`2+LCΘδW

`1
CΘδW

`2
fM

αW
`2L`1

CΘΘ
`1
CΘΘ
`2
CδW δW
`1

CδW δW
`2

− (CΘδW
`1

)2(CΘδW
`2

)2
(B.37)

B.3 Additional contributions to the estimator mean

and variance

In this appendix we discuss the contributions to the mean and variance of the quadratic
estimator for the radial velocity field that arise in the presence of additional non-Gaussian
contributions to correlation functions between the CMB temperature and density field. The
various contributions to the CMB temperature listed in Eq. 2.79 generate non-trivial 3- and
4-point functions between the measured CMB temperature and density tracer. There are
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two distinct types of non-Gaussian contributions that we must consider. The first type is
what our quadratic estimators are based on: the non-Gaussianity associated with the fact
that CMB secondaries are line-of-sight integrals over products of fields. The second type is
the intrinsic non-Gaussianity of the density and velocity fields due to gravitational collapse
(or primordial non-Gaussianity, though we expect this to be negligibly small). A complete
assessment of the magnitude of the many contributions to the mean and variance of the
quadratic estimators is beyond the scope of the this thesis, and will be evaluated in future
work. Here, we only attempt to enumerate the contributions that must be considered, and
in some cases, estimate their magnitude.

B.3.1 Estimator mean

The mean of the estimators 〈M̂α
LM〉 depend on the two-point function 〈Θ`mδ

W
`′m′〉. Quadratic

estimators for the radial velocity fields are based on non-Gaussian contributions to the
correlation functions 〈ΘkSZ

`m δW`′m′〉. Because the kSZ temperature anisotropies depend on
the product of density contrast and velocity, these are in fact three-point functions. Above,
we considered the squeezed limit of these correlators, where the velocity mode is of much
larger wavelength than the density modes. Additionally, we treated the velocity and density
fields as Gaussian. When the velocity mode is of comparable wavelength to the density
modes, there will be a contribution to the three-point function due to gravitational collapse.
We expect this to be important at high L, beyond the regime of interest for velocity
reconstruction. Likewise, the contributions from lensing 〈ΘL

`mδ
W
`′m′〉 and non-linear ISW

〈ΘISW,nlin
`m δW`′m′〉 treated in Sec. 2.3.6 will receive contributions from non-linearities on small

scales, but since the leading order bias these signals is so tiny, we expect these additional
contributions to be completely negligible on scales of interest. Also considered in Sec. 2.3.6
was the contribution to the estimator mean from systematics that modulate the observed
density field. Similar systematics in the galaxy survey or CMB experiment will lead to
similar effects.

Another contribution to the mean of the estimators, which was not considered above,
arises from non-linear terms in 〈ΘXG

`m δW`′m′〉. On scales `, `′ � 1 where the estimator receives
most of it’s weight, we must include non-linear contributions to the galaxy density field
as well as the extragalactic foregrounds (here, the CIB and tSZ). At second order in
perturbation theory, schematically we must consider correlators of the form 〈tδδ〉 where t
is the large-scale tidal field (see e.g. Ref. [183, 184]). It is difficult to imagine this term
being larger than the bias induced by calibration error, which takes a similar form, and
which is likely far larger in magnitude than the large-scale tidal field. Related to the tidal
field, systematics associated with the intrinsic alignment of galaxies lead to a large-scale

182



statistical anisotropy in the galaxy number counts [185]; again, it is difficult to imagine
that the amplitude of this effect is large enough to cause a significant bias. We defer a
detailed estimate of these and other effects to future work.

B.3.2 Estimator variance

Above, we considered only the disconnected contributions to the estimator variance 〈M̂α
LMM̂

β
LM〉.

There are a number of additional contributions to the variance, arising from the non-
Gaussian nature of the kSZ effect as well as other non-Gaussian contributions to the CMB
temperature and galaxy survey. Concentrating on non-kSZ, non-Gaussian contributions to
the estimator variance Eq. B.20, we conjecture that the most important terms arise from:

〈ΘXG∗
`1m1

δW∗`2m2
ΘXG
`′1m

′
1
δW`′2m′2〉con, 〈ΘL∗

`1m1
δW∗`2m2

ΘL
`′1m

′
1
δW`′2m′2〉con, (B.38)

Note that the relevant shape of the four point function for the estimator variance is
the ”collapsed” configuration where `1 ∼ `2 and `′1 ∼ `′2, since the relevant scales are
L � `1, `2, `

′
1, `
′
2. The terms in Eq. B.38 should be calculable analytically within the halo

model since the collapsed four-point function typically has a simple form [186]. For ex-
ample, similar computations have been performed in the context of the CIB have been
performed [187]. Roughly speaking, we expect the disconnected four-point function to
dominate the connected four-point function by a power of the matter power spectrum.
Therefore, including the connected four-point function will most likely not make a large
contribution to the estimator variance. We leave a detailed computation to future work.

Because the kSZ temperature anisotropies arise do to the product of the optical depth
and radial velocity, evaluating kSZ contributions to the estimator variance involves com-
puting a six-point function. In terms of the Haar-binned LC moments of v and τ̇ we
have:

〈ΘkSZ∗
`1m1

δW∗`2m2
ΘkSZ
`′1m

′
1
δW`′2m′2〉 =

∑
¯̀
1m̄1;¯̀2m̄2

∑
˜̀
1m̃1;˜̀2m̃2

R
¯̀
1

¯̀
2`1

m̄1m̄2−m1
R

˜̀
1

˜̀
2`′1

m̃1m̃2−m′1

×
∑
ss′

〈vs∗¯̀
1m̄1

τ̇ s∗¯̀
2m̄2

δW∗`2m2
vs
′

˜̀
1m̃1

τ̇ s
′

˜̀
2m̃2

δW`′2m′2〉 (B.39)

where

R`1`2`
m1m2−m = (−1)m

√
(2`+ 1)(2`1 + 1)(2`2 + 1)

4π

(
`1 `2 `
0 0 0

)(
`1 `2 `
m1 m2 −m

)
(B.40)
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To compute the six point function we must consider both connected and disconnected
components. There are a total of 15 terms in the disconnected six point function. We
can use the fact that the four-point function Eq. B.39 takes the collapsed configuration,
together with the property that the velocity power spectrum falls rapidly with ` to argue
that the relevant scales are ¯̀

1 � `1, ˜̀
1 � `′1, `1 ∼ `2, and `′1 ∼ `′2. From the 3j symbols in

the coupling functions R`1`2`
m1m2−m, this in turn implies that ¯̀

2 ∼ `2 and ˜̀
1 ∼ `′2. Therefore,

correlators involving the velocity (which is relevant at low-`) and either τ̇ or δW (which are
relevant at high-`) will not make a significant contribution to the disconnected six-point
function. We can therefore make the approximation:

〈vs∗¯̀
1m̄1

τ̇ s∗¯̀
2m̄2

δW∗`2m2
vs
′

˜̀
1m̃1

τ̇ s
′

˜̀
2m̃2

δW`′2m′2〉discon ' 〈vs∗¯̀
1m̄1

vs
′

˜̀
1m̃1
〉
[
〈τ̇ s∗¯̀

2m̄2
δW∗`2m2

〉〈τ̇ s′˜̀
2m̃2

δW`′2m′2〉

+ 〈τ̇ s∗¯̀
2m̄2

τ̇ s
′

˜̀
2m̃2
〉〈δW∗`2m2

δW`′2m′2〉

+ 〈τ̇ s∗¯̀
2m̄2

δW`′2m′2〉〈τ̇
s′
˜̀
2m̃2

δW∗`2m2
〉
]

(B.41)

As we now show, the first term gives rise to the signal covariance, the second term re-
produces the Gaussian estimator variance, and the third term yields the ”N (1) bias” from
Ref. [21].

Substituting the first term into the estimator variance Eq. B.20, we obtain:

〈M̂α
LMM̂

β
LM〉kSZ,1

=
∞∑

s,s′=1

(Cvv)ss
′

L(∑
`1`2

AM
α

L

2L+ 1
GMαW
`1`2L

√
(2`1 + 1)(2`2 + 1)(2L+ 1)

4π

(
`1 `2 L
0 0 0

)
C τ̇sW
`2

)
(∑
`1`2

AM
β

L

2L+ 1
GMβW
`1`2L

√
(2`1 + 1)(2`2 + 1)(2L+ 1)

4π

(
`1 `2 L
0 0 0

)
C τ̇s

′
W

`2

)

=
∞∑

s,s′=1

(Cvv)ss
′

L

(∑
`1`2

AM
α

L

2L+ 1
GMαW
`1`2L

f v
sW

`1L`2

)(∑
`1`2

AM
β

L

2L+ 1
GMβW
`1`2L

f v
s′W

`1L`2

)

=
∞∑

s,s′=1

(Cvv)ss
′

L RvsMα

L Rvs
′
Mβ

L (B.42)

This is the signal covariance rotated into the basis defined by the estimators.
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Moving to the second term:

〈M̂α
LMM̂

β
LM〉kSZ,2 = AM

α

L AM
β

L

∑
`1`2

(−1)`1+`2+L

2L+ 1
GMαW
`1`2L

GMβW
`1`2L

CWW
`2

∑
¯̀
1

¯̀
2

(2¯̀
1 + 1)(2¯̀

2 + 1)

4π

(
¯̀
1

¯̀
2 `1

0 0 0

)2 ∞∑
s,s′=1

(Cvv)ss
′

¯̀
1

(C τ̇ τ̇ )ss
′

¯̀
2

= AM
α

L AM
β

L

∑
`1`2

(−1)`1+`2+L

2L+ 1
GMαW
`1`2L

GMβW
`1`2L

CWW
`2

CkSZ
`1

(B.43)

This term combines with the non-kSZ disconnected components of the temperature galaxy
four-point function to yield the estimator noise.

The third term is somewhat more complicated,

〈M̂α
LMM̂

β
LM〉kSZ,3 = AM

α

L AM
β

L

∑
`1;`2

∑
`′1;`′2

∑
¯̀
1

GMαW
`1`2L

GMβW
`′1`
′
2L
′
2¯̀

1 + 1

4π

×
∞∑

s,s′=1

(Cvv)ss
′

¯̀
1
C τ̇sW
`′2

C τ̇s
′
W

`2

√
(2`1 + 1)(2`2 + 1)(2`′1 + 1)(2`′2 + 1)

×
(

¯̀
1 `′2 `1

0 0 0

)(
¯̀
1 `2 `′1
0 0 0

)
(−1)L+¯̀

1

2L+ 1

{
`′1 `′2 L
`1 `2

¯̀
1

}
(B.44)

When L is much smaller than the other factors in the 6j symbol, we can simplify using:{
`′1 `′2 0
`1 `2

¯̀
1

}
=

δ`1,`2δ`′1,`′2√
(2`′1 + 1) (2`2 + 1)

(−1)`
′
1+`2+¯̀

1
{
`′1, `2, ¯̀

1

}
(B.45)

This gives

〈M̂α
LMM̂

β
LM〉kSZ,3 = AM

α

L AM
β

L

∑
`′1;`2

∑
¯̀
1

GMαW
`2`2L

GMβW
`′1`
′
1L

∞∑
s,s′=1

2¯̀
1 + 1

4π
(Cvv)ss

′
¯̀
1
C τ̇sW
`′1

C τ̇s
′
W

`2

×
√

(2`2 + 1)(2`′1 + 1)

(
¯̀
1 `′1 `2

0 0 0

)2

(B.46)

This is the N (1) bias first computed in [21]. Evaluating it, we find, in agreement with [21],
that this term is negligible compared to the Gaussian estimator noise.

Another contribution to the estimator variance arises due to the connected six-point
function, the ”N (3/2) bias”, which was found in Ref. [21] to be even larger than the Gaussian
estimator noise in the high signal-to-noise regime. A full computation of this term is beyond
the scope of this thesis, but will be necessary for a complete analysis in the future.
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B.4 Halo Model

In this Appendix, we describe the assumptions made in our halo model description of
various tracers of large scale structure including: dark matter density, galaxy number
counts, electron density, cosmic infrared background (CIB), and the thermal Sunyaev
Zel’dovich (tSZ) effect. For a general review of the halo model of large scale structure,
see e.g. Ref. [68]. The final product of the numerical computations is a set of auto- and
cross-power spectra at a set of redshifts (dark matter density, galaxy number counts, and
electron density) and/or frequencies (CIB and tSZ). These auto- and cross-power spectra
are then converted to angular spectra as a function of redshift bin and/or frequency using
the techniques described in Sec. 2.2.3.

B.4.1 Halo mass function, halo bias, and the matter power spec-
trum

Halo mass function

Within the halo model, all matter is distributed in discrete halos of different sizes. The
halo mass function dN

dM
describes the distribution of the halos: the number density of halos

nh(z) between masses M1 and M2 at z is given by

nh(z) =

∫ M2

M1

dN

dM
(M, z)dM. (B.47)

In our halo model, we use the halo mass function of [189], which parametrizes the halo
multiplicity function f(υ) as

f(υ) = α(1 + (βυ)−2φ)υ2ηe−ηυ
2/2. (B.48)

f(υ) is related to dN
dM

as (see Eq. (2) of [192])

dN

dM
= υf(υ)

ρm
M

d lnσ−1

dM
(B.49)

where ρm is the present day cosmological matter density and the peak height υ is

υ ≡ δc
σ

(B.50)
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with δc = 1.686 the critical density required for collapse. σ is the linear matter variance

smoothed with a top-hat function over the radius of the halo R =
(

3M
4πρm

)1/3

σ2(R, z) =
1

2π2

∫
P (k, z)Ŵ (k,R)k2dk (B.51)

where Ŵ (k,R) is the Fourier transform (in k) of a top-hat function with radial extent R.

The values of the parameters {β, γ, φ, η} are listed in Table 4 of [189] with a mild
redshift dependence given in Eqs (9)-(12) of [189]. The value of α results from applying
the z-dependent normalization condition to be discussed below in Section B.4.1.

Halo bias

Halos are biased with respect to the underlying dark matter power spectrum; in particular,
the power spectrum of halos of masses M at redshift z Phh can be written (on large scales,
where the bias is scale-independent) as

Phh(k,M, z) = bh(M, z)Plin(k, z), (B.52)

where Plin(k, z) is the linear dark matter power spectrum and bh(M, z) is the halo bias. In
our halo model, we use the halo bias of [189], which is parametrized as

b(υ) = 1− A υa

υa + δac
+Bυb + Cυc. (B.53)

The values of the parameters {A, a,B, b, C, c} are listed in Table 2 of [189].

Halo density profile

The halo densty profile ρ(~r,M, z) gives the density at a displacement ~r from the centre
of a halo and thus governs the distribution of dark matter within a halo. For spherically
symmetric halos, ρ(~r) = ρ(r). We take ρ(r) to be Navarro–Frenk–White (NFW) [190], ie

ρ(r) =
ρS

r
rS

(
1 + r

rS

)2 (B.54)

with rS the scale radius, a parameter which is related to the halo radius rM by the con-
centration parameter c = rM

rS
; the scale density ρS defines the density of the halo, and
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can be eliminated in favour of the virial radius and mass by using the definition of mass
M =

∫ rM
0

4πr3ρ(r)dr. We use the halo concentration parametrization found in [191], which
parametrizes the concentration of halos as

c = A

(
M

Mpivot

)B
(1 + z)C . (B.55)

The values of A,B,C depend on the definition of the halo mass one is using and can be
found in Table 1 of [191] (in particular we take the Sample-F redshift 0-2 row). Note that
Ref. [191] provides different values for the parameters depending on the definition of the
halo mass considered; we take M to be the mass within the radius R200m for which the
mean density of the halo is 200 times the mean matter density (labeled Mmean in Ref. [191]).

In power spectra, the normalized Fourier transform of ρ(r)

u(k,M, z) ≡
∫
dr4πr2 sin(kr)

kr
ρ(r,M, z)∫

dr4πr2ρ(r,M, z)
(B.56)

is used.

Dark matter power spectrum

Within the halo model, power spectra are split into a term sourced by correlations in
different halos (inter-halo correlations), and correlations within a single halo (intra-halo
correlations). These terms are known as the 2-halo and 1-halo power spectra respectively,
so we have

Pmm(k, z) = P 2h
mm(k, z) + P 1h

mm(k, z) (B.57)

where P 2h
mm and P 1h

mm denote the 2-halo and 1-halo dark matter power spectra respectively,
and Pmm is the total dark matter power spectrum. Each term is an integral over all halo
masses:

P 2h
mm(k, z) =

(∫
dM

dN

dM
bh(M, z)

M

ρm
u(k,M, z)

)2

Plin(k, z); (B.58)

P 1h
mm(k, z) =

∫
dM

dN

dM

(
M

ρm
u(k,M, z)

)2

. (B.59)

On large scales, it is a requirement that P 2h
mm(k, z) = Plin(k, z); this is a consistency condi-

tion that ensures that all dark matter resides in halos, and that it is unbiased with respect
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to itself. This results in the following normalization condition:∫
b(ν)f(ν)dν = 1. (B.60)

This consistency condition results in a z-dependent constraint on the normalization of the
halo mass function: it fixes the value of the parameter α in Equation (B.48).

B.4.2 Large-scale structure tracers

The large-scale structure tracers we are interested in are the galaxy density g, electron
density e, the CIB flux density Iν at frequency ν, and the tSZ temperature anisotropy
ΘtSZ,ν at frequency ν. Below, we summarize for each tracer the essential details necessary
for constructing auto-power and cross-power spectra in the halo model.

Galaxy density

Galaxies are distributed in halos according to a halo occupation distribution (HOD). In our
HOD, we assign one “central” galaxy to the centre of halos in a mass-dependent way, and
additional “satellite” galaxies which are distributed throughout the halo according to the
dark matter distribution. Thus, the number of galaxies in a halo of mass M at redshift z
is

Ngal(M, z) = N cen(M, z) +N sat(M, z) (B.61)

where N cen denotes the number of central galaxies (always 0 or 1) and N sat the number
of satellite galaxies. We use the same HOD as Ref. [20]. The mean number density of
galaxies at z is then

n̄g(z) =

∫
dM

dN

dM

(
N cen(M, z) +N sat(M, z)

)
. (B.62)

Electron density

Electrons are distributed inside dark matter halos according to a radial density profile
ρe(r). As a fiducial model, we choose the ‘AGN’ gas profiles from [75]. The Fourier space
density profile for electrons is then:

ue(k,M, z) =
1

MAGN

∫ R

0

4πr2ρAGN(r)
sin (kr)

kr
dr (B.63)
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where MAGN is the AGN “mass” MAGN =
∫ R

0
4πr2ρAGN(r)dr, with R the cutoff radius at

which we cut off the NFW profile Eq.(B.54) (R200m for us).

CIB flux density

The CIB flux density at frequency ν Iν is given by an integral over the CIB emissivity
density jν(n̂, χ):

Iν(n̂) =

∫
dχa(χ)jν(n̂, χ). (B.64)

This can be written as an integral over galaxies with different luminosity densities: the
mean emissivity density is

j̄ν(χ) =

∫
dL(1+z)ν

dN

dL(1+z)ν

L(1+z)ν

4π
(B.65)

where L(1+z)ν is the luminosity density and dN
dL(1+z)ν

is the halo luminosity function defined

in analogy with the halo mass function; the factor of (1 + z) in the frequency accounts for
the fact that the photons that we receive have been redshifted. Neglecting scatter between
M and Lν , this can be written as an integral over the halo mass function

j̄ν(χ) =

∫
dM

dN

dM

L(1+z)ν

4π
. (B.66)

As all luminosity is sourced by galaxies, Lν can be separated into that sourced by the
central galaxies and the satellite galaxies:

Lν(M, z) = Lcen
ν (M, z) + Lsat

ν (M, z) (B.67)

tSZ temperature

The tSZ temperature anisotropy at frequency ν is given by

∆T tSZ

T
(n̂, χ) = gνy(n̂, χ) (B.68)

where y(n̂, x) is the Compton y-parameter and gν is the spectral function of the tSZ

gν = x coth
x

2
− 4 (B.69)
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with the dimensionless variable x given by x ≡ hν
kBTCMB

(where h is Planck’s constant; kB
is the Boltzmann constant; and TCMB is the temperature of the black-body CMB). The
Compton y-parameter is a line-of-sight integral over electron pressure

y(n̂, χ) =
σT
mec2

∫
dχa(χ)Pe(n̂, χ) (B.70)

where Pe(n̂, χ) is the electron pressure at (n̂, χ), and where σT is the Thompson scattering
cross section; me is the electron mass; and c is the speed of light.

To calculate the power spectrum of y, we need the three-dimensional Fourier transform
of Pe(r); for spherically symmetric halos this allows us to define the profile

y(k,M, z) ≡ 4πσTa

mec2

∫
drr2 sin (kr)

kr
Pe(r). (B.71)

We use the pressure profiles of [75] in our model.

B.4.3 2-halo power spectra

The 2-halo power spectra are all of the form

P 2h
XY (k, z) = DX(k, z)DY (k, z)Plin(k, z) (B.72)

where Plin(k, z) is the linear dark matter power spectrum and DX(k, z) takes the form

DX(k, z) =

∫
dM

dN

dM
bh(M, z)AX(M,k, z) (B.73)

with AX(M,k, z) the Fourier profile of the observable X.

The profile AX(M,k, z) in Equation (B.73) is specific to the observable X. For matter,
we saw in Sec. B.4.1 that

Am(M,k, z) =

(
M

ρm

)
u(k,M, z) (B.74)

where u(k,M, z) is the normalized Fourier-transformed dark matter halo density profile.
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For the other observables we have

Ae(M,k, z) =

(
M

ρm

)
ue(k,M, z); (B.75)

Ag(M,k, z) =
N cen(M, z) +N sat(M, z)u(k,m, z)

n̄g(z)
; (B.76)

Ajν (M,k, z) =
1

4π

(
Lcen

(1+z)ν(M, z) + Lsat
(1+z)ν(M, z)u(k,M, z)

)
; (B.77)

Ay(M,k, z) =y(k,M, z), (B.78)

with m referring to dark matter; e to the electron density profile; g to the galaxy density;
jν to the CIB luminosity density at frequency ν; and y to the Compton y parameter.
y(k,M, z) is defined in Equation (B.71).Note that central galaxies are always taken to be
at the centre of the halo which is why they are not multiplied by a k-dependent factor2. The
satellite galaxies (and luminosity) are weighted by the dark matter profile u(k,M, z); this is
because that the galaxy distribution is modelled as following the dark matter distribution
in the halo.

B.4.4 1-halo power spectra

For the 1-halo power spectra, we distinguish between “discrete” observables (galaxies and
CIB) and “continuous” observables (everything else). For dark matter, electrons, and
Compton y, we have

P 1h
mm =

∫
dM

dN

dM

(
M

ρm
u(k,M, z)

)2

(B.79)

P 1h
ee =

∫
dM

dN

dM

(
M

ρm
ue(k,M, z)

)2

(B.80)

P 1h
yy =

∫
dM

dN

dM

(
4πσTa

mec2
y(k,M, z)

)2

, (B.81)

These power spectra are all of the form

P 1h
XX =

∫
dM

dN

dM
AX(M,k, z)2, (B.82)

2One could also replace N cen → N cenuc(k) to take into account central galaxies that are mis-centered.
Here, we take uc(k) to be 1, as in Appendix B of [20]. One could similarly take into account mis-centering
in Lcen

(1+z)ν(M, z).
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and their cross spectra are

P 1h
XY =

∫
dM

dN

dM
AX(M,k, z)AY (M,k, z). (B.83)

For galaxies we have [20] (in the “maximally correlated” model)

P 1h
gg =

∫
dM

dN

dM

2N sat(M, z)u(k,M, z) + (N sat(M, z)2/N cen)u(k,M, z)2

n̄g(z)2
. (B.84)

The 1-halo power spectrum for CIB at frequencies ν and ν ′ is

P 1h
νν′ =

∫
dM

dN

dM

1

(4π)2

(
Lcenν(1+z)L

sat
ν′(1+z)u(k,M, z)

+ Lcenν′(1+z)L
sat
ν(1+z)u(k,M, z) + Lsatν(1+z)L

sat
ν′(1+z)u(k,M, z)2

)
(B.85)

Within this paradigm, the cross power spectrum between the CIB at frequency ν and
galaxies is

P 1h
gν =

∫
dM

dN

dM

1

4πn̄g(z)

(
Lcenν(1+z)N

sat(M, z)u(k,M, z) (B.86)

+ Lsatν(1+z)N
cen(M, z)u(k,M, z) + Lsatν(1+z)N

sat(M, z)u(k,M, z)2

)
. (B.87)

The cross power-spectra of the “continuous” and the “discrete” observables is:

P 1h
XY =

∫
dM

dN

dM
AX(M,k, z)AY (M,k, z). (B.88)

B.4.5 Poissonian noise

In all galaxy-galaxy, CIB-CIB, and galaxy-CIB power spectra, we must also include the
scale-independent Poissonian noise (or shot noise).

Cgg,shot
` (z) =

1

n̄(z)
(B.89)

where n̄(z) is the total galaxy number density in the map in a redshift bin. For the CIB,
the shot noise is

Cνν,shot
` =

∫
dSν

dN

dSν
S2
ν (B.90)

where Sν represents flux measured at frequency ν.
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Appendix C

C.1 Constraints on model parameters

We present here the constraints on model parameters derived using Fisher analysis of dif-
ferent combinations of primary CMB and remote dipole and quadrupole fields. We include
the constraint using only the primary CMB temperature as well. Characteristic scale pa-
rameters kc, kb and ks are in units of Mpc−1.

Dipolar modulation model

Parameter Noise [µ-Karcmin] σ(T ) σ(T,E) σ(T,E,R) σ(T,E,G) σ(All)

102A = 7.00 5.0 1.93 1.04 1.03 - 0.92 0.85 0.85 - 0.85

1.0 1.93 1.04 0.98 - 0.87 0.85 0.84 - 0.83

0.1 1.93 1.04 0.92 - 0.86 0.85 0.84 - 0.83

103kc = 7.83 5.0 6.36 4.50 4.40 - 3.46 2.76 2.76 - 2.73

1.0 6.36 4.50 4.08 - 3.05 2.76 2.74 - 2.69

0.1 6.36 4.50 3.58 - 2.97 2.76 2.73 - 2.67

10∆ ln k = 5.00 5.0 0.17 0.12 0.10 - 0.05 0.04 0.04 - 0.04

1.0 0.17 0.12 0.08 - 0.04 0.04 0.04 - 0.03

0.1 0.17 0.12 0.05 - 0.04 0.04 0.04 - 0.03

Table C.1: Parameter constraints for the dipolar modulation model 4.4.1.
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Exponential suppression model

Parameter Noise [µ-Karcmin] σ(T ) σ(T,E) σ(T,E,R) σ(T,E,G) σ(All)

104kc = 3.74 5.0 3.05 2.33 2.23 - 2.21 2.04 2.03 - 1.94

1.0 3.05 2.33 2.19 - 2.03 2.04 1.98 - 1.88

0.1 3.05 2.33 2.09 - 1.90 2.04 1.92 - 1.80

λ = 0.53 5.0 0.25 0.18 0.17 - 0.15 0.15 0.14 - 0.14

1.0 0.25 0.18 0.16 - 0.15 0.15 0.14 - 0.13

0.1 0,25 0.18 0.15 - 0.14 0.15 0.14 - 0.13

Table C.2: Parameter constraints for the exponential suppression model 4.4.2.

Broken power law model

Parameter Noise [µ-Karcmin] σ(T ) σ(T,E) σ(T,E,R) σ(T,E,G) σ(All)

104kb = 5.26 5.0 5.03 2.89 2.79 - 2.74 2.60 2.55 - 2.51

1.0 5.03 2.89 2.75 - 2.68 2.60 2.52 - 2.47

0.1 5.03 2.89 2.70 - 2.54 2.60 2.49 - 2.45

δ = 1.14 5.0 2.85 1.59 1.50 - 1.47 1.36 1.32 - 1.29

1.0 2.85 1.59 1.48 - 1.43 1.36 1.30 - 1.28

0.1 2.85 1.59 1.44 - 1.34 1.36 1.28 - 1.26

Table C.3: Parameter constraints for the broken power law model 4.4.2.

Cutoff model

Parameter Noise [µ-Karcmin] σ(T ) σ(T,E) σ(T,E,R) σ(T,E,G) σ(All)

104kc = 3.63 5.0 0.78 0.38 0.37 - 0.32 0.30 0.30 - 0.29

1.0 0.78 0.38 0.34 - 0.30 0.30 0.29 - 0.28

0.1 0.78 0.38 0.32 - 0.28 0.30 0.28 - 0.27

Table C.4: Parameter constraints for the cutoff model 4.4.2.
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Step model

Parameter Noise [µ-Karcmin] σ(T ) σ(T,E) σ(T,E,R) σ(T,E,G) σ(All)

10As = 3.74 5.0 2.80 1.11 1.05 - 0.91 0.93 0.91 - 0.85

1.0 2.80 1.11 0.97 - 0.85 0.93 0.88 - 0.81

0.1 2.80 1.11 0.90 - 0.82 0.93 0.85 - 0.80

104ks = 7.94 5.0 0.72 0.18 0.17 - 0.14 0.14 0.14 - 0.13

1.0 0.72 0.18 0.16 - 0.13 0.14 0.14 - 0.13

0.1 0.72 0.18 0.14 - 0.13 0.14 0.13 - 0.13

xs = 1.41 5.0 0.60 0.25 0.24 - 0.20 0.19 0.19 - 0.18

1.0 0.60 0.25 0.22 - 0.18 0.19 0.19 - 0.17

0.1 0.60 0.25 0.20 - 0.18 0.19 0.18 - 0.17

Table C.5: Parameter constraints for the step model 4.4.2.
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C.2 Mode coupling

The super-horizon modulating field h(~x) introduced in the spontaneous isotropy break-
ing mechanism of Sec.4.4.1 leads to couplings between different multipole moments. The
modified primordial spectrum Eq. 4.17 is used to compute the covariance matrix, which
differs from the ΛCDM covariance matrix by terms linear and quadratic in the modulation
amplitude A:

CX,Y
αβ,``′,mm′ = C

X,Y,(ΛCDM)
αβ,``′,mm′ + C

X,Y,(A)
αβ,``′,mm′ + C

X,Y,(A2)
αβ,``′,mm′

C
X,Y,(A)
αβ,``′,mm′ = δmm′

√
4π

3

A

iχdec

∫
dk k2

(2π)3
Pψ(k)

[
∆∗X,α` (k) ∂k∆

Y,β
`′ (k)− ∂k∆∗X,α` (k) ∆Y,β

`′ (k)

− 2 ∆∗X,α` (k) ∆Y,β
`′ (k)

k

(
` δl′,l−1 − (`+ 1) δl′,l+1

)]
R1`′

`m

C
X,Y,(A2)
αβ,``′,mm′ = δmm′

4π

3

A2

χ2
dec

∫
dk k2

(2π)3
Pψ(k)

∑
L

R1L
`mR

1L
`′m

[
∂k∆

∗X,α
` (k) ∂k∆

∗Y,β
`′ (k)

+
∂k∆

∗X,α
` (k) ∆Y,β

`′ (k)

k

(
(1 + `′)δL,`′−1 − `′δL,`′+1

)
+

∆∗X,α` (k) ∂k∆
Y,β
`′ (k)

k

(
(1 + `)δL,`−1 − `δL,`+1

)
+

∆∗X,α` (k) ∆Y,β
`′ (k)

k2

(
(1 + `)2 δL,`−1 δ`′,` + `2 δL,`+1 δ`′,`

− (1 + `)(`− 2) δL,`−1 δ`′,`−2 − `(`+ 3) δL,`+1 δ`′,`+2

)]
where the couplings R`1`2

`m are defined through the 3-j Wigner symbols

R`1`2
`m = (−1)m

√
(2`+ 1)(2`1 + 1)(2`2 + 1)

4π

(
`1 `2 `
0 0 0

)(
`1 `2 `
0 m −m

)
. (C.1)

The term linear in A induces couplings between multipoles ` and ` ± 1, while the
quadratic term adds couplings between ` and `±2 as well as the same multipole corrections
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to the covariance matrix. For the particular case of temperature transfer functions in the
Sachs-Wolfe approximation, i.e. ∆T

` (k) ∝ j`(kχdec), the above expressions can be reduced
to those presented in [160, 132] using appropriate recursion relations for the derivatives
of the spherical Bessel functions. A similar approach to compute the multipole couplings
in terms of derivatives of the transfer functions was taken in reference [193], although the
assumptions on the modulation of the primordial spectrum are not the same as ours and
the O(A2) term was not computed.
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