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Abstract

In the era of noisy intermediate-scale quantum devices (NISQ), a paradigm shift is
occurring in the numerical physics community to transition towards developing algorithms
that facilitate experimental realizations of quantum many-body systems. However, tra-
ditional numerical simulations may still be required to reach system sizes beyond that of
current experiments and/or to expedite testing newly-developed algorithms intended for
use in experiments. In this thesis, two machine learning algorithms that have been suc-
cessfully employed for quantum state reconstruction, the restricted Boltzmann machine
(RBM) and the recurrent neural network (RNN), are assessed based on their ability to re-
construct ground states of experimentally-relevant quantum many-body Hamiltonians, the
XY model and nanomolecular assemblies (NMAs) of endofullerenes, using synthetic data.
We show that training RBMs can be unstable compared to RNNs for the given learning
tasks and that RNNs learn the underlying symmetries more accurately compared RBMs.

For a closer connection to today’s experiments, arrays of optically-controlled neutral
atoms – Rydberg atoms – are subsequently investigated given their current prominence in
experimental quantum computing. To generate synthetic Rydberg atom data for quan-
tum state reconstruction, a Stochastic Series Expansion quantum Monte Carlo (QMC)
algorithm is developed for ground states of Rydberg atoms on arbitrary lattices. By gener-
ating measurement data from this QMC algorithm across the checkerboard transition that
exists on a square lattice, we compare the reconstruction accuracies of the RBM and RNN
by estimating relevant ground state observables across the transition. We then propose us-
ing the RBM and RNN for estimating the second Renyi entropy, which is seemingly out of
reach for the developed QMC algorithm and is highly non-trivial to obtain experimentally.
There, we show that the RBM and RNN learn different aspects of the physics governing
the checkerboard transition.

iv



Acknowledgements

My time at the University of Waterloo studying physics started with a group of peo-
ple that eventually ended up being my roommates throughout my undergraduate degree:
Aiden Mauti, Bryn Tucker, Joshua Sheridan, Ramtin Yousefgorji, Jake Marion, Jacob San-
tos, and Brenden Yip. From the induced hysteria from Mastering Physics quizzes to the
late nights with several extra-large pizzas to the spirited banter we had over anything and
everything, they kept my sanity in check during the tough undergraduate years. For that,
I want to thank them with a loud-and-proud “50.”

Although he does not have direct ties to the content of this thesis, Scott Hopkins in
the Department of Chemistry at the University of Waterloo was the first person to invest
in me as a university student. Beyond being a top-notch physical chemist that guided me
through an eight-month co-op term and my first published research paper, Scott is the salt
of the earth. I learned a lot about being a researcher from him both from a scientific and
human perspective, and I carry a lot of that with me every day.

Pierre-Nicholas Roy, or P.-N., is the next person to have taken a chance on me when he
hired me for a four-month co-op term in the Theoretical Chemistry group at the University
of Waterloo. Every time I interact with P.-N. he is smiling from ear to ear. He truly loves
what he does. He has provided invaluable suggestions and guidance in my research. Like
Scott, though, P.-N. was never all business. I have many fond memories of jam sessions
and nerdy discussions about music gear. I want to thank P.-N. for taking a chance on me.

During my time with P.-N., I met his then PhD student Dmitri Iouchtchenko. Dmitri
was always with me in the trenches helping me figure things out, and even though he was
busy with his own research, he always found the time to lend a hand, and he still does.
He goes above and beyond, works as efficiently as humanly possible, and is an invaluable
source of knowledge. His influence on my research is literally everywhere.

My supervisor, Roger Melko, is next in line. I’m a little speechless when it comes to
finding the words to express how glad I am to have had Roger as my supervisor. His internal
compass for where to go with research is unmatched and it has benefited me immensely. He
always has time to talk about research, personal, or administrative matters, and I always
walk away from a conversation with Roger having fewer worries. Roger also fostered a
fun research environment with his zest for turning anything into a punny acronym and his
anecdotes of close encounters with dangerous wildlife. For all of those things along with his
humanity, understanding, and empathy, I want to extend my utmost gratitude to Roger
for being my mentor for the last few years. I also want to thank Giacomo Torlai, Bohdan
Kulchytskyy, Ejaaz Merali, Roger Luo, and Sebastian Wetzel for all of the great times

v



and discussions we had in the last two years in Roger’s group, along with my committee
members, Juan Carrasquilla and Rajibul Islam, for helping me refine my work.

vi



Dedication

I dedicate this thesis to my partner in life, best friend, and my rock, Selina Neary. She
has stuck with me during my highs and lows and during the sharp turn in my career leading
up to this thesis. Although I am finally taking steps in the right direction to become a
better person, none of this would have been possible without her support.

vii



Table of Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Quantum state reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Monte Carlo fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Best of both worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Generative models for quantum state reconstruction 11

2.1 Restricted Boltzmann machines . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Beyond standard recurrent cells . . . . . . . . . . . . . . . . . . . . 17

2.3 Calculating observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 The XY Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Enforcing U(1)-symmetry with RNNs . . . . . . . . . . . . . . . . . 21

2.4.2 Reconstructing the ground state . . . . . . . . . . . . . . . . . . . . 23

2.5 Nanomolecular assemblies of endofullerenes . . . . . . . . . . . . . . . . . . 27

2.5.1 Ode to the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



2.5.2 Reconstructing the ground state . . . . . . . . . . . . . . . . . . . . 33

2.6 Preview of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 SSE QMC for Rydberg atoms 41

3.1 Rydberg atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 SSE QMC formalism for ground states . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Sampling and calculating observables . . . . . . . . . . . . . . . . . 45

3.3 SSE implementation for Rydberg atoms . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Diagonal update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Cluster updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Directed loop updates . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 Ground state energy estimator . . . . . . . . . . . . . . . . . . . . . 60

3.4 The checkerboard transition on a square lattice . . . . . . . . . . . . . . . 63

4 Estimating the second Renyi entropy for Rydberg atoms 71

4.1 The Replica trick and SWAP operator . . . . . . . . . . . . . . . . . . . . 71

4.1.1 Wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.2 Zero-temperature SSE . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Important example: TFIM + longitudinal field . . . . . . . . . . . . . . . . 77

4.2.1 hz = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.2 hz 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.3 Relation to the Rydberg SSE QMC . . . . . . . . . . . . . . . . . . 83

4.3 Second Renyi entropy reconstruction from Rydberg SSE QMC data . . . . 84

5 Conclusions 89

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

References 92

ix



APPENDICES 107

A NMAs of Endofullerenes: Ground state wavefunction sign structure 108

A.1 Position operator matrix elements . . . . . . . . . . . . . . . . . . . . . . . 108

A.2 Wavefunction sign structure . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B Extra plots from Sec. 3.4 114

x



List of Figures

2.1 The binary RBM architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The standard RNN architecture. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The autoregressive RNN sampling algorithm. . . . . . . . . . . . . . . . . . 17

2.4 The 2D RNN architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 RBM fidelities with the XY model ground state for various hidden layer
sizes for N = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 RBM XY model energies for various hidden layer sizes for N = 40. . . . . . 27

2.7 RBM XY model energies for various hidden layer sizes for N = 50. . . . . . 28

2.8 Comparing the XY model ground state training accuracy of RBMs and
RNNs with and without U(1) symmetry enforcement for N = 4 and 10. . . 29

2.9 Comparing the XY model ground state training accuracy of RBMs and
RNNs with and without U(1) symmetry enforcement for N = 30, 40, and 50. 30

2.10 Comparing the ground state of NMAs of endofullerene training accuracy of
RBMs and RNNs for R = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.11 Comparing the ground state of NMAs of endofullerene training accuracy of
RBMs and RNNs for R = 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.12 The fraction of RBM- and RNN-generated samples that violate ground state
symmetries for N = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.13 The fraction of RBM- and RNN-generated samples that violate ground state
symmetries for N = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.14 The fraction of RBM- and RNN-generated samples that violate ground state
symmetries for N = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xi



3.1 A toy example of a zero-temperature SSE configuration. . . . . . . . . . . 46

3.2 Rydberg atom SSE simulation cells for M = 3 with multibranch and line
clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Directed loop segments through the vertex W2 defined in Eq. (3.28d). . . . 56

3.4 “Continue straight” directed loop segments related by Eq. (3.29b). . . . . . 56

3.5 Subsets of directed loop segments. . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Comparing the exact ground state energy of the Rydberg Hamiltonian with
the derived SSE QMC estimator. . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 The absolute value of staggered magnetization and its correlation time ver-
sus the projector length for a 4× 4 lattice. . . . . . . . . . . . . . . . . . . 66

3.8 The absolute value of staggered magnetization and its correlation time ver-
sus the projector length for a 10× 10 lattice. . . . . . . . . . . . . . . . . . 67

3.9 The absolute value of staggered magnetization and its correlation time ver-
sus the projector length for a 16× 16 lattice. . . . . . . . . . . . . . . . . . 68

3.10 The QMC ground state energy and absolute value of the staggered magne-
tization versus δ/Ω for L× L lattices. . . . . . . . . . . . . . . . . . . . . . 70

4.1 An example of the interchanging mechanism for calculating the SWAP op-
erator in the SSE formalism. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 How different replicated SSE simulation cell topologies affect multibranch
clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 The number of possible vertex configurations, 2NC − x, versus the spatial
extent of the multibranch cluster NC when hz,b > J . . . . . . . . . . . . . 82

4.4 Reconstructed Rydberg observables across the checkerboard transition at
Rb = 1.2 for an N = 4× 4 lattice. . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Reconstructed Rydberg observables across the checkerboard transition at
Rb = 1.2 for an N = 10× 10 lattice. . . . . . . . . . . . . . . . . . . . . . . 87

A.1 Rectified state error convergence with `max. . . . . . . . . . . . . . . . . . . 112

A.2 Rectified state error convergence with R. . . . . . . . . . . . . . . . . . . . 113

B.1 The QMC ground state energy and the correlation time for the number of
Ĥ1,a operators versus the projector length for a 4× 4 lattice. . . . . . . . . 115

xii



B.2 The QMC ground state energy and the correlation time for the number of
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Chapter 1

Introduction

1.1 Preamble

Without question, a dream of condensed matter physicists is to determine a general method
for solving the famous Schrödinger equation

Ĥ |λ〉 = E |λ〉 , (1.1)

where Ĥ is a quantum many-body Hamiltonian describing the microscopic properties of
how relevant degrees of freedom interact with each other and their environment, |λ〉 is
an eigenstate of Ĥ, and E is the corresponding eigenvalue (energy). The state |λ〉 with
the lowest energy – the ground state, |λ0〉 – is of particular interest since it governs the
properties of a system at zero temperature. Unfortunately, directly solving the Schrödinger
equation for the ground state is generally impossible due to the infamous “curse of dimen-
sionality:” the required computational effort to calculate and store the ground state in
memory scales exponentially with the number of degrees of freedom.

Given this exponential wall, various algorithms and tricks have been developed over
decades to approximately solve Eq. (1.1) [4–9]. For the purpose of this thesis, we may
cynically categorize these algorithms into two categories.

1. Optimization: Given an orthonormal computational basis {|σ〉}, we make an as-
sumption/guess that the coefficients λ0(σ) ≡ 〈σ|λ0〉 take a specific functional form
f(σ,θ) =

〈
σ
∣∣f(θ)

〉
, where θ represents a set of tunable parameters. One may then

propose an optimization routine that, given certain theoretical criteria, determines
the optimal set of parameters θ∗ such that f(σ,θ∗) best approximates λ0(σ).
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2. Markovian: Given an instance of a configuration describing the system of interest,
we devise a stochastic process, or Markov chain, that proposes updates to the con-
figuration. The proposal is accepted or rejected based on the statistical likelihood
that the configuration should be in one state or the other. The algorithm must rely
on the foundations of statistical mechanics to inform the dynamics of the stochastic
process (the proposals and updates) and to guarantee that we will come to a statis-
tical equilibrium where the corresponding configurations are indicative of the ground
state.

Arguably the most widely-known optimization algorithm for solving for ground states
is the variational Monte Carlo (VMC) method, where the energy of a parameterized rep-
resentation,

E(θ) =
〈
f(θ)

∣∣Ĥ∣∣f(θ)
〉
, (1.2)

is minimized with respect to the parameters θ using a user-specified optimization rou-
tine. Conveniently, it is guaranteed that E(θ) is lower-bounded by the actual ground
state energy E0: E(θ) ≥ E0. Although the optimization routine itself is quite impor-
tant, what has arguably been more critical to the development of VMC is the choice of
representation f , such as matrix product states and the density matrix renormalization
group algorithm pioneered by White [6, 7, 10], quantum circuits and the variational quan-
tum eigensolving routine [9,11], and machine learning algorithms like the recurrent neural
network (RNN) [12]. Instead of optimizing the energy in Eq.(1.2), one can perform a
data-driven optimization like quantum state reconstruction, where we aim to optimize the
parameterized distribution pθ(σ) = |

〈
σ
∣∣f(θ)

〉
|2 to best approximate a probability distri-

bution q(σ) = | 〈σ|λ0〉 |2. The optimization here is a minimization of a loss function with
respect to the parameters θ, where the loss function measures the difference between pθ(σ)
and q(σ). Regardless of the choice of f and the optimization method, a degree of bias is
introduced in assuming that the true ground state λ0(σ) is encapsulated in the functional
form of f .

Markovian methods for simulating quantum many-body systems are undoubtedly dom-
inated by quantum Monte Carlo (QMC) methods. Although the landscape of available
QMC methods is vast [13–15], they share a common trait in that quantum systems in
D spatial dimensions are mapped to a classical statistical mechanical problem in D + 1
dimensions, where the +1 dimension takes the form of imaginary time. The successful ap-
plication of a QMC algorithm on a particular quantum many-body Hamiltonian is reliant
on the absence of the infamous sign problem [16–18]. When free of the sign problem, the
stochastic process in charge of updating D+ 1 QMC configurations varies drastically from
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one QMC flavour to another, but it is precisely developments in efficient update schemes
that anchors the use cases of the given QMC flavour.

Of course, not all algorithms fall perfectly into one of the two categories mentioned. A
notable exception is the restricted Boltzmann machine (RBM), which is a neural network
that assumes its own representational form f(σ,θ). However, to sample its parameterized
probability distribution pθ(σ) requires a Markov chain process called Gibbs sampling. More
on this can be found in Sec. 2.1.

Lastly, one may wonder why we as physicists are trying to simulate quantum many-
body systems instead of physically realizing them in a laboratory setting. Surely, if we
had access to real quantum degrees of freedom that interacted with each other and their
environment as prescribed by the Hamiltonian Ĥ of interest, devising complex and non-
trivial algorithms, be they Markovian in nature or representationally based, would be
wasted effort. Today, we find ourselves at this inflection point, where experiments are
accelerating at a staggering pace [19–27], yet numerical simulations are still required to
either verify an experiment’s accuracy or to reach system sizes that are not yet possible
with today’s hardware. Such real-world devices that comprise of O(102) quantum degrees
of freedom but are not yet stable nor advanced enough to reap the large-scale benefits of
quantum computing are called noisy intermediate-scale quantum (NISQ) devices [28].

In tandem with the NISQ era revolution, machine learning algorithms have been a wel-
come addition to the computational physicist’s list of tools [29]. In particular, unsupervised
learning algorithms called generative models have been employed to reconstruct and verify
quantum states from measurement data [1, 2, 30–37]. These machine learning algorithms
also generally outperform traditionally-used quantum state reconstruction techniques, such
as the maximum-likelihood technique [38]. A focus for this thesis will be to empirically
determine which commonly-used generative models, namely the RBM and RNN, best re-
construct a quantum state of interest with the emphasis being placed on quantum states
that are, or can foreseeably be, used as a platform for quantum hardware.

1.2 Quantum state reconstruction

The goal of quantum state reconstruction is to devise a protocol for which an unknown
quantum state ρ̂ can be reconstructed based on a limited set of accessible information
that can be extracted from it, like measurement data. For example, consider a state that
describes N spin-1/2 particles (qubits). A matrix representation of ρ̂ comprises of 2N ×2N

complex numbers. The well-known Pauli operators σ̂(1) ≡ σ̂x, σ̂(2) ≡ σ̂y, σ̂(3) ≡ σ̂z, and

3



the identity operator σ̂(0) ≡ I form a complete basis for 2N × 2N matrices, so we may write

ρ̂ =
1

2N

3∑
i1,i2,··· ,iN=0

ci1,i2,··· ,iN σ̂
(i1) ⊗ σ̂(i2) ⊗ · · · ⊗ σ̂(iN ) (1.3a)

where the coefficients ci1,i2,··· ,iN ∈ R are traditional expectation values,

ci1,i2,··· ,iN = Tr
(
σ̂(i1) ⊗ σ̂(i2) ⊗ · · · ⊗ σ̂(iN )ρ̂

)
. (1.3b)

Even though ρ̂ is unknown, the 4N coefficients ci1,i2,··· ,iN can be obtained through statistical
inference.1 Consider the eigenbasis of the σ̂z operator defined by the eigenequations

σ̂z |0〉 = |0〉 (1.4a)

and

σ̂z |1〉 = − |1〉 . (1.4b)

One can show that the set of single-qubit projective measurements

Tr
(
µ̂(i1) ⊗ µ̂(i2) ⊗ · · · ⊗ µ̂(iN )ρ̂

)
defined by the operators

µ̂(0) = |0〉〈0| , (1.5a)

µ̂(1) = |1〉〈1| , (1.5b)

µ̂(2) =
1√
2

(
|0〉+ |1〉

) 1√
2

(
〈0|+ 〈1|

)
≡ |+〉〈+| , (1.5c)

and

µ̂(3) =
1√
2

(
|0〉 − i |1〉

) 1√
2

(
〈0|+ i 〈1|

)
≡ |−i〉〈−i| , (1.5d)

suffice to statistically infer the coefficients ci1,i2,··· ,iN [39].2 In performing measurements
in all of the 4N possible bases (all possible combinations of the four operators µ̂(1−4) on

1The coefficient c0,0,··· ,0 must be equal to one to ensure that ρ̂ is trace-one. So, really, there are 4N − 1
coefficients to determine.

2This set of projective measurements to infer the coefficients ci1,i2,··· ,iN is not unique.
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N degrees of freedom) many times to obtain statistical inference estimates on the coeffi-
cients ci1,i2,··· ,iN , one can therefore reconstruct ρ̂ up to the accuracy of the inference. This
naive protocol is unfeasible, of course. A more elegant protocol is the maximum likelihood
technique, where one takes into account that a general state ρ̂ is positive semi-definite,
hermitian, and trace-one [39]. However, it turns out that exponential bottlenecks persist.
Extremely non-trivial reconstruction protocols exist that lighten the exponential load of
maximum likelihood and statistical inference techniques [40–43], but it is clear that for
general quantum many-body ground states, more flexible and generalizable protocols are
desirable.

As was mentioned in Sec. 1.1, ground states of Hamiltonians are of particular interest
to physicists. When the state ρ̂ is pure, it takes a simplified form

ρ̂pure = |ψ〉〈ψ| , (1.6a)

where |ψ〉 can be written as

|ψ〉 =
∑
{σ}

c(σ) |σ〉 , (1.6b)

where {|σ〉} is an orthonormal basis with cardinality |{|σ〉}| = DN , the coefficients c(σ)
are generally complex numbers, and D is the local Hilbert space size of each of the N
degrees of freedom.3 A non-negligible number of relevant Hamiltonians’ ground states con-
veniently fall under the provisions of the well-known Perron-Frobenius theorem [44], which
guarantees that a Hamiltonian’s ground state can be taken to have strictly positive coeffi-
cients, modulo an arbitrary global phase, if its off-diagonal matrix elements are negative.
Hamiltonian matrices that satisfy this theorem are referred to as stoquastic [45].

Assuming that the Hamiltonian of interest is stoquastic, we may write its ground state
as

|λ0〉 =
∑
{σ}

c(σ) |σ〉 , c(σ) ≥ 0. (1.7)

This property of ground states greatly facilitates reconstruction protocols in that the mea-
surement data required to reconstruct the coefficients c(σ) only relies on projective mea-
surements in the {|σ〉} basis. To summarize, instead of an exponential number of measure-
ment bases in the case of a general state ρ̂, for ground states of stoquastic Hamiltonians we
only require one measurement basis. For the remainder of this thesis, we will strictly deal
with pure states with positive coefficients. As such, the satisfaction of the Perron-Frobenius
theorem will be shown when necessary.

3For example, for a spin-S system, D = 2S + 1.
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The question remains of how many measurements one requires to reconstruct the target
ground state up to a certain desired accuracy. Not only this, but for experimentally-
prepared states, one might also be limited to a certain maximum number of measurements
as determined by the experiment itself. As such, devising a protocol that can handle
smaller measurement datasets is preferred. Machine learning algorithms, namely generative
models, have been proven to live up to this task with relatively limited resources [2, 3, 32,
34,36,37,46]. In essence, a generative model describes a parameterized representation of a
probability distribution pθ(σ). We may train the model’s parameters to best approximate
a target probability distribution q(σ) by minimizing a loss function that in some way
quantifies the difference between both distributions given a dataset D sampled from q(σ).
In the context of quantum state reconstruction for ground states with positive coefficients,

λ0(σ) = 〈σ|λ0〉 =
√
q(σ) (1.8a)

and

ψθ(σ) = f(σ,θ) =
〈
σ
∣∣f(θ)

〉
=
√
pθ(σ). (1.8b)

The Universal Approximation theorem for neural networks provides some degree of
certainty that, given a large enough number of parameters θ and dataset D, any generative
model should be able to learn an underlying target distribution q(σ). That being said,
not all generative models are created equally, and the question of expressivity remains:
do some generative models require fewer parameters, and therefore less computational
effort, to obtain a better reconstruction than other generative models? Not only this,
but are the optimal parameters θ∗ that yield the best reconstruction feasibly obtainable?
In other words, are some generative models easier to train than others? Undoubtedly,
answering these questions will to an extent rely on empirical case studies where different
generative models can be put to the same test. Answers to these questions are proceeding
in earnest [1, 2, 46]. In Ch. 2 of this thesis, two widely-used generative models called the
restricted Boltzmann machine (RBM) and recurrent neural network (RNN) are outlined in
detail and applied to two different reconstruction tasks. In this way, light is shed on what
can be expected from RBMs and RNNs from a trainability and expressivity perspective
when reconstructing ground states of many-body Hamiltonians.
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1.3 Monte Carlo fundamentals

Quantum or classical in nature, the goal of Markovian Monte Carlo algorithms is to develop
a stochastic process, or Markov chain, for which a normalization constant

Z =
∑
µ

W (µ) (1.9)

can be importance sampled for the purpose of estimating certain quantities of interest in
an unbiased fashion, where µ represents a label for an abstract configuration and W (µ)
is a real-valued weight. To interpret each W (µ) as unnormalized probabilities, we require
that W (µ) ≥ 0, otherwise the infamous sign problem halts our progress in its footsteps.
Typically, the sum over all possible configurations µ is out of reach for modern comput-
ers. Therefore, an efficient sampling routine4 is required to estimate the average value of
quantities as

〈O〉 =
1

Z

∑
µ

O(µ)W (µ) ≈ 1

ND

∑
µ∈D

O(µ), (1.10)

where D represents a set of instances of the configuration space generated according to
W (µ) and ND = |D|. This sum over µ ∈ D should circumvent the sum over all possible
configurations, and so long as the configurations µ ∈ D are i.i.d. (identically and inde-
pendently distributed), the Central Limit theorem provides statistical guarantees that, if
ND is large enough, we are indeed providing an accurate estimate of the exact expectation
value.

The Markov chain is the mechanism for which a given initial/trial configuration µ
is updated according to the unnormalized distribution W (µ). Crucially, we rely on the
Markov chain to be able to feasibly explore the entire configuration space. Not only this,
but to generate i.i.d. samples according to W (µ), the Markov chain must be able to reach
a new configuration ν that is statistically uncorrelated from µ in a reasonable number of
updates. This property is called ergodicity [47]. The mathematics underlying an ergodic
Markov chain is the condition of balance,∑

ν

W (µ)T (µ→ ν) =
∑
ν

W (ν)T (ν → µ), (1.11)

where T (µ → ν) represents the transition probability that the “current” configuration µ
is updated to ν. An obvious solution to this equation is

W (µ)T (µ→ ν) = W (ν)T (ν → µ), (1.12)

4The procedure for which these samples are generated is what we mean by “importance sampling.”
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which is referred to as the detailed balance condition [47]. That being said, just because
our algorithm satisfies the detailed balance condition doesn’t guarantee that our algorithm
is ergodic. The determination of whether an algorithm is ergodic or not is somewhat
subjective. If detailed balance is satisfied, it could still be that the number of updates
that our Markov chain requires to generate an uncorrelated configuration – the correlation
time – is considered too long. If the correlation time is too long, this requires the user to
rethink how the transition probabilities T can be modified to lower it.

Typically, it is helpful to break up the transition probabilities into two parts: a selection
probability g and an acceptance probability A,

T (µ→ ν) = g(µ→ ν)A(µ→ ν). (1.13)

The selection probability g(µ → ν) is the probability for which the algorithm generates a
new configuration ν given the current configuration µ. The acceptance probability A(µ→
ν) governs whether or not our algorithm should accept the newly-generated configuration
ν. Clearly, fine-tuning both g and A will have drastic effects on the correlation time.
Consider plugging in Eq. (1.13) into Eq. (1.12),

A(µ→ ν)

A(ν → µ)
=
W (ν)g(ν → µ)

W (µ)g(µ→ ν)
, (1.14)

where the ratio on the left-hand side is called the acceptance ratio. A famous choice for
the acceptance probability A(µ→ ν) was made by Nicholas Metropolis [48],

A(µ→ ν) = min

(
1,
W (ν)g(ν → µ)

W (µ)g(µ→ ν)

)
, (1.15)

where this choice is made in order to maximize the acceptance ratio in Eq. (1.14).5 To
maximize Eq. (1.14), we may set the larger of A(µ → ν) and A(ν → µ) to 1 and then
adjust the complementary acceptance probability to satisfy Eq. (1.14).

1.4 Best of both worlds

Optimization and Markovian methods both have their pros and cons for solving Eq. (1.1).
Optimization methods are quite nice since the result is a compact representation of the

5Maximizing the acceptance ratio is a good thing! We explore the configuration space “faster” and
more efficiently in this way.
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ground state wavefunction from which general observables can be calculated with ease.
Not only this, but often the wavefunction representation f(σ,θ) can be sampled autore-
gressively; samples σ comprising of N degrees of freedom can be drawn for each degree
of freedom conditioned on the value of the “previous” degrees of freedom.6 Samples are
therefore inherently i.i.d. for this subclass of wavefunction representations. On the other
hand, unwanted bias was introduced into the algorithm in the assumption that the true
ground state takes the form of the user-chosen representation. Markov chain Monte Carlo
(MCMC) methods improve on this by giving unbiased statistical estimates. However, to
generate i.i.d. samples to estimate quantities in an unbiased fashion we must get through
correlation times. Not only this, but estimating some observables can be non-trivial.
Specifically, the exact form of an observable O in the language of the stochastic process’s
configuration space may not be obvious.

Correlation times and biased representations are necessarily unavoidable. However,
some of the cons of one algorithm might be (somewhat) saved by another. For example,
in terms of not being able to evaluate observables in a particular Monte Carlo algorithm,
if i.i.d. samples can be generated and used to train a neural network in a quantum state
reconstruction context, a wavefunction representation of the Monte Carlo algorithm is
therefore available. Having a wavefunction representation then allows for the computation
of general observables (see Sec. 2.3) that would otherwise be impossible in a Monte Carlo
algorithm. This will also be a central theme in this thesis.

1.5 Thesis outline

Ch. 2 begins with outlining the architectures of two commonly-used generative models
in physics: the restricted Boltzmann machine (RBM) and the recurrent neural network
(RNN). These two generative models will then be tasked with two different quantum state
reconstruction tasks that are ground states of interesting quantum many-body Hamilto-
nians: the XY model and nanomolecular assemblies of endofullerenes. The goal of this
chapter is to inform us of which generative model might give a better reconstruction qual-
ity for reconstructing quantum many-body ground states.

Ch. 3 showcases a quantum Monte Carlo (QMC) method developed for Rydberg atoms
with the eventual goal in mind to use it for generating datasets for training RBMs and
RNNs. It turns out that a very important quantity for physicists to quantify, the entangle-
ment entropy, is out of reach for this QMC method, justifying training generative models

6One assumes a “time order” for this sequence of conditional probabilities.
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on a correspondingly QMC-generated dataset. This reconstruction task is demonstrated in
Ch. 4, where the necessary background on the observable of interest is first demonstrated.
Finally, concluding remarks and future considerations are given in Ch. 5.
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Chapter 2

Generative models for quantum state
reconstruction

2.1 Restricted Boltzmann machines

The restricted Boltzmann machine (RBM) is a widely-used unsupervised machine learning
algorithm that has been detailed in many other works that span throughout applications
in the computer science community [49–52], and in the physics community, most notably
for quantum state reconstruction [1, 2, 30, 31, 33, 34, 36, 37, 46]. For self-consistency, a view
of the theoretical landscape of restricted Boltzmann machines is offered in this section of
this thesis.

RBMs are stochastic neural networks with a visible layer σ and a hidden layer h. For a
physical system comprising of N degrees of freedom, nv = N defines the length of the visible
layer (also referred to as the number of visible units in literature): σ = (σ1, σ2, · · · , σnv)
with σi ∈ [0, 1, · · · ,D − 1], where D is the dimension local Hilbert space of each degree of
freedom. For numerical implementation, a one-hot encoding must be performed on each
visible unit if D > 2; each σi = d ∈ [0, 1, · · · ,D − 1] is instead represented by a vector of
length D whose dth entry is 1. Therefore, one may think of the visible layer as a rank-2
tensor, σ = σid, with dimensions nv×D. In the D = 2 (binary) case, a one-hot encoding is
unnecessary and σ is simply a vector of length nv. The hidden layer, h = (h1, h2, · · · , hnh

),
acts as a feature detector for the visible layer, where the number of hidden units nh is a
user-specified hyperparameter. It is most common to use binary hidden units hi ∈ [0, 1],
which is what is employed throughout this thesis.
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Figure 2.1: A graphical representation of the RBM architecture for D = 2, nv = 4, and
nh = 6. Each visible unit σi is connected to each hidden unit hj by a matrix of weights
Wij. The external bias fields c and b are omitted from this diagram.

The RBM contains tunable parameters θ = (W , b, c), where W is a weight tensor con-
necting each degree of freedom in the visible layer to each degree of freedom in the hidden
layer, and b and c are external bias fields for the visible and hidden layer, respectively.
These parameters have the following size/dimensions:

• W : If D = 2, W is a nv × nh matrix. If D > 2, W is a rank-3 tensor with entries
Wijd ∈ R, where i ∈ [1, 2, · · · , nv], j ∈ [1, 2, · · · , nh], and d ∈ [1, 2, · · · ,D].

• b: If D = 2, b is a vector of length nv with entries bi ∈ R. If D > 2, b is a rank-2
tensor with entries bid ∈ R.

• c: Since the hidden layer will only comprise of binary units in this thesis, c is always
a vector of length nh with entries cj ∈ R.

This architecture is depicted in Fig. 2.1 in the case of D = 2.

The probability distribution intrinsic to the RBM’s architecture is

pθ(σ,h) =
e−Eθ(σ,h)

Zθ
, (2.1)

where, using conventional Einstein summation notation,

Eθ (σ,h) =

{
−Wijhjσi − σibi − hjcj D = 2

−Wijdhjσid − σidbid − hjcj D > 2
, (2.2)

and the normalization is
Zθ =

∑
σ,h

e−Eθ(σ,h) . (2.3)
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Since the hidden layer h acts as a feature detector between the visible units, the
marginalized distribution pθ(σ) is more physically relevant. In tracing out h in Eq. (2.1),
one obtains

pθ(σ) =
∑
h

pθ(σ,h) =
e−Eθ(σ)

Zθ
, (2.4)

where

Eθ (σ) =

−biσi −
∑nh

j=1 ln
(

1 + exp
(
cj +Wijσi

))
D = 2

−bidσid −
∑nh

j=1 ln
(

1 + exp
(
cj +Wijdσid

))
D > 2

, (2.5)

and
Zθ =

∑
σ

e−Eθ(σ). (2.6)

To tune the parameters θ in such a way as to demand that pθ(σ) best approximates a
target distribution q(σ), one may minimize the Kullback-Leibler (KL) divergence between
pθ(σ) and q(σ),

KLθ =
∑
σ

q(σ) ln

(
q(σ)

pθ(σ)

)
, (2.7)

with respect to the parameters θ. In most cases, the target distribution is unknown and
one only has access to a dataset D comprising of samples from q(σ). Therefore, using the
following approximations,

q(σ) ≈ 1

|D|
∑
σ′∈D

δ(σ − σ′), (2.8a)

and

pθ(σ) ≈ 1

|Γ|
∑
σ′∈Γ

δ(σ − σ′), (2.8b)

the gradient of the KL divergence with respect to the RBM parameters θ is

∇θKLθ ≈
1

|D|
∑
σ∈D
∇θEθ(σ)− 1

|Γ|
∑
σ∈Γ

∇θEθ(σ)

=
〈
∇θEθ(σ)

〉
D
−
〈
∇θEθ(σ)

〉
Γ
. (2.9)

For stochastic gradient descent optimization methods, D is randomly divided into mini
batches P, where |P| and |Γ| are hyperparameters called the positive and negative batch
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sizes, respectively. Here, Γ denotes a dataset generated from sampling pθ(σ). Typically,
pθ(σ) is sampled by performing k steps of a Markov chain method called contrastive
divergence (CDk) block-Gibbs sampling [53]. The CDk block-Gibbs sampling procedure is
as follows.

1. Initialize the Markov chain with an initial configuration σ(0) from the target’s dataset
D.

2. Sample a hidden layer configuration h(0) given σ(0) using

pθ(hj = 1|σ) =

{
sigmoid

(
cj +Wijσi

)
D = 2

sigmoid
(
cj +Wijdσid

)
D > 2

, (2.10)

where sigmoid(· · · ) denotes the sigmoid function.

3. Given h(0), sample a new visible layer σ(1) via

pθ(σi = 1|h) = sigmoid
(
bi +Wijhj

)
D = 2, (2.11a)

or

pθ(σid = 1|h) = S
(
bid +Wijdhj

)
D > 2, (2.11b)

where S(· · · ) denotes the softmax function.

4. Iterate this procedure k times in total.

Finally, the mathematical form of ∇θEθ(σ) = ( ∂
∂W

, ∂
∂c
, ∂
∂b

)Eθ is

∇θEθ(σ) =



∂Eθ(σ)
∂Wij

= −pθ
(
hj = 1|σ

)
σi

∂Eθ(σ)
∂cj

= −pθ
(
hj = 1|σ

)
D = 2

∂Eθ(σ)
∂bi

= −σi

∂Eθ(σ)
∂Wijd

= −pθ
(
hj = 1|σ

)
σid

∂Eθ(σ)
∂cj

= −pθ
(
hj = 1|σ

)
D > 2

∂Eθ(σ)
∂bid

= −σid

. (2.12)
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2.2 Recurrent neural networks

The recurrent neural network (RNN) defines an autoregressive model whose intrinsic prob-
ability distribution pθ(σ) is obtained via

pθ(σ) = pθ(σ1)pθ(σ2|σ1) · · · pθ(σN |σN−1, · · ·σ1), (2.13)

where θ are the tunable parameters within the RNN architecture, and N is the length of
the input vector σ which coincides with a physical system’s degrees of freedom. As with
the RBM’s visible layer, each element of σ has a local Hilbert space dimension D, and
a one-hot encoding must be performed for numerical purposes.1 Therefore, σ = σid has
dimensions N ×D.

The elementary block of the RNN architecture that calculates each pθ(σi|σ<i), σ<i =
(σ1, σ2, · · · , σi−1), in Eq. (2.13) is the recurrent cell. A standard recurrent cell is simply a
user-defined nonlinear function f (e.g. f = tanh) that maps an input vector σi−1 along
with a hidden vector hi−1 of length nh and to a new hidden vector hi:

hi = f (Wσi−1 +Uhi−1 + c) , (2.14)

where i ∈ [1, 2, · · · , N ], and the tunable parameters W , U , and c that are a part of the
RNN parameters θ have dimension/size nh ×D, nh × nh, and nh, respectively. Note that
a bolded σi denotes the one-hotted representation of σi. Typically, h0 and σ0 are chosen
to be null vectors. After the recurrent cell has calculated an output hi, one then maps hi
to an output vector yi with size D, where

yi = S (V hi + b) , (2.15)

S(· · · ) is the softmax function, and V (dimension nh ×D) and b (size D) are also a part
of θ. A visualization of the functionality of the recurrent cell in tandem with the softmax
layer is shown in Fig. 2.2.

The necessity of the softmax layer that yields an output yi lies in the desire for multi-
label classification. One would like to interpret the output of a recurrent cell as a condi-
tional probability vector whose entries correspond to predicting the ith state of the input
vector σ given the previous input states σ<i. Specifically,

yi =
[
pθ(σi = 0|σ<i), pθ(σi = 1|σ<i), · · · , pθ(σi = D − 1|σ<i)

]
. (2.16)

1Even in the D = 2 case it makes sense to perform a one-hot encoding.
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Figure 2.2: An example of the RNN architecture for N = 3. At the ith step of the process,
σi−1 and h0 are fed into the recurrent cell resulting in a new hidden vector hi. hi is mapped
via Eq. (2.15) to the vector yi whose entries are given by Eq. (2.16).

Repeating this process of calculating all model predictions y1, y2, · · · , and yN , the full
probability distribution given by Eq. (2.13) is

pθ(σ) =
N∏
i=1

yi · σi, (2.17a)

where

pθ(σi|σ<i) = yi · σi (2.17b)

and the conditional dependence on the previous states σ<i is contained within the output
vector yi.

As with the RBM, to tune the RNN parameters θ such that pθ(σ) best approximates a
target distribution q(σ), we require optimizing a suitable cost function that measures the
“similarity” between the two distributions. It ended up being mathematically convenient
to employ the KL divergence in the RBM case, but in the RNN case one has the freedom
to choose a cost function from a plethora of options while leaving the calculation of gradi-
ents to backpropagation/automatic differentiation software packages [54–59]. Specific cost
functions used to optimize RNN parameters θ throughout this thesis will be shown when
required.
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Figure 2.3: The autoregressive RNN sampling algorithm for N = 3 visible units. After
the RNN output yi is calculated, it is sampled to give a model-predicted result σi. The
model prediction is then used as the proceeding visible unit required to calculate hi+1.
This process is repeated N times to give a sample of N = 3 visible units σ = (σ1, σ2, σ3).

Evaluating cost functions requires that samples be generated from pθ(σ). Not only
this, but for calculating observables using the RNN, we require samples from pθ(σ). Given
the RNN’s autoregressive architecture, sampling from pθ(σ) may be done exactly and
without correlations between successively drawn samples. Fig. 2.3 depicts the algorithm
for drawing samples from pθ(σ) autoregressively. At the ith step in the recurrent process,
the output yi is sampled (recall Eq. 2.16) to give a result σi, which is then fed in as an
input to the next recurrent step to calculate yi+1. Repeating this process N times yields
an RNN-generated sample σ = (σ1, σ2, · · · , σN).

2.2.1 Beyond standard recurrent cells

For an RBM, we are stuck with its fundamental architecture. On the other hand, the
RNN’s recurrent cell is highly customizable. Other recurrent cells have been formulated
that drastically outperform the standard recurrent cell given by Eq. 2.14 in learning longer
sequences of data, as gradients of the parameters θ tend to explode or vanish [60]. Such
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commonly-used recurrent cells are the long short term memory (LSTM) cell [61], and
the gated recurrent unit (GRU) cell [62]. A detailed explanation of the LSTM and GRU
cell architectures is out of the scope of this thesis. The reader is encouraged to refer to
Refs. [12, 37,61,62] for more information.

Given the extreme flexibility for the internals of a recurrent cell, one may also try to
incorporate some level of physical dimensionality in the recurrent cell and autoregressive
architecture. Specifically, Hibat-Allah et al. proposed a two-dimensional RNN algorithm
for rectangular lattices in Ref. [12] whose hidden vectors hi are calculated using horizontal
and vertical information,

hi,j = f
(
W (h)σi−1,j +W (v)σi,j−1 +U (h)hi−1,j +U (v)hi,j−1 + c

)
, (2.18)

where the superscripts (h) and (v) denote horizontal and vertical, respectively. As before
with the standard RNN architecture, σ0,j, σi,0, h0,j, and hi,0 are usually null vectors. The
method for estimating pθ(σ) and drawing samples from it proceed similarly as before,
with the added complexity that hidden and visible units from previous rows are taken into
account as prescribed by Eq. (2.18). Fig. 2.4 demonstrates the autoregressive algorithm for
the two-dimensional RNN. Although this algorithm hinges on open boundary conditions
given the recurrence on the boundaries of the architecture (i.e. inputting null vectors),
Hibat-Allah et al. demonstrated in a variational Monte Carlo setting that this 2D RNN
outperforms many state-of-the-art algorithms [12].

2.3 Calculating observables

Monitoring the loss function during the training process of any generative model provides
valuable insight into how the actual learning task is progressing. Hopefully, as training
progresses, the loss function gets closer and closer to a value indicative of when pθ(σ) =
q(σ). That being said, as physicists we tend to gravitate, no pun intended, towards metrics
for the training process that are physical, no pun intended. For instance, for proof-of-
concept quantum state reconstruction examples, the target wavefunction is known ahead
of time to verify the performance of training the generative model. Therefore, one can
calculate the quantum fidelity

F =
∣∣〈λ0|ψθ〉

∣∣2 =

∣∣∣∣∣∑
σ

λ0(σ)ψθ(σ)

∣∣∣∣∣
2

(2.19)
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Figure 2.4: An example of the 2D RNN architecture for an N = 3 × 2 square lattice. At
lattice site (i, j), neighbouring (down and left) vectors σi,j−1, σi−1,j, hi,j−1, and hi−1,j are
fed into the recurrent cell in Eq. (2.18) resulting in a new hidden vector hi. hi is mapped
via Eq. (2.15) to the vector yi whose entries are given by Eq. (2.16).

between the target quantum state (the ground state of some Hamiltonian in our case) and
the neural network quantum state (see Eq. (1.8)).2

2In Eq. (2.19), we’ve assumed that λ0(σ) and ψθ(σ) are real and positive: λ0(σ), ψθ(σ) ≥ 0.
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It may also be useful to monitor an observable during training, such as the energy or
the magnetization. For a diagonal observable Ô, its expectation value with respect to the
normalized state ψθ is

〈Ô〉ψθ =
∑
σ

O(σ)|ψθ(σ)|2, (2.20)

where O(σ) = 〈σ|Ô|σ〉. However, the sum over states σ is still exponential in the number
of degrees of freedom (DN). Given the sampling routines for the RBM and RNN, one can
generate a set of independent measurements Γ in the computational basis to calculate the
desired observable on. In this case,

〈Ô〉ψθ ≈ 〈Ô〉Γ =
1

|Γ|
∑
σ∈Γ

O(σ). (2.21)

When Ô is an off-diagonal observable,

〈Ô〉ψθ =
∑
σσ′

ψθ(σ
′)ψθ(σ)O(σ,σ′), (2.22)

where O(σ,σ′) = 〈σ|Ô|σ′〉. Again, we have an exponential sum that can be replaced by
calculating 〈Ô〉 over a dataset Γ. Consider the following.

〈Ô〉ψθ =
∑
σσ′

ψθ(σ)ψθ(σ
′)O(σ,σ′)

=
∑
σ

ψθ(σ)
∑
σ′

ψθ(σ
′)× ψθ(σ)

ψθ(σ)
O(σ,σ′)

=
∑
σ

|ψθ(σ)|2
∑
σ′

ψθ(σ
′)

ψθ(σ)
O(σ,σ′)

Letting

O[L](σ) =
∑
σ′

ψθ(σ
′)

ψθ(σ)
O(σ,σ′), (2.23)

we may write

〈Ô〉ψθ =
∑
σ

|ψθ(σ)|2O[L](σ).

Now,

〈Ô〉ψθ ≈ 〈Ô〉Γ =
1

|Γ|
∑
σ∈Γ

O[L](σ). (2.24)
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If Ô is sufficiently sparse, the sum over σ′ in the definition ofO[L](σ) can be done efficiently.
Notice also that, since we are taking the ratio of wavefunction coefficients in Eq. (2.23),
the state ψθ(σ) need not be normalized. This is crucial for when ψθ(σ) is parameterized
by an RBM, as the normalization Zθ requires an exponential sum over the visible units to
evaluate (see Eq. (2.6)).

Given Eq. (2.20) and Eq. (2.24), we are now free to monitor any observable during the
training process given a network-generated dataset Γ. We will now turn to comparing the
RBM and RNN in the context of two different learning tasks.

2.4 The XY Model

Hamiltonians, and therefore ground states, that are invariant under a symmetry group
come to mind when searching for reconstruction tasks that are unique to quantum many-
body systems. Such a ground state may have coefficients that are zero due to the presence
of the symmetry, which poses an interesting reconstruction task. The well-known XY
Hamiltonian,

Ĥ = −J
∑
〈ij〉

(Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j ), (2.25)

is invariant under U(1) symmetry operations and it clearly satisfies the Perron-Frobenius
theorem when J > 0. The U(1) symmetry leads to a conservation of the total Sz magne-
tization, Sz =

∑
i S

z
i = 0, in the ground state. Not only this, but this Hamiltonian has

also recently been engineered in trapped ion experiments [63–65]. Given the experimental
motivation of this thesis, the XY Hamiltonian ticks all of the boxes for a good reconstruc-
tion task. Unsurprisingly, our computational basis for this reconstruction task will be the
eigenstates of the Ŝz = ~

2
σ̂z operator, Ŝz

∣∣↑ / ↓〉 = ±~
2

∣∣↑ / ↓〉, which has the trivial binary
(0 and 1) representation via the linear transformation 1

2
(σ̂z + 1). In this representation, 0

and 1 correspond to ↑ and ↓, respectively.

2.4.1 Enforcing U(1)-symmetry with RNNs

Although the autoregressive property of RNNs is usually cited as the reason why they
are preferred over RBMs, both generative models do not obey any global constraints. For
instance, in the case of total Sz magnetization conservation, samples drawn from either
generative model will, in general, contain instances that fall outside the Sz =

∑
i S

z
i = 0

sector. For the block Gibbs sampling algorithm with RBMs (see Eqs. (2.10) and (2.11)),

21



implementing this symmetry is not possible. The entire visible layer σ(k) is generated in
one step by simultaneously sampling each conditional distribution p(σi = 1|h), Eq. (2.11),
at the kth step in the block Gibbs sampling procedure. The resulting value of each visible
unit σi is not conditioned on any other visible unit values, prohibiting a Sz = 0 symmetry
enforcement.

On the other hand, Hibat-Allah et al. showed that the autoregressive nature of the RNN
can be taken advantage of for symmetry purposes [12]. In particular, Sz magnetization
conservation can be enforced in the autoregressive architecture as follows. Firstly, for even
N , a sample drawn from a state that conserves Sz =

∑
i S

z
i = 0 will have an equal number

of qubits in the ↓ and ↑ states. Therefore, in the sequential autoregressive algorithm that
we deploy for generating samples one spin at a time, if at any point during the procedure
we find that half of the spins are in the ↑ (↓) state, the remainder of the spins in the
sequence must be in the ↓ (↑) state.

Mathematically, given the original output of one recurrent step,3

yi = [pθ(σi = 0|σ<i), pθ(σi = 1|σ<i)],

each entry is modified to

p̃θ(σi = 0|σ<i) = pθ(σi = 0|σ<i)×Θ

(
N

2
−N↑

)
(2.26a)

and

p̃θ(σi = 1|σ<i) = pθ(σi = 1|σ<i)×Θ

(
N

2
−N↓

)
, (2.26b)

where

Θ(x) =

{
0 x ≤ 0

1 x > 0
, (2.27)

is the Heaviside step function and the new symmetry-enforced output is

ỹi =
[p̃θ(σi = 0|σ<i), p̃θ(σi = 1|σ<i)]
p̃θ(σi = 0|σ<i) + p̃θ(σi = 1|σ<i)

. (2.28)

To clarify, in modifying the RNN sampling algorithm to yield samples that are guar-
anteed to satisfy Sz =

∑
i S

z
i = 0, the RNN itself is still not inherently U(1)-symmetric

3D = 2 here.
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in that its probability distribution pθ(σ) does not have zero amplitudes for configurations
outside of the Sz = 0 sector. However, in replacing outputs yi with ỹi, we are instead
sampling from a different symmetry-enforced distribution πθ(σ). This has rippling effects
when training an RNN using this modified distribution. For example, the loss function that
will be employed in the next section for training RNNs is the the negative log-likelihood,

NLL = − 1

|D|
∑
σ∈D

logPθ(σ) = − 1

|D|
∑
σ∈D

N∑
i=1

logPθ(σi|σ<i) (2.29)

where P = p or π and the summand factorizes given Eq. (2.13). When P = π, spins
where the symmetry enforcement is applied do not contribute to the NLL. If the jth spin
in the sequence 1, 2, · · · , N is where the symmetry is applied, each of the spins from j
to N will have πθ(σj|σ<j) = 1 from Eq. (2.26), making log πθ(σj|σ<j) = 0. Given the
sum-of-products structure of the NLL, the effects of these terms being zero might alleviate
potential vanishing and exploding gradients, therefore stabilizing the training process [66].
The effective “shortening” of the sequence at the jth site where the symmetry enforcement
occurs may provide improvements akin to those from the truncated backpropagation (TB)
algorithm [67].

2.4.2 Reconstructing the ground state

The numerical results in this section are designed to demonstrate the differences between
training RNNs – with and without symmetry enforcement – and RBMs on data from the
ground state of Eq. (2.25). To obtain measurement data required to train these generative
models, one can employ the density matrix renormalization group (DMRG) algorithm [6,7].
DMRG is widely considered to be among the top numerical methods available for simulating
ground states of 1D systems with nearest-neighbour interactions [10]. Having done a
DMRG simulation to generate a training dataset, one also has access to a host of other
observables, like the energy, to reference during the reconstruction procedure. Not only
this, but the exact sampling algorithm outlined by Ferris and Vidal in Ref. [68] also provides
efficient means for sampling the output ground state from DMRG calculations. Therefore,
using a synthetically produced training dataset compared to a real-world training dataset
is justified.

Using the open-source library called ITensor [69], various 1D system sizes up to N =
50 spins were simulated and the resulting DMRG ground states were sampled. Each
training dataset comprised of |D| = 2 × 105 independent samples from the ground state.
In preliminary calculations, datasets with |D| > 2 × 105 negligibly affected the training
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outcomes. Having performed DMRG simulations for each system size of interest, the
generative model fidelity (Eq. (2.19)) – for N ≤ 10 – and the energy difference,

ε =
|EDMRG − 〈Ĥ〉ψθ |

N
, (2.30)

between the DMRG ground state and the generative model were monitored during the
training process. Unless otherwise stated, the number of samples that were generated from
each generative model to estimate the energy 〈Ĥ〉ψθ using Eq. (2.24) was 104. Lastly, the
hyperparameters used to train the RBMs and RNNs are given in Tables 2.1 and 2.2, re-
spectively. Hyperparameter choices were made based on laborious preliminary calculations
that yielded the best results (closest values to the DMRG values) with minimal fine-tuning
to best demonstrate the real-world use of both generative models.

Table 2.1: Hyperparameters used for training RBMs.

Hyperparameter Value / Type
Optimizer SGD

Learning rate 0.01× 0.9998t, where t is epoch number
Hidden units 50, 100, 500

Positive batch size 100
Negative batch size 200

CDk steps (k) 100

Table 2.2: Hyperparameters used for training RNNs.

Hyperparameter Value / Type
Loss function NLL (Eq. (2.29))

RNN recurrent cell GRU
Optimizer SGD

Hidden units 100
Random seed 1
Learning rate 0.001

Batch size 50

In this spirit, determining hyperparameters for training RNNs was relatively simple
compared to those of RBMs. For instance, hidden layer sizes in RNNs could be reasonably
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increased with sensible diminishing returns without changing the optimizer, learning rate,
or batch size. For RBMs, this was not the case. Figs. 2.5 to 2.7 show various metrics for
systems sizes ranging from N = 10 to 50 as a function of the training epoch and number of
RBM hidden units nh. Not only does the increase in hidden layer size not correspond to a
general monotonic increase in the accuracy of the training metric, but larger hidden layer
sizes can also lead to volatile instability. Other optimizers besides SGD with an exponen-
tially decaying learning rate were tested in preliminary calculations, but this alone did not
fix the instability issues and, in all cases, SGD still prevailed. On top of this, several differ-
ent RBM parameter initializations were used to determine if bad parameter initialization
was the culprit for the observed instability, all of which indicated that the given hyperpa-
rameter choices were not adequate. Evidently, the search for hyperparameters required to
stabilize larger RBM network sizes is non-trivial and requires non-negligible preliminary
manual effort.

In most cases, the smallest hidden layer size nh = 50 yielded the best training accuracy
compared to nh = 100 and 500. In hopes of using larger hidden layer sizes to increase
the RBM’s expressivity while also addressing the highlighted trainability issues, a slightly
more severe learning rate decay was employed: 0.01 × 0.999t, where t is epoch number.
Fig. 2.8 shows the infidelity 1 − F and energy difference ε (Eq. (2.30)) for system sizes
N = 4 and 10 using RBMs and RNNs with and without symmetry enforcement. In these
plots, the RBM clearly does not reach as high of a training accuracy compared to the
RNNs. Symmetry-enforcement aside, one can argue that the RNNs can reach a higher
reconstruction accuracy than the RBMs due to the parameter number disparity between
both networks. For example, an RNN using a GRU recurrent unit with 100 hidden units
and a final softmax layer has approximately 3.1 × 105 tunable parameters. On the other
hand, an RBM with N = 10 and nh = 100 has approximately 103. However, as was
demonstrated in Fig. 2.5, larger hidden layer sizes can lead to instability. The distinction
between RBM expressivity and trainability is important.

The RBM’s trainability in this context is clearly problematic. However, this seems to
not be the case for the RNNs. Even with orders of magnitude more parameters, training
RNNs with or without symmetry enforcement is a stable stochastic process. Comparatively,
though, the symmetry-enforced RNN, U(1)-RNN, seems to reach higher training accuracies
in fewer training epochs than the standard RNN without symmetry enforcement. Crucially,
the standard RNN can reach the same training accuracy when given enough time (enough
training epochs), except for the infidelity plot for N = 4 in Fig. 2.8. To assess how this
learning acceleration scales with system size, Fig. 2.9 illustrates the energy difference ε for
larger systems N = 30, 40, and 50 using both RNNs and U(1)-RNNs.4 It is also clear

4RBMs with nh = 100 and the more severe learning rate decay of 0.01 × 0.999t were also trained for
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Figure 2.5: The monitored quantum fidelity (Eq. (2.19)) between the RBM wavefunction
using three different hidden layer sizes and the ground state of Eq. (2.25) for N = 10 spins.
Lines on the same plot represent different starting parameter initializations (random seeds),
for which there were 8. The RBM hyperparameters used are given in Table 2.1.

here that the U(1)-RNN reaches a better training accuracy faster than the standard RNN.
As was the case with the smaller system sizes in Fig. 2.8, the standard RNN is still able
to reach reconstruction accuracies on par with the U(1)-RNN about 500 training epochs
later.

these system sizes, but the corresponding estimated values of ε were far above of the plot limits in Fig. 2.9.
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Figure 2.6: The monitored RBM energy 〈Ĥ〉ψθ calculated using Eq. (2.24) using three
different hidden layer sizes for N = 40 spins. Lines on the same plot represent different
starting parameter initializations (random seeds), for which there were 8. The RBM hy-
perparameters used are given in Table 2.1, and 104 samples were generated to calculate
〈Ĥ〉ψθ .

2.5 Nanomolecular assemblies of endofullerenes

Given the experimental motivation interwoven throughout this thesis, the majority of mod-
els studied understandably comprise of qubit degrees of freedom. However, the binary
nature associated with reconstructing such states is rather restrictive when it comes to
machine learning applications. Many machine learning models that were first developed
by the computer and data science communities were intended for applications like natural
language processing or coloured imaged recognition. Whether the degrees of freedom are
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Figure 2.7: The monitored RBM energy 〈Ĥ〉ψθ calculated using Eq. (2.24) using three
different hidden layer sizes for N = 50 spins. Lines on the same plot represent different
starting parameter initializations (random seeds), for which there were 8. The RBM hy-
perparameters used are given in Table 2.1, and 104 samples were generated to calculate
〈Ĥ〉ψθ .

words in a dictionary or pixels with limited colour options, it is clear that binary learning
tasks do not paint the full picture of machine learning algorithm performance. Therefore,
choosing a quantum many-body Hamiltonian that comprises of non-binary degrees of free-
dom while also having some experimental ties or future hardware use cases will also be an
informative reconstruction task.

Higher-dimensional degrees of freedom that come to mind from a theoretical point of
view are the rotational states of a rigid body, which have recently been proposed as a
platform for quantum information protocols [70, 71]. A promising platform that provides
access to such states is nanomolecular assemblies (NMAs) of endofullerenes. Endofullerenes
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Figure 2.8: Comparing the XY model ground state training accuracy of RBMs (orange)
and RNNs with (pink) and without (purple) U(1) symmetry enforcement for N = 4 and 10.
The RBM and RNN hyperparameters used are given in Tables 2.1 and 2.2, respectively,
and 104 samples were generated to calculate 〈Ĥ〉ψθ . However, the number of hidden units
used for the N = 4 and 10 systems was nh = 50 and 100, respectively, and the learning
rate used was 0.01 × 0.999t, where t is epoch number. Error bars for ε are smaller than
the plot markers.

are entities consisting of a dipolar molecule encaged in a carbon fullerene (e.g. buckmin-
sterfullerene, C60: nature’s “carbon soccer ball”). Luckily, linear chains of endofullerenes
can be synthesized using nanotechnology tools [72] and molecular surgery techniques [73].
Their unique proposition for quantum information processing lies in their ability to retain
quantum properties at higher temperatures compared to some hardware devices comprised
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Figure 2.9: Comparing the XY model ground state training accuracy of RNNs with (pink)
and without (purple) U(1) symmetry enforcement for N = 30, 40, and 50. The RNN
hyperparameters used are given in Table 2.2 and 104 samples were generated to calculate
〈Ĥ〉ψθ . Error bars for ε are smaller than the plot markers.

of qubits [74]. Not only this, but linear chains of endofullerenes also provide interesting
quantum many-body features that originate from the presence of dipole-dipole interac-
tions [75–78]. In all, NMAs of endofullerenes are a viable candidate for an informative
reconstruction task.

2.5.1 Ode to the model

To model a linear chain of N endofullerenes, sensible approximations to describe the effects
of the fullerene cage are in order. However, first consider free dipolar molecules, also com-
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monly referred to as rotors, equally spaced a distance r apart. A Hamiltonian describing a
system of free rotors includes the rotational energy of each molecule and their Coulombic
dipole-dipole interactions,

Ĥ =
B

~2

N∑
i=1

ˆ̀2
i +

µ2

4πε0r3

∑
i<j

V̂ij, (2.31)

where B is the rotational constant and µ is the dipole moment of each molecule. The
operator ˆ̀

i has eigenequations

ˆ̀2
i

∣∣`jmj

〉
= ~2`i(`i + 1)δij |`imi〉 , (2.32)

where the angular momentum of a single rotor is `i ∈ N and its projection on a fixed spatial
axis is mi ∈ [−`i, `i]. Lastly, the Coulombic dipole-dipole interaction takes the form

V̂ij =
x̂ix̂j + ŷiŷj − 2ẑiẑj

|i− j|3 , (2.33)

where x̂i, ŷi, and ẑi are the conventional position operators. It is useful to write the
Hamiltonian in a dimensionless form

Ĥ

B
= K̂ +

1

R3
V̂ =

N∑
i=1

ˆ̀2
i

~2
+

1

R3

∑
i<j

V̂ij, (2.34)

where

R = r

(
4πε0B

µ2

)1/3

(2.35)

is dimensionless and conveniently contains all of the Hamiltonian parameters.

As with the XY Hamiltonian in Eq. (2.25), the Hamiltonian in Eq. (2.34) also possesses
symmetries that originate from commuting with two operators: the z-projection of the
total angular momentum,

∑N
i=1

ˆ̀
i,z, and the parity operator

⊗N
i=1 π̂i which reflects the zi

coordinate in the x − y plane in the position representation (π̂i |xi, yi, zi〉 = |xi, yi,−zi〉).
As a result, the two respective conserved quantities are the total m value m =

∑N
i=1mi

and the total ` parity `p ≡
∑N

i=1 `i (mod 2).

Enter the fullerene cage, where its presence can be safely modelled by a screening effect
on the interaction strength between molecules [77, 78]. Effectively, the fullerene cage’s
presence around each degree of freedom reduces the dipole moment µ. In a real-world
example, Ref. [74] shows that the dipole moment of the HF molecule is reduced from 1.83
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Debye in the gas phase to an effective 0.45 Debye when encapsulated in C60. Regarding
other kinetic energy terms (e.g. vibration and translation), ab initio studies on HF trapped
in C60 show that the ground state exhibits small rotational-translation coupling [79], which
is in agreement with experiments [74]. Vibrational excitations, on the other hand, are much
higher in energy than that of rotations. Therefore, leaving out translational and vibrational
terms in our toy model is acceptable.

To perform quantum state reconstruction on the ground state of this toy model of NMAs
of endofullerenes, we require a computational basis. At first glance, it is not obvious from
Eq. (2.34) what this choice should be, but it should come down to one of two choices
corresponding to the two terms in Eq. (2.34): the eigenstates of ˆ̀

i or the position operator
eigenstates. Consider again the realistic example of HF encapsulated in C60. If the rotor-
rotor separation distance r is on the order of the diameter of the C60 molecule (19.0
bohr [76]) and given the renormalized rotational constant and screened dipole moment of
HF inside C60, we obtain R ≈ 2.64. In studying many other examples of other dipolar
molecules that can be feasibly encapsulated by C60, one generally finds that R � 1; the
rotational energy dominates the Coulombic interaction term. It is therefore natural to
select the eigenstates of ˆ̀

i as a computational basis,

N⊗
i=1

|`imi〉 = |`1m1, `2m2, ..., `NmN〉

= |σ1, σ2, ..., σN〉
= |σ〉 ,

(2.36)

where we have `i and mi into one integer label, σi.

Given that each `i can take an infinite number of values, the local Hilbert space size,
D, of each rotor is infinite. A truncation scheme is therefore in order for numerical pur-
poses. Iouchtchenko et al. in Ref. [77] demonstrated that capping the available angular
momentum of each rotor to a maximum value `max is a sensible truncation scheme. Not
only this, but the DMRG simulations that were performed in Ref. [77] will also be the
foundation for generating training datasets in the |`imi〉 basis for our eventual quantum
state reconstruction task. Under this truncation scheme,

D =
`max∑
`=0

(2`+ 1) = (`max + 1)2 , (2.37)

and the Hilbert space size of the entire system of N endofullerenes is DN . In turn, adjust-
ments to the value of `max must be made depending on the value of R. For instance, if
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R decreases (Coulombic interaction strength increases), `max must be increased to capture
the dipole-dipole interaction and, therefore, the ground state of the system.

With a computational basis in hand, the last step is to ensure that the Hamiltonian is
stoquastic in the free-rotor basis (Eq. (2.36)), which requires the evaluation of the dipole-
dipole operator matrix elements. The matrix elements of the position operators are shown
in Eq. (A.3). Given their form, the dipole-dipole operator in Eq. (2.34) does not satisfy the
stoquasticity requirements. However, it can be argued that this does not have to impede
our quantum state reconstruction task. The key to this argument is that the Hamiltonian
in Eq. (2.34) in the free-rotor basis has real-valued matrix elements, and therefore so must
its ground state. It is shown in App. A.2 that the induced error in treating the ground state
as having entirely positive coefficients is negligible for the values of R, `max, and N studied
in the next section. Therefore, we may proceed with our reconstruction task without the
burden of having a wavefunction with sign structure.

2.5.2 Reconstructing the ground state

As with Sec. 2.4.2, numerical results presented here are designed to distinguish the differ-
ences between training RNNs and RBMs on data in the free-rotor basis from the ground
state of Eq. (2.34). The Hamiltonian in Eq. (2.34) is strictly characterized by the pa-
rameter R, which indicates the relative strength of the rotational kinetic energy term as
compared to the dipole-dipole potential term. Previous Monte Carlo, path integral, and
DMRG simulations for 1D systems have indicated that a continuous phase transition exists
near R = 1.0 [77,80,81]. For convenience, we will refer to R = 1.0 as the critical point for
this transition in 1D. The measurement data for was also synthetically acquired via DMRG
calculations [6,7,77]. Each training dataset was comprised of |D| = 104 independent sam-
ples produced by the algorithm outlined in Ref. [68]. Preliminary calculations showed that
having |D| > 104 for system sizes N ≤ 8 negligibly affected the training outcomes.

Having access to DMRG simulations that produced the training datasets, we may
again compare the estimated generative model energy 〈Ĥ〉ψθ calculated using Eq. (2.24)
with ground state energy from the DMRG simulation E0,DMRG. However, to also simulta-
neously measure pollution from excited states in the reconstructed state ψθ(σ), the relative
difference 〈Ĥ〉ψθ − E0,DMRG can be measured in units of the first energy gap

∆EDMRG = E0,DMRG − E1,DMRG. (2.38)

Specifically, we monitor

δ =

∣∣∣∣∣〈Ĥ〉ψθ − E0,DMRG

∆EDMRG

∣∣∣∣∣ (2.39)
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during the training process. The reason for using such a training metric is as follows. The
generative model wavefunction can be written as a linear combination of the eigenstates
|λn〉 of the Hamiltonian in Eq. (2.34) as

|ψθ〉 =
∞∑
n=0

cn |λn〉 ,

where the coefficients cn ≥ 0 and
∑

n c
2
n = 1. The energy difference between this state and

the ground state |λ0〉 with energy E0 is

〈ψθ|Ĥ|ψθ〉 − E0 =
∞∑
n=1

c2
n(En − E0).

Alternatively, isolating the first energy difference E1 − E0, we find that

〈ψθ|Ĥ|ψθ〉 − E0 = c2
1(E1 − E0) +

∞∑
n=2

c2
n(En − E0)

〈ψθ|Ĥ|ψθ〉 − E0

E1 − E0

= c2
1 +

∞∑
n=2

c2
n

En − E0

E1 − E0

.

As such, when 〈ψθ|Ĥ|ψθ〉 → E0 we expect that the largest contribution to the energy
difference will be that of the first excited state. Therefore, the definition of δ in Eq. (2.39)
serves as a quantifier for excited state contamination in the reconstructed state |ψθ〉. We
will henceforth use δ ≤ 0.05 as a sensible definition for successful learning. For the RBMs
trained, when δ ≤ 0.05 was reached, it was decided to terminate the training process due
to CPU time constraints.5

Hyperparameters used to train RBMs and RNNs are given in Tables 2.3-2.6. As with
the hyperparameter choices made in Sec. 2.4.2, the hyperparameter choices in this section
were made based on laborious preliminary calculations that yielded the best δ values with
minimal fine-tuning. To estimate 〈Ĥ〉ψθ , 104 samples were generated from either generative
model to monitor the training. For RBMs, 104 samples were generated by allowing for 104

independent Markov chains (the block-Gibbs sampling procedure) to evolve for 0.75×104

to 104 CDk steps.

5Training RNNs on the same datasets took relatively less CPU time compared to RBMs. However,
making rigorous comparisons between algorithm training efficiencies is unfair, since the RNNs and RBMs
were coded in two different programming languages.
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Table 2.3: Hyperparameters used for training RBMs.

Hyperparameter Value / Type
Optimizer SGD

Learning rate 0.001, 0.01
Positive batch size 10
Negative batch size 20

k CDk steps 10
Hidden units See Table 2.4

Table 2.4: RBM minimum hidden units to reach δ ≤ 0.05

N R = 1.0 (# of parameters) R = 1.1 (# of parameters)
4 5 (389) 4 (324)
6 11 (1163) 9 (872)
8 27 (3611) 19 (2321)

Table 2.5: Hyperparameters used for training RNNs.

Hyperparameter Value / Type
Loss function Cross Entropy

Optimizer SGD
RNN recurrent cell LSTM

Learning rate 0.001
Batch size 10

Hidden units See Table 2.6

Table 2.6: RNN LSTM hidden units.

N R = 1.0 (# of parameters) R = 1.1 (# of parameters)
4 4 (424) 4 (424)
6 10 (1276) 7 (814)
8 21 (3586) 16 (2416)
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Given the trainability issues that were observed in Sec. 2.4.2 for RBMs, it is sensible
to first ask what number of hidden units nh is required to achieve the learning criterion of
δ ≤ 0.05. Then, an RNN with a similar number of tunable parameters can be employed
for a more fair comparison. It is to be expected that for systems with long correlation
lengths or high entanglement, more tunable parameters will be required to obtain the
desired δ ≤ 0.05 criterion [46]. In the context of the Hamiltonian in Eq. (2.34), ground
states near the critical point (R = 1.0) should require more tunable parameters than for
off-critical ground states (R = 1.1). Results for systematically increasing nh in RBMs for
system sizes N =4, 6, and 8 until δ ≤ 0.05 is reached are shown in Table 2.4. As expected,
for each value of N , training RBMs on data from the off-critical system requires a smaller
nh as compared to that of critical systems.

Now knowing the minimum number of hidden units that an RBM requires to reach the
learning criterion, RNNs with LSTM recurrent units that roughly have the same number
of tunable parameters can be trained on the same datasets for comparison. The specific
number of hidden units in an LSTM recurrent cell required to roughly match the number
of parameters in the corresponding RBM for each N and R are given in Table 2.6, and
the hyperparameters used to train each RNN are shown in Table 2.5. The value of δ as
calculated during the training process for RBMs and RNNs is shown for R =1.0 and 1.1
in Figs. 2.10 and 2.11, respectively. As before with the XY model, training RBMs in this
context is still more volatile as compared to the RNNs. This is especially noticeable for
R = 1.0 and N = 8. Not only this, but the RNNs in every case are able to reach the
learning criterion several thousand training epochs sooner than the corresponding RBMs,
and the value of δ for the RNNs reaches a stable equilibrium well below δ = 0.05 in most
cases.6

The training stability of RNNs is clearly superior to that of RBMs for these values of N
and R. In a real-world reconstruction setting where we lack access to the realized quantum
state being simulated in an experiment, this training stability is extremely favourable. For
the N = 8 systems where the value of δ gets worse, this can easily be corrected with an
exponential learning rate decay or by trying adaptive optimization methods. Regardless, it
is clear that for rather “trivial” hyperparameters and a relatively strict learning criterion,
RNNs outperform RBMs in this setting.

As we saw in Sec. 2.4.2, RNNs with or without a symmetry-enforcement scheme imple-
mented in the autoregressive architecture are still able to effectively learn the underlying
symmetry. Given the symmetry constraints in the ground state of the Hamiltonian in

6The exceptions here are for N = 8, where after approximately 2500 training epochs the value of δ
actually increases.
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Figure 2.10: Comparing the ground state of NMAs of endofullerene training accuracy of
RBMs (orange) and RNNs (purple) for R = 1.0 and for system sizes of N = 4, 6, and 8.
The RBM and RNN hyperparameters are given in Tables 2.3 and 2.5, respectively, and 104

samples were generated for each point to estimate 〈Ĥ〉ψθ in the definition of δ in Eq. (2.39).
The black dashed line corresponds to δ = 0.05.

Eq. (2.34) (total ` parity, `p, and total m), it is a reasonable hypothesis that the RNNs
perform better than the RBMs in this setting due to symmetry. By drawing 104 indepen-
dent samples from both generative models, the fraction of samples, fNS, that violate the
symmetries `p = 0 and

∑
imi = 0 can be analyzed. More interestingly, however, we may

also look at fNS at every block-Gibbs step for the RBM. In doing so, we gain insight into
how long the Markov chains take to equilibrate and can therefore make claims pertaining
to the RBM’s computational efficiency compared to the autoregressive RNN. For a fair
comparison, we will use the RNN parameters at the training epoch for which the corre-
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Figure 2.11: Comparing the ground state of NMAs of endofullerene training accuracy of
RBMs (orange) and RNNs (purple) for R = 1.1 and for system sizes of N = 4, 6, and 8.
The RBM and RNN hyperparameters are given in Tables 2.3 and 2.5, respectively, and 104

samples were generated for each point to estimate 〈Ĥ〉ψθ in the definition of δ in Eq. (2.39).
The black dashed line corresponds to δ = 0.05.

sponding RBM reached the learning criterion. For the N = 8 cases where the RNN’s δ
value worsened and for the cases where the RBM took more than 20,000 epochs to reach
the learning criterion, the RNN parameters that yielded the minimum δ value in the entire
training process will be used.

Figs. 2.12 to 2.14 show fNS for both generative models for all values of R and N
employed in this section. As was anticipated, the RNN fNS remains at or below that of
the RBM for the range of k values for which the Markov chain has certainly reached an
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Figure 2.12: The fraction, fNS, of RBM- (orange bars) and RNN-generated (purple line)
samples that violate the ground state symmetries of Eq. (2.34) out of 104 independent
samples for R = 1.0 and 1.1 for N = 4.
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Figure 2.13: The fraction, fNS, of RBM- (orange bars) and RNN-generated (purple line)
samples that violate the ground state symmetries of Eq. (2.34) out of 104 independent
samples for R = 1.0 and 1.1 for N = 6.

equilibrium. This is in agreement with observations in Sec. 2.4.2, where RNNs were shown
to learn the underlying symmetry of the ground state of the XY model quite well. Not
only this, but for N = 6 and 8 the value of k for which the Markov chain has equilibrated
is O(103), in contrast to the perfect-sampling algorithm intrinsic to RNNs.
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Figure 2.14: The fraction, fNS, of RBM- (orange bars) and RNN-generated (purple line)
samples that violate the ground state symmetries of Eq. (2.34) out of 104 independent
samples for R = 1.0 and 1.1 for N = 8.

2.6 Preview of Chapter 3

The two learning tasks, reconstructing ground states of the XY model and NMAs of endo-
fullerenes, used for comparing the trainability and expressivity of RBMs and RNNs proved
to be quite informative. Both Hamiltonians in Eq. (2.25) and (2.34) have ground states
that pose reconstruction tasks unique to quantum many-body physics and have ties to
real-world hardware. Still, however, a learning task that is more closely related to today’s
physical quantum hardware is desired. Synthetic data from numerical simulations might
still be required as a proxy for performance on real hardware given that most of today’s
hardware is not easy to access.

40



Chapter 3

SSE QMC for Rydberg atoms

3.1 Rydberg atoms

There exists many well-studied experimental platforms in existence today for realizing
quantum many-body phenomena, such as trapped ions [19–22], quantum gases [23], pho-
tonic simulators [24,25], and neutral atoms [26,27] – the platform of focus in this chapter.
Neutral atom experiments comprise of atoms (e.g. rubidium), commonly referred to as
Rydberg atoms, that are trapped and manipulated into specific spatial arrangements via
laser light and can be forced to transition between their ground atomic state and an
atomic state with a large principal quantum number – a Rydberg state. Rydberg atoms
experience a two-body 1/r6

ij van der Waals (VDW) interaction, where rij is the spatial
separation between Rydberg atoms i and j, as a product of how they are experimentally
prepared [27]. This interaction leads to a phenomenon known as the Rydberg blockade,
where the excitation of two Rydberg atoms in close proximity is suppressed [82–84].

The Hamiltonian describing the properties of Rydberg atom arrays is

Ĥ =
Ω

2

N∑
i=1

σ̂xi − δ
N∑
i=1

n̂i +
∑
i<j

Vijn̂in̂j, (3.1)

where N is the number of Rydberg atoms. The eigenstates of the operators n̂i = |1〉〈1|i,
called occupation operators, prescribe the natural computational basis as the two atomic
energy levels of each Rydberg atom: the ground atomic state and Rydberg state represented
by kets |0〉 and |1〉, respectively. Specifically, the computational basis is defined by the
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eigenequations

n̂i |0〉j = 0, (3.2a)

and

n̂j |1〉j = δi,j |1〉j . (3.2b)

The operator σ̂xi = |0〉〈1|i+ |1〉〈0|i is coupled to the parameter Ω, called the Rabi frequency,
which quantifies the atomic energy difference between states |0〉 and |1〉. The interaction
coefficient,

Vij = Ω

(
Rb

rij

)6

, (3.3)

depicts the VDW interactions mentioned previously, where Rb is called the blockade radius,
rij = |ri−rj|/a is the distance between Rydberg atoms i and j, and a is the lattice spacing.
Throughout this thesis, Rb/a is left as a free parameter with a = 1. Lastly, the single-body
n̂i term coupling to the parameter δ describes the laser detuning, which also functions as
a longitudinal field.

For simulating Eq. (3.1) via QMC methods, potential sign problems must be addressed
[16–18]. In its current form, Eq. (3.1) seems sign-problematic in that the off-diagonal Ω/2
term is positive in the Rydberg occupation basis. However, upon unitarily transforming
Eq. (3.1) via

Û =
N⊗
i=1

σ̂zi =
N⊗
i=1

[I− 2n̂i] , (3.4)

one obtains,

Û †ĤÛ = −Ω

2

N∑
i=1

σ̂xi − δ
N∑
i=1

n̂i +
∑
i<j

Vijn̂in̂j, (3.5)

where the off-diagonal Ω/2 term is now negative, making Eq. (3.5) sign-problem free.

Experimental demonstrations and characterizations of exotic phases contained within
the Rydberg Hamiltonian have been illustrated in Refs. [85,86], and theoretical and numer-
ical explorations are not lagging behind [3,87–92]. Not only this, but numerical techniques
are painting an extremely compelling picture outlining novel quantum critical points [91,92]
and topologically ordered spin liquid phases [93, 94]. Such numerical studies have so far
been limited to employing the density matrix renormalization group (DMRG) [6,7], where
approximations to Eq. (3.1) akin to truncations on the Rydberg atom interaction range
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are performed to facilitate efficient DMRG calculations. For these reasons, the next logical
numerical progression is in developing a corresponding quantum Monte Carlo (QMC) algo-
rithm, where exact sampling and bias inherent to DMRG calculations will (hopefully) be
traded favourably for inexact sampling (correlation times and Markov chains) with exact
representation. Based on the Stochastic Series Expansion (SSE) framework pioneered by
Sandvik [13,95], the presented QMC algorithm in this thesis ushers in the next step in our
numerical progression towards a better understanding of Rydberg atoms.

The purpose of Sections 3.2 and 3.3 is to outline the required ingredients for an effi-
ciently functioning Monte Carlo algorithm as outlined in Section 1.3. Namely, formulating
weights defined in a sensible configuration space that facilitate sampling, ergodicity and
detailed balance, and extracting meaningful observables.

3.2 SSE QMC formalism for ground states

At zero temperature, the expectation value of an operator Ô given an unnormalized state
|ψ̃〉 takes the form

〈Ô〉 =
〈ψ̃|Ô|ψ̃〉
〈ψ̃|ψ̃〉

. (3.6)

If the correspondingly normalized state |ψ〉 describes a system of N degrees of freedom
each with a local Hilbert space size of D, the normalization factor 〈ψ̃|ψ̃〉 requires summing
DN terms. To avoid this curse of dimensionality, one can devise an importance sampling
procedure starting as follows.

Given a Hamiltonian Ĥ and a computational basis { |α〉}, one can write an arbitrary
trial state |αr〉 ∈ { |α〉} in terms of the eigenstates of Ĥ { |λm〉 ,m ∈ 0, 1, · · · ,DN − 1},
where D is the local Hilbert space size of each of the system’s N degrees of freedom, as

|αr〉 =
DN−1∑
m=0

cm |λm〉 , (3.7)

with cm ∈ C. Consider M applications of (−Ĥ) on |αr〉,

(−Ĥ)M |αr〉 = c0|E0|M
 |λ0〉+

DN−1∑
m=1

cm
c0

(
Em
E0

)M
|λm〉

 M→∞−−−−→ c0|E0|M |λ0〉 , (3.8)
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where the ground state λ0 has now been projected out of |αr〉 in the corresponding M →∞
limit.1 In the case that the state of interest is the ground state |λ0〉, the normalization
factor is

Z = 〈λ0|λ0〉 = 〈α`|(−Ĥ)M(−Ĥ)M |αr〉 , (3.9)

given a sufficiently large projector length 2M . Here, the trial states |α`〉 , |αr〉 ∈ { |α〉}
need not be equal, |α`〉 6= |αr〉.

To obtain a form for the normalization Eq. (3.9) that is reminiscent of a sum of weights
over a configuration space, consider inserting resolutions of the identity in terms of the
computational basis states { |α〉} in between each product of −Ĥ in Eq. (3.9).

〈α`|(−Ĥ)M(−Ĥ)M |αr〉 = 〈α`|(−Ĥ)I(−Ĥ)I · · · I(−Ĥ)|αr〉
=
∑
{α1}

∑
{α2}
· · ·

∑
{α2M−1}

〈α`|(−Ĥ)|α1〉 · · · 〈α2M−1|(−Ĥ)|αr〉

=
∑
{α}

2M∏
p=1

〈αp−1|(−Ĥ)|αp〉 (3.10)

Here, 〈α0| = 〈α`| and |α2M〉 = |αr〉. Furthermore, one can write Ĥ as a sum,

Ĥ = −
∑
t,a

Ĥt,a, (3.11)

of elementary operators Ĥt,a, where the subscripts t and a refer to the operator type (e.g.
diagonal or off-diagonal in the computational basis) and the lattice unit that comprises
Ĥt,a (e.g. a two-body or single-body operator), respectively. Employing this,

〈α`|(−Ĥ)M(−Ĥ)M |αr〉 =
∑
{αp}

2M∏
p=1

∑
t,a

〈αp−1|Ĥt,a|αp〉 , (3.12)

or, equivalently,

〈α`|(−Ĥ)M(−Ĥ)M |αr〉 =
∑
SM

∑
{αp}

2M∏
p=1

〈αp−1|Ĥtp,ap |αp〉 , (3.13)

1One also assumes that appropriate shifts to the Hamiltonian Ĥ have been done so as to make E0 the
largest (in magnitude) eigenvalue of Ĥ.
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where SM denotes a sequence of 2M elementary operators,

SM = [t1, a1], [t2, a2], · · · , [t2M , a2M ]. (3.14)

At this point, it is helpful to analyze the form of the normalization in Eq. (3.13). For a
system in D spatial dimensions, an elevation to D + 1 dimensions has taken place, where
the +1 dimension indexed by p can be interpreted as imaginary time. The configuration
space where importance sampling takes place is labelled by {α} and SM , and the weights
that provide the mechanism for importance sampling are given by

W ({α}, SM) =
2M∏
p=1

〈αp−1|Ĥtp,ap|αp〉 . (3.15)

Given this, the matrix elements of the elementary lattice operators Ĥt,a in the computa-
tional basis must be positive in order to interpret Eq. (3.15) as an unnormalized probabil-
ity distribution. A graphical representation of an example SSE configuration is given in
Fig. 3.1. In this diagram, the vertical direction represents the spatial locations of physical
sites on a D-dimensional lattice. The state |α`〉 = |αp=0〉 is propagated from left to right
(imaginary time direction) via

Ĥtp,ap |αp−1〉 ∝ |αp〉 . (3.16)

3.2.1 Sampling and calculating observables

In the zero-temperature SSE framework, given an operator sequence SM , a sample config-
uration in the computational basis { |α〉}) is obtained by propagating the state |αp=0〉 all
the way to the middle imaginary time index M via Eq. (3.16). Conceptually, this can be
seen in the projection of the trial state |αr〉 in Eq. (3.8), where for a suitably large enough
M , (−Ĥ)M |αr〉 recovers the (unnormalized) ground state |λ0〉 which one wants to sample.
Using this, diagonal observables may be calculated similarly to Eq. (2.21).

Expressions for off-diagonal observables are an entirely different story. In general, an
observable Ô can be calculated as

〈Ô〉 =
〈λ0|Ô|λ0〉
〈λ0|λ0〉

=
〈α`|(−Ĥ)MÔ(−Ĥ)M |αr〉
〈α`|(−Ĥ)M(−Ĥ)M |αr〉

. (3.17)

The non-triviality of reducing Eq. (3.17) to something elegant in terms of SSE simulation
parameters is clear from this. However, importantly, a derivation of the ground state energy
for the Rydberg Hamiltonian using the SSE implementation described in Section 3.3 is
offered.
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Figure 3.1: A toy example of an SSE configuration. In this example, M = 3 and the basis
states {αp} are represented by filled/unfilled circles. The elementary operators placed at
every imaginary time index are given by purple, red, and black rectangles. Purple and
black operators are meant to be diagonal, and therefore do not change the state |αp〉 on
which they act. The red operator is off-diagonal, since α2 6= α3.

3.3 SSE implementation for Rydberg atoms

Having addressed a sign cure to the Rydberg Hamiltonian, Eq. (3.5), an SSE QMC imple-
mentation for this Hamiltonian is now feasible. However, in the SSE framework outlined in
the previous section, a computational basis { |α〉} and instructions for defining the specifics
of Eq. (3.11) as they pertain to the Rydberg Hamiltonian must be defined. As was men-
tioned when defining the Rydberg Hamiltonian in Eq. (3.1), the natural computational
basis is the Rydberg occupation basis: { |α〉} = {⊗N

i=1 |ni〉 , ni = 0, 1}. How to formulate
Eq. (3.11), however, requires extra thought.

Updates to the SSE configuration space labelled by { |α〉} and SM have yet to be
defined, as there is no “one size fits all” algorithm. In fact, efficient updates to { |α〉}
and SM must be meticulously conceived for specific SSE implementations, which is the
underlying reason why the formulation for Eq. (3.11) is so important. For example, the
SSE implementation for the transverse-field Ising model as outlined in Ref. [96] utilizes
a non-local and deterministic cluster update, while the SSE implementation for the XXZ
model utilizes stochastic directed loops akin to worm algorithms [97–99]. To summarize,
the Hamiltonian and therefore how it is broken into elementary operators Ĥt,a drastically
affects the update procedure in the { |α〉}, SM configuration space, and therefore the overall
efficiency of the SSE implementation itself.

With an update strategy in mind and given that the Rydberg Hamiltonian Eq. (3.5)
takes the form of a quantum Ising model with transverse and longitudinal fields, Refs. [96,
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99] motivate the following elementary lattice operators of this SSE implementation as being

Ĥ−1,a =
Ω

2
σ̂xi , (3.18a)

Ĥ1,a =
Ω

2
I, (3.18b)

and

Ĥ1,b = −Vijn̂in̂j + δb(n̂i + n̂j) + Cij, (3.18c)

where t = 1(−1) denotes diagonal (off-diagonal) operator types and a and b designate
single- and two-body operators, respectively. A reduction to the detuning parameter δb =
δ/(N − 1) is required since the sum δ

∑
i n̂i has been moved into the sum over pairs

∑
i<j,

and the constant Cij = |min(0, δb, 2δb − Vij)| is required to be added to Ĥ1,b so that all
of its matrix elements remain non-negative.2 Additionally, a small constant ε > 0 may be
included in the definition of Cij to aid numerics [99]. However, in preliminary calculations
with this SSE implementation, it was found that the value of ε was negligible to simulation
efficiency and therefore ε = 0 was chosen.

Given that the matrix elements of the operators in Eq. (3.18) form the foundation for
importance sampling in the { |α〉} and SM configuration space, it is helpful to show the
exact form of each of their non-zero matrix elements. In the Rydberg occupation basis,

〈1|Ĥ−1,a|0〉 = 〈0|Ĥ−1,a|1〉 =
Ω

2
, (3.19a)

〈1|Ĥ1,a|1〉 = 〈0|Ĥ1,a|0〉 =
Ω

2
, (3.19b)

W
(1)
ij ≡ 〈00|Ĥ1,b|00〉 = Cij, (3.19c)

W
(2)
ij ≡ 〈01|Ĥ1,b|01〉 = δb + Cij, (3.19d)

W
(3)
ij ≡ 〈10|Ĥ1,b|10〉 = δb + Cij, (3.19e)

and

W
(4)
ij ≡ 〈11|Ĥ1,b|11〉 = −Vij + 2δb + Cij, (3.19f)

where subscripts i, j on matrix elements W
(1,2,3,4)
ij here contain the spatial location depen-

dence. Fig. 3.2 shows an example of a zero-temperature SSE simulation cell of such an
operator breakup in the upper and lower panes.

2This must be taken into account when calculating the ground state energy.
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Figure 3.2: Examples of SSE configurations given the operator breakup in Eq. (3.18) with
M = 3. Here, filled/unfilled circles denote the Rydberg occupation of each of the N = 4
sites. The green and orange highlighted regions denote the formation of multibranch and
line clusters, respectively. The configuration in the lower pane is obtained by flipping both
clusters in the upper pane according to Eq. (3.22).

With this sensible Hamiltonian breakup, one can now outline the specifics of the up-
dates to the D + 1-dimensional configurations labelled by { |α〉} and SM . In the SSE
QMC framework, there are two independent updates to consider: a diagonal update and
an off-diagonal/cluster update, both of which are outlined in Sections 3.3.1 and 3.3.2, re-
spectively. The purpose of the diagonal update in the zero-temperature SSE formalism is
to sweep through every imaginary time index p in the SSE simulation cell and replace only
elementary diagonal operators with other diagonal operators. In the case of this SSE for
Rydberg atoms, this update only involves interchanging operators Ĥ1,a and Ĥ1,b. In this
way, the operator sequence SM is updated. However, in ignoring off-diagonal operators,
Ĥ−1,a in this case, the computational basis state { |α〉} is not updated, rendering an SSE
QMC algorithm void of off-diagonal / cluster updates non-ergodic. This is addressed in
Section 3.3.2.
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3.3.1 Diagonal update

The procedure for the diagonal update in the zero-temperature SSE formalism is as follows
for every imaginary time index p ∈ [1, 2M ].

1. If the operator present at imaginary time index p is one of Ĥ1,a or Ĥ1,b, remove it

and continue to step #2. Otherwise, if the operator is Ĥ−1,a, repeat this step for the
next imaginary time index, but propagate the state |αp〉 according to Eq. (3.16).

2. Probabilistically choose to attempt3 to either insert Ĥ1,a at the physical site index

i, or Ĥ1,b at the physical bond (i, j) by sampling the (unnormalized) probability
distribution4

Pij =


Ω
2

i = j

max
(
W

(1)
ij ,W

(2)
ij ,W

(3)
ij ,W

(4)
ij

)
i 6= j

. (3.20)

In sampling this distribution, one obtains the operator to be inserted corresponding to
a given matrix element in Eq. (3.19). Its insertion will be attempted in the following
steps at the spatial location (i, j) in the current imaginary time index p (Ĥ1,a if i = j
or H1,b if i 6= j).

3. If Ĥ1,a is chosen, its insertion at site i is accepted.5 Repeat step #1 at the next imag-
inary time index and propagate the basis state according to Eq. (3.16). Otherwise, if
Ĥ1,b is chosen, accepting its insertion must still be determined. Proceed to the next
step.

4. In the Rydberg occupation basis, the configuration at the current imaginary time
index p is given by |n1,p, n2,p, · · · , nN,p〉. If |ni,p, nj,p〉 matches the sampled matrix

element of Ĥ1,b in step #2 (i.e. one of W
(1)
ij ,W

(2)
ij , W

(3)
ij , or W

(4)
ij ), the insertion is ac-

cepted. Otherwise, the insertion of Ĥ1,b at location (i, j) is accepted with probability

W
(actual)
ij

W
(sampled)
ij

, (3.21)

where W
(actual)
ij = 〈ni,p, nj,p|Ĥ1,b|ni,p, nj,p〉 and W

(sampled)
ij was the resulting sample

from step #2.

3This step encompasses the selection probability g in Eq. (1.13).
4One can sample the distribution in Eq. (3.20) in O(1) time using the Alias method [100–102].
5This step encompasses the acceptance probability A in Eq. (1.13).
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5. Repeat step #1 at the next imaginary time index and propagate the basis state
according to Eq. (3.16).

The key steps in this diagonal update procedure are steps #3 and #4, where Sandvik
suggested in Ref. [96] that this is the most efficient way to sample non-uniform diagonal
operator matrix elements while satisfying detailed balance.

3.3.2 Cluster updates

Since the diagonal update procedure in Section 3.3.1 ignores the presence of off-diagonal
operators Ĥ−1,a, it alone does not yield an ergodic QMC algorithm. Another update is
required, and one can consider using the cluster update devised by Sandvik called the
multibranch cluster update, which is described in Refs. [96, 103, 104]. Originally designed
for the SSE implementation of the transverse-field Ising model, the multibranch update is
a deterministic, highly non-local update – in spatial and imaginary time dimensions – that
proceeds as follows.

Employing a graph-based vocabulary, matrix elements in Eq. (3.19) can be pictured
as vertices in a graph (the SSE simulation cell itself). The vertices from matrix elements
of Ĥ−1/1,a have two legs (one leg for the Rydberg state of the ket and same for the bra).

Likewise, the vertices from matrix elements of Ĥ1,b have four legs (two legs for the Rydberg
states of the ket and same for the bra). To form a multibranch cluster, perform the following
steps.

1. Choose a random leg of any vertex present in the SSE simulation cell as a starting
point. If the starting leg belongs to a vertex from Ĥ1,b, add its three remaining legs
to the cluster and traverse away (in the imaginary time direction) from it in all four
directions. If the starting leg belongs to a vertex from Ĥ−1/1,a, proceed away from
the vertex in the imaginary time direction.

2. If a leg from a Ĥ1,b vertex is encountered, all four of its legs are added to the cluster,
and the cluster continues to traverse through the simulation cell by branching out
of each of the three exit legs. If a leg from a Ĥ−1/1,a vertex is encountered, add
this leg to the cluster and stop traversing in this direction (this “branch” of the
cluster terminates). If the simulation cell edge is encountered (i.e. |n1, n2, · · · , nN〉`
or |n1, n2, · · · , nN〉r), add this leg to the cluster and stop traversing in this direction
(this “branch” of the cluster terminates).
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3. Repeat step #2 until every branch of the cluster has terminated.

Fig. 3.2 shows an example of a ground state projector SSE simulation cell where a
multibranch cluster is pictured by the green region in the upper pane. To update a multi-
branch cluster, all contained legs (Rydberg occupations) are “flipped” and the vertex types
within the cluster are correspondingly changed. To satisfy detailed balance when flipping
clusters, the flipping probability is given by the Metropolis probability

Pflip = min

(
1,
W ′
W

)
, (3.22)

where W is weight of the entire multibranch cluster defined as the product of vertex
weights W (vi) (matrix elements whose values W (vi) are found in Eq. (3.19)) belonging to
the cluster C:

W =
∏
vi∈C

W (vi). (3.23)

Here,W ′ is the correspondingly flipped cluster weight. A diagrammatic perspective of this
flipping process is shown in Fig. 3.2. The multibranch cluster (green) possesses a weight
of

Wmultibranch = W
(4)
1,2 〈0|Ĥ−1,a|1〉W (4)

1,3 〈1|Ĥ1,a|1〉 (3.24a)

and

W ′multibranch = W
(1)
1,2 〈0|Ĥ1,a|0〉W (1)

1,3 〈0|Ĥ−1,a|1〉 (3.24b)

before and after the flip, respectively. Also note that although states αp=0 and αp=2M have

changed, choosing to initialize these arbitrary states to
⊗N

i=1
1√
2
( |0〉i+ |1〉i) (i.e. randomly

initialized) results in no local weight changes at the simulation cell boundaries.

Multibranch cluster updates are the most efficient updates for the transverse-field Ising
model SSE implementation for several reasons. Inherent to the model’s Z2 symmetry,
multibranch cluster weights are the same before and after flipping, allowing clusters to
be flipped according to a Swendsen-Wang procedure [105]. However, that is not the case
in the Rydberg Hamiltonian Eq. (3.1) owing to the form of the interactions n̂in̂j and the
laser detuning δ terms. Although this reason alone is not a reason for searching for other
cluster update algorithms, the multibranch weight changes can be problematic. For many
Rb, Ω, and δ combinations, one of the matrix element weights {W (1−4)

i,j } will be zero, which
prohibits a move from its higher-weighted counterpart according to Eq. (3.22) impossible.
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For example, in Section 3.4 we show results for Rb = 1.2, Ω = 1, and δ = 1.1 for N = 256
Rydberg atoms on a square lattice. From this,

W
(1)
i,i+1 = W

(2)
i,i+1 = W

(3)
i,i+1 ≈ 2.98 (3.25a)

and

W
(4)
i,i+1 = 0. (3.25b)

Given this, W
(1)
i,i+1’s presence in an SSE simulation cell is a likely occurrence. However,

a cluster containing W
(1)
i,i+1 cannot be flipped since its counterpart W

(4)
i,i+1 = 0, leading to

W ′ = 0. As such, ergodicity issues from the multibranch update may arise since some
clusters won’t be able to be updated. For this reason, searching for better cluster updates
is warranted.

A modification to the multibranch cluster algorithm was formulated called the line clus-
ter update in Ref. [3]. Briefly, a line cluster is a local-in-space and non-local-in-imaginary-
time cluster inspired by Ref. [106]. Line clusters, like multibranch clusters, terminate on
site vertices but do not add all three remaining legs of an Ĥ1,b vertex to the cluster. Rather,

only the adjacent leg (in imaginary time) of an Ĥ1,b vertex is added to the cluster. The
mechanism for flipping such clusters is also given by Eq. (3.22). A diagrammatic per-
spective of a line cluster’s formation and flipping procedure is also given in Fig. 3.2. For
instance, the orange line cluster in Fig. 3.2 has a weight

Wline = W
(2)
3,4 〈1|Ĥ1,a|1〉

and

W ′line = W
(1)
3,4 〈0|Ĥ−1,a|1〉

before and after it is flipped, respectively.

An advantage of the line update over the multibranch update can be seen in the fol-
lowing example of an impossible move for the multibranch update, where W

(1)
i,i+1 → W

(4)
i,i+1

is not allowed since W
(4)
i,i+1 = 0. With the line update, W

(1)
i,i+1 can instead be flipped to

W
(2 or 3)
i,i+1 ≈ 2.98. A diagram of this distinct difference between the two updates is shown in

Fig. 3.2. Importantly, many line updates are performed in a single MC step by selecting a
random site operator leg as a starting point and continuing in the imaginary time direction
until another site operator leg is reached. Therefore, transitions akin to W

(1)
i,i+1 → W

(4)
i,i+1

can still be proposed, but via two independent line updates (e.g. W
(1)
i,i+1 → W

(2)
i,i+1 then

W
(2)
i,i+1 → W

(4)
i,i+1).
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3.3.3 Directed loop updates

Although employing the line and multibranch cluster updates, as they apply to this SSE
implementation for Rydberg atoms, seems very reasonable given where they were inspired
from, another prominent off-diagonal update scheme for SSE simulations called directed
loops should be investigated as a viable candidate for completeness. Directed loops are
similar to worm algorithms [97, 107], which are non-deterministic and non-local clusters,
and have been successfully demonstrated to be the most efficient cluster update for the SSE
implementation of the famous XXZ model [99, 108]. Given the non-triviality of forming
such clusters in D + 1 dimensions, ensuring that detailed balance and ergodicity remain
satisfied will be different from one SSE implementation to the other. In this section, it
will be demonstrated that directed loops are not an efficient choice of update for the SSE
implementation for Rydberg atoms.

To alleviate some of the difficulty in showcasing directed loops for the Rydberg atom
SSE in this thesis, we will instead employ a transverse-field Ising model with a longitudinal
field (LTFIM),

Ĥ = −hx
N∑
i=1

σ̂xi − hz
N∑
i=1

σ̂zi − J
∑
〈i,j〉

σ̂zi σ̂
z
j , (3.26)

which describes nearest-neighbour interacting spin-1/2 degrees of freedom in the presence
of transverse (hx) and longitudinal (hz) fields. Note that J , hx, and hz > 0 and the
operators σ̂x and σ̂z are the traditional Pauli operators. The LTFIM Hamiltonian is eerily
similar to the Rydberg Hamiltonian in Eq. (3.1). As such, one can decompose the LTFIM
Hamiltonian into elementary lattice operators in a very similar fashion to what was done
for the Rydberg SSE implementation. Specifically,

Ĥ−1,a = hxσ̂
x
i , (3.27a)

Ĥ1,a = hx, (3.27b)

and

Ĥ1,b = Jσ̂zi σ̂
z
j + hz,b(σ̂

z
i + σ̂zj ) + C, (3.27c)

where hz,b = hz/(N − 1) is the modified longitudinal field strength to account for when
the sum over sites is put into the sum over pairs, C = max(J, 2hz,b − J) + ε is a constant
to alleviate sign problems with H1,b, and ε is a small non-negative constant to aid with
numerics.
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The relevant computational basis here is the eigenbasis of the operator σ̂z, whose
eigenequations are σ̂z |↑〉 = |↑〉 and σ̂z |↓〉 = − |↓〉. In this basis, the non-zero matrix
elements of all elementary lattice operators in Eq. (3.27) are

〈↑|Ĥ−1,a|↓〉 = 〈↓|Ĥ−1,a|↑〉 = hx, (3.28a)

〈↑|Ĥ1,a|↑〉 = 〈↓|Ĥ1,a|↓〉 = hx, (3.28b)

W1 ≡ 〈↑↑|Ĥ1,b|↑↑〉 = J + 2hz,b + C, (3.28c)

W2 ≡ 〈↓↓|Ĥ1,b|↓↓〉 = J − 2hz,b + C, (3.28d)

and

W3 ≡ 〈↓↑|Ĥ1,b|↓↑〉 = 〈↑↓|Ĥ1,b|↑↓〉 = −J + C. (3.28e)

These matrix elements define the update probabilities involved in the diagonal update por-
tion of the entire SSE configuration space update. The diagonal update for an LTFIM SSE
implementation such as this would follow what is outlined in Sec. 3.3.1 with corresponding
modifications.

Going back to the previously-employed graphical vocabulary to describe multibranch
and line cluster formation, directed loops are formed by starting at a random leg of a
vertex in the D + 1 SSE simulation cell and traversing in the imaginary time direction
to the next closest leg. Whether this next leg is to be added to the directed loop cluster
is a question for detailed balance to handle. However, the smoking gun for directed loop
inefficiencies here will manifest when vertices from matrix elements of Ĥ1,b (W1, W2, and
W3) are encountered.

When any of the vertices W1−3 are encountered in forming a directed loop cluster, the
two legs in consideration are the “entrance” leg e ∈ [1, 2, 3, 4] (four possible legs from the
two spin states in the ket and bra each), and the “exit” leg x ∈ [1, 2, 3, 4]. If the four spin
states surrounding the vertex are condensed into a label s, Syljuasen and Sandvik showed
in Ref. [99] that the detailed balance principle that guides which leg x to exit from is given
by ∑

x

ω(s, e, x) = Ws (3.29a)

and

ω(s, `1, `2) = ω(s′, `2, `1), (3.29b)
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where ω are unnormalized weights that are currently unknown, Ws ∈ W1−3, and s′ denotes
a correspondingly flipped spin configuration from the spins on legs e and x being flipped.
Eq. (3.29) defines a set of non-linear equations in ω that, when solved, will provide a
prescription for an algorithm that satisfies detailed balance.

What must now be considered is all possible directed loop segments passing through
vertices W1−3 given an entrance leg e in order to define Eq. (3.29a) concretely. Consider the
vertex W2 in Eq. (3.28d) whose four spin states are all spin-down. Given that the update
proposed will be to flip spins on legs e and x, the exit leg x can either be the adjacent leg
in imaginary time in the same spatial location (“continue straight”) or the entrance leg e
(“bounce”). In this way, if the update is accepted and s→ s′, one obtains a non-zero vertex
weight W3 (“continue straight”) or W2 (“bounce”). Fig. 3.3 shows all options pictorially,
where the imaginary time direction is in the vertical direction, the spatial dimension is the
horizontal direction, filled/unfilled circles denote spin-up/down states, and the black bar
represents the operator Ĥ1,b. Notice that for the option to “switch and continue” from
the spatial exit leg position of the entrance leg, the correspondingly flipped loop segment
would yield a vertex with weight 〈↑↓|Ĥ1,b|↓↑〉 = 0. Therefore, probabilistically this is not
allowed. The same can be said for the “switch and reverse” loop segment, which would
yield a vertex with weight 〈↑↑|Ĥ1,b|↓↓〉 = 0.

In doing this exercise for every vertex W1−3, Eq. (3.29a) can now be defined for every
Ws ∈ W1−3. All possible directed loop segments for vertices W1−3 are shown in Fig. 3.5,
but for the example in the previous paragraph one can extract a directed loop equation for
W2 by summing the weights ω that correspond to allowed directed loop segments through
W2 (“continue straight” and “bounce”),6

W2 = ω(2, 2, 4) + ω(2, 2, 2). (3.30)

Having done this for every vertex W1−3, the relation in Eq. (3.29b) enforces equiva-
lence between directed loop segments where the entrance and exit legs are interchanged
and the vertex spin state s is correspondingly flipped. An example of two such directed
loop segments is shown in Fig. 3.4 for the “continue straight” directed loop segments
passing through vertices W2 and W3. In this case, Eq. (3.29b) is ω(2, 2, 4) = ω(3, 4, 2).
For “bounce” loop segments, they are mapped to themselves under Eq. (3.29b) since the
entrance and exit legs are the same.

In using Eq. (3.29b), the directed loop equations akin to Eq. (3.30) can be simplified.
At this point, all directed loop equations defined by Eq. (3.29a) must be analyzed to come

6The vertex leg enumeration scheme taken here is leg #1 = upper left, leg #2 = upper right, leg #3
= lower left, and leg #4 = lower right.
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continue straight bounce switch and continue switch and reverse

Figure 3.3: Possible directed loop segments through the vertex W2 defined in Eq. (3.28d).
Here, unfilled circles denote spin-down states. The “continue straight” and “bounce” seg-
ments, if flipped, will change the vertex weight W2 to W3 or back to W2, respectively. How-
ever, the “switch and continue” loop segment would yield a vertex weight of 〈↑↓|Ĥ1,b|↓↑〉,
which is zero and therefore not allowed. The same can be said for the “switch and reverse”
loop segment, which would yield a vertex with weight 〈↑↑|Ĥ1,b|↓↓〉 = 0.

Figure 3.4: An example of two “continue straight” directed loop segments through vertices
W2 and W3 that must be related by Eq. (3.29b). Mathematically, this corresponds to
ω(2, 2, 4) = ω(3, 4, 2).

to a solution for the weights ω. Motivated by Ref. [99], Fig. 3.5 shows all possible directed
loop segments for all possible vertex configurations divided into four subsets.7 Each subset
contains two different vertices in two rows that have the same entrance leg e, while each
configuration in a given row maps, via Eq. (3.29b), to another configuration in the subset.
Note again that “bounce” loop segments map to themselves.

Given that each of the four subsets in Fig. 3.4 will yield two directed loop equations
from each row, as prescribed by Eq. (3.29a), there will be eight directed loop equations.
However, there are two symmetries to take advantage of to reduce the number of equations:8

1. permutation of two spins acted on by Ĥ1,b (i.e. interchanging spins while keeping the
orientation of the loop segment) – this relates the upper-left and lower-right subsets
– and

2. imaginary time symmetry (swap spins above and below the black bar that represents
Ĥ1,b) – in tandem with the previous point, this relates the lower-left and upper-right
subsets.

7There are technically four more subsets to consider, but they are related to the four subsets in Fig. 3.5
by flipping all of the spins.

8We already used spin-flip symmetry to reduce the number of subsets from eight to four!
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In utilizing these symmetries, the number of subsets to consider is reduced to only the
upper-left and lower-left subsets in Fig. 3.5. Also, in using Eq. (3.29b),

ω(3, 4, 2) = ω(2, 2, 4) = a

and

ω(3, 2, 4) = ω(1, 4, 2) = d.

In all, the directed loop equations for the upper-left quadrant are

W3 = ω(3, 4, 4) + ω(3, 4, 2) = b1 + a = −J + C (3.32a)

and

W2 = ω(2, 2, 4) + ω(2, 2, 2) = a+ b2 = J − 2hz,b + C, (3.32b)

and for the lower-left quadrant

W3 = ω(3, 2, 2) + ω(3, 2, 4) = b3 + d = −J + C (3.32c)

and

W1 = ω(1, 4, 2) + ω(1, 4, 4) = d+ b4 = J + 2hz,b + C, (3.32d)

where the variables bi are used to denote the corresponding “bounce” weights.

The “best” solution to this system of equations is one where the “bounce” weights b1−4

are zero. Since “bounce” loop segments when updated return the same configuration (i.e.
they do nothing), ergodicity issues may manifest as a result of “doing nothing” too often.
Again, drawing inspiration from Ref. [99], consider a “heat bath” solution to the system
of four equations,

b1

W3

=
W3

W3 +W2

, (3.33a)

b2

W2

=
W2

W3 +W2

, (3.33b)

a

W3

=
W2

W3 +W2

, (3.33c)

b3

W3

=
W3

W1 +W3

, (3.33d)

57



Figure 3.5: Directed loop segments for vertex configurations divided into four subsets.
Each subset is organized by containing two different vertices in two rows that have the
same entrance leg e, while also containing configurations that map, via Eq. (3.29b), to one
and another. For instance, in the upper left subset, the “continue straight” segments are
those related loop segments from Fig. 3.4.
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b4

W1

=
W1

W1 +W3

, (3.33e)

and

d

W3

=
W1

W1 +W3

. (3.33f)

In certain LTFIM Hamiltonian parameter regimes, W2 or W3 will be zero.9 While this does
favourably destroy “bounce” weights b2, b3, or b1, it unfavourably destroys the “continue
straight” weights a or d. Consider when W3 = 0. This gives

b1 = 0,

b2 = W 2
2 ,

a = 0,

b3 = 0,

b4 = W 2
1 ,

and

d = 0.

Evidently, “bounce” loop segments are only possible. Clearly, the heat-bath solutions to
the directed loop equations in Eq. (3.32) are not optimal.

Let us now turn to generally analyzing how b1−4 can be minimized while solving Eq. 3.32.
Also note that to interpret b1−4, a, and d as unnormalized probabilities, they must all be
positive. In solving for b1−4 in Eq. (3.32), one obtains

b1 = −a− J + C, (3.35a)

b2 = −a+ J − 2hz,b + C, (3.35b)

b3 = −d− J + C, (3.35c)

and

b4 = −d+ J + 2hz,b + C. (3.35d)

The lines in the b1,2 vs a plane are parallel and will never intersect, and similarly for
the lines in the b3,4 vs d plane. Therefore, b1−4 = 0 can never occur simultaneously, and
inefficient “bounce” loop segments will persist.

9This is enforced by the constant C in the definition of Ĥ1,b. We are also taking ε = 0.
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Given the inability to determine solutions to the directed loop equations that are op-
timal, that is at least most of b1−4 being zero while a and d remaining non-zero, directed
loops for off-diagonal updates in this SSE implementation for the LTFIM Hamiltonian in
Eq. (3.26) should not be used over the seemingly efficient and deterministic line cluster
update outlined in Sec. 3.3.2. This also reasonably applies to the Rydberg atom SSE im-
plementation showcased in Sec. 3.3 given its similarity to the LTFIM SSE implementation
presented here.

3.3.4 Ground state energy estimator

In Section 3.2.1, the difficulty in calculating a generic off-diagonal observable in the SSE
formalism was alluded to. However, being able to estimate an off-diagonal observable
like the energy in an SSE simulation is quite valuable. Recall that the ground state
SSE formalism’s foundation is in projecting out the (unnormalized) ground state from an
arbitrary trial state (Eq. 3.8). It is from this principle that one formulates an importance
sampling procedure for the normalization in Eq. 3.9. Upon closer inspection, given a
sufficiently large M ,

Z = 〈α`|(−Ĥ)M(−Ĥ)M |αr〉
≈ 〈λ0||c0|2E2M

0 |λ0〉
∝E2M

0 .

Therefore, the accuracy of the ground state energy estimate is in direct correspondence to
the object, Z, that one importance samples, and therefore serves as a vital benchmark for
the SSE algorithm itself.

In substituting Ĥ = Ô in Eq. 3.17, the goal is to find a compact expression for the
ground state energy,

〈Ĥ〉 = E0 =
1

Z
〈α`|(−Ĥ)MĤ(−Ĥ)M |αr〉 , (3.36)

in terms of parameters in the SSE simulation cell. As the specific form of the Hamiltonian
will drastically affect such a derivation, the one presented in this section only applies to
an SSE implementation where one of the local operators Ĥt,a from Eq. (3.11) is a scalar
multiple of unity, hI, that acts on one degree of freedom (a single-body term). Such an
operator will be represented as Ĥt,a = Ĥ1,a = hI. Crucially, this applies to the Rydberg
SSE implementation presented in this thesis with h = Ω/2 (see Eq. (3.18b)), but also
applies to the SSE implementation for the transverse-field Ising model [96].
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In the D + 1 SSE simulation cell, Ĥ1,a does not alter the basis states |αp〉 for which it
acts on. Therefore, in the summation over all possible operator strings SM in Eq. (3.13),
one can account for degenerate terms that contain m instances of Ĥ1,a. Given a sequence
of operators of length 2M (the aforementioned projector length), let M̃ = 2M − m rep-
resent the “reduced” projector length having removed all Ĥ1,a operators. There are three
simplifications to be aware of.

1. The weight of an SSE configuration with m Ĥ1,a operators present will receive a
contribution of hm specifically from these operators:

2M∏
p=1

〈αp−1|Ĥtp,ap |αp〉 = hm
M̃∏
p=1

〈αp−1|Ĥtp,ap|αp〉 .

2. SSE configuration weights are independent of where, spatially, each Ĥ1,a operator is
at a given imaginary time index p. This results in a degeneracy factor of Nm, as each
of the m operators can be placed in N difference spatial locations.

3. SSE configuration weights are also independent of where, in imaginary time, each Ĥ1,a

operator is for a given spatial location. This results in a combinatorial degeneracy
factor of

(
2M
m

)
.

Consider the operator sequence SM̃ , which is void of Ĥ1,a occurrences. In replacing SM
with SM̃ , SSE configuration space weights are now be labelled by {α}, SM̃ , and m. Using
the three simplifications mentioned in the list above, the normalization Z written in this
new space is

Z =
∑
{α}

∑
SM̃

∑
m

Nm (2M)!

M̃ !m!
hm

M̃∏
p=1

〈αp−1|Ĥtp,ap |αp〉 .

Consider the change of variables q = m+ 1. Under this change of variables,

M̃ ⇒M̃,

and the new projector length is

2M ⇒2Q ≡ 2M + 1 = M̃ + q.
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Applying this to the normalization,

Z =
∑
{α}

∑
SM̃

∑
q

N q−1 (2Q− 1)!

M̃ !(q − 1)!
hq−1

M̃∏
p=1

〈αp−1|Ĥtp,ap |αp〉 .

To unclutter the summand, let

Φ(α, SM̃ , q) = N q (2Q)!

M̃ !q!
hq−1

M̃∏
p=1

〈αp−1|Ĥtp,ap |αp〉 , (3.37)

which yields a compact expression for the normalization,

Z =
1

2Q×N
∑
{α}

∑
SM̃

∑
q

Φ(α, SM̃ , q)q.

Given this compact expression for the normalization, let us turn towards simplifying
〈α`|(−Ĥ)MĤ(−Ĥ)M |αr〉 in a similar fashion. One can think of this expression simply as
an SSE normalization Z with a projector length 2M +1 instead of 2M due to the presence
of the additional Ĥ,

〈α`|(−Ĥ)MĤ(−Ĥ)M |αr〉 = −〈α`|(−Ĥ)M(−Ĥ)(−Ĥ)M |αr〉

= −
∑
{α}

∑
SM

2M+1∏
p=1

〈αp−1|Ĥtp,ap |αp〉 .

Given the similarity of this expression to the normalization in Eq. (3.13), one can apply
the same simplifications, degeneracies, and change of variables as was previously done for
the normalization. However, to conveniently work with the same SSE configuration space
labels {α}, SM̃ , and m (or q), one must note that the total number of Ĥ1,a occurrences in
an operator sequence SM with 2M + 1 entries is m + 1. For clarity, these are the three
simplifications to make.

1. SSE configuration weights accrue a factor of h for every Ĥ1,a operator present:

2M+1∏
p=1

〈αp−1|Ĥtp,ap |αp〉 = hm+1

M̃∏
p=1

〈αp−1|Ĥtp,ap |αp〉 .

2. Spatial independence: Nm+1.
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3. Imaginary-time-index independence:
(

2M+1
m+1

)
.

In all,

〈α`|(−Ĥ)mĤ(−Ĥ)m|αr〉 = −
∑
{α}

∑
SM̃

∑
m

Nm+1

(
2M + 1

m+ 1

)
hm+1

M̃∏
p=1

〈αp−1|Ĥtp,ap |αp〉 ,

and using the change of variable q = m+ 1,

= −
∑
{α}

∑
SM̃

∑
q

N q

(
2Q

q

)
hq

M̃∏
p=1

〈αp−1|Ĥtp,ap|αp〉

= −h
∑
{α}

∑
SM̃

∑
q

N q (2Q)!

M̃ !q!
hq−1

M̃∏
p=1

〈αp−1|Ĥtp,ap |αp〉

= −h
∑
{α}

∑
SM̃

∑
q

Φ(α, SM̃ , q).

Plugging in the simplified expressions for Z and 〈α`|(−Ĥ)mĤ(−Ĥ)m|αr〉 into the ex-
pression for 〈Ĥ〉,

E0

N
=
〈Ĥ〉
N

=
1

N

〈α`|(−Ĥ)MĤ(−Ĥ)M |αr〉
Z

= − 1

N

∑
{α}
∑

SM̃

∑
q Φ(α, SM̃ , q)

1
2Q×N

∑
{α}
∑

SM̃

∑
q Φ(α, SM̃ , q)q

= −2Q
h

〈q〉 . (3.38)

To summarize, the ground state energy of an SSE implementation with an elementary
operator Ĥ1,a = hI can be estimated via the inverse of the number of Ĥ1,a operators
present in the operator string SM .

3.4 The checkerboard transition on a square lattice

To ensure the accuracy of the energy estimator in Eq. (3.38), exact-diagonalization calcu-
lations for a one-dimensional lattice with N = 10 sites with open boundary conditions were
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performed on the Hamiltonian in Eq. (3.1). Fig. 3.6 shows the absolute value of the energy
difference between the exact ground state energy the QMC estimate using Eq. (3.38) with
h = Ω/2 = 1/2 for various δ/Ω values. It is clear that the derived energy estimator in
Eq. (3.38) is accurate. Interestingly, the result of 〈Ĥ〉QMC for this one-dimensional system
was essentially independent of the type of cluster update – multibranch, line, or some
combination of the two.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

δ/Ω

−1

0

1

2

3

4

|〈Ĥ〉QMC−E0,exact|
N

×10−5

Figure 3.6: The absolute value of the difference between the SSE QMC energy estimator in
Eq. (3.38), 〈Ĥ〉QMC, and the exact ground state energy, E0,exact, of N = 10 Rydberg atoms
in a one dimensional arrangement with open boundaries for various δ/Ω values. Each data
point represents an independent SSE QMC simulation where the projector length used was
2M = 4 × 105 and the cluster update used was the line update. 105 equilibration steps
were performed, then 107 successive measurements were taken. These 107 measurements
were then processed via a standard jackknife routine to extract the plotted mean value and
error bars.

The experimental work from Ebadi et al. showcased results from a 16 × 16 square
lattice of Rydberg atoms [86]. Also, for a value of Rb = 1.2, Samajdar et al. reported the
existence of a disordered-to-checkerboard-order quantum phase transition (QPT)in two
spatial dimensions in the range of δ/Ω ∈ [1, 1.2] [92]. Given the experimental motivation
in this thesis, L×L lattices with L = 4, 10, and 16 with no truncation on the interactions
will be used as platforms of choice for assessing the performance of the SSE QMC algorithm
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developed in this thesis.

In general, zero-temperature SSE QMC simulations require that the projector length
2M be manually converged. It is a reasonable assumption that the converged projector
length 2M will be larger for systems at criticality than for off-critical systems. Therefore,
the converged projector length at the relevant critical point can be safely used for off-critical
points as well. However, for the disordered-to-checkerboard-order QPT of interest here,
the previously-reported DMRG results from Ref. [92] employed a third-nearest-neighbour
truncation on the interactions in the Hamiltonian in Eq. (3.1). Given that the QMC
SSE algorithm developed in this thesis does not have the clear dimensionality inefficiencies
intrinsic to DMRG simulations, the exact value of the critical point reported in Ref. [92] will
not be the same critical point that the the SSE QMC algorithm will produce. Therefore,
the value of δ/Ω = 1.12 will be used as a near-critical point to facilitate finding a maximum
converged projector length 2M for the L× L lattices of interest.

Table 3.1: Converged projector lengths 2M for L× L lattices.

L 2M
4 104

10 4× 104

16 2× 105

The order parameter across this transition is the absolute value of the staggered mag-
netization,

|Ms| =

∣∣∣∣∣∣
L∑
i=1

L∑
j=1

(−1)(i+j)

(
ni,j −

1

2

)∣∣∣∣∣∣ , (3.39)

where ni,j is the Rydberg occupation at the spatial location (i, j). Therefore, by looking at
the value of |Ms| as a function of 2M , we may extract a suitably converged value of 2M .
Figs. 3.7-3.9 show the estimated 〈|Ms|〉 and its correlation time [109,110] as a function of
1/2M as measured on a the chosen L × L lattice sizes with δ/Ω = 1.12 and Rb = 1.2 for
three different cluster updates: multibranch (p = 0), line (p = 1), and a random choice
between multibranch and line (p = 0.5). It is evident from each system size that the
multibranch cluster update (p = 0) is less ergodic than the line update (p = 1), as the
correlation time using the line update only is approximately one order of magnitude less
in each case. As such, the remainder of the numerical results in this section will employ
the line update only. Finally, in the p = 0 subplots, convergence in 〈|Ms|〉/N for value of
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Figure 3.7: The absolute value of staggered magnetization density 〈|Ms|〉/N and its correla-
tion time τ|Ms| versus the inverse projector length 1/2M as measured on a N = 4×4 lattice
with δ/Ω = 1.12 and Rb = 1.2 for three different cluster updates: multibranch (p = 0),
line (p = 1.0), and a random choice between multibranch and line updates (p = 0.5). Each
point represents a culmination of three independent – different random seeds – SSE QMC
simulations. Per random seed, 2 × 105 consecutive measurements were taken after a 105

step equilibration phase, which was proceeded by a standard binning analysis to obtain
the plotted mean values and error bars of 〈|Ms|〉/N .

L is reached for the projector lengths given in Tab. 3.1. Therefore, these projector lengths
will be used for subsequent results. Similar plots for the QMC ground state energy density
〈Ĥ〉/N estimated using Eq. (3.38) can be found in App. B.

To qualitatively realize the disordered-to-checkerboard-order QPT in two spatial di-
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Figure 3.8: The absolute value of staggered magnetization density 〈|Ms|〉/N and its corre-
lation time τ|Ms| versus the inverse projector length 1/2M as measured on a N = 10× 10
lattice with δ/Ω = 1.12 and Rb = 1.2 for three different cluster updates: multibranch
(p = 0), line (p = 1.0), and a random choice between multibranch and line updates
(p = 0.5). Each point represents a culmination of three independent – different random
seeds – SSE QMC simulations. Per random seed, 2× 105 consecutive measurements were
taken after a 105 step equilibration phase, which was proceeded by a standard binning
analysis to obtain the plotted mean values and error bars of 〈|Ms|〉/N .

mensions, the absolute value of the staggered magnetization in Eq. 3.39 can be estimated
by the SSE QMC for a range of δ/Ω values. In doing so, we expect that |Ms| is zero in
the disordered phase and non-zero in the ordered phase and exhibits a relatively large in-
crease in value near the critical δ/Ω value. Fig. 3.10 shows the ground state energy density
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Figure 3.9: The absolute value of staggered magnetization density 〈|Ms|〉/N and its corre-
lation time τ|Ms| versus the inverse projector length 1/2M as measured on a N = 16× 16
lattice with δ/Ω = 1.12 and Rb = 1.2 for three different cluster updates: multibranch
(p = 0), line (p = 1.0), and a random choice between multibranch and line updates
(p = 0.5). Each point represents a culmination of three independent – different random
seeds – SSE QMC simulations. Per random seed, 2× 105 consecutive measurements were
taken after a 105 step equilibration phase, which was proceeded by a standard binning
analysis to obtain the plotted mean values and error bars of 〈|Ms|〉/N .

estimate 〈Ĥ〉/N (Eq. (3.38)), the absolute value of the staggered magnetization density
〈|Ms|〉/N , and the correlation time for the absolute value of the staggered magnetization
τ|Ms| versus δ/Ω. Indeed, the checkerboard QPT is qualitatively realized given the form
of 〈|Ms|〉/N across the given δ/Ω range. Not only this, but the corresponding correlation
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Table 3.2: Values of x used to make 2000×x consecutive measurements for the data plotted
in Fig. 3.10.

L x
4 50, 150 (δ/Ω ∈ [1.5, 1.8])
10 150, 500 (δ/Ω ∈ [1.2, 1.3])
16 500, 1000 (δ/Ω = 1.2)

times τ|Ms| also show a peak that grows in height with N . Although mostly qualitative,
the results presented here clearly show that the SSE QMC algorithm developed in Sec. 3.3
can accurately capture physical phenomena and that the ground state energy estimator
derived in Sec. 3.3.4 is accurate.
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Figure 3.10: The QMC ground state energy density 〈Ĥ〉/N , absolute value of the staggered
magnetization density 〈|Ms|〉/N , and the correlation time for the absolute value of the
staggered magnetization τ|Ms| versus δ/Ω for N = L×L lattices (L = 4, 10 and 16). Each
data point corresponds to a culmination of 15 independent – different random seeds – SSE
QMC simulations. Per random seed, 105 equilibration steps were performed, then 2000×x
consecutive measurements were taken, where the value of x is given in Tab. 3.2. Standard
binning analysis techniques were employed to estimate the plotted mean value and error
bars, which are smaller than the plot markers.
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Chapter 4

Estimating the second Renyi entropy
for Rydberg atoms

4.1 The Replica trick and SWAP operator

A central part of condensed matter physics is realizing and observing different phases of
matter. A very broad class of phase transitions is a disordered-to-ordered transition, like
the disordered-to-checkerboard-order QPT shown for L × L lattices of Rydberg atoms in
Sec. 3.4. Second-order transitions like this one have a signature in the divergence of a length
scale ξ, the correlation length, near the critical point. Another quantity that pertains to
correlations that provides an augmented perspective of what mediates the properties of
ground states at the critical point is the entanglement entropy. Like the correlation length
ξ, the entanglement entropy between two parts of a system will also undergo significant
changes around the critical point, but it can also shed light on interesting phenomena like
many-body localization [111]. Therefore, its evaluation in studying QPTs is crucial. In
this section, the well-known replica trick will be outlined for two numerical methods [112].

Given a quantum state represented by a density operator ρ̂, one may always represent
its matrix elements in a bipartite basis |σA,σĀ〉, where the subscripts A and Ā represent
the two complementary physical regions for which the bipartition is defined. The quantum
state describing only one part of the bipartition, say region A, is called the reduced den-
sity operator, and is calculated via summing over the complementary degrees of freedom.
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Assuming the original state ρ̂ is unnormalized,

ρ̂A =
1

Z
TrĀ ρ̂ =

1

Z

∑
{σĀ}

〈σĀ|ρ̂|σĀ〉 , (4.1)

where Z = Tr ρ̂A = Tr ρ̂.

The second Renyi entropy,
S2 = − ln Tr ρ̂2

A, (4.2)

is a basis-independent quantity that measures the amount of entanglement for ground
states (pure states) between the two regions A and Ā. For example, a system is said to
be maximally entangled if when the complementary degrees of freedom are summed over,
the resulting state ρ̂A is maximally mixed: ρ̂A = 1

|DA|I, where |DA| is the full Hilbert space
size of the bipartition A. The second Renyi entropy cannot be calculated traditionally like
physical observables and is therefore seemingly out of reach for QMC methods where a
prescription for evaluating matrix elements of ρ̂2

A is absent. Luckily, methods have been
devised to facilitate its estimation akin to traditional physical observables with the cost of
modifying the QMC algorithm itself [113–115].

Given a bipartition A/Ā, the trace over the square of the reduced density matrix can
be written as

Tr ρ̂2
A =

∑
{σ1,A}

〈
σ1,A

∣∣ρ̂2
A

∣∣σ1,A

〉(∑
{σ1,A}

〈
σ1,A

∣∣ρ̂A∣∣σ1,A

〉)2

=

∑
{σ1,A}

∑
{σ2,A}

〈
σ1,A

∣∣ρ̂A∣∣σ2,A

〉 〈
σ2,A

∣∣ρ̂A∣∣σ1,A

〉∑
{σ1,A}

∑
{σ2,A}

〈
σ1,A

∣∣ρ̂A∣∣σ1,A

〉 〈
σ2,A

∣∣ρ̂A∣∣σ2,A

〉
=
Z[2, A]

Z[2, ∅] , (4.3)

where Z[2, A] is commonly referred to as a replicated partition function. The denominator,
Z[2, ∅] = Z2, is the square of the usual quantum partition function, which is feasibly
importance sampled by QMC algorithms. However, an estimation scheme for Z[2, A] is
still not apparent.

Let us now attempt to shape Z[2, A] into something that resembles an expectation
value of an operator. Starting from the previous line leading to Eq. (4.3),

Z[2, A] =
∑
{σ1,A}

∑
{σ2,A}

〈
σ1,A

∣∣ρ̂A∣∣σ2,A

〉 〈
σ2,A

∣∣ρ̂A∣∣σ1,A

〉
,
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using Eq. (4.1) with Z = 1,

=
∑
{σ1,A}
{σ2,A}

∑
{σ1,Ā}
{σ2,Ā}

〈
σ1,A,σ1,Ā

∣∣ρ̂∣∣σ2,A,σ1,Ā

〉 〈
σ2,A,σ2,Ā

∣∣ρ̂∣∣σ1,A,σ2,Ā

〉
. (4.4)

Let us also make the assumption that ρ̂ describes a pure state |ψ〉1,

ρ̂ = |ψ〉〈ψ| .

Now,

Z[2, A] =
∑
{σ1,A}
{σ2,A}

∑
{σ1,Ā}
{σ2,Ā}

〈
σ1,A,σ1,Ā

∣∣ψ〉 〈ψ∣∣σ2,A,σ1,Ā

〉 〈
σ2,A,σ2,Ā

∣∣ψ〉 〈ψ∣∣σ1,A,σ2,Ā

〉

=
∑
{σ1,A}
{σ2,A}

∑
{σ1,Ā}
{σ2,Ā}

〈
ψ
∣∣σ2,A,σ1,Ā

〉 〈
ψ
∣∣σ1,A,σ2,Ā

〉 〈
σ1,A,σ1,Ā

∣∣ψ〉 〈σ2,A,σ2,Ā

∣∣ψ〉

= 〈ψ| ⊗ 〈ψ|

 ∑
{σ1,A}
{σ2,A}

∣∣σ2,A,σ1,Ā,σ1,A,σ2,Ā

〉〈
σ1,A,σ1,Ā,σ2,A,σ2,Ā

∣∣
 |ψ〉 ⊗ |ψ〉

= 〈ψ| ⊗ 〈ψ| SWAPA |ψ〉 ⊗ |ψ〉 , (4.5)

where the term in squared brackets is aptly termed the SWAP operator,

SWAPA =

 ∑
{σ1,A}
{σ2,A}

∣∣σ2,A,σ1,Ā,σ1,A,σ2,Ā

〉〈
σ1,A,σ1,Ā,σ2,A,σ2,Ā

∣∣
 , (4.6)

since the degrees of freedom in region A, σ1,A and σ2,A, swap places in the ket and bra
(highlighted in red). Notice that the ratio Eq. (4.3) simplifies to

Z[2, A]

Z[2, ∅] =
〈Ψ| SWAPA |Ψ〉

〈Ψ|Ψ〉 , (4.7)

1This is a valid assumption for the purpose of this thesis.

73



where |Ψ〉 = |ψ〉 ⊗ |ψ〉, which is of the form of a traditional observable. Of course, the
caveat to evaluating this ratio as a traditional observable is the requirement of two replicas
of the state |ψ〉, while also ensuring that the boundary conditions between replicas for
degrees of freedom within the region A are in accordance with Eq. (4.4). Specific examples
of estimating Eq. (4.7) are given in the next two sections.

4.1.1 Wavefunctions

Consider a wavefunction |ψ〉 that possesses no sign structure in a computational basis
{|σ〉}2. Given efficient means to draw a set of samples {σ} ∈ Γ from the distribution
p(σ) = | 〈σ|ψ〉 |2 = |ψ(σ)|2, one can estimate the ratio in Eq. (4.7) as

Z[2, A]

Z[2, ∅] =

∑
{σ1,A}
{σ2,A}

∑
{σ1,Ā}
{σ2,Ā}

〈
ψ
∣∣σ2,A,σ1,Ā

〉 〈
ψ
∣∣σ1,A,σ2,Ā

〉 〈
σ1,A,σ1,Ā

∣∣ψ〉 〈σ2,A,σ2,Ā

∣∣ψ〉∑
{σ1,A}
{σ2,A}

∑
{σ1,Ā}
{σ2,Ā}

〈
ψ
∣∣σ1,A,σ1,Ā

〉 〈
ψ
∣∣σ1,A,σ1,Ā

〉 〈
σ2,A,σ2,Ā

∣∣ψ〉 〈σ2,A,σ2,Ā

∣∣ψ〉

=

∑
{σ1,A}
{σ2,A}

∑
{σ1,Ā}
{σ2,Ā}

ψ(σ2,A,σ1,Ā)ψ(σ1,A,σ2,Ā)ψ(σ1,A,σ1,Ā)ψ(σ2,A,σ2,Ā)∑
{σ1,A}
{σ2,A}

∑
{σ1,Ā}
{σ2,Ā}

ψ(σ1,A,σ1,Ā)ψ(σ1,A,σ1,Ā)ψ(σ2,A,σ2,Ā)ψ(σ2,A,σ2,Ā)

=

∑
{σ1,A}
{σ2,A}

∑
{σ1,Ā}
{σ2,Ā}

Ψ(σ2,A,σ1,Ā,σ1,A,σ2,Ā)Ψ(σ1,A,σ1,Ā,σ2,A,σ2,Ā)∑
{σ1,A}
{σ2,A}

∑
{σ1,Ā}
{σ2,Ā}

Ψ(σ1,A,σ1,Ā,σ2,A,σ2,Ā)Ψ(σ1,A,σ1,Ā,σ2,A,σ2,Ā)
,

where the compact notation for wavefunction coefficients
〈
σ1,A,σ1,Ā

∣∣ψ〉 = ψ(σ1,A,σ1,Ā) is
used along with |Ψ〉 = |ψ〉 ⊗ |ψ〉 and Ψ(σ1,A,σ1,Ā,σ2,A,σ2,Ā) = ψ(σ1,A,σ1,Ā)ψ(σ2,A,σ2,Ā).
Since one sums over {σ1/2,A/Ā}, Ψ(σ1,A,σ1,Ā,σ2,A,σ2,Ā) plays the role of a probability
distribution. Therefore,

Z[2, A]

Z[2, ∅] =

〈
Ψ(σ2,A,σ1,Ā,σ1,A,σ2,Ā)

Ψ(σ1,A,σ1,Ā,σ2,A,σ2,Ā)

〉
Ψ(σ1,A,σ1,Ā,σ2,A,σ2,Ā)

≈
〈

Ψ(σ2,A,σ1,Ā,σ1,A,σ2,Ā)

Ψ(σ1,A,σ1,Ā,σ2,A,σ2,Ā)

〉
Γ

2That is, coefficients 〈σ|ψ〉 are all the same sign, modulo an arbitrary global phase. We may therefore
consider |ψ〉 to be positive-definite in this basis.
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=

〈
ψ(σ2,A,σ1,Ā)ψ(σ1,A,σ2,Ā)

ψ(σ1,A,σ1,Ā)ψ(σ2,A,σ2,Ā)

〉
Γ

(4.8)

where σ1/2 ∈ Γ. To summarize, in this scenario the ratio Eq. (4.7) is estimated via the
ratio of coefficients of the given positive-definite wavefunction |ψ〉. Crucially, |ψ〉 need not
be normalized to evaluate Eq. (4.8), as the normalization factors from the numerator and
denominator cancel each other. This will be vital for evaluating this ratio when ψ(σ) is
parameterized by an RBM, where calculating its normalization factor is still exponentially
unfavourable in the number of degrees of freedom (see Section 2.1).

4.1.2 Zero-temperature SSE

The prescription for estimating Eq. (4.7) in the zero-temperature SSE formalism is detailed
in Ref. [114]. However, given its complexity and application to the given SSE implementa-
tion for Rydberg atoms shown in Ch. 3, an overview of the theory is sensible. Nevertheless,
the reader is still encouraged to consult Ref. [114].

As was shown in Sec. 3.2, the (unnormalized) ground state |λ0〉 of a Hamiltonian Ĥ is
projected out of an arbitrary state via M applications of −Ĥ. After various simplifications,
M applications of −Ĥ translated into importance sampling matrix elements of elementary
lattice operators Ĥt,a (see Eq. (3.11)) in D + 1 dimensions in a computational basis {|α〉}
at every index in the +1 (imaginary time) dimension. A diagrammatic interpretation of
an SSE configuration is given in Fig. 3.1. However, how estimating Eq. (4.3) given SSE
configurations is not obvious.

Firstly, it will help to be able to diagrammatically visualize the “interchanging” mech-
anism in an SSE configuration space. Estimating the SWAP operator directly from a
wavefunction in Sec. 4.1.1 involved interchanging spin states in the region A from two
replicas of the given wavefunction (see Eq. (4.8)). The “interchanging” mechanism in the
SSE configuration space is precisely the same as for wavefunctions with the caveat being
that world lines of degrees of freedom in the region A are interchanged between replicas
at the middle of the projection (i.e. at the imaginary time index p = M). Consider the
second-last line leading up to Eq. (4.5) with conventional SSE variables,

Z[2, A] =
∑
{σ1,A}
{σ2,A}

∑
{σ1,Ā}
{σ2,Ā}

〈
λ

(1)
0

∣∣∣α2,A, α1,Ā

〉〈
λ

(2)
0

∣∣∣α1,A, α2,Ā

〉〈
α1,A, α1,Ā

∣∣∣λ(1)
0

〉〈
α2,A, α2,Ā

∣∣∣λ(2)
0

〉
,

where the superscipts 1 and 2 on λ0 distinguish the replicas since we require two independently-
run SSE simulations to obtain two independent copies of the ground state |λ0〉. Note that
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the ground state |λ0〉 will be obtained by the SSE propagation rule in Eq. (3.16) starting
from (p = 1) an arbitrary trial state |ψ〉: |λ0〉 ∝

∏M
p=1 Ĥtp,ap |ψ〉. Therefore, when one

reaches the middle (p = M) of the simulation cell, the first two terms in the summand for
the expression for Z[2, A] indicate that the states

∣∣α1,A

〉
and

∣∣α2,A

〉
propagated from the

left-hand side of their respective replicated simulation cells and swapped between replicas
and are then projected back out to the right-hand side of the complementary simulation
cell. This is diagrammatically shown in Fig. 4.1 for a projector length 2M = 6, N = 4
degrees of freedom, and a bipartition A = [1, 2] and Ā = [3, 4].

Figure 4.1: An example of the interchanging mechanism for calculating the SWAP operator
in the SSE formalism. Given the two replicas with M = 6, the green world lines in the
bipartition A = [1, 2] continue by switching to the complementary replica at M = 3,
whereas the world lines in Ā remain in the same replica.

It is at this point that the curious reader is advised to consult Ref. [114] – specifically,
Ch. 3 – to understand in detail why the following statements are necessary for evaluating
Eq. (4.3) in the SSE language. Instead of working in the conventional SSE configuration
space labelled by the operator sequence SM and basis states {|α〉}, it will be helpful to
work in a basis defined by a linked list of vertices. Specifically, the labels are:

• l – list of links: this list contains information on the legs of vertices that are linked/connected.
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• vA(l) – set of vertices: given a list of links l, many different vertex types whose legs
are linked are compatible with the same list of links. The superscript A denotes a
prescription, given two replicas, for how links are made at the middle of the simulation
cells (i.e. the swapping mechanism outlined in Fig. 4.1).

Given this, one can write

Z[2, A] =
∑
l

∑
vA(l)

Θ(vA(l)), (4.9)

where Θ(vA(l)) is a positive weight given to a configuration labelled by the list of links
l and set of vertices vA(l). The list of links is determined by the choice of off-diagonal
update. For instance, with a multibranch cluster update (see Sec. 3.3.2), the list of links
is a data structure that details how the legs in the corresponding multibranch cluster are
linked/connected. Given this list of links, the vertices vA(l) are simply all vertices that
have legs in the multibranch cluster. Finally, the weight Θ(vA(l)) is similar to Eq. (3.23),
but it is a product of all of all multibranch cluster weights W .

In all, the entity that requires evaluating is

Z[2, A]

Z[2, ∅] =

∑
l

∑
vA(l) Θ(vA(l))∑

l

∑
v∅(l) Θ(v∅(l))

=

〈∑
vA(l) Θ(vA(l))∑
v∅(l) Θ(v∅(l))

〉
∅
. (4.10)

Given that its evaluation depends on the off-diagonal update (required to determine the list
of links) and the vertex weights, Eq. (4.10) will heavily depend on the SSE implementation.
In the interest of capturing bipartite entanglement behaviour for Rydberg atoms using the
SSE implementation presented in Ch. 3, we will once again return to the transverse-field
Ising model with a longitudinal field (LTFIM) that was shown in Sec. 3.3.3. The LTFIM
Hamiltonian in Eq. (3.26) is qualitatively very similar to the Rydberg Hamiltonian in
Eq. (3.1), but provides a simpler and more tidy platform that can be used to extrapolate
properties of an algorithm that simulates the Rydberg Hamiltonian.

4.2 Important example: TFIM + longitudinal field

4.2.1 hz = 0

First, consider when the longitudinal field hz in Eq. (3.26) is turned off (i.e. just the TFIM
Hamiltonian). In this case,

〈↑|Ĥ−1,a|↓〉 = 〈↓|Ĥ−1,a|↑〉 = hx, (4.11a)
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〈↑|Ĥ1,a|↑〉 = 〈↓|Ĥ1,a|↓〉 = hx, (4.11b)

W1 ≡ 〈↑↑|Ĥ1,b|↑↑〉 = 2J, (4.11c)

W2 ≡ 〈↓↓|Ĥ1,b|↓↓〉 = 2J, (4.11d)

and

W3 ≡ 〈↓↑|Ĥ1,b|↓↑〉 = 0. (4.11e)

As was previously mentioned in Sec. 3.3.2, the multibranch update is best suited for off-
diagonal updates given this SSE implementation [96]. Given a multibranch cluster in this
SSE implementation, its weight is simply a function of the number of Ĥ1,a operators, na,

and Ĥ1,b operators, nb, contained in the cluster. Specifically,

WTFIM(na, nb) =
∏
na

hx
∏
nb

2J = 2nbhna
x J

nb . (4.12)

Not only this, but given the all-↓ / all-↑ symmetry present in Eq. (4.11), WTFIM(na, nb) =
W↑TFIM(na, nb) =W↓TFIM(na, nb).

Keeping this in mind, let us return to Eq. (4.10). Recall that given a list of links l that
defines the shape of the cluster in D + 1 dimensions, one sums over vertex configurations
v∅/A(l) that have the same list of links. The multibranch clusters are independent of each
other since they end on site operators Ĥ−1/1,a, which greatly facilitates summing over all
possible vertex configurations. Luckily, for a TFIM multibranch cluster, a list of links
prescribes two possible vertex configurations, an “all-↑” one and an “all-↓” one like the
green multibranch clusters in Fig. 3.2. Therefore, both sums over the vertex sets v∅/A(l)
run all possible combinations of each multibranch cluster being “all-↑” or “all-↓”. For
example, if there are three multibranch clusters each with an “all-↓” weight of W↓1−3, the
sum over all vertex sets simplifies to a product of binomials,∑

v(l)

Θ(v(l)) =W↓1W↓2W↓3 +W↓1W↓2W↑3 +W↓1W↑2W↓3 + · · ·+W↑1W↑2W↑3 (8 terms)

=
3∏
i=1

(
W↓i +W↑i

)
, (4.13)

However, in evaluating Eq. (4.10), one must also consider the topology of the simulation
cell (i.e. swapping world lines or not swapping world lines). The entity Z[2, ∅] describes
two completely independent SSE simulations cells where world lines of physical degrees of
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freedom stay in their respective replicas. Z[2, A], however, describes two SSE simulation
cells where world lines swap at the middle of the simulation (see Fig. 4.1). As such,
multibranch clusters that are formed in the ∅ topology will be different than those formed
in the A topology. Fig. 4.2 demonstrates this. That being said, as one can see in Fig. 4.2,
some multibranch clusters are independent of the choice of topology. In general, clusters
that do not cross the middle of the simulation cell and do not contain world lines that are
in the region A remain unchanged (e.g. the yellow and light blue clusters in Fig. 4.2). Such
clusters will be referred to as being in the bulk of the simulation cell.

As such, when estimating the ratio Eq. (4.10) given an instance of replicated SSE
simulation cells, the bulk cluster weights will cancel. Specifically, in Fig. 4.2 the orange,
red, pink, light blue, and yellow clusters will cancel. In general, representing these cancelled
cluster weights as Wbulk, Eq. (4.10) evaluates to

Z[2, A]

Z[2, ∅] =

〈∑
vA(l) Θ(vA(l))∑
v∅(l) Θ(v∅(l))

〉
∅

=

〈∏
CA∈non-bulk(W↓CA +W↑CA)

∏
CA∈bulk(W↓CA +W↑CA)∏

C∅∈non-bulk(W↓C∅ +W↑C∅)
∏
C∅∈bulk(W↓C∅ +W↑C∅)

〉
∅

=

〈∏
CA∈non-bulk(W↓CA +W↑CA)∏
C∅∈non-bulk(W↓C∅ +W↑C∅)

〉
∅

. (4.14)

Finally, employing Eq. (4.12) to evaluate each cluster weight and noting the previously-
mentioned all-↓ / all-↑ symmetry,

Z[2, A]

Z[2, ∅] =

〈∏
CA∈non-bulk 2W↓CA∏
C∅∈non-bulk 2W↓C∅

〉
∅

=

〈
2NCA−NC∅

∏
CA∈non-bulk(2J)nb,CAh

na,CA
x∏

C∅∈non-bulk(2J)nb,C∅h
na,C∅
x

〉
∅

=
〈

2NCA−NC∅
〉
∅
, (4.15)

where NCA/∅ is the total number of multibranch clusters that cross the middle of the
simulation cell given a particular topology. The cancellation made in the previous line was
made since the total number of operators Ĥ1,b and Ĥ−1/1,a involved in non-bulk clusters
must be conserved regardless of the choice of topology [104, 114]. To summarize, the
SWAP operator can be elegantly estimated for the TFIM SSE implementation by counting
non-bulk multibranch clusters.
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Figure 4.2: An example of two multibranch cluster topologies given a bipartition A = [1, 2]
and Ā = [3, 4]. The different highlighted regions represent different multibranch clusters.
Given an A topology, the corresponding world lines switch between replicas at the middle
of the simulation cell, whereas the same world lines in the ∅ topology remain in their
original replica.

4.2.2 hz 6= 0

When the longitudinal field is turned on, hz 6= 0, the negative implications on evaluating
Eq. (4.10) arrise from W1 6= W2 and W3 6= 0 in Eq. (3.28). However, the constant C in
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each of W1−3 can help with evaluating Eq. (4.10) efficiently for some values of J , hz, and
hx. When J > hz,b, C = J and

W1 ≡ 〈↑↑|Ĥ1,b|↑↑〉 = 2J + 2hz,b, (4.16a)

W2 ≡ 〈↓↓|Ĥ1,b|↓↓〉 = 2J − 2hz,b, (4.16b)

and

W3 ≡ 〈↓↑|Ĥ1,b|↓↑〉 = 〈↑↓|Ĥ1,b|↑↓〉 = 0, (4.16c)

which is very similar to Eq. (4.11) but with W1 6= W2. That being said, of the possible
set of vertices that may exist given a list of links defining multibranch clusters, the sum
over the set of vertices remains to be two terms: “all-↑” and “all-↓”. Not only this, but
Eq. (4.13) can still be used since multibranch clusters are independent, and clusters in the
bulk will still cancel.

Starting from Eq. (4.14),

Z[2, A]

Z[2, ∅] =

〈∏
CA∈non-bulk(W↓CA +W↑CA)∏
C∅∈non-bulk(W↓C∅ +W↑C∅)

〉
∅

=

〈∏
CA∈non-bulk(W

nb,CA
1 h

na,CA
x +W

nb,CA
2 h

na,CA
x )∏

C∅∈non-bulk(W
nb,C∅
1 h

na,C∅
x +W

nb,C∅
2 h

na,C∅
x )

〉
∅

=

〈∏
CA∈non-bulk h

na,CA
x (W

nb,CA
1 +W

nb,CA
2 )∏

C∅∈non-bulk h
na,C∅
x (W

nb,C∅
1 +W

nb,C∅
2 )

〉
∅

.

Noting again that the number of operators Ĥ1,b and Ĥ−1/1,a involved in non-bulk clusters
must be conserved regardless of the choice of topology,

Z[2, A]

Z[2, ∅] =

〈∏
CA∈non-bulk(W

nb,CA
1 +W

nb,CA
2 )∏

C∅∈non-bulk(W
nb,C∅
1 +W

nb,C∅
2 )

〉
∅

=

〈∏
CA∈non-bulkW

nb,CA
1 (1 + (W2/W1)nb,CA )∏

C∅∈non-bulkW
nb,C∅
1 (1 + (W2/W1)nb,C∅ )

〉
∅

=

〈∏
CA∈non-bulk(1 + (W2/W1)nb,CA )∏
C∅∈non-bulk(1 + (W2/W1)nb,C∅ )

〉
∅
. (4.17)
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Although not quite as elegant as Eq. (4.15), Eq. (4.17) is still compact and efficient.

On the contrary, when hz,b > J , C = 2hz,b − J and

W1 ≡ 〈↑↑|Ĥ1,b|↑↑〉 = 4hz,b, (4.18a)

W2 ≡ 〈↓↓|Ĥ1,b|↓↓〉 = 0, (4.18b)

and

W3 ≡ 〈↓↑|Ĥ1,b|↓↑〉 = 〈↑↓|Ĥ1,b|↑↓〉 = 2(hz,b − J). (4.18c)

In this case, the possible set of vertices that may exist given a list of links defining multi-
branch clusters is not a sum over two terms (“all-↑” and “all-↓”) as before. The possible
sets of vertices will be such that no two adjacent – in space – spins in the cluster can be
both in the ↓ state given that W2 = 0. If NC world lines are in a multibranch cluster C,
there will be 2NC − x number of vertex configurations, where x is the number of configura-
tions where two adjacent spins are down in the ↓ state. Fig. 4.3 shows 2NC − x versus NC.
Clearly, the required sum over 2NC − x terms does not scale favourably with the spatial
extent of the multibranch cluster, therefore making estimating Eq. (4.10) a non-scalable
task.

2 4 6 8 10 12

NC

101

102

2NC − x

Figure 4.3: The number of possible vertex configurations, 2NC−x, versus the spatial extent
of the multibranch cluster NC when hz,b > J .
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4.2.3 Relation to the Rydberg SSE QMC

Given the similarity between the Rydberg and LTFIM Hamiltonians and their correspond-
ing SSE implementations, the viability of being able to efficiently estimate Eq. (4.10) no
matter the value of the Hamiltonian parameters seems to be out of reach. To make matters
worse for the Rydberg SSE implementation, there exist cases where all weights W

(1−4)
ij in

Eq. (3.19) are non-zero. This results in having to sum over an exponentially-scaling 2NC

terms.

Throughout this entire discussion, however, we’ve left out the newly-developed line
clusters in favour of multibranch clusters. However, line clusters are not independent from
other line clusters. If one line cluster has a particular vertex configuration given a list
of links, its weight will depend on other line clusters near it. To summarize, implement-
ing an algorithm that calculates Eq. (4.10) for the Rydberg SSE outlined in Ch. 3 is an
algorithmically and computationally challenging task. Experimentally, the entanglement
entropy can be measured at the cost of highly non-trivial and hardware-specific proto-
cols [22, 32, 116, 117]. To get around these non-trivialities, consider the SWAP operator
given a compact wavefunction representation (Eq. (4.8)). Although a QMC simulation or
an experiment does not provide us with a wavefunction, they can efficiently provide us
with measurements in a computational basis. In generating a dataset comprised of such
measurements, one could overcome the challenges of estimating the SWAP operator in the
SSE formalism by framing the problem in a wavefunction representation: train a neural
network, like an RBM (Sec. 2.1) or an RNN (Sec. 2.2), estimate the SWAP operator using
Eq. (4.8), then estimate the second Renyi entropy as

S2 = − ln〈SWAP〉, (4.19)

similarily to what was done in Ref. [32].

Instead of going through the hassle of training a neural network on QMC-generated
data to obtain a parameterized wavefunction representation like in Eq. (1.8b), one may
instead propose the use of a frequency distribution (FD),

pFD(σ) =
1

|D|
∑
σ′∈D

δ(σ − σ′). (4.20)

However, Torlai et al. in Ref. [32] showed that the fidelity between the FD wavefunction
ψFD(σ) =

√
pFD(σ) and the target state decays exponentially with system size, therefore

rendering the use of FD wavefunctions a moot point.
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4.3 Second Renyi entropy reconstruction from Ryd-

berg SSE QMC data

The L×L systems of interest in Sec. 3.4 will again be the focus here. In generating training
datasets comprising of Rydberg occupation measurements of the N = L × L sites from
the SSE QMC algorithm in Sec. 3.3, we must ensure that each sample is independent and
uncorrelated. Given that the absolute value of the staggered magnetization |Ms| across
the checkerboard transition at Rb = 1.2 characterizes the physics at hand, it is reasonable
to assume that its correlation time τ|Ms| dictates the Markov time separation required for
Rydberg occupation samples to be uncorrelated. The last requirement to perform quantum
state reconstruction like in Secs. 2.4.2 and 2.5.2 is the stoquasticity of the Hamiltonian in
Eq. (3.1). The trivial sign cure to Eq. (3.1) is given in Eq. (3.5), which satisfies the
stoquasticity requirement. Therefore, Rydberg occupation measurements (n1, n2, · · · , nN)
suffice.

The data generation scheme that was employed here was as follows. Using the corre-
lation times in Fig. 3.10 as a guide, samples from the SSE QMC algorithm were drawn at
specific Markov time intervals. With 15 different random seeds, each random seed gener-
ated 2000 Rydberg occupation samples, culminating in |D| = 3 × 105 measurements for
each δ/Ω value. The hyperparameter choices used to train the RBMs and RNNs on the
QMC-generated Rydberg occupation measurement datasets D were guided by the results
in Secs. 2.4.2 and 2.5.2. However, given the two-dimensional architecture, we instead use
the 2D-RNN recurrent cell given in Eq. (2.18). The hyperparameter choices for both RBMs
and RNNs are summarized in Tabs. 4.2 and 4.3. Again, for a fair comparison between both
generative models, both the RBM and RNN hidden unit values nh were chosen such that
the total number of tunable parameters was approximately the same. All nh values used
are given in Tab. 4.1.

Each RBM and RNN was trained for 2× 105 epochs and then 105 Rydberg occupation
measurements were drawn to calculate the energy E, the absolute value of the staggered
magnetization |Ms|, and the second Renyi entropy S2 using Eq. (4.19). The bipartition
scheme A and Ā that was used to calculate S2 was to split the square L×L lattices directly
in half. Although the specific values of the reconstructed S2 from either generative model
is not of interest across the transition, the goal of these results is to offer some perspective
on 1) using this method for measuring Renyi entropies as opposed to experimentally or
variationally (i.e. using variational methods like variational Monte Carlo or DMRG), and
2) what can be extrapolated from comparisons on using RBMs or RNNs in this setting.

Figs. 4.4 and 4.5 show the reconstructed energy density E/N , absolute value of the stag-
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Table 4.1: RBM and RNN hidden unit values nh used for training on L × L Rydberg
occupation data.

L RBM nh (# of parameters) RNN nh (# of parameters)
119 (2039) 30 (2042)

4 293 (4997) 48 (4994)
588 (10,012) 69 (10,076)

19 (2019) 30 (2042)
10 49 (5049) 48 (4994)

99 (10,099) 69 (10,076)

Table 4.2: Hyperparameters used for training RBMs on L × L Rydberg data (L = 4 and
10).

Hyperparameter Value / Type
Optimizer SGD

Learning rate 0.001× 0.9999t

Positive batch size 100
Negative batch size 200

k CDk steps 10
Hidden units See Tab. 4.1

Table 4.3: Hyperparameters used for training RNNs on L × L Rydberg data (L = 4 and
10).

Hyperparameter Value / Type
Loss function Cross Entropy

Optimizer SGD
RNN recurrent cell 2D (Eq. 2.18)

Learning rate 0.001
Batch size 100

Hidden units See Tab. 4.1
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Figure 4.4: The RBM (orange) and RNN (purple) reconstructed energy density E/N , ab-
solute value of the staggered magnetization density |Ms|/N , and second Renyi entropy S2

observables across the checkerboard transition at Rb = 1.2 for an N = 4 × 4 lattice. The
black dashed line in the E/N and |Ms|/N subplots is the corresponding observable as cal-
culated from the QMC simulation that generated the training datasets D. Three different
hidden unit values nh for the RBM and RNN were used to reconstruct the aforementioned
observables. Error bars are smaller than the line widths.

gered magnetization density |Ms|/N , and second Renyi entropy S2 across the checkerboard
transition at Rb = 1.2 for L = 4 and 10. For both system sizes and all values of nh, the
RNN’s reconstructed |Ms| is well below that of the QMC’s in the ordered phase, whereas
the RBM’s reconstructed |Ms| is nearly identical to the QMC’s across the entire range of
δ/Ω values. However, these observations do not perfectly carry over to the reconstructed
energy. The RNN’s reconstructed energy density steers away from the QMC value in the
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Figure 4.5: The RBM (orange) and RNN (purple) reconstructed energy density E/N , ab-
solute value of the staggered magnetization density |Ms|/N , and second Renyi entropy S2

observables across the checkerboard transition at Rb = 1.2 for an N = 10× 10 lattice. The
black dashed line in the E/N and |Ms|/N subplots is the corresponding observable as cal-
culated from the QMC simulation that generated the training datasets D. Three different
hidden unit values nh for the RBM and RNN were used to reconstruct the aforementioned
observables. Error bars are smaller than the line widths.

ordered phase like with the reconstructed |Ms|, but the RBM’s reconstructed energy for
the L = 10 system is above the QMC energy throughout the entire δ/Ω range. In general,
for this transition, accurately reconstructed order parameters |Ms| do not translate into
accurately reconstructed energies. Moreover, for the hyperparameters in Tab. 4.2 and 4.3,
increasing the number of hidden units nh in hopes of increasing the reconstruction accuracy
has little to no effect on the reconstructed |Ms| and energy; a saturation point is reached
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at the smallest nh value employed here.

More striking differences between the RBM and RNN can be seen in their respective
reconstructed second Renyi entropies. For L = 4, we again see that both generative
models have reached a saturation point with the smallest value of nh, as there are no
glaring qualitative differences between the reconstructed S2 across the δ/Ω range for the
given values of nh. However, for L = 10, increasing the value of nh in the RBM leads to
unpredictable volatility across the phase transition.3 Comparatively, increasing the RNN’s
number of hidden units seems to smoothen the reconstructed S2 in the ordered phase. In
all, the discrepancy between accurate reconstruction with some observables and inaccurate
reconstruction with others is apparent for both generative models across this transition,
which all but complicates the general conclusions that can be made with respect to the
trainability and expressivity of the RBM and RNN.

Regarding the actual accuracies of the second Renyi entropy reconstructions, there are
no exact values to compare to at the time of writing. However, Samajdar et al. in Ref. [92]
reported DMRG results on the bipartite second Renyi entropy for square lattices on a
cylinder. Although on a different lattice and finite-size effects must be taken into consid-
eration, the disordered-checkerboard phase transition reported in Ref. [92] demonstrated
a peak in S2 at the critical point that dropped sharply in the ordered phase. Although
the range of δ/Ω values used here is a small window, it does appear that the reconstructed
values of S2 reported here start to decrease well into the ordered phase.

3In fact, one cannot say anything regarding the presence of a phase transition from simply looking at
the RBM’s reconstructed second Renyi entropy for L = 10.
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Chapter 5

Conclusions

5.1 Summary

In Ch. 2 of this thesis, the underlying theory behind two prominent generative models, the
RBM and RNN, was outlined. Comparisons were then made between both of these gen-
erative models using physically-motivated quantum state reconstruction tasks for ground
states of stoquastic – or approximately-stoquastic Hamiltonians – models: the XY model
and nanomolecular assemblies of endofullerenes. In both cases, determining RBM hy-
perparameters that yielded stability during the training process and, ultimately, accurate
reconstruction of relevant observables was difficult compared to determining RNN hyper-
parameters that provided the aforementioned characteristics. Not only this, but the RNN’s
ability to learn discrete symmetries underlying each model’s ground state as compared to
the RBM was highlighted. Lastly, the correlation times intrinsic to sampling the RBM as
compared to autoregressive sampling in RNNs all but confirms the RNNs advantage over
RBMs for symmetry-laden quantum state reconstruction tasks that are experimentally
relevant.

Impelled by the inclination towards a reconstruction task that is relevant to one of
today’s quantum hardware juggernauts – Rydberg atoms – while noting that synthetic
measurement data might still be required as an intermediary outlet, a ground state pro-
jector SSE QMC algorithm for simulating Rydberg atom arrays was developed in Ch. 3.
Notably, a derivation was given for a ground state energy estimator applicable to SSE QMC
algorithms of the same flavour as the one developed in this thesis. To assess the algorithm’s
performance, the known disordered-checkerboard transition in two spatial dimensions on
L× L lattices was qualitatively confirmed for system sizes up to N = 16× 16.

89



The energy estimator derivation in Sec. 3.3.4 showcased how non-trivial certain off-
diagonal estimators can be to formulate in the language of a given QMC flavour. However,
feasibly extracting estimates for some off-diagonal observables is vital to the usefulness
of any algorithm. Although not a traditional observable, the entanglement entropy is a
quantity that is highly sought after due to the signatures it provides for certain physi-
cal phenomena. By using the well-known replica trick [112], the second Renyi entropy
can be estimated in the ground state SSE QMC formalism. However, for the SSE QMC
algorithm developed in this thesis for Rydberg atoms, traditional second Renyi entropy es-
timations possess an intrinsic curse of dimensionality. However, given access to a compact
wavefunction representation, estimating the second Renyi entropy is more feasible.

Guided by the results in Ch. 2 and Ch. 3, RNNs and RBMs were trained on QMC-
generated datasets in Ch. 4 to reconstruct the Rydberg energy, absolute value of the
staggered magnetization, and second Renyi entropy for L×L lattices up to L = 10 across
the disordered-checkerboard transition. Interestingly, the resulting reconstruction accuracy
from the RBMs and RNNs varied depending on the observable. For instance, the RNN’s
reconstructed staggered magnetization was well off of the QMC-calculated value in the
ordered phase compared to the RBM, but the reconstructed second Renyi entropy was
without question more stable and indicative of the physics involved in the disordered-
checkerboard transition. Therefore, the RBMs and RNNs trained in Ch. 4 seemed to
be biased towards learning different aspects of the physics at hand, be they related to
entanglement or the order parameter.

5.2 Future work

A theme pervading the results presented in Ch. 2 was that the RBMs trained were un-
stable even after performing a modest manual hyperparameter search compared to RNNs.
Cumbersome manual labour in the preprocessing stages of research alone is enough of a
deterrent to most, which makes RNNs all the more appealing when put next to RBMs.
That being said, making definitive statements regarding comparisons between RNN and
RBM trainability and expressivity for quantum state reconstruction tasks still requires
more empirical and theoretical work.

The SSE QMC algorithm developed for Rydberg atoms displayed promising results for
the disordered-checkerboard transition in two spatial dimensions at Rb = 1.2. However,
the amount of realizable phenomena contained in ground states of Rydberg atom arrays
is staggering [85–90, 118, 119]. In this spirit, the QMC algorithm developed in this thesis
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should be utilized for rigorous finite-size scaling studies to add to the growing amount of
DMRG and variational Monte Carlo work in the literature [91,92,118,120,121].

Although variational methods are much different in their construction compared to
quantum state reconstruction, the results for training generative models on QMC-generated
Rydberg occupation data presented in this thesis demonstrate the inherent bias present
in assuming a representational form of the target ground state wavefunction. In this case,
RBMs learned the order parameter of the relevant transition much better, whereas RNNs
seemed to learn the entanglement. The SSE QMC algorithm presented in this thesis
is an exact representation of the problem at hand with the catch being the presence of
autocorrelation times. Hopefully, this algorithm will offer a much-needed perspective.

The hybrid approach of using neural networks trained on QMC-generated data as medi-
ums for estimating non-trivial quantities in the given QMC flavour must be compared to
other methods wherein those quantities are feasibly measured. Arguably, variational meth-
ods require less heavy lifting than the aforementioned hybrid approach in that a single
optimization routine takes place in favour of a full QMC simulation and then an opti-
mization routine. The hybrid approach is founded in an exact representation in that the
biasedly represented generative model is trained on an exact representational form. That
being said, both the hybrid approach and variational methods possess elements of bias as
evident in Sec. 4.3 and therefore should be fervently compared.
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Appendix A

NMAs of Endofullerenes: Ground
state wavefunction sign structure

A.1 Position operator matrix elements

The matrix elements of the dipole-dipole operator in the free-rotor basis must be calculated
by evaluating the matrix elements of the position operators,

〈
l′m′

∣∣x̂∣∣`m〉 =

∫ 1

−1

d(cos θ)

∫ 2π

0

dφY m′
l′ (θ, φ) sin θ cos θY m

l (θ, φ), (A.1a)

〈
l′m′

∣∣ŷ∣∣`m〉 =

∫ 1

−1

d(cos θ)

∫ 2π

0

dφY m′
l′ (θ, φ) sin θ sin θY m

l (θ, φ), (A.1b)

and 〈
l′m′

∣∣ẑ∣∣`m〉 =

∫ 1

−1

d(cos θ)

∫ 2π

0

dφY m′
l′ (θ, φ) cos θY m

l (θ, φ), (A.1c)

where the functions Y m
l (θ, φ) are the conventional spherical harmonic functions that define

an orthonormal basis via∫ 1

−1

d(cos θ)

∫ 2π

0

dθdφ sin θY m
l (θ, φ)Y m′

l′ (θ, φ) = δm,m′δ`,`′ . (A.2)
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Evaluating these integrals, one finds that the matrix elements of the position operators in
the free-rotor basis are,

〈
l′m′

∣∣x̂∣∣`m〉 =− 1

2
δm′,m+1δ`′,`+1

√
(`+m+ 1)(`+m+ 2)

(2`+ 1)(2`+ 3)

+
1

2
δm′,m+1δ`′,`−1

√
(`−m− 1)(`−m)

(2`− 1)(2`+ 1)

+
1

2
δm′,m−1δ`′,`+1

√
(`−m+ 1)(`−m+ 2)

(2`+ 1)(2`+ 3)

− 1

2
δm′,m−1δ`′,`−1

√
(`+m− 1)(`+m)

(2`− 1)(2`+ 1)
,

(A.3a)

〈
l′m′

∣∣ŷ∣∣`m〉 =− i

2
δm′,m+1δ`′,`+1

√
(`+m+ 1)(`+m+ 2)

(2`+ 1)(2`+ 3)

− i

2
δm′,m+1δ`′,`−1

√
(`−m− 1)(`−m)

(2`− 1)(2`+ 1)

+
i

2
δm′,m−1δ`′,`+1

√
(`−m+ 1)(`−m+ 2)

(2`+ 1)(2`+ 3)

− i

2
δm′,m−1δ`′,`−1

√
(`+m− 1)(`+m)

(2`− 1)(2`+ 1)
,

(A.3b)

and

〈
l′m′

∣∣ẑ∣∣`m〉 =δm′,mδ`′,`+1

√
(`−m+ 1)(`+m+ 1)

(2`+ 1)(2`+ 3)

+ δm′,mδ`′,`−1

√
(`−m)(`+m)

(2`− 1)(2`+ 1)
.

(A.3c)

A.2 Wavefunction sign structure

Consider a normalized state |ψ〉 whose coefficients in an orthonormal basis B = {|σ〉} are
real: 〈σ|ψ〉 ∈ R. In choosing a sign convention as “positive” when coefficients 〈σ|ψ〉 have
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the same sign as a “fixed” coefficient 〈σ∗|ψ〉, one can divide the basis B into two classes,

B+ ={|σ〉 ∈ B| 〈σ|ψ〉 〈σ∗|ψ〉 ≥ 0} (A.4a)

and

B− ={|σ〉 ∈ B| 〈σ|ψ〉 〈σ∗|ψ〉 < 0} (A.4b)

such that

B ={|σ〉} = B+ ∪ B−, (A.4c)

where the latter class of coefficients who are oppositely-signed as 〈σ∗|ψ〉 are aptly called
“negative.” We may also define projection operators

P̂± =
∑
|σ〉∈B±

|σ〉〈σ| , (A.5)

which allows us to quantify the amount of “positivity” and “negativity” in our wavefunction
coefficients as

τ± = 〈ψ|P̂±|ψ〉 =
∑
|σ〉∈B±

| 〈σ|ψ〉 |2. (A.6)

We may define a sign-corrected or rectified version of our state |ψ〉 as∣∣ψ||〉 =P̂+ |ψ〉 − P̂− |ψ〉 , (A.7a)

whose coefficients, by design, are “positive,”

〈n|ψ||〉 = sgn
(
〈σ∗|ψ〉

)∣∣〈σ|ψ〉∣∣. (A.7b)

Clearly, approximating |ψ〉 as
∣∣ψ||〉 will become better and better as τ− → 0. The overlap

of the rectified state
∣∣ψ||〉 with our original state |ψ〉 conveniently quantifies the error of

such an approximation,〈
ψ||
∣∣ψ〉 = 〈ψ|

(
P̂+ |ψ〉 − P̂− |ψ〉

)
= 1− 2τ−. (A.8)

What can be said about calculating observables? For instance, given an observable Ô, we
wish to determine the error induced by making a rectified approximation

ε =
〈
ψ||
∣∣Ô∣∣ψ||〉− 〈ψ|Ô|ψ〉 . (A.9)
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Using Eq. (A.7a) and noting that P̂+ + P̂− = I by construction,

ε =
(
〈ψ| P̂+ − 〈ψ| P̂−

)
Ô
(
P̂+ |ψ〉 − P̂− |ψ〉

)
− 〈ψ|Ô|ψ〉

= 〈ψ|P̂+ÔP̂+|ψ〉 − 〈ψ|P̂−ÔP̂+|ψ〉 − 〈ψ|P̂+ÔP̂−|ψ〉+ 〈ψ|P̂−ÔP̂−|ψ〉 − 〈ψ|Ô|ψ〉

= 〈ψ|
[
P̂+Ô

(
I− P̂−

)
− P̂−ÔP̂+ − P̂+ÔP̂− + P̂−Ô

(
I− P̂+

)
− Ô

]
|ψ〉

= 〈ψ|
[
P̂+Ô − P̂+ÔP̂− − P̂−ÔP̂+ − P̂+ÔP̂− + P̂−Ô − P̂−ÔP̂+ − Ô

]
|ψ〉

= 〈ψ|
[(
P̂+ + P̂−

)
Ô − Ô + P̂+ÔP̂− − P̂−ÔP̂+ − P̂+ÔP̂− − P̂−ÔP̂+

]
|ψ〉

=− 2 〈ψ|
(
P̂+ÔP̂− + P̂−ÔP̂+

)
|ψ〉 ,

and using the property of hermitianity,

=− 2
[
〈ψ|P̂+ÔP̂−|ψ〉+ 〈ψ|P̂+ÔP̂−|ψ〉∗

]
=− 4Re 〈ψ|P̂+ÔP̂−|ψ〉 . (A.10)

Now, consider when Ô = Ĥ and |ψ〉 = |λ0〉, the ground state of the Hamiltonian Ĥ.
Eq. (A.10) becomes

ε =− 4Re 〈λ0|P̂+ĤP̂−|λ0〉
=− 4Re 〈λ0|P̂−Ĥ

(
I− P̂−

)
|λ0〉

=− 4Re
[
〈λ0|P̂−Ĥ|λ0〉 − 〈λ0|P̂−ĤP̂−|λ0〉

]
=− 4Re

[
E0 〈λ0|P̂−|λ0〉 − 〈λ0|P̂−ĤP̂−|λ0〉

]
=− 4E0τ

− + 4 〈λ0|P̂−ĤP̂−|λ0〉 . (A.11)

For the model Hamiltonian describing NMAs of endofullerenes in Eq. (2.34), we can analyze
how ε and τ− depend on the Hamiltonian parameter R and the truncation `max for exactly-
diagonalizable system sizes. Fig. A.1 and Fig. A.2 show how ε/∆E1 and τ− depend on
the truncation `max and R, respectively. Here, ∆E1 is the energy difference between the
ground state and the first excited state. Fig. A.1 demonstrates that the values of ε/∆E1

and τ− are sufficiently small and converged at `max = 3. Moreover, the peaks in Fig. A.2
clearly drop in height as N is increased, and the values of ε/∆E1 and τ− diminish quickly
when R ≥ 1.0. Thus, for the chosen values of R and N in Sec. 2.5, the rectified state
approximation is robust.
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Figure A.1: The convergence of the rectified state error measures τ− (top pane) and ε/∆E1

(bottom pane) with the truncation `max for a linear system of N = 6 endofullerenes for
several different R values. All calculations here were performed with exact diagonalization.
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Figure A.2: The convergence of the rectified state error measures τ− (top pane) and ε/∆E1

(bottom pane) with R for linear systems of N = 3 to 6 endofullerenes using `max = 5. All
calculations here were performed with exact diagonalization.
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Appendix B

Extra plots from Sec. 3.4
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Figure B.1: The QMC ground state energy density 〈Ĥ〉/N and the correlation time for
the number of Ĥ1,a operators in the operator sequence SM versus the inverse projector
length 1/2M as measured on a N = 4 × 4 lattice with δ/Ω = 1.12 and Rb = 1.2 for
three different cluster updates: multibranch (p = 0), line (p = 1.0), and a random choice
between multibranch and line updates (p = 0.5). Each point represents a culmination of
three independent – different random seeds – SSE QMC simulations. Per random seed,
2 × 105 consecutive measurements were taken after a 105 step equilibration phase, which
was proceeded by a jackknife binning analysis to obtain the plotted mean values and error
bars of 〈Ĥ〉/N .
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Figure B.2: The QMC ground state energy density 〈Ĥ〉/N and the correlation time for
the number of Ĥ1,a operators in the operator sequence SM versus the inverse projector
length 1/2M as measured on a N = 10 × 10 lattice with δ/Ω = 1.12 and Rb = 1.2 for
three different cluster updates: multibranch (p = 0), line (p = 1.0), and a random choice
between multibranch and line updates (p = 0.5). Each point represents a culmination of
three independent – different random seeds – SSE QMC simulations. Per random seed,
2 × 105 consecutive measurements were taken after a 105 step equilibration phase, which
was proceeded by a jackknife binning analysis to obtain the plotted mean values and error
bars of 〈Ĥ〉/N .
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Figure B.3: The QMC ground state energy density 〈Ĥ〉/N and the correlation time for
the number of Ĥ1,a operators in the operator sequence SM versus the inverse projector
length 1/2M as measured on a N = 16 × 16 lattice with δ/Ω = 1.12 and Rb = 1.2 for
three different cluster updates: multibranch (p = 0), line (p = 1.0), and a random choice
between multibranch and line updates (p = 0.5). Each point represents a culmination of
three independent – different random seeds – SSE QMC simulations. Per random seed,
2 × 105 consecutive measurements were taken after a 105 step equilibration phase, which
was proceeded by a jackknife binning analysis to obtain the plotted mean values and error
bars of 〈Ĥ〉/N .
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