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xii Abstract

Diploma Thesis

Recommender Systems using Deep Reinforcement Learning

Vasileios Stergiou

Abstract

Recommender systems have become increasingly popular recently because they can address

the problem of information overload by suggesting items of interest to the users. A major

drawback of traditional recommender systems is that most of them ignore the dynamic and se-

quential nature of the recommendation problem. In this thesis we developed a distributed rec-

ommender system using Deep Reinforcement Learning based on the Asynchronous Advan-

tage Actor-Critic algorithm (A3C). First, we propose a method for modeling the recommen-

dation problem as an Markov Decision Process using Reinforcement Learning techniques.

Then, we present our implementation of A3C algorithm and describe the distributed training

procedure. Our system consists of two models: a set of local agents that are trained in parallel

by interacting with a local copy of the environment, and a global model whose parameters

each local agent updates at the end of a training episode. We have evaluated the algorithm

on a known dataset, using popular recommender systems metrics. We compare our experi-

mental results with other related work and show that in many cases it can achieve comparable

performance. Finally, we analyze the effect that the number of workers have on training time.
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Διπλωματική Εργασία

Συστήματα Συστάσεων με χρήση Βαθιάς Ενισχυτικής Μάθησης

Βασίλειος Στεργίου

Περίληψη

Τα Συστήματα Συστάσεων γίνονται όλο και πιο δημοφιλή επειδή μπορούν να αντιμετωπί-

σουν το πρόβλημα της υπερφόρτωσης πληροφοριών προτείνοντας στους χρήστες αντικεί-

μενα που τους ενδιαφέρουν. Ένα σημαντικό μειονέκτημα των παραδοσιακών Συστημάτων

Συστάσεων είναι ότι τα περισσότερα από αυτά αγνοούν τη δυναμική και διαδοχική φύση

του προβλήματος σύστασης αντικειμένων. Η παρούσα Διπλωματική Εργασία προτείνει ένα

κατανεμημένο σύστημα συστάσεων με χρήση Βαθιάς Ενισχυτικής Μάθησης με βάση τον

αλγόριθμο Asynchronous Advantage Actor-Critic (A3C). Πρώτα, προτείνουμε μια μέθοδο

για τη μοντελοποίηση του προβλήματος σύστασης ως Μαρκοβιανή διαδικασία αποφάσεων

χρησιμοποιώντας τεχνικές Ενισχυτικής Μάθησης. Στη συνέχεια, παρουσιάζουμε την υλο-

ποίηση του αλγορίθμου A3C και περιγράφουμε την κατανεμημένη διαδικασία εκπαίδευσης.

Το σύστημά μας αποτελείται από δύο μοντέλα: ένα σύνολο τοπικών πρακτόρων που εκ-

παιδεύονται παράλληλα αλληλεπιδρώντας με ένα τοπικό αντίγραφο του περιβάλλοντος και

ένα κεντρικό μοντέλο που κάθε τοπικός πράκτορας ενημερώνει τις παραμέτρους του στο

τέλος ενός επεισοδίου εκπαίδευσης. Αξιολογήσαμε τον αλγόριθμο σε ένα γνωστό σύνολο

δεδομένων χρησιμοποιώντας κοινές μετρικές συστάσεων. Συγκρίνουμε τα πειραματικά μας

αποτελέσματα με άλλες σχετικές εργασίες και δείχνουμε ότι, σε πολλές περιπτώσεις, μπο-

ρεί να πετύχει συγκρίσιμη απόδοση. Τέλος, αναλύουμε τον αντίκτυπο που ο αριθμός των

παράλληλων πρακτόρων έχει στο χρόνο εκπαίδευσης.
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Chapter 1

Introduction

In the recent past, the increasing importance of the Web as a medium has drastically

changed the way we live and experience our lives. A major catalyst in this regard is the rapid

expansion and diversity of information available on the Internet and the quick launch of e-

commerce. It is becoming increasingly easy to obtain anything (goods, books, movies, news,

etc.) over the Internet. A wide range of options may be very tempting for users, but it has

been proven that this makes them less motivated to buy a product later [4]. Recommender

Systems(RS) serve as a solution to this problem by assisting users find items that interest

them using their preferences or reviews of other items. Today, many of the largest companies,

such as Google, Amazon, Facebook, and Netflix, use RS in a broad-spectrum of applications,

including ads [5], product and news recommendation, and healthcare [6].

Numerous techniques have been preferred to solve the recommendation task, including

matrix factorization, collaborative filters, and content-based methods. Despite their success,

they suffer from some limitations. They model recommendation as a static process. In this

way, they fail to capture the dynamic and sequential nature of recommendation. In a realistic

scenario, it is very likely that users’ preferences will change over time or that current deci-

sions will influence their future actions. Therefore, studying the recommendation task as a

sequential dynamic procedure would be more realistic.

More recently, researchers have explored the potential of framing recommendations as

a Markov Decision Process (MDP) by leveraging RL agents to make recommendations. In

a sense, both RL and RS share some standard features. They aim to optimize some reward

concepts by interacting with an environment and performing actions that lead to updates of

internal states.

1



2 Chapter 1. Introduction

1.1 Objective

The goal of this thesis is twofold. First, it provides an approach tomodel the recommenda-

tion problem as an MDP by implementing an RL simulation environment. This environment

is designed to capture the dynamic interaction between user and item and adapt to user pref-

erences by encoding the dynamics of addiction and boredom in the rewards. Next, we apply

Deep Reinforcement Learning by implementing the Advantage Actor-Critic agents to make

recommendations. We evaluate the performance of the algorithms using both RL and RS

metrics such as average rewards and CTR, NDCG, respectively.

1.2 Methodology

A brief preview of the architecture of the recommendation system is presented in this

section. For any reinforcement learning-based technique, we must create an environment

based on the formulation of the problem. Because this environment is problem-specific, each

solution has its own custom environment tailored to the problem area. During the writing of

this thesis, the development method in Figure 1.1, inspired by [7] was followed.

Figure 1.1: Development method of the thesis

• Data understanding: to download and understand the structure of the dataset, in our

case MovieLens1M.

• Data preprocessing: to prepare data for feature extraction.

• Modeling: to design Reinforcement Learning simulation environment.

• Agent implementation: to implement the A3C agent.

• Evaluation: to run various experiments for the agents, and measure the performance.
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1.3 Thesis Structure

The following chapters of this thesis are structured as:

Chapter 2 provides some background information in the fields of recommender systems,

reinforcement learning, and neural networks critical to the scope of this thesis.

Chapter 3 describes the design and modifications we made to a Reinforcement Learn-

ing simulation environment suitable for recommendation problems. We also analyze other

existing environments and the challenges they present.

Chapter 4 introduces the implemented agents to mimic the distributed training scenario.

A software architecture overview is provided along with some implementation details.

Chapter 5 analyzes the results obtained from the various experiment held.

Finally, Chapter 6 concludes by outlining the findings drawn from our research and pro-

viding some directions for future work.





Chapter 2

Background

This chapter is intended to present the background material needed to understand the role

of Deep Reinforcement Learning in recommender systems. The models and mathematical

equations presented are mainly derived from the work in [8], [9], and [10]. The final section

reviews some of the most recent work connected to this thesis.

2.1 Recommender Systems

In life it often happens that we are confronted with circumstances in which we have to

make a decision without knowing the options beforehand. In such cases, it seems essential to

rely on the advice of experts.

In an effort to emulate this idea, the first paper on Recommender Systems [11] was pub-

lished and the term Collaborative Filtering was used. Their technique for computing recom-

mendations for a given user was to select items that were preferred by other users similar to

the target user. Later, this topic was intensively researched, which led to the extension of the

term to recommendation systems to take into account two facts. The system may collaborate

with items, not users. The system may suggest articles that might be of interest to users, not

just filter them.

As defined in [12], “a recommender system or a recommendation system is a subclass of

information filtering systems that attempt to predict the ‘rating’ or ‘preference’ a user would

give to an item, by optimizing a set of goals.” They do so by estimating ametric for interaction

between users and items. There are two primary ways to formulate metrics: by calculating

the score for a user-item interaction or by identifying the top-k highest ranked items for a

5



6 Chapter 2. Background

certain user. It is not necessary to learn the rating values in order to offer suggestions using

the later technique. These systems are referred to as Top-N recommendation systems. The

term ”item” applies to the suggestions made by the algorithm to users. A RS often special-

izes on one category of item that it recommends. It may be videos on an online platform,

travel destinations on a tour guide, medication to patients or links on a social network. Pre-

diction receivers are often customers of an online platform, but they can also be businesses

or even virtual agents. The mechanism by which ratings are captured influences the design

of recommender systems. Ratings are sometimes expressed on a scale that reflects the degree

of like or dislike for the object in question.

Figure 2.1: Real systems and the recommendations they make

Figure 2.1 summarizes some common applications of recommender systems and their

goals. Many of them belong to the field of e-commerce. The topic of recommender systems

increased applicability to online businesses is examined in [13]. Nevertheless, recommender

systems have evolved further the typical realm of product suggestions. To boost the growth

of their network, online social platforms usually recommend links to their customers. An

example of a social networking website is Facebook. While in an e-commerce scenario rec-

ommendation systems are utilized to directly increase profits by recommending items, in

these applications this is achieved in a less obvious way. Increasing the number of social

connections improves a user’s experience on a social network, so the network’s advertising

revenue largely depends on it.
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2.1.1 Recommender Systems Categorization

The following section discusses the main types of RS. Based on the input data, the models

of recommender systems can be labeled as follows: collaborative filtering (CF), content-

based systems, knowledge-based systems, and hybrid systems.

The collaborative filtering [14, 15] approach is based on collecting and analyzing user-

item interaction data. Let us take the example of a movie recommendation system, where

a movie is recommended to you because it received a high rating from a user with similar

interests as you. The interaction data (ratings) are presented in the form of a utility matrix

[16, Chapter 9]. Figure 2.2 provides an example of this concept. In the matrix representation,

users are arranged in rows and items in columns, and for each user-item combination, one

cell contains the value of the rating. The concept of collaborative filtering is to exploit the

correlation that often exists between users and items to predict the gaps in the utility matrix.

Depending on how the predictions are made, CF methods are described as Memory-Based

or Model-Based.

Figure 2.2: Example of a NxM Utility Matrix in a movie recommender system

Memory-Based methods the user’s neighborhood to provide recommendations. These

methods can be further divided into:

• User-Based CF [17]: ratings are predicted by like-minded users. First, a similarity func-

tion is applied among users and the k-nearest neighbors for each user are stored. We

can then recommend the most popular items among the k nearest neighbors.

• Item-Based CF [18]: predicts ratings by finding items that are similar to the ones that

the user has already gave positive feedback. We compute a similarity function between
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the user’s “favorite” item and all other items. We keep k-nearest neighbors that are not

observed by the user and recommend those items.

Figure 2.3: Illustration of User-Based CF method

Figure 2.4: Illustration of Item-Based CF method

Model-Based methods develop models for user ratings to provide recommendations. The

modeling process is performed using various ML methods such as decision trees, rule-based

models, and Bayesian methods. According to Su and Khoshgoftaar [19], this approach is

more powerful than memory-based systems and can also handle sparsity issues better.

In Content-Based systems [20, 21], user ratings and history are combined with item at-

tributes to make recommendations. Although the content-based methods give good recom-

mendations for new items, they are not able to perform well for new users because of the

absence of user’s historical ratings. Researchers refer to this problem as the Cold-Start [22].

When features are modeled according to user-specific constraints, such as filters or search

fields, etc., we speak of knowledge-based systems [23]. These systems are particularly use-

ful in cold-start environments where limited data is available. Depending on user input,



2.1.2 Evaluation 9

knowledge-based methods can be constraint-based [24] - the user specifies ranges and value

filters - or case-based [25, 26], i.e., the user specifies example items and the system finds

similar items.

To be more versatile, recommender systems require specific methods. It is interesting to

note that different types of systems can work for different types of data. If we consider a sce-

nario where different types of data are available, we can combine aspects of the above meth-

ods to achieve more effective results. These systems are referred to as hybrid systems[27].

Figure 2.5: Categories of different RS methods

2.1.2 Evaluation

In online evaluation methods [28] real users participate in the recommendation task. It is

often difficult to gain access to such systems, and even when it is, they are usually designed

for a specific environment. When evaluating algorithms, it may be useful to test multiple

data types to verify the generalizability of the proposed solution. All these reasons seem to

confirm that online systems are not ideal for benchmarking or research. On the other hand,

offline evaluation methods train and evaluate on historical data sets. Some notable recorded

datasets commonly used in RS research are: MovieLens, Netflix Prize Dataset, and Amazon
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Review Data. We must acknowledge that offline methods are the most popular techniques

because they are fast, inexpensive, and can often be evaluated on a variety of datasets.

One of the most widely used metrics for comparing algorithms is accuracy. In the most

general case, accuracy represents the percentage of user ratings correctly predicted by the

algorithm, similar to regression modeling. Although the Accuracy metric is one of the most

important aspects of evaluation, it occasionally provides an insufficient overview of the user

experience. Instead, other secondary goals such as coverage, novelty, serendipity, diversity

and robustness can provide useful insights into performance. Coverage is a measure of the

proportion of total items that the algorithm was able to recommend. Novelty measures the

probability that a recommender system makes recommendations that the user has not seen

before. The authors of [29] explain the concept of novelty. Serendipity quantifies the propor-

tion of unexpected recommendations that only an non-obvious recommender would provide.

Diversity measures how diverse the set of recommended items is. High diversity can ensure

better novelty and serendipity. Robustness and stability are measures of the system’s vulner-

ability to attack (e.g., fake reviews). A study that looks at the reasons and motives why some

users enter fake ratings can be found in [30]. Scalability is also an important metric as the

size of data sets increases. It measures the performance of recommender systems in terms of

training time, prediction time, and memory usage.

An standard measure of ranking quality commonly used in studies is the Normalized

Discounted Cumulative Gain (NDCG). In a recommendation scenario, the algorithm recom-

mends a set of items P = {p1, p2, ..., pN} to a user u. Items are associated with a relevance

score. Then, the cumulative gain(CG) comes of the graded sum of the relevance scores of all

the items in the list.

CGp =

p∑
i=1

reli

In Discounted Cumulative Gain, relevance scores are weighted by the logarithm of the posi-

tion at which they appear. This is done because DCG assumes that items with high relevance

scores are more useful if they appear early in the recommendation list. We can calculate DCG

as follows

DCGu(P ) =
N∑
i=1

relevanceu(pi)

log2(i+ 1)

It is then normalized by the overall relevance of each item by computing an ideal DCG, the
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IDCG.

NDCGu(P ) =
DCGu(P )

IDCGu(P )
(2.1)

The value of NDCG is in the range (0,1) and is often reported in research as NDCG@k. The

slate size k, see Chapter 3, is the number of items recommended to the user each time.

2.2 Deep Learning

Deep learning is a field of machine learning based on artificial neural networks(ANNs),

an architecture heavily influenced by human biology. Deep neural networks have excelled in

a number of areas and have been responsible for most of the significant recent advances in

machine learning andAI. They are critical components of some of themost exciting technolo-

gies, such as self-driving cars [31], image recognition systems [32] and speech recognition

systems [33]. One of the most remarkable aspects of ANNs that has led to their success is the

ability to train on vast volumes of data and extract features without supervision.

The building unit of ANNs is called an artificial neuron. A neuron expects an input vector

x = [x0, x1, x2, ..., xn] and computes the weighted sum of the inputs with respect to the

weights w. Then, a bias b is added to the weighted sum, which is used to shift the activation

function up or down. The output of the neuron is passed to the activation function f to output

the final result, that can be mathematically framed as:

yi = f(
∑
j

xjwi,j + bi)

Without the use of an activation function, the output will always be linear. Activation func-

tions introduce non-linearity in ANNs, which allows them to detect complicated underlying

patterns in data. Some famous activation functions are:

• Binary Step Function:

f(x) =

0 ifx < 0

1 ifx ≥ 0

• Sigmoid:

f(x) =
1

1 + e−x

• Hyperbolic Tangent:

f(x) =
ex − e−x

ex + e−x
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• Rectified Linear Unit(ReLu):

f(x) = max (0, x)

Feed-forward networks are the simplest form of ANN. Neurons are organized into layers,

which can be of three types: Input, Hidden, and Output. This structure is illustrated in Figure

2.7. As the name implies, information travels in only one direction, from the input layer to

the output layer. The term ”deep” refers to the number of hidden layers in its architecture. A

single-layer neural network is called a Perceptron, Figure 2.6.

Figure 2.6: Perceptron

Training is an iterative process in which neural network parameters (weights and biases)

are gradually adjusted with the goal of minimizing a loss function, which is often a summary

of errors during training. Once the loss is computed, the information is back propagated layer

by layer until each neuron receives a signal (gradient) describing its contribution to the loss.

This technique is called backpropagation. The optimizer is the module that tells us in which

direction to alter the parameters of the network and is usually based on gradient descent

optimization. Some improved variants of stochastic gradient descent, such as ADAM [34]

and AdaGrad [35], have also been proposed. The learning rate is the amount by which the

optimizer progresses in the direction of the gradient.
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Figure 2.7: Feed Forward Network

2.3 Reinforcement Learning

This section introduces Reinforcement Learning, following the formalism from one of the

most influential textbooks in the field by Suton et al [36]. In contrast to supervised learning,

where algorithms are trained using labeled data. Reinforcement Learning is a branch ML

algorithms where an agent interacts with an environment and learns the solution to a problem

by trial and error. The problem is simulated in a discrete timeline in an RL setting. At each

time step t, the agent is in a state st ∈ S and interacts with the environment by taking an

action at ∈ A(s). Then, the agent receives a new observation of the environment and moves

to a new state st + 1. In addition, the agent receives a reward signal indicating how good the

performed action was for that state.

This dynamic system can be formulated as a Markov Decision Process(MDP). The term

MDP derives from the fact that the system follows the Markov property, which states that

transitions are based only on the most recent state and action, without past historical data

influencing the choice. The MDP is a 5-tupleM = {S,A,R, P, γ} where:

• S is a set of all the states, called state space

• A a set of all the available actions, called action space

• P a set of state transition probabilities, describing the probability to update to a state
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Figure 2.8: Agent-environment interaction loop

s′ from a state s, under an action a

• R a reward signal obtained from transition from state s to s′ due to an action a

• a discounted factor γ ∈ (0, 1]

A policy is a mapping from states to actions in an MDP, a plan that tells the agent what

to do. Policies might be deterministic, π(s), based only on state s, or stochastic, i.e., defining

a probability distribution over actions based on state, π(a | s). The goal of an RL agent is

to select a policy that optimizes the predicted sum of rewards, known as the return Gt, and

written as follows:

Gt = rt + rt+1 + rt+1 + ...+ rN−1 (2.2)

where N represents the length of an episode and t the time step. For continuous tasks, Eq 2.2

is formulated as follows:

Gt = rt + γrt+1 + γ2rt+2 + ... =
∞∑
k=0

γkrt+k (2.3)

The value function estimates the expected sum of rewards the agent will receive if it

pursues a given policy in a given state. It is a measure of how good state s is for the agent.

Assuming a state s and a policy π are selected, the resulting value vπ(s) in that state is ex-

pressed mathematically as in 2.4.

vπ(s) = Eπ[Gt | St = s] = Eπ[
∞∑
k=0

γkRt+k+1 | St = s], for all s ∈ S (2.4)
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The recursive form of Equation 2.4 is called the Bellman equation and is shown in Equation

2.5.
vπ(s) = Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

=
∑

α π(α | s)
∑

s′ P
α
s,s′ [R

α
s,s′ + γEπ[Gt | St+1 = s′]]

=
∑

α π(α | s)
∑

s′ P
α
s,s′ [R

α
s,s′ + γvπ(s

′)]

(2.5)

Similarly, the action value function, often known as Q function, estimates the expected total

of rewards the agent receives when choosing an action a in state s according to a policy.

qπ(s, a) = Eπ[Gt | St = s, At = a]

= Eπ[
∑∞

k=0 γ
kRt+k+1 | St = s, At = a], for all s ∈ S and a ∈ A

(2.6)

The objective of an RL agent is to optimize a policy π∗. Traditional RL algorithms ac-

complish this by storing each pair of state values in an array. These methods are called tabular

methods and can be further divided into Dynamic Programming, Monte Carlo methods, and

Temporal Difference (TD).

Dynamic Programming approaches search for appropriate policies based on modeling

the environment and a value function. Policy iteration and value iteration are two significant

algorithms from this class. Monte Carlo methods, on the other hand, do not require complete

knowledge of the environment. They are able to learn from experience through simulated

or real scenarios. TD Methods are a combination of the previous ones. They learn from in-

teraction with the environment, without a model as in Monte Carlo, and perform updates to

current estimates as in DP. Popular algorithms in this category of methods are Q-Learning

and SARSA.

2.4 Deep Reinforcement Learning

Traditional RL methods work well for simple problems when the state/action space is

small enough to accommodate a Q-table in memory. However, in real applications, the state

space is usually vast, which limits the size of the table due to memory constraints in hardware.

In addition, tabular methods model the state space with discrete variables only. To overcome
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the aforementioned restrictions, it is common to estimate the value function or a policy using

a Deep Neural Network.

2.4.1 Deep Q Network

Deep reinforcement learning really exploded in 2015 with the development of the Deep

Q-Learning algorithm [37], by the DeepMind team at Google. This method is known as DQN

because it models the value of choosing each action a in a given state s as the output of

a neuron with parameters θ. For example, Q-learning learns the parameters by repeatedly

minimizing a series of loss functions and explicitly approximates the ideal value function

Q(s, a) ≈ Q(s, a; θ)

One of the key innovations of this algorithm that has contributed to its popularity is the

use of a replay buffer [38]. The replay buffer solves a very fundamental problem in Deep

Reinforcement Learning. The problem is that real networks tend to produce erroneous results

when their inputs are correlated. What can be more correlated than an agent playing a game

where each time step depends on the one immediately preceding it? These correlations cause

the agent to exhibit very strange behavior: It knows how to play the game and suddenly forgets

when a new set of states occurs that it has never seen before. The neural network cannot

really generalize from previously seen states to unseen states because of the complexity of

the parameter space of the underlying problems. The replay buffer fixes this problem by

allowing the agent to randomly sample transitions frommany different episodes. This ensures

that these time steps are completely uncorrelated. The agent thus gets a broad sample of the

parameter space and can therefore learn a more robust policy with respect to new inputs.

2.4.2 Policy Gradients

A limitation of DQN is that computing the value for each action requires one neuron, so

the action space must be discrete. If the action space is continuous or stochastic, a policy-

gradient approach is suitable. Policy gradient methods [39] aim to optimize a policy π(α |

s, θ) directly, rather than using a value function, by formulating the output as a probability

distribution of expected returns for each action separately. They can also be applied to discrete

spaces by post-processing the output with softmax layer.

The quality of the policy is measured by its performance J(θ). The objective function in
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Equation 2.7 aims to maximize the scalar value J(θ).

θ∗ = argmax
θ

J(θ) (2.7)

Since a deep neural network is used to approximate the policy, the parameter θ is the

neural network weights. The updates of θ are done via the gradient ascent (Equation 2.8)

θt+1 = θt + α∇θJ(θt) (2.8)

2.4.3 Actor Critic

Actor Critic techniques were developed as a fusion of earlier models. In the actor critic

techniques, two neural networks are used. One of them is utilized to estimate the agent’s

policy directly. The critic network, on the other hand, is used to predict the value function.

The critic tells the actor how good each action is based on whether the ensuing state is useful.

The two networks cooperate to determine how to act effectively in the environment. The actor

selects actions, the critic analyzes the states, and the output is matched against the rewards

of the environment. The critic grows increasingly precise in approximating the state values

with time and allows the actor to choose the actions that contribute to those states. Figure 2.9

illustrates the core concept underlying this approach. In practice, the weights of the two deep

neural networks are adjusted at each time step based on the TD error.

Figure 2.9: Actor-Critic architecture
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2.5 Current Work

Recently, interest in Deep Learning methods has grown in many areas such as speed

recognition and computer vision. The main reason for this is the ability of deep neural net-

works to learn complex features from scratch, while producing state-of-the-art results. Rec-

ommender systems are no exception. The number of publications from the RS community

using Deep Learning techniques has grown exponentially. However, a detailed discussion of

Deep Learning based RS is beyond the scope of this thesis. For a detailed overview see [40].

In this section, we give a high level overview of some of the most cited RL-based recom-

mender systems. The work in [41] is a well-written survey that discusses in more detail the

methods used so far.

2.5.1 RL-based Recommender Systems

Web Watcher [42] is the very first application of RL in recommender systems. Web

Watcher is a bot on the School of Computer Science website at CMU. Similar to a travel

guide, its goal is to allow people to quickly discover content that matches their interests.

They use RL, and in particular Q-learning, to model and solve the recommendation problem.

Since then, Q-learning has been very popular in RS field [43, 44, 45, 46, 47, 48, 49].

However, traditional Reinforcement Learning methods have not been very successful in

optimizing recommender systems. In practice, most RL agents operating in the recommen-

dation environment focus on optimizing the user’s immediate response to the recommended

item. In other words, they are very greedy and optimize for short-term rewards. In most toy

situations this is adequete, but in recommender systems there are no trivial tradeoffs between

the user’s short-term and long-term response. The reason that most RL attempts have ignored

these long-term effects is that they are notoriously difficult to model in typical recommender

environments because there are an incredible number of users and items to recommend. As

a result, exploration of this action space is almost always intractable.

This is the problem that the Slate-Q algorithm [50] attempts to solve. The novelty of this

approach is the utility of two assumptions. One is related to rewards and the other is related

to state, which simplifies the learning computation and allows us to efficiently estimate the

long-term value of each items in the system. Researchers have empirically shown that the

Slate Q algorithm outperforms traditional Q learning on this difficult task in both average
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rewards per episode and click-through rate. This research sheds light on exciting applications

of reinforcement learning and recommender systems, and paves the way for training efficient,

scalable agents using domain-specific, model-based approaches.

Next, we review DRN [51]. In this work, researchers address the challenges that exist in

news recommendation. They employ a DQN agent to capture the dynamic nature of news

domain. They also define user activeness, a new metric besides traditional click/no-click

that can model how often users return to their platform, potentially having a positive impact

on accuracy. Finally, they demonstrate the performance of their system through offline and

online evaluation, using the DQN agent in a real-world news recommendation application.

Finally, there is another approach: DARES [3]. The researchers have developed a de-

centralized framework for distributed asynchronous training, borrowing some concepts from

Federated Learning. Their architecture is based on the A3C algorithm and consists of a set of

local workers interacting with their copy of the environment and a global model that updates

its parameters based on the gradients computed by the workers. The main difference with

the original A3C algorithm is that the workers of DARES keep their data local. To simulate

the recommendation task, they use PyRecGym [52], which was developed by the authors in

a previous work. Their results are comparable to the state of the art. Finally, they show a

significant performance improvement in terms of time complexity by using multiple parallel

workers without any significant compromise in accuracy.

2.5.2 Simulation Environments

The notion of an RL simulation environment has gained prominence as RL has evolved,

offering the research community accessibility to a reliable environment for exploring, testing,

and designing RL agents and methodologies. A simulation environment defines RL agents’

present state, provides potential actions, and determines the rewards for those actions. Envi-

ronments are often developed considering a particular RL task so that theymay be customized

to meet the goals of the problem. Depending on the optimization problem posed, this can be

a tedious task [53]. Several open source projects offer standardized methods for construct-

ing RL agents and environments and for training and gathering the results of the algorithms

and policies, even if some of the standard source code still needs to be written. The OpenAI

Gym [54] is among the most prominent RL toolkits. It specializes in the application of RL in

gaming contexts.
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In terms of gym environments for RS evaluation, recent approach, RecSim [1], proposes

a platform that enables the development of configurable environments and RL agents. Rec-

Sim conceptually simulates how a recommendation agent might interact with a user model,

a document (item) model, and a user choice model environment. The agent can access ob-

servable attributes of simulated individual users and documents to make suggestions to users

by suggesting lists of documents (called slates). RecSim provides some already developed

environments.

Another RL gym specifically designed for RS research is the PyRecGym [52]. This work

focuses on popular open-sourcing datasets (MovieLens, Outbrain, Adressa), but also provides

a general, customizable data pipeline for converting any dataset. It works with various input

data types and has multiple RL agents to begin. The data is split into initialization data and

interaction data. The former is used to train the user simulators, while the latter is used to train

the agents. To simulate user responses to actions and the resulting observations and rewards,

the gym implements a reward and observation loop.

A different gym environment worth reviewing is MarsGym [55]. It simulates the dynam-

ics of a marketplace. In this work, a more holistic approach was employed to enhance the

satisfaction of all parties participating in the marketplace (users, suppliers, third parties) and

thus the health and fairness of this environment. In this work, Fairness measures are offered

to guarantee that the models respect satisfaction and awareness for all affected parties, as well

as to identify any bias in vulnerable attributes.
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Simulation Environment

In this Chapter, we present our approach to simulating the environment for the recom-

mendation problem. We use ML Fairness Gym, which builds on the previously introduced

RecSim environment. We explain the building blocks of a RecSim environment in more de-

tail. We also present the dataset and techniques used to create feature vectors and simulate

ratings.

3.1 Dataset

Before proceeding with the method and modeling, we would like to introduce the dataset

we based our approach on. We worked on a movie recommendation system and trained the

agents on the popular MovieLens 1M dataset1 [56].

The GroupLens research lab in the Department of Computer Science and Engineering

at the University of Minnesota first created the MovieLens dataset in 1997. On MovieLens,

users rated the movies they watched on a 5-star scale and added their own tags to characterise

them. The version used in this paper contains 1,000,209 anonymous ratings of about 3883

movies given by 6,040 MovieLens users who joined MovieLens in 2000. One advantage

of the MovieLens dataset is that it is widely used in the field of recommender systems in

both academia and industry. This allows us to easily reproduce the results and compare them

with state-of-the-art algorithms. The dataset consists of three files: users.dat, movies.dat and

ratings.dat.

1Url to download MovieLens 1M dataset: http://files.grouplens.org/datasets/

movielens/ml-1m.zip
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All ratings are in the “ratings.dat” file in the format:

UserID :: MovieID :: Rating :: Timestamp

• User IDs range between 1 and 6040.

• Movie IDs range between 1 and 3883

• Ratings are one a 5-star scale, with whole ratings only

• Timestamp is presented in seconds using Unix time

User information, including some demographic data provided by the users, are include in the

“users.dat” file in the format:

UserID :: Gender :: Age :: Occupation :: Zip− code

• User IDs are mapped to a linear index, to optimize speed.

• Genre is denoted as “M” for male, or “F” for female

• Age is represented in groups, from the following ranges:

1: “Under 18” 18: “18-24” 25: “25-34”

35: “35-44” 45: “45-49” 50: “50-55”

56: “56+”

• Occupation is selected from Table 3.1

Finally, “movies.dat” file includes movie information and follows the format:

MovieID :: Title :: Genres

3.2 Formulation of recommendation in RL

In this section, we explain how a Deep Reinforcement Learning-based recommender sys-

tem was developed to mimic the distributed training scenario of the A2C/A3C algorithms.

We simulate the recommendation task as a sequential decision problem, where the recom-

mender (i.e., the agent) interacts with users (i.e., the environment) to gradually offer a list of
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0: “other or not specified” 1:“academic/educator”

2: “artist” 3: “clerical/admin”

4: “college/grad student” 5: “customer service”

6: “doctor/health care” 7: “executive/managerial”

8: “farmer” 9: “homemaker”

10: “ K-12 student” 11: “lawyer”

12: “programmer” 13: “retired”

14: “sales/marketing” 15: “scientist”

16: “self-employed” 17: “technician/engineer”

18: “tradesman/craftsman” 19: “unemployed”

20: “writer”

Table 3.1: Choices of occupations in the dataset

things at different time steps. Our RL agent aims to maximize the cumulative rewards of the

entire recommendation process. More specifically, we model the recommendation process

through an MDP, described in section 2.3 as follows.

Actions: Prior studies have formulated actions in many ways, including binary actions,

such as recommending or not recommending an item, or multiclass actions, such as rating

predictions on a 5-star scale. However, in this environment, the action space includes all 3883

movies that can be recommended at any given time. The actions can be either a single movie

or a list of movies called a slate. A slate is defined as a subset of all items accessible to the

user.

States: As in RecSim environments, the state space is represented as a concatenation of

user features, the user’s response history, and the features of the target item (see Table 3.2).

During feature extraction, a one-hot encoding vector is created for the genre feature vector

of the most recently evaluated movie. One-hot encoding is one of the most classic encoding

techniques. A single categorical data value is converted into a list of Boolean values, one for

each category, indicating which category the data point falls under. In addition, each movie

is associated with a violence score extracted from the Tag Genome dataset [57]. This dataset

contains the tag relevance scores that make up the tag genome. The tag relevance represents

the relevance of a tag to a movie on a continuous scale from 0 to 1.

Rewards: After the agent performs an action in a state, the environment (i.e., the user)
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provides feedback, and based on this feedback, a reward is given to the agent. The user’s

response contains two features, which are the simulated rating and the violence score. The

reward signal is in the range (0, 1) is mathematically expressed as:

Rt =
1

N

N∑
i=1

λ(1− violence_scorei) + (1− λ)ratingi

where N denotes the size of the slate. We encode the violence score and λ weight into the

reward, so that recommending too many violent movies brings a negative reward. The em-

beddings used to generate the reward are not observable by the agent, as this is partly what

the RL agent tries to estimate. More details on how environment simulates the ratings are

presented in section 3.3.

Table 3.2: Features of the MoviesLens dataset used

Feature Type MovieLens Dataset

User Features

Category

age

gender

occupation

postcode

Item Features

Integer
rating

violence score

Text genre

3.3 Simulation Environment

In this section, the simulation environment used is presented in more details. When com-

paring simulation environments, some desirable features of interest are the use of large data

sets, the availability of real world data, detailed documentation, and the time required to

simulate each time step. In a similar work in [3], PyRecGym was adapted to simulate the rec-

ommendation task. Unfortunately, an open source version of PyRecGym was not available.
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Since none of the other environments studied were suitable for this application, an alternative

approach was to develop our own custom environment.

For the simulation task, we use ML Fairness Gym [58], which uses RecSim as a backend.

We extend the user model code, described in section 3.3.1, to include the user features of the

MovieLens dataset mentioned above. Then we develop a wrapper that follows the API of

OpenAI Gym framework. The resulting simulation environment contains three important

methods.

Initialization: It initializes and loads all feature vectors for each user and object. It also

sets up the state space and action space of the environment.

Reset It resets the internal state and action space of the environment and prepares it to

start a new episode.

Step: Performs a step through the environment. It takes an action chosen by the agent

and returns a list that includes an observation of the current state, a reward signal, a Boolean

variable that indicates reaching a final state, and a dictionary of additional information about

the environment.

Finally, in ML Fairness Gym we also added two important evaluation metrics to measure

the performance of our algorithm: Click-Through-Rate and NDCG, see Chapter 5.

3.3.1 RecSim simulation

RecSim requires the configuration of 4 levels of abstraction to simulate specific features

of user behavior, depicted in Figure 3.1. The environment consists of a User model, a Docu-

ment model, a User Choice model and a User-Transition model.

A User Model defines the logic of user generation. It describes which features represent

the users in the environment and how they are sampled: from a distribution or from a dataset.

In this thesis, the user model is configured with the demographic features of the users from

the MoviesLens dataset, such as gender, age, occupation, and zip code.

Similarly, a Document Model is responsible for generating documents ( items ) and se-

lecting features to represent them in the environment. In our case, items include features from

the items of the MovieLens dataset such as title, genre, year, and the violence score they are

associated with. When the agent recommends a document to the user, the user’s response is

simulated by a User-Choice model.

A User-Choice model has access to all user features as well as observable document
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features. Latent document features, such as the subject or the quality of the document, can

also influence the user’s response. In the proposed environment, the information is derived

via a matrix factorization of MovieLens ratings.

Once the user-document interaction occurs, a User-Transition model is used to update

the user state. For example, a user’s interest may increase or decrease after interacting with a

particular item category. RecSim influences the behavior of users after they have interacted

with certain movie categories by encoding the addiction dynamics into the user embedding

obtained by matrix factorization.

Figure 3.1: Data Flow through components of RecSim [1]

3.3.2 How ratings are simulated

User ratings are stored in the form of a utility matrix, Rm×n, as described in Figure 3.2,

wherem = 6040 is the number of users and n = 3706 the number of movies. The problem is

that the matrixR is often high-dimensional and sparse, since we do not assume that each user

has seen and rated all movies. Our goal is to predict (simulate) the unseen ratings, i.e., the

cells in the matrix with 0 values that represent movies that users have not seen. We approach

the rating prediction problem using matrix factorization. This technique assumes that we

can approximate our matrix R as the dot product of two low-dimensional matrices Rm×n ≈
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Um×k ×Mk×n, Figure 3.3.

Figure 3.2: User- movie interaction matrix from MovieLens dataset

We use a non-negative SVD model to compute the matrices U and M that contain latent

user features (user embeddings) and movie latent features ( movie embeddings), respectively.

We call them latent features because they arise from the underlining patterns of the data. They

are not based on human-defined features such as comedy, action, etc. In our case, k = 55 is

the number of latent features. The higher k is, the more accurate the predictions are. After

factors are computed, we can predict the rating rij , that user i gave to movie j by:

rij = uT
i mj

This type of prediction is actually a form of compression. Once these features are learned,

we can discard the original data we started with because we can simply multiply the features

together to recreate that data. In terms of memory, we first need to store 6040 × 3706 =

20572240 interactions. After matrix factorization, the total number of parameters reduces to

6040 × 55 + 3706 × 55 = 536030. However this technique is limited due to the usage of

embeddings. We can’t add new users or movies unless we retrain the model.
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Figure 3.3: User- movie interaction matrix from MovieLens dataset
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Methods

This chapter introduces the Advantage Actor-Critic algorithms and the neural networks

architecture. We present the asynchronous learning process, and we discuss the implementa-

tion details of our code.

4.1 Asynchronous Training using Distributed Agents

The high computational efficiency of the A3C algorithm originates from its use of sepa-

rate learner agents executed in parallel, Figure 4.1. The proposed system consists of two main

elements: The central neural network model (master) and the local learner agents (work-

ers). Using a stochastic gradient descent-based optimization technique, these agents asyn-

chronously update the parameters of the central neural network model. Each worker receives

a local copy of the global neural network model. The local DNNmodel computes each state’s

losses and the gradients by interacting with their environment instance in parallel. At each

episode termination, the central network model is updated asynchronously using the param-

eters of each learner agent’s network instance. Before an agent starts a new episode, its local

copy is overwritten with the newly trained global model. Figure 4.2 provides an overview

of the training process that each worker goes through. The A3C approach is an ensemble of

several basic reinforcement learning agents, comparable to DQN. Their combined impact on

the central network determines how well it functions. The training data becomes more varied

as the learner agents can freely explore their environments. A3C is multi-threaded; splitting

the main training operation over several CPU cores is simple.

29
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Figure 4.1: A3C high level architecture

4.2 Actor-Critic and Advantage

Reviewing the concepts from section 2.4.3, Actor-Critic Methods keep track of both a

policy (i.e., the Actor) that directs how the agent acts and an estimate of the value function

(i.e., the Critic) that assesses how effective action is. In A3C, the Q values are calculated

directly. Instead, Rt is used to estimate Q(st, αt). The Actor is represented by the policy

π(αt|st; θ), while the Critic from the advantage function A(s, α; θ) formulated by

A(st, αt; θ) = Rt(st, αt)− V (st; θ)

Ideally, the value of the advantage function will converge to zero because this will means

that the model estimates a state value equal to the received reward. The parameterization

of π and V can be done using neural networks. We implement the algorithm using a single
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Figure 4.2: Advantage Actor-Critic process

neural network with two hidden shared layers. The Actor and Critic networks diverge from

the last shared hidden layer into their dedicated layers. The output of the Actor network is

a Softmax network, while the Critic network ends with a single neuron layer, providing the

value estimate. The network architecture is illustrated in Figure 4.3.
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Figure 4.3: The design of Actor-Critic neural network
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4.3 Evaluation Agents

Two different agents will be used to assess the effectiveness of our RL agents: our imple-

mentation of the A3C agent and the A2C agent from the open-source library stable-baselines3

[59]. This library provides a set of reliable implementations of Reinforcement Learning agents.

Figure 4.4: Advantage Actor-Critic algorithm from [2]

Figure 4.4 presents the algorithmic formulation of A3C for each parallel learner agent,

summarizing the sections above. It should be noted that the agents train the global neural
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network using the RMSProp optimizer through the lock-free Hogwild paradigm [60].

A2C is a synchronous deterministic version of the A3C algorithm. In contrast to A3C,

when an agent finishes a training episodewaits for the others. Then, the globalmodel averages

over all the workers and updates its parameters. One problem arising from this is that some

workers may be idle most of the time, which wastes resources.

4.3.1 Implementation details

The source code developed and used for the experiments in this thesis is publicly stored

in a GitHub repository1. All code is written in Python using TensorFlow [61]. For the deep

neural network implementation, we used Keras [62], a deep learning API built on top of Ten-

sorFlow. Our implementation of A3C is based on the official GitHub repository of Tensor-

Flow [63]. The directory structure of the repository is shown in Figure 4.5. The file structure

is similar to the one recommended by the OpenAI API. The MovieLensEnv class wraps an

OpenAI Gym environment as ML Fairness Gym Environment. The ML Fairness Gym is

forked in the repository and contains the changes we made to extend its code, see Chapter 3.

The agents/A2C directory contains all the code to run experiments with the A2C agent from

stable-baselines3. Our implementation of A3C can be found under the agents/A3C directory.

A diagram illustrating the classes for the environment and the agents can be found in Figure

4.6. The main functions of these classes are explained in the following sections.

The ActorCriticModel class defines the neural network architecture that implements both

the policy (actor) and value (critic) approximator models for A3C. As we mentioned earlier,

in our implementation the policy and value networks share their hidden layers. The output of

the actor-critic model in a forward pass are the logits and values. The logits are post-processed

by a Softmax layer to convert them into a discrete probability distribution over the actions.

The ActorCriticModel class inherits from the keras.Model class, allowing easy configuration

and inference of the neural networks without having to implement them from scratch.

The MasterThread class is the starting point for the A3C agent. It creates an instance

copy of an ActorCriticModel model in which the trainable parameters of the global model

are stored. It also implements the train() method, the main function of the training loop,

which initializes and creates a number of workers. The number of workers is limited to the

CPU threads on the local machine. Finally, it also contains an eval() method for testing the

1GitHub repository: https://github.com/vstergiou/thesis-recsys

https://github.com/vstergiou/thesis-recsys
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Figure 4.5: Repository file structure

agent.

The WorkerThread class extends the Python Threading.Thread class. It overrides the

run() method. This is the default function called when a worker thread is started by the Mas-

ter thread. Each worker keeps a local copy of the environment it interacts with and a local

ActorCriticModel instance. It computes the policy and value networks and updates the global

model accordingly. Workers are implemented as threads, so that they can share memory. This

type of execution allows the global parameters to be shared directly without the need to apply

more complex techniques as in a multiprocessor scenario.

Finally, the Memory class is used to store the agent’s state, action, rewards and the eval-

uation metrics that will later be used to plot the learning statistics.
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Figure 4.6: Class diagram
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Results

In this chapter, we aim to demonstrate the performance of the A2C and A3C agents.

We compare the agents to similar work from other researchers and evaluate them using the

metrics CTR and NDCG. Finally, we investigate whether and how the number of workers

affects the training time of the algorithms, and draw conclusions that give us guidance for

more optimal implementations.

5.1 Evaluation Methods

Implementing an extensive search in the hyper parameter space would not be efficient

because of the enormous number of network parameters models have. Instead, we use the

hyper parameters proposed in the original paper.

Since A3C is asynchronous, we follow a similar evaluation procedure as in the original

paper [2]. We run each experiment 5 times for 2000 episodes and average the results. These

results should be a fair representation of the actual performance of the algorithm. To better

understand the agents’ performance, we add a random recommendation baseline as a compar-

ison. Finally, the best model is used to run an experiment with a slate size of 10 and compute

the NDCG metric.

All experiments are performed locally on a MacBook Pro with the M1 chip with 8 CPU

cores, and one thread per CPU core. The number of workers is set to 8.

37
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5.2 Training Results

This section analyzes the results obtained from the various experiments we performed

using the implemented simulation environment. The first experiment aims to set a random

agent as a baseline. Each episode has a length of 50, which means that the agent recommends

to the user 50 items. Since the reward signal is normalized in the range (0,1), the maximum

cumulative reward for each episode is set to 50. In an ideal scenario, users rated each movie

that was recommended to them a 5. The total reward for this episode would then be 50. Given

this and the results of Figure 5.1, it stands to reason that the random agent had an average rat-

ing of about 3.2/5 during the last episode. A comparison of Figure 5.1 and Figure 5.2 reveals

that the original Actor Critic method did not perform better than the Random Agent. In the

next experiment, we investigate whether more sophisticated Actor-Critic methods produce

better results.

Figure 5.1: Random Agent

Figure 5.3 summarizes the results of training both agents A2C and A3C. The red horizon-

tal line represents the random baseline. From this data, we can see a significant improvement

in user satisfaction. In the last training episode, A2C and A3C had achieved user ratings of

4.1/5 and 3.9/5, respectively. The results also indicate that training for more episodes could

potentially improve performance. Additionally, these models didn’t undergo any hyper pa-

rameter tuning.

At this point, it must be taken into account that the agents initially have no knowledge
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Figure 5.2: Actor-Critic Agent

of the environment. While it could yield better results, addressing the Cold Start problem is

beyond the scope of this thesis. The results reveal that A2C outperforms the A3C algorithm.

However, further analysis of Figure 5.3 shows that A3C deliver better results in the first

episodes.We assume this is due to the asynchronous nature of A3C; the training data becomes

more diverse, resulting in less bias. However, it can be argued that A3C does not provide

better recommendations than A2C in the long run.
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Figure 5.3: Comparison of A2C and A3C agents
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To further compare the performance of these two agents with each other and with other

RL agents in the literature, we included the Click-Through-Rate (CTR) metric in our imple-

mentation. Since our recommendation problem is formulated with 5-star ratings and not in a

binary setting (click/no click), we model positive feedback (click) as a rating > 3.5.

As shown in Figure 5.4, A2C achieves higher performance CTR. The A2C agent reported

an increase of about 6%CTR. The global average CTR for A2Cwas 0.606, and 0.54 for A3C.

Based on the patterns of the previous experiments, it is evident that the A2C agent is trained

to make better recommendations and achieve both higher CTR rates and average rewards.

Next, we will compare our agents with other implementations. The authors of DARES did

a comparison of their system with some basic agents in Reference [3]. They trained the mod-

els on the MovieLens100k dataset for 20000 episodes and used CTR as the reward. Movie-

Lens100k is a smaller version of the dataset we used. The results of their analysis can be

summarized in Table 5.3. The global average CTR of the models used in the comparison is

in the range (0.719, 0.882), which is approximately a 12-28% increase in performance. This

is a significant difference for the performance of CTR. As Rajabi notes in [64], “a small im-

provement in the predictive accuracy of CTR can generate millions of dollars in revenue for

the advertising industry”.

What is interesting about the data in the table is that the reported performances were

Figure 5.4: Comparison of A2C and A3C agents
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Dataset Model CTR Reference

MovieLens100k

LinUCB 0.78 [65]

DQN 0.747 [66]

DDQN 0.747 [66]

A2C-F 0.741 [67]

A2C-D 0.719 [67]

DARES 0.882 [3]

MovieLens1M
A2C 0.606 This thesis

A3C 0.5402 This thesis

Table 5.1: Comparison of our implemented agents with the models presented in [3]

achieved after 20000 training episodes, whereas our models were trained for 2000. This was

mainly the result of limited computational power on the local computer and the large number

of experiments we had to run. To investigate this further, we analyze the graph in Figure 5.5,

which shows the average CTR during episodic training of the referenced models. We can see

that the A2C-D algorithm, which is similar to our A2C, has an average CTR of about 0.67

for 2000 episodes, which is closer to our results. Finally, we note in Figure 5.4 that CTR of

the A2C increases linearly, suggesting that further training could increase performance and

possibly provide more comparable results.

5.3 Evaluation Results

In this section, we evaluate our best model (A2C) with k =10 as the size of the slate and

the number of items recommended to the user each time. We recommend movies from the

test set to the user and calculate the global average CTR at the end of the evaluation process.

Similar to the previous section, we want to compare our results with the mentioned models.

We recommend movies from the test set to the user and calculate the global average CTR

at the end of the evaluation process. The results in Table 5.2 show that DARES outperforms

the other methods. It is very interesting to note that while the rest of the methods had higher

training scores CTR, our method produced comparable and sometimes better results in the

evaluation. This can be explained by the selection of the dataset. MovieLens1M is quite

similar to MovieLens100k, but users have more interactions with movies on average. This
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Figure 5.5: Training statistics illustrating the average CTR per episode for the various models

compared in DARES [3]

benefits our method when the size of the recommendation slate increases.

Dataset Model CTR Reference

MovieLens100k

LinUCB 0.268 [65]

DQN 0.227 [66]

DDQN 0.227 [66]

A2C-F 0.220 [67]

A2C-D 0.199 [67]

DARES 0.454 [3]

MovieLens1M A2C 0.231 This thesis

Table 5.2: Comparison of our implemented agents with the models presented in [3]

5.3.1 Relevance score

Click-Though-Rate is a commonly used metric for evaluating the performance of an al-

gorithm. However, as pointed out in the paper in [68], ”algorithms with higher overall CTR

do not necessarily correspond to higher relevance.” To better understand our agent’s ability

to provide good recommendations, we used NDCG as a relevance metric. We test the model
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with the best performance (A2C) using the NDCG@10 metric (Eq. 2.1). We conduct exper-

iments with slates. In this scenario, the agent recommends a list of 10 items to the user. The

results of the evaluation analysis are shown in Table 5.3.

NDCG@10 A2C NDCG@10 Random

Mean 0.8172 0.6714

Min 0.4174 0.2968

Max 0.9723 0.8432

Table 5.3: Comparison of evaluation metrics for A2C agent against random

It is evident that the A2C agent performs better than random. Nevertheless, we should

not be surprised, as was implied from the experimental results of the previous section. We

define relevance as the simulated 5-star rating. Thus, the ideal relevance is a rating of 5, which

makes an ideal slate of items one in which all the recommended movies received a 5/5 rating.

5.4 Number of workers and training time

In this set of experiments, we analyze how the number of workers affects the training time.

We test algorithms A2C and A3C for different numbers of workers from this list [1,2,4,8,16].

For each number of workers, we ran the experiments with 3 different seeds and the results

were averaged.

Table 5.6 illustrates the impact of different numbers of workers on A3C training time.

Originally, wewould expect the number of training steps per second to increase linearly due to

the asynchronous nature of the A3C algorithm. However, we observe the opposite effect. As

the number of workers increases, the number of training steps per second decreases. This can

be justified by the threading nature of our implementation. In Python, the Global Interpeter

Lock doesn’t allow a process to execute multiple threads in parallel. Therefore, in our case,

updates to the global model occur concurrently, which can cause bottlenecks as the number of

workers increases. A more optimal and fully asynchronous solution would be to implement

the workers as distinct processes.

From the data in Figure 3, we can see that the A2C agent leads to slower training times

than the A3C agent. This is the main drawback of this algorithm. As workers synchronously

update the global model, many of them become idle and wait for the others to finish their
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Figure 5.6: A3C: Number of workers vs training steps per second.

episode. Given this, A3C is usually faster due to the communication cost of the subprocesses.

An optimal solution that A2C could benefit from is to use a GPU with large batch sizes.

Figure 5.7: A2C: Number of workers vs training steps per second.
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Conclusions

In this thesis, we designed, implemented and evaluated a distributed recommender system

using Deep Reinforcement Learning and based on the asynchronous Advantage Actor-Critic

algorithm. A thorough investigation was conducted to identify the available RL environments

that are suitable for realistic settings of recommender systems. This was a challenging task

as it was found that the open source implementations of such environments are sparse, not

actively maintained, and poorly documented. It is evident that researchers need to shift their

focus in this area to further accelerate progress.

Next, different RL agents were trained on the selected environment. Initially, the vanilla

Actor-Critic method failed to produce better results than random. A possible direction for

future work is to investigate how the performance of this agent is affected by using the Adam

optimization method.

However, in our experiments with the more sophisticated Advantage Actor-Critic agents

A2C and A3C, significant differences in user satisfaction were found. The models were com-

pared using the average cumulative rewards during the last training episode. We also com-

pared these algorithms to agents from related studies using the global average CTR. The

results of the experiment showed that our agents performed lower but may be able to achieve

comparable results. In addition, the NDCG was used as an evaluation measure to show that

the A2C agent provides better recommendations than the random agent. Finally, we con-

ducted some experiments to investigate the effect of the number of parallel workers on the

training time and analyzed the results.

A very interesting path for future research is to use other RS metrics. Despite the im-

portance of accuracy metrics, it is not always possible to measure the true effectiveness of

47
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recommender systems in real applications. Some examples of metrics that could be used are

novelty, serendipity, and coverage.
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