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ABSTRACT 

Deep learning-based successive interference cancellation (DL-SIC) for uplink multiple-input 

multiple-output – non-orthogonal multiple access (MIMO-NOMA) system tries to optimize the 

users’ bit error rate (BER) and total mean square error (MSE) performance with higher order 

modulation schemes. The recent work of DL-SIC receiver design for users with a QPSK 

modulation scheme is investigated in this thesis to validate its performance as a potential 

alternative approach to traditional SIC receivers for NOMA users. Then, a DL-SIC receiver 

design for higher order modulation with less dependence on modulation order in the output layer 

is proposed, which enables us to decode the users with different modulation schemes. In our 

proposed design, we employ two deep neural networks (DNNs) for each SIC step. The system 

model is considered an M-antenna base station (BS) that serves two uplink users with a single 

antenna in the Rayleigh fading channel. The equivalent conventional minimum mean square 

error-based SIC (MMSE-SIC) and zero-forcing-based SIC (ZF-SIC) receivers are implemented 

as a baseline comparison.  

The simulation results showed that the BER performance of the proposed DL-SIC receiver for 

both users with QPSK modulation results in a 10 dB gain between BER of 10−2 and 10−3 

compared to the ZF-SIC receiver. Furthermore, the performance difference between the 

proposed scheme and ZF-SIC is significantly high when both users transmit with 16QAM. 

Overall, the proposed DL-SIC receiver performs better in all signal-to-noise ratio (SNR) regions 

than the equivalent ZF-SIC receivers and also aids in mitigating the SIC error propagation 

problem. In addition, it improves the processing latency due to the benefits of the parallelized 

computing architecture and decreases the complexity of traditional SIC receivers.  

 

Keywords: deep learning, successive interference cancellation, uplink, multiple-inputs 

multiple-outputs, non-orthogonal multiple access, higher-order modulation, deep neural 

networks. 
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1. INTRODUCTION 

Today, wireless networks and related services are critical components of the modern digitized 

world and significantly impact our daily lives. As the fifth generation (5G) era starts, consumers 

and businesses begin identifying processes and channels to increase efficiency and boost 

livelihood. Therefore, applications and use cases such as autonomous vehicle control, intelligent 

transportation system, smart agriculture, and factory cell automation promised by 5G are 

emerging. Due to those different bodies of wireless communications, the existing communication 

mechanism needs improvement in low latency, reliability, availability, and so forth [1].  

The performance of non-orthogonal multiple access (NOMA) has been recognized as one of 

the promising technologies. Unlike orthogonal multiple access (OMA), NOMA simultaneously 

uses the same frequency resources for different users within the same cell. It can also improve 

cell-edge throughput and reduce transmission latency [2]. NOMA can be applied to many former 

wireless communication techniques, including multiple-input and multiple-output (MIMO). In 

recent years, the application of MIMO to NOMA has received considerable attention from many 

researchers. MIMO-NOMA stands out for its superior spectral efficiency performance. [3].  

With the growing mobile connectivity, the diversity and complexity of wireless networks 

have increased [4], encouraging machine learning to introduce wireless architecture. Deep 

learning (DL) is part of machine learning (ML), and the deep learning approach to wireless 

communication has become of widespread interest. Deep learning can handle massive volumes 

of data. Mobile networks generate large amounts of various types of data at a rapid speed. Most 

mobile systems have limited labeled data because manual data annotation needs human 

interaction that is both costly and time-consuming. Traditional supervised learning is only 

effective when there is a sufficient amount of labeled data. In contrast, deep learning provides 

several approaches for using unlabeled data to learn in an unsupervised manner [5]. 

Deep learning could help operate in pure data-based methods, which means that sets of 

trained data can be used to optimize network architecture. Deep learning employs a deep neural 

network (DNN) to investigate data representation in each layer. Conventionally, the 

communication system is the connected structure of processing blocks such as modulation, and 

detection, where these blocks are analyzed and modeled mathematically. However, unknown 

factors could be challenging to analyze mathematically in a practical communication system. 

With the approach of DL, the networks/systems are optimized over a large training set of data, 

and a mathematically tractable model is not necessarily required [6].  

Successive interference cancellation (SIC) is a decoding process of users’ signals in multiuser 

systems. The process of SIC is to decode the users successively according to their signal 

strength. The SIC decodes the strongest user signal while treating the other as an interference. 

Before the following user’s signal is decoded, the decoded signal of the first user is subtracted 

from the combined signal. Hence, the next decoded signal is decoded with the benefit of 

removing the previous signal [2]. However, the SIC method can cause error propagation (EP) 

and receiver complexity. As the number of users increases, both uplink and downlink systems 

suffer from a higher receiver complexity [7]. Implementing SIC with novel deep learning could 

help to reduce the problems of EP and receiver complexity. 

 



1.1 Motivation and Objectives 

Successive interference cancellation is a critical process in the MIMO-NOMA system. In 

practice, traditional SIC decoders are imperfect. When the error has arisen from decoding one 

user, the subsequent users will suffer error propagation, and their signals will likely be 

inaccurately decoded. Even if one user’s signal is decoded correctly, the reconstruction of the 

signal can be incorrect because the channel estimation error may occur [7]. The errors raised by 

the imperfect SIC decoding can severely affect the system’s performance.  

As a fundamental requirement of a communications system, it must be capable of reliably 

sending and receiving messages over a channel by using a transmitter and a receiver. The 

traditional wireless communication system needs many signal processing processes such as 

channel coding, modulation, channel estimation, demodulation, etc., between transmitter and 

receiver to achieve reliable communication [8]. In contrast, the deep learning-based SIC 

approaches successively extract users’ signals without explicitly doing channel estimation, 

demodulation, and removal of decoded signals. The deep learning-based SIC (DL-SIC) employs 

a deep neural network (DNN) used at every SIC stage of decoding users. In particular, one DNN 

with a fully connected layer is used to decode one user. 

Considering the above motivation, we implement the DL-SIC for the uplink MIMO-NOMA 

system in this thesis. This thesis aims to mitigate the error propagation and receiver complexity 

of traditional SIC operations and, at the same time, reduce the processing complexity and latency 

of block structure type wireless communication systems by using deep neural networks (DNNs). 

Inspired by the exciting research of DL-SIC for quadrature phase shift keying (QPSK) users [9], 

we upgrade the architecture of DNNs for higher-order modulation. After that, we propose a new 

layout for the DL-SIC design. We use bit error rate (BER) and total mean square error (MSE) as 

the analysis metrics.  

The main objectives of the thesis can be listed as follows. 

• Perform a thorough literature review on deep learning and study the deep learning approaches 

for physical layer communications, especially for multiuser decoding with SIC. 

• Study the deep learning-based SIC system proposed by [9] with QPSK modulated users and 

compare it with the traditional equivalent system.  

• Develop the DL-SIC receiver inspired by [9] for users with higher-order quadrature amplitude 

modulation (QAM). We implemented 16QAM in this thesis. 

• Develop a DL-SIC model for higher-order modulation with a new proposed layout to decode 

the users’ signals with comparable performance to the existing conventional systems. 

 

1.2 Thesis Outline 

The thesis includes six chapters. In this chapter, we have described the requirements and 

challenges of conventional successive interference cancellation receivers and how deep learning 

can support the development of the successive interference cancellation of the MIMO-NOMA 

system. Chapter 2 presents the background literature about deep learning and an overview of 



deep learning-based models in wireless communication. In Chapter 3, we implement the deep 

learning-based SIC for the uplink of the MIMO-NOMA system of [9] with slight modification 

and compare and analyze it with the conventional minimum mean square error (MMSE) based 

SIC. In Chapter 4, firstly, we upgrade the DNN architecture inspired by  [9] to decode higher-

order modulation users. After that, we implement the proposed DL-SIC considering users 

transmitting with hierarchical modulation. We also implement zero-forcing (ZF) based SIC for 

the traditional MIMO-NOMA system to compare and analyze with the proposed system. Future 

work and conclusion are discussed in Chapters 5 and 6, respectively. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. BACKGROUND AND LITERATURE REVIEW 

 
The various approaches to the NOMA system have been proposed in recent years as potential 

multiple access techniques for 5G and beyond. Unlike traditional orthogonal multiple access 

(OMA) systems, NOMA can serve many users while maintaining the same degree of freedom 

(DOF) [10] and achieving spectral efficiency. In particular, it has been investigated that 

NOMA can achieve a greater ergodic sum rate in a single-input single-output scenario than the 

OMA scheme by using a fixed resource allocation strategy [11]. The idea of NOMA has been 

applied to multiple-input multiple-output systems, known as MIMO-NOMA, to achieve higher 

spectral efficiency. The author of [10] investigates the performance gain of NOMA over OMA in 

uplink single-cell systems in both single-antenna and multi-antenna scenarios. The asymptotic 

ergodic sum rate is analyzed for a sufficiently large number of users for both schemes. 

In recent years, applying deep learning to physical layer communication has been proven to 

achieve high performance in many ways. There are several attempts where DL is used to operate 

specific parts of the physical layer communication and as well as to operate in the end-to-end 

communication form. Some works related to deep learning-based NOMA systems will be 

discussed in the literature review in this chapter. 

In contrast to conventional ML algorithms, a deep learning algorithm can predict, classify, or 

make decisions based on data without being explicitly programmed. DL optimizes a given 

training target by using multi-layer structures and nonlinear processing units from raw input data 

[12]. DL can help to achieve better performance over physical layer communication than 

conventional ML algorithms. As with ML algorithms, deep learning has essential characteristics, 

such as deep modularization, that significantly enhance the ability to extract features and adapt 

the structure [13]. Some well-known DL models are the deep neural network (DNN), 

convolutional neural network (CNN), and generative adversarial network (GAN). Deep learning 

employs a deep neural network (DNN) to investigate data representation in each layer.  

Firstly, we discuss how deep learning can be a possible approach to the challenges of 

physical layer communication systems, deep neural network basics, some essential deep learning 

libraries, activation functions, and loss functions. We then present deep learning approaches in 

physical layer communication. Finally, we discuss the overviews of background literature that 

have proposed a deep learning approach to successive interference cancellation in the MIMO-

NOMA system. 

 

 

2.1 Deep Learning as a Potential Approach to  the Challenges of Physical Layer 

Communication 

 

• Most signal processing algorithms in traditional communication systems are based on 

statistics and information theory and are frequently provably optimal for tractable 

mathematical models. These are typically linear, stationary, and have Gaussian statistics 

[14]. On the other hand, a practical system may have imperfections and non-linearities 

that are difficult to represent analytically [6]. As a result, systems or algorithms that can 

accomplish communication tasks in the absence of defined channel models are critical. 

Despite complex channel conditions, deep neural networks have been approved to be a 

universal function approximator [15] with excellent algorithmic learning ability [13]. 



They can optimize end-to-end performance using simple training approaches rather than 

having well-defined models. Therefore, a DL approach communication system that does 

not require a mathematically tractable model could be the solution to the challenges of 

the current communication system, which heavily depends on mathematical models. 

 

• Since traditional MIMO data detection algorithms are iterative reconstruction procedures 

[16] and could result in a computational bottleneck in real-time, upgraded systems such 

as massive MIMO and mmWave require real-time huge data processing capabilities. As a 

result, these systems need parallel signal processing architecture to achieve efficiency and 

accuracy [11]. 

 

On the other hand, NNs can be substantially parallelized on concurrent architectures and 

easily implemented with low-precision data types [17], “learned” algorithms could be 

executed quicker with less energy cost than their manual equivalents [14]. Parallel 

processing architectures with distributed memory such as graphics processing units 

(GPUs) and specialized chips for NN inferences have proven to be very energy efficient 

and capable of providing significant computational throughput when fully applied in 

concurrent algorithms [14]. GPUs typically have thousands of cores and excel at quick 

matrix multiplications, which are critical for training neural networks.  

 

• Mobile networks generate large amounts of various sorts of data at a rapid rate [12]. 

Handling massive amounts of data is a key feature of deep learning because the inherent 

nature of distributed and parallel computing architectures provides computation speed 

and processing capacity [13]. 

 

• Traditional communication systems have a connecting architecture of multiple processing 

blocks (modulation, demodulation, channel estimation, etc.). Figure 2.1 depicts the block 

diagram of a conventional communications system, which includes source coding and 

decoding, channel coding and decoding, modulation, demodulation, channel estimation, 

and signal detection. These are designed and optimized locally within each block. 

Furthermore, the structure of the communication system could vary depending on the 

environment to achieve optimality. Global optimality cannot be ensured [6]. The DL 

approach communication systems do not rely on the artificial block structure to achieve 

global optimality since they can optimize end-to-end performance without demanding 

individual processing blocks for specific tasks of the communication system. 

 

 

 



 
 

Figure 2.1. Block diagram of a typical communication system. 

 

2.2 Deep Neural Network Basics 

 

The concept of using neural networks (NNs) to control machines intelligently dates back to 

1942, when an early neural network model was developed to simulate the status of a single 

neuron. Figure 2.2 shows the representation of a single neuron, a feedforward neural network 

(FNN), and a recurrent neural network (RNN). 

 

 
(a) 



  
  (b)       (c) 

 

Figure 2.2. (a) A single neuron, (b) Feedforward neural network, and (c)  Recurrent neural 

network. 

 

The NN is generated when the inputs are connected to multiple neurons producing multiple 

outputs and forming a layered network. A perceptron with one input layer and one output layer 

can be considered a simple NN. In order for the perceptron to produce a value close to the target 

value, a loss function must be established, such as square error or cross-entropy. Despite only 

being used for linearly separable problems, a single perceptron is capable of introducing a 

nonlinear function as a universal approximator by adding hidden layers and neurons between the 

input and output layers. This multi-layer perceptron (MLP) can be referred to as NN with 

multiple hidden layers [13]. Therefore, the basic type of DL models is feedforward neural 

networks (FNNs) or multi-layer perceptrons (MLPs).  

Deep neural networks’ main goal is to approximate complex functions using a combination 

of predetermined unit operations (neurons). For example, if 𝑓(. ) is considered to be the function 

of a neural network, the operation of  𝑓(𝑥) → 𝑦 is the mapping of an input x to a category y. 

Depending on the model’s structure, the operations are commonly described by a weighted 

combination of a certain group of hidden units with a nonlinear activation function [12]. These 

procedures, along with the output units, are referred to as layers. The feedforward network’s first 

layer is known as the input layer, and the last layer is known as the output layer. The layers that 

exist between the input and output layers are known as hidden layers because their output 

behavior is unknown from outside of the neural network. An objective function can be nearly 

any form, such as mapping images to their labels (classification), computing future stock prices 

based on previous values (regression), or even determining the next ideal chess move according 

to the current state of the board (control) [12].  

We can use supervised, unsupervised, reinforcement learning, and other machine learning 

approaches to build a deep neural network. Deep learning architectures have performed 

admirably in all these areas. The difference between supervised learning and unsupervised 

learning is that supervised learning has trained the model with prior knowledge of what the 

output for the fed input should be. In other words, supervised learning uses the labeled data sets, 



the pair of the input and the expected output, while unsupervised learning does not use the 

labeled data sets. Supervised learning is typically used for classification tasks when the input is 

mapped to the output labels. On the other hand, in reinforcement learning (RL), the learner has to 

discover which action yields the most reward with trial and error. The two significant features of 

RL are the trial and error search and delayed rewards [18]. 

The two types of DNN are feedforward neural network (FNN) and recurrent neural network 

(RNN). Each neuron in FNN is connected to the adjacent layers but not to the neurons within 

each layer. On the other hand, both the current inputs and hidden states from the previous time 

step are used to determine the outputs of RNN layers. For the applications such as natural 

language processing (NLP), RNN tries to provide NNs with memory because the outputs depend 

on the current inputs and previously accessible information [13].  

Because RNN is time-dependent, non-stationary errors may appear throughout the training 

process. Short-term memory is an issue for RNN. A specific type of RNN known as long short-

term memory (LSTM) has also been developed to reduce certain unwanted information in the 

network. The bidirectional RNN and LSTM are some examples of regularly used RNNs [6]. 

Another DL-based model is a convolutional neural network (CNN) derived from a fully 

connected feedforward network. CNN introduces the concept of designing DNN architectures 

based on the needs of specific scenarios. The idea of CNN is adding convolutional and pooling 

layers before feeding into a fully connected network, as shown in Figure 2.3 [13]. It uses a 

number of locally connected kernels, also called filters, to capture correlations between data 

regions. It allows for preventing parameter growth mainly when applied to image applications. 

For example, the input may comprise thousands or millions of pixels when processing an image. 

However, small important characteristics such as edges with kernels that occupy just tens or 

hundreds of pixels may need to detect. Through this, the model manages to keep fewer 

parameters, decreasing the model’s memory requirements and improving its statistical efficiency 

[19]. 

 

 
 

Figure 2.3. Convolutional neural network. 

 

 

 

 



2.2.1 Training a Neural Network 

Consider a feedforward neural network (NN) with 𝑛 inputs, one hidden layer with 𝑚 neurons 

{𝑒1, 𝑒2, … , 𝑒𝑚} and an output layer with 𝑞 neuron𝑠 {𝑜1, 𝑜2, … , 𝑜𝑞}. In the hidden layer,  there are 

𝑛 weights in each neuron, one for each input. The bias value of the  𝑚 neurons can be described 

as 𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑚] 𝑇 ∈  ℝ𝑚×1. The inputs of the NN can be denoted as  𝐴 =
[𝑎1, 𝑎2, … , 𝑎𝑛]𝑇 ∈  𝑅𝑛×1  and the weight matrix between 𝐴 and 𝑚 numbers of neurons can be 

expressed as 

 

 𝑊 = [

𝜔1

⋮
𝜔𝑚

] ∈  ℝ𝑚×𝑛, (2.1) 

 

where 𝜔𝑚 is the weight vector of the 𝑚𝑡ℎ neuron for 𝑛 inputs and can be expressed as 𝜔𝑚 ∈
 ℝ1×𝑛. Each input is multiplied by the corresponding weight of each neuron, and these input and 

weight multiplication pairs are summed up. The neurons can be expressed as nonlinear activation 

functions, 𝑠(. ). The output of the 𝑚𝑡ℎ neuron can be calculated as, 

 

 �̂�𝑚 = 𝑠(𝜔𝑚𝐴 + 𝑏𝑚). (2.2) 

 

The output vector of the hidden layer can be described as �̂� = [�̂�1, �̂�2, . . . , �̂�𝑚]𝑇  ∈  ℝ𝑚×1 and 

they are also the inputs for each neuron of the output layer. The weight matrix between the �̂� and 

𝑞 neurons can be expressed as,  

 

 �̂� = [

�̂�1

⋮
�̂�𝑞

] ∈  ℝ𝑞×𝑚, (2.3) 

 

where �̂�𝑞 is the weight vector of the 𝑞𝑡ℎ neuron for 𝑚 inputs and can be expressed as �̂�𝑞 ∈

 ℝ1×𝑚. The bias value of the  𝑞 neurons can be described as �̂� = [�̂�1,  �̂�2, … , �̂�𝑞]𝑇  ∈  ℝ𝑞×1. 

Finally, the output layer can be represented as �̂� = [�̂�1, �̂�2, . . . , �̂�𝑞]
𝑇

 ∈  ℝ𝑞×1 and the output from 

the 𝑞𝑡ℎ neuron can be calculated as 

 

 �̂�𝑞 = 𝑠(�̂�𝑞�̂� + �̂�𝑞). (2.4) 

   

Figure 2.4 shows a  simple neural network with three inputs, 𝑛 = 3, two neurons in the hidden 

layer, 𝑚 = 2, and a single neuron in the output layer, 𝑞 = 1.   

 



 
 

Figure 2.4. A simple FNN. 

 

The depth of the neural network corresponds to the number of iterative operations done on 

input data via the transfer functions of sequential layers. The width of the neural network is 

directly related to the memory required by each layer and also refers to the number of output 

activations per layer or the average across all layers [14]. The labeled data is used during training 

to update the weight sets properly. A loss function is defined in the training process to measure 

the gap between the predicted output and the target output. The goal of training the neural 

network is to achieve the weight sets by which the neural networks can give as much accurate 

output prediction as possible. The most commonly used loss functions are mean-squared error 

(MSE) and categorical cross-entropy. The optimization algorithm minimizes the loss function 

and optimizes the desired weight sets. Some popular optimization algorithms are stochastic 

gradient descent (SGD), SGD with momentum, and ADAM, derived from adaptive moment 

estimation. 

ADAM is the optimization algorithm that we mainly use in this thesis. The method is 

developed for efficient stochastic optimization by combining two prior optimation algorithms, 

AdaGrad and RMSProp. It just requires first-order gradients and consumes little memory. With 

ADAM, the individual adaptive learning rates for different parameters are computed using 

estimations of the gradients’ first and second moments [20].   

 

 

2.3 Deep Learning Libraries 

Developing a DL model from scratch is not an easy task. It necessitates forwarding 

behaviors, gradient propagation procedures at each layer, and CUDA coding for GPU 

parallelization. In recent years, deep learning (DL) has grown in popularity, with applications 

ranging from image, video, and speech recognition to natural language processing (NLP). This 

increasing popularity and use case of DL has led to the development of several tools, algorithms, 

and dedicated libraries that make it simple to design and train large NNs. TensorFlow [21], 

Pytorch [22], and Caffee [23] are among such tools, which enable high-level algorithm definition 

in a variety of programming languages or configuration files, automatic differentiation of 

training loss functions across arbitrarily large networks, and compilation of the network’s 



forward and backward passes into hardware optimized concurrent dense matrix algebra kernels. 

[12]. Some of the popular DL libraries are summarized below. 

• Tensorflow 

The google brain team research organization initially introduced Tensorflow. This open-

source library supports numerical computation and large-scale machine learning that 

operates in heterogeneous environments. It can be used to interpret many algorithms, 

including training and inference algorithms for deep neural networks. It has been applied 

to various applications across computer science and other areas, such as speech 

recognition, computer vision, robotics, information retrieval, natural language processing, 

geographic information extraction, and computational drug discovery [21]. TensorFlow 

supports several languages to construct and execute a TensorFlow graph. While Python’s 

application programming interface (API) is currently the most complete and easiest to 

use, there are some languages that Tensorflow API supports, such as C++, Java, and 

Javascript. 

• Keras 

Keras [24] is built upon the TensorFlow platform, which provides higher-level 

programming interfaces. It is a simple, user-friendly, and highly productive interface for 

solving machine learning problems, especially for modern deep learning environments. It 

can efficiently execute low-level tensor operations on CPU, GPU, or TPU [24]. 

• Pytorch 

PyTorch is an open-source library built on the platform of Torch. Developers originally 

developed the program in Lua but later improved it in Python [22]. PyTorch is known for 

achieving high execution speed even when working with large and complex graphs. 

Aside from CPUs and GPUs, it is also highly flexible, allowing it to run on simplified 

processors. PyTorch is becoming more popular thanks to its straightforward way of 

building neural networks. 

• Caffe 

Caffe [23] is a dedicated open-source deep-learning framework developed by Berkeley 

artificial intelligent research (BAIR). It supports deep learning implementations on 

mobile operating systems, including iOS and Android, and the training of neural 

networks on multiple GPUs within distributed systems [12].  

 

2.4 Activation Functions 

An activation function is applied to specify the transformation of the weighted sum of the 

input into an output from a node or neuron in a network layer. There are the nonlinear and linear 

activation functions. Nonlinear activation functions are the most commonly used activation 

functions. The choice of activation function significantly impacts the neural network’s capability 

and performance, and different stages of deep learning models may require different activation 

functions. The followings some popular nonlinear activation functions are described. 

 The sigmoid function is one of the commonly used activation functions. The output curve 

of the sigmoid seems to look like an S-shape and exists between (0 and 1). It can be expressed 

mathematically as  

 



 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

(1+𝑒−𝑥)
 .    (2.5) 

 

Tanh is similar to the sigmoid activation function. It also produces an S-shaped output curve, 

but the Tanh function ranges from -1 to 1. It can be written as 

 

 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 . (2.6) 

 

The Rectified Linear Unit (ReLU) is often used in deep learning algorithms as an activation 

function. When a negative input is provided, the function returns 0. If a positive input is 

provided, the function returns that value. It can be expressed as 

 

 0  𝑖𝑓 𝑥 ≤ 0, and 

 𝑥  𝑖𝑓 𝑥 > 0. (2.7) 

 

The exponential linear unit (ELU) is a variant of ReLU that yields a better output for x < 0. It 

can be expressed as 

 𝛽(𝑒𝑥 − 1)    𝑖𝑓 𝑥 ≤ 0, and 

 𝑥             𝑖𝑓 𝑥 > 0, (2.8) 

 

where 𝛽 is a positive value and controls the value at which an ELU saturates when the inputs are 

negative. 

SELUs stand for the Scaled Exponential Linear Units [25] and can be expressed 

mathematically 

 𝑠𝛽(𝑒𝑥 − 1)    𝑖𝑓 𝑥 ≤ 0, and 

  𝑠𝑥                    𝑖𝑓 𝑥 > 0, (2.9) 

 

where the parameters s = 1.0507 and  𝛽 = 1.6733 are frequently used [12]. 

The softmax activation is often used as the output layer in classification networks since the 

result can be viewed as a probability distribution. The softmax function for the input vector with 

n elements (n category) can be expressed as  

 

 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝑛
𝑖=1

 . (2.10) 

 

 

2.5 Loss Functions 

 

The objective function has to be minimized or maximized according to the model’s target. 

When we minimize it, we may refer to it as the cost function, loss function, or error function 

[26]. The loss function will output a large number when the model approximates improperly. If 

the model predicts a proper approximation, it will result in a lower number. Since we investigate 

our model with various approaches or algorithms, the output of the loss function can tell us if we 

are getting closer to our desired outcome or not. The loss function learns to minimize the 

prediction error during training using some optimization function. 



Depending on the type of learning, loss functions can be divided into two major categories: 

regression losses and classification losses. Regression is the process of forecasting a specific 

value that is continuous, for example, estimating housing prices and stock prices. On the other 

hand, we attempt to predict output from a set of finite categorical values in classification. The 

classification includes dividing the dataset into distinct classes based on the different parameters 

in such a way that previously unknown data can be assigned to one of the classes. The following 

are some commonly used loss functions. 

 

• Mean Square Error (MSE) 

MSE is one of the most commonly used loss functions because it is simple and easy 

to implement. To get the mean squared error (MSE), first, take the difference between the 

model’s approximation ‘ŝ’ and the target value ‘s’ and then calculate the mean of the 

square of that difference. For the n training examples, MSE can be expressed as  

 

 𝑀𝑆𝐸 =
∑ (𝑠𝑖−ŝ𝑖)2𝑛

𝑖=1

𝑛
. (2.11) 

 

• Binary Cross-entropy Loss or Log Loss 

The commonly used loss function for binary classification problems is binary cross-

entropy loss, also known as log loss. Binary classification is a problem in which we must 

categorize observations into one of two labels based on their features. For example, 

assume we have some images of clothes and need to organize them into two classes, one 

for pants and one for tops. It can be interpreted as  

 

 𝐿𝑜𝑔 𝐿𝑜𝑠𝑠 =
−1

𝑛
∑ 𝑠𝑖 𝑙𝑜𝑔(ŝ𝑖) + (1 −𝑛

𝑖=1 𝑠𝑖 )𝑙𝑜𝑔(1 − ŝ𝑖). (2.12) 

  

• Categorical Cross-entropy Loss 

Categorical cross-entropy is a loss function used in multi-class classification tasks. It can 

be written as 

 

 𝐿𝑜𝑠𝑠 = − ∑ 𝑠𝑖 𝑙𝑜𝑔(ŝ𝑖)𝑖 . (2.13) 

 

 

2.6 Literature Reviews 

 

As previously mentioned, the essential requirement of a communications system is the 

reliable delivery of a message from source to destination through a communications channel. In 

practice, a traditional communications system is built as a block structure. This section discusses 

some literature on DL application to physical layer communication.  

 

 

2.6.1 Deep learning Based Joint Channel Estimation and Signal Detection 

In recent years, deep learning (DL) has emerged as an efficient channel estimation approach 

in wireless communication systems. Conventionally, channel estimation and signal detection are 

independent activities at the receiver. Before transmitted symbols are detected, the channel state 



information (CSI)) is estimated via pilot transmission. The transmitted symbols can then be 

recovered at the receiver using the estimated CSI. The paper [26] presents a DL-based strategy 

for joint channel estimation and signal identification in orthogonal frequency-division 

multiplexing (OFDM) systems, which use DL to handle wireless OFDM channels end-to-end. A 

deep learning model is trained offline using the received signals corresponding to the transmitted 

data and pilots. The trained model is then utilized to decode the online transmitted data directly 

without explicitly doing channel estimation. The proposed method is proven to be more robust 

than the traditional methods when fewer pilots are utilized, the cyclic prefix (CP) is omitted, and 

nonlinear clipping noise is present. 

The authors in [27] investigate and compare the performance of DL-based channel estimation 

to that of conventional methodologies such as least-squares (LS) and linear minimum mean-

squared error (LMMSE) estimators. This paper offers a theoretical investigation of DL-based 

channel estimation for single-input multiple-output (SIMO) systems. Since DNN with ReLU 

activation function is mathematically similar to a piecewise linear function, the DL estimator can 

efficiently achieve universal approximation to a large family of functions by utilizing piecewise 

linearity. The other DL approach channel estimation method can be found in [28]. The authors of  

[28] developed the MMSE channel estimator for conditionally normal channel models. After 

that, the CNN estimators are defined using the framework of this MMSE estimator. 

 

 

2.6.2 Deep Learning Approach MIMO-NOMA System 

 

Current NOMA systems suffer from limitations: high computing complexity and significant 

changes in wireless channel conditions make studying the channel characteristics and defining 

the optimal allocation strategy extremely challenging. To overcome this fundamental limitation, 

novel deep learning (DL)-aided NOMA system is proposed in [29], in which a single base station 

serves several NOMA users with random deployment. The DL approach method is used to learn 

the NOMA systems in completely unknown channels in an end-to-end manner. A long short-

term memory (LSTM) network based on DL is included in a standard NOMA system, allowing 

the proposed technique to detect channel properties automatically. In particular, the DL-aided 

NOMA system trains and tests the proposed NOMA system framework for automatic encoding, 

decoding, and channel detection in an additive white gaussian noise (AWGN) channel. 

Simulation results with the proposed scheme are more robust and efficient than those with the 

conventional approach. 

Faster than Nyquist (FTN) and non-orthogonal multiple access (NOMA) have been identified 

as potential methods for achieving better spectral efficiency and massive connectivity. In [30], 

the author proposed a DL-aided novel sliding-window detection method for FTN NOMA. The 

proposed detector achieves higher accuracy than the minimum mean squared error-frequency 

domain equalization (MMSE-FDE). 

The paper [3] presents DL-based SIC decoding for downlink MIMO-NOMA. The MIMO-

NOMA system’s precoding and SIC decoding are jointly optimized (or trained) in this approach 

to minimize the total mean square error of the users’ signals. Deep neural networks are applied to 

build the precoder and SIC decoders so that transmitted signals for multiple downlink users can 

be properly precoded at the transmitter using superposition coding, and each user’s signal is 

extracted using SIC decoding. Except for the first step, two DNNs are employed at each SIC 

step, one for reconstructing the previously decoded signal and the other for decoding the current 



user’s signal. One DNN is required to decode the users’ signal since there is no previously 

decoded user. 

The authors of [31] developed a DL technique for detecting downlink signals in MIMO-

NOMA. A deep neural network (DNN) is employed to work as the entire SIC receiver and 

decode the transmitted signals for all downlink users in a single slot. The DNN’s input is the 

received signal of each received antenna. The typical DNN output layer is fully connected and 

uses the softmax function as an output layer with one-hot encoding. However, signals from 

multiple transmitting antennas should be decoded in a single slot to detect MIMO-NOMA 

signals. As a result, the proposed output layer was created to construct groups. The number of 

groups corresponds to the number of transmitting antennas, and the number of neurons of each 

group corresponds to the number of one-hot encodings. The effect of power allocation and 

modulation type on the performance of the proposed strategy was investigated. 

In [4], convolutional neural networks (CNNs) are used to reconstruct the desired signal of 

uplink users in the MIMO channel. The proposed scheme can instantaneously decode multiple 

users’ information in a cluster without any conventional communication signal processing steps. 

In [9], a DNN with fully connected layers is employed at each SIC step to decode a single user’s 

data. Aside from the input and output layers, DNN has two hidden layers. DNN’s output layer 

generates the decoded bits of the corresponding user. Except for the initial SIC step, the input 

layer is fed by the received combined signal and the previously decoded signals of all users. 

DNNs are trained to map the received signal to the bit sequences emitted. Since we mainly refer 

to the proposed scheme [9] to extend the DL-based SIC systems for higher order modulation, the 

detailed implementation and discussions can be seen in Chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. DEEP LEARNING-BASED SIC WITH QPSK MODULATION 

As discussed in Chapter 2, the deep learning approach to MIMO-NOMA systems has had 

significant interest in recent years due to its promising performance. When investigating the deep 

learning-based SIC, the deep neural network is applied to operate such communication processes 

as estimation of the channel, detection, decoding of the signal, and removal of the decoded 

signal. We extended the existing deep learning-based SIC for higher-order modulation and 

compared it with the conventional MIMO NOMA system in the Rayleigh fading channel.  

In this chapter, we have implemented deep learning-based SIC for the uplink MIMO-NOMA 

system with QPSK modulation in the Rayleigh fading channel proposed by [9] with a slight 

modification. Firstly, we introduce the concept of deep learning-based SIC by formulating the 

system model in Section 3.1. The implementation of DNN for the SIC receiver has been carried 

out in Section 3.2. The discussion of the test and results is in the following Section 3.3. We 

compare the results with conventional NOMA SIC with QPSK modulation. For result analysis, 

we use the BER metric. 

 

3.1 System Model 

We consider the single-cell uplink MIMO-NOMA system, which includes M receiving 

antenna and K users, as shown in Figure 3.1. The figure shows that the users transmit to the base 

station using the same frequency resources with different transmission powers.  

 

 
 

Figure 3.1. Single-cell NOMA uplink system. 

 

As inspired by the analysis in [32], [9], the users transmit the multiple frames, which 

combine the pilot and data symbols, at a consecutive time. Transmission of each frame is during 

the coherent time interval, so the channel impulse response over a single frame is considered 

unchanged. In particular, each frame contains J pilot symbols and N data symbols. We label 



symbols with subscripts L as pilot symbols and D as data symbols. At BS, the receiving data 

signals of all users at any frame can be represented by  

 

 𝒀𝑫 = 𝑯𝑽𝑿𝑫 + 𝑮𝑫, (3.1) 

 

where 𝑿𝑫 denotes the data matrix and can be expressed as 𝑿𝑫 = [ 𝑋1
𝐷 , 𝑋2

𝐷 , … , 𝑋𝐾
𝐷]𝑇 ∈  ℂ𝐾×𝑁. 𝑋𝑘

𝐷 

denotes the data vector of user k’s modulated symbol and can be represented as 𝑋𝑘
𝐷 =

[ 𝑋𝑘,1
𝐷 , 𝑋𝑘,2

𝐷 , … , 𝑋𝑘,𝑁
𝐷 ] ∈  ℂ1×𝑁 and 𝐸 (|𝑋𝑘,𝑛

𝐷 |
2

) = 1. 𝑯 is the channel matrix between all the K 

users, and M receive antennas of BS and is denoted as 𝑯 = [ℎ1,ℎ2, … , ℎ𝐾] ∈  ℂ𝑀×𝐾 where ℎ𝑘 =

[ℎ𝑘,1,ℎ𝑘,2, … , ℎ𝑘,𝑀] ∈  ℂ𝑀×1 is the channel vector between BS and the 𝑘𝑡ℎ user. We consider a  

Rayleigh fading scenario. V is the diagonal matrix and can be expressed as 𝑽 =
𝑑𝑖𝑎𝑔( 𝜆1, 𝜆2, … , 𝜆𝑘). Let us assume 𝑃 as the peak total transmission power of all users, such as 

∑ 𝜆𝑘
𝐾
𝑘=1 ≤ 𝑃.  𝑮𝑫~ 𝒞𝒩(0, 𝑁0𝐼) ∈  ℂ𝑀×𝑁is additive white gaussian noise at BS for data 

transmission. 

Similarly,  the receiving pilot signals of all users at any frame can be represented by  

 

 𝒀𝑳 = 𝑯𝑽𝑿𝑳 + 𝑮𝑳, (3.2) 

 

where 𝑿𝑳 denotes the pilot matrix and can be expressed as 𝑿𝑳 = [ 𝑋1
𝐿 , 𝑋2

𝐿 , … , 𝑋𝐾
𝐿 ]𝑇 ∈  ℂ𝐾×𝐽. 𝑋𝑘

𝐿 

denotes the pilot vector of user k’s modulated symbol and can be represented as 𝑋𝑘
𝐿 =

[ 𝑋𝑘,1
𝐿 , 𝑋𝑘,2

𝐿 , … , 𝑋𝑘,𝐽
𝐿 ] ∈  ℂ1×𝐽 and 𝐸 (|𝑋𝑘,𝑛

𝐿 |
2

) = 1. 𝑮𝑳 ∈  ℂ𝑀×𝐽   is additive white gaussian noise at 

BS for pilot transmission.  

For the power allocation strategy, we consider equal power allocation as in [9]. An equal 

power allocation strategy is also typically selected for massive machine-type communication 

(mMTC) [10]. In addition, it does not necessarily require allocating more power to users with the 

weaker channel. Power allocation strategy depends on the targeted capacity region for users. 

Therefore, the user with a weaker channel can be allocated power higher than or less than or 

equal to the users with the more robust channel [33]. Hence, the equal power allocation factor for 

each user can be represented as 𝜆𝑘 =
𝑃

𝐾
  ∀𝑘 ∈ {1,2, . . . , 𝐾}. The channel coefficients between the 

users and the BS antenna are considered to be independent and identically distributed. Let us 

assume the channel gain is in descending order in contrast to the users’ index, i.e., ‖ℎ1‖ ≥
‖ℎ2‖ ≥ ⋯ ‖ℎ𝐾‖.  

The signal detection at the receiver can be carried out by recovering the received signal. In a 

traditional MIMO-NOMA receiver, extracting the desired signal from the received signal follows 

the steps of channel estimation, detection, and demodulation. Figure 3.2 presents the procedure 

of how a traditional SIC receiver works. The signals of users will be decoded according to their 

signal strength. The highest signal strength user will be decoded first, and then the decoded 

signal is removed from the combined signal. After that, the second-highest signal strength user 

will be decoded. The operation continues till the user with the lowest signal strength is decoded. 

The number of SIC operations is based on the number of users. 

Channel estimation can be done during pilot transmission by using 𝑋𝑘
𝐿 pilot symbols. 

Successive interference cancellation for the MIMO-NOMA system can be carried out by using a 

general ZF-SIC and MMSE SIC scheme. The estimated data vector for the  𝑘𝑡ℎ user decoded by 

ZF-SIC can be expressed as  



 �̂�𝑘
𝐷 = 𝑍𝑘𝒀𝑫, (3.3) 

 

where 𝑍𝑘 = ĥ𝑘
𝐻

(ĥ𝑘ĥ𝑘
𝐻

+ 𝐼)−1 and ĥ𝑘 is the channel estimation vector of the 𝑘𝑡ℎ user such that 

ĥ𝑘 = [ ĥ1, ĥ2, … , ĥ𝑀]
𝑇

∈  ℂ𝑀×1. After that, the decoded signal is subtracted from the received 

signal, and then the next (𝑘 + 1)𝑡ℎ user is decoded. In the same way, the detection for the 𝑘𝑡ℎ 

user using MMSE-SIC can be expressed in general form as  

 

 �̂�𝑘
𝐷 = 𝑊𝑘𝒀𝑫, (3.4) 

 

where 𝑊𝑘 = ĥ𝑘
𝐻

(ĥ𝑘ĥ𝑘
𝐻

+ 𝜌−1𝐼)−1and 𝜌 is the received SNR at the receiver. 𝜌 can be 

calculated as  

 

 𝜌 =
𝑃𝑟

𝑁0
. (3.5) 

 

Furthermore, the signal-to-interference-plus-noise ratio (SINR) analysis [34] for the 𝑘𝑡ℎ user        
(𝑘 ≠ 1) can be interpreted as  

 

 𝑆𝐼𝑁𝑅𝑘 =  
𝜆𝑘𝜌|ℎ𝑘|2

∑ 𝜆𝑗𝜌|ℎ𝑗|
2

+1𝑘−1
𝑗=1

. (3.6) 

 

Meanwhile, the SINR calculation for the first user can be expressed as 

 

 𝑆𝐼𝑁𝑅1 = 𝜆1𝜌|ℎ1|2. (3.7) 

 

 

 
 

Figure 3.2. Traditional SIC receiver architecture. 

 

 

3.2 Implementation of DNN for SIC Receiver 

As discussed in the previous section, the traditional SIC receiver estimates CSI first 

according to the corresponding transmitted pilot symbols. Then, the received signal can be 



reconstructed by using the estimated CSI. In the DL-based SIC approach, the DNN is trained 

during pilot transmission and used to recover the transmitted bits directly without explicitly 

estimating the channel condition or subtracting the decoded signal. In this section, we extend the 

existing research and implement the DNN design for the MIMO-NOMA SIC proposed by [9]. 

A DNN with fully connected layers is used at each SIC step to decode a single user’s data. 

DNN is implemented with two hidden layers besides the input and output layers. The output 

layer of DNN produces the decoded bits of the corresponding user while the input layer is fed by 

the received combined signal and the previously decoded signal of all users, except for the first 

SIC step. DNNs are trained to map the received signal to the transmitted bit sequences. Like in 

the traditional SIC scheme, the user with the highest channel condition will be decoded first. 

Then, the second strongest user will be decoded at the next SIC step. This way, the operation is 

done successively until the lowest user is decoded. The output nodes of each DNN are based on 

the modulation order C. For example, the binary phase shift keying (BPSK) modulation needs 

two nodes, and QPSK modulation requires four. 

Figure 3.3 shows the DL-based SIC architecture for two users. The following modulation 

block after each SIC of DNN is applied to modulate the decoded bits of the corresponding user. 

The modulated symbols of that user are fed into the input of DNN at the next SIC operation. 

 

 
 

Figure 3.3. Deep learning-based SIC architecture. 
 

DNN has Q fully connected layers, and the output layer of each DNN use the softmax 

function. If we consider an input vector 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑐} ∈  ℝ𝐶×1 and then, the output vector 

𝑡 = {𝑡1, 𝑡2, … , 𝑡𝐶} can be represented with real values between 0 and 1 that sum to 1 [35]. The 

Adam optimizer minimizes the categorical cross-entropy loss function between the output value 

and the training target. The loss function [9], [35] can be expressed as  

 

 𝑙𝑜𝑠𝑠 = − ∑ ∑ 𝐵𝑗𝑐𝑙𝑜𝑔 (𝑡𝑗𝑐)𝐶
𝑐=1

𝐽
𝑗=1 , (3.8) 

 
where 𝐵𝑗𝑐 is a binary indicator ground truth such that  𝐵𝑗𝑐 = 1 if and only if the 𝑗𝑡ℎsample is a 

member of the 𝑐𝑡ℎ class. Symbol 𝑡𝑗𝑐 denotes the softmax’s output probability that the 𝑗𝑡ℎ input 

belongs to the 𝑐𝑡ℎ class.  



Let us consider 𝑓𝑘(. ) as  the processing  function of the 𝑘𝑡ℎ DNN. Since all the complex 

signals of users can be separated into real and imaginary parts, the function of the 𝑘𝑡ℎ DNN, 

𝑓𝑘(. ) can be defined as 𝑓𝑘(. ) : ℝ2(M+k−1)  → {0,1}log2(C×1) that maps the received combined signal 

and the previously decoded signal of the 𝑘 − 1 users to the transmitted bit of the 𝑘𝑡ℎuser [9]. The 

weight and bias matrix of the 𝑘𝑡ℎ DNN is updated after training pilot symbols and utilized to 

approximate the function of the  𝑘𝑡ℎ DNN. Exponential linear units (ELU) and rectified linear 

units (ReLU) are used as the activation functions of the first and second hidden layers, 

respectively. 

 

 

3.3. Test and Results 

 

In this section, experimental simulations are conducted to analyze the implemented DL-SIC 

performance. Consider an uplink MIMO-NOMA system with M = 2 antennas, 𝐽 =  960 pilot 

symbols, N = 3840 data symbols, K = 2 users, and P = 1 Watt. All users use QPSK modulation. 

Model training and testing have been done by using TensorFlow in Python. We have trained the 

models over 50 epochs using randomly generated 960 pilot symbols. Then, the trained models 

were tested with 3840 data symbols in the 0 dB to 20 dB SNR range. Each DNN is trained using 

the SGD method with the Adam optimizer with a learning rate of 0.001. Detailed parameters and 

settings for numerical analysis are described in Table 1. 

 

Table 1. Detailed parameters and setting for DL-SIC with QPSK modulation. 

 

Parameter Value/Type 

Number of users 2 

transmit antennas  1 

receive antennas 2 

Optimizer ADAM 

Learning rate 0.001 

Number of symbols 3840 

Number of symbols 960 

Number of hidden layers 2 

Activation function (hidden layer 1) ELU 

Activation function (hidden layer 2) ReLU 

Activation function (Output layer) Softmax 

Number of training epochs 50 

Power allocation factor 0.5 

Modulation QPSK 

Programming  Python, Matlab 

Framework Tensorflow 

Communication channel Rayleigh fading 

 

For the comparison, we use Matlab to implement the MMSE-SIC for traditional MIMO-

NOMA SIC. We assume perfect channel estimation for the MMSE-SIC. All users use QPSK 



modulation. Figure 3.4 shows the BER versus SNR comparison of conventional SIC and DL 

approach SIC  for user 1 and user 2. It indicates that the DL-based SIC performs better than the 

traditional MMSE-SIC across almost all SNR ranges. The BER performances coincide between 

0 and 2 dB in both systems. At 10−3 BER level user 1 and user 2 with DL-SIC reach 

approximately 11 dB and 12 dB, respectively. Meanwhile, those with MMSE-SIC get that BER 

level about at 15 dB and 16 dB. DL-SIC achieved around 4 dB gains compared to MMSE-SIC in 

both users’ cases.  

 

 
 

Figure 3.4. BER versus SNR for user 1 and user 2 with DL-SIC and MMSE-SIC (QPSK). 

 

 



4. DEEP LEARNING-BASED SIC FOR HIGHER-ORDER 

MODULATION 

In this chapter, we investigate the deep learning approach for the MIMO-NOMA system for 

higher-order modulation. We propose a new approach to decode all the users’ signals without 

depending on the modulation order. As we have implemented in Chapter 3 for exiting DL-based 

SIC [9], the output of each DNN at every SIC step depends on the modulation order of the 

transmitting user. Therefore, in this thesis, we implement the new DNN architecture, which can 

adapt to decode the users with different modulations.  

Firstly, we upgrade the DNN architecture inspired by [9] to decode higher-order modulation 

users. After that, we implement our newly proposed DNN design. In this thesis, we apply 

16QAM for higher-order modulation. We also implement ZF-SIC for traditional SIC using the 

same number of pilot symbols (training symbols) and data symbols (testing symbols) over the 

Rayleigh fading channel. The BER  and total MSE metrics are used to analyze and compare the 

results of different methods.  

This chapter consists of four sections. Following a short introduction in Section 4.1, Section 

4.2 implements the DL model for higher-order modulation by upgrading the model with QPSK 

modulation. In Section 4.3, we propose a different layout for DL-SIC. The proposed system’s 

results, which are trained and tested in the different scenarios, are analyzed and compared with 

the based-line system ZF-SIC in the following subsections. In Section 4.4, we test our proposed 

system without feeding the input vectors of the previously decoded symbols to the next SIC 

steps. The comparisons and discussions are also presented. 

 

4.1 Introduction 

As we investigated in Chapter 3, deep learning can help decode NOMA users’ signals 

without necessarily doing channel estimation, demodulation, and subtracting off the previously 

decoded symbols. In Chapter 3, we implemented the system by assuming both users transmit 

using QPSK modulation. In this chapter, we propose two DL-SIC schemes for higher-order 

modulation.  

The system model is generally the same as in the previous chapter, where a single-cell 

MIMO-NOMA  with M receiving antenna system serves K uplink users. The users are now 

capable of transmitting with 16QAM modulation. Training of DNN occurs during pilot 

transmission, and testing occurs during data transmission. Without loss of generality, we 

consider the channel gain in descending order in contrast to the users’ index, i.e., ‖ℎ1‖ ≥
‖ℎ2‖ ≥ ⋯ ‖ℎ𝐾‖. The decoding order follows the order of channel gain. The user with the 

highest channel gain is decoded first. 

 

 

 

 

 

 

 

 



 

4.2 DL-SIC for Higher-Order Modulation Using One DNN at Each SIC Step  

 

 
 

Figure 4.1. DL approach SIC operation for K users during the training and testing phase. 

 

For this proposed method, we upgrade each DNN by adding more hidden layers and more 

nodes at each hidden layer. Figure 4.1 shows the SIC operation of the K users in both the training 

and testing phases. The dashed line represents the training phase, and the solid line represents the 

testing phase. The modulation block at each SIC step is to modulate the decoded bits and feed 

those modulated symbols as input in the next SIC operation, as we have done in the previous 

chapter. As shown in the figure, we still use one DNN at every SIC step as in the chapter 3 

model.  

 

 

4.2.1 Implementation 

The DNN design we implemented for this proposed scheme includes six layers. These six 

layers are one input layer, four hidden layers, and one output layer. All the layers are fully 

connected. At the first SIC step, the input layer receives the combined signals of K users. At  the 

𝑘𝑡ℎ SIC step, the input layer receives the combined signals of K users and the previously 

decoded symbols of all (𝑘 − 1) users. Since the complex received symbol can be separated into 

real and imaginary parts, the number of input layer cells of the first DNN is 2M, and  that of the 

𝑘𝑡ℎ DNN is 2(𝑀) + 2(𝑘 − 1). Each hidden layer includes 256 nodes. While the first hidden 

layer uses ELU as an activation function, all other hidden layers apply ReLU as an activation 

function.  



 
 

Figure 4.2 The output layer with softmax for 16QAM. 

  

The softmax function as the output layer produces the bits of the decoded user. The number 

of nodes in the output layer depends on the modulation order, C. In our case, sixteen categorical 

classification needs at the output layer, such as 0000, 0001, 0010 to 1111. All these classes are 

needed to be one-hot encoded. Figure 4.2 depicts the output layer with the softmax function for 

sixteen categorical classes, where P1 to P16 represent the output probability of each class. Since 

the output layer still depends on the modulation order, we have to consider that the users in this 

system use the same modulation scheme. 

 

4.2.2 Test and Results 

In this section, experimental simulations are conducted to analyze the performance of the 

proposed DL-SIC for higher-order modulation. Consider the number of receive antennas M = 2, 

𝐽 =  1000 pilot symbols, N = 100000 data symbols, K = 2 users, and P = 1 Watt. We apply 

equal power allocation for both users. All users use 16QAM modulation. Model training and 

testing are implemented in Python using TensorFlow. We have trained the models over 100 

epochs using pilot symbols. Then, the trained models are tested with data symbols in the 0 dB to 

20 dB SNR range. Both pilot and data symbols are randomly generated symbols. Each DNN is 

trained using the SGD method with the Adam optimizer with a learning rate of 0.001. 

 

We implement the ZF-SIC for Rayleigh’s fading channel for the baseline comparison in 

Matlab. In this case, we use a power allocation factor is 0.8. We use the same number of pilot 

and data symbols. The detailed parameters and setting for DL-SIC is described in Table 2. Figure 

4.3 shows the BER versus SNR comparison of conventional ZF-SIC and DL approach SIC  for 

user 1 and user 2. It can be clearly seen that the proposed DL- SIC for 16QAM has better 

performance across all SNR ranges. At 10−1 BER level user 1 and user 2 with DL-SIC reach 

approximately 7 dB and 8 dB, respectively. Meanwhile, those with ZF-SIC can get that BER 

level at about 20 dB and larger. We also produce the total MSE curve over different SNR ranges. 

Total MSE can be represented as  ∑ 𝐸 {‖𝑋𝑘
𝐷−�̂�𝑘

𝐷‖
2

}𝐾
𝑘=1  [9]. 



Table 2. Detailed parameters and setting for DL-SIC with 16QAM. 

 

Parameter Value/Type 

Number of users 2 

transmit antennas 1 

receive antennas 2 

Optimizer ADAM 

Learning rate 0.001 

Number of data symbols 100000 

Number of pilot symbols 1000 

Number of hidden layers 4 

Activation function (hidden layer 1) ELU 

Activation function (hidden layer 2,3,4) ReLU 

Activation function (output layer) Softmax 

Number of training epochs 100 

Power allocation factor 0.5 

Modulation 16QAM 

Programming  Python, Matlab 

Framework Tensorflow 

Communication channel Rayleigh fading 

 

 
 

Figure 4.3. BER versus SNR for user 1 and user 2 with DL-SIC and ZF-SIC (16QAM). 



 
 

Figure 4.4. Total MSE versus SNR with DL-SIC and ZF-SIC (16QAM). 

 

Figure 4.4 represents the total MSE versus SNR with DL-SIC and ZF-SIC methods. The 

figure shows that the proposed DL scheme and the traditional ZF-SIC have similar 

performances, around 0 to 2 dB. Overall, the proposed DL-SIC gets a much lower MSE curve 

almost all over the SNR range. 

 

 

4.3 DL-SIC for Higher-Order Modulation Using Two DNNs at Each SIC Step 

In this section, we propose different DL-based SIC for higher-order modulation. In our 

proposed DL receiver, we use two DNNs for each SIC step. Generally, we consider the first 

DNN to recover the first two bits and the second DNN to recover the last two bits of 16QAM. In 

order to make our proposed design more efficient, we adopt a hierarchical 16QAM modulation 

scheme. The output of the first DNN could be two bits of the QPSK symbol or the first two bits 

of 16QAM symbols according to the user’s modulation order. If the user uses QPSK modulation, 

only one DNN is needed to decode the user’s information and does not need to use the second 

DNN. If the user transmits with 16QAM modulation, both DNNs need to be used to recover all 

the user’s information bits.  

The hierarchical modulation was initially proposed in [36] to apply in digital broadcasting for 

HDTV, in which the users receive the information according to their channel capacity. For this 

thesis, we adopted the hierarchical modulation scheme using QPSK symbols to form 16QAM 

symbols inspired by [7]. In that research, hierarchical modulation is used in upgrading the digital 

broadcast receiving system, where the upgraded receiver is applied to receive the secondary 



constellation, and the exiting receiver is still able to decode the basic constellation. The authors 

refer to the QPSK symbols as the basic constellation and the last two bits of hierarchical 16QAM 

as the secondary constellation. Figure 4.5 depicts the basic QPSK modulation constellation and 

the combined constellation of 16QAM. As shown in the figure, the embedded QPSK symbols 

can be found in each symbol of 16QAM within the same quadrant. 

 

  
 

(a) 

 

 
 

(b) 

 

Figure 4.5. (a) QPSK constellation, (b) Hierarchical 16QAM constellation with embedded 

QPSK symbols. 



4.3.1 Implementation 

In this proposed model, two DNNs are implemented for SIC operation. According to the 

hierarchical nature of modulation, we can see the four bits of 16QAM symbols as two QPSK 

symbols. Therefore, the DNN model, which can learn the QPSK symbol, can be used to learn the 

first and second bits of 16QAM symbols. We adopt the same 16QAM constellation for 

hierarchical modulation as in Figure 4.5 (b). The figure shows that the first two bits of every 

16QAM symbol are the QPSK symbol.  

Each DNN design we implemented for this proposed scheme includes four layers. These four 

layers are one input layer, two hidden layers, and one output layer. All the layers are fully 

connected. At the first SIC step, the input layer receives the combined signals of K users. At  

𝑘𝑡ℎ SIC step, the input layer receives the combined signals of K users and the previously 

decoded symbols of all (𝑘 − 1) users. Since the complex received symbol can be separated into 

real and imaginary parts, the number of input layer cells of DNNs of the first SIC step is 2M, and  

that of the 𝑘𝑡ℎ SIC step is 2(𝑀) + 2(𝑘 − 1). Each hidden layer consists of 100 nodes. The first 

hidden layer uses ELU, and the second one uses ReLU as the activation function.  

Figure 4.6 shows the proposed DL-SIC receiver for two users. The dashed line represents the 

training phase (pilot transmission), and the solid line represents the testing phase (data 

transmission). The softmax function as the output layer produces the bits of the decoded user. 

The number of nodes in the output layer is four. This model has four categorical classifications at 

the output layer, such as 00, 01, 10, and 11. All these classes are needed to be one-hot encoded. 

According to the user modulation order, the receiver decides whether to use both DNNs or not. If 

the user transmits using QPSK modulation, only one DNN needs to decode the user’s signal such 

that the output bits of the first DNN is the decoded bits for that user. Otherwise, both DNNs must 

be used to decode all transmitted bits of the user. In that case,  the output bits of the second DNN 

have to attach to the output bit of the first DNN in order to form the complete 16QAM symbol. 

Then, the decoded bits are modulated again in order to feed the input layer of the next SIC step 

together with the received combined signals. In the next section, we will test our proposed 

system without feeding the input vectors of the previously decoded symbols.  

 



 
 

Figure 4.6. Proposed DL-SIC receiver for two users during the training and testing phase. 

 

4.3.2 Test and Results 

Experimental simulations are conducted to analyze the proposed DL-SIC model’s 

performance. Consider the number of receive antennas 𝑀 =  2, 𝐽 = 1000 pilot symbols, 𝑁 =
 100000 data symbols, 𝐾 =  2 users, and 𝑃 =  1 Watt. Model training and testing have 

occurred in Python by using TensorFlow. We have trained the models for 100 epochs using 1000 

pilot symbols. Then, the trained models are tested with 100000 data symbols over the 0 dB to 20 

dB SNR range. Note that, at every SIC Step, our training target for the first DNN is the labeled 

encoded first two bits of 16QAM symbols (QPSK symbols), and that for the second DNN is the 

labeled encoded last two bits of 16QAM symbols. We use the Adam optimizer to minimize the 

categorical cross-entropy loss between the output and the training target. The learning rate is 

0.001. 

We have trained and tested the proposed DNN model on several occasions. These are shown 

as follows.  

• Both users use QPSK modulation. 

• Both users use 16QAM. 

• User 1 uses 16QAM, and user 2 uses QPSK modulation. 

   



 
 

Figure 4.7. BER versus SNR for user 1 and user 2 with DL-SIC and ZF-SIC (QPSK/QPSK). 

 

 
 

Figure 4.8.  Comparison of BER versus SNR for user 1 and user 2 with DL-SIC and proposed 

method (QPSK/QPSK). 

 



In order to validate the proposed model performance with the model we have implemented in 

Chapter 3 for QPSK modulation,  firstly, we trained the model where both users use QPSK 

modulation. Figure 4.7 depicts the BER versus SNR comparison of conventional ZF-SIC and DL 

approach SIC  for user 1 and user 2, where both users use QPSK modulation. The resultant BER 

curve of our proposed scheme has a similar performance to the Chapter 3 model. It indicates that 

our proposed system can decode the user’s signal well by using the first DNN at each SIC step. 

Figure 4.8 compares the proposed model with the Chapter 3 model. The figure shows that the 

proposed model has achieved better performance than the model in Chapter 3. It is approved that 

the proposed DL-SIC can decode the user signal by using one DNN or two according to the user 

modulation order. 

The total MSE performances where both users use QPSK and 16QAM modulation are 

depicted in Figure 4.9 and Figure 4.11. The proposed DL-SIC achieves the total MSE  10−4 at 

approximately 12 dB when both users transmit QPSK symbols. It results in the total MSE  10−4 

at approximately 20 dB when both users transmit 16QAM symbols. 

Figure 4.10 shows the BER performance over different SNR ranges with both DL-SIC and 

ZF-SIC for two users. Both users transmit using 16QAM. In this case, as we have designed, two 

DNNs are used to decode the user’s 16QAM symbols at every SIC step. It can be seen that the 

proposed DL- SIC for 16QAM has better performance across all SNR ranges. At 10−1 BER 

level user 1 and user 2 with DL-SIC reach approximately 8 dB and 9 dB, respectively. 

Meanwhile, those with ZF-SIC can get that BER level at about 20 dB and larger. The proposed 

model achieves the BER 10−4 for user 1 and user 2 at approximately 18 dB and 20 dB, 

respectively. It proves that the proposed DNN model can learn the users’ signals well all over the 

SNR range. 

 

 
 

Figure 4.9. Total MSE versus SNR with DL-SIC and ZF-SIC (QPSK/QPSK). 



 
 

Figure 4.10. BER versus SNR for user 1 and user 2 with DL-SIC and ZF-SIC  

(16QAM/16QAM). 

 

 
 

Figure 4.11. Total MSE versus SNR with DL-SIC and ZF-SIC (16QAM/16QAM). 



 
 

Figure 4.12. BER versus SNR for user 1 and user 2 with DL-SIC and ZF-SIC 

(16QAM/QPSK). 

 

The BER performance for user 1 with 16QAM and user 2 with QPSK modulation is depicted 

in Figure 4.12. To balance NOMA transmission, we allocate 80% of power to user 1 and 20% of 

power to user 2. Both users achieve 10−5 error rate at 18 dB with the proposed DL method. 

Figure 4.13 shows the total MSE performance all over the SNR range. We have experimented 

with our proposed DL-SIC on different occasions where users use two modulations. The 

performance curves indicate that the proposed scheme can decode the users’ signals of QPSK 

symbols or 16QAM symbols at the same SIC step by deciding whether to use two DNNs or not. 

The receiving system becomes more robust than the proposed model in Section 4.2. We will 

compare those two models in Section 4.4. 

 



 
 

Figure 4.13. Total MSE versus SNR with DL-SIC and ZF-SIC (16QAM/QPSK). 

 

 

4.4 Comparisons and Discussion 

 

This section compares the DL-SIC model in Sections 4.2 and the proposed model. In 

addition,  we also investigate the proposed DL-SIC model without adding the previously 

decoded symbols to the next SIC step, which means feeding the previously decoded symbols to 

the DNN for the next SIC operation. Therefore, modulation tasks after decoding each user’s 

signal do not require.  

The comparison of the DL-SIC scheme implemented in Sections 4.2 (first) and the proposed 

model is illustrated in Figure 4.14. The figure shows that the proposed model of Section 4.3 

performs better than Section 4.2. At the 10−3  BER,  user 2 achieves 18 dB with the first model 

while user 2 reaches 20 dB. The performance difference is approximate 2 dB for both user 1 and 

user 2. Even though the first model uses one DNN to decode user signal at each SIC step, the 

width of the neural network is twice the width of the second model. Each DNN of the first model 

has four hidden layers, while the DNNs we have implemented in the second model use two 

hidden layers. Thus, the height of the neural network used in the first model is also two times 

bigger except for input and output layers. This show that the proposed model can achieve better 

performance with two times smaller shapes DNNs, which means that the computational 

complexity of the neural network is two times reduced.  

 



 
 

Figure 4.14. Comparison of BER versus SNR of two implemented DL-SIC models 

(16QAM/16QAM). 

 

In Figure 4.15, the BER performance of a DL-SIC receiver without attaching the decoded 

signal of user 1 (QPSK) to user 2 (QPSK) SIC operation is compared to the proposed model. 

User 1 achieves the same BER performance because it is the first SIC operation, and there is no 

previously decoded user. However, the performance curve for user 2 behaves differently without 

the decoded symbols of user 1. At 10−4   BER, user 2 achieves 12 dB by attaching decoded 

symbols and 13 dB without the previously decoded symbols. The performance difference is 

about 1 dB. 

 

 



 
 

Figure 4.15. Comparison of BER versus SNR with  and without adding previously decoded 

symbols (QPSK/QPSK). 

 

 
 

Figure 4.16. Comparison of BER versus SNR with  and without adding previously decoded 

symbols (16QAM/16QAM). 



Figure 4.16 compares the BER performance of a DL-SIC receiver without adding the decoded 

signal of user 1 (16QAM) at user 2 (16QAM) SIC operation to the proposed model. User 1 

achieves the same BER performance. However, the performance curve for user 2 is altered 

without introducing user 1’s decoded symbols. User 2 achieves 18 dB at 10−3 BER by attaching 

decoded symbols to the received combined signals, while it achieves 19 dB without attaching the 

decoded symbol.  

 

 
 

Figure 4.17. Comparison of BER versus SNR with  and without adding previously decoded 

symbols (16QAM/QPSK).  

 
Figure 4.17 compares the proposed model to the BER performance of a DL-SIC receiver 

without the decoded signal of user 1 (16QAM) at user 2 (QPSK). As in the previous scenario, the 

performance curve for user 2 is degraded without introducing decoded symbols from user 1. By 

attaching decoded symbols to the received combined signals, user 2 achieves 15 dB at 10−3 

BER, whereas user 2 achieves 16 dB without attaching the decoded symbol. The performance 

difference is about 1 dB. The performance difference is approximately 1 dB. It demonstrates how 

adding previously decoded symbols assist DNN in learning properly for the next SIC operation. 

When the number of users grows, it may have a significant impact. In such a case, we should 

consider the complexity and performance trade-offs. 

 

 

 

 



5. FUTURE WORK 

 
We implemented deep learning-aided SIC operation for uplink MIMO-NOMA systems in 

Rayleigh fading channel. We investigated our proposed model with the approach of training 

during pilot transmission and testing during data transmission. Generally, the users transmit 

multiple frames containing the pilot and data symbols sequentially. Because each frame is 

transmitted throughout the coherent time interval, the channel impulse response across a single 

frame is assumed to be unchanged. All the models we have presented in this thesis have been 

trained offline using supervised learning. Training the model with an online learning approach 

for specific channel environments and conditions could be a future research area to 

explore. Implementing the DL-SIC with other fading channels to investigate their performance in 

different fading scenarios should also be considered as future work.  

Another consideration is improving our proposed model so it can decode considerably higher 

modulation schemes. Our current DL-SIC design should apply to scenarios where the users 

transmit 64 QAM symbols. Because the current model can decode the users’ symbols, either 

QPSK or 16QAM, by utilizing one or two trained DNNs, attempting to decode the 64 QAM 

symbols can be accomplished by treating the 64 QAM symbols as a combination of QPSK 

symbols and 16QAM symbols. Another possible extension is upgrading the DL-SIC model for 

millimeter wave MIMO-NOMA systems. In this thesis, we consider an equal power allocation 

strategy. However, the optimal power allocation strategy is important when the number of users 

grows. The DL-SIC system should be extended by applying a DL-based dynamic power 

allocation strategy in the future. Another thing we should explore is the learning strategy; deep 

reinforcement learning (DRL) should be considered rather than supervised learning. DRL is also 

thought to be a promising alternative for dealing with resource allocation challenges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. CONCLUSION 

 
Wireless networks and related services are critical components of today’s computerized 

environment and tremendously impact our daily lives. Data generated by significantly increasing 

devices have a variety of forms and have a nature of complex correlations [5]. As the 5G era 

begins, consumers and businesses define processes and channels to improve efficiency and 

livelihood. As a result, 5G-enabled applications and use cases such as autonomous vehicle 

control, intelligent transportation systems, smart agriculture, and manufacturing cell automation 

are starting to emerge. Because of these various bodies of wireless communications, the existing 

communication mechanism requires improvements in low latency, dependability, and 

availability, among other things [1]. On the other hand,  deep learning can handle a massive 

amount of data and improve performance by using hierarchical feature extraction. It can further 

provide fast and highly accurate network analysis and management with the help of GPU-based 

parallel computing, overcoming the run-time limits of traditional mathematical approaches [12]. 

In recent years, many approaches to the NOMA system have been presented as potential 

multiple access solutions for 5G and beyond. In contrast to traditional orthogonal multiple access 

(OMA) systems, NOMA can service several users while keeping the same degree of freedom 

(DOF) [10] and achieving spectral efficiency. To achieve higher spectral efficiency, the NOMA 

concept has been applied to multiple-input multiple-output systems known as MIMO-NOMA. 

Current NOMA systems have some limitations, such as high computing complexity and a 

difficult optimal allocation strategy according to the significant changes in the wireless channel. 

This thesis proposed a deep learning-aided uplink MIMO-NOMA system specifically for SIC 

operation. The main purpose of this thesis was to investigate the deep learning-based SIC for 

MIMO NOMA systems with higher order modulation. In Chapter 3, we implemented, with 

minor modifications, a deep learning-based SIC for the uplink MIMO-NOMA system using 

QPSK modulation in the Rayleigh fading channel proposed by [9]. The DL-based SIC was 

shown to outperform the equivalent MMSE-SIC at nearly all SNR levels. As we have 

implemented in Chapter 3, the output layer of the previous DL-SIC model [9] depends on the 

modulation order of the transmitting user.  

In Chapter 4, two DL-SIC methods for higher order modulation schemes were proposed. To 

begin, we upgraded the Chapter 3 model’s DNN architecture with QPSK modulation to decode 

higher-order modulation users. After that, we proposed a new SIC receiver layout that uses two 

DNNs in each SIC step. On three separate occasions, we trained and tested the proposed DNN 

model: both users use QPSK modulation; both use 16QAM; user 1 uses 16QAM, and user 2 uses 

QPSK modulation. After experimenting with our proposed DL-SIC on different occasions, the 

performance curves indicate that the proposed scheme can decode the users’ signals of QPSK 

symbols or 16QAM symbols at the same SIC step by deciding whether to use two DNNs or not. 

The receiving system becomes more robust than the first proposed model. 

We also simulated the model when the previously decoded symbol of user 1 does not apply to 

DNN when decoding the symbols of user 2. The BER curves showed that user 2 experiences 

more error propagation than user 2 with previously decoded symbols. The performance 

difference is about 1 dB. It shows how adding previously decoded symbols aids DNN in properly 

learning for the next SIC operation. When the number of users increases, the impact may be 

significant. In this case, we must weigh the complexity and performance trade-offs. 



The DL-SIC can also help limit the SIC error propagation problem to some extent. In 

addition, the advantages of DL-SIC over conventional SIC are low latency processing due to the 

parallelized computing architecture and lower complexity as a result of decoding the user’s 

signal without the need to estimate channel coefficients or explicitly subtract the decoded signal. 

To summarize, the numerical results showed that the BER and total MSE performance of the 

MIMO NOMA system with DL-approach SIC outperformed that of the conventional SIC. 
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