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ABSTRACT 

Diabetes is a metabolic disorder characterized by elevated blood glucose levels. 

The disease, therefore, reflects an imbalance in blood glucose and is a result of 

the body’s inability to produce enough or to use the produced insulin efficiently. 

The impairments in temperature regulation during exposure to thermal stress 

have been linked to diabetes in recent years. During extreme heat events, 

diabetics have been reported to be particularly vulnerable, leading to high rates 

of hospitalizations and deaths. As climate change leads to higher global average 

temperatures, this area of research has attracted special interest.  

This thesis was carried out as part of a research group at the Centre for 

Environmental and Respiratory Health Research (CERH), where an 

experimental study was conducted to investigate how advanced type 2 diabetes 

affects the neurological, cardiovascular, and metabolic responses in cold and 

warm environments. The aim of this thesis is to study cardiovascular system 

responses such as low-frequency oscillations of blood pressure, heart rate, and 

tissue blood flow during heat exposure. 

The thesis's first part focuses on the cardiovascular system and its function, 

and how it is changing in diabetes. Also, human thermoregulation is discussed, 

and a general overview of the studied cardiovascular signals is presented. The 

second part describes the methods used to analyze the signals. All the signal 

processing is done in the Matlab environment. The third part of the thesis 

presents the results. 

The results of this thesis showed that, in general, all calculated mean 

parameters were lower in diabetics. Also, the change in the intervention was  

generally dampened in diabetics, which suggests that the thermoregulatory 

response is different between diabetic and control groups. Overall, the results 

suggest that there is a difference between diabetics and controls in the parameters  

of studied signals, and the difference is reflected in the time-domain parameters  

as well as in the amplitude and power parameters of the frequency-domain.   
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Salovaara M. (2022) Sydän- ja verenkiertojärjestelmän matalataajui nen 
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TIIVISTELMÄ 

Diabetes on aineenvaihduntasairaus, jolle on ominaista kohonnut veren 

glukoosipitoisuus. Sairaus kuvastaa siis veren glukoosipitoisuuden epätasapainoa 

ja se johtuu siitä, että elimistö ei pysty tuottamaan riittävästi tai käyttämään 

tuottamaansa insuliinia tehokkaasti. Lämpötilan säätelyn heikkeneminen 

lämpöstressille altistumisen aikana on viime vuosina yhdistetty diabetekseen. 

Äärimmäisten helleilmiöiden aikana diabeetikoiden on raportoitu olevan 

erityisen alttiita, mikä johtaa suuriin sairaalahoito- ja kuolemantapauksiin. 

Koska ilmastonmuutos johtaa maailmanlaajuisesti korkeampiin 

keskilämpötiloihin, tämä tutkimusalue on herättänyt erityistä kiinnostusta. 

Tämä diplomityö tehtiin osana Ympäristöterveyden ja keuhkosairauksien 

tutkimuskeskuksen (CERH) tutkimusryhmää, jossa tehtiin kokeellinen tutkimus, 

jossa selvitettiin, miten pitkälle edennyt tyypin 2 diabetes vaikuttaa neurologisiin, 

kardiovaskulaarisiin ja metabolisiin vasteisiin kylmässä ja lämpimässä 

ympäristössä. Tämän diplomityön tavoitteena on tutkia sydän- ja 

verenkiertoelimistön vasteita kuten verenpaineen, sykkeen ja kudosverenkierron 

matalataajuista värähtelyä lämpöaltistuksessa. 

Diplomityön ensimmäisessä osassa keskitytään sydän- ja 

verisuonijärjestelmään ja sen toimintaan sekä siihen, miten se muuttuu 

diabeteksessa. Lisäksi käsitellään ihmisen lämmönsäätelyä ja esitetään 

yleiskatsaus tutkituista sydän- ja verisuonisignaaleista. Toisessa osassa kuvataan 

signaalien analysointiin käytetyt menetelmät. Kaikki signaalinkäsittely tehdään 

Matlab-ympäristössä. Työn kolmannessa osassa esitellään tulokset. 

Tämän diplomityön tulokset osoittivat, että yleisesti ottaen kaikki lasketut 

keskimääräiset parametrit olivat alhaisempia diabetesta sairastavilla. Myös 

lämpötila-altistuksen muutokset olivat yleisesti ottaen vaimeampia diabetesta 

sairastavilla, mikä viittaa siihen, että lämmönsäätelyvaste on erilainen diabetesta 

sairastavilla ja kontrolliryhmän välillä. Kaiken kaikkiaan tulokset viittaavat 

siihen, että diabetesta sairastavien ja kontrolliryhmän välillä on eroja tutkittujen 

signaalien parametreissa, ja ero näkyy aika-alueparametreissa sekä 

taajuusalueen amplitudi- ja tehoparametreissa. 

 

 

Avainsanat: diabetes, sydämen sykevaihtelu, verenpaine, laser-Doppler-

virtausmittaus, lämmönsäätely 
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1. INTRODUCTION 
 
Diabetes mellitus, commonly known as diabetes, is a metabolic disorder characterized 

by elevated blood glucose levels. Diabetes is therefore an imbalance in blood glucose 
in a person’s body and is a result of the body’s inability to produce enough insulin or 

to use the insulin it does produce efficiently. [1, 2] It can be classified into four 
categories: type 1 diabetes (T1DM), type 2 diabetes (T2DM), gestational diabetes due 
to pregnancy, and other types of diabetes (due to monogenic diabetes syndromes, 

diseases of the exocrine pancreas or drug-induced diabetes) [3]. Type 1 and type 2 
diabetes are the most common forms of the disease, accounting for around 10 % and 

90 % of cases respectively. Type 1 diabetes is the result of immune-mediated 
destruction of islet β-cells and is characterized by the cessation of insulin production 
by the endocrine pancreas. Therefore, the management of type 1 diabetes always 

requires the administration of exogenous insulin. Type 2 diabetes typically involves a 
combination of insulin resistance and relative (rather than absolute) insulin deficiency, 

and it is most often diagnosed in adults. Type 2 diabetes is usually associated with 
several comorbidities such as metabolic syndrome, obesity, hypertension, 
dyslipidemia, and other cardiovascular diseases. In general, type 2 diabetes is related 

to general health and lifestyle, as well as changes associated with normal aging. Unlike 
type 1 diabetes, type 2 diabetes can be treated in a variety of ways, including lifestyle 

changes, non-insulin drugs, and the administration of exogenous insulin. [4] 
Diabetes is a global public health problem. In 2014 there were about 422 million 

people with diabetes worldwide, most of them living in low- and middle- income 

countries, and each year 1,5 million deaths are directly derived from diabetes [1]. The 
number of cases and the prevalence of diabetes have increased over the past few 

decades and the prevalence is estimated to increase to 693 million diabetics worldwide 
by the year 2045 (age 18-99 years) [5]. In 2010 health expenditure for diabetes in the 
European region was estimated at US$ 105,5 billion, and by the year 2030, the health 

expenditure is expected to reach US$ 124,6 billion, according to the Internationa l 
Diabetes Federation [6]. Much of the burden of diabetes is due to disabling and 

common complications of the disease, which are typically related to glycemic control 
levels (i.e., HbA1c). People with type 2 diabetes are a particularly vulnerab le 
population because they tend to have relatively poor general health combined with 

multiple comorbidities [4]. 
The impairments in temperature regulation during exposure to thermal stress have 

been linked to diabetes in recent years. During extreme heat events, type 1 and type 2 
diabetics have been reported to be particularly vulnerable, leading to 
disproportionately high rates of hospitalization and death. It has been suggested that 

diabetics are more susceptible to cold stress, but several studies in the field have also 
suggested that cold exposure could have potential therapeutic effects for type 2 

diabetics. However, both high and low ambient temperatures have been associated 
with increased diabetes mortality. As climate change leads to higher global average 
temperatures and increases the frequency of heatwaves, this area of research has 

attracted special interest. When climate change is linked to the increasing prevalence 
of diabetes, it has become a double threat, increasing the burden of the disease. [4, 7] 

Thermal stress can challenge human homeostasis, especially the cardiovascular 
system and glycemic control. Cardiovascular regulation plays a crucial role in 
temperature regulation during heat and cold stress when blood must redistribute 

towards the periphery (i.e., vasodilatation) and towards the core (i.e., vasoconstrict ion) 
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to maintain a stable core temperature and thus temperature balance. However, 
vulnerable individuals with potentially impaired cardiovascular capacity, such as 
many people with type 1 and type 2 diabetes, may not be able to respond appropriately. 

[4] 
Hemodynamic and physiological parameters such as blood pressure (BP), heart rate 

(HR), and tissue blood flow can provide information on the health status of an 
individual. These parameters can change with changes in ambient temperature and can 
therefore provide valuable information on the physiological regulation of the 

individual, the pathophysiological state of diseases and their progression. This thesis 
was carried out as part of a research group at the Centre for Environmental and 

Respiratory Health Research (CERH) at the University of Oulu, where an experimenta l 
study was conducted to investigate how advanced type 2 diabetes combined with 
hypertension affects the neurological, cardiovascular, and metabolic responses in cold 

and warm environments. The objective of this thesis is to explore the low-frequency 
oscillatory characteristics of the cardiovascular system based on tissue blood flow, 

heart rate, and blood pressure parameters in diabetic and healthy subjects in response 
to acute exposures to heat and cold. The above parameters will be analyzed and studied 
before, during, and after temperature exposure to see how these parameters evolve and 

potentially change. The main goal of this thesis is to explore if these parameters change 
in T2DM patients compared to the control group during the thermal challenge and 

whether these differences are reflected in the amplitude and/or power of low-frequency 
oscillations between the groups. In addition, the parameters will be analyzed in the 
time-domain to examine responses between individuals, and between diabetic patients 

and healthy controls. The thesis will focus on the processing and analysis of the 
measured data using Matlab. 

The Centre for Environmental and Respiratory Health Research (CERH) is a 

multidisciplinary research group at the Faculty of Medicine at the University of Oulu. 
CERH's strategy is related to education, awareness, and research on global 

environmental health impacts. Research activities will make use of registry, 
population-based, clinical, and experimental studies. CERH also provides training in 
public health, epidemiology, and environmental health for medical students and Ph.D. 

students. [8] 
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2. BACKGROUND 
 
The human body is made up of trillions of cells. They form organs and organ systems 

that work together to carry out vital functions. Many functions and tasks are 
overlapping and interdependent, so cooperation requires communication between cells 

and mechanisms to regulate vital functions. Interactions and functions of the 
cardiovascular and nervous systems play a key role in this regulation. [9, 10 p. 10-11] 

The body is constantly maintaining its internal state through various physiologica l 

and biochemical reactions. This steady-state of internal conditions maintained by 
living beings is called homeostasis. Maintaining homeostasis requires constant 

monitoring of the internal conditions of the human body. Each physiological condition, 
from body temperature to blood pressure and the levels of certain nutrients, has a 
specific set point, which is a physiological value around which the normal range of 

variation fluctuates. The normal range is a restricted set of values that is optimal for a 
healthy and stable condition. The control centers in the brain and other parts of the 

body monitor and react to deviations from homeostasis using negative feedback, which 
is the mechanism that reverses the deviation from the set point. Therefore, negative 
feedback keeps the body's parameters within the normal range. The maintenance of 

homeostasis by negative feedback continues throughout the body at all times. [9, 10 p. 
17-18]  

2.1. Cardiovascular System 

The cardiovascular system is one of the organ systems of the human body, and its 
function is to circulate blood throughout the human body to provide nutrition, building 

materials, and oxygen while removing carbon dioxide and other metabolic waste from 
the cells. In addition to this vital function, it works alongside the nervous system to 

mediate communication between cells and transport hormones and other 
neurotransmitters to target organs, and without a functioning cardiovascular system, 
human thermoregulation would not be possible. The cardiovascular system consists of 

three components: blood, heart, and blood vessels. These form a continuous 
connection consisting of a pump (the heart), a high-pressure distribution circuit, 

exchange blood vessels, and a low-pressure collection and return circuit [9, 10 p.128-
129, 15 p. 303-323].  

2.1.1. Heart and Blood vessels 

The heart is a vital organ, and its function is to pump blood into circulation. The heart 
is a four-chamber organ, where the two atriums collect the blood, and the two 

ventricles pump out the blood to the lungs i.e., the pulmonary circulation, and the rest 
of the body i.e., the systemic circulation. The pumping action of the heart is largely 
autonomic, which means that the heart functions fairly independently under the control 

of its own regulatory system. Figure 1 shows the anatomy of the heart and the main 
blood vessels connecting to it. The resting or the filling phase of the ventricle is called 

diastole, and the contracting or pumping phase is called systole. [9, 16 p. 14-28.] 
The heart muscle, myocardium, is formed out of special cardiac muscle cells, which 

resemble skeletal muscle but are multinucleated and the individual cells or fibers are 

interconnected in a latticework fashion, thus the stimulation or the depolarization of 
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one cell spreads the action potential through the myocardium to all cells and makes 
the heart function as a unit [10 p. 90, 15 p. 303-323].  

In the junction of the superior vena cava and the right atrium are specialized 

pacemaker cells that form the sinoatrial (SA) node, which controls the heart rate or 
cardiac rhythm. Impulses from the autonomous and central nervous systems control 

the SA node firing, leading to the delivery of acetylcholine or adrenaline 
neurotransmitters. The former causes a decrease in heart rate upon vagal stimula t ion 
and the latter causes an increase in heart rate upon sympathetic stimulation. The SA 

node is a natural pacemaker that triggers its own series of action potentials, which 
propagate along with a specialized conduction system in the rest of the heart, causing 

a specific pattern of excitation and contraction. The average resting heart rate is about 
70 beats per minute (bpm). Heart rate is lower during sleep and higher during exercise 
when it can reach as high as 200 bpm. In most people, a resting heart rate lower than 

50 bpm can indicate a disorder called bradycardia. A high resting heart rate, on the 
other hand, can be due to illness, disease, or cardiac abnormalities, and is called 

tachycardia. Arrhythmias are any disorders of the regular rhythmic activity of the 
heart, which can be caused by irregular firing patterns of the SA node or by excessive 
and abnormal pacing activity in other parts of the heart. [9, 16 p. 14-28.] 

 

 
 

Figure 1. The heart [17]. 

 
The right atrium receives the blood from the systemic circulation through the 

inferior and superior vena cava. During the atrial contraction, blood is passed to the 
right ventricle through the tricuspid valve. During ventricular systole, the blood is 
pumped out to the pulmonary circulation, through the pulmonary valve, and into the 

lungs for oxygenation. The left atrium receives the oxygenated blood from the 
pulmonary circulation, and it is further passed on to the left ventricle during atrial 

contraction via the mitral valve. The left ventricle pumps the blood to the systemic 
circulation during ventricular systole, and it is the strongest among the chambers 
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because it has to pump the blood through the aortic valve and the aorta against the 
pressure of the systemic circulation. [16 p. 14-28.] 

Blood vessels provide a transportation system for the blood throughout the whole 

body and the physical site where gases, nutrients, and other substances can change 
with cells. Figure 2 illustrates the human circulatory system and shows the main blood 

vessels. The arteries compose the high-pressure tubing that propels oxygen-rich blood 
away from the heart into the tissues. The arteries have thick walls and therefore no 
gaseous exchange happens between arterial blood and surrounding tissues. From the 

heart, the blood is pumped into the highly muscular but elastic aorta and from there 
distributed into the body through an intricate and efficient network of arteries and 

smaller arterial branches called arterioles. The walls of arterioles constitute circular 
layers of smooth muscle that either constrict or relax regulating blood flow to the 
periphery. They can dramatically change their internal diameter to rapidly react to 

changing conditions and therefore adjust blood flow through the vascular circuit, the 
arterioles are thus sometimes referred to as “resistance vessels”. The arterioles form 

and branch to smaller and less muscular vessels called metarterioles and these end in 
a mesh of microscopically small blood vessels called capillaries. The capillary wall 
usually consists of a single layer of rolled-up endothelial cells and some capillaries are 

so small in diameter that only one red blood cell is able to pass through at a time. The 
capillary diameter is controlled by a precapillary sphincter, a ring of smooth muscle at 

the origin of the vessel. This sphincter provides an important local means of blood 
flow regulation by contracting and relaxing within specific tissue to meet the metabolic 
requirements. Vascular continuity continues into the venous system, where capillar ies 

feed the deoxygenated blood into the small venules and veins. The blood flow velocity 
here again raises as the venous system cross-sectional area is smaller than capillar ies. 
The small veins in the lower body (abdomen, pelvis, and lower extremities) eventually 

empty into the inferior vena cava, the body’s largest vein. From the upper body (head, 
neck, shoulder regions, thorax, and part of the abdominal wall) blood flows into the 

superior vena cava. Both inferior and superior vena cava empties into the right atrium 
of the heart and flows through the right ventricle into the pulmonary artery to the lungs 
where the gas exchange takes place in the alveolar-capillary network. The oxygenated 

blood returns through the pulmonary veins into the left atrium to begin the passage 
once again throughout the body. [9, 15 p. 303-323] 
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Figure 2. Human circulation system [18]. 

2.1.2. Blood Pressure

 
Blood flow is initiated by the contraction of the heart's ventricles. The contraction of 
the left ventricle ejects blood through the aorta into the major arteries, creating pressure 
within the arterial system, causing a pressure wave to travel down to the distal branches 
of the arterial tree. Arterial blood pressure reflects the combined effect of the arterial 
blood flow per minute (i.e., the cardiac output) and resistance to that flow in the 
peripheral vasculature. Blood pressure is controlled by the relationship between 
circulating fluid volume and peripheral vascular resistance. Circulating fluid volume 
is regulated by blood fluid volume and cardiac contractile force. Blood fluid volume 
is influenced by the balance of sodium storage and excretion (reflecting salt sensitivity 
and sodium intake). Cardiac contractility is regulated by both sympathetic nervous 
activity and cardiac function. Peripheral vascular resistance is regulated by vascular 
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tone, which is influenced by both vascular remodeling and vasoactive substances such 
as the renin-angiotensin system. [9, 15 p.306-310, 18] 

The highest pressure produced by the heart averages 120 mmHg in normotens ive 

people at rest during left ventricular contraction (systole). This systolic blood pressure 
is an estimate of the work of the heart and the force with which blood is exerted to the 

artery walls during ventricular systole. During the relaxation phase of the heart, the 
natural elasticity of the arteries maintains a constant pressure head. This ensures a 
steady flow of blood to the periphery until the next blood burst. During the relaxation 

phase of the cardiac cycle (diastole), arterial blood pressure falls to 60-80 mmHg. This 
diastolic blood pressure indicates peripheral resistance, i.e., the ease with which blood 

flows from the arteries into the capillaries. When peripheral resistance is high, the 
pressure in the arteries after systole does not disappear rapidly. Instead, it remains 
elevated for most of the cardiac cycle. [15 p. 306-310] 

2.1.3. Cardiovascular system and diabetes 

With a large proportion of people with type 2 diabetes being older adults, the effect of 

type 2 diabetes can be confounded by the typical age-related decline in cardiovascular 
function. It has been reported that people with type 2 diabetes had higher resting heart 
rates (as a percentage of maximum heart rate) and reduced stroke volume and cardiac 

output per minute compared with healthy young controls but were no different from 
the age-matched control group. On the other hand, other studies have reported that 

although the decline in cardiovascular function with aging is similar to that in people 
with type 2 diabetes, their absolute functional levels are lower, suggesting that aging 
and type 2 diabetes have synergistic negative effects. It is also known that people with 

type 2 diabetes have reduced exercise capacity compared to healthy individua ls. 
Although the mechanism(s) underlying this functional impairment is not clear, it is 
thought to be related to a dampening of cardiac output growth during exercise due to 

left ventricular diastolic dysfunction. [4]  
During intense heat exposure/exercise, people with type 2 diabetes may also have 

difficulty regulating blood flow. For example, type 2 diabetes is associated with 
impaired sympathetic neural control of blood pressure, manifested by greater 
orthostatic intolerance compared to age-matched controls. In addition, type 2 diabetics 

have a reduced baroreflex sensitivity, which is closely related to the level of insulin 
resistance. Thus, it would be expected that individuals with type 2 diabetes would be 

less able to maintain blood pressure and cardiovascular stability during extreme heat 
exposure and/or exercise. [4]  

T2DM is associated with macrovascular changes, such as arterial stiffness in large 

elastic arteries. In addition, vascular endothelial dysfunction has been reported in 
patients with T2DM. These macrovascular events are usually accompanied by 

significant and progressive microvascular events due to functional and structural 
changes. The microvasculature can be characterized as a network of arteries, 
capillaries, and veins with diameters of less than 150 µm and is responsible for 

regulating tissue perfusion for optimal gas exchange and removal of metabolic waste 
products.  Functional changes in the microcirculation in T2DM include altered 

microvascular blood flow, vascular resistance, and vascular permeability 
characteristics. One of the major causes of vascular abnormalities in diabetes is 
hyperglycemia, which affects among other things impaired vascular permeability, 

vascular tone, and automatic regulation of blood flow. In people with T2DM, the 



 

 

16 

media cross-sectional area of small blood vessels is increased, suggesting hypertrophic 
remodeling. Mechanisms underlying hypertrophic remodeling may include increased 
wall stress due to impaired myogenic response of small arteries in T2DM. The 

presence of endothelial dysfunction in T2DM may be related to the increased 
permeability of microvessels to large molecules such as albumin. In addition, vascular 

dysfunction of the capillary network in T2DM may alter insulin delivery and thus 
impaired insulin sensitivity. Observed microvascular structural changes in T2DM 
include thickening of the capillary basement membrane and reduced capillary size. 

Changes in the extracellular matrix of blood vessels are also observed in the vascular 
walls of T2DM patients. Although these structural and functional changes have been 

observed in diabetes, the mechanisms of these changes are not yet fully understood. 
[20, 21] 

2.1.4. Hypertension and diabetes 

Abnormally high blood pressure, called hypertension, strains chronically the 
cardiovascular system and, if left untreated, damages arterial vessels and leads to 

arteriosclerosis, heart disease, stroke, and kidney failure. Hypertension can be 
diagnosed when systolic blood pressure (SBP) is above 140 mmHg and/or diastolic 
blood pressure (DBP) is above 90 mmHg, of which systolic blood pressure is the more 

reliable and accurate predictor of risk associated with hypertension. The risk of 
developing hypertension increases with age, with a lifetime risk of over 80 %.  

Lowering blood pressure is effective in preventing strokes and other vascular events 
and lowering SBP by just 2 mmHg reduces deaths from stroke by 6 % and deaths from 
heart disease by 4 %. Drug treatment of hypertension is recommended if non-

pharmacological approaches prove ineffective. [15 p. 315-316, 22].  
Hypertension is a well-known complication of diabetes, and diabetes is a well-

known complication of hypertension. Both diabetes and hypertension can cause 

various complications without symptoms. Type 2 diabetes and hypertension are well-
established risk factors for cardiovascular disease (CVD), and people with T2DM and 

hypertension have an increased risk of CVD mortality. This increased risk is thought 
to be due to the synergistic effect on large and small blood vessels simultaneous ly, 
which reduces the compensatory collaterality that protects organs from the adverse 

effects of damage to either vascular bed. As the main function of the vasculature is to 
deliver oxygen and nutrients to tissues, the functional changes that occur in T2DM and 

hypertension significantly alter the hemodynamic stress on the heart and other organs. 
And the interaction between these two conditions can also lead to the development of 
stroke and myocardial infarction due to the progression of arteriosclerosis. [19, 20] 

The increase in blood pressure is preceded the endothelial dysfunction and vascular 
remodeling, through which the resistance vessels narrow, and this promotes the 

elevation in blood pressure and the increase in vascular resistance. The blood pressure 
elevation is observed in resistance vessels that undergo vascular remodeling if the 
functional vasoconstriction remains at a constant level. The advanced vascular 

endothelial dysfunction promotes the progression of vascular remodeling and thus a 
cycle can develop. The presence of coexisting risk factors (e.g., hypertension, diabetes, 

and dyslipidemia) promotes more advanced vascular endothelial dysfunction and 
ultimately produces damage to various organs. The development of arteriosclero s is 
involves oxidation stress, inflammation, vasoactive materials, cytokines, chemokines, 

and growth factors that can affect each other. [19] 
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2.2. Autonomic Nervous System 

The human nervous system can be divided anatomically into two major parts: the 
central and peripheral nervous systems. The central nervous system (CNS) is the brain 

and spinal cord, and the peripheral nervous system (PNS) is the nerves and ganglia 
outside the CNS. The nervous system can also be divided into two parts mostly based 

on a functional difference in responses: the somatic and autonomic nervous systems. 
The somatic nervous system (SoNS) is associated with conscious perception and 
voluntary motor responses and the autonomic nervous system (ANS) is associated with 

involuntary responses of the body, such as those related to homeostasis. In addition to 
the endocrine system, the ANS is an important part of the body's homeostatic 

mechanisms, and it can be divided into two divisions. The two divisions are the 
sympathetic nervous system (SNS) and the parasympathetic nervous system (PSNS). 
The sympathetic system is associated with the fight or flight response, and the 

parasympathetic system is referred to as rest and digest. The interaction and balance 
between the sympathetic and parasympathetic divisions, or homeostasis, leads to 

sympathovagal balance, which is responsible for, among other things, modulating the 
sinus node, promoting heart rate regulation, altering systolic and diastolic volumes, 
and promoting control of vascular smooth muscle cells, thereby affecting peripheral 

vascular resistance. Most of the organs under the autonomic regulation receive 
connections from both sympathetic and parasympathetic divisions. The division of the 

autonomic nervous system, therefore, does not mean that its different parts are 
independent units, but that it functions as a whole. [9, 10 p. 328 – 350, 11] 

The sympathetic nervous system is activated during stress and physica lly 

demanding situations, for example, to improve the body's physical performance and 
prepare it for demanding tasks. Due to the interconnection of sympathetic ganglia, the 
effect extends to all target organs of the sympathetic nervous system. Activation of the 

sympathetic nervous system, in general, accelerates the activity of the target organs. 
The parasympathetic nervous system, on the other hand, is activated during rest and 

recovery, when, for example, digesting food and replenishing the body's resources is 
more important than using resources. In normal situations, the parasympathe t ic 
nervous system plays a more dominant role in the regulation of target organs. 

Parasympathetic activity, for example, reduces the pumping force of the heart and 
lowers blood pressure. Most parasympathetic nerve fibers pass through the vagus 

nerve. Parasympathetic ganglia are not connected, so its effects may therefore be 
limited to a single target organ. Both divisions are equally important and chronic 
changes in the balance between the two, cause autonomic dysfunction. And because 

cardiovascular autonomic dysfunction is potentially arrhythmogenic, it can predispose 
to atrial and ventricular arrhythmias and sudden cardiac death. [9, 10 p. 328 – 350, 11] 

Heart rate variability (HRV) is the variation between each heartbeat in relation to 
time. It is highly influenced by the autonomic nervous system and as such is an 
indicator of ANS function and therefore is used to analyze it. The duration of 

consecutive heartbeats is not fixed and reflects the combined activity of sympathet ic 
and parasympathetic divisions, the greater the variation, the greater the 

parasympathetic activity. High HRV reflects the individual's ability to adapt 
continuously to changes in the microenvironment (although, higher HRV is not always 
better because pathological conditions can produce HRV) and low HRV is a marker 

of cardiovascular risk. Measuring HRV is convenient because it is non-invas ive, 
painless, and cost-effective. But, although HRV indices and their interpretations are 
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well established in the literature, their reference values are still not standardized. In 
1996, the European Society of Cardiology and the North American Society of Pacing 
and Electrophysiology published guidelines setting out standardized values for HRV 

measurements and their clinical correlations. However, some of the ranges were from 
studies with small sample sizes and were not adjusted for potential confounding factors 

such as gender, age, or environmental factors. They should therefore be considered as 
estimates. However, despite criticism and the lack of standardized reference values, 
HRV remains a method widely associated with health and the body's ability for self-

regulation, adaptability, or resilience, as well as early detection of autonomic changes 
and increased cardiovascular risk. Moreover, HRV has been reported as a tool for 

identifying cardiovascular disease risk even in individuals with no history of 
cardiovascular disease. [11, 13, 14] 

2.2.1. Autonomic nervous system regulation and diabetes 

Several studies have evaluated the assessment of heart rate variability in T2DM, but 
there have been conflicting results reported. In general, studies show that individua ls 

with T2DM have reduced heart rate variability at rest and during postural changes 
compared to age-matched controls. Some evidence suggests that heart rate variability 
may be a predictor of diabetes-related complications. In a recent meta-analysis main 

finding was that T2DM patients had a strong decrease in HRV, in both sympathet ic 
and parasympathetic activity, compared to non-T2DM persons. This decrease in HRV, 

which is shown in most of the time and frequency parameters, can be explained by the 
adverse metabolic effects of blood glucose levels on HRV, although it has been 
suggested that acute episodes of hyperglycemia cause more harm than chronic poor 

glycemic control. Dyslipidemia and hypertension are also associated with decreased 
HRV in T2DM. Many diseases or conditions have been linked with a decrease in 
parasympathetic activity and sympathetic activity increase, but in this meta-analys is, 

they demonstrated that in T2DM both divisions were decreased in activity, compared 
to non-T2DM persons. One explanation for this could be that T2DM is a metabolic 

disease causing cardiac autonomic neuropathy that affects both sympathetic and 
parasympathetic fibers. They also did find an association between total cholesterol and 
an increase in both the low frequency (LF) and high frequency (HF) bands. Also, they 

demonstrated that an increase in systolic blood pressure was linked with shorter RR 
intervals and a decrease in HF. They also found a significant relationship between 

body mass index (BMI) and HRV. However, the severity of obesity-related diseases 
is particularly related to fat distribution, especially its visceral localization, and HRV 
parameters have previously been correlated with sagittal abdominal diameter, anterior 

forearm skinfold thickness, and waist-hip ratio. This meta-analysis also demonstrated 
a decrease in both LF and HF with age and male gender, but these had a minor role on 

the HRV parameters compared to the variables linked to T2DM. [4, 12] 

2.3. Thermoregulation 

Humans regulate their temperature within certain limits, although the ambient 

temperature, for example, can vary widely. The highest temperatures are in the brain 
and inside the chest and abdominal cavity and are called the core temperature, which 

is closely regulated. Surface temperatures, on the other hand, can vary widely 
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depending on ambient temperature and surface blood flow. The core temperature 
represents a dynamic balance between the factors that increase and decrease body heat, 
including radiation, conduction, convection, and evaporation, which produce heat loss, 

and the basic metabolism, muscle activity, hormones, the thermic effect of food, 
changes in posture and the environment, which produce heat gain. The integration of 

mechanisms that modify heat transfer to the periphery regulates evaporative cooling 
and alters the body heat production to maintain temperature balance, and the 
temperature regulation is fine-tuned by circulatory adjustments. Heat is retained by the 

rapid movement of blood into the body's deep cavities and parts of the muscle mass, 
thus optimizing insulation from subcutaneous fat and other body surfaces. In contrast, 

the increase in internal heat dilates peripheral blood vessels as warm blood flows to 
the cooler periphery. The effort to maintain temperature balance is so powerful that it 
triggers sweating in the heat or increases oxygen consumption due to shivering in 

severe cold. [10 p. 260-266, 15 p. 611-639] 
In response to thermal stress, humans trigger several critical thermoregula tory 

responses, such as piloerection, shivering, sweating, and profound changes in skin 
blood flow. All these efferent responses are controlled by higher brain centers, 
primarily the preoptic/anterior hypothalamus, which is considered the main integrat ion 

and control center for thermoregulation. A specialized group of neurons in the 
hypothalamus acts as a thermostat, usually carefully set and adjusted to 37 °C ± 1 °C, 

continuously making temperature adjustments to compensate for deviations from the 
temperature norm. The hypothalamus cannot “turn off” heat, but it triggers responses 
to protect the body from either a build-up or loss of heat. The body’s thermoregula tory 

mechanisms are activated by thermal receptors in the skin that provide input to the 
central control center and by changes in the blood temperature, which perfuse the 
hypothalamus directly to stimulate neurons. Peripheral thermoreceptors, which 

respond to rapid changes in heat and cold, are mainly free nerve endings in the skin, 
especially on the face. In general, cold receptors exist more than warm receptors. Cold 

receptors are usually located close to the skin surface and play an important role in 
triggering regulatory responses to the cold environment. Skin thermoreceptors act as 
an “early warning system” that relays sensory information to the hypothalamus and 

cortex. This direct line of communication triggers appropriate heat-saving or heat-
releasing physiologic adjustments, and the individual also makes a conscious effort to 

seek relief from the thermal challenge. In addition to receiving peripheral input, cells 
in the anterior hypothalamus detect small changes in blood temperature. Increased 
activity of these cells stimulates other areas of the hypothalamus to initiate coordinated 

responses for heat conservation or heat loss. In contrast to peripheral receptors that 
detect cold, the temperature of the blood passing through the hypothalamus is the 

primary monitoring system for assessing body warmth. [10 p. 260-266, 15 p. 611-639, 
23]  

2.3.1. Thermoregulation in heat stress and heat loss 

The body’s thermoregulatory mechanisms protect primarily against overheating and 
the mechanisms for heat loss are the same whether the heat load is internal (metabolic 

heat) or external (environmental heat). Under the heat load, the heat stress triggers a 
series of well-coordinated cardiovascular responses that are essential to promote heat 
transfer between the body and the environment to maintain thermal homeostasis. These 

cardiovascular responses include a considerable increase in cardiac output and 
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redistribution of blood, which together contribute to a substantial increase in skin 
blood flow, thereby the circulatory system can be represented as the “workhorse” to 
maintaining thermal balance. The hypothalamus triggers an increase in heat loss  

following the afferent input from central and peripheral thermoreceptors through an 
increase in skin blood flow (i.e., vasodilation) and sweating. Vasodilation opens skin 

blood vessels, resulting in increased blood flow to the skin, which raises skin 
temperature and thus increases the gradient of dry heat exchange between the skin and 
the external environment. However, heat loss is only activated when the mean body 

temperature has exceeded a certain threshold. Heat loss responses then increase in 
proportion to the increase in mean body temperature, the linear component of which 

represents the thermosensitivity. When heat loss responses reach maximum values, 
heat loss no longer increases even if the mean body temperature continues to rise, and 
a continued rise in mean body temperature can lead to heat-related illness and/or 

injury. The onset threshold, thermal sensitivity, and maximum capacity of heat loss 
responses associated with skin vasodilatation and sweating can have a significant 

impact on the amount of heat stored. [4, 10 p. 260-266, 15 p. 611-639, 23] 
The body loses heat through four physical processes: radiation, conduction, 

convection (air movement), and evaporation (sweating). Radiative heat transfer is 

usually the most significant form of heat loss. In radiation, heat radiates from warm 
surfaces toward cold surfaces and, because the human body generally remains warmer 

than the environment, the net exchange of radiant heat is transferred through the air to 
solid, cooler objects in the environment. Heat transfer by conduction refers to the direct 
transfer from one molecule to another through a liquid, solid, or gas. Conduction heat 

loss is then associated with warming air molecules and cooler surfaces in contact with 
the skin. Conduction is an effective form of heat loss, but it is usually of little 
importance because heat is only conducted from the soles of the feet in the standing 

position. The wind carries heat away from the skin and clothing surface and can 
multiply heat loss, this is called convection or convective heat loss. If air movement 

or convection is slow, the air next to the skin warms and acts as an "insulation zone". 
Conversely, if cooler air is constantly replacing warmer air around the body on a windy 
day or when running, heat loss increases because convection is constantly replacing 

the insulation zone. The cooling effect of airflow forms the basis of the wind chill -
index. This index describes the combined effect of wind and temperature on bare skin.  

The evaporation of water from the skin and respiratory tract absorbs a lot of heat, 
making it an effective means of removing heat from the body. Heat loss is further 
facilitated by convective airflow, which moves moist, humid air away from the skin 

surface. Each liter of water evaporated removes 580 kcal from the body and transfers 
it to the environment. There are about 2-4 million sweat glands on the surface of the 

body. During heat stress, these eccrine glands, controlled by cholinergic sympathet ic 
nerve fibers, secrete large amounts of hypotonic saline solution. Sweat evaporates 
from the skin and has a cooling effect. Effective thermal defense exists when 

evaporative cooling is combined with a large skin blood flow. The cooled peripheral 
blood then flows to deeper tissues to absorb additional heat on its return to the heart. 

Sweating causes loss of water and electrolytes, which triggers hormonal changes to 
retain salts and fluid. In addition to the heat loss through sweat evaporation, about 350 
ml of insensible sweat, i.e., the diffusion of water, seeps through the skin every day. 

The moist mucous membranes of the respiratory tract also evaporate about 300 ml of 
water daily. Evaporation is the main protection against overheating. As the ambient 

temperature rises, conduction, convection, and radiation reduce their effectiveness in 
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removing heat loss from the body. When the ambient temperature exceeds the body 
temperature, the body gains heat through these three heat transfer mechanisms. In such 
an environment (or when conduction, convection, and radiation are unable to remove 

the high metabolic heat load), sweating of the skin and respiratory tract is the only way 
to remove heat.  [10 p. 260-266, 15 p. 611-639]  

The total amount of sweat evaporating from the skin and/or respiratory tract is 
influenced by three factors: surface exposure to the environment, temperature and 
relative humidity of the surrounding air, and the convective air currents around the 

body. The relative humidity is the most important factor in determining the efficiency 
of evaporative heat loss. The relative humidity is the ratio of water in ambient air at a 

given temperature to the total amount of moisture that air could contain, expressed as 
a percentage. For example, relative humidity of 40 % means that ambient air contains 
only 40 % of the moisture capacity of the air at that temperature. At high humidity, the 

ambient vapor pressure approaches that of moist skin (around 40 mmHg). In this case, 
evaporation is greatly reduced, although large amounts of sweat accumulate on the 

skin and roll off. This form of sweating represents a useless loss of water, which can 
cause dehydration and overheating. Constant drying of the skin, for example with a 
towel, prevents evaporative cooling. Evaporation, not sweat, cools the skin. Humans 

can tolerate relatively high ambient temperatures if relative humidity remains low. 
Most people find a hot, dry desert climate more comfortable than a cooler but more 

humid tropical climate. [15 p. 611-639] 

2.3.2. Thermoregulation in cold stress and heat production 

A normal heat transfer gradient flows from the body to the environment. In general, 

there is no physiological stress involved in core temperature regulation. However, in 
extreme cold, excessive heat loss can occur (especially at rest), where the body’s heat 
production increases while heat loss slows down to minimize any decline in core 

temperature, and this may cause physiological stress on humans. During cold 
exposure, sympathetic thermoregulatory reflexes, which are responsible for 

maintaining core temperature during cold exposure, are activated when the average 
skin temperature falls from a thermo-neutral temperature of about 34°C. Stimula t ion 
of the cold receptors in the skin constricts peripheral blood vessels, which immedia te ly 

reduces the flow of warm blood to the cooler surface of the body and directs it to the 
warmer core. Peripheral blood flow is reduced when smooth muscle cells in the walls 

of small blood vessels contract under the control of the sympathetic nervous system. 
This control of the cutaneous blood flow is crucial for thermoregulation in humans. 
During exposure to cold, the reduction in skin blood flow reduces convective heat loss 

and increases the insulating effect of the skin, muscles, and subcutaneous fat, 
minimizing changes in core temperature and preventing hypothermia. Skin blood flow 

averages 250 ml/min in a thermoneutral environment, but under intense cold stress, 
this flow can approach zero. The reorganization of the circulation in the cold usually 
raises blood pressure by about 20-40 mmHg, and cooling can also constrict myocardia l 

blood vessels, making it more difficult to supply oxygen to the myocardium. A person 
with excess body fat who is exposed to cold stress will benefit greatly from this heat-

saving mechanism. In leaner individuals with a normal body fat content, regulation of 
skin blood flow usually provides effective thermoregulation at ambient temperatures 
between 25-29 °C. [15 p. 611-639, 23]  



 

 

22 

Metabolic heat production can be increased by shivering and non-shive r ing 
thermogenesis and the response to cold is regulated by the internal mean temperature, 
not the body’s heat production per se. Increased heat production by shivering activates 

the skeletal muscles, which have the greatest capacity of all body tissues to increase 
the metabolism and thus heat production. Maximal heat production through shivering 

can increase up to fivefold from baseline, or to ~ 40 % of maximal aerobic capacity, 
and shivering often results in greater oxygen consumption under cold stress than in a 
thermoneutral environment. Non-shivering thermogenesis occurs mainly via 

metabolically active brown adipose tissue, and this physiological response is 
particularly important in mild cold exposure. [4, 15 p. 611-639] 

Two “calorigenic” hormones in the adrenal medulla; adrenaline and noradrenaline, 
increase heat production during cold exposure. Prolonged cold stress also stimula tes 
the release of thyroxine, a thyroid hormone that increases resting metabolic rate. [15 

p. 611-639] 

2.3.3. Thermoregulation and diabetes 

Factors such as aging and diabetes may delay or raise the onset threshold and reduce 
the thermosensitivity and the maximum capacity of heat loss responses, which may 
allow a higher mean temperature to rise during heat stress. Most studies on type 2 

diabetes and thermoregulatory capacity have been conducted in the context of defining 
the neuropathy severity and diabetes-related complications, and therefore have only 

assessed the local heat loss responses in the hands and feet. These studies have 
generally reported impaired skin blood flow responses in people with type 2 diabetes 
as a result of pharmacological stimuli, local skin heating, and whole-body heating. 

Importantly, these effects appear to depend on physical condition, such that in type 2 
diabetics who exercise, the reduction in skin vasodilatation is reduced, although in 
people with type 2 diabetes the maximum skin blood flow is reduced regardless of 

condition. However, these diabetes-related changes in skin blood flow appear to be 
closely related to the duration of diabetes and/or the occurrence of associated 

complications. Although little is known about the central and peripheral mechanisms 
underlying diabetes-related skin circulatory responses, a study has found that a lower 
vasodilatation threshold was the primary factor explaining lower skin blood flow, 

indicating that regulation of skin blood flow is mediated by central nervous system 
mechanisms. [4] 

Local sweating responses have also been commonly reported to be impaired in 
people with T2DM compared to their healthy controls, and changes in regional 
sweating responses have also been observed, such that there is relative lower body 

anhidrosis with hyperhidrosis in the upper body. The primary factors associated with 
reduced sweating are long-term diabetes, poor glycemic control, and neuropathy, 

which appear to play an important role in altering the peripheral properties of sweat 
glands. [4] 

It also cannot be ignored that type 2 diabetes is often associated with one or more 

other health conditions (obesity, hypertension, cardiovascular disease) that may further 
affect an individual's ability to dissipate heat during heat stress. It has been shown that 

obesity is associated with impaired heat tolerance and reduced activation of the skin 
blood flow and sweating heat dissipation responses. In hypertensive individuals, blood 
pressure rises more during heat stress due to an increase in peripheral resistance, which 

may limit heat loss due to reduced skin blood flow, which may ultimately lead to a 
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more pronounced rise in core temperature. In individuals with cardiovascular disease, 
heat stress is associated with a reduction in exercise capacity and an increase in 
disease-related symptoms, making them more susceptible to the disease. [4] 

Previous evidence suggests that hyperinsulinemia, which is known to occur in 
people with type 2 diabetes due to their impaired insulin sensitivity, may be associated 

with moderate skin vasodilation at rest. However, in people with type 2 diabetes, skin 
blood flow appears to be lower than in age-matched controls. While this may be 
considered beneficial as it minimizes heat dissipation during exposure to cold, type 2 

diabetes is also associated with significant disadvantages in vascular responsiveness 
to cold. This has been demonstrated in studies that showed reductions in local, reflex, 

and centrally mediated mechanisms that can determine skin blood flow. Furthermore, 
this reduced responsiveness is at least partly due to a reduction in the control of 
vascular diameter by the sympathetic nervous system. Overall, there is some evidence 

that people with type 2 diabetes may be less able to prevent the drop in core 
temperature associated with exposure to cold. Studies have suggested that diabetes 

resembles advanced aging (i.e., diabetes tends to accelerate the changes associated 
with aging). The elderly are known to have a reduced ability to defend their core 
temperature during cold exposure, even during relatively mild cold exposure. This has 

been linked to a number of factors, including blunting of sympathetic outflow to the 
skin, reduced production and release of vasoconstrictor neurotransmitters, and changes 

in thermoafferent signaling. [4] 
Glycemic control during thermal stress is one factor in thermoregulation in type 2 

diabetics. Hypoglycemia is known to cause sympathetic activation, which is reflected 

in a marked increase in sweating, blood flow of the extremities, heart rate, and blood 
pressure. And while this may lead to a decrease in core temperature at rest, autonomic 
nervous system dysfunction may eliminate any potential benefits during whole-body 

heat stress. Similarly, periods of hyperglycemia may also have a significant negative 
effect on core temperature regulation. Hyperglycemia, in particular, can lead to an 

increase in plasma osmolality, which has been independently linked to a decrease in 
sweating and skin blood flow. People with type 2 diabetes are also at increased risk of 
dehydration due to increased hyperglycemia and/or medication use. This happens via 

osmotic diuresis, which can lead to hypovolemia without adequate fluid replacement.  
[4] 

2.4. Cardiovascular Signals 

Cardiovascular signals are an important source of information for monitoring the 
progress of physiological and pathological processes in the body. The connection 

between cardiovascular signals can be described as follows. Baroreceptors, which are 
blood pressure sensors located in the aortic arch and internal carotid arteries, contribute 

to short-term HRV. When inhaled, HR rises. BP rises about 4-5 s later. The 
baroreceptors detect this rise and are triggered more quickly. When exhaling, the heart 
rate decreases and BP drops 4-5 s later. The baroreflex contributes to this acceleration 

and deceleration of the heart, called respiratory sinus arrhythmia (RSA). It also links 
heart rate, blood pressure, and vascular tone. The oscillation of one cardiovascular 

function causes similar oscillations in other functions. Baroreceptor triggering due to 
changes in blood pressure activates mechanisms that alter heart rate and vascular tone. 
An increase in blood pressure causes a decrease in heart rate and vascular tone, while 

a decrease in blood pressure causes an increase in both. [13] 
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As with all signals that can be measured in humans, cardiovascular signals have a 
complexity that is due to human physiology, which is reflected in the signals. This 
complexity causes large inter-subject variability and exposes the signals to artifacts 

and noise due to physiological activity other than that being measured. In this study, 
three signals are analyzed, namely, HRV derived from electrocardiogram (ECG), BP 

variation derived from blood pressure, and cutaneous blood flow measured with Laser 
Doppler Flowmetry (LDF). 

2.4.1. Electrocardiogram 

The electrocardiogram (ECG) is perhaps the most known and used biomedical signal 
and it is the representation of the electric activity of the heart. It measures very small 

millivolt changes from the heart to the skin, and these voltage changes are associated 
with different periods of cardiac activity. It can be recorded with surface electrodes 
attached to the chest and/or limbs and together the connections form a three-

dimensional electrical picture of the heart. The rhythm of the heart, as beats per minute, 
can be estimated by counting the readily identifiable waves. These waveshapes are 

altered by cardiovascular diseases and abnormalities like arrhythmias, infarction, or 
conduction problems. The ECG is therefore a very important signal and useful in heart 
rhythm monitoring and the diagnosis of cardiovascular diseases. [10 p. 136, 16 p. 14-

28] 
The standard electrocardiograph uses 3, 5, or 12 leads, the greater the number of 

leads, the more information the ECG provides. The conventional 12-lead 
electrocardiograph uses 10 electrodes that are placed on the person’s skin, six on the 
chest, and four on the limbs, these electrodes together provide 12 simultaneous curves 

offering spatial information about the electrical activity of the heart. Each component, 
segment, and interval are labeled on the ECG and correspond to important electrical 
events, showing the relationship between these events and the contraction of the heart. 

[9, 10 p. 136-137] 
The repetitive electrical depolarization and repolarization pattern of the heart muscle  

is represented by the ECG. The schematic form of the phases in the ECG is shown in 
Figure 3. On the ECG there are five prominent points: the P wave, the QRS complex, 
and the T wave. The depolarization of the atria is represented by the small P wave, the 

depolarization of the ventricles is represented by the large QRS complex, and the 
repolarization of the ventricles is represented by the small T wave. The repolariza t ion 

of the atria is masked under the QRS complex and therefore is not showing in the ECG. 
[9, 24 p.176-178] 
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Figure 3. Phases of the electrical activity of the heart detected by ECG. [25] 

2.4.2. Heart rate and HRV 

The heart rate is the number of heartbeats per minute. Heart rate variability (HRV) is 
the fluctuation in the time intervals between adjacent heartbeats. A healthy heart is not 
a metronome, and HRV shows that the heart rate changes slightly from one beat to the 
next, even under similar conditions. The magnitude of variation depends on the activity 
of the autonomic nervous system, which regulates sinus rhythm. Therefore, by 
monitoring the heart, changes in autonomic nervous system activity can also be 
indirectly measured. On the other hand, other factors like a person's age, sex, state of 
health, time of day, body composition, respiratory rhythm, and blood pressure affect 
the heart rate variability either by increasing or decreasing and modifying the heart 
rate variability and therefore, its values are individual. Heart rate variability has been 
shown to reflect autonomic nervous system function and balance. Increased 
sympathetic activity, indicative of stress and strain, reduces the amount of heart rate 
variability. In turn, parasympathetic nervous activation, indicative of rest and 
recovery, increases it. [13, 14, 26]  

HRV can be evaluated using linear or non-linear methods. In this thesis, linear 
methods are used because they can better evaluate short-term measurement periods. 
The linear methods can be divided into two groups: those analyzed in the time-domain 
and those analyzed in the frequency-domain. Time-domain indices of HRV quantify 
the amount of variability between successive heartbeats observed during the 
measurement period. Frequency-domain measurements assess the distribution of 
absolute or relative power over frequency bands. [11, 13] 

HRV parameters. The time-domain: NN (normal-to-normal R-peaks) interva ls, 
mean on NN intervals, the difference between the longest and the shortest NN interva l, 
standard deviations of NN intervals (SDNN), the root mean square of successive NN 
interval difference (RMSSD), number of interval differences of successive NN 
intervals greater than 50 milliseconds (NN50), and the percentage of successive NN 
intervals differing by more than 50 milliseconds (pNN50). The RMSSD, NN50, and 
pNN50 are associated with high-frequency power (HF) and therefore the 
parasympathetic activity, whereas the low-frequency (LF) band has a significant 
impact on the SDNN. SDNN is, however, more accurate when calculated over 24 
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hours than over shorter periods. The frequency-domain: ultra-low-frequency (ULF; ≤ 
0.003), requires a long recording period (at least 24 h), very low frequency (VLF; 
0.003– 0.04 Hz), which is comprised of rhythms with periods between 25 and 300 

seconds, the LF (0.04–0.15 Hz) is comprised of rhythms with periods between 7 and 
25 seconds and is affected by breathing from about 3 to 9 bpm, and the HF (0.15–0.4 

Hz) is influenced by breathing from 9 to 24 bpm. The LF/HF ratio may estimate the 
ratio between the sympathetic nervous system (SNS) and parasympathetic nervous 
system (PSNS) activity, i.e., the sympathovagal balance. [13, 26]  

Awareness of the recording context and the subject variables can help in the 
interpretation of both long and short-term HRV measurements. Important contextual 

factors include the length of the recording period, the method of detection or recording, 
the sampling rate, artifact removal, respiration, and whether paced breathing is 
involved. Important subject variables are age, sex, heart rate, and health status. In 

addition, the effects of posture, movement, and frequency of physical activity can all 
affect measurements subtly or even greatly by altering ANS activation, respiratory 

mechanics, and emotions. [13]  

2.4.3. Blood Pressure 

Hydrostatic pressure is the force exerted by a fluid due to gravitational pull, usually 

against the wall of the container in which it is located. One form of hydrostatic pressure 
is blood pressure, the force exerted by the blood upon the walls of the blood vessels or 

the chambers of the heart. Blood pressure may be measured in capillaries and veins, 
as well as the vessels of the pulmonary circulation; however, the term blood pressure 
without any specific descriptors typically refers to systemic arterial blood pressure. [9] 

Blood pressure is one of the vital signals used to detect a wide range of 
abnormalities. Typical blood pressure measurements are limited to systolic and 
diastolic pressure (rather than the whole signal). However, when the whole blood 

pressure signal is collected, much more information can be extracted from the data. 
Typical blood pressure signal measurements can be classified into extravascular and 

intravascular measurements. Typical blood pressure measurement is a popular 
sphygmomanometer and stethoscope system that is considered the gold standard for 
extravascular blood pressure measurement systems. Today, however, semi-automatic 

blood pressure measuring devices are commonly used, most of which measure blood 
pressure using oscillometry. Intravascular blood pressure measurement is often 

measured by inserting an arterial catheter. Catheter insertion is often used to measure 
the entire blood pressure signal, as opposed to recording only SBP and DBP in 
sphygmomanometer and stethoscope systems or semi-automatic devices. Another way 

to get continuous blood pressure is to measure finger arterial pressure with a device 
that uses a volume-clamp method, this method was also used in this study. This is a 

non-invasive method, where a small, inflatable, cuff is placed around the finger. The 
cuff uses photoplethysmographic technology for continuous blood pressure 
monitoring. [24 p. 237-238, 27] 

The schematic form of the phases in the BP is shown in Figure 4. On the BP signal, 
there can be observed different points representing a different phases in a cardiac cycle. 

The systolic peak (green triangle) is a result of the ejection of blood from the left 
ventricle to the aorta reaching a peak, the dicrotic notch (blue triangle) is a result of 
the closure of the aortic valve, and the diastolic peak (purple triangle) is a result of a 

reflected pulse from the lower body. [16 p. 38]  
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2.4.4. Laser Doppler Flowmetry 

Laser Doppler flowmetry (LDF) is a method developed specifically to assess 

microvascular blood flow from the cutaneous microvasculature and it provides a 
continuous estimate of skin blood flow. It can provide information on the heat 
exchange between the body and the environment, especially under heat stress, where 

blood flow increases, in some cases up to 8 liters per minute, thus allowing optimal 
regulation of the body's core temperature. LDF measurement is a non-invasive, easy-

to-set-up measurement measured with probes attached to the skin, from which the 
vascular bed is readily accessible. LDF has found wide applications in the analysis of 
microcirculation reactions to different physiological and pharmacological stress tests 

because it can have excellent temporal resolution and because it provides only a 
relative index of perfusion in the time-domain. These reactivity tests include mental 

stress, orthostatic stress, post-occlusive reactive hyperemia, local thermal warming, 
and pharmacological tools such as iontophoresis of vasoactive agents, and are usually 
coupled with the skin blood flow in the time-domain to gain insight of the vasodilatory 

capacity and the mechanisms underlying vascular control. These reactivity tests can 
also be used to estimate the relative change in spectral energy in any frequency band 

as a result of a reactivity test. [28, 29, 30] 
LDF uses electromagnetic light wave, a laser, to detect the Doppler Effect from the 

peripheral blood vessels. The general principle of this technology is an interaction of 

monochromatic laser light with tissue and blood vessels utilizing the frequency shift 
called Doppler shift, which arises in the light that has been scattered by moving red 

blood cells. By analyzing the shifted frequency of the backscattered light, where the 
mean velocity of red blood cells is associated with backscatter and the amplitude of 
the signal is seen as proportional to red blood cell concentration, the information of 

the blood flow can be determined as follows 
 

𝑓𝑙𝑜𝑤 = 𝑅𝐵𝐶𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  ×  𝑅𝐵𝐶𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  

 

where RBC stands for red blood cell. 
It is therefore important to note that laser Doppler flow measurement does not 

provide a quantitative estimate of blood flow, but rather a qualitative estimate based 
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on changes in red blood cell flow. The main advantage of laser Doppler flowmetry is 
the ability to continuously measure red blood cell flow with a high temporal resolution, 
especially in skin microvasculature. Laser Doppler flowmetry measurement can be 

used to assess blood flow in the microvasculature in vivo but is mainly used in research 
because it does not provide an absolute value of blood perfusion. However, a few 

clinical applications have been found useful in monitoring microvascular blood flow, 
for example after skin replacement surgery. Figure 5 shows a typical signal measured 
with the LDF with few motion artifacts. [28, 31, 32] 

 

 
Figure 5. Typical LDF signal with few motion artifacts. 

 
Although the main advantage of the laser Doppler Flowmetry technique is its non-

invasiveness and the ability to estimate the microcirculatory blood flow of the tissue 

locally and the fast changes of perfusion during provocation, it is not without 
disadvantages. One major disadvantage and limitation of LDF is the motion artifacts 

due to the movement of both the tissue and the optical fiber. Since LDF measures the 
movement of scattering objects instead of blood perfusion, it is important that blood 
perfusion dominates the perfusion signal. This is not necessarily the case if the tissue 

being measured is moving, as this movement can produce a much larger perfusion 
signal than the perfusion itself. The small sampling area also poses limitations to the 

method, as a local measurement of blood flow may not be representative of the limb 
or whole-body blood flow levels. The small sampling area also makes it difficult to 
reliably assume that repeated measurements will occur at the same point when probes 

are removed between measurements, even when efforts to minimize differences in 
probe placement are taken into account (e.g., photographing or marking the skin). This 
aspect leads to poor reproducibility of LDF measurements. In addition, the small 

sampling area makes the measurements highly dependent on the anatomy of the 
underlying microvasculature, where the distribution and anatomy of superficial veins 

and arterioles contribute to heterogeneity. This results in high heterogeneity of the 
measurements between the subjects and within the same subject when measured from 
different points of the body or at different times. To account for this heterogene ity, 

several normalization methods have been employed for LDF signals. One of which is 
normalizing the values as a percentage of the maximal dilation of the sampling area, 

where the different sites are compared in relation to their maximum dilation capacity. 
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While this is probably the strongest approach to account for intersite or daily 
variability in absolute flow values, it should be kept in mind that the mere presentation 
of data as a percentage of the maximum may mask some important differences 

between conditions or groups. Also, the maximal response can be affected by the 
physiological condition, for example, disease state, and this should be taken into 

consideration when applying this normalization procedure. Lastly, the maximal values 
are always relative to the method employed to gain maximal response and may not 
necessarily reflect “true” maximal vasodilation. There is also little interpretive value 

in reporting blood flow responses relative to the area’s maximal response when the 
interest is in heat dissipation since absolute skin blood flow will affect skin 

temperature, and therefore, the skin-to-air temperature gradient, which dictates dry 
heat exchange between the body and the environment. Another normalization method 
is to normalize the blood flow values relative to a baseline value, but this is highly 

dependent on the baseline values and the blood flow values can have the same relative 
increase or decrease in blood flow due to a provocation, but yet still have the absolute 

values differ between measurements or subjects, for example, threefold. [28] 
Another disadvantage is that the depth and volume of most in vivo optical 

measurement techniques, like LDF, are not known. The measurement volume for most 

biological tissues is in the area of one cubic millimeter, usually decreasing with 
increased absorption and scattering. For optical fiber systems, it is increasing with 

increasing fiber separation. One challenge also behind LDF measurements is 
biological zero. This occurs during blood vessel occlusion when the blood cells do not 
move but experience some motion, so-called Brownian motion. The residual signal 

component at the cessation of tissue perfusion is called biological zero. This is the 
main reason why the perfusion value never reaches zero even if the blood flow is 
ceased. These disadvantages and challenges prevent the use of LDF in clinical settings, 

also the lack of quantitative units (LDF output signal is in perfusion units (p.u) that is 
relative) and the lack of standardization of measurement protocols are major 

disadvantages. [28, 33]  

2.5. Related Research 

As a global public health problem, diabetes and its associated comorbidities have long 

been studied, both for type 1 and type 2 diabetes, to better understand and manage the 
disease. The impact of diabetes on the body, and the cardiovascular system, has been 

investigated through various biomedical signals. The relationship between diabetes 
and changes in heart rate variability, as well as the effects of diabetes-related 
comorbidities and obesity on heart rate variability, have been extensively studied [11, 

12]. In general, HRV and diabetes studies have calculated different time- and 
frequency parameters. In most studies, frequency-domain analysis has been performed 

by Fourier transform, like all the studies reviewed in the articles [11, 12], but wavelet 
analyses are also seen [34, 35]. In general, studies have found that diabetic patients 
have decreased HRV, both sympathetic and parasympathetic branch activity. People 

with diabetes also often have hypertension, the effects of which on vascular changes 
have been widely studied [19, 20, 36]. Blood pressure variability, and in particular 

systolic blood pressure variability, has also been extensively studied, but its clinica l 
significance is still unclear [37]. In the study of blood pressure variation, different time 
periods are used for follow-up, one of which is the very short-term follow-up, which 

has been used in this study. Most often, time-domain values have been used to quantify 
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changes in blood pressure variability [37], but there are also many studies where 
frequency-domain analysis has been used [38]. In the frequency-domain analysis of 
blood pressure variation, as with the analysis of HRV, the most used analytical method 

is the Fourier transform [38]. The relationship between diabetes and surface blood flow 
and the changes in blood flow relative to healthy individuals have been previously 

studied [29, 30, 39-42]. These studies have also used both the time-domain and the 
frequency-domain analyses. Most often, wavelet analysis has been used to investigate 
the surface blood flow in the frequency-domain [30, 40, 42]. Most studies have found 

a decrease in blood flow in diabetic subjects following local heating relative to healthy 
subjects, as well as a decrease in frequency-domain parameters such as amplitude and 

power, especially at frequencies associated with endothelial (0.0095 – 0.021 Hz), 
neurogenic (0.021 – 0.052 Hz) and myogenic (0.052 – 0.145 Hz) frequencies [30, 40, 
42], but also at cardiac (0.6 – 2 Hz) frequency [30].  

As outlined above, human cardiovascular signals (also including the respiratory 
signal) have been extensively studied using frequency-domain analysis, but mostly one 

or two signals have been studied separately from the other cardiovascular signals. 
Nevertheless, studies of more than two signals, especially in the frequency-domain, 
have been carried out. Ticcinelli et al [43] conducted a study in which they analyzed 

the deterministic properties of the HRV signal together with simultaneously recorded 
respiratory and microvascular circulatory signals in healthy adolescents, healthy 

elderly, and elderly with hypertension on medication. They focused on investiga t ing 
phase coherence and coupling between myogenic activity and cardiorespiratory 
oscillations using methods to capture time-dependent dynamics, including the Wavelet 

Transform.  They found that the coherence between blood flow and low-frequency 
oscillations of HRV time series near 0.1 Hz varies significantly between groups, 
decreases with age, and almost disappears in treated hypertension. Comparing the  

healthy adolescents and healthy elderly, it was found that the coupling of both 
respiratory and vascular myogenic activity to heart rhythm decreases significantly with 

age. Comparing data from healthy elderly and elderly groups with hypertension, it was 
found that the coupling with vascular myogenic activity is significantly weaker in 
treated hypertension, suggesting that current antihypertensive drugs do not fully 

restore microcirculatory mechanisms. Brac̆ic̆ et al [44] conducted a study in which 
they investigated respiratory, ECG, heart rate variability, blood pressure, and blood 

flow signals and their frequencies in a time-averaged wavelet transform recorded from 
healthy young men. They found that although small differences in the frequencies of 
these signals can be observed, dominant frequency peaks occur in the same frequency 

range for different signals. With this, they demonstrated that wavelet transform (WT) 
measurement of cardiovascular signals can detect the regulatory mechanisms reflected 

from the cardiovascular system at the site of detection, making frequency-domain 
analysis an important technique for identifying the oscillatory dynamics of the 
cardiovascular system. 

In this thesis, the WT frequency-domain analysis method is used to study the 
frequency components of three signals in diabetic and healthy individuals measured at 

the same time from different sites of the body, before, during, and after temperature 
exposure (warm and cold) to detect how they change and evolve. 
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3. METHODS 

3.1. Setup – The Experimental Study 

Participants with advanced T2DM (disease duration ≥ 2 years) and hypertension were 

included with the following inclusion criteria: BMI 25-30, age 40-70 years, male, 
HbA1c 53-75 mmol/mol, non-smokers, no active retinopathy. A similar number of 

age-matched controls without T2DM or hypertension were also included. In the first 
phase of the project, a total of 10 subjects with T2DM and 10 controls were measured. 
All subjects underwent autonomic nervous system and peripheral nervous system 

function tests at the clinic of the neurophysiology of Oulu University Hospital before 
the actual study measurements. The study was approved by the Ethics Committee of 

Oulu University Hospital District (EETTMK:199/2016). The study is registered in the 
Clinical Trials (NCT04698200). 

The experimental study was carried out in the thermal laboratories of the Kastelli 

Research Centre, Oulu, in spring 2021. In the experimental study, subjects were 
randomly exposed to both cold (+10°C) and hot (+40°C) environmental temperatures 

while resting for 90 minutes. Exposures were preceded by baseline measurements (30 
min) and post-exposure follow-up measurements (30 min) of variables at +22°C. The 
exposures were chosen to induce thermogenesis in the cold and sweating in the warm. 

These also include significant changes in surface blood flow. For the exposures, 
subjects wore a t-shirt, shorts, and socks.  

The main variables of the study are blood pressure (central, peripheral, finger blood 
pressure) and ECG (12-lead, ECG morphology, arrhythmias, heart rate variability). 
Secondary variables: skin temperatures (14 points), skin blood flow, perspiration 

efficiency (hot), oxygen consumption (cold), and hematological variables 
[inflammatory factors (CRP, TNFalpha, IL-6, ET-1), coagulation factors (FVII, vWF, 

fibrinogen, D-dimer), lipids (cholesterol) and glycemic status (HbA1c)]. 

3.2. Measurements 

ECG was recorded by 12-lead electrode placement continuously throughout the study 

in the thermal laboratory and 3-lead electrode placement was recorded during each 
exposure at baseline, intervention, and follow-up for five minutes at a time. In this 

thesis, the 3-lead recording was used for the analysis of HRV. The electrodes were 
placed according to the standard 3-lead placement. Blood pressure measurement was 
performed with a Nexfin® monitor (Edwards LifeSciences Corporation, Irvine, CA, 

USA) by placing the right size finger cuff on the right middle finger. Blood pressure 
measurements were performed on each exposure at baseline, intervention, and during 

follow-up for five minutes at a time. Measurement of skin blood flow was performed 
with OxyFlo ™ Pro device (Oxford Optronics, UK) with two sensors placed in the left 
hand of the subject. One sensor was placed on the top of the brachioradialis and the 

other on the fingertip of the middle finger, on the palm side. Blood flow measurements 
were performed on each exposure at baseline, intervention, and during follow-up for 

five minutes at a time. The sensors were placed in the same place during each 
measurement. The location of the brachioradialis sensor was marked with a pen on the 
skin, and for the second exposure, the location of the sensor was drawn on a membrane 

so that the sensor could be placed as close to the same location as possible.  
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3.3. Analysis 

All collected data were initially reviewed with LabChart software (LabChart v8, 
ADInstruments). The signals from every measurement were then separated into three 

stages of measurement (baseline, intervention, and recovery) and exported to Matlab 
(R2021b MathWorks) for further processing of ECG, BP, and LDF.  

3.3.1. Pre-Processing of ECG signal 

The raw ECG signals were prepared through different pre-processing steps for QRS 
complex detection and therefore HRV detection. In this thesis, an application of the 

Pan-Tompkins algorithm was used, where an alternative QRS complex peak detection 
is used [45], this algorithm was, however, slightly modified throughout the algorithm. 

The algorithm for QRS detection was proposed by Pan and Tompkins in 1985 for the 
detection of real-time QRS complexes, it is based on the analysis of the slope, 
amplitude, and width of the QRS complexes. The algorithm includes a series of steps; 

filters and methods to perform lowpass, high pass, derivative, squaring, integrat ion, 
adaptive thresholding, and search procedures. [16 p. 187 – 190]  

In this application, the signal is down sampled to 200 Hz, using the Matlab function 
resample. The first step of the algorithm is to remove DC drift from the signal by 
removing the mean and then normalizing the signal to one by dividing each value of 

the signal by the maximum. Figures 6 and 7 show the input signal and the signal after 
the first step, respectively. 

 

 
Figure 6. The input signal and close-up. 
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Figure 7. The signal after DC drift cancellation and normalization and close up. 

 

 Then bandpass filtering was made, by using low-pass and high-pass filters in 
cascade, this was done to reduce noise (such as muscle noise and powerline 

interference) from the signal. The second-order low-pass filter has the transfer function 
of equation (1).  

 

𝐻(𝑧) =
1

32

(1−𝑧 −6)
2

(1−𝑧 −1)2 .    (1) 

 

The cut-off frequency of the filter is about 11 Hz, and the delay is 5 samples or 25 
ms [16 p. 187 – 190]. The difference equation of the filter is as in equation (2). 

 

y(n) = 2𝑛(𝑛 − 1) − 𝑦(𝑛 − 2) +
1

32
[𝑥(𝑛) − 2𝑥(𝑛 − 6) + 𝑥(𝑛 − 12)]. (2) 

 
The high-pass filter is implemented as an all-pass filter minus the low-pass filter [16 

p. 187 – 190]. The transfer function of the low-pass component is shown in equation 

(3).  
 

𝐻𝑙𝑝(𝑧) =
(1−𝑧 −32 )

(1−𝑧 −1)
 .    (3) 

 
The high-pass filter has the transfer function as shown in equation (4). 
 

𝐻ℎ𝑝(𝑧) = 𝑧−16 −
1

32
𝐻𝑙𝑝(𝑧) .   (4) 

 
The difference equation of the high-pass filter is as in equation (5). 

 

𝑝(𝑛) = 𝑥(𝑛 − 16) −
1

32
[𝑦(𝑛 − 1) + 𝑥(𝑛) − 𝑥(𝑛 − 32)].  (5) 
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The low cut-off frequency of the filter is about 5 Hz, and the delay is 16 samples or 
80 ms [16 p. 187 – 190]. Figures 8 and 9 show the signal after the low-pass filter and 
high-pass filter, respectively. 

 

 
Figure 8. Signal after the low-pass filter and close up. 

 

 
Figure 9. Signal after the high-pass filter and close up. 

 
Then the signal is passed through a derivative operator which provides a large gain 

to the high-frequency components that distinguish the QRS complexes, and it also 

suppresses the low-frequency ECG components such as the P and T waves. [16 p. 187 
– 190] A five-point derivative is implemented using the transfer function as in equation 

(6).  
 

𝐻(𝑧) =
1

8
(2 + 𝑧−1 − 𝑧−3 − 2𝑧−4).    (6) 
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The difference equation is as in equation (7). 
 

𝑦(𝑛) =
1

8
[2𝑥(𝑛) + 𝑥(𝑛 − 1) − 𝑥(𝑛 − 3) − 2𝑥(𝑛 − 4)].  (7) 

 

This derivative approximates the ideal derivative over the range of the dc and 30 
Hz, and the delay is 2 samples or 10 ms [16 p. 187 – 190]. Figure 10 shows the signal 
after the derivative filter. 

 

 
Figure 10. Signal after the derivative filter and close up. 

 

The next operation is the squaring operation, this is done to make the resulting signal 
positive and to emphasize the large differences within the QRS complexes; the small 

differences are suppressed, and the high-frequency components are further enhanced 
[16 p. 187 – 190]. The signal is squared from point to point, and the equation for this 
operation is as in equation (8). 

 

𝑦(𝑛) = [𝑥(𝑛)]2.     (8) 
 

The squared signal is then passed through a moving-window integrator of window-
length of N = 30 samples (for 200 Hz sampling frequency), the result is a single smooth 
peak related to the QRS complex on each ECG cycle [16 p. 187 – 190]. The difference 

equation of the moving window integrator is as shown in equation (9). 
 

𝑦(𝑛) =
1

𝑁
[𝑥(𝑛 − (𝑁 − 1)) + 𝑥(𝑛 − (𝑁 − 2)) + ⋯ + 𝑥(𝑛)].  (9) 

 

Figures 11 and 12 show the signal after the squaring operation and window 
integration, respectively. 
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Figure 11. Signal after squaring operation and close up. 

 

 
Figure 12. Signal after window integration and close up. 

 

From this result are found the QRS points, this is done differently than in the origina l 
Pan-Tompkins algorithm. QRS points are detected by setting two thresholds: the first 
threshold is set as the peak or maximum amplitude of the signal. The second threshold 

is set as the mean of the signal, which is considered to represent the noise of the signal. 
Next, an array of segments is formed, taking into account those signal indices whose 

signal values are greater than the thresholds multiplied together.  The left and right 
segments are then formed by finding the indices of the boundaries of each segment 
from the arrays formed. Finally, the minimum and maximum values of these left and 

right segments are searched for using a simple decision logic that runs through all 
possibilities. Figures 13 and 14 show the integrated signal and the found QRS points 

from the signal, respectively. 
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Figure 13. Close up of the integrated signal. 

 

 
Figure 14. Found QRS points in the signal and close up. 

 
From the R-points found, HRV was extracted by dividing the locations of the R-

points by the sampling frequency (200 Hz) and then computing the differences 
between adjacent elements; the result is also multiplied by 1000 to obtain milliseconds. 

Before analyzing the HRV signal, pre-processing was made by detecting outliers, i.e., 
abnormalities in R-peaks. This was done by using the Matlab function filloutliers. This 
function detects and replaces outliers in the given data. The default outlier detection 

was used, where outliers are defined as elements more than three scaled median 
absolute deviations (MAD) away from the median. The method for replacing the 

outliers was chosen to be ‘linear’, where the detected outlier will be filled by using 
linear interpolation of neighboring, non-outlier values. Figure 15 shows an example of 
an extracted HRV, pre-processed, and both signals superimposed from a subject with 

detectable abnormalities. 
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Figure 15. Extracted HRV, pre-processed, and both signals superimposed. 

3.3.2. Pre-processing of BP signal 

The raw BP signals were also prepared through different pre-processing stages for 

detection of the different stages in the BP signal and therefore the systolic blood 
pressure variation detection. In this thesis, the methods described in other studies have 

been followed to find the different phases in the BP signal [46]. The technique is 
largely based on derivatives and thresholds defined in [47] and [48]. From the raw BP 
signal was first found the different phases, and from those have been calculated 

maximum, minimum, and mean values of SBP and DBP in mmHg. Mean arterial 
pressure (MAP) is also calculated from the mean values, which by definition is the 

average arterial pressure during one cardiac cycle, systole and diastole. This value is 
influenced by cardiac output and systemic vascular resistance [49]. 

The signal was then normalized before further analysis. The Z-score technique, as 

shown in equation (10), is used in this thesis to get amplitude- limited data.  
 

𝑧 =
𝑥−𝜇

σ
,    (10) 

 
where x is the signal, µ is the mean of the signal, and σ is the standard deviation of 

the signal. Figure 16 shows the raw BP signal and after the normalization. 
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Figure 16. The raw BP signal and the normalized BP signal. 

 
After the normalization, the different phases of the BP signal were again annotated 

using the algorithm. The first step of the algorithm is to resample the signal to 200 Hz. 
Then the signal is filtered with a low-pass filter to remove high-frequency components. 

The transfer function of the low-pass filter is shown in equation (11). 
 

𝐻(𝑧) =
(1−𝑧 −6)

2

(1−𝑧 −1)2 .    (11) 

 
The difference equation of the filter is as in equation (12). 
 

y(n) = 2𝑛(𝑛 − 1) − 𝑦(𝑛 − 2) + [𝑥(𝑛) − 2𝑥(𝑛 − 6) + 𝑥(𝑛 − 12)]. (12) 
 
The denominator coefficient is also multiplied by 36 to remove DC gain. The next 

step is to find the different phases of the BP signal, i.e., the important features, the 
diastolic pressure, the dicrotic peak indices, and the systolic pressure. In this work, the 

different parts of the algorithm to find these important features are only briefly 
described, as presented by the authors in [46]. The foot index, the diastolic pressure, 
is defined as the point where the second derivative of the time series is the highest in 

each interval where a moving average of the second derivative was bigger than an 
adaptative threshold. This criterion was preferred over others because of its robustness. 

The dicrotic notch and peak indices are prominent and distinctive features in the BP 
signal. In the algorithm, the dicrotic notch is defined as the minimum of the subtraction 
of the signal and the straight line going from systole to diastole. Dicrotic peak indices 

were defined as the minimum of the second derivative of the time series following the 
dicrotic notch, relative to a window of radius RR/5 s around itself (RR is the median 

heartbeat interval computed from the foot indices). These indices are moved to 
waveform minima and maxima if these exist. The systolic peak is defined as the 
maximum of the waveform following the foot index, relative to a window of radius 

1/8 s around itself. Figure 17 shows the close-up of the algorithm result for different 
BP phases marked. 
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Figure 17. Close up of the algorithm result with different BP phases marked. 

 
From the SBP points found, the SBP variation data was extracted in the same 

method that HRV was extracted. Before analyzing the retrieved signal, pre-processing 
was made the same as with HRV, to detect any possible outliers, i.e., abnormalities in 

SBP-peaks. Possible outliers were replaced with linear interpolation of neighbor ing, 
non-outlier values.  

3.3.3. Pre-processing of LDF signal 

The initial review of the LDF signals showed that the measurement from the finger 
probe was clear, oscillatory, and uniform across all measurements, therefore it was 

chosen to be the primary signal used in the analysis. The forearm measurement turned 
out to be mostly quite sporadic, and thus this was omitted from any further analysis.  

The imported LDF signals showed high-frequency artifacts; the acquisition noise, 

and other high-frequency disturbances, therefore high-frequency filtering was done 
using the IIR Butterworth filter.  Butterworth filter was implemented with Matlab 

butter function, and the cut-off frequency was set at 2,5 Hz. The imported signals also 
showed baseline wandering, therefore detrending was performed by subtracting third-
order polynomial fit from the signal. After detrending the signal was set above zero by 

subtracting the minimum value from it. These filtering techniques were found to be 
used for the LDF signals in the literature to prepare them for analysis and these were 

also found to be working nicely in this work and pre-processing the data appropriately. 
Figure 18 shows the result of the filtering and detrending of the raw signal. 
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Figure 18. Raw LDF signal, filtered and detrended signal, and close-up from the 
high-frequency filtering results. 

 
The LDF measurements are sensitive to involuntary movements, and they can result 

in spike-shaped artifacts in the signal. Results can be compromised by these 
disturbances; therefore, these were attenuated. This was done by using the Matlab 
function filloutliers. This function detects and replaces outliers in the given data. The 

method for detecting outliers was chosen to be ‘mean’, where outliers are defined as 
elements more than set threshold standard deviations from the mean. And the method 

for replacing the outliers was chosen to be ‘nearest’, where the detected outlier will be 
filled with the nearest non-outlier. The threshold was set to 2,25, this was chosen 
through experimenting with different thresholds and this value was determined to give 

the best outcome within this data. Results from outlier detection and filling in Figure 
19. For the frequency-domain analysis, the LDF signals were down sampled to 10 Hz, 

using the Matlab function resample. 
 

  

 
 

Figure 19. Outlier detection and filling and close-up of the results. 
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3.3.4. Time-domain analysis 

For the time-domain analysis, different parameters were extracted from the pre-
processed signals, but the main focus of this thesis is on the frequency-domain 

analysis, therefore time-domain is presented here very shortly. 
 From extracted HRV, the heart rate during the measurement was calculated as shown 

in equation (13), and the mean heart rate was calculated as shown in equation (14). 
 

𝐻𝑅 =
60

 𝑅𝑅𝑖
     (13) 

 
 

𝐻𝑅̅̅ ̅̅ =  
1

𝑁
∑ 𝐻𝑅𝑖

𝑁
𝑖=1     (14) 

 

Where N is the total number of heartbeats. The mean RR calculates the mean of the 
RR intervals from the RR interval sequence as shown in equation (15). 

 

𝑅𝑅̅̅ ̅̅ =  
1

𝑁
∑ 𝑅𝑅𝑖

𝑁
𝑖=1      (15) 

 
Where the N is the total number of all RR intervals.  

The HRV time-domain parameters have been presented in section 2.4.2, and the 
equations for these parameters are presented here. SDNN, shown in equation (16), is 

the standard deviation of NN intervals. 
 

𝑆𝐷𝑁𝑁 =  √
1

𝑁−1
∑ (𝑅𝑅𝑖 −  𝑅𝑅̅̅ ̅̅ )2𝑁

𝑖=1    (16) 

 

The RMSSD, shown in equation (17), is the root mean square of successive NN 
interval differences.  

 

𝑅𝑀𝑆𝑆𝐷 =  √
1

𝑁
∑ (𝑅𝑅𝑖+1 −  𝑅𝑅𝑖)2𝑁−1

𝑖=1   (17) 

 
The NN50 count, shown in equation (18), is the number of interval differences of 

successive NN intervals that are greater than 50 milliseconds. And the pNN50, shown 
in equation (19), is the percentage of these successive NN intervals during the 

measurement period. 
 

𝑁𝑁50 =  ∑ {|𝑅𝑅𝑖+1 −  𝑅𝑅𝑖| > 50𝑚𝑠}𝑁
𝑖=1   (18) 

 

 

𝑝𝑁𝑁50 =  
𝑁𝑁50

𝑁
∗ 100   (19) 

 

For the BP signals, the maximum SBP and DBP and the minimum SBP and DBP were 
extracted, and mean SBP and DBP were calculated as shown in equation (20) and 
equation (21), and from those were calculated the MAP, as shown in equation (22). 

From the extracted variation of the systolic BP was calculated the mean SBP variation, 
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equation (23), and the maximum SBP variation and minimum SBP variation values 
were extracted.  
 

𝑆𝐵𝑃̅̅ ̅̅ ̅̅ =  
1

𝑁
∑ 𝑆𝐵𝑃𝑖

𝑁
𝑖=1      (20) 

 

𝐷𝐵𝑃̅̅ ̅̅ ̅̅ =  
1

𝑁
∑ 𝐷𝐵𝑃𝑖

𝑁
𝑖=1      (21) 

 

𝑀𝐴𝑃 =  𝐷𝐵𝑃̅̅ ̅̅ ̅̅ +  
1

3
(𝑆𝐵𝑃̅̅ ̅̅ ̅̅ − 𝐷𝐵𝑃̅̅ ̅̅ ̅̅ )   (22) 

 

𝑆𝐵𝑃𝑣̅̅ ̅̅ ̅̅̅ =  
1

𝑁
∑ 𝑆𝐵𝑃𝑣𝑖

𝑁
𝑖=1     (23) 

 
In the time-domain, LDF signals give very limited information as they provide a 

relative index of vascular bed perfusion, and they provide therefore information 

regarding the volume of the blood flow flowing through the measurement area. In the 
time-domain analysis, data is measured in absolute Blood Perfusion Units (arbitrary), 

and the values derived from the time-domain in this study are the absolute mean blood 
perfusion, shown in equation (24), and the absolute maximal blood perfusion. Alone, 
these measurements cannot provide information as to the mechanisms resulting in such 

changes. To determine if changes in flow are due to changes in vasomotor tone, blood 
flow must be normalized to arterial blood pressure and expressed as vascular 

conductance (term cutaneous vascular conductance (CVC) is used in relation to laser 
Doppler flowmeter), shown in equation (25). Absolute values of CVC can further be 
normalized to maximal response CVC gained from the reactivity test and be expressed 

as a percentage change (%CVCmax), shown in equation (26). As no maximal response 
blood flow testing was performed in this study, the maximum blood flow value was 

taken from the warm measurement intervention and the cold measurement baseline, 
both of which were taken the maximum value after pre-processing. 

 

𝐵𝑃𝑈̅̅ ̅̅ ̅̅ =  
1

𝑁
∑ 𝐵𝑃𝑈𝑖

𝑁
𝑖=1      (24) 

 

𝐶𝑉𝐶𝑎𝑏𝑠 =  
𝐵𝑃𝑈̅̅̅ ̅̅ ̅

𝑀𝐴𝑃
    (25) 

 

%𝐶𝑉𝐶𝑚𝑎𝑥 =  
𝐶𝑉𝐶𝑎𝑏𝑠

𝐶𝑉𝐶𝑚𝑎𝑥
∗ 100   (26) 

 
Body fat percentage was determined from four-site skinfold measurements 
(subscapular, suprailiac, triceps, and biceps) measured with skinfold calipers. Each site 

was measured three times and the measures were averaged and then summarized. The 
sum of skinfolds was fitted to the conversion table based on the prediction equation of 

Durnin & Womersley [50] to get an estimation of the body fat percentage. BMI was 
calculated as shown in equation (27).  
 

𝐵𝑀𝐼 =  
𝑊𝑒𝑖𝑔𝑡ℎ (𝑘𝑔)

𝐻𝑒𝑖𝑔ℎ 𝑡2(𝑚)
    (27) 
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3.3.5. Frequency-domain analysis 

The frequency-domain analysis of the dynamic properties of a physiological signal can 
be assessed by calculating its Fourier transform (FT). In this transformation, the 

original signal is windowed either to reduce leakage or to achieve time localization (in 
this case, a short-time Fourier transform is obtained). The choice of window length 

plays an essential role throughout the analysis. If a shorter window is selected, the very 
low frequencies become hard to recognize from the amplitude spectra. Taking a longer 
segment leads to improvement of low-frequency resolution, but on the other hand, it 

smears the higher frequency components. This choice of window length and shape, 
which then determines the frequency resolution, becomes difficult. The wavelet 

analysis is, however, a way of avoiding the choice of window length altogether. [24 
p.79-88, 51] 

The generalized wavelet analysis is a scale-independent method. The wavelet 

transform (WT) enables signal oscillations time and frequency content analysis and 
has the advantage over the FT in providing information on changes in the frequency 

and power of individual oscillating components over time. Wavelet transform analysis 
breaks down the steady fluctuating time series into its frequency elements. It is based 
on an oscillating function of limited duration called a mother wavelet. The Morlet 

mother wavelet is one of the popular mother wavelets and it has been used in many 
biomedical signal analyses, such as LDF, electroencephalogram (EEG), and ECG 

because it has the best time-frequency localization properties of generalized wavelets. 
It is a Gaussian function modulated with a sine wave with basic frequency ω0. The 
choice of ω0 is a compromise between localization in time and frequency. Wavelet 

transform can also be averaged over a period of time at a certain frequency to obtain 
an average scalogram, which is the squared magnitude of the wavelet transform. The 

continuous wavelet transform of a signal 𝑥(𝑢) is defined as in equation (28). 
 

𝑤(𝑠, 𝑡) =  ∫ 𝜓𝑠 ,𝑡(𝑢)𝑥(𝑢)𝑑𝑢
∞

−∞
   (28) 

 

where 𝜓𝑠 ,𝑡 is a wavelet function, as defined in equation (29). 

 

𝜓𝑠 ,𝑡(𝑢) =  
1

√𝑠
𝜓 (

𝑢−𝑡

𝑠
)     (29) 

 

where 𝜓 is the mother wavelet function, t is time, and s is the scale related to the 

central frequency of 𝜓𝑠 ,𝑡. The Morlet mother wavelet, which was used in this thesis, 

is defined in simplified expression as in equation (30). 

 

𝜓0 (𝑢) =  𝜋 −1/4 𝑒𝑗𝜔0𝑢𝑒−𝑢2 /2    (30) 
 
where ω0 is the basic frequency. A larger value of ω0 will give better frequency 

localization. [32, 34, 51] 

It should be noted that the data obtained from the FT and WT analysis of the signals 
cannot be directly compared because they are computed differently. Fourier transform-

based power spectrum analysis is frequency localized because it is based on sine waves 
and can give very accurate estimates of the frequencies present in the signal, but not 
when they are present in time. In contrast, WT can distinguish the frequency content 

of a signal and where it changes in time. The signal parameters (length and sampling 
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rate) and the FT parameters (window size and type, and the number of bins) also affect 
the power spectral density, so they should always be reported alongside the analysis . 
In this work, WT-based frequency analysis was chosen as the method of analysis 

because previous work on the analysis of LDF signals has been done with WT and it 
was desired to continue the analysis of other signals with the same method for better 

comparability. [29] 
Mechanistic information on the processes regulating microvascular perfusion can 

be obtained by spectral analysis of blood flow measurements obtained with LDF with 

low-frequency periodic oscillations (0.0095-2 Hz). Spectral studies of the LDF signal 
have identified five frequency bands in the cutaneous flowmotion spectrum. Each 

interval is associated with the activity of a specific cardiovascular system structure . 
The five frequency bands are: 1) The slow oscillations at 0.0095 – 0.021 Hz which 
reflect vascular tone regulation of endothelial activity. 2) the frequency range of 0.021 

– 0.052 Hz which is from the neurogenic sympathetic vasomotor activity, or the 
metabolic activity, which causes the blood vessel movement. 3) the frequency range 

of 0.052 – 0.145 Hz which is from the vascular tone regulation of myogenic 
mechanism which reflects the vascular smooth muscle response to the transmura l 
pressure. This activity is weakly present in the microvascular blood flow signal. 4) the 

frequency range of 0.145 – 0.6 Hz which reflects the peripheral vascular tone 
regulation of respiratory activity (thorax movement). 5) the frequency range of 0.6 – 

2 Hz which carries the information about the influence of heart pump activity. [51]  
In this thesis, these same low-frequency bands have been applied to HRV and BP 

variation signals, even though they are not usually identified in these signals. If the 

same frequency bands are compared with the three most common frequency bands of 
HRV (and BP), the same regulatory mechanisms can be identified. The VLF band 
(0.003– 0.04 Hz) practically combines the two lowest bands in the LDF band division. 

VLF band seems to be affected by the heart’s intrinsic nervous system and SNS is said 
to be influencing the amplitude and frequency of its oscillations. The power of VLF 

may be also generated by physical activity, thermoregulatory, renin-angiotensin, and 
endothelial influences on the heart. However, there is still uncertainty regarding the 
mechanisms responsible for the activity in this band in HRV. The LF band (0.04–0.15 

Hz) has been mainly said to reflect the baroreceptor activity during rest. Within this 
frequency band lies the so-called Mayer waves, oscillating at a frequency of 0.1 Hz, 

and their hemodynamic basis has been linked to sympathetic vasomotor tone. Also, 
some research data have been in support of the major role of the baroreceptor reflex in 
the generation of Mayer waves, but some studies have also found that the oscillat ion 

at this frequency is still present after the denervation of the baroreceptor. The HF band 
(0.15–0.4 Hz) is strongly present both in HRV and BP variation signals, and it is 

generally accepted as a respiratory band [13, 52]. 
For reliable statistical analysis, the recording should ideally include 10 cycles for 

each frequency band [26], in this study, however, the individual recording time of each 

phase was about 5 minutes, which resolves frequencies down to 0.033 Hz therefore in 
this study, the myogenic band in 0.052 – 0.145 Hz is the lowest frequency interval for 

reliable statistics. The human heartbeat frequency is on average 1 Hz, ranging from 
0.6 Hz in athletes to 1.6 Hz in patients with an impaired cardiovascular system [51], 
this frequency band is not seen in either HRV or BP variation frequency analysis.  

The wavelet transform was done using Matlab software and the wavelet toolbox. 
The Matlab function for continuous wavelet transform, cwt, was used. This function 

compares the signal to shifted and compressed or stretched versions of a chosen 



 

 

46 

wavelet and returns the continuous wavelet transform and frequencies of the transform. 
The used wavelet was the same as in literature, Morlet-wavelet. For the Matlab cwt -
function the Analytic Morlet (Gabor) Wavelet is supported by the name ‘amor’, which 

was used in this thesis. In the Matlab function, all parameters are determined inside of 
the cwt -function based on the chosen wavelet. The wavelet transform was done for 

the frequency range of interest (0.0095 – 2 Hz). The same mother wavelet and 
frequency range was used in all of the signals. A scalogram of the frequency range and 
global average wavelet power was plotted (Figure 20) where different bands and their 

influence on whole power can be seen. This was done with the Matlab function 
timeSpectrum, which gives the time-averaged wavelet spectrum. The global average 

power (average scalogram) was also retrieved in separate and the different frequency 
bands were marked with different colors, for clearer separation of the bands (Figure 
21). Wavelet transform is calculated with a logarithmic resolution, and therefore the 

frequency axes are presented logarithmically. 
 

 
Figure 20. A scalogram of the frequency range and global average wavelet power 

from an LDF signal 

 
From the frequency bands, peak amplitudes for each frequency band were 

determined by the detection of local maxima in the average wavelet transform. From 

every band, the frequency at peak amplitude was also extracted. The mean amplitude 
of each frequency band was calculated, by taking the mean from the retrieved 

frequency band amplitudes. The wavelet amplitudes of the signals at each frequency 
band were normalized to overcome individual variations, this was defined as the ratio 
of the absolute mean amplitude of the frequency band to that of the same frequency 

band mean amplitude in the baseline.  The absolute mean power within each frequency 
band and for the total frequency range was calculated using Matlab function 

bandpower, which allows estimating the signal power. The relative power (RP) for 
each frequency band was defined as the ratio between the mean power within each 
band and the mean power of the entire spectrum [42], and the relative mean power in 

percent was calculated as shown in equation (31). Also, the mean power ratios between 
different frequency bands were calculated. 
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%𝑅𝑃 =  
𝑃𝑖 (𝑓𝑖1 ,𝑓𝑖2 )

𝑃𝑡𝑜𝑡𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅
∗ 100   (31) 

 

 
Figure 21. A global average power of an LDF signal, the peak amplitudes marked. 

3.3.6. Statistical analysis 

The statistical analysis of the data was done with IBM SPSS Statistic (version 28, 

Chicago, IL) The normality of the data was assessed with the Shapiro-Wilk test before 
analysis. The student t-test was used to compare means between those with T2DM and 
controls. Where skewed distribution existed, the Mann-Whitney U test was used. The 

p < 0.05 was considered statistically significant. 
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4. RESULTS 
 
HRV and BP measurements in the cold exposure were done on all subjects during 

baseline and recovery, except for one subject in the recovery phase. This was because 
the subject’s blood pressure was very low during the intervention and in the recovery. 

The intervention measurement was done on 14 subjects. The intervention 
measurement in the cold exposure was not done on 6 subjects due to earlier termina tion 
of the exposure, because the subjects were feeling too cold, and because the recording 

was very challenging due to shivering. Also, two subjects’ baseline measurements 
were 3 minutes long, one because of low blood pressure and one because of 

disturbance in signals. For two subjects’ the intervention measurements with both 
HRV and BP were 3 minutes long, one because the blood pressure climbed very high 
and one because of strong shivering, the shivering was also the reason for one other 

subject’s shorter BP measurement in the cold. For three subjects’ the recovery 
measurement was 3 minutes long, due to technical issues and two because of 

disturbances in signals. All measured signals were still included in the analysis, 
regardless of the length, and therefore the total measurement phases in the cold that 
were analyzed was 53. HRV and BP measurements during the warm exposure were 

done on all subjects during baseline, intervention, and recovery, except for one subject 
in the intervention and the recovery phase, because of low blood pressure of the 

subject. Also, two subjects’ baseline measurements were 3 minutes long, and three 
subjects’ recovery measurements were 3 minutes long, due to technical issues. All 
measured signals were also here included in the analysis, regardless of the length, and 

therefore the total measurement phases in the warm that was analyzed were 58. 
The LDF measurements in the cold exposure were conducted on all subjects during 

baseline and recovery. The intervention measurement was done on 15 subjects, 
although with one subject the intervention measurement was about one minute shorter . 
The intervention measurement in the cold exposure was not done on 5 subjects because 

of earlier termination of the exposure. The total measurement phases that were 
included in the analysis were 55. LDF measurements in the warm exposure were done 

on all subjects in baseline, intervention, and recovery, except for one subject in the 
recovery phase. This was because of low blood pressure. Also, with one subject the 
duration of the baseline measurement was below two minutes, and therefore the lowest 

frequency band (endothelial) was not included. The total measurement phases that 
were included in the analysis were 59.  

4.1. Time-domain results 

4.1.1. Cold exposure 

The HRV time-domain parameters presented as mean ± SD from the cold exposure 

are in Table 1. Controls had on average lower body fat percent (25.07) and BMI (25.4) 
compared with diabetics (31.8 and 30.1, respectively). Mean heart rate was higher in 

the diabetic group compared with controls. At cold baseline mean heart rate was 
significantly higher in the diabetics compared with the controls (p < 0.001). Both 
groups had a similar decrease in heart rate. At baseline diabetic group had significantly 

shorter mean RR intervals compared with the controls (p < 0.001). The RR interva ls 
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increased in both groups similarly and further slightly increased in the recovery. The 
RR intervals were significantly shorter with diabetics also in the intervention (p = 
0.025) and recovery (p = 0.003) compared to controls. The SDNN and RMSSD were 

at baseline significantly lower in diabetic individuals (SDNN (p = 0.007), RMSSD (p 
= 0.042). For both groups, the SDNN and RMSSD increased in the cold exposure, and 

further slightly increased in the recovery. The NN50 and pNN50 values were larger in 
controls at baseline, for both groups the parameters increased, controls increase was a 
bit larger. 

 
Table 1. Time-domain data of the experimental study in response to cold (+10 ˚C) 

exposure among persons with T2DM (n = 10) and controls (n = 10). The values are 
represented as mean±SD. 

Experimental Group. Diabetics (n=10) and Controls (n=10) 

 Body 

fat % 

BMI HR RR SDNN RMSSD NN50 pNN50 

Diab base 31.76 

±6.8 

30.1 

±4.9 

81.6 

±11.7 

752.7 

±114.3 

18.6 ±10.1 11.67 ±5.2 0.6 ±1.1 0.17 ±0.3 

Diab int 31.76 
±6.8 

30.1 
±4.9 

72 ±12.1 855.8 
±151.9 

31.6 ±12.4 20.72 
±11.0 

13.6 ±20.3 4.34 ±7.1 

Diab reco 31.76 
±6.8 

30.1 
±4.9 

71.5 
±11.6 

866 ±146.3 32.5 ±12.6 21.77 
±11.6 

10.3 ±17.4 3.44 ±6.5 

Contr base 25.07 

±3.5 

25.4 

±2.2 

64.4 ±6.2 947.1 ±89.8 31.7 ±9.0 18.69 ±8.5 6.2 ±10.6 2.14 ±3.7 

Contr int 25.07 
±3.5 

25.4 
±2.2 

56.1 ±4.6 1082 ±85.8 46.1 ±23.6 31.13 
±19.6 

26.8 ±39.6 11.59 
±15.1 

Contr reco 25.07 
±3.5 

25.4 
±2.2 

56.5 ±7.7 1097 
±141.5 

51 ±24.0 33.65 
±21.3 

23.4 ±27.8 11.37 
±15.0 

 
The BP time-domain parameters presented as mean ± SD from the cold exposure are 

in Table 2. In the cold exposure, baseline mean SYS, DIA, and MAP were higher in 
the diabetics compared with the controls. The mean SYS increase during the 
intervention was greater in diabetics and also the decrease in recovery was greater in 

diabetics. The mean DIA also increased in the cold intervention for both groups 
similarly, but in the recovery, diabetics had a slight decrease in the mean DIA whereas 

the controls had a slight increase in mean DIA. This, however, is not on average the 
common behavior with the controls, but there are few measurements where the 
difference is quite large and therefore impacted the mean value. MAP increased in the 

cold for both groups and in the recovery MAP decreased, with diabetics the changes 
are a bit larger. The mean SBP variation is similar to the mean RR interval, also with 

significant differences between the two groups, it is also behaving similar way, 
increasing during the cold intervention, and further slightly increasing in the recovery.  
 

Table 2. Time-domain data of the experimental study in response to cold (+10 ˚C) 
exposure among persons with T2DM (n = 10) and controls (n = 10). The values are 

represented as mean±SD. 

Experimental Group. Diabetics (n=10) and Controls (n=10) 

 Mean SYS Mean DIA MAP Mean SBPv 

Diab base 122.89 ±24.9 72.56 ±11.0 89.34 ±14.7 751.83 ±114.4 

Diab int 143.53 ±26.8 83.67 ±8.8 103.62 ±13.1 855.88 ±152.3 

Diab reco 135.05 ±18.4 80.44 ±6.5 98.64 ±7.4  867.1 ±146.5 

Contr base 123.55 ±10.0 70.68 ±7.5 88.3 ±7.6 949.14 ±9.1 

Contr int 137.08 ±38.3 78.91 ±20.3 98.3 ±26.1 1078.02 ±82.6 

Contr reco 132.4 ±20.1 80.36 ±7.2 97.71 ±9.6 1105.72 ±138.8 
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The LDF time-domain parameters presented as mean ± SD from the cold exposure are 
in Table 3. In the cold exposure, the absolute maximum BPU decreased in both groups 

substantially in the intervention and the recovery increased but did not reach the 
baseline values. The absolute mean BPU also decreased substantially in the cold 

intervention for both groups and increased slightly in the recovery. The absolute BPU 
values in general were lower with the diabetics at the baseline. The CVC decreased in 
the cold intervention for both groups and in the recovery, CVC increased slightly. 

Controls had larger CVC in the baseline. The %CVCmax decreased considerably for 
both groups in the cold intervention and the recovery had a slight increase. There were, 

however, no between-group significant differences in any parameters. 
 

Table 3. Time-domain data of the experimental study in response to cold (+10 ˚C) 

exposure among persons with T2DM (n = 10) and controls (n = 10). The values are 
represented as mean±SD. 

Experimental Group. Diabetics (n=10) and Controls (n=10) 

 Max BPU Mean BPU CVC % CVCmax 

Diab base 509.84 ±253.2 384.9 ±222.4 4.5 ±2.9 72.5 ±11.9 

Diab int 53.45 ±18.7 20.7 ±10.6 0.2 ±0.1 3.8 ±1.0 

Diab reco 141.3 ±160.2 50.5 ±44.7 0.5 ±0.4 11.3 ±15.8 

Contr base 774.51 ±413.4 578.31 ±366.0 6.5 ±4.2  71.9 ±11.7 

Contr int 70.69 ±42.4 24.76 ±14.2 0.3 ±0.1 3.4 ±2.4 

Contr reco 108.62 ±53.5  56.34 ±43.4  0.6 ±0.4 9.1 ±7.7 

4.1.2. Warm exposure 

The HRV time-domain parameters presented as mean ± SD from the warm exposure 
are in Table 4. In the warm exposure, the baseline mean heart rate was significantly 

higher in the diabetics compared with the controls (p = 0.002). Controls also did have 
a large raise (from 63.9 to 78.7 bpm) in the mean heart rate whereas with diabetics the 
mean heart rate did not rise considerably (from 82.1 to 86.1 bpm). At baseline diabetic 

group had significantly shorter mean RR intervals compared with the controls (p = 
0.001), the RR intervals decreased in both groups, and with controls, the decrease was 

larger. In the recovery, for both groups, the RR intervals increased, but no between-
group significant differences were in the intervention or recovery. The SDNN and 
RMSSD were significantly lower in the diabetic individuals at baseline (SDNN (p < 

0.001), RMSSD (p = 0.008). Both the SDNN and RMSSD decreased in intervention, 
and increased in the recovery, with the controls the decrease in the intervention was 

larger, and SDNN was significantly lower in the intervention (p = 0.022). For both 
groups, the NN50 and the pNN50 parameters decreased in the warm exposure. 
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Table 4. Time-domain data of the experimental study in response to warm (+40 
˚C) exposure among persons with T2DM (n = 10) and controls (n = 10). The values 

are represented as mean±SD. 

Experimental Group. Diabetics (n=10) and Controls (n=10) 

 Body 

fat % 

BMI HR RR SDNN RMSSD NN50 pNN50 

Diab base 31.76 
±6.8 

30.1 
±4.9 

82.1 
±13.2 

751.6 
±124.9 

14.81 ±7.8 10.54 ±6.0 0.1 ±0.3 0.032 ±0.1 

Diab int 31.76 
±6.8 

30.1 
±4.9 

86.1 ±7.5 706.3 ±66.5 14.08 ±4.7 7.96 ±3.9 0 0 

Diab reco 31.76 
±6.8 

30.1 
±4.9 

82.4 ±9.3 744.1 ±92.2 16.52 ±6.3 9.81 ±5.2 0 0 

Contr base 25.07 

±3.5 

25.4 

±2.2 

63.9 ±7.2 956.8 

±116.3 

32.00 

±10.5 
19.97 

±11.0 
10.40 

±16.2 
3.54 ±5.6 

Contr int 25.07 
±3.5 

25.4 
±2.2 

78.8 
±11.7 

778.8 
±113.8 

21.76 ±7.9 9.67 ±4.3 0.5 ±1.0  0.13 ±0.3 

Contr reco 25.07 
±3.5 

25.4 
±2.2 

72.8 
±10.8 

841.8 
±124.5 

26.55 ±9.7 11.51 ±5.0 0.5 ±0.8 0.16 ±0.3 

 
The BP time-domain parameters presented as mean ± SD from the warm exposure 

are in Table 5. In the warm exposure, the mean SYS decreased during the intervention 
and in the recovery increased nearly to the baseline levels. The mean DIA was at 

baseline lower in diabetics (p = 0.015). The mean DIA increased slightly in diabetics 
during the intervention and continued to slightly rise during the recovery, but with 
controls, the mean DIA decreased during the intervention and increased close to the 

baseline value during the recovery. MAP was significantly lower in diabetics in the 
baseline compared to controls (p = 0.026). In the recovery, diabetics had an increase 

in MAP that exceeded the baseline value. The mean SBP variation was similar to the 
mean RR interval also in the warm exposure and was behaving also similar way, 
decreasing during the warm intervention, and increasing in the recovery. 

 
Table 5. Time-domain data of the experimental study in response to warm (+40 

˚C) exposure among persons with T2DM (n = 10) and controls (n = 10). The values 
are represented as mean±SD. 

Experimental Group. Diabetics (n=10) and Controls (n=10) 

 Mean SYS Mean DIA MAP Mean SBPv 

Diab base 114.59 ±20.3 65.95 ±7.2 82.16 ±9.8 752.09 ±124.5 

Diab int 106.93 ±17.7 66.03 ±6.2 79.67 ±9.2 706.97 ±67.1 

Diab reco 114.29 ±15.8 67.85 ±7.7 83.33 ±9.2 745.05 ±92.4 

Contr base 127.78 ±15.2 74.44 ±6.9 92.22 ±8.8 959.4 ±118.1 

Contr int 108.68 ±7.2 67.95 ±6.0 81.53 ±5.9 777.25 ±116.6 

Contr reco 120.28 ±8.7 72.24 ±6.9 88.25 ±7.1 841.72 ±124.9 

 

The LDF time-domain parameters presented as mean ± SD from the warm exposure 
are in Table 6. In the warm exposure, the absolute maximum BPU increased in both 
groups substantially during the intervention and in the recovery decreased but did not 

reach the baseline values. The absolute mean BPU also increased substantially in the 
warm intervention for both groups and decreased in the recovery period. However, the 

BPU values with the controls in the baseline do seem to be inconsistent and the 
absolute values are notably lower with few subjects which impact all the mean values 
in the baseline. The CVC increased in the warm intervention for both groups and in 
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the recovery CVC decreased slightly. The %CVCmax was significantly higher in 
diabetics in the baseline compared to controls (p = 0.034). 
 

Table 6. Time-domain data of the experimental study in response to warm (+40 
˚C) exposure among persons with T2DM (n = 10) and controls (n = 10). The values 

are represented as mean±SD. 

Experimental Group. Diabetics (n=10) and Controls (n=10) 

 Max BPU Mean BPU CVC % CVCmax 

Diab base 557.18 ±295.3 399.82 ±223.1 4.8 ±2.4 58.1 ±35.2 

Diab int 821.33 ±342.4 609.64 ±302.3 8.1 ±4.3 72.2 ±11.7 

Diab reco 710.23 ±254.5 522.99 ±207.6 6.4 ±2.7 65.7 ±25.9 

Contr base 412.09 ±251.2 288.09 ±206.5 3.1 ±2.1 31.0 ±33.5 

Contr int 1086.17 ±347.6  892.64 ±336.7 10.9 ±4.0 81.0 ±7.0 

Contr reco 850.62 ±613.9 614.13 ±476.4 7.1 ±5.9 52.4 ±27.4 

 

4.2. Frequency-domain results 

4.2.1. HRV from cold exposure 

Total spectrum from 0.0095 to 2 Hz. The magnitude scalogram (top) and the average 
scalogram (bottom) of the HRV at baseline in cold exposure from a diabetic and 

control subject side by side can be seen in Figure 22. And at intervention from cold in 
Figure 23. Values of the absolute wavelet transform in the baseline and the intervention 

can be observed to be considerably lower in diabetics compared to controls. The total 

mean WT power of the spectrum increased from 5.6 × 103 AU to 27.8 × 103 AU in 

diabetics and from 33.1 × 103 AU to 456.9 × 103 AU in controls, therefore the 
increase in controls was larger.  
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Figure 22. Cold baseline magnitude scalogram (top) and average scalogram 
(bottom) from a diabetic and control subject. 

 

 
Figure 23. Cold intervention magnitude scalogram (top) and average scalogram 

(bottom) from a diabetic and control subject. 

 
From a general point of view, the reliability of the lowest detectable frequency 

values depends on the duration of the original signal as mentioned in Section 3.3.5 

therefore, amplitude and power values corresponding to the two lowest frequency 
bands are not included in this study. The peak amplitudes of the following frequency 

bands are calculated as the average of the peak amplitude frequencies of the 
measurements. 

The absolute power of the frequency bands from 0.0052 to 2 Hz. The absolute 

power of the oscillations around 0.054 Hz (myogenic) was significantly lower in 
diabetics in the baseline in cold exposure (p = 0.015) compared to controls. The 

absolute power increased by 360 % (4.6 × 103 − 21.2 × 103) in response to cold 
intervention in diabetics, and controls the increase was 2000 % (42.9 × 103 − 89.8 ×
103). The absolute power of the oscillations around 0.2 Hz (respiratory) increased by 

700 % (2.4 × 103 − 19.1 × 103) in diabetic and in controls the increase was 1500 % 

(26.3 × 103 − 42.5 × 103) (Figure 24). The absolute myogenic power and the 
absolute respiratory power ratio in the baseline were 4.6 in diabetics and 5.3 in controls 

and in the intervention 1.7 in diabetics and 3.4 in controls. The change in diabetics was 
a 61 % decrease and in controls 35 % decrease. 
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Figure 24. The absolute power of the HRV frequency spectrum from cold exposure 

diabetics (a) and controls (b).  
 

The relative power of the frequency bands from 0.0052 to 2 Hz. The relative 

power of the oscillations around 0.054 Hz increased in response to cold by 6 % (0.55 −
0.58) in diabetics, whereas in controls the relative power decreased by 4 % (1.12 −
1.10). The relative power of the oscillations around 0.2 Hz decreased by 34 % (0.93 −
0.62) in diabetics, whereas in controls the relative power increased by 52 % (0.43 −
0.66) (Figure 25). 

 

 
Figure 25. The relative power of the HRV frequency spectrum from cold exposure 

diabetics (a) and controls (b).  

 
The absolute amplitude of the frequency bands from 0.0052 to 2 Hz. The 

absolute amplitude of the oscillations around 0.054 Hz was significantly lower in 
diabetics at baseline in cold exposure (p = 0.026) compared to controls. The absolute 

amplitude increased by 140 % (44.1 − 104.2) in response to cold intervention in 

diabetics, and in controls, the increase was 180 % (151.2 − 426.3). The absolute 

amplitude of the oscillations around 0.2 Hz increased by 215 % (29.0 − 91.5) in 
diabetics and controls, the increase was 220 % (87.0 − 280.2) (Figure 26).  
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Figure 26. The absolute amplitude of the HRV frequency spectrum from cold 

exposure diabetics (a) and controls (b). 
 
The relative amplitude of the frequency bands from 0.0052 to 2 Hz. The relative 

amplitude of the oscillations around 0.054 Hz increased in response to cold by 350 % 
in diabetics and by 270 % in controls. The relative amplitudes of the oscillations 

around 0.2 Hz increased by 226 % in diabetics and by 265 % in controls. 
The CWT scalogram of the HRV at baseline, intervention, and recovery from cold 

exposure from the same diabetic and control subjects as the total power figures, can 

be seen in Figure 27. And from the same representatives, the average scalograms 
superimposed from cold intervention can be seen in Figure 28. 

 

 
Figure 27. The CWT scalogram of a diabetic subject (a) and a control subject (b) 

from cold exposure from baseline, intervention, and recovery. 

 

 
Figure 28. The average scalogram from cold exposure at baseline, intervention, and 

recovery of the diabetic subject (a) and the control subject (b) superimposed. Black 
line = baseline, red line = intervention, green line = recovery. 
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The distribution of the frequency bands in baseline, intervention, and recovery 

from cold exposure from the same subjects can be seen in Figure 29. From these pie 

charts can observe that different frequency bands were more pronounced in diabetics 
than in controls during cold exposure. From these pie charts, it can be seen that 

myogenic, which is comparable to the LF band, was the dominant band in controls. 
 

 
Figure 29. Distribution of frequency bands from the diabetic subject (a) and the 

control subject (b) from cold exposure. 

4.2.2. HRV from warm exposure 

The magnitude scalogram (top) and the average scalogram (bottom) of the HRV at 
baseline in warm exposure from a diabetic and control subject side by side can be seen 
in Figure 30. And at intervention from warm in Figure 31. Values of the absolute 

wavelet transform are also lower during warm exposure in diabetics compared to 

controls. The total mean WT power of the spectrum decreased from 4.5 × 103 AU to 

1.2 × 103 AU in diabetics and from 42.6 × 103 AU to 7.3 × 103 AU in controls, 
therefore the decrease in controls was larger.  
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Figure 30. Warm baseline magnitude scalogram (top) and average scalogram 

(bottom) from a diabetic and control subject. 
 

 
Figure 31. Warm intervention magnitude scalogram (top) and average scalogram 

(bottom) from a diabetic and control subject. 

 

The peak amplitudes of the following frequency bands are calculated as the average 

of the peak amplitude frequencies of the measurements. 
The absolute power of the frequency bands from 0.0052 to 2 Hz. The absolute 

power of the oscillations around 0.054 Hz was significantly lower in diabetics in the 

baseline in warm exposure (p = 0.002) compared to controls. Diabetics' absolute power 
in the warm intervention was also significantly lower (p = 0.009). The absolute power 
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decreased by 7 % (0.5 × 103 − 0.47 × 103) in response to warm intervention in 

diabetics, and controls the decrease was 82 % (61.0 × 103 − 11.0 × 103 ). The 
absolute power of the oscillations around 0.2 Hz was significantly lower in diabetics 

in the baseline in warm exposure (p = 0.010) compared to controls. The absolute power 

decreased by 74 % (2.0 × 103 − 0.52 × 103) in diabetic and controls the decrease was 

96 % (39.9 × 103 − 1.8 × 103) (Figure 32). The absolute myogenic power and the 
absolute respiratory power ratio in the baseline were 1.7 in diabetics and 4.9 in controls 
and in the intervention 2.1 in diabetics and 26.1 in controls. The change in diabetics 

was a 26 % increase and in controls 430 % increase. 
 

 
Figure 32. The absolute power of the HRV frequency spectrum from warm exposure 

diabetics (a) and controls (b).  
 

The relative power of the frequency bands from 0.0052 to 2 Hz. The relative 
power of the oscillations around 0.054 Hz decreased in response to warm by 25 % 

(0.41 − 0.31) in diabetics, whereas in controls the relative power increased by 13 % 

(0.9 − 1.04). Relative power was significantly lower in diabetics in intervention in 
warm exposure (p = 0.034) compared to controls. The relative power of the oscillat ions 

around 0.2 Hz decreased by 62 % (0.8 − 0.3) in diabetics and by 63 % (0.5 − 0.2) in 
controls (Figure 33). 

 

 
Figure 33. The relative power of the HRV frequency spectrum from warm exposure 

diabetics (a) and controls (b).  
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The absolute amplitude of the frequency bands from 0.0052 to 2 Hz. The 

absolute amplitude of the oscillations around 0.054 Hz was significantly lower in 

diabetics in the baseline in warm exposure (p = 0.002) compared to controls. The 

absolute amplitude decreased by 19 % (16.8 − 13.6) in response to warm intervention 

in diabetics, and in controls, the decrease was 58 % (157.1 − 66.2). The absolute 
amplitude of the oscillations around 0.2 Hz was significantly lower in diabetics in the 
baseline in warm exposure (p = 0.016) compared to controls. The absolute amplitude 

decreased by 48 % (23.4 − 12.1) in diabetics and controls, the decrease was 81 % 

(105.4 − 19.9) (Figure 34).  
 

 
Figure 34. The absolute amplitude of the HRV frequency spectrum from warm 

exposure diabetics (a) and controls (b).  

 
The relative amplitude of the frequency bands from 0.0052 to 2 Hz. The relative 

amplitude of the oscillations around 0.054 Hz decreased in response to warm by 27 % 

in diabetics and by 33 % in controls. The relative amplitudes of the oscillations around 
0.2 Hz decreased by 46 % in diabetics and by 72 % in controls. 

The CWT scalogram of the HRV at baseline, intervention, and recovery from warm 
exposure from the same diabetic and control subjects as the total power figures, can 
be seen in Figure 35. And from the same representatives, the average scalograms 

superimposed from warm intervention can be seen in Figure 36. 
 

 
Figure 35. The CWT scalogram of a diabetic subject (a) and a control subject (b) 

from warm exposure from baseline, intervention, and recovery. 
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Figure 36. The average scalogram from warm exposure at baseline, intervention, 

and recovery of the diabetic subject (a) and the control subject (b) superimposed. 
Black line = baseline, red line = intervention, green line = recovery. 

 
The distribution of the frequency bands in baseline, intervention, and recovery 

from warm exposure from the same subjects can be seen in Figure 37. From these pie 
charts can observe that different frequency bands were more pronounced in diabetics 
than in controls in warm exposure. From these pie charts, it can be seen that 

myogenic, which is comparable to the LF band, was the dominant band in controls. 
 

 
Figure 37. Distribution of frequency bands from the diabetic subject (a) and the 

control subject (b) from warm exposure. 

4.2.3. BP from cold exposure 

Total spectrum from 0.0095 to 2 Hz. The magnitude scalogram (top) and the average 
scalogram (bottom) of the BP at baseline in cold exposure from a diabetic subject and 

control subject side by side can be seen in Figure 38. And at intervention from cold in 
Figure 39. Values of the absolute wavelet transform can be observed to be considerably 
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lower during the cold intervention in diabetics compared to controls. The total mean 

WT power of the spectrum increased from 6.1 × 103 AU to 27.2 × 103 AU in 

diabetics and from 33.2 × 103 AU to 462.8 × 103 AU in controls, therefore the 
increase in controls was larger.  
 

 
Figure 38. Cold baseline magnitude scalogram (top) and average scalogram 

(bottom) from a diabetic and control subject. 

 

 
Figure 39. Cold intervention magnitude scalogram (top) and average scalogram 

(bottom) from a diabetic and control subject. 
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The peak amplitudes of the following frequency bands are calculated as the average 
of the peak amplitude frequencies of the measurements. 

The absolute power of the frequency bands from 0.0052 to 2 Hz. The absolute 

power of the oscillations around 0.06 Hz (myogenic) was significantly lower in 
diabetics in the baseline in cold exposure (p = 0.016) compared to controls. The 

absolute power increased 280 % (5.7 × 103 − 21.3 × 103) in response to cold 

intervention in diabetics, and controls the increase was 1900 % (41.5 × 103 −
840.7 × 103). The absolute power of the oscillations around 0.2 Hz (respiratory) 

increased by 740 % (2.7 × 103 − 22.6 × 103) in diabetic and in controls the increase 

was 1200 % (28.1 × 103 − 359.4 × 103 ) (Figure 40). The absolute myogenic power 
and the absolute respiratory power ratio in the baseline were 2.49 in diabetics and 4.93 

in controls and in the intervention 1.25 in diabetics and 3.78 in controls. The change 
in diabetics was a 50 % decrease and in controls 23 % decrease. 

 

 
Figure 40. The absolute power of the BP frequency spectrum from cold exposure 

diabetics (a) and controls (b).  

 
The relative power of the frequency bands from 0.0052 to 2 Hz. The relative 

power of the oscillations around 0.06 Hz increased in response to cold by 11 % (0.54 −
0.6) in diabetics and by 0.4 % (1.102 − 1.106) in controls. The relative power of the 

oscillations around 0.2 Hz decreased by 25 % (1.18 − 0.88) in diabetics and by 8.5 % 
(0.48 − 0.44) in controls (Figure 41). The relative power in the respiratory frequency 
band was significantly lower in controls in the intervention (p = 0.039) compared to 

diabetics. 
 



 

 

63 

 
Figure 41. The relative power of the BP frequency spectrum from cold exposure 

diabetics (a) and controls (b).  
 

The absolute amplitude of the frequency bands from 0.0052 to 2 Hz. The 
absolute amplitude of the oscillations around 0.06 Hz was significantly lower in 

diabetics in the baseline in cold exposure (p = 0.019) compared to controls. The 

absolute amplitude increased by 130 % (47.9 − 109.0) in response to cold 
intervention in diabetics, and in controls, the increase was 199 % (148.5 − 443.8). 

The absolute amplitude of the oscillations around 0.2 Hz increased by 230 % (32.5 −
108.4 in diabetics and controls, the increase was 180 % (92.0 − 260.3) (Figure 42).  

 

 
Figure 42. The absolute amplitude of the BP frequency spectrum from cold exposure 

diabetics (a) and controls (b).  
 

The relative amplitude of the frequency bands from 0.0052 to 2 Hz. The relative 
amplitude of the oscillations around 0.06 Hz increased in response to cold by 380 % 
in diabetics and by 280 % in controls. The relative amplitudes of the oscillations 

around 0.2 Hz increased by 297 % in diabetics and by 255 % in controls. 
The CWT scalogram of the BP at baseline, intervention, and recovery from cold 

exposure from the same diabetic and control subjects as the total power figures, can 
be seen in Figure 43. And from the same representatives, the average scalograms 
superimposed from cold intervention can be seen in Figure 44. 
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Figure 43. The CWT scalogram of the diabetic subject (a) and the control subject 

(b) from cold exposure from baseline, intervention, and recovery. 
 

 
Figure 44. The average scalogram from cold exposure at baseline, intervention, 

and recovery of the diabetic subject (a) and the control subject (b) superimposed. 

Black line = baseline, red line = intervention, green line = recovery. 
 

The distribution of the frequency bands in baseline, intervention, and recovery 

from cold exposure from the same subjects can be seen in Figure 45. From these pie 
charts can observe that also in BP variation signal, different frequency bands were 

more pronounced in diabetics than in controls in cold exposure. However, the 
dominant bands were different than in HRV. 
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Figure 45. Distribution of frequency bands from the diabetic subject (a) and the 

control subject (b) from cold exposure. 

4.2.4. BP from warm exposure 

The magnitude scalogram (top) and the average scalogram (bottom) of the BP at 
baseline in warm exposure from a diabetic and control subject side by side can be seen 

in Figure 46. And at intervention from warm in Figure 47. Values of the absolute 
wavelet transform can be observed to be considerably lower also during the warm 

intervention in diabetics compared to controls. The total mean WT power of the 

spectrum decreased from 4.4 × 103 AU to 1.2 × 103 AU in diabetics and from 

40.3 × 103 AU to 8.6 × 103 AU in controls.  
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Figure 46. Warm baseline magnitude scalogram (top) and average scalogram 

(bottom) from a diabetic and control subject. 
 

 
Figure 47. Warm intervention magnitude scalogram (top) and average scalogram 

(bottom) from a diabetic and control subject. 

 
The peak amplitudes of the following frequency bands are calculated as the average 

of the peak amplitude frequencies of the measurements. 
The absolute power of the frequency bands from 0.0052 to 2 Hz. The absolute 

power of the oscillations around 0.06 Hz was significantly lower in diabetics in the 

baseline in warm exposure (p = 0.003) compared to controls. The absolute power  

increased 16 % (0.46 × 103 − 0.54 × 103) in response to warm intervention in 
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diabetics, whereas in controls the absolute power decreased by 72 % (40.8 × 103 −
11.2 × 103). The absolute power was also significantly lower in diabetics in the 
intervention (p = 0.007) compared to controls. The absolute power of the oscillat ions 

around 0.2 Hz was significantly lower in diabetics at baseline in warm exposure (p = 

0.010) compared to controls. The absolute power decreased by 81 % (2.8 × 103 −
0.55 × 103) in diabetic and in controls the decrease was 96 % (45.1 × 103 − 1.8 ×
103) (Figure 48). The absolute myogenic power and the absolute respiratory power 
ratio in the baseline were 1.69 in diabetics and 6.34 in controls and in the warm 
exposure intervention 1.66 in diabetics and 15.94 in controls. The change in diabetics 

was a 1.7 % decrease, whereas in controls the power ratio increased by 150 %. 
 

 
Figure 48. The absolute power of the BP frequency spectrum from warm exposure 

diabetics (a) and controls (b).  
 

The relative power of the frequency bands from 0.0052 to 2 Hz. The relative 
power of the oscillations around 0.06 Hz decreased in response to warm by 39 % 

(0.62 − 0.38) in diabetics, whereas in controls the relative power increased by 18 % 

(0.83 − 0.98). The relative power of the oscillations around 0.2 Hz decreased by 51% 

(0.84 − 0.41) in diabetics and 71 % (0.6 − 0.17) in controls (Figure 49). The relative 
power in the respiratory frequency band was significantly lower in controls in the 
intervention (p = 0.027) compared to diabetics. 

 

 
Figure 49. The relative power of the BP frequency spectrum from warm exposure 

diabetics (a) and controls (b).  
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The absolute amplitude of the frequency bands from 0.0052 to 2 Hz. The 

absolute amplitude of the oscillations around 0.06 Hz was significantly lower in 

diabetics in the baseline in warm exposure (p = 0.002) compared to controls. The 

absolute amplitude decreased by 12 % (16.8 − 14.8) in response to warm intervention 

in diabetics, and in controls, the decrease was 52 % (140.9 − 67.5). The absolute 
amplitude was also lower in diabetics in the intervention (p = 0.009) compared to 
controls. The absolute amplitude of the oscillations around 0.2 Hz was significantly 
lower in diabetics in the baseline in warm exposure (p = 0.013) compared to controls. 

The absolute amplitude decreased by 47 % (25.3 − 13.5) in diabetics and controls, the 
decrease was 82 % (126.1 − 22.9) (Figure 50).  

 

 
Figure 50. The absolute amplitude of the BP frequency spectrum from warm 

exposure diabetics (a) and controls (b).  

 
The relative amplitude of the frequency bands from 0.0052 to 2 Hz. The relative 

amplitude of the oscillations around 0.06 Hz decreased in response to warm by 22 % 

in diabetics and by 21 % in controls. The relative amplitudes of the oscillations around 
0.2 Hz decreased by 43 % in diabetics and by 69 % in controls. 

The CWT scalogram of the BP at baseline, intervention, and recovery from warm 
exposure from the same diabetic and control subjects as the total power figures, can 
be seen in Figure 51. And from the same representatives, the average scalograms 

superimposed from warm intervention can be seen in Figure 52. 
 

 
Figure 51. The CWT scalogram of the diabetic subject (a) and the control subject 

(b) from warm exposure from baseline, intervention, and recovery. 
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Figure 52. The average scalogram from warm exposure at baseline, intervention, 

and recovery of the diabetic subject (a) and the control subject (b) superimposed. 
Black line = baseline, red line = intervention, green line = recovery. 

 
The distribution of the frequency bands in baseline, intervention, and recovery 

from warm exposure from the same subjects can be seen in Figure 53. From these pie 
charts can observe that also in BP variation signal, different frequency bands were 
more pronounced in diabetics than in controls in warm exposure. However, the 

dominant bands were different than in HRV. 
 

 
Figure 53. Distribution of frequency bands from the diabetic subject (a) and the 

control subject (b) from warm exposure. 

4.2.5. LDF from cold exposure 

Total spectrum from 0.0095 to 2 Hz. The 3D magnitude scalogram (top) and the 
average scalogram (bottom) of the LDF at baseline in cold exposure from a diabetic 

and control subject side by side can be seen in Figure 54. And at intervention from 
cold in Figure 55. Values of the absolute wavelet transform can be observed to be 
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lower during the cold baseline and intervention in diabetics compared to controls. The 

total mean WT power of the spectrum decreased from 4.9 × 10−7 AU to 3.12 ×
10−10  AU in diabetics and from 4.8 × 10−6 AU to 1.0 × 10−9 AU in controls. The 
decrease in total WT power for both groups was similar in the cold intervention. 
 

 
Figure 54. Cold baseline 3D magnitude scalogram (top) and average scalogram 

(bottom) from a diabetic and control subject. 
 

 
Figure 55. Cold intervention 3D magnitude scalogram (top) and average scalogram 

(bottom) from a diabetic and control subject. 
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The peak amplitudes of the following frequency bands are calculated as the average 
of the peak amplitude frequencies of the measurements. 

The absolute power of the frequency bands from 0.0052 to 2 Hz. The absolute 

power of the oscillations around 0.05 Hz (myogenic) decreased 100 % (4.8 × 10−8 −
2.7 × 10−11) in response to cold intervention in diabetics, and controls, the decrease 
was the same 100 % (5.2 × 10−7 − 6.5 × 10−10 ). The absolute power of the 

oscillations around 0.2 Hz (respiratory) decreased by 99 % (5.2 × 10−9 − 3.5 ×
10−11 ) in diabetic and in controls the decrease was the same 99 % (2.7 × 10−8 −
3.2 × 10−10). The absolute power of the oscillations around 0.9 Hz (pulse) decreased 

by 100 % (1.6 × 10−6 − 1.2 × 10−9) in diabetic and by 100 % (1.3 × 10−5 − 3.1 ×
10−9) in controls (Figure 56). There were no between-group significant differences in 
any absolute power parameters. The absolute myogenic power and the absolute 

respiratory power ratio in the baseline were 13.7 in diabetics and 35 in controls and in 
the cold exposure intervention 2.6 in diabetics and 2.4 in controls. The change in 

diabetics was therefore 83 % decrease and in controls 93 % decrease. The absolute 
respiratory power and the absolute pulse power ratio in the baseline were 0.03 in 
diabetics and 0.009 in controls and in the intervention 0.15 in diabetics and 0.41 in 

controls. The change in diabetics was a 430 % increase and in controls 4460 % 
increase.  

 

 
Figure 56. The absolute power of the LDF frequency spectrum from cold exposure 

diabetics (a) and controls (b).    
 

The relative power of the frequency bands from 0.0052 to 2 Hz. The relative 
power of the oscillations around 0.05 Hz increased in response to cold by 180 % 

(0.13 − 0.37) in diabetics and by 480 % (0.09 − 0.56) in controls. The relative power 

of the oscillations around 0.2 Hz increased by 370 % (0.07 − 0.33) in diabetics and 

by 1800 % (0.03 − 0.48) in controls, whereas a small change was observed for the 

frequency around 0.9 Hz decrease by 11 % (3.28 − 2.93)in diabetics and increase of 
2,5 % (2.41 − 2.47) in controls (Figure 57). There were no between-group significant 
differences in any relative power parameters. 
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Figure 57. The relative power of the LDF frequency spectrum from cold exposure 

diabetics (a) and controls (b). 
 

The absolute amplitude of the frequency bands from 0.0052 to 2 Hz. The 

absolute amplitude of the oscillations around 0.05 Hz decreased 97 % (0.15 − 0.005) 
in response to cold intervention in diabetics, and in controls, the decrease was 96 % 

(0.42 − 0.02). The absolute amplitude of the oscillations around 0.2 Hz decreased by 

94 % (0.06 − 0.005) in diabetics and controls, the decrease was 88 % (0.1 − 0.01), 
whereas the absolute amplitude of the oscillations around 0.9 Hz increased by 97 % 

(0.65 − 0.01) in diabetics and by 98 % (1.58 − 0.03) in controls (Figure 58). There 
were no between-group significant differences in any absolute amplitude parameters. 

 

 
Figure 58. The absolute amplitude of the LDF frequency spectrum from cold 

exposure diabetics (a) and controls (b).  

 
The relative amplitude of the frequency bands from 0.0052 to 2 Hz. The relative 

amplitude of the oscillations around 0.05 Hz decreased in response to cold by 97 % in 
diabetics and by 92 % in controls. The relative amplitudes of the oscillations around 
0.2 Hz decreased by 88 % in diabetics and by 83 % in controls. The relative amplitude 

of the oscillations around 0.9 Hz decreased by 98 % in diabetics and 97 % in controls. 
The CWT scalogram of the LDF at baseline, intervention, and recovery from cold 

exposure from the same diabetic and control subjects as the total power figures, can 
be seen in Figure 59. And from the same representatives, the average scalograms 
superimposed from cold intervention can be seen in Figure 60.  

 



 

 

73 

 
Figure 59. The CWT scalogram of the diabetic subject (a) and the control subject 

(b) from cold exposure from baseline, intervention, and recovery. 
 

 
Figure 60. The average scalogram from cold exposure at baseline, intervention, 

and recovery of the diabetic subject (a) and the control subject (b) superimposed. 

Black line = baseline, red line = intervention, green line = recovery. 
 
The distribution of the frequency bands in baseline, intervention, and recovery from 

cold exposure from the same subjects can be seen in Figure 61. From these pie charts 
can observe that also in the LDF signal, different frequency bands were more 

pronounced in diabetics than in controls in cold exposure, but at baseline the 
distribution of the bands between the groups was similar. The dominant bands were 
also different than in HRV or BP variation signals. 
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Figure 61. Distribution of frequency bands from the diabetic subject (a) and the 

control subject (b) from cold exposure. 

 

4.2.6. LDF from warm exposure 

The 3D magnitude scalogram (top) and the average scalogram (bottom) of the LDF 

at baseline in warm exposure from a diabetic and control subject side by side can be 
seen in Figure 62. And at intervention from warm in Figure 63. The total mean WT 

power of the spectrum increased in warm from 2.0 × 10−6 AU to 4.4 × 10−6 AU in 

diabetics and from 1.1 × 10−6 AU to 1.9 × 10−6 AU in controls. The increase of total 
WT power for diabetics was larger compared to controls in the warm intervention. 
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Figure 62. Warm baseline 3D magnitude scalogram (top) and average scalogram 

(bottom) from a diabetic and control subject. 
 

 
Figure 63. Warm intervention 3D magnitude scalogram (top) and average 

scalogram (bottom) from a diabetic and control subject. 

 
The peak amplitudes of the following frequency bands are calculated as the average 

of the peak amplitude frequencies of the measurements. 
The absolute power of the frequency bands from 0.0052 to 2 Hz. The absolute 

power of the oscillations around 0.05 Hz increased 350 % (7.4 × 10−7 − 3.4 × 10−6 ) 
in response to warm intervention in diabetics, and controls the increase was 

considerably smaller by 30 % (1.2 × 10−6 − 1.5 × 10−6 ). The absolute power of the 
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oscillations around 0.2 Hz was significantly lower in diabetics in the baseline in warm 
exposure (p = 0.034) compared to controls. The absolute power increased by 260 % 

(2.1 × 10−8 − 7.6 × 10−8)  in diabetic and controls the increase was again, 

considerably smaller by 60 % (2.6 × 10−8 − 4.1 × 10−8 ), whereas the absolute power 

of the oscillations around 0.9 Hz increased by 90% (3.6 × 10−6 − 6.8 × 10−6 ) in 

diabetics and decreased by 20 % (1.8 × 10−6 − 1.4 × 10−6 ) in controls (Figure 64). 
There were no between-group significant differences in any relative power parameters. 
The absolute myogenic power and the absolute respiratory power ratio in the baseline 

were 13.5 in diabetics and 50.7 in controls and in the intervention 11.5 in diabetics and 
40 in controls. The change in diabetics was therefore 14.5 % and in controls 20 % 

decrease. The absolute respiratory power and the absolute pulse power ratio in the 
baseline were 0.01 in diabetics and 0.006 in controls and in the cold exposure 
intervention 0.09 in diabetics and 0.6 in controls. The change in diabetics was a 770 

% increase and in controls 10 000 % increase. 
 

 
Figure 64. The absolute power of the LDF frequency spectrum from warm exposure 

diabetics (a) and controls (b).  
 

The relative power of the frequency bands from 0.0052 to 2 Hz. The relative 
power of the oscillations around 0.05 Hz increased in response to warm by 130 % 

(0.19 − 0.44) in diabetics and by 210 % (0.24 − 0.74) in controls. The relative power 

of the oscillations around 0.2 Hz increased by 180 % (0.03 − 0.08) in diabetics and 

by 1500 % (0.01 − 0.22) in controls, whereas the relative power of the oscillat ions 

around 0.9 Hz decreased by 35 % (3.26 − 2.13) in diabetics and by 62 % (2.85 −
1.07) in controls (Figure 65). There were no between-group significant differences in 
any relative power parameters. 
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Figure 65. The relative power of the LDF frequency spectrum from warm exposure 

diabetics (a) and controls (b).  
 

The absolute amplitude of the frequency bands from 0.0052 to 2 Hz. The 

absolute amplitude of the oscillations around 0.05 Hz increased 82 % (0.42 − 0.72) in 
response to warm intervention in diabetics, and in controls, the increase was 117 % 

(0.39 − 0.86). The absolute amplitude of the oscillations around 0.2 Hz was 
significantly higher in diabetics in the baseline in warm exposure (p = 0.034) compared 

to controls. The absolute amplitude increased by 210 % (0.08 − 0.17) in diabetics and 

controls, the increase was 150 % (0.05 − 0.15), whereas the absolute amplitude of the 

oscillations around 0.9 Hz increased by 13 % (0.97 − 1.1) in diabetics and by 11 % 
(0.62 − 0.68) in controls (Figure 66). There were no between-group significant 
differences in any absolute amplitude parameters. 

 

 
Figure 66. The absolute amplitude of the LDF frequency spectrum from warm 

exposure diabetics (a) and controls (b).  

 
The relative amplitude of the frequency bands from 0.0052 to 2 Hz. The relative 

amplitude of the oscillations around 0.05 Hz increased in response to warm by 300 % 

in diabetics and by 1270 % in controls. The relative amplitudes of the oscillat ions 
around 0.2 Hz increased by 210 % in diabetics and by 780 % in controls, whereas the 

relative amplitude of the oscillations around 0.9 Hz increased by 39 % in diabetics and 
86 % in controls. 

The CWT scalogram of the LDF at baseline, intervention, and recovery from warm 

exposure from the same diabetic and control subjects as the total power figures, can 
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be seen in Figure 67. And from the same representatives, the average scalograms 
superimposed from warm intervention can be seen in Figure 68.  
 

 
Figure 67. The CWT scalogram of the diabetic subject (a) and the control subject 

(b) from warm exposure from baseline, intervention, and recovery. 

 

 
Figure 68. The average scalogram from warm exposure at baseline, intervention, 

and recovery of the diabetic subject (a) and the control subject (b) superimposed. 

Black line = baseline, red line = intervention, green line = recovery. 
 

The distribution of the frequency bands in baseline, intervention, and recovery from 
warm exposure from the same subjects can be seen in Figure 69. From these pie charts 
can observe that also in the LDF signal, different frequency bands were more 

pronounced in diabetics than in controls in warm exposure. The dominant bands were 
also different than in HRV or BP variation signals. 
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Figure 69. Distribution of frequency bands from the diabetic subject (a) and the 

control subject (b) from warm exposure. 
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5. DISCUSSION 
The main objective of this thesis was to assess whether there are differences in heart 
rate, blood pressure, and tissue blood flow parameters between T2DM patients and 

controls during a thermal challenge in cold (+10 ˚C) and warm (+40 ˚C) environments 
and whether these possible differences are reflected in the amplitude and/or power of 

low-frequency oscillations. The signals were also examined in the time-domain to gain 
insight of the changes between the groups, but these results are only briefly discussed 
in this thesis. A deeper analysis and interpretation were omitted as the focus was on 

the analysis of the frequency oscillations of the signals. 

5.1. Cold exposure 

The results of this study demonstrated that the resting heart rate of T2DM patients was 
significantly higher and RR intervals shorter at baseline in cold exposure. In the cold 
exposure, RR intervals increased in both groups similarly. SDNN, RMSSD, NN50, 

and pNN50 were significantly lower in diabetics at baseline, and these values 
increased in cold exposure in both groups, with a slightly greater increase in NN50 

and pNN50 in the controls. The results showed that mean systolic blood pressure and 
mean diastolic blood pressure increased during cold exposure in both groups, but the 
change in SYS was slightly greater in the diabetics. MAP increased during the cold 

intervention in both groups and decreased during recovery, but the changes were 
slightly greater in diabetics. The mean SBP variation is similar to the mean RR 

interval, and they also behaved similarly. The absolute mean BPU decreased 
considerably in the cold intervention for both groups. And although the perfusion 
increased during recovery it did not return to baseline levels. BPU values were 

generally lower in diabetics at baseline and intervention, which is similar to other 
studies showing that diabetics on average have lower blood perfusion [4]. In cold 

recovery, diabetics had a greater increase in mean BPU compared to controls, with a 
164% increase in BPU compared to a 54% increase in controls. 

Total frequency spectrum from 0.052 – 2 Hz. The total power of the frequency 

range was considerably lower in diabetics than in controls both in the HRV and BP 
spectra, which is similar to findings in [12], and it increased more in cold in controls 

than in diabetics. In the LDF spectrum, total power was lower in diabetics at cold 
baseline and intervention, but its decrease in the cold was similar between groups. 

Frequency interval from 0.052 – 0.145 Hz. The results demonstrated that at this 

frequency interval in general, the amplitude and power of the diabetics were lower at 
baseline and intervention measurements. There were also significant differences in the 

absolute amplitude and absolute power of HRV and BP at baseline. Lower values in 
this frequency range in diabetics are consistent with other studies on HRV [12]. The 
increase or decrease was consistently greater in controls, except the decrease in LDF 

was similar between groups both in absolute amplitude and power. 
In this thesis, the results show that BP amplitude and power increased in cold (both 

absolute and relative) in both groups, absolute and relative amplitude of HRV 
increased in cold in both groups and absolute power increased, considerably more in 
controls, and relative power increased in diabetics but decreased slightly in controls. 

For LDF, absolute and relative amplitude decreased in cold in both groups, and 
absolute power also decreased in both groups, but relative power increased, more in 

controls. Relative amplitudes were calculated in this thesis relative to the absolute 
baseline amplitude, and during the work, it was found that a better way to calculate 
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this might have been relative to the mean amplitude of the whole spectrum (0.0095 – 
2 Hz), in the same way, that relative power was calculated. 

The origin of this frequency has been attributed to sympathetic activation [51]. In 

HRV and BP studies, this band can be compared to the LF band, and the power of the 
band has been used to indicate SNS activity, but the band may be produced by both 

SNS and PSNS activity [14, 26, 38] and also produced by BP regulation via 
baroreceptors [13]. It is, therefore, interesting that in this study, results demonstrate 
that in cold diabetics LF relative power increase but in controls, it decreases. 

Frequency interval from 0.145 – 0.6 Hz. The results demonstrated that in this 
frequency interval, the amplitude and power of diabetics were mostly lower at baseline 

and in the intervention measurements. There was also a significant difference between 
diabetics and controls in the relative power of BP in cold intervention. Lower values 
in this frequency range in diabetics are consistent with other studies on HRV [12]. The 

increase or decrease was consistently greater in controls, except for the absolute and 
relative amplitude of BP increased slightly more in diabetics than in controls, and the 

relative power of BP decreased more in diabetics. Also, the absolute and relative 
amplitude and absolute power of LDF decreased slightly more in diabetics. 

In this thesis, the results show that the absolute and relative amplitude and absolute 

power of HRV and BP increase in the cold in both groups. In BP, relative power 
decreases in both groups, with a greater decrease in diabetics. And in HRV, relative 

power decreases in diabetics, while it increases in controls. In LDF, absolute and 
relative amplitude and absolute power decrease almost equally in both groups, but 
relative power increase considerably in both groups, even more in controls. 

The origin of this frequency has been accepted as the respiratory band [13]. In HRV 
studies, this band can be compared to the HF band, and the power of the band has been 
used to indicate PSNS activity [13, 26]. In this frequency band, it is also interesting 

that results in this study demonstrate that in cold, HF relative power increases in 
controls, but in diabetics HF relative power decreases. For LF/HF ratio, origina l ly 

based on 24-hour recordings and used to estimate sympathovagal balance [13, 26], is 
controversial from this point of view because the LF band does not directly reflect 
SNS activity. And especially, when recorded for 5 minutes of rest in the sitting upright 

position, it has been shown that the primary contributors to the LF band are PSNS and 
baroreflex activity [13]. Interestingly, the results of this study show that the LF/HF 

ratio decreases in cold, more in diabetics, and increases in warm, considerably more 
in controls. 

Frequency interval from 0.6 – 2 Hz. This frequency interval was only seen in the 

LDF signal because the BP and HRV signals originate from the heart and the human 
heart beats at about 1 Hz frequency. In this band, diabetics had lower absolute 

amplitude and power and relative amplitude at baseline and intervention in cold, but 
relative power at baseline and intervention was higher in diabetics. The increase or 
decrease in absolute amplitude and absolute power was greater in controls. Relative 

amplitude increased slightly more in diabetics than in controls, and relative power 
increased in controls, while it decreased in diabetics. Cooling-induced 

vasoconstriction has been shown to decrease the normalized power of this frequency 
interval in the LDF signal [29]. Interestingly, in controls, cold exposure shows a very 
slight increase in normalized power, whereas it decreases in diabetics. 
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5.2. Warm exposure 

The results of this study demonstrated that the resting heart rate of T2DM patients was 
significantly higher and RR intervals shorter at baseline in warm exposure. The warm 

exposure resulted in decreased RR interval, which was greater in controls. SDNN, 
RMSSD, NN50, and pNN50 were significantly lower in diabetics at baseline. In the 

warm exposure, these values decreased in both groups, with the percentage decrease 
in SDNN and RMSSD being considerably greater in the controls (diabetics' decrease 
was 5 % and 24.5 %, respectively, and controls 32 % and 51.6 %, respectively). During 

warm exposure, SYS and DIA decreased in controls and increased during recovery 
almost back to baseline values. In diabetics, SYS decreased during the intervention 

and increased again during recovery, but DIA increased slightly during the 
intervention and also continued to increase during recovery. In warm, MAP decreased 
during the intervention in both groups and increased during recovery, but the decrease 

during intervention was greater in controls. During recovery, MAP increased slightly 
above the baseline value in diabetics. During the intervention, the absolute mean BPU 

increased considerably in both groups and decreased during the recovery. But the BPU 
values of the controls at baseline appear to be inconsistent, with absolute values being 
considerably lower in some subjects, affecting the baseline mean values. This 

highlights the problem of heterogeneity in LDF measurements, as the same subjects 
have had much higher values at the cold baseline, but for some reason, these values 

are not repeated in the warm baseline. It might have been helpful to have been able to 
normalize the values to the maximum perfusion to improve the comparability between 
the subjects. 

Total frequency spectrum from 0.052 – 2 Hz. In the warm, because controls had 
inconsistencies in baseline measurements, it appears that controls had lower total 
power at baseline, but diabetics had, however, higher total power in the intervention 

than controls. In both groups, total LDF power increased during the warm intervention 
due to increased blood flow, consistent with other studies [29].  

Frequency interval from 0.052 – 0.145 Hz. At this frequency interval in general, 
the amplitude and power of the diabetics were lower at baseline and intervention 
measurements. There were also significant differences in the absolute amplitude and 

absolute power of HRV and BP in warm exposure at baseline and intervention between 
diabetics and controls. Lower values in this frequency range in diabetics are consistent 

with other studies on HRV [12] and on LDF amplitude and power [29, 40, 42]. The 
increase or decrease was consistently greater in controls, except the increase in LDF 
in absolute power was considerably greater in diabetics than in controls. There was 

also an increase in BP absolute power in diabetics, whereas it decreased in controls. 
In this thesis, the results show that in warm in BP, absolute and relative amplitude 

decreases in both groups, but there was a difference in absolute and relative power. 
The absolute power increases and the relative power decrease in diabetics, and 
interestingly, in controls these go the other way around, i.e., absolute decreases and 

relative power increases. For HRV, absolute and relative amplitude decrease, as does 
absolute power, but relative power decreases in diabetics and increases in controls. For 

LDF, all parameters increase in warm in both groups.  
In LDF studies, the amplitude of this band has been associated with smooth muscle 

activity in peripheral blood vessels, with an increase in amplitude associated with a 

greater contribution to the regulation of blood flow [30]. This was also seen in this 
study, with an increase in amplitude with warm exposure. Power, primarily relative 

power, has also been associated with smooth muscle activity as a predictor of 



 

 

83 

vasocontraction (increase) or vasodilation (decrease) [29]. This was observed in this 
study, where relative power increased in both groups in the cold, with a greater 
increase in controls. However, in this study, relative power was not found to decrease 

with warm exposure but increased in both groups. However, it is difficult to say how 
much the inconsistency with the controls baseline measurements has affected this 

frequency range power and hence relative power. 
Frequency interval from 0.145 – 0.6 Hz. The results demonstrated that in this 

frequency interval, the amplitude and power of diabetics were mostly lower at baseline 

and in the intervention measurements in warm. There was also a significant difference 
between diabetics and controls in the absolute amplitude and power of HRV and BP 

at baseline and in the relative amplitude of HRV and BP in the intervention and in the 
relative power of BP in intervention. Also at baseline, the absolute amplitude and 
power of LDF differed significantly between diabetics and controls. Lower values in 

this frequency range in diabetics are consistent with other studies on HRV [12] and on 
LDF amplitude and power [29, 42]. The increase or decrease was consistently greater 

in controls, except the increase in the absolute power of LDF in the intervention was 
considerably greater in diabetics than in controls, even though the controls’ baseline 
values were most likely affected by the inconsistency. 

In this thesis, the results show that in warm BP and HRV absolute and relative 
amplitude and absolute and relative power decrease in both groups, all decreasing 

more in controls. In LDF, all parameters increase in both groups, and the increase in 
absolute power was considerably greater in diabetics, but the increase in relative power 
was considerably greater in controls. 

In LDF studies, this channel has been associated with the respiratory band and 
carries information on the influence of thorax movement on peripheral blood flow 
[30]. Increased activity is observed in this study in relative power, which is similar to 

the response in [30] in warm exposure. 
Frequency interval from 0.6 – 2 Hz. The results demonstrated that in this 

frequency interval in warm absolute amplitude and power and relative power at 
baseline and intervention were higher in diabetics, but the relative amplitude was lower 
in diabetics. The increase or decrease in relative amplitude and relative power was  

greater in controls, but the absolute amplitude increased more in diabetics, and 
absolute power increased in diabetics while it decreased in controls, which may be 

affected by the inconsistency. In warm, this frequency interval power has been 
observed to increase [30], but in this study, the results demonstrate that in diabetics 
the absolute power increases while relative decreases, and in controls both decreases. 

Overall, the results demonstrated that diabetics had higher HR, but other time -
domain parameters can be said to be lower than controls in all measurement phases, 

except for DIA and MAP in cold, %CVCmax in warm exposure, and mean BPU in 
warm baseline (which affects CVC in the warm baseline), due to the inconsistency 
discussed earlier. The higher DIA value and behavior in warm in diabetics could be 

due to endothelial dysfunction and vascular remodeling due to hypertension, resulting 
in higher vascular resistance [19]. In general, it can also be said that the response to 

cold was similar in both groups, but in warm the difference with baseline was greater 
in controls, and therefore it could be said that the diabetics' response to warm exposure 
was poorer than in controls. However, the inconsistent LDF baseline measurements of 

controls should be taken under consideration. The poorer response of diabetics is 
however consistent with the hypothesis that diabetics, with comorbidities, may gain a 

higher thermal load than the age-matched controls, leading to a greater risk of heat-
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related illnesses [4]. This is also consistent with the synergistic negative effect of aging 
that may also impair cardiovascular function in diabetics [4]. Generally, in the 
frequency-domain, the effect of thermal exposure at these frequency bands is similar 

for most parameters in both diabetics and controls, but the amplitude and power values 
were greater in controls and the increase or decrease during exposures tended to be 

greater in controls. These results may indicate that diabetics are less responsive during 
thermal stress compared to healthy controls and may suggest that diabetics are less 
able to initiate thermoregulatory processes during acute exposure to extreme 

environmental thermal conditions and may at least partly explain the increased heat-
related complications in diabetics [4].  

However, there are some limitations in this study. The number of subjects studied 
was relatively small and may not accurately reflect the overall population. Also, the 
controls' baseline measurement in warm with LDF may not accurately reflect the true 

perfusion, which should be taken under consideration when reviewing the results. In 
addition, the short duration of the measurement results in most of the data being 

minimized, which also removes valuable information needed to understand the 
subject's overall condition. Short duration measurements also affect pre-processing 
results, as most of the data may be filtered out if the data are noisy, which is a 

reasonable expectation for subjects under stress. In this study, the individua l 
recordings were not always of good quality, probably mainly due to other concurrent 

measurements and subjects' movements, as well as the stressful and unusual situation. 
The duration of the measurement also affected the interpretation of the low-frequency 
oscillations, and therefore the two lowest bands were not included in the results of this 

study. It should also be noted that comparing studies is challenging, especially for 
LDF, as the study design, instrumentation, measurement area and measurement time 
can be very different. 

Future research ideas would be to overcome the above limitations, in particular the 
short recording time. A longer recording time would allow the two lowest frequency 

bands to be reliably included in the analysis and would also improve the pre-processing 
results, as discussed above. It would also be interesting to conduct a similar study with 
a larger number of subjects. Another dimension to add to the analysis could be the 

regularity and randomness methods derived from information theory, which have been 
applied to ECG, EEG, and LDF signals, for example. 
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6. CONCLUSION 
 
The objective of this thesis was to explore the low-frequency oscillatory characterist ics 

of the cardiovascular system based on tissue blood flow, heart rate, and blood pressure 
parameters in diabetic and healthy subjects in response to acute exposures to heat and 

cold. The main goal of this thesis was to explore if these parameters change in T2DM 
patients compared to the control group during the thermal challenge and whether these 
differences are reflected in the amplitude and/or power of low-frequency oscillat ions 

between the groups. In addition, the parameters were analyzed in the time-domain. 
In this thesis the cardiovascular system and its function are described in the theory 

section, it is also described from the perspective of diabetes and how the disease affects 
cardiovascular function. As the experimental study focused on the effect of thermal 
challenge, human thermoregulation is also described and how it has been shown to 

change with diabetes. The methods section of this thesis describes the signals used and 
the pre-processing activities and how these signals are studied in this thesis in the time-

domain, frequency-domain, and statistically. The results and the discussion of the 
results conclude this thesis. 

 The signals were analyzed using wavelet transform and divided into five frequency 

intervals based on previous studies of LDF signals, these being associated with 
different cardiovascular system structures, namely endothelial, neurogenic, myogenic, 

respiratory, and cardiac. The cardiac frequency interval was not seen in the frequency 
analysis of HRV or BP variation. As presented in this thesis, for reliable statistica l 
analysis the recording should ideally include 10 cycles for each frequency band. In this 

experimental study, the individual recording time of each phase was about 5 minutes, 
therefore the myogenic band in 0.052 – 0.145 Hz was the lowest frequency interva l 

for reliable statistics and the two lowest frequency intervals were omitted from the 
results. The results of this thesis showed that, in general, all calculated parameters in 
both the time-domain and frequency-domain were lower in diabetics compared with 

controls. Also, the change as a result of exposure to cold and warm, was generally 
lower in diabetics, which suggests that the thermoregulatory response is different 

between diabetic and control groups. Overall, the results of this thesis suggest that 
there is a difference between T2DM patients and controls in the parameters of these 
signals, and the difference is reflected in the time-domain parameters as well as in the 

amplitude and power parameters of the frequency-domain.  
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