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ABSTRACT 

Remote use of USB peripherals has been identified as useful for Aava Mobile customers. 

Therefore, the commercial feasibility of an accessory that allows accessing USB devices 

remotely was studied at Aava, and a prototype device was built. The software in this 

accessory was required to transfer data securely, be automatically detectable on a local 

network, and operate autonomously. It is explored in this thesis how remote USB 

sharing and the requirements could be implemented using open-source software 

components. 

New USB remote use programs that support the required capabilities were created as 

part of this thesis. These applications run on Linux-based operating systems and make 

use of the existing open-source USB/IP tool protocol. The new client program uses the 

existing Linux USB/IP virtual host controller driver, and the server is implemented in 

user space. 

After the software work was concluded, measurements were performed for 

evaluation purposes. Optimal encryption ciphers for the prototype hardware were also 

selected. It was verified by testing that network delay causes major performance 

degradation. Other significant performance concerns were network adapter speed, the 

use of encryption, USB port speed, and the user space server implementation. However, 

while these aspects reduced the performance of the prototype, they were not determined 

to be critical. The accessory was not intended for high-performance use cases, and 

therefore the use of cost-effective components can be justified. 

 

Key words: USB/IP, Linux, TLS, remote use 

 



 

Laitinen J. (2022) Etäkäytettävä USB-keskitin: Ohjelmistokehitys ja testaus Oulun 

yliopisto, tieto- ja sähkötekniikan tiedekunta, elektroniikan ja tietoliikennetekniikan tutkinto-

ohjelma. Diplomityö, 77 s. 

 

 

TIIVISTELMÄ 

USB-laitteiden etäkäyttö on havaittu hyödylliseksi Aava Mobilen tablettilaitteiden 

käyttäjille. Tästä syystä Aavalla tutkittiin tämän toiminallisuuden sisältävän lisälaitteen 

kaupallista toteutusmahdollisuutta ja toteutettiin prototyyppilaite. Tässä laitteessa 

toimivan ohjelmiston vaadittiin salaavan siirrettävä data, löytyvän automaattisesti 

sisäverkossa sekä toimivan ilman käyttäjän apua. Tässä diplomityössä tutkitaan kuinka 

USB-laitteiden käyttö sekä vaaditut ominaisuudet voitaisiin toteuttaa avoimen 

lähdekoodin ohjelmistokomponenttien avulla. 

Diplomityön osana toteutettiin vaaditut ominaisuudet sisältävät ohjelmistotyökalut 

USB-laitteiden etäkäyttöön. Nämä ohjelmistot toimivat Linux-pohjaisissa 

käyttöjärjestelmissä ja käyttävät olemassa olevaa avoimen lähdekoodin USB/IP-

työkalujen protokollaa. Asiakasohjelma käyttää olemassa olevaa virtuaalista USB/IP- 

isäntäohjainta ja palvelin on toteutettu käyttäjätilassa. 

Ohjelmiston toteutuksen jälkeen mittauksilla arvioitiin suorituskykyä sekä valittiin 

optimaaliset salausalgoritmit prototyyppilaitteistoa varten. Testeillä vahvistettiin, että 

verkon viiveellä on suuri vaikutus järjestelmän suorituskykyyn. Muita merkittäviä 

suorituskykyyn vaikuttavia seikkoja olivat verkkoadapterin nopeus, salauksen 

käyttäminen, USB-portin nopeus sekä palvelinohjelman toteutus käyttäjätilassa. Nämä 

hidastivat prototyyppilaitteen toimintaa, mutta niiden vaikutus ei kuitenkaan ollut 

kriittistä. Toteutettua lisälaitetta ei ollut tarkoitettu käytettäväksi kohteissa, jotka 

vaativat suurta suorituskykyä ja näin ollen laitteistovalinnoilla voitiin saavuttaa 

kustannushyötyä. 

 

Avainsanat: USB/IP, Linux, TLS, etäkäyttö 
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1 INTRODUCTION 

 

The Universal Serial Bus (USB) is commonly used when transferring data between a host 

computer and a peripheral device. USB peripherals include storage drives, human interface 

devices, web cameras, and a wide variety of other devices. Additionally, special hub devices 

are available that increase the number of USB devices a computer can use simultaneously. 

USB peripherals are usually connected to standardized ports on a computer. Traditionally, 

USB devices are only used locally and connected to a computer either directly or through one 

or more USB hubs. Due to limitations imposed by the USB standard, the maximum length of 

a USB 2.0 cable is approximately 5 meters [1]. There can be up to five hubs between a USB 

device and the host [1]. This means that even if all these hubs are externally powered, a USB 

device cannot be guaranteed to work from more than 30 meters away. 

To address the relatively short operating distance, both commercial and open-source USB 

remote access software solutions have been created. Open-source software tools rely on the 

USB request over the Internet Protocol (USB/IP) method, which was proposed by Takahiro 

Hirofuchi et al. in the early 2000s [2]. USB/IP is used to transfer USB data over the Internet 

Protocol (IP), which allows USB devices to be theoretically used from any distance. The first 

open-source software tools were also created by Hirofuchi for Linux systems as a part of his 

research. There are also commercial USB remote sharing devices. These devices appear much 

like conventional hubs and can operate completely autonomously. 

There is expected to be interest in a remote USB sharing solution among Aava Mobile 

customers. Aava currently offers two types of docking stations for use with Aava tablets. 

These allow charging and optionally support conventional USB hub and High-Definition 

Multimedia Interface (HDMI) functions. By replacing the internals of the latter data dock 

with the remote USB sharing hardware, it could be offered as a new accessory in the future. 

Simultaneously with this thesis project, a proof of concept Virtual I/O Box (VIOBox) 

remotely accessible USB hub was created. This prototype was built using commercial off-the-

shelf components, which were evaluated to find out whether such components could be used 

in a commercial system. 

The aim of this thesis was to document the VIOBox software design process, starting from 

the technical background all the way to measurements on the prototype hardware. The 

VIOBox software project target was to create USB sharing software tools that operate on 

Linux systems and implement VIOBox-specific requirements. The VIOBox device was 

designed to function like a regular USB hub, which meant it needed to allow clients to 

automatically use available devices. The system was also required to support secure data 

transfers between a tablet client and the VIOBox server. For cost management and 

customizability reasons, the software in VIOBox was to be based on open-source solutions. 

However, these required features were not readily available in existing open-source tools. 

This raised the question of: how could open-source USB/IP software components be used 

to create USB sharing software tools with data security and automatic use features? 

The chapters in this thesis are organized according to the design process. In the second 

chapter, existing USB remote sharing solutions and design options are evaluated. This is 

followed by a presentation of the technical background that is required in the software work. 

The fundamentals of USB are presented in chapter three. Chapter four contains an in-depth 

look at the USB/IP method and the protocol that is used in the existing USB/IP tools. In the 

fifth chapter, RemoteHub, the product of the VIOBox software project, is introduced. This 

chapter also includes a brief overview of the mechanics and hardware of VIOBox. However, 

these choices are otherwise outside the scope of this thesis. The sixth chapter is dedicated to 
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RemoteHub software performance comparisons and other measurements. The performance of 

the created software is evaluated with a special focus on how the encryption performance can 

be optimized. Encryption is particularly expected to introduce performance degradation, and 

this is wanted to be known and minimized. Testing will also aim to find improvements that 

should be considered in the future development of VIOBox. It is especially wanted to be 

found: what are the main performance bottlenecks in the prototype VIOBox system? 
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2 USB SHARING OVER IP 

 

Currently, there are many software and hardware solutions available for USB remote use. 

These can be useful, for example, in point of sale and warehouse use cases, and generally 

anywhere mobility is required. For example, a restaurant might have legacy USB receipt 

printers that need to be used remotely. Purchasing new devices built with remote use in mind 

may be more expensive than using existing USB devices with a sharing solution. 

The first device for remote USB sharing was introduced by Inside Out Networks in 2001 

[3]. This “AnywhereUSB™ Remote USB Over IP Concentrator” USB sharing device was 

initially USB 1.1 compatible and operated on a local area network. It used the Transmission 

Control Protocol (TCP) over an IP connection to transfer data. The maximum speed of data 

transfer was 12 Mbps [4]. 

The USB/IP method for USB remote use was proposed by Takahiro Hirofuchi et al. in the 

early 2000s [2]. It has also been discussed in his master’s thesis in 2004 [5] and followed up 

in his doctoral dissertation in 2007 [6]. As a part of his research, Hirofuchi created the first 

free and open-source remote USB sharing tools. These sharing tools, which are also available 

today, allow a Linux-based server computer to share USB devices with another Linux client 

computer. The USB/IP tools use a TCP/IP connection internally and support all the common 

USB transfer types [2]. The drivers created by Hirofuchi were added to the Linux kernel 

staging area in 2008 [7], followed by user space tools in 2011 [8]. The USB/IP code was 

merged into the mainline Linux kernel in 2014, starting with kernel version 3.17 [9]. 

Today, both commercial and open-source USB sharing tools have added many new 

features on top of those initially implemented. These include features such as USB 3.0 [10] 

and Windows support [11] in the open-source community. Commercial tools have further 

implemented data security, automatic server discovery, fine-grained access controls, and a 

broad range of other features. Although development has been active in the open-source 

community, many of the commercial tool features are yet to be included in open-source tools. 

This chapter presents background information about the currently available USB sharing 

devices and software. A special focus is on the capabilities of the previously mentioned 

USB/IP tools in the Linux kernel and the subsequently developed Windows port of these 

tools. 

 

 

2.1 Commercial devices 

Multiple commercial vendors offer remote USB sharing hubs. These devices bundle the 

hardware and software in one package. The most notable is the AnywhereUSB™ line of 

devices. The current AnywhereUSB™ plus devices are available with two to twenty-four 

USB 3.1 ports. These hubs are managed using a web interface or through a built-in command 

line with Secure Shell (SSH) or serial connection. The AnywhereUSB™ hubs also support 

data encryption, can be automatically discovered, and there is extensive support for access 

control. [12] For example, Solid State Supplies Ltd offered the two-port variant for 263€ 

excluding taxes [13].  

There are also similar devices from other vendors, such as AnyplaceUSB hubs from 

Coolgear Inc. These AnyplaceUSB devices support network traffic encryption, password 

authorization, and automatic discovery. They support Linux and Windows operating systems, 

but only contain USB 2.0-capable ports. [14] At the time of writing, USBGear.com was 

selling the two-port device for 61€ [15].  
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2.2 Commercial software 

Remote USB sharing software can also be purchased separately if a user opts to use their own 

server hardware. One well-known commercial tool is VirtualHere, which provides a USB 

device sharing server application for Linux, Windows, macOS, Android, and specific 

Network Attached Storage (NAS) devices. The VirtualHere client software is available for 

Linux, Windows, macOS, and Android devices. VirtualHere includes support for data 

security and compression. The client application supports finding servers automatically on a 

local network. Also, server discovery on public network is supported using the EasyFind 

service [16]. VirtualHere can be customized with the use of configuration files and scripts. 

The system can use, for example, IP, password, or USB device properties to grant or deny 

access to a particular device. Overall, VirtualHere is a feature-rich USB sharing solution. At 

the time of writing, it cost 46€, which included a license for one server. The number of clients 

for a server was unrestricted. In addition, there is an active support forum on the VirtualHere 

website where the founder answers questions and resolves problems that users may have. [17] 

Another software example is “USB Network Gate” by Electronic Team. The USB 

Network Gate supports Windows, Linux, Android, and macOS systems and allows USB 

communication to be secured and compressed. The client application can also find servers 

automatically on a local network. The USB Network Gate is available for use in multiple 

ways. In addition to conventional server and client applications, the service can be purchased 

as a Software Development Kit (SDK). By using the SDK, implementers can add the USB 

sharing capability to their services or apps. The full application source files are also available 

for licensing. The price for commercial use, the SDK, and source licensing is determined on a 

case-by-case basis by contacting Electronic Team. The applications were available for 

personal and non-commercial use for 149€. [18] 

 

 

2.3 Open-source USB/IP software 

USB/IP is a method for transferring raw USB data over an IP network using a virtual host 

controller on the client computer and a special device driver on the server computer. From the 

client computer’s point of view, the remote USB device appears just as if it were physically 

connected to it [2]. The technical details of both USB and USB/IP are studied in later 

chapters. Because the software developed in this work is based on open-source USB/IP 

methods and software components, these are examined in greater detail. This section presents 

the features and user interface of existing USB/IP tools. 

 

 

2.3.1 Linux tools 

The USB/IP tools are used from the command-line. With the command line interface, users 

can find, attach, and detach remote USB devices. Only the user interface and functions are 

explored in this section. The USB/IP protocol and drivers are explored in-depth in chapter 

four. 

The Linux USB/IP user space tools are comprised of usbip and usbipd applications. The 

usbip executable is used by both servers and clients. On the server, it is used to bind USB 

devices to be used with USB/IP. After binding, devices are allowed to be used by clients and 

cannot be used locally by the server. Clients use the usbip executable to query servers for 
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device listings and attach devices that are bound for use. A successful attach with the tool is 

equivalent to plugging a USB device into the client system. 

Servers use the usbipd application. It is a daemon process that receives commands from 

usbip clients and starts USB forwarding when possible. The usbipd application is designed to 

be used in the background but can print debugging information about its internal operation. 

The user space applications control the USB/IP kernel drivers. There is a Virtual Host 

Controller Interface (VHCI) Host Controller Driver (HCD) vhci-hcd Linux kernel driver that 

is used on the client. It implements a virtual host controller with a virtual root hub for 

transferring USB data and is referred to as the VHCI driver in this paper. Servers use a 

“STUB” usbip-host Linux kernel device driver module that allows raw data transfers with 

USB devices. 

The following Figure 1 illustrates the steps that a server needs to execute to enable a USB 

device to be used by clients. The steps that are run using sudo indicate they need root 

privileges. 

 

1. The USB device is physically attached to the server computer and the usbip-host 

module is loaded. Internally, the modprobe tool loads also a required usbip-core 

module. This command needs to be executed only once. 

2. The usbipd process is started if it is not already running. The “&” at the end of the 

command indicates that usbipd is started in the background. However, because the 

output is not redirected, informative traces are printed on the terminal. The process 

can also be started as a daemon process by supplying “-D” parameter during startup. 

3. A local device list is queried with usbip to find out the “busid”, which is a sequence of 

USB bus and port numbers where the USB device is physically attached. 

4. The USB device is marked as exportable by binding it. The unique port configuration 

found during step 3 is used to refer to the device. 

 

 
 

Figure 1. Steps to start the USB/IP server and allow a Dell mouse that is physically attached 

to the server to be used by clients. 
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After the server has bound a USB device for use, clients can start using it. The steps for a 

client to attach a remote USB device are shown in Figure 2 and explained below. 

 

1. The vhci-hcd driver module is loaded if not already present. Again, the usbip-core 

module is also automatically loaded. 

2. A device listing command is issued to the IP address of the server. The resulting 

listing shows all bound but still unattached devices on the server. 

3. An attach command is issued to start using the device. This command contains the 

unique port configuration of the device on the server. 

 

 
 

Figure 2. Steps for a client to start using the Dell mouse that was previously bound on the 

server. 

 

After the previously illustrated negotiation in user space programs has successfully 

finished, the open network sockets are passed to the USB/IP kernel drivers by both client and 

server applications. The kernel space usbip-host STUB device driver on the server and virtual 

host controller driver vhci-hcd on the client then communicate with each other, transferring 

USB data using the protocol defined by the drivers. This kernel space USB/IP tool protocol is 

presented later in detail. User space applications are not involved in the transfer of USB data 

and communicate with each other using the user space USB/IP tool protocol that is also 

presented later. 

 

 

2.3.2 Windows tools 

The USB/IP Windows utilities were first introduced in 2009 by SourceForge user “lepton-

wu” [11]. The Windows tools and drivers have been actively developed ever since, and 

currently the main software project is USBIP-win [19]. This Windows software suite is 

compatible with the Linux USB/IP tools. Like its Linux counterpart, it provides user space 

server and client applications that implement a command-line interface along with kernel 

drivers. Commands for Linux usbip generally work in the Windows version as well. 

Available commands are shown in Figure 3. 
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Figure 3. Commands available in the Windows USB/IP tool usbip.exe. 

 

One notable disadvantage of the Windows tools is that, at the time of writing, the client 

virtual host controller driver was not digitally signed. This means that the driver can only be 

installed in Windows test mode, in which driver signatures are not enforced. This is a problem 

in a commercial setting because end users cannot be expected to use their computers in test 

mode. It is possible to sign the driver by purchasing a specific signing certificate and 

submitting the driver to the Microsoft developer portal [20]. This process can be costly, and 

getting the drivers signed may be difficult for open-source projects; it is more geared for 

organizations.   

 

 

2.3.3 Limitations and possible solutions 

The current USB/IP tools for Linux and Windows lack features such as data security and 

automatic discovery built in. Methods to overcome the key limitations of current USB/IP 

tools are explored in this section. The areas of interest include data security, automatic 

discovery, and unattended use. Other limitations are not explored here, such as the lack of 

fine-grained access controls, which may be important depending on the use case. Hirofuchi 

presented in his doctoral dissertation an implementation of a prototype sharing system with 

data security and automatic use [6]. However, these features are not implemented in the 

current public tools.  

 

 

Security 

 

One widely used framework for assuring information security is the CIA triad [21]. The CIA 

triad, originally introduced in the 1970s, refers to three core security concerns in information 

systems. These are Confidentiality, Integrity, and Availability. Confidentiality is needed so 

that information cannot be read by unauthorized actors. It can be implemented with the help 

of various encryption algorithms, such as the Advanced Encryption Standard (AES) and the 

Rivest–Shamir–Adleman (RSA) cryptosystem. Integrity is required so that data cannot be 

tampered with by unauthorized actors, leading to legitimate users unknowingly using invalid 

data. Integrity would be ensured, for example, by using hash functions and cyclic redundancy 

check (CRC) algorithms. Availability refers to the service being available at any time so that 

third parties cannot prevent authorized users from accessing it. Availability aspects would 

include, for example, Distributed Denial of Service (DDoS) mitigation. 
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Confidentiality and integrity aspects can be implemented, for example, by using Transport 

Layer Security (TLS) or SSH protocols. TLS is a very common protocol that is used for 

encrypting network transfers. Many versions of the TLS and its predecessor Secure Sockets 

Layer (SSL) have been introduced, the latest of which is TLS 1.3. A TLS connection is 

initialized with a handshake, usually using certificates, which are used to verify the 

authenticity of connection participants and establish later data encryption. The initial 

handshake is, in most cases, performed with asymmetric encryption and public-key 

cryptography, where connection participants can only either encrypt or decrypt data. After the 

handshake, symmetric keys are used for later data transfers that allow both encryption and 

decryption. Trust is usually established by using a trusted third party referred to as a 

Certificate Authority (CA) [22]. The CA signs server certificates with its confidential private 

key. This allows a client to verify whether the certificate was signed by a CA by using the 

CA’s public key. A successful verification enables a client to trust the certificate and its 

metadata. The CA certificates can also be self-signed, which means no trusted third party is 

mandatory. The following Figure 4 shows a simplified TLS 1.2 handshake process that 

assumes a Diffie-Hellman-based key exchange and RSA public-key authentication [23][24]. 

 

 
 

Figure 4. Simplified process of a TLS 1.2 handshake. 

 

TLS requires a reliable transport method to carry the protocol. TLS often uses TCP when 

transferring data over a network and relies on it for possible packet retransmissions and 

packet ordering. TLS 1.2 implementations usually support many cipher suites that define the 

algorithms for different tasks that are authentication, encryption, and integrity verification 

[25]. As shown in Figure 5, TLS 1.2 cipher suites are represented in a unified way. However, 

TLS 1.3 cipher suite definitions are different to the previous versions. These cipher suite 

components define only the symmetric ciphers, and the key exchange and authentication 

ciphers are not included.  

 

 
 

Figure 5. An example TLS 1.2 cipher suite with a breakdown of the components. 

 

Ciphers used in each of the tasks can be read from the cipher suite description and have 

different performance and security implications. In particular, the chosen encryption and 
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integrity ciphers can have a great impact on performance, in addition to the apparent security 

aspects. 

Another option for introducing confidentiality and integrity is to use SSH port forwarding, 

or “tunneling”, as it is commonly called. By tunneling data with SSH, the current USB/IP 

tools do not need any modifications, and all the user space and kernel space data transfers can 

be secured with minimal effort. It should be noted that when using USB/IP with SSH 

tunneling, it is necessary to deny access to the USB/IP service port to enforce the use of the 

tunnel. Depending on implementation, SSH tunneling may support data compression that 

could increase data throughput. 

Takahiro Hirofuchi stated in his doctoral dissertation that Internet Protocol Security (IPsec) 

would be suitable for USB/IP [6]. In his tests, the performance of IPsec would be 

approximately 50 % compared to an unencrypted configuration, depending on the used 

encryption algorithm. There are clues in the source code of USB/IP where IPsec support 

could be added, but the current USB/IP tools on Linux and Windows do not implement it. 

Ensuring availability is also an important aspect that needs special attention, especially 

when operating in the public network environment. Tools have been created to ensure 

availability, for example by banning clients from accessing a service after a predefined 

number of unsuccessful attempts. In the case of existing USB/IP, a router-level firewall must 

not be opened to allow access from outside of the local network since USB/IP does not 

support any authentication. Even with authentication, a firewall is still useful for preventing 

malicious actions such as denial of service attacks from outside of the local network. 

 

 

Automatic discovery 

 

Automatic discovery refers to the capability of a client to find servers automatically without 

being aware of server IP addresses. This is vital so that the system is as easy to use as 

possible. Automatic service discovery is commonly implemented with multicast Domain 

Name System (mDNS) tools. In Windows, there is an Apple-developed software package that 

implements this automatic service discovery called Bonjour, and in Linux, there is an 

implementation named Avahi. There are libraries and command-line tools available on Linux 

that enable finding and publishing services, and a Bonjour SDK for adding automatic 

discovery to Windows applications. 

It is also possible to create a custom lightweight software solution that uses User Datagram 

Protocol (UDP) broadcast transfers. The transferred packets should include information such 

as the port where clients can find the server. Servers would need to send these packets to a 

special broadcast address, which causes a router to distribute them to all clients on the same 

network. Clients can then use information encoded in the packets to automatically establish a 

connection. 

 

 

Automatic use 

 

For ease of use, USB/IP tools should be automated so that they do not require any user 

interaction. The first low-effort method would be to use scripts on server and client 

computers. The scripts would allow associated software components to be controlled from a 

single location. They can also be started automatically when a device is powered on. 
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The script for the server would need to do the following: 

 

• Load the USB/IP server drivers 

• Start the usbipd daemon process 

• Publish server name and broadcast availability for clients using Avahi 

• Bind USB devices automatically for use with USB/IP when they are plugged into the 

system 

 

The script for the client needs to do the following: 

 

• Load the USB/IP client drivers 

• Monitor available servers using Avahi 

• Initialize SSH connections with servers 

• Send device listing queries and attach all devices from identified servers 

 

It is possible to create such scripts for Linux and Windows. They should be implemented 

as services so that users do not need to interface with them. However, although the usage of 

these scripts would be sufficient for casual users, they are not well suited for commercial 

applications. The scripts require multiple separate applications to function that would also 

need to be included on the target systems. It would be desirable to implement all the logic in 

standalone executables. Especially when the client may need to run on Windows and Android 

in the future. 
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3 INTRODUCTION TO USB 

The previous chapter introduced the features, strengths, and limitations of both open-source 

and proprietary remote USB sharing tools. This chapter presents the software aspect of USB 

generally and in the context of the Linux kernel. This helps understand the internal operation 

of existing USB/IP tools and, subsequently, the software work that was done during this 

thesis. 

 

 

3.1 Overview 

USB is widely used in personal computers and a broad range of consumer appliances in 

general. The first USB standard version 1.0 was introduced in 1996. Initially, there were only 

two data rates available, which were low-speed and full-speed, with theoretical maximum 

speeds of 1.5 Mbps and 12 Mbps, respectively [1]. The theoretical maximum speeds of 

different USB standards are shown in Table 1. In practice, the actual useful payload transfer 

speed will be lower for a variety of reasons, including USB protocol overhead and transfer 

type characteristics. 

To respond to the increasing performance and usability demands, the USB standard has 

been constantly evolved and updated. The updates have been implemented in a backward-

compatible manner. Users have been able to keep using older devices when new versions of 

the USB standards have been introduced. Hardware vendors can also take advantage of older 

and slower USB versions to reduce the manufacturing costs of devices that do not require 

state-of-the-art speeds. 

 

Table 1. The theoretical maximum speeds of different USB standard versions 

USB standard Maximum speed 

1.0 / 1.1 1.5 Mbps Low-Speed and 12 Mbps Full-Speed 

2.0 480 Mbps High-Speed 

3.0 (aka. 3.1 Gen1 and 3.2 Gen1) 5 Gbps SuperSpeed 

3.1 (aka. 3.1 Gen2 and 3.2 Gen2) 10 Gbps SuperSpeed+ 

3.2 20 Gbps (Maximum speed with Type-C only) 

4 40 Gbps (Type-C only) 

 

USB was initially intended to only connect a host computer to a peripheral. The data of 

early USB devices was only transferred over a cable that was terminated with A-type and B-

type plugs. The A-type plug connects to a receptacle on the host computer, and likewise, the 

B-type plug to a receptacle on the peripheral. The plugs were quite large and not suitable for 

portable devices. They were later introduced in smaller mini and micro sizes, which have 

found use in a broad range of devices. A Type-C connector was introduced in 2014, which is 

rotationally symmetrical and allows both peripheral and host to use the same type of plug. 

USB versions 1.0, 1.1, and 2.0 use four pins in the connectors, which are: one ground pin, 

one power pin, and two data pins for half-duplex communication. USB 3.0 data is full-duplex 

and requires four pins for data. The USB 3.0 and later connectors also include the legacy data 

connectors for backward compatibility. In Figure 6, the USB A-type plugs are shown. 

The USB data is transferred over a USB cable with the help of differential signaling. This 

means the same data is transferred on two data lines with opposite polarities. Because of this, 

noise can be subtracted out of the signal if the same error is present on both lines. 
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Figure 6. USB A-type 1.0/1.1/2.0 plug includes 4 pins (on the left), and USB 3.0 adds 5 more 
connectors to the A plug (on the right). 
 
 

3.2 Data 

Data transfers to USB devices are initiated by the host computer. The host communicates with 
a USB peripheral by accessing endpoints, which are buffers that can either accept or provide 
data [26]. There can be up to 32 endpoints in a peripheral. At least two endpoints are present 
in every USB device and are reserved for control. The logical connection between the system 
software and an endpoint is referred to as a “pipe”. The previously mentioned control 
endpoints are accessed with the default control pipe that allows both reading and writing. The 
default control pipe is a message pipe accessed using USB-defined control transfers. All data 
in a message pipe must have a USB-mandated format as defined in the USB specifications. 
Other pipes target numbered endpoints and are used for the actual useful functions of a USB 
device. These pipes are stream pipes and use interrupt, bulk, and isochronous transfer types. 
The data structure in stream pipes is not defined in the USB specifications. Therefore, data in 
stream pipes can contain higher-level protocols that are only carried over USB. [1] 

When a device is attached to a host computer, the host first learns information about the 
device and configures it for use in a process called enumeration [27]. During enumeration, the 
host uses the default control pipe to issue command requests. With these requests, the host 
assigns a unique address, reads information descriptors, and in general configures the device 
for use. The device should be ready for its intended function after enumeration and have one 
or more drivers assigned to it. The information in this section contains a high-level overview 
of the common USB functions, which in general apply to all USB standards. The information 
contained in this chapter summarizes the main software features presented in the USB 2.0 
specification. 
 
 

3.2.1 Requests 

A host uses USB requests to control and learn information about a USB device. Requests are 
directed to the default control pipe and follow a standard format that describes an action to be 
performed by the device. There are many request types available. Some are standard requests 
that must be implemented in every USB device. Additionally, there are class and vendor-
specific requests. The standard requests notably include GET_DESCRIPTOR and 
SET_ADDRESS, which are among the first requests a host issues during enumeration. The 
default control pipe can serve standard requests at any time, regardless of whether 
enumeration has been completed. 
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3.2.2 Descriptors 

Descriptors are read from a USB device with a GET_DESCRIPTOR request. They contain 

essential information about a peripheral and can be standard-, class-, or vendor-specific. 

Every USB device supports standard descriptors, and a host will always use these to gain 

information during enumeration. Standard descriptors include device, configuration, interface, 

and endpoint descriptors. These descriptors are stored in a tree hierarchy where the higher-

level descriptor informs the presence of lower-level descriptors. There may be additional 

standard descriptors supported depending on the USB standard, but they are not in the scope 

of this chapter. 

The first descriptor a host reads from a device during enumeration is the device descriptor 

that contains the most high-level overview of the device. The device descriptor includes, for 

example, vendor and device-specific identification numbers, the number of supported 

configurations, and how to read human-readable names contained in string descriptors. There 

can only be one device descriptor in a USB device. 

Configurations can change the function of the device fundamentally, and they are exposed 

using configuration descriptors. There can be only one configuration active at a time. For 

example, a USB dongle could show up either as storage or as a modem if these functions are 

defined in separate configurations. The configuration descriptor informs about the maximum 

power draw after enumeration, among other things. Although possible, it is uncommon for a 

device to have more than one configuration [28]. The host finds the number of interface 

descriptors within the configuration descriptor and parses them next. 

Interface descriptors contain information about the interfaces and alternate settings. 

Interfaces define the logical functions of a USB device. There can be many active interfaces 

after enumeration. The host computer attempts to assign a driver for each interface, and in this 

way, a single USB device can provide multiple separate functions. Devices that have multiple 

independently controlled interfaces but only a single address are called composite devices. 

Interfaces can support multiple alternate settings for controlling endpoints slightly differently 

after configuration. As an example, a web camera might output video in different resolutions 

depending on the alternate setting. Each interface has one or more endpoints, the number of 

which is contained in the descriptors. 

The endpoints are exposed using endpoint descriptors, which inform the data transfer 

direction, maximum packet size, and transfer type of the transactions to endpoints. The host 

uses this information later when communicating with the device using the endpoint. 

The Figure 7 illustrates the descriptors as read from a HP optical mouse. This represents a 

simple descriptor hierarchy. It contains standard descriptors and a class-specific Human 

Interface Device (HID) descriptor, which informs of the presence of an HID report descriptor. 

Control endpoints are assumed to always be present and do not have endpoint descriptors. 
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Figure 7. Illustration of USB descriptors in a HP Mouse obtained with lsusb -v command and 

string descriptors have been parsed. 

 

 

3.2.3 Transfer types 

The USB data transfer types determine what transfer characteristics are favored, such as 

bandwidth or latency [29], and they are used to support the different requirements of USB 

devices. The transfer type of an endpoint is read from endpoint descriptors. USB data can be 

transferred with control, interrupt, bulk, or isochronous transfer methods. The following is a 

short introduction of each of the transfer types. 
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Control 

 

Every USB device supports control transfers on the default pipe. They are delivered with a 

“best-effort” strategy. Control transfers are used for querying device-specific information and 

configuring the device. For instance, the requests and descriptors are handled using control 

transfers. The control transfers use a message pipe, which means that the format of the data 

has a USB defined format. 

 

 

Bulk 

 

Bulk transfers are allocated when the bus is not busy with other transfer types. Bulk transfers 

ensure delivery without guaranteed bandwidth or latency. This transfer type is commonly 

used in flash drives, which transfer large amounts of data. 

 

 

Interrupt 

 

Despite the name, interrupt transfers are host-initiated. They are suitable for transferring data 

periodically. For example, keyboards, mice, and other human interface devices commonly use 

interrupt transfers. These devices may only have new data available at regular intervals. 

 

 

Isochronous 

 

Isochronous transfers are scheduled at fixed intervals, allowing a constant data rate. Transfers 

are not retried in the case of delivery failure. Isochronous transfers are often used with real-

time audio and video devices. 

 

 

3.3 Hardware 

This section gives an overview of the components for host USB support. This view does not 

include USB On-The-Go (USB OTG) support, where a device can act as a host or a 

peripheral. 

 

 

3.3.1 Host controller 

The host controller is conventionally a physical hardware module that enables communication 

with USB peripherals. Physical USB wires connect to the host controller and data is driven to 

the bus with the help of a root hub contained in it. Host controllers use physical layer circuitry 

to implement the low-level physical aspects of USB required for communicating with 

peripherals. The host controller may be a separate chip or included as an intellectual property 

block implemented in custom silicon. The host controller itself can connect to the computer in 

various ways. Commonly, in desktop computers, the host controller connects via the 

Peripheral Component Interconnect (PCI) bus, but many other options are available. 

There are four commonly used interface standards for physical host controllers: Universal 

Host Controller Interface (UHCI) and Open Host Controller Interface (OHCI) for USB 1.0 
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and 1.1; Enhanced Host Controller Interface (EHCI) for USB 2.0; and eXtensible Host 

Controller Interface (xHCI), which is designed to replace the previous host controller 

standards and supports USB speeds including USB 3.0. These interfaces define the methods 

for communicating with the host controller. Each interface requires its own set of host 

controller drivers. 

 

 

3.3.2 Hub 

USB hubs have the special purpose of extending the number of USB ports on a computer. 

Hubs appear as regular USB devices that implement hub class functionality. They can be 

stand-alone devices but are sometimes integrated into peripherals. Host controllers contain a 

root hub integrated into them that is the first device on a USB bus [28]. The root hub should 

appear and function as any other hub. 

USB hubs are polled continuously to detect attached or removed devices. The hubs have an 

interrupt endpoint which, when polled, reports the status changes of each of the ports. After 

the host learns about a change, it can then take appropriate action. Some of the responsibilities 

of hubs include suspending devices and disabling ports as requested by the host. High-speed 

capable hubs contain a transaction translator that converts high-speed transactions to lower-

speed transactions for devices that require it. 

 

 

3.4 Software in the Linux kernel 

This chapter has so far offered a general introduction to USB hardware and software. The 

USB 2.0 specification suggests how software for USB support should be implemented. The 

specification breaks the USB support into layers, which all have distinct tasks. In a simple 

view, these layers consist of client software for using the functions defined by USB device 

interfaces; the USB driver, which abstracts host controller implementations; and host 

controller drivers, which communicate with host controller hardware. USB data is moved 

between the client and the host controller drivers in I/O Request Packets (IRPs). This layered 

structure is also present in the Linux USB stack. 

This section attempts to illustrate how the USB functions are implemented in the Linux 

kernel. Depending on the hardware, computers may support USB OTG, which allows both 

host mode and peripheral mode. The peripheral mode is used by many mobile devices to 

present themselves as a USB storage device or a serial communication device. This dual role 

mode of operation is not explored in this chapter. 

 

 

3.4.1 USB Request Block (URB) 

The USB Request Block (URB) is a key data structure in the Linux USB subsystem. An URB 

is used when transferring data to or from a USB device. It carries USB transfers between the 

layers of the Linux USB stack. The URB contains all the data necessary to complete a USB 

transfer and a callback function that is called after the transaction has been completed. Any 

USB transfer can be expressed with a URB. The URB also includes a buffer for holding the 

USB data and pipe information. 

The URB contains many fields [28], but due to this thesis focusing on USB/IP, Table 2 

lists only the URB structure public member variables that are transferred with the USB/IP 
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protocol. A full list of data fields in URB can be found in the kernel source tree header file 

/include/linux/usb.h. 

 

Table 2. The USB/IP relevant fields in a Linux URB 

Variable name Description 

status Status for a completed URB. Valid for transfer types other than 

isochronous. 

transfer_flags Transfer flags modify the handling of a URB. For example, should 

reading a shorter amount of data than requested be treated as an 

error. 

transfer_buffer The buffer that holds the data that is written to a USB device or 

filled with data from a USB device. 

transfer_buffer_length The size in bytes of the transfer_buffer. It is the amount of data 

that is requested to be read or written. 

actual_length The number of data bytes that were actually written or read. 

setup_packet Eight bytes that are always used in control transfers 

(bmRequestType, bRequest, wValue, wIndex, and wLength). 

start_frame Initial frame number for isochronous transfers. 

number_of_packets The number of isochronous transfer packets contained in the 

transfer buffer. The description of which is contained in 

iso_frame_desc. 

interval Polling interval of interrupt and isochronous transfers.  

error_count The number of failed isochronous transfers. 

iso_frame_desc Information about the isochronous buffers in transfer_buffer. This 

allows a single URB to define multiple isochronous transfers. 

 

 

3.4.2 Linux USB stack 

The USB support in the Linux kernel is implemented in a layered manner. In the simplest 

view, the USB stack consists of device drivers, the USB core, and host controller drivers. 

Device drivers, in general, implement the functions of USB devices. The USB core abstracts 

host controller differences from USB device drivers. Host controller drivers access host 

controllers in a hardware-defined manner. Figure 8 presents a simplified overview of the 

Linux USB stack.  
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Figure 8. A simplified high-level illustration of Linux USB support. 

 

 

Device drivers 

 

USB device drivers bind to interfaces [28], which allows one USB device to provide multiple 

functions. On top of the USB device driver layer, there are other Linux subsystems [28] that 

decouple the USB transport method from the actual useful functions. Therefore, a device that 

implements a specific software interface could be attached to the system using many different 

hardware interfaces. The carried protocols might include, for example, Small Computer 

System Interface (SCSI) commands for flash drives and the HID protocol for input. In 

essence, the USB itself is a data channel that requires no structure for the data it delivers [28]. 

USB device drivers can be class-specific or vendor-specific. A vendor-specific driver is 

required when a device implements a custom software interface. However, if a device 

conforms to a predefined class, a hardware vendor does not need to provide custom drivers 

since most classes are supported in the Linux kernel [30]. 

There is no single place for USB device drivers in the Linux kernel. For example, USB 

mass storage drivers can be found in drivers/usb/storage. These USB mass storage drivers 

submit URBs and provide a layer for communicating with upper-level SCSI drivers using the 

SCSI protocol [31]. The logic of USB SCSI mass storage is thus handled by the Linux SCSI 

subsystem. Device drivers use functions defined in the USB core to transfer data using URBs. 

This interface is exposed in include/linux/usb.h. Device drivers can use usb_control_msg(), 

usb_submit_urb(), usb_get_descriptor(), usb_set_interface() and others. 
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The USB core and core functions 

 

The USB core sits between device drivers and host controller drivers [28] and can be 

essentially thought of as an abstraction layer for device drivers to access host controllers [31]. 

The USB core can support multiple different USB device drivers and host controllers. Other 

core capabilities, such as a USB filesystem (usbfs) and a hub device driver, are closely 

integrated in the core to provide USB support. The USB core, along with other core functions, 

can be found in the folder drivers/usb/core in the Linux source distribution. 

The USB core provides interfaces for device drivers to access a USB device without 

knowledge of the used host controller implementation. There are two Application 

Programming Interfaces (APIs), one for general-purpose drivers and the other for essential 

drivers that are part of the core, such as a hub driver and HCDs [32]. As an example, the USB 

core provides as a part of the device driver interface usb_submit_urb() and usb_kill_urb() 

functions that queue and cancel USB I/O requests, respectively. When a USB device is first 

inserted into the system, the hub driver detects this. After initial detection by the hub driver, 

the device is enumerated, which should bring the device to a functional state.  

The usbfs provides support for developing user-space USB drivers [31]. This allows 

devices to be detached from enumeration-time assigned drivers and provide full control of 

USB data transfers into user space. There is a libUSB library available that wraps this 

interface into an easier-to-use form [33]. 

 

 

Host controller drivers 

 

A host controller driver accesses the underlying host controller hardware through a hardware-

specific interface. These drivers are managed by the USB core. The core USB functions in 

Linux include a host controller driver framework, which delegates to a hardware-specific 

driver only when necessary [34]. Most of the host controller driver implementations are 

located at drivers/usb/host in the kernel source tree. That folder includes drivers for 

previously introduced OHCI, UHCI, EHCI, and xHCI host controller implementations. The 

USB/IP VHCI host controller drivers are in the Linux kernel source tree in folder 

drivers/usb/usbip. 
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4 USB/IP COMPONENTS AND PROTOCOL 

USB request over IP (USB/IP) is an operating system independent way of extending USB 

over an IP network [6]. It was introduced by Takahiro Hirofuchi et al. and operates by using a 

virtual host controller on the client and a universal device driver on the server capable of 

communicating with any USB device. USB/IP allows USB devices to be used remotely just 

as if they were connected locally. This chapter summarizes and presents information about the 

existing implementation of USB/IP on Linux systems and presents the existing USB/IP tool 

protocol. Initially, USB/IP was only available on Linux, but has since then been extended to 

work on Windows as well. 

In the previous chapter, it was found that USB software support in Linux consists of three 

fundamental layers: device drivers, USB core, and host controller drivers. The host controller 

driver conventionally controls a physical host controller device that communicates with USB 

devices. Requests for data transfers usually originate from enumeration time assigned device 

drivers, which operate a device using the protocol implemented by the device. USB/IP on a 

client replaces the host controller layer with a virtual implementation that wraps URBs it 

receives with a USB/IP specific protocol and transfers them to the server using a TCP/IP 

connection. This VHCI driver is operated by the USB core using the same host controller 

interfaces as physical controllers. At the server end, a STUB device driver receives the URBs. 

The STUB driver is a universal device driver that allows any type of USB data transfer to be 

performed as instructed by client-side device drivers. The STUB completes the received 

URBs through a regular USB stack on the server. This method joins the two USB stacks on 

the client and server computers, providing the client access to server devices as if they were 

locally connected. Figure 9 illustrates these layers [6]. 

 

 

 
 

Figure 9. An illustration of the hierarchy of USB and USB/IP module interactions on two 

separate computers (client on the left and server on the right) connected by a TCP/IP 

connection. 
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The USB/IP tools include user space applications for controlling the USB/IP system, 

which is otherwise mostly implemented in the kernel. These applications were explored in the 

second chapter. The applications control the USB/IP kernel drivers via the sysfs interface. The 

sysfs is a pseudo filesystem that is usually mounted in the /sys folder. The logic of 

determining which devices are to be used is performed in user space, and USB data is 

transferred in kernel space. User space applications and kernel space drivers talk with each 

other using distinct protocols. Both protocols [35] are explored in detail in this chapter. 

 

 

4.1 User space applications 

The USB/IP user space tools consist of two executables, which are usbip for both server and 

client, and usbipd, which is used on the server only. The core function of the user space 

applications is to allow a host to find a suitable device for use and then facilitate the start of 

USB data transfers. To achieve this, the USB/IP system supports device listing and attaching 

commands in the user space USB/IP tool protocol. 

Before USB devices can be used by clients, they need to first be bound on the server to the 

STUB driver, after which they will be attachable by clients and present in device listings. 

Then, after the user space tools have negotiated a USB device to be exported, they pass open 

network sockets to the kernel drivers where USB data transfer takes place. This means no 

USB data is transferred between usbip and usbipd executables, and the USB requests are 

transferred between the kernel drivers. 

Linux USB/IP tools also include virtual USB device controller functionality. It is 

implemented in a usbip-vudc driver that is loaded on the server. This allows the host to export 

gadget devices (emulated peripherals) to remote clients. This mode of function is not explored 

in this chapter. User space USB/IP-related source code can be found in the kernel source tree 

folder location tools/usb/usbip. 

 

 

4.1.2 Protocol and capabilities 

The usbip and usbipd processes communicate with the user space USB/IP tool protocol. The 

protocol contains, at the time of writing, two Protocol Data Units (PDUs), which are referred 

to as commands in this chapter. One command is for remote device listing and the other is for 

attaching. Both commands originate exclusively from clients. The rest of the application 

functions need no network communication. 

At the protocol level, all USB/IP user-space commands include an 8-byte long header that 

is present in every transaction. The header contains a version number for detecting protocol 

support, a command type, and a status field that is used for checking that the command was 

executed successfully on the server. Packets sent from the client to the server are named with 

“REQ” prefixes, indicating they request an action to be performed by the server. Server 

replies are named with “REP” prefixes, indicating they contain a reply to a request. The 

following sections present the user space protocol and application-supported features in detail. 
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Device listing 

 

A client initiates a remote device listing by issuing an OP_REQ_DEVLIST request. This 

command consists only of a header that instructs the server to generate and return a device 

listing. Space for status value is always included in the protocol header but is set to zero in 

request headers. Status is only used to return status information from the server to the client. 

Figure 10 shows the OP_REQ_DEVLIST command with fields, the size of which represents 

the number of bytes each variable consumes. 

 

 
 

Figure 10. The OP_REQ_DEVLIST command, which is sent by clients requesting the list of 

available USB devices from the associated server. 

 

A server replies to the previous device listing command by sending an 

OP_REP_DEVLIST reply. The reply is variable-sized and accommodates information about 

devices that are connected and bound to the server. The reply includes the protocol header and 

the number of devices, followed by device representations. A device is represented using a 

device information section followed by interface information sections. Device information 

contains general information about a device. This includes how it is connected to the server 

and contains basic information values as read from USB descriptors. The contained values 

include, for example, idVendor and idProduct numbers, which in theory define a specific 

device from a given vendor. This information is used to display to the user what devices are 

present and what capabilities a specific device has. The contents and structure of 

OP_REP_DEVLIST are presented in Figure 11. 
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Figure 11. The OP_REP_DEVLIST command, which is the server’s response to the 

OP_REQ_DEVLIST. 

 

The device listing data returned during OP_REP_DEVLIST is formatted by the usbip 

executable so that it is suitable to be displayed for a user. Notably, although USB devices 

contain string descriptors for human-readable information, they are not used by the existing 

USB/IP system. Instead, the usbip tool displays the USB device names using a lookup file 

that matches idVendor and idProduct values with a list of known devices. 

The usbip tool supports local device listings that are useful on servers to see information 

about locally present devices. These local listings are not transferred over the network and are 

useful on servers for finding devices to bind. 

 

 

Attaching 

 

A client starts the attaching process by selecting a device for use from the device listing 

information. From this data, the “bus id” value is selected and sent to the server, identifying 

the target device. The bus id is the unique combination of bus and port numbers that can be 

used to uniquely refer to a USB port on a server. 

The request that allows a client to attach a USB device is OP_REQ_IMPORT, which 

includes the desired bus id. The server replies to the request with an OP_REP_IMPORT 

reply. The reply contains the success of the request and, if successful, also the device 

information that was present in the requested port at attach time. The following Figure 12 

shows an attaching request that is used to indicate the desired bus id for the server. Figure 13 

is the reply to the previous request. 
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Figure 12. A device is attached to a client with the OP_REQ_IMPORT command. 

 

The reply to attaching request contains a header that tells a client whether the command 

was successful at the server end. If the execution was successful, the server has passed the 

open network connection to the STUB driver. After learning about this, the client will also 

pass its end of the socket to the USB/IP virtual host controller, and the protocol that is 

exchanged in the connection changes to the kernel space USB/IP protocol. 

The control is passed to kernel drivers on the client by writing a sequence of the desired 

port number, open socket file descriptor, device id, and device speed to the vhci-hcd kernel 

driver provided sysfs attach file node. Likewise, the server uses the STUB driver provided 

usbip_sockfd sysfs file node to transfer the socket file descriptor. The passing event 

effectively equals plugging a new device into the client system. 

 

 
Figure 13. The OP_REP_IMPORT command, which is the server response to the 

OP_REQ_IMPORT request. 

 

 

Detaching 

 

Detaching a previously attached device requires no protocol communication over the network. 

When detaching a device, the usbip application on a client writes the virtual host controller 

port number where the target device is connected to the VHCI driver detach sysfs file node. 

This will then break the connection and remove the USB device from the client. 
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Binding 

 

Servers bind and unbind devices with the STUB driver to enable and disable devices to be 

used with USB/IP tools. When a device is bound to the USB/IP driver, it is detached from the 

driver that was assigned to it during enumeration and, while bound, cannot be used by the 

server. When binding, the usbip application requests a bus id, which it then uses to unbind old 

drivers and assign the STUB driver. Binding requires no communication over the network. 

 

 

4.2 Linux drivers 

The USB/IP kernel drivers provide the means for USB remote use. On Linux, they expose 

their services through a filesystem interface for the user space USB/IP applications. This 

section presents the internal details, protocol, and functions of these drivers. While this 

chapter focuses on the Linux drivers, the protocol is the same on Windows as well. 

The kernel module that is used by clients is the vhci-hcd, shortened to VHCI driver in this 

chapter, and the module used by servers is the usbip-host STUB device driver. The VHCI 

driver implements the virtual host controller and root hub functions. Servers utilize a STUB 

device driver that can communicate with any USB device. These drivers require a common 

usbip-core library, the use of which is transparent for users. The USB/IP kernel driver source 

code is in the Linux source code directory under drivers/usb/usbip. 

All network TCP transfers between the kernel modules in USB/IP are done with Nagle’s 

algorithm disabled. Nagle’s algorithm is designed to buffer data and send it in larger chunks, 

which reduces network traffic since protocol headers do not need to be transferred as often 

[36]. However, this is critical to being disabled with USB/IP since it renders most devices 

unusable due to the increased delay and buffering. 

Data in the USB cable has tight timing requirements, but it does not prohibit the use of 

USB devices with USB/IP since it does not deal with the USB physical layer. However, 

USB/IP and the network add delay to the USB transfers, and it can be a problem depending 

on the forwarded USB transfer type. For instance, some devices, such as high-definition USB 

web cameras, may be unable to be used at their maximum resolution. The effect of delay in 

the connection is investigated in the measurement chapter. 

 

 

4.2.1 VHCI driver 

As explored in the USB chapter, USB transfers start from device drivers and travel through 

the USB core to a host controller and then onto USB peripherals. Host controllers implement 

a root hub which is used as the starting point for data transfers. With USB/IP, a software-

defined virtual host controller is used instead of a physical host controller. This virtual host 

controller driver implements the root hub in software. Rather than generating USB cable 

traffic, the virtual root hub forwards URBs it receives to the USB/IP server. 

The USB/IP VHCI driver implements the Linux USB host controller interface, which 

makes the virtual host controller appear like any other physical host controller as far as Linux 

is concerned. New devices are introduced to the virtual root hub using user space tools by 

writing to the driver sysfs attach node. Like with conventional host controllers and their root 

hubs, the Linux USB subsystem on the client computer polls the ports of the virtual root hub 

to learn information about new devices. The virtual host controller is transparent in 
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enumeration and data transfer and only routes all data to the server. The server STUB driver 
then completes the data requests through a regular USB stack. 

Linux distributions such as Ubuntu, in general, include one VHCI driver instance that is 
capable of handling eight USB1.x or USB 2.0 devices and eight USB 3.0 devices. There is a 
compile-time configuration option to increase the allowed number of USB devices 
(USBIP_VHCI_HC_PORTS) to 30 in total (15 USB 2.0 capable + 15 USB 3 capable). To 
further increase the limit, there is a USBIP_VHCI_NR_HCS compile time option that allows 
up to 128 virtual host controllers. 

The VHCI host controller kernel module implements services that user space host 
applications use. The VHCI driver’s main sysfs functions are to allow checking the status of 
the root hub, attaching new devices, and detaching attached devices. These file nodes can be 
found in the folder /sys/devices/platform/vhci-hcd.n folder where the “n” indicates the index 
of the controller. While there can be more than one VHCI controller, common Linux 
distributions are compiled with only one enabled. Figure 14 presents the contents of the VHCI 
driver platform device node. The files attach, detach, nports, status, and usbip_debug are 
generated by the driver, and the rest are automatically generated by the Linux system. 

 

 
 

Figure 14. Linux virtual host controller driver sysfs directory listing. 
 

The attach node is a write-only file that is used to establish a virtual USB connection. It 
accepts a port number, a socket file descriptor with a connection to the server, a device id, and 
speed written into it. The driver validates the arguments, reserves a port from the root hub, 
and eventually starts USB device data transfers. 

The detach node is also a write-only node, and it accepts a virtual root hub port number to 
be written into it. This will cause data transfers to be stopped, the socket to be closed, and the 
root hub port to become vacant. If the server computer devices are physically removed, they 
will also be automatically detached from the client. 

The nports is a read-only node that returns the number of total root hub ports. The 
usbip_debug node allows reading or writing of a mask value that can be used to enable driver 
debugging features. 

The status node is important because it is used to convey the internal status of the virtual 
host controller to user space applications. The status node is read-only and contains entries for 
each port of the VHCI root hub. It displays information about attached devices and the state 
of ports. Figure 15 presents an example of the contents of the status node. 
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Figure 15. Contents of the Linux virtual host controller status node showing one attached 
device to a high-speed root hub port. 
 

The values returned by the status node are as follows: 
 

• hub: The hub that is associated with the port (hs – USB 2.0 / ss – USB 3.0). 
• port: The root hub’s port number index. 
• sta: Status of the port. 

4 – VDEV_ST_NULL: The port has no connection and is ready to use. 
5 – VDEV_ST_NOTASSIGNED: A connection is being established. 
6 – VDEV_ST_USED: The port is currently in use. 
7 – VDEV_ST_ERROR: The port is in an error state. 

• spd: Speed of the connected device. 
0 – Unknown 
1 – Low-speed (1.5 Mbps) 
2 – Full-speed (12 Mbps) 
3 – High-speed (480 Mbps) 
4 – Wireless USB (WUSB) 
6 – SuperSpeed (5 Gbps) 

• dev: Device identification number. The USB/IP user space tools derive it from the bus 
and address values which are assigned by the server. 

• sockfd: The socket file descriptor number of an established connection. 
• local_busid: These are the bus and port numbers on the client that were assigned to the 

virtual device. 
 
 

4.2.2 STUB driver 

The STUB driver implements the server part of USB/IP. It is a USB device driver running on 
a server and assumes full control of USB devices and their interfaces. It replaces previous 
device drivers that were automatically assigned to a USB device during enumeration. The 
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function of the STUB driver is to receive URBs as given by client-side device drivers and 

complete them through a conventional USB stack. The STUB is implemented in the usbip-

host module, and the source files can be found in the Linux kernel source tree source 

directory drivers/usb/usbip. This section introduces the STUB driver and its functions. 

STUB device driver sysfs entries become available for use after binding the driver with a 

USB device. The usbipd server daemon uses the STUB driver sysfs interface in its operation 

and passes the client-facing socket to the driver usbip_sockfd node to start USB data transfer. 

After the socket descriptor is given to the driver, the client and server can start exchanging the 

USB/IP tool protocol data. STUB also provides a usbip_debug node that can enable 

debugging features and a usbip_status node that reflects the internal status of the USB/IP 

state. The status can have one of the following values: 1 – SDEV_ST_AVAILABLE when 

the device is bound but not used by clients; 2 – SDEV_ST_USED when it is in use; or 3 –

SDEV_ST_ERROR when a fatal error has occurred. 

 

 

4.2.3 Protocol 

The kernel space USB/IP protocol is used when exchanging USB data between VHCI and 

STUB drivers. In brief, the protocol consists of two client-initiated commands: 

USBIP_CMD_SUBMIT and USBIP_CMD_UNLINK. Both originate from the VHCI driver 

and allow submitting URBs and canceling previously sent uncompleted URBs. The STUB 

driver on the server replies to these commands with USBIP_RET_SUBMIT and 

USBIP_RET_UNLINK commands. 

All commands are sent over the network in network byte order. This makes the USB/IP 

system processor architecture agnostic. The first 20 bytes of every protocol packet follow a 

standard structure defining a base header. The header is always followed by at least 28 bytes, 

which define a full 48-byte USB/IP command. There may also be a variable amount of data 

after a command that is used when reading or writing USB device data. 

 

The base header consists of five 32-bit fields, which are: 

 

• Command type: Identifies the command following the base header. 

 

• Sequence number: A rolling number that identifies each sent command. It is used 

when referring to packets at unlink time. 

 

• Device id: A value that identifies the device that is referenced by the command. 

 

• Transfer direction: Used to identify whether data is transferred to or from a peripheral. 

 

• Target endpoint: Identifies the endpoint buffer to which the data transfer is targeted. It 

contains only the endpoint number, which is the four lowest bits of bEndpointAddress 

without direction information. 

 

Not all header fields are relevant for every protocol command. Only the command type, 

sequence number, and device id are mandatory fields for all headers. The following sections 

introduce each of the protocol commands. 
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URB submission 

 

The URBs originate from the client device drivers. The command that allows an URB to be 

sent from a client to the server is USBIP_CMD_SUBMIT, and the server responds after 

handling it with USBIP_RET_SUBMIT. This URB submission command is presented in this 

section. 

The command USBIP_CMD_SUBMIT complements the previously shown base header 

with additional fields which are: transfer flags, transfer buffer length, start frame, number of 

packets, interval, and 8 bytes of setup data. These values are read from the original URB on 

the client-side. Figure 16 shows the contents of the full USB_CMD_SUBMIT command. 

 

 
 

Figure 16. The USBIP_CMD_SUBMIT command, which transfers URBs from the client 

VHCI driver to the associated server STUB driver. 

 

The USB/IP tools support all four USB transfer types: CONTROL, INTERRUPT, BULK, 

and ISOCHRONOUS. The URBs that carry these USB transactions are used to read or write 

USB data as indicated by the transfer direction and endpoint they are sent to. The direction in 

the base header describes from the client’s point of view whether data is sent from peripheral 

(IN) or to peripheral (OUT). The transfer type changes the internal handling of the command. 

The data flow of CONTROL, INTERRUPT, and BULK transfers is handled similarly, but the 

transfer direction causes a slight variation in the command handling. The network transfers 

and data flow of a USBIP_CMD_SUBMIT command with CONTROL, INTERRUPT, and 

BULK transfers are shown in Figure 17 from the server’s point of view. 
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Figure 17. The USB/IP server handling of CONTROL, INTERRUPT, or BULK transfers. 

 

Control transfers are sent to the default pipe, which handles both IN and OUT functions. 

However, the direction is not present in the endpoint value, and instead, the direction field is 

used to indicate this. Control transfers always use 8 bytes to represent a request, and these are 

included in the command header. 

The client sets the direction IN to read data from a USB device. Otherwise, the client sets 

direction to OUT and transfer buffer size accordingly to indicate it wants to send additional 

data to be written to the device during USBIP_CMD_SUBMIT handling. 

USB/IP carries information about how the URB should be handled when it is submitted. 

This information is included in the transfer flags, but not all existing flags apply to USB/IP. 

Isochronous transfers have additional data transfers to carry isochronous (ISO) descriptors. 

These descriptors may contain information about many transfers and how data is structured in 

the transfer buffer. The following Figure 18 shows the structure of a USBIP_CMD_SUBMIT 

command in the case of isochronous transfer. 
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Figure 18. USB/IP server ISOCHRONOUS transfer handling. 

 

A USBIP_RET_SUBMIT command is issued after a URB has been handled on a server. 

This command includes status, actual_length, start_frame, number_of_packets, and error 

count fields which reflect the values from completed URBs. If data was requested from a 

USB device, it is sent during the command handling. The status value employs standard 

Linux error codes and can contain information such as indicating device detachment or error 

conditions in endpoints. Figure 19 shows the contents of the USB_RET_SUBMIT command. 

 

 
 

Figure 19. The USBIP_RET_SUBMIT command is a server response to the previously sent 

URB inside a USBIP_CMD_SUBMIT command. 
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As an exception, USBIP_RET_SUBMIT will not be sent in the case that a related 

USBIP_CMD_SUBMIT command was unlinked before completion. The unlinking causes 

related USB transfers to be canceled, and the command to support this canceling is presented 

next. 

 

 

URB canceling 

 

The USB system allows the cancellation of previously sent but not yet completed URBs. This 

feature is part of the required functions of a USB system as defined in the USB 2.0 

specification. To support this feature, the VHCI driver sends a USBIP_CMD_UNLINK 

command that can be triggered by a call to usb_kill_urb() on a client device driver. 

When the server receives this USBIP_CMD_UNLINK command, it attempts to find a 

previously sent USB/IP package with the given sequence id. If such a package is found, 

associated USB requests are canceled on the server and a USBIP_RET_UNLINK package is 

sent back to the client. When an existing USB/IP submit package was found and canceled, the 

related USBIP_RET_SUBMIT package is not sent to the client. Figure 20 shows the 

USBIP_CMD_UNLINK packet and Figure 21 shows the USBIP_RET_UNLINK packet. 

 

 

 
 

Figure 20. The USBIP_CMD_UNLINK command attempts to cancel a previously sent 

USBIP_CMD_SUBMIT and its associated URB. 
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Figure 21. The USBIP_RET_UNLINK command is the status of a previously sent unlink. 

 

 

The status of an unlink also uses Linux error codes. As opposed to a conventional value of 

zero for a successful action, the unlink is successful when the status is -ECONNRESET. 
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5 IMPLEMENTATION 

The Virtual I/O Box (VIOBox) project was used to evaluate whether a commercial USB 

sharing system could be built with open-source software and commercial off-the-shelf 

hardware. During this project, a prototype VIOBox device was built for evaluation and 

demonstration purposes. The hardware and mechanical aspects of this VIOBox prototype are 

first presented in this chapter for general background. The creation of a new RemoteHub USB 

device remote sharing tool for use in VIOBox was the goal of this project and is presented 

after the general device overview. 

 

 

5.1 VIOBox device 

The VIOBox device is comprised of a commercial-off-the-shelf Single-Board Computer 

(SBC) integrated into an Aava tablet charging station. This section presents the hardware 

choices in VIOBox. 

 

 

5.1.1 Single-board computer 

Two alternative SBCs were evaluated to be used with VIOBox. These were a Raspberry Pi 3 

Model B and an Orange Pi Zero. These are referred to as the Raspberry Pi and the Orange Pi 

in the following text. The main capabilities of each are listed below in Table 3. Both SBCs 

were in the desired price range and were expected to suit the needs of VIOBox. Overall, 

comparing the features of the evaluated SBCs, the Raspberry Pi was more capable. However, 

it also included features such as HDMI and camera connectors, which were not needed in the 

VIOBox. [37][38] 

 

Table 3. High-level comparison of evaluated SBC devices 

 Orange Pi Zero Raspberry Pi 3 Model B 

Price at the start of the 

project 

~15€ ~30€ 

Processor Allwinner H2+ (ARM) Broadcom BCM2835 (ARM) 

Memory 512 MB 1 GB 

Storage medium microSD card microSD card 

USB port count 3 (With extension shield) 4 

Integrated ethernet speed 100 Mbps 100 Mbps 

 

There are three USB ports in an Aava Mobile docking station. Therefore, VIOBox was 

also required to have at least three integrated USB ports. The Raspberry Pi had four USB 

ports integrated, but the Orange Pi contained only one. One solution to add more ports would 

have been to use a standard hub connected to the SBC. The Orange Pi also allowed extending 

the ports with an extension card module. The Orange Pi extension module used USB traces 

that were routed to pins on the SBC board. However, this card also included redundant 

features for VIOBox, and the USB ports were in the opposite direction of the existing port. 

For this reason, a custom USB port extension solution was built for the Orange Pi.  

Both SBCs contain an Advanced RISC Machines (ARM)-based Central Processing Unit 

(CPU). The Orange Pi uses the Allwinner H2+, which contains four Cortex-A7 cores. The 

Raspberry Pi includes the Broadcom BCM2837, which has four Cortex-A53 cores. The 32-bit 
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Cortex-A7 was introduced in 2011 and supports the ARMv7 instruction set. The Cortex-A53 

supports 64-bit ARMv8 instructions and is the successor to the A7. Considering raw 

performance, the processor in the Raspberry Pi is more performant. 

A hardware-based cryptographic accelerator could help boost TLS performance. However, 

neither of the two computers had true ARM cryptographic extensions. However, the Orange 

Pi includes a crypto engine that, among other ciphers, supports the AES algorithm. This 

extension is implemented as a proprietary intellectual property block that requires software 

support and may only be of limited help [39]. 

Both SBCs support Linux-based operating systems. More specifically, in this project, 32-

bit Raspbian was used on the Raspberry Pi and 32-bit Armbian on the Orange Pi. While the 

processor in the Raspberry Pi supports 64-bit instructions, the support in Raspbian has been 

implemented only recently. The Raspberry Pi foundation has used 32-bit images so that they 

can be used on all Raspberry Pi devices, avoiding customer confusion. Performance-wise, 

there is some improvement using the 64-bit instruction set, but this is currently mostly visible 

during benchmarking and not in real-world use [40]. 

Both computers were tested as the computer in VIOBox. Orange Pi was decided to be the 

better option. It was more cost-efficient and fit into the existing data module dimensions. 

 

 

5.1.2 Mechanical construction 

The VIOBox was designed to appear similar in comparison to other Aava Mobile docks. For 

reference, Aava has two types of tablet docks: charging-only docks and combined data and 

charging docks. The charging-only dock contains charging pins that connect to Aava tablets 

and has the same external dimensions as the data dock. The combined data dock includes an 

additional module that adds a traditional three-port USB hub and an HDMI port. 

The first prototype VIOBox used the Raspberry Pi, and a case for it was 3D printed. This 

case was connected externally to the dock because of the dimensions of the Raspberry Pi. 

Figure 22 depicts this device. The second prototype was based on the Orange Pi and was 

much more compact. The second prototype module filled the extension module opening at the 

back of the dock, visible in Figure 22. 

 

 
 

Figure 22. The VIOBox dock with the Raspberry Pi 3 Model B connected as an external 

module. 
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5.2 Software requirements and design choices 

When exploring existing open-source software tools, it was found that they would not be 

suitable for VIOBox as is. Existing USB/IP tools were limited in the necessary data security 

and automatic use aspects. Therefore, new software was decided to be built, and this section 

describes the initial software planning. First, VIOBox software was assigned core 

requirements that reflect the functions that needed to be supported. These were used as a 

guideline for development. Requirements were split into two categories, functional and non-

functional requirements. Functional requirements define what the system should do, and non-

functional requirements define how the system should operate [41]. The requirements were 

given priorities in the spirit of RFC 2119 [42], which reflects their importance in VIOBox. 

 

 

The following is a list of functional requirements: 

 

• The system MUST support hot plugging, which means USB devices are automatically 

exported from the server to the client. The client starts automatically using USB 

devices when they are attached to the server. 

 

• The client MUST be able to find servers automatically on the local network. When a 

client detects that a suitable server is present in the network, it can automatically start 

communicating with it. 

 

• When there are multiple servers in the same network, the client MUST have the 

capability to distinguish them and have the capability to determine which servers to 

use. 

 

• The server MUST hide certain USB devices so that they are not visible to clients. 

These include, for example, internal USB network adapters or other private devices. 

 

• The client MAY be able to use the server manually. A connection can also be 

established with a server in cases where automatic discovery cannot be used, such as 

over the public internet. 

 

 

The following is a list of non-functional requirements: 

 

• Transferred data between server and client MUST be encrypted. This includes both the 

protocol commands and USB data. 

 

• The server application MUST support the Linux environment. 

 

• Applications MUST NOT require manual configuration after initial setup. After the 

applications have started, they work fully autonomously. 

 

• The applications MUST support initialization with configuration files. 

 

• The software MUST support at least three USB devices simultaneously. 
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• The USB devices MUST be attached in a reasonable time (<10s) after plugging them 

into the server computer. 

 

• The applications SHOULD provide a command-line-based user interface for 

debugging. The server and client print information about their internal operation. 

 

The previously introduced requirements could be addressed in VIOBox software by 

creating scripts for existing USB/IP tools. The scripts would need to control all the necessary 

separate applications for implementing the requirements. However, this was determined not to 

be optimal due to maintainability and the general feel of the system. Another option would 

have been to modify the existing USB/IP tools and implement the required functions using 

software libraries. However, VIOBox would benefit from a system that is built to prioritize 

the new requirements. Building a new set of tools would allow good flexibility with the 

software execution flow and future improvements. Therefore, the server and client were 

rebuilt with the VIOBox use case in mind in this project. 

The new set of tools, named RemoteHub, implement the previously introduced 

requirements and are used in the prototype VIOBox device and Aava Linux tablets. The client 

application uses the existing USB/IP virtual host controller kernel driver like the usbip tool 

does, but the usbipd and usbip-host functions are both implemented in user space. Although 

user space STUB server implementation was cautioned by Hirofuchi to introduce memory 

copy overhead and is the main reason current USB/IP drivers exist in kernel space [6], it 

would allow for better maintainability and portability for future expansion. If needed in the 

future, RemoteHub can be extended with capabilities such as a graphical user interface or 

fine-grained user access controls. 

From a technical standpoint, RemoteHub implements data encryption and verification 

actions with TLS and uses a custom UDP broadcast solution for server discovery. The 

existing USB/IP protocol is utilized to make use of the USB/IP VHCI driver and ease possible 

future development with Windows USB/IP tools. The following sections describe the 

implementation choices in more detail. 

 

 

5.2.1 Security 

RemoteHub uses the TLS protocol with certificates to provide data security between the client 

and server applications. The fundamental background of TLS was presented in the second 

chapter. The library in use is MbedTLS by TrustedFirmware [43], which is a well-

documented library suitable for C applications. MbedTLS is available on both Linux and 

Windows. This library was also tested with a proof-of-concept Windows USBIP-win 

implementation. MbedTLS claims to have been purpose-built for resource-constrained 

devices, which should be helpful considering the hardware that VIOBox uses as a prototype 

and in the future. Testing was conducted to find a cipher suite with good performance, and the 

results are presented in the sixth chapter. MbedTLS supported up to TLS 1.2 at the time of 

implementation, and a subset of the TLS version 1.2 compatible cipher suites were used in the 

evaluation. RemoteHub was built to optionally support unencrypted TCP transfers without 

data security features to allow performance comparisons. This was done by adding an 

abstraction layer that allows mostly unified data transfer without knowledge of the underlying 

transport method. Due to this implementation, assessing different TLS libraries in the future is 

expected to be straight-forward. 
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5.2.2 Automatic discovery and unattended use 

The RemoteHub server advertises its existence by periodically sending UDP broadcast 

packets. These packets are not exchanged reliably but are configured to be sent once every 

five seconds. The lack of reliability is acceptable since a client is still expected to receive 

most of these packets. The UDP approach requires no knowledge from the server of clients in 

the network, which facilitates the automatic operation. When a server sends this package to 

the router, it is broadcast by the router to all other devices on the same network. Clients can 

either ignore these packets or establish a connection automatically with the help of the 

accompanying server information. The information in these packets includes the server’s 

name, TLS support, and the port that is listening on the server. Clients also extract the 

server’s IP address from the packet. 

The automatic discovery enables VIOBox to be used unattended. Because VIOBox 

contains no real user interface, this was a necessity. Another implemented feature was hot 

plugging. This means all devices that are plugged into VIOBox are automatically taken into 

use by the client. This was desired so that the system resembles a conventional USB hub. 

 

 

5.3 RemoteHub library and application design 

As described previously, RemoteHub includes the VIOBox-specific technical requirements 

regarding data security and automatic use. The RemoteHub server application is a Linux 

executable that bundles the functions of the USB/IP STUB driver and usbipd connection 

daemon into one package. The server application implements the STUB as a user space driver 

with libUSB, which uses the Linux USB device driver interface internally. User space 

implementation allows better maintainability and debugging options [28], and supports easier 

portability to other platforms if needed in the future. The existing USB/IP and the new 

RemoteHub are compared in the sixth chapter. 

USB devices are not bound to the server STUB driver in RemoteHub but are rather 

automatically taken into use by clients at run time. To support automatic operation, device 

listing and attaching requests are automatically executed using the previously explored 

USB/IP user space protocol. Internally, RemoteHub tools are written in the C language. 

Figure 23 shows the internal data flows and how they fit into the Linux USB system. 

RemoteHub is an open-source project freely available on GitHub [44]. It can operate on a 

wide range of devices despite being designed for VIOBox. 
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Figure 23. Illustration of the RemoteHub hierarchy of data flows on two separate computers 

(client on the left and server on the right). 

 

This section presents the internal design choices of RemoteHub applications and libraries 

in more detail. Most of the application logic is available through the RemoteHub libraries, 

which the applications use through an API. There are specially crafted libraries for both server 

and client use cases. They provide most network and USB functions in an asynchronous 

manner. This means that most network-related client commands do not block, and instead a 

callback function is invoked after the library has executed the command. 

Internally, the libraries consist of multiple separate tasks that work independently. The 

tasks in the libraries communicate with each other using events. The events are delivered by 

type to tasks that are subscribed to receive them. This design is referred to as the Publish-

Subscribe pattern [45]. This pattern allows for loose coupling between tasks, which 

encourages code re-use and can make the codebase more maintainable. The following Figure 

24 shows the internal tasks and data flows in both client and server applications. 
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Figure 24. RemoteHub high-level architecture diagram. 

 

All created source code was written to comply with the kernel coding style. The kernel 

coding style by Linus Torvalds provides a good set of rules for maintainable C code [46]. 

Coding style preferences vary widely among coders, but keeping a single coding style 

throughout the codebase allows readers to focus on the program logic rather than varying 

syntax. 

 

 

5.3.1 Libraries 

RemoteHub itself consists of three core libraries. There are separate libraries for server and 

client use cases, and a third library that contains common functions for both use cases. There 

are also third-party libraries that implement the USB transfer, TLS, and JavaScript Object 

Notation (JSON) features. Most libraries are designed to be statically linked, which means 

they are archives containing executable code. This way, the final compiled application 

executables contain most of the necessary functions built in. One exception is the libUSB 

library, which is dynamically linked. Dynamic linking reduces the executable size by 

allowing multiple programs to use the same library that is stored only in a single location. 

Users of the RemoteHub server application need to have this libUSB library available to be 

able to use the program. 
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Common library 

 

The common library provides functions that are used by both client and server libraries 

internally. These functions include event driving, network, and debugging utilities. The event 

framework in the common library facilitates the transfer of information between tasks that the 

server and client libraries consist of. The event framework is identical for server and client 

libraries and is therefore included in the common library. Events are distinguished by the type 

identifier that is set when enqueuing them. They can also carry arbitrary data using a pointer. 

The framework and tasks use the pthread library extensively for threading and 

synchronization. 

Tasks in the libraries are first registered with the event framework by calling the 

event_task_register() function. This function is called with a bit field of events the task is 

interested in. The task starts a new thread for receiving these events. While running, the task 

can produce events for other tasks. The framework will handle the event delivery logic 

internally, providing event_enqueue() and event_dequeue() functions for convenience. The 

event_dequeue() function blocks when no events are available for a particular task. When the 

system is wanted to be terminated, the stopping is facilitated with a terminating event. This 

will cause all tasks to finish their execution, allowing the system to be brought down in a 

controlled manner. The following Figure 25 presents a simplified lifecycle of a task, including 

event handling related functions. 

 

 
 

Figure 25. The life cycle of a task in RemoteHub. 

 

The common library contains a synchronized debug printing facility for printing 

information about the internal operation if enabled. There are six debug levels available that 

print information with increasing verbosity. The levels are presented in Table 4. Debugging 

can be enabled by calling the function rh_set_debug_level() with the desired level. All traces 

above the target level are also printed when selecting a debug level. For example, the “Trace” 

level prints all possible debugging traces. 
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Table 4. Debugging log levels in RemoteHub 

Debug level Description 

Critical A fatal error has occurred, and the execution cannot continue. This 

terminates the execution forcefully with the SIGABRT signal after 

printing the error. 

Error Something has failed, but execution may be able to continue. For 

example, failing a connection with a client would be printed as an error. 

Warning Something has failed, but execution can continue. For example, if some 

operation is not supported in a specific system. 

Information Traces that are expected to be informative. 

Debug Traces that are expected to be less relevant or only relevant in a specific 

section of the code. 

Trace Anything else, can be very verbose. For example, printing the received 

USB/IP command data. 

 

 

Client library 

 

The client library is the backbone for client applications. The main functions of the library are 

to find servers, list server devices, and attach them. It uses the existing USB/IP VHCI driver 

internally for USB data transfer and host controller functions. The library acts as a proxy in 

the USB data transfer process. Proxy threads are created for transferring encrypted data over 

one link and unencrypted data with the VHCI driver over another. The socket that is used 

with the VHCI driver is a stream-oriented UNIX domain socket that is ideal for inter-process 

communication. 

The client library is made of four tasks that communicate with each other to produce 

services for the client application. Table 5 shows these tasks and the events they produce and 

consume. 

 

Table 5. Event flows in the client library 

Task Produces events Consumes events Description 

Manager DEVICELIST_READY 

DEVICELIST_FAILED 

DETACHED 

DETACH_FAILED 

ATTACHED 

ATTACH_FAILED 

TIMER_5S 

DEVICELIST_REQUEST 

ATTACH_REQUESTED 

DETACH_REQUESTED 

 

Sends USB/IP 

requests to the server 

and manages imported 

USB devices. 

Beacon SERVER_DISCOVERED - Receives server 

beacon packets. 

Timer TIMER_5S - Creates timing events 

for other tasks. 

Interface DEVICELIST_REQUEST 

ATTACH_REQUESTED 

DETACH_REQUESTED 

 

 

SERVER_DISCOVERED 

DEVICELIST_READY 

DEVICELIST_FAILED 

DETACHED 

DETACH_FAILED 

ATTACHED 

ATTACH_FAILED 

Provides 

asynchronous 

callbacks for 

applications. 
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The manager task is responsible for initiating connections with servers as requested by the 

client application. It uses the USB/IP user space protocol to fetch device lists and attach 

devices. Network connections that are initiated by the manager support both TLS-secured and 

unencrypted transfers by using an abstraction layer that provides a unified interface for both. 

However, only either one can be used after the library has been started. Figure 26 illustrates 

this new connection initialization process in the client. 

 

 
 

Figure 26. The RemoteHub client network connection process. 

 

The manager is responsible for keeping track of attached devices in a linked list so that 

they can be safely found when needed. It also starts and oversees the data proxy threads for 

communicating with the VHCI driver. The beacon task supplies information about detected 

servers to the client application. After the client application receives this information from a 

callback function, it can attempt to connect to the server in question. The timer task is the 

simplest task available. It only generates 1 s and 5 s timing events, which are used by other 

tasks. The interface task acts as the asynchronous callback provider for applications. Like in 

the server library, it receives events from other tasks and passes them to the applications. The 

interface layer allows applications to toggle individual callbacks in an orderly fashion. 

 

 

Server library 

 

The RemoteHub server library implements the STUB driver in user space and allows a server 

application to monitor the server’s internal state. The server implementation is a difference 

compared to existing USB/IP tools by Hirofuchi, which implement the STUB portion in 

kernel space. The implemented STUB server communicates with client VHCI drivers using 

the previously presented USB/IP kernel protocol. The USB transfers are routed through the 
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RemoteHub client library proxy to enable the encryption. However, the server is compatible 

with existing USB/IP tools without encryption. 

Like the client library, the server library also consists of tasks. The server library 

implements five distinct tasks, which are presented in Table 6 with the flow of events. 

 

Table 6. Event flows in the server library 

Task Produces events Consumes events Description 

Command REQ_DEVICELIST 

REQ_IMPORT 

- Receives 

USB/IP 

commands from 

clients. 

Beacon - TIMER_5S Broadcasts 

presence for 

clients in 5s 

intervals. 

Timer TIMER_5S 

TIMER_1S 

 

- Creates timer 

events for other 

tasks. 

Interface - LOCAL_DEVICELIST 

DEVICE_ATTACHED 

DEVICE_DETACHED 

DEVICE_EXPORTED 

DEVICE_UNEXPORTED 

Provides the 

asynchronous 

callbacks for 

applications. 

USB device LOCAL_DEVICELIST 

DEVICE_ATTACHED 

DEVICE_DETACHED 

DEVICE_EXPORTED 

DEVICE_UNEXPORTED 

REQ_DEVICELIST 

REQ_IMPORT 

TIMER_1S 

 

Handles USB 

device-related 

functions such 

as detection and 

data transfer. 

 

The command task receives USB/IP commands sent by clients. The valid commands are 

for device listing and attaching using the USB/IP user space protocol. It can receive either 

TLS or unencrypted TCP communications as configured during initialization. As with the 

client, network access is abstracted to hide connection methods. 

The beacon task generates UDP broadcast packets periodically for clients. These packets 

are sent to a special broadcast address, which causes them to be propagated to all the devices 

on the same network. In the initial version, the interval is 5s. 

The timer task is essentially the same that is used on the client; it generates periodic timing 

events for beacon and other tasks. Also, like on the client, the interface task provides 

asynchronous callbacks for server application executables. Applications subscribe to being 

notified when an event of interest is received by using callback functions. The interface uses 

mutual exclusions, which makes all access thread-safe. 

The USB device task is the most complex task. It drives the user space STUB driver and 

handles USB device housekeeping and discovery functions. It relies on the libUSB library for 

all USB-related functions and transfers. libUSB is a multi-platform library for accessing USB 

devices and allows asynchronous USB data transfers on Linux. In the initial RemoteHub 

version, USB devices are discovered using periodical polling. Upon detection of a new 

device, the task stores a reference to it in an internal linked list of present devices for future 

use. This is needed to send device listings to clients and facilitate a graceful exit of the 

application. The internal view of a USB device includes USB descriptor information, which is 
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read during the initial detection phase. As opposed to the existing USB/IP tools, which 

display device and manufacturer names using a lookup file, the RemoteHub server reads these 

from the USB device itself. 

USB device insertion and removal actions generate events that can be captured by the 

server application and can be used for logging or other purposes. Internally, the included 

STUB driver starts transmission and receiving threads for each remotely used USB device. 

Using these threads, the STUB handles USB/IP protocol CMD_SUBMIT commands as 

shown in Appendices 1 and 2 and CMD_UNLINK commands as presented in Appendix 3. 

 

 

5.3.2 Applications 

Both server and client applications are built using an API that is defined by the RemoteHub 

libraries. It is important to note that the information here applies only to the initial version of 

RemoteHub. The RemoteHub libraries follow the semantic versioning scheme [47], and as 

long as the major version number is zero, anything in the API can change. 

The applications and the libraries are built using the CMake [48] build automation toolkit. 

CMake can create build scripts for several platforms. This support is good to have for possible 

future development, although RemoteHub initially only supports Linux.  

 

 

Client application 

 

The RemoteHub client executable is built from the rh_client.c source file. The client 

communicates with the server to import USB devices that are present on the server. All 

network communication is abstracted in the libraries, which the applications control through 

the API. Like the server application, the client is a standard C program and supports Linux 

systems. Only the most relevant aspects of the application are covered in this section. A 

minimal usage example of the client application is shown in Figure 27. 

 

int main(int argc, char *argv[]) 

{ 

    signal(SIGINT, sig_handler); 

. . . 

    rh_client_config_init(conf_path); 

. . . 

    while (running) 

        usleep(5000000); 

 

    rh_client_exit(); 

    return 0; 

} 

 

Figure 27. Minimal client main() function where error handling has been omitted for brevity. 

 

The main() function is the starting point for execution. First, the signal() function is called 

during initialization, which registers a signal handler named sig_handler(). In the RemoteHub 

use case, only the SIGINT signal is caught. This signal is generated, for example, with a 

CTRL+C key combination. Catching this signal allows the program to shut down gracefully 
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because it enables the rh_client_exit() function to be called before exiting. This function only 

exits after all internal tasks have been shut down and internal memory reservations have been 

released. The example signal handler is presented in Figure 28. 

 

void sig_handler(int sig) 

{ 

    running = false; 

} 

 

Figure 28. An example of the signal handler function. 

 

The library is started and terminated by calling the rh_client_config_init() and 

rh_client_exit() functions. The rh_client_config_init() function accepts a path to a JSON 

configuration file which, among other configuration options, contains the CA certificate path 

that will be used in the server verification process. 

The application in  

Figure 27 only starts the library, and additional logic is needed to start using the remote 

USB devices. The automatic operation is established by using callbacks that create a sort of 

pipeline that is automatically executed. Once a server is discovered, a device listing is 

immediately requested. If the command was executed successfully, all devices indicated by 

the listing are attempted to be attached. Finally, an attach callback is invoked when a device 

has been successfully connected.  

Figure 29 shows the function calls that are used when subscribing to events, and Figure 30 

shows the callback function skeletons that would be called when the respective events have 

fired. 

 

    rh_usbip_devicelist_subscribe(usbip_devlist_callback); 

    rh_attach_subscribe(attach_callback); 

    rh_detach_subscribe(detach_callback); 

    rh_server_discovery_subscribe(on_server_discovered); 

 

Figure 29. The function calls that are used to subscribe the client application to library 

notifications. 
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void attach_callback(bool success, char *server, uint16_t port, 

                     struct usbip_usb_device dev) 

{ 

. . . 

} 

 

void detach_callback(bool success, char *server, uint16_t port, 

                     struct usbip_usb_device dev) 

{ 

. . . 

} 

 

void usbip_devlist_callback(bool success, char *server, uint16_t port, 

                            struct usbip_usb_device *devlist, uint32_t count) 

{ 

    for (uint32_t i = 0; i < count; i++) 

            rh_attach_device(server, port, devlist[i]); 

 

    rh_free_client_devlist(devlist); 

} 

 

void on_server_discovered(char *server_ip, uint16_t port, char *name) 

{ 

    rh_get_devicelist(server_ip, port); 

} 

 

Figure 30. The function skeletons with a sample logic flow that will be invoked by the 

RemoteHub client library. 

 

Initially, the devices that are not desired to be used are only detected and skipped in the 

device listing callback usbip_devlist_callback(). The device listing callback is called with a 

list of USB device representations on the server. This is the information that is transferred 

with the USB/IP user space protocol. Additionally, if automatic server discovery is not 

desired, the rh_get_devicelist() function can be manually used to connect to a server. 

However, the auto-discovery is always needed when using VIOBox. 

 

 

Server application 

 

This section presents the RemoteHub server application implementation. The executable is 

built from the rh_server.c source file. Only the most relevant aspects of the implementation 

are covered here. A simplified application logic flow is presented in Figure 31, which closely 

resembles the client application. 
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int main(int argc, char *argv[]) 

{ 

    signal(SIGINT, sig_handler); 

. . . 

    rh_server_config_init(conf_path); 

. . . 

    while (running) 

        usleep(100000); 

 

    rh_server_exit(); 

    return 0; 

} 

 

Figure 31. Minimal server main() function where error handling has been omitted for brevity. 

 

The rh_server_config_init() function is used to start the server library. Like the client 

application, it accepts a path to a JSON-formatted configuration file. This file contains 

important instructions such as the port to use and the paths of the server certificate and private 

key for TLS connections. The contents of this file are presented later in this chapter. 

During initialization, the server subscribes to necessary asynchronous notifications 

generated by the library. The application will be notified each time a USB device is physically 

attached or detached if rh_attached_subscribe() and rh_detached_subscribe() have been used 

to subscribe a callback to the events. The rh_exported_subscribe() and 

rh_unexported_subscribe() registered callbacks are called when a client attaches or detaches a 

device from the server. All these functions accept a function with the same signature. The 

function rh_devicelist_subscribe() is used to subscribe to local device listings that are only 

needed for the user interface. Figure 32 shows these functions being used to assign 

device_state_changed() and devlist_handler() functions for the events. Figure 33 shows 

minimal implementations of these functions. 

 

    rh_devicelist_subscribe(devlist_handler); 

    rh_attached_subscribe(device_state_changed); 

    rh_detached_subscribe(device_state_changed); 

    rh_exported_subscribe(device_state_changed); 

    rh_unexported_subscribe(device_state_changed); 

 

Figure 32. The calls that are used to subscribe the application for library notifications. 
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void device_state_changed(enum usb_dev_state state, 

                          struct usbip_usb_device dev) 

{ 

. . . 

} 

 

void devlist_handler(struct usb_device_info *devlist, int count) 

{ 

. . . 

    rh_free_server_devlist(devlist); 

} 

 

 

Figure 33. The function skeletons which are invoked by the RemoteHub server library after 

previous subscription. 

 

In the previous functions, the enum usb_dev_state can be one of: ATTACHED, 

DETACHED, EXPORTED, or UNEXPORTED and reflects the event that generated it. The 

structure usbip_usb_device contains USB device information that is transferred with the 

USB/IP user space tool protocol. The structure usb_device_info contains additional data such 

as the manufacturer name, but also includes the usbip_usb_device information internally. 

 

 

5.3.3 Licenses 

This section presents the licensing information of the third-party libraries in RemoteHub and 

how these can affect the created software. License types of the used libraries are presented in 

Table 7. 

 

Table 7. Licenses of software libraries used in RemoteHub 

Library License 

libUSB GNU’s Not UNIX (GNU) Lesser General Public License version 2.1 

(LGPLv2.1) 

MbedTLS Apache License, Version 2.0 

cJSON Massachusetts Institute of Technology (MIT) License 

 

GPL licenses are generally designed as copyleft licenses. This means that users are free to 

use code under such licenses, but derivative works need to be distributed under the same 

license. The libUSB library is under the LGPLv2.1 license [49]. This “lesser” GPL license is 

more permissive since it allows the library to be used even in proprietary software under some 

conditions. For example, an LGPLv2.1 licensed library can generally be used without 

disclosing source code when it is distributed separately, or in other words, dynamically linked 

[50]. 

MbedTLS is distributed under the Apache 2.0 license. Code licensed with Apache 2.0 can 

be used freely, even in commercial closed source programs. However, problems may arise 

when mixing code under different licenses. Due to the licensing requirements, Apache 2.0 

code can be included in GPLv3 applications, but not the other way around. Furthermore, 

Apache 2.0 and GPLv2 are not compatible [51]. 
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The MIT license in cJSON [52] is a permissive license that imposes minimal restrictions 

on the use of code. It can be used in proprietary or GPL licensed programs, requiring only the 

license text to be included in the software. 

The RemoteHub itself was chosen to be distributed under the GPLv3 license, which means 

it is open source and free for use outside of Aava Mobile. This license permits the use of the 

libraries and follows the spirit of the original USB/IP tools. The USB/IP driver files in the 

kernel source directory folder drivers/usb/usbip are licensed under the GPLv2 or any later 

version. 

 

 

5.4 RemoteHub usage 

The RemoteHub client and server applications are configurable command-line executables 

but can in the future be extended with a graphical user interface. Initially, the applications 

were built to only display information about their internal state. This is only informative data 

and is not needed for operation. The server command line output is shown in Figure 34, and 

the client interface is presented in Figure 35. 

 

 
 

Figure 34. The RemoteHub server interface shows devices attached to the server. 

 

 

 
 

Figure 35. RemoteHub client interface showing device attach events. 

 

RemoteHub is designed to be used autonomously, meaning that after the initial 

configuration, there is no need for user input. During initial configuration, the server and 

client are given a path where TLS certificates are located. Both server and client applications 

use configuration files to convey the TLS certificate path and other initial information. The 

configuration files are JSON formatted, and for parsing these files, RemoteHub uses the 

cJSON library [44]. The initially supported configuration file parameters for client and server 

are presented in Table 8 and Table 9, respectively, along with a description of each value. 
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Table 8. RemoteHub client supported configuration file options 

Configuration 

option 

Data 

format 

Description 

config_version Number The configuration file version supported by the application. 

The initial RemoteHub application supports version 1. 

use_tls Boolean Whether to use TLS security or unsecured TCP for existing 

USB/IP application compatibility. 

ca_path String The path in the VIOBox folder hierarchy to the certification 

authority certificate that can be used to verify whether a 

detected server can be trusted, and the connection 

initialized. 

 

 

Table 9. RemoteHub server supported configuration file options 

Configuration 

option 

Data 

format 

Description 

config_version Number The configuration file version supported by the application. 

The initial RemoteHub application supports version 1. 

server_name String A human-readable name that is assigned to this server. It 

will be broadcast to the client applications. The client 

application can then evaluate whether a connection will be 

attempted. 

bcast_enabled Boolean Whether to send automatic UDP detection packets or not. 

use_tls Boolean Whether to use TLS security or plain TCP for existing 

USB/IP application compatibility. 

port Number Which network port to set listening for client requests. 

cert_path String The path to the Privacy Enhanced Mail (PEM) formatted 

TLS public certificate assigned to this server and associated 

with the following private key. 

key_path String The path to the PEM formatted TLS private key of this 

server. 

key_pass String The password to use to decrypt the private key if protected. 

disable_array Array of 

numbers 

An array of disabled USB buses that are ignored by the 

application. Clients cannot use devices connected to them. 

 

The client application is started by first loading the existing USB/IP VHCI host controller 

driver module with the “modprobe vhci-hcd” command and then starting RemoteHub with the 

command “rh_client -c <path to configuration file>”. Likewise, the server startup command 

is in a similar format “rh_server -c <path to configuration file>” but with the server, no 

kernel modules need to be loaded. After startup, a user can insert a USB device into the 

server, and it will automatically be usable on the client. All parameters accepted by the 

created applications are listed in Table 10. 
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Table 10. RemoteHub supported application parameters 

Parameter Application Description 

-c / --config <path to config file> Client and 

Server 

Used to pass the configuration file 

during initialization. 

 

-v / --version Client and 

Server 

Returns the version of RemoteHub 

and the versions of the used 

libraries. 

-i / --ip <IPv4 address> Client Forces the client to use a specific 

server at a given IP address. 

-p / --port <port number> Client Forces the client to use a specific 

port with a previously given IP 

address. 

 

Applications can be stopped with a SIGINT signal generated by issuing a Ctrl+C key 

combination or other means. After catching this signal, they exit controllably, terminating 

open connections and performing exit cleanup. 

 

 

5.5 USBIP-win software 

The existing USBIP-win client application can be used with VIOBox to support Windows 

devices because RemoteHub is compliant with the existing USB/IP tool protocol. However, 

without modifications, only unencrypted transfers are possible. As a proof of concept, a test 

build of USBIP-win was created with TLS support. The TLS was implemented with the 

Windows MbedTLS library. However, the automatic discovery was not implemented. The 

system was functional but needs additional work that is left for the future. 
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6 RESULTS 

After the initial RemoteHub software work was completed, measurements were conducted to 

evaluate performance and optimize the software. Most of the tests measured data transfer 

speed by transferring data from a USB 3.0 flash drive. This performance test setup was 

expected to stress the system greatly and return easily quantifiable results. The usability of a 

USB web camera and a mouse was also assessed. These devices enabled the testing of all four 

USB transfer types, which was necessary to uncover possible underlying issues in the 

software. 

RemoteHub was first tested in an optimal environment where only the software 

performance was measured while keeping the other test variables as constant as possible. 

Issues that affected performance were thought to at least include network delays and 

encryption ciphers. From the technical perspective, transfer speed tests were run with the help 

of a script that automated the testing process. This allowed averaging to be easily added for 

reliable measurements. During all the performance tests, one gibibyte (GiB) of test data was 

read from the USB stick, and transfers were averaged five times. 

The tests were conducted using the dd command presented in Figure 36 that read data from 

the flash drive to the /dev/null node to avoid erroneous results due to the use of the client file 

system and storage medium. Prior to testing, it was discovered that an 8 MiB block size 

worked well with the test flash drive, and this was used in all tests. System memory caches 

were also cleared using the command in Figure 37 before every read to avoid the caches 

affecting performance.  

 

 

dd if=${TEST_FILE_PATH} of=/dev/null bs=8M conv=fdatasync 

 

Figure 36. Command that was used to read test files during performance testing. 

 

 

echo 3 > /proc/sys/vm/drop_caches 

 

Figure 37. Command that was used to clear memory caches. 

 

 

The first tests were run in a loopback environment, where no data was transferred over the 

network and server and client were run on the same computer. Following that, the focus was 

shifted to VIOBox hardware. The VIOBox hardware tests were carried out on both the 

Raspberry Pi 3 Model B and the Orange Pi Zero SBCs with either an x86 computer or an 

Aava tablet as a client. These tests were performed to evaluate overall performance and to 

find the optimal encryption ciphers for use. Finally, the actual VIOBox system was tested in 

real-life scenarios with an Aava tablet client connected to it through a wireless network. 
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6.1 Optimal environment 

The RemoteHub and the existing USB/IP tools were measured in an optimal environment, 

and a setup was created where software comparisons could be reliable. The computer used in 

these tests was an HP EliteBook 8570w with an Intel i7-3840QM processor and Manjaro 

Linux as the operating system. The network-related influence was mitigated by running both 

the server and client on the same computer using a localhost loopback interface with no 

communication over network cables. This setup was ideal for isolating the effects of network 

delays, which were known to have a severe impact on performance. The network Round-Trip 

Time (RTT) was measured with the ping command to be 0.083 ms in an average of 100 

packets on localhost. Also, a local copy test was performed for reference. The local copy was 

a baseline that represented the absolute maximum transfer speed with a standard USB 

connection. Then, a 1 GiB test file with either random data or only the value zero was 

transferred from the Kingston USB 3.0 stick into the /dev/null device node. The results are 

presented in Table 11. 

 

Table 11. Transfer rates measured from a Kingston USB 3.0 flash drive (unless otherwise 

specified, connected to a USB 3.0 port on the server computer) 

Test setup Test data Avg transfer speed (5 reads) 

Local copy 1 GiB of random 95.93 MiB/s 

Local copy 1 GiB of zero 95.76 MiB/s 

Existing USB/IP tools 1 GiB of random 71.02 MiB/s 

Existing USB/IP tools 1 GiB of zero 72.96 MiB/s 

Unencrypted RemoteHub 1 GiB of random 62.57 MiB/s 

Unencrypted RemoteHub 1 GiB of zero 64.11 MiB/s 

Unencrypted RemoteHub 

(USB 2.0 port) 

1 GiB of random 25.90 MiB/s 

Unencrypted RemoteHub 

(USB 2.0 port) 

1 GiB of zero 25.84 MiB/s 

 

Following the performance comparisons, TLS performance was evaluated to see how 

encryption affected the speed of RemoteHub. In these tests, only 1 GiB random data files 

were used. During initial testing, it was found that the RemoteHub TLS libraries were 

compiled with debug settings, reducing cryptographic performance. After this issue was fixed, 

the cipher performance is presented in Figure 38. Although a full TLS cipher suite contains 

additional ciphers, only the encryption and verification ciphers are shown in Figure 38. Other 

ciphers would not have contributed to the performance since the test was conducted after a 

connection had been established. However, the used key exchange and authentication ciphers 

were DHE-RSA in all cases. 
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Figure 38. Effect of cipher suite data encryption and verification ciphers on locally used 

RemoteHub, where 1 GiB of random data was read from a Kingston flash drive connected to 

a USB 3.0 port. 

 

During encryption cipher tests, it was seen that CPU use was correlated with the transfer 

speed. Processor use was the highest with CAMELLIA_128_GCM_SHA256 and the lowest 

with CHACHA20_POLY_1305_SHA256. 

Next, the effect of network delay was also useful to be measured in the optimal 

environment because it can be synthetically generated and controlled. The delay was 

generated using the command shown in Figure 39. 

 

 

tc qdisc add dev lo root netem delay <delay value> 

 

Figure 39. The command that was used to add delay to the socket communication. 

 

The used delay was set to half of the desired RTT value since the delay shaping affected 

both server and client applications. The delay was verified with the ping command. These 

tests were conducted with an unencrypted RemoteHub setup, and the results are presented in 

Figure 40. 
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Figure 40. The RTT between client and server on the same computer and the effect on transfer 

speed. 

 

Following these tests, a Web camera and mouse were tested in an unencrypted 

environment. First, a Logitech MX518 mouse was used. It has an HID report polling interval 

(bInterval) of 10, which indicates a period of 10 ms. However, due to rounding in the kernel, 

it was actually read at 8 ms intervals (125Hz) [53]. During testing, starting at a delay of 20 

ms, the mouse movement visibly started to slow down. A delay of 150 ms or more could be 

considered completely unusable. A Microsoft LifeCam HD-5000 was tested with the 

Webcamoid web camera application. It was seen that a 640x480 30fps preview stream was 

functional up until a delay of approximately 10 ms when the preview stopped functioning. 

The preview was still working with a delay of 8 ms. 

 

 

6.2 VIOBox device 

First, VIOBox tests were performed to find the optimal encryption ciphers for use. These tests 

were like the transfer speed tests conducted previously. However, this time, the VIOBox 

server and an Intel i7-2600-based x86 client computer were connected by a wired network 

connection. Transfer speeds using different encryption and verification cipher suites are 

presented in the following Figure 41. These are the same suites that were used in the optimal 

environment.  
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Figure 41. The impact of data encryption and verification ciphers on the transfer speed 

between the VIOBox server and an x86 computer client using RemoteHub. 

 

The ping command reported an average RTT of 0.411 ms between the client and 

Raspberry Pi 3 Model B and, likewise, 0.240 ms between the client and Orange Pi Zero on an 

average of 100 tests. The used network cables were gigabit capable, and the same on both 

tests. 

In real-life performance tests, the Orange Pi Zero-based VIOBox was used with an Aava 

x86-based tablet client with an Intel Atom E3940 processor. The most suitable cipher suite, 

TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256, was selected and used during 

the tests. The VIOBox was connected to the network using an ethernet cable, but the tablet 

used a Wireless Local Area Network (WLAN) connection. Two distances were tested, with a 

separation of 50 cm and 4 m between the router and tablet. The tablet also had an 

unobstructed line of sight to the router. As a note, the exact fine positioning of the device was 

observed to affect the RTT. Transfer speeds and RTT values are shown in Table 12. 

 

Table 12. Transfer speed and observed delay with Aava tablet as client and Orange Pi 

VIOBox as a server 

Distance Transfer speed RTT (Avg. of 100)  RTT std. dev. 

50 cm 3.20 MiB/s 2.67 ms 0.75 ms 

4 m 2.71 MiB/s 3.65 ms 2.29 ms 

 

More testing was performed in the 50 cm range to assess the impact on input devices. A 

Logitech MX518 mouse was tested with the evhz tool [54]. It was seen that on average the 

mouse was returning data at 125 Hz, the rate being occasionally higher and lower than this 
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value. The Microsoft LifeCam HD-5000 web camera was tested with the V4L2 test 

benchmark tool qv4l2 [55]. It was seen that the video was only suitable to be used at a 

maximum 424x240 resolution. Above this, the video was either not working or frame 

dropping was too severe for use. The camera was set to output data video at 30 fps, and it was 

verified that the frame rate was 29.98 when connected to the tablet directly. Using VIOBox, 

occasional dropped frames were present at that resolution, and the frame rate was around 19 

fps in the same conditions as the reference test. It was seen that even with a minimum 

resolution of 160x120, the average frame rate was also at around 19 fps. 

RemoteHub-related requirements were also verified during these tests. This especially 

meant testing three USB devices simultaneously and ensuring that the hot-plugging delay was 

under 10 seconds. Both requirements were supported. 
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7. DISCUSSION 

Part of this thesis was to evaluate how existing open-source USB/IP software components 

could be used or extended to implement data security and automatic use features. The 

presented solution was to create new RemoteHub USB sharing tools. RemoteHub was built to 

use TLS for data security and UDP broadcast packets for automatic discovery. It leverages the 

USB/IP tool protocol and the existing USB/IP virtual host controller that is included in most 

Linux distributions. This also helps with future development, since there is a Windows 

implementation that could be updated with the required features in the future. As a part of the 

software work, the USB/IP server was built in user space. This enables better maintainability 

and portability, but also imposes a small performance penalty on the operation. 

After the software work was concluded, the RemoteHub software and the VIOBox 

accessory performance were measured and optimized. The main goal of this testing was to 

find the main performance bottlenecks in the prototype VIOBox system for future reference. 

Most tests were conducted using a script that read data from a physical USB 3.0 flash drive, 

simulating USB mass storage use cases. This testing returned quantifiable results and was 

used for benchmarking. Additionally, a web camera and input devices were assessed at a 

more general and subjective level. Testing was conducted both on a theoretical optimal 

simulation environment and on VIOBox hardware.  

First, RemoteHub was tested in optimal conditions to isolate network delay. During these 

tests, both server and client applications were used on the same computer using the localhost 

loopback interface. It was verified that the newly created implementation had some negative 

performance impact. Remotehub with the user space server was approximately 12 % slower 

than existing Linux USB/IP tools which operate in kernel space. The main issue is likely the 

data copying between kernel and user space, which was identified by Hirofuchi in his 

research. However, the execution logic of RemoteHub and libUSB may also add overhead.  

The addition of data security features imposed additional penalties depending on the 

hardware and used cipher suite. Optimal environment performance with optimal encryption 

ciphers was approximately half of that without encryption. Luckily, this did not fully translate 

to VIOBox. When optimizing VIOBox encryption ciphers, it was seen that on the selected 

Orange Pi Zero hardware, this resulted in approximately 8 % slower performance with the 

most optimal TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 cipher suite 

compared to being unencrypted. It is also important to note the varying security implications 

of the tested cipher suites. However, at the time of testing, the optimal cipher suite was also 

classified as secure [56]. 

Network delays introduced significant performance degradation. This can be especially 

problematic with VIOBox since it uses a wireless network connection, which introduced more 

delay compared to a wired connection. The measured RTT values were also more 

unpredictable compared to a wired connection. The issue of network latency was also 

discovered in the original USB/IP research [6]. The VIOBox data transfer performance 

degradation with increasing latency can likely be attributed to the client USB drivers being 

designed to work in conventional, minimal latency USB environments. Performance is 

affected if a client needs to wait for an URB to be completed before a new one is issued. The 

performance degradation due to encryption can likely be attributed to delay caused by a 

higher processor workload. 

From the VIOBox hardware perspective, the network adapters in used SBCs were only 

capable of operating at a maximum speed of 100 Mbps and the USB ports were only capable 

of USB 2.0. The performance of VIOBox could likely be improved by changing the used 

hardware. However, as seen in the optimal environment, the improvements may be limited 
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due to latency in the network, which sets a ceiling for transfer speed and can be hard to 

control on user premises. 

The performance of the RemoteHub software was deemed acceptable in the intended use 

case. The use of lower-performance hardware can be accepted as a cost-saving measure. As 

was determined during testing, input devices should not be notably impacted by the VIOBox 

system due to the relaxed polling intervals in USB interrupt transfers. However, VIOBox still 

needs further development before it is ready for commercial use. For instance, the delivery 

mechanism for the initial data has not been decided. Some options include, for example, 

reading it from an NFC tag, a USB flash drive, or using SSH / Secure Copy (SCP) methods 

during provisioning. Proper services or startup scripts should also be created so that both the 

client and server can automatically begin execution after startup. 

The RemoteHub software has many aspects that can be developed further, and some 

existing choices also worked well. Following the prototype phase, Android and Windows 

support could be added, so that all Aava devices are supported. A GUI using which the 

system could be managed would be nice to have but not necessary. It was seen in an optimal 

environment that the content of transferred data had a negligible effect on transfer speed. To 

speed up VIOBox operation, data compression could be added to attempt to boost 

performance. The compression likely hurts performance on fast networks and optimal 

hardware but could possibly be of help on VIOBox. Also, more fine-grained access controls 

could be added. The prototype used TLS certificates themselves for rudimentary access 

control. This was possible since the system was designed to use all the devices on the server. 

Perhaps in the future, VIOBox could also be offered in other forms, such as a larger server 

that could serve multiple clients. Then, controlling access would become more relevant. One 

internal improvement would be to lift more functionality to the application level so that the 

libraries stay as lean and flexible as possible. There are also other smaller improvements to be 

made, some of which have undoubtedly not yet been uncovered. Due to this, user experience 

testing would also be beneficial. In the current design, asynchronous callbacks worked well 

for handling the application logic. This enabled, for example, the client to connect 

immediately and automatically to a server after receiving a notification.  
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8. SUMMARY 

This thesis documented the software development process for an Aava Mobile VIOBox USB 

remote use prototype accessory, which was designed to serve as a remote wireless USB hub 

for Aava tablets. The existing open-source software USB remote use tools were discovered to 

be insufficient for VIOBox as is. VIOBox was required to support secure data transfers and 

function without user intervention. Therefore, after evaluation of options, new RemoteHub 

tools were decided to be created. These tools consist of server and client applications for 

Linux-based operating systems and use the existing USB/IP protocol and virtual host 

controller on the client. 

This thesis began with the evaluation of existing commercial and open-source USB remote 

use solutions. Open-source USB/IP tool features and limitations were explored in more detail, 

and some ways to overcome the key limitations were presented. The evaluation was followed 

by a review of the USB and USB/IP technical background. This was necessary as preparation 

for creating the new RemoteHub system. After the review of theory, the RemoteHub tool was 

introduced. The RemoteHub requirements, design choices, and internal details were also 

presented, along with a brief overview of the VIOBox device hardware and mechanics. 

Finally, the RemoteHub software and VIOBox device were benchmarked. First, 

measurements verified that network delay had a great effect on performance. It was seen that 

in an optimal environment, even one millisecond of delay can lead to a halving of the data 

transfer speed when reading data from a USB stick. Delay also originated from the encryption 

implementation. The encryption calculations also halved the transfer speed, even with the 

most favorable ciphers in an optimal environment. 

It was also seen that the selected VIOBox HW components were limited in performance 

aspects. Due to higher latency, slower network adapters, and the lack of USB 3.0 ports, the 

performance was approximately 10 % of the optimal environment. It was found that both the 

evaluated Orange Pi Zero and the Raspberry Pi 3 Model B SBCs had similar performance, 

with the Raspberry Pi being slightly faster. Further assessing the actual use case with an Aava 

tablet and wireless network connection, the performance was again roughly half of the speed 

achievable with a wired connection. The data transfer speed that was achieved when reading 

data from a USB stick with the Orange Pi Zero VIOBox was approximately 3 MiB/s from 50 

cm of the access point using the optimal encryption ciphers. However, the performance issues 

were determined not to be critical for the VIOBox use case. It is acceptable for the occasional 

flash drive data transfer to be less performant. The VIOBox is mainly dedicated to human 

interface devices that were seen to tolerate real-life network conditions well. Devices such as 

keyboards and mice were not seen to be meaningfully affected when using the VIOBox. 
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10. APPENDICES 

 

Appendix 1 The handling of IN direction USBIP_CMD_SUBMIT in RemoteHub server 

 

Appendix 2 The handling of OUT direction USBIP_CMD_SUBMIT in RemoteHub server 

 

Appendix 3 The handling of USBIP_CMD_UNLINK in RemoteHub server 
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Appendix 1 The handling of IN direction USBIP_CMD_SUBMIT in RemoteHub server 
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Appendix 2 The handling of OUT direction USBIP_CMD_SUBMIT in RemoteHub server 
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Appendix 3 The handling of USBIP_CMD_UNLINK in RemoteHub server 

 

 
 

 

 


