

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

DEGREE PROGRAMME IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

MASTER’S THESIS

A remotely accessible USB hub: Software design and
testing

 Author Jani Laitinen

 Supervisor Juha Häkkinen

 Second Examiner Kari Määttä

June 2022

Laitinen J. (2022) A remotely accessible USB hub: Software design and testing

University of Oulu, Faculty of Information Technology and Electrical Engineering, Degree

Programme in Electronics and Communications Engineering. Master’s Thesis, 77 p.

ABSTRACT

Remote use of USB peripherals has been identified as useful for Aava Mobile customers.

Therefore, the commercial feasibility of an accessory that allows accessing USB devices

remotely was studied at Aava, and a prototype device was built. The software in this

accessory was required to transfer data securely, be automatically detectable on a local

network, and operate autonomously. It is explored in this thesis how remote USB

sharing and the requirements could be implemented using open-source software

components.

New USB remote use programs that support the required capabilities were created as

part of this thesis. These applications run on Linux-based operating systems and make

use of the existing open-source USB/IP tool protocol. The new client program uses the

existing Linux USB/IP virtual host controller driver, and the server is implemented in

user space.

After the software work was concluded, measurements were performed for

evaluation purposes. Optimal encryption ciphers for the prototype hardware were also

selected. It was verified by testing that network delay causes major performance

degradation. Other significant performance concerns were network adapter speed, the

use of encryption, USB port speed, and the user space server implementation. However,

while these aspects reduced the performance of the prototype, they were not determined

to be critical. The accessory was not intended for high-performance use cases, and

therefore the use of cost-effective components can be justified.

Key words: USB/IP, Linux, TLS, remote use

Laitinen J. (2022) Etäkäytettävä USB-keskitin: Ohjelmistokehitys ja testaus Oulun

yliopisto, tieto- ja sähkötekniikan tiedekunta, elektroniikan ja tietoliikennetekniikan tutkinto-

ohjelma. Diplomityö, 77 s.

TIIVISTELMÄ

USB-laitteiden etäkäyttö on havaittu hyödylliseksi Aava Mobilen tablettilaitteiden

käyttäjille. Tästä syystä Aavalla tutkittiin tämän toiminallisuuden sisältävän lisälaitteen

kaupallista toteutusmahdollisuutta ja toteutettiin prototyyppilaite. Tässä laitteessa

toimivan ohjelmiston vaadittiin salaavan siirrettävä data, löytyvän automaattisesti

sisäverkossa sekä toimivan ilman käyttäjän apua. Tässä diplomityössä tutkitaan kuinka

USB-laitteiden käyttö sekä vaaditut ominaisuudet voitaisiin toteuttaa avoimen

lähdekoodin ohjelmistokomponenttien avulla.

Diplomityön osana toteutettiin vaaditut ominaisuudet sisältävät ohjelmistotyökalut

USB-laitteiden etäkäyttöön. Nämä ohjelmistot toimivat Linux-pohjaisissa

käyttöjärjestelmissä ja käyttävät olemassa olevaa avoimen lähdekoodin USB/IP-

työkalujen protokollaa. Asiakasohjelma käyttää olemassa olevaa virtuaalista USB/IP-

isäntäohjainta ja palvelin on toteutettu käyttäjätilassa.

Ohjelmiston toteutuksen jälkeen mittauksilla arvioitiin suorituskykyä sekä valittiin

optimaaliset salausalgoritmit prototyyppilaitteistoa varten. Testeillä vahvistettiin, että

verkon viiveellä on suuri vaikutus järjestelmän suorituskykyyn. Muita merkittäviä

suorituskykyyn vaikuttavia seikkoja olivat verkkoadapterin nopeus, salauksen

käyttäminen, USB-portin nopeus sekä palvelinohjelman toteutus käyttäjätilassa. Nämä

hidastivat prototyyppilaitteen toimintaa, mutta niiden vaikutus ei kuitenkaan ollut

kriittistä. Toteutettua lisälaitetta ei ollut tarkoitettu käytettäväksi kohteissa, jotka

vaativat suurta suorituskykyä ja näin ollen laitteistovalinnoilla voitiin saavuttaa

kustannushyötyä.

Avainsanat: USB/IP, Linux, TLS, etäkäyttö

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1 INTRODUCTION .. 8

2 USB SHARING OVER IP ... 10

2.1 Commercial devices .. 10

2.2 Commercial software .. 11

2.3 Open-source USB/IP software .. 11

2.3.1 Linux tools ... 11

2.3.2 Windows tools ... 13

2.3.3 Limitations and possible solutions .. 14

3 INTRODUCTION TO USB ... 18

3.1 Overview ... 18

3.2 Data ... 19

3.2.1 Requests ... 19

3.2.2 Descriptors ... 20

3.2.3 Transfer types .. 21

3.3 Hardware ... 22

3.3.1 Host controller ... 22

3.3.2 Hub .. 23

3.4 Software in the Linux kernel ... 23

3.4.1 USB Request Block (URB) ... 23

3.4.2 Linux USB stack .. 24

4 USB/IP COMPONENTS AND PROTOCOL .. 27

4.1 User space applications ... 28

4.1.2 Protocol and capabilities .. 28

4.2 Linux drivers ... 32

4.2.1 VHCI driver ... 32

4.2.2 STUB driver .. 34

4.2.3 Protocol .. 35

5 IMPLEMENTATION ... 41

5.1 VIOBox device .. 41

5.1.1 Single-board computer .. 41

5.1.2 Mechanical construction .. 42

5.2 Software requirements and design choices ... 43

5.2.1 Security .. 44

5.2.2 Automatic discovery and unattended use .. 45

5.3 RemoteHub library and application design ... 45

5.3.1 Libraries ... 47

5.3.2 Applications ... 52

5.3.3 Licenses ... 56

5.4 RemoteHub usage .. 57

5.5 USBIP-win software .. 59

6 RESULTS ... 60

6.1 Optimal environment ... 61

6.2 VIOBox device .. 63

7. DISCUSSION ... 66

8. SUMMARY .. 68

9. REFERENCES ... 69

10. APPENDICES .. 74

FOREWORD

This thesis was conducted during my employment with Aava Mobile Oy. VIOBox was an

interesting project, and the software work presented countless learning experiences and long

debugging sessions. I want to thank Aava Mobile VP software Janne Pulska for the

opportunity to have VIOBox software as my master’s thesis project. A special thanks to the

head of product concepts, Mika Sipola, for all the prototype-related assistance. I would also

like to extend my thanks to all the VIOBox project participants who provided me with

feedback and suggestions. Many thanks also to Professor Juha Häkkinen for his guidance with

the writing process. Lastly, my sincere and heartfelt thanks go to my family for all the

unconditional support during my studies and this thesis project. For this, I will forever be

grateful.

Oulu, June 6th, 2022

Jani Laitinen

LIST OF ABBREVIATIONS AND SYMBOLS

AES Advanced Encryption Standard

API Application Programming Interface

ARM Advanced RISC Machines

CA Certificate Authority

EHCI Enhanced Host Controller Interface

GB Gigabyte

GiB Gibibyte

HCD Host Controller Driver

HID Human Interface Device

IP Internet Protocol

JSON JavaScript Object Notation

MB Megabyte

Mbps Megabits per second

MiB Mebibyte

OHCI Open Host Controller Interface

RTT Round-Trip Time

SBC Single-Board Computer

SCSI Small Computer System Interface

SDK Software Development Kit

SSH Secure Shell

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UHCI Universal Host Controller Interface

URB USB Request Block

USB Universal Serial Bus

USB OTG USB On-The-Go

USB/IP USB request over IP

VHCI Virtual Host Controller Interface

VIOBox Virtual Input/Output Box

xHCI Extensible Host Controller Interface

1 INTRODUCTION

The Universal Serial Bus (USB) is commonly used when transferring data between a host

computer and a peripheral device. USB peripherals include storage drives, human interface

devices, web cameras, and a wide variety of other devices. Additionally, special hub devices

are available that increase the number of USB devices a computer can use simultaneously.

USB peripherals are usually connected to standardized ports on a computer. Traditionally,

USB devices are only used locally and connected to a computer either directly or through one

or more USB hubs. Due to limitations imposed by the USB standard, the maximum length of

a USB 2.0 cable is approximately 5 meters [1]. There can be up to five hubs between a USB

device and the host [1]. This means that even if all these hubs are externally powered, a USB

device cannot be guaranteed to work from more than 30 meters away.

To address the relatively short operating distance, both commercial and open-source USB

remote access software solutions have been created. Open-source software tools rely on the

USB request over the Internet Protocol (USB/IP) method, which was proposed by Takahiro

Hirofuchi et al. in the early 2000s [2]. USB/IP is used to transfer USB data over the Internet

Protocol (IP), which allows USB devices to be theoretically used from any distance. The first

open-source software tools were also created by Hirofuchi for Linux systems as a part of his

research. There are also commercial USB remote sharing devices. These devices appear much

like conventional hubs and can operate completely autonomously.

There is expected to be interest in a remote USB sharing solution among Aava Mobile

customers. Aava currently offers two types of docking stations for use with Aava tablets.

These allow charging and optionally support conventional USB hub and High-Definition

Multimedia Interface (HDMI) functions. By replacing the internals of the latter data dock

with the remote USB sharing hardware, it could be offered as a new accessory in the future.

Simultaneously with this thesis project, a proof of concept Virtual I/O Box (VIOBox)

remotely accessible USB hub was created. This prototype was built using commercial off-the-

shelf components, which were evaluated to find out whether such components could be used

in a commercial system.

The aim of this thesis was to document the VIOBox software design process, starting from

the technical background all the way to measurements on the prototype hardware. The

VIOBox software project target was to create USB sharing software tools that operate on

Linux systems and implement VIOBox-specific requirements. The VIOBox device was

designed to function like a regular USB hub, which meant it needed to allow clients to

automatically use available devices. The system was also required to support secure data

transfers between a tablet client and the VIOBox server. For cost management and

customizability reasons, the software in VIOBox was to be based on open-source solutions.

However, these required features were not readily available in existing open-source tools.

This raised the question of: how could open-source USB/IP software components be used

to create USB sharing software tools with data security and automatic use features?

The chapters in this thesis are organized according to the design process. In the second

chapter, existing USB remote sharing solutions and design options are evaluated. This is

followed by a presentation of the technical background that is required in the software work.

The fundamentals of USB are presented in chapter three. Chapter four contains an in-depth

look at the USB/IP method and the protocol that is used in the existing USB/IP tools. In the

fifth chapter, RemoteHub, the product of the VIOBox software project, is introduced. This

chapter also includes a brief overview of the mechanics and hardware of VIOBox. However,

these choices are otherwise outside the scope of this thesis. The sixth chapter is dedicated to

9

RemoteHub software performance comparisons and other measurements. The performance of

the created software is evaluated with a special focus on how the encryption performance can

be optimized. Encryption is particularly expected to introduce performance degradation, and

this is wanted to be known and minimized. Testing will also aim to find improvements that

should be considered in the future development of VIOBox. It is especially wanted to be

found: what are the main performance bottlenecks in the prototype VIOBox system?

10

2 USB SHARING OVER IP

Currently, there are many software and hardware solutions available for USB remote use.

These can be useful, for example, in point of sale and warehouse use cases, and generally

anywhere mobility is required. For example, a restaurant might have legacy USB receipt

printers that need to be used remotely. Purchasing new devices built with remote use in mind

may be more expensive than using existing USB devices with a sharing solution.

The first device for remote USB sharing was introduced by Inside Out Networks in 2001

[3]. This “AnywhereUSB™ Remote USB Over IP Concentrator” USB sharing device was

initially USB 1.1 compatible and operated on a local area network. It used the Transmission

Control Protocol (TCP) over an IP connection to transfer data. The maximum speed of data

transfer was 12 Mbps [4].

The USB/IP method for USB remote use was proposed by Takahiro Hirofuchi et al. in the

early 2000s [2]. It has also been discussed in his master’s thesis in 2004 [5] and followed up

in his doctoral dissertation in 2007 [6]. As a part of his research, Hirofuchi created the first

free and open-source remote USB sharing tools. These sharing tools, which are also available

today, allow a Linux-based server computer to share USB devices with another Linux client

computer. The USB/IP tools use a TCP/IP connection internally and support all the common

USB transfer types [2]. The drivers created by Hirofuchi were added to the Linux kernel

staging area in 2008 [7], followed by user space tools in 2011 [8]. The USB/IP code was

merged into the mainline Linux kernel in 2014, starting with kernel version 3.17 [9].

Today, both commercial and open-source USB sharing tools have added many new

features on top of those initially implemented. These include features such as USB 3.0 [10]

and Windows support [11] in the open-source community. Commercial tools have further

implemented data security, automatic server discovery, fine-grained access controls, and a

broad range of other features. Although development has been active in the open-source

community, many of the commercial tool features are yet to be included in open-source tools.

This chapter presents background information about the currently available USB sharing

devices and software. A special focus is on the capabilities of the previously mentioned

USB/IP tools in the Linux kernel and the subsequently developed Windows port of these

tools.

2.1 Commercial devices

Multiple commercial vendors offer remote USB sharing hubs. These devices bundle the

hardware and software in one package. The most notable is the AnywhereUSB™ line of

devices. The current AnywhereUSB™ plus devices are available with two to twenty-four

USB 3.1 ports. These hubs are managed using a web interface or through a built-in command

line with Secure Shell (SSH) or serial connection. The AnywhereUSB™ hubs also support

data encryption, can be automatically discovered, and there is extensive support for access

control. [12] For example, Solid State Supplies Ltd offered the two-port variant for 263€

excluding taxes [13].

There are also similar devices from other vendors, such as AnyplaceUSB hubs from

Coolgear Inc. These AnyplaceUSB devices support network traffic encryption, password

authorization, and automatic discovery. They support Linux and Windows operating systems,

but only contain USB 2.0-capable ports. [14] At the time of writing, USBGear.com was

selling the two-port device for 61€ [15].

11

2.2 Commercial software

Remote USB sharing software can also be purchased separately if a user opts to use their own

server hardware. One well-known commercial tool is VirtualHere, which provides a USB

device sharing server application for Linux, Windows, macOS, Android, and specific

Network Attached Storage (NAS) devices. The VirtualHere client software is available for

Linux, Windows, macOS, and Android devices. VirtualHere includes support for data

security and compression. The client application supports finding servers automatically on a

local network. Also, server discovery on public network is supported using the EasyFind

service [16]. VirtualHere can be customized with the use of configuration files and scripts.

The system can use, for example, IP, password, or USB device properties to grant or deny

access to a particular device. Overall, VirtualHere is a feature-rich USB sharing solution. At

the time of writing, it cost 46€, which included a license for one server. The number of clients

for a server was unrestricted. In addition, there is an active support forum on the VirtualHere

website where the founder answers questions and resolves problems that users may have. [17]

Another software example is “USB Network Gate” by Electronic Team. The USB

Network Gate supports Windows, Linux, Android, and macOS systems and allows USB

communication to be secured and compressed. The client application can also find servers

automatically on a local network. The USB Network Gate is available for use in multiple

ways. In addition to conventional server and client applications, the service can be purchased

as a Software Development Kit (SDK). By using the SDK, implementers can add the USB

sharing capability to their services or apps. The full application source files are also available

for licensing. The price for commercial use, the SDK, and source licensing is determined on a

case-by-case basis by contacting Electronic Team. The applications were available for

personal and non-commercial use for 149€. [18]

2.3 Open-source USB/IP software

USB/IP is a method for transferring raw USB data over an IP network using a virtual host

controller on the client computer and a special device driver on the server computer. From the

client computer’s point of view, the remote USB device appears just as if it were physically

connected to it [2]. The technical details of both USB and USB/IP are studied in later

chapters. Because the software developed in this work is based on open-source USB/IP

methods and software components, these are examined in greater detail. This section presents

the features and user interface of existing USB/IP tools.

2.3.1 Linux tools

The USB/IP tools are used from the command-line. With the command line interface, users

can find, attach, and detach remote USB devices. Only the user interface and functions are

explored in this section. The USB/IP protocol and drivers are explored in-depth in chapter

four.

The Linux USB/IP user space tools are comprised of usbip and usbipd applications. The

usbip executable is used by both servers and clients. On the server, it is used to bind USB

devices to be used with USB/IP. After binding, devices are allowed to be used by clients and

cannot be used locally by the server. Clients use the usbip executable to query servers for

12

device listings and attach devices that are bound for use. A successful attach with the tool is

equivalent to plugging a USB device into the client system.

Servers use the usbipd application. It is a daemon process that receives commands from

usbip clients and starts USB forwarding when possible. The usbipd application is designed to

be used in the background but can print debugging information about its internal operation.

The user space applications control the USB/IP kernel drivers. There is a Virtual Host

Controller Interface (VHCI) Host Controller Driver (HCD) vhci-hcd Linux kernel driver that

is used on the client. It implements a virtual host controller with a virtual root hub for

transferring USB data and is referred to as the VHCI driver in this paper. Servers use a

“STUB” usbip-host Linux kernel device driver module that allows raw data transfers with

USB devices.

The following Figure 1 illustrates the steps that a server needs to execute to enable a USB

device to be used by clients. The steps that are run using sudo indicate they need root

privileges.

1. The USB device is physically attached to the server computer and the usbip-host

module is loaded. Internally, the modprobe tool loads also a required usbip-core

module. This command needs to be executed only once.

2. The usbipd process is started if it is not already running. The “&” at the end of the

command indicates that usbipd is started in the background. However, because the

output is not redirected, informative traces are printed on the terminal. The process

can also be started as a daemon process by supplying “-D” parameter during startup.

3. A local device list is queried with usbip to find out the “busid”, which is a sequence of

USB bus and port numbers where the USB device is physically attached.

4. The USB device is marked as exportable by binding it. The unique port configuration

found during step 3 is used to refer to the device.

Figure 1. Steps to start the USB/IP server and allow a Dell mouse that is physically attached

to the server to be used by clients.

13

After the server has bound a USB device for use, clients can start using it. The steps for a

client to attach a remote USB device are shown in Figure 2 and explained below.

1. The vhci-hcd driver module is loaded if not already present. Again, the usbip-core

module is also automatically loaded.

2. A device listing command is issued to the IP address of the server. The resulting

listing shows all bound but still unattached devices on the server.

3. An attach command is issued to start using the device. This command contains the

unique port configuration of the device on the server.

Figure 2. Steps for a client to start using the Dell mouse that was previously bound on the

server.

After the previously illustrated negotiation in user space programs has successfully

finished, the open network sockets are passed to the USB/IP kernel drivers by both client and

server applications. The kernel space usbip-host STUB device driver on the server and virtual

host controller driver vhci-hcd on the client then communicate with each other, transferring

USB data using the protocol defined by the drivers. This kernel space USB/IP tool protocol is

presented later in detail. User space applications are not involved in the transfer of USB data

and communicate with each other using the user space USB/IP tool protocol that is also

presented later.

2.3.2 Windows tools

The USB/IP Windows utilities were first introduced in 2009 by SourceForge user “lepton-

wu” [11]. The Windows tools and drivers have been actively developed ever since, and

currently the main software project is USBIP-win [19]. This Windows software suite is

compatible with the Linux USB/IP tools. Like its Linux counterpart, it provides user space

server and client applications that implement a command-line interface along with kernel

drivers. Commands for Linux usbip generally work in the Windows version as well.

Available commands are shown in Figure 3.

14

Figure 3. Commands available in the Windows USB/IP tool usbip.exe.

One notable disadvantage of the Windows tools is that, at the time of writing, the client

virtual host controller driver was not digitally signed. This means that the driver can only be

installed in Windows test mode, in which driver signatures are not enforced. This is a problem

in a commercial setting because end users cannot be expected to use their computers in test

mode. It is possible to sign the driver by purchasing a specific signing certificate and

submitting the driver to the Microsoft developer portal [20]. This process can be costly, and

getting the drivers signed may be difficult for open-source projects; it is more geared for

organizations.

2.3.3 Limitations and possible solutions

The current USB/IP tools for Linux and Windows lack features such as data security and

automatic discovery built in. Methods to overcome the key limitations of current USB/IP

tools are explored in this section. The areas of interest include data security, automatic

discovery, and unattended use. Other limitations are not explored here, such as the lack of

fine-grained access controls, which may be important depending on the use case. Hirofuchi

presented in his doctoral dissertation an implementation of a prototype sharing system with

data security and automatic use [6]. However, these features are not implemented in the

current public tools.

Security

One widely used framework for assuring information security is the CIA triad [21]. The CIA

triad, originally introduced in the 1970s, refers to three core security concerns in information

systems. These are Confidentiality, Integrity, and Availability. Confidentiality is needed so

that information cannot be read by unauthorized actors. It can be implemented with the help

of various encryption algorithms, such as the Advanced Encryption Standard (AES) and the

Rivest–Shamir–Adleman (RSA) cryptosystem. Integrity is required so that data cannot be

tampered with by unauthorized actors, leading to legitimate users unknowingly using invalid

data. Integrity would be ensured, for example, by using hash functions and cyclic redundancy

check (CRC) algorithms. Availability refers to the service being available at any time so that

third parties cannot prevent authorized users from accessing it. Availability aspects would

include, for example, Distributed Denial of Service (DDoS) mitigation.

15

Confidentiality and integrity aspects can be implemented, for example, by using Transport

Layer Security (TLS) or SSH protocols. TLS is a very common protocol that is used for

encrypting network transfers. Many versions of the TLS and its predecessor Secure Sockets

Layer (SSL) have been introduced, the latest of which is TLS 1.3. A TLS connection is

initialized with a handshake, usually using certificates, which are used to verify the

authenticity of connection participants and establish later data encryption. The initial

handshake is, in most cases, performed with asymmetric encryption and public-key

cryptography, where connection participants can only either encrypt or decrypt data. After the

handshake, symmetric keys are used for later data transfers that allow both encryption and

decryption. Trust is usually established by using a trusted third party referred to as a

Certificate Authority (CA) [22]. The CA signs server certificates with its confidential private

key. This allows a client to verify whether the certificate was signed by a CA by using the

CA’s public key. A successful verification enables a client to trust the certificate and its

metadata. The CA certificates can also be self-signed, which means no trusted third party is

mandatory. The following Figure 4 shows a simplified TLS 1.2 handshake process that

assumes a Diffie-Hellman-based key exchange and RSA public-key authentication [23][24].

Figure 4. Simplified process of a TLS 1.2 handshake.

TLS requires a reliable transport method to carry the protocol. TLS often uses TCP when

transferring data over a network and relies on it for possible packet retransmissions and

packet ordering. TLS 1.2 implementations usually support many cipher suites that define the

algorithms for different tasks that are authentication, encryption, and integrity verification

[25]. As shown in Figure 5, TLS 1.2 cipher suites are represented in a unified way. However,

TLS 1.3 cipher suite definitions are different to the previous versions. These cipher suite

components define only the symmetric ciphers, and the key exchange and authentication

ciphers are not included.

Figure 5. An example TLS 1.2 cipher suite with a breakdown of the components.

Ciphers used in each of the tasks can be read from the cipher suite description and have

different performance and security implications. In particular, the chosen encryption and

16

integrity ciphers can have a great impact on performance, in addition to the apparent security

aspects.

Another option for introducing confidentiality and integrity is to use SSH port forwarding,

or “tunneling”, as it is commonly called. By tunneling data with SSH, the current USB/IP

tools do not need any modifications, and all the user space and kernel space data transfers can

be secured with minimal effort. It should be noted that when using USB/IP with SSH

tunneling, it is necessary to deny access to the USB/IP service port to enforce the use of the

tunnel. Depending on implementation, SSH tunneling may support data compression that

could increase data throughput.

Takahiro Hirofuchi stated in his doctoral dissertation that Internet Protocol Security (IPsec)

would be suitable for USB/IP [6]. In his tests, the performance of IPsec would be

approximately 50 % compared to an unencrypted configuration, depending on the used

encryption algorithm. There are clues in the source code of USB/IP where IPsec support

could be added, but the current USB/IP tools on Linux and Windows do not implement it.

Ensuring availability is also an important aspect that needs special attention, especially

when operating in the public network environment. Tools have been created to ensure

availability, for example by banning clients from accessing a service after a predefined

number of unsuccessful attempts. In the case of existing USB/IP, a router-level firewall must

not be opened to allow access from outside of the local network since USB/IP does not

support any authentication. Even with authentication, a firewall is still useful for preventing

malicious actions such as denial of service attacks from outside of the local network.

Automatic discovery

Automatic discovery refers to the capability of a client to find servers automatically without

being aware of server IP addresses. This is vital so that the system is as easy to use as

possible. Automatic service discovery is commonly implemented with multicast Domain

Name System (mDNS) tools. In Windows, there is an Apple-developed software package that

implements this automatic service discovery called Bonjour, and in Linux, there is an

implementation named Avahi. There are libraries and command-line tools available on Linux

that enable finding and publishing services, and a Bonjour SDK for adding automatic

discovery to Windows applications.

It is also possible to create a custom lightweight software solution that uses User Datagram

Protocol (UDP) broadcast transfers. The transferred packets should include information such

as the port where clients can find the server. Servers would need to send these packets to a

special broadcast address, which causes a router to distribute them to all clients on the same

network. Clients can then use information encoded in the packets to automatically establish a

connection.

Automatic use

For ease of use, USB/IP tools should be automated so that they do not require any user

interaction. The first low-effort method would be to use scripts on server and client

computers. The scripts would allow associated software components to be controlled from a

single location. They can also be started automatically when a device is powered on.

17

The script for the server would need to do the following:

• Load the USB/IP server drivers

• Start the usbipd daemon process

• Publish server name and broadcast availability for clients using Avahi

• Bind USB devices automatically for use with USB/IP when they are plugged into the

system

The script for the client needs to do the following:

• Load the USB/IP client drivers

• Monitor available servers using Avahi

• Initialize SSH connections with servers

• Send device listing queries and attach all devices from identified servers

It is possible to create such scripts for Linux and Windows. They should be implemented

as services so that users do not need to interface with them. However, although the usage of

these scripts would be sufficient for casual users, they are not well suited for commercial

applications. The scripts require multiple separate applications to function that would also

need to be included on the target systems. It would be desirable to implement all the logic in

standalone executables. Especially when the client may need to run on Windows and Android

in the future.

18

3 INTRODUCTION TO USB

The previous chapter introduced the features, strengths, and limitations of both open-source

and proprietary remote USB sharing tools. This chapter presents the software aspect of USB

generally and in the context of the Linux kernel. This helps understand the internal operation

of existing USB/IP tools and, subsequently, the software work that was done during this

thesis.

3.1 Overview

USB is widely used in personal computers and a broad range of consumer appliances in

general. The first USB standard version 1.0 was introduced in 1996. Initially, there were only

two data rates available, which were low-speed and full-speed, with theoretical maximum

speeds of 1.5 Mbps and 12 Mbps, respectively [1]. The theoretical maximum speeds of

different USB standards are shown in Table 1. In practice, the actual useful payload transfer

speed will be lower for a variety of reasons, including USB protocol overhead and transfer

type characteristics.

To respond to the increasing performance and usability demands, the USB standard has

been constantly evolved and updated. The updates have been implemented in a backward-

compatible manner. Users have been able to keep using older devices when new versions of

the USB standards have been introduced. Hardware vendors can also take advantage of older

and slower USB versions to reduce the manufacturing costs of devices that do not require

state-of-the-art speeds.

Table 1. The theoretical maximum speeds of different USB standard versions

USB standard Maximum speed

1.0 / 1.1 1.5 Mbps Low-Speed and 12 Mbps Full-Speed

2.0 480 Mbps High-Speed

3.0 (aka. 3.1 Gen1 and 3.2 Gen1) 5 Gbps SuperSpeed

3.1 (aka. 3.1 Gen2 and 3.2 Gen2) 10 Gbps SuperSpeed+

3.2 20 Gbps (Maximum speed with Type-C only)

4 40 Gbps (Type-C only)

USB was initially intended to only connect a host computer to a peripheral. The data of

early USB devices was only transferred over a cable that was terminated with A-type and B-

type plugs. The A-type plug connects to a receptacle on the host computer, and likewise, the

B-type plug to a receptacle on the peripheral. The plugs were quite large and not suitable for

portable devices. They were later introduced in smaller mini and micro sizes, which have

found use in a broad range of devices. A Type-C connector was introduced in 2014, which is

rotationally symmetrical and allows both peripheral and host to use the same type of plug.

USB versions 1.0, 1.1, and 2.0 use four pins in the connectors, which are: one ground pin,

one power pin, and two data pins for half-duplex communication. USB 3.0 data is full-duplex

and requires four pins for data. The USB 3.0 and later connectors also include the legacy data

connectors for backward compatibility. In Figure 6, the USB A-type plugs are shown.

The USB data is transferred over a USB cable with the help of differential signaling. This

means the same data is transferred on two data lines with opposite polarities. Because of this,

noise can be subtracted out of the signal if the same error is present on both lines.

19

Figure 6. USB A-type 1.0/1.1/2.0 plug includes 4 pins (on the left), and USB 3.0 adds 5 more
connectors to the A plug (on the right).

3.2 Data

Data transfers to USB devices are initiated by the host computer. The host communicates with
a USB peripheral by accessing endpoints, which are buffers that can either accept or provide
data [26]. There can be up to 32 endpoints in a peripheral. At least two endpoints are present
in every USB device and are reserved for control. The logical connection between the system
software and an endpoint is referred to as a “pipe”. The previously mentioned control
endpoints are accessed with the default control pipe that allows both reading and writing. The
default control pipe is a message pipe accessed using USB-defined control transfers. All data
in a message pipe must have a USB-mandated format as defined in the USB specifications.
Other pipes target numbered endpoints and are used for the actual useful functions of a USB
device. These pipes are stream pipes and use interrupt, bulk, and isochronous transfer types.
The data structure in stream pipes is not defined in the USB specifications. Therefore, data in
stream pipes can contain higher-level protocols that are only carried over USB. [1]

When a device is attached to a host computer, the host first learns information about the
device and configures it for use in a process called enumeration [27]. During enumeration, the
host uses the default control pipe to issue command requests. With these requests, the host
assigns a unique address, reads information descriptors, and in general configures the device
for use. The device should be ready for its intended function after enumeration and have one
or more drivers assigned to it. The information in this section contains a high-level overview
of the common USB functions, which in general apply to all USB standards. The information
contained in this chapter summarizes the main software features presented in the USB 2.0
specification.

3.2.1 Requests

A host uses USB requests to control and learn information about a USB device. Requests are
directed to the default control pipe and follow a standard format that describes an action to be
performed by the device. There are many request types available. Some are standard requests
that must be implemented in every USB device. Additionally, there are class and vendor-
specific requests. The standard requests notably include GET_DESCRIPTOR and
SET_ADDRESS, which are among the first requests a host issues during enumeration. The
default control pipe can serve standard requests at any time, regardless of whether
enumeration has been completed.

20

3.2.2 Descriptors

Descriptors are read from a USB device with a GET_DESCRIPTOR request. They contain

essential information about a peripheral and can be standard-, class-, or vendor-specific.

Every USB device supports standard descriptors, and a host will always use these to gain

information during enumeration. Standard descriptors include device, configuration, interface,

and endpoint descriptors. These descriptors are stored in a tree hierarchy where the higher-

level descriptor informs the presence of lower-level descriptors. There may be additional

standard descriptors supported depending on the USB standard, but they are not in the scope

of this chapter.

The first descriptor a host reads from a device during enumeration is the device descriptor

that contains the most high-level overview of the device. The device descriptor includes, for

example, vendor and device-specific identification numbers, the number of supported

configurations, and how to read human-readable names contained in string descriptors. There

can only be one device descriptor in a USB device.

Configurations can change the function of the device fundamentally, and they are exposed

using configuration descriptors. There can be only one configuration active at a time. For

example, a USB dongle could show up either as storage or as a modem if these functions are

defined in separate configurations. The configuration descriptor informs about the maximum

power draw after enumeration, among other things. Although possible, it is uncommon for a

device to have more than one configuration [28]. The host finds the number of interface

descriptors within the configuration descriptor and parses them next.

Interface descriptors contain information about the interfaces and alternate settings.

Interfaces define the logical functions of a USB device. There can be many active interfaces

after enumeration. The host computer attempts to assign a driver for each interface, and in this

way, a single USB device can provide multiple separate functions. Devices that have multiple

independently controlled interfaces but only a single address are called composite devices.

Interfaces can support multiple alternate settings for controlling endpoints slightly differently

after configuration. As an example, a web camera might output video in different resolutions

depending on the alternate setting. Each interface has one or more endpoints, the number of

which is contained in the descriptors.

The endpoints are exposed using endpoint descriptors, which inform the data transfer

direction, maximum packet size, and transfer type of the transactions to endpoints. The host

uses this information later when communicating with the device using the endpoint.

The Figure 7 illustrates the descriptors as read from a HP optical mouse. This represents a

simple descriptor hierarchy. It contains standard descriptors and a class-specific Human

Interface Device (HID) descriptor, which informs of the presence of an HID report descriptor.

Control endpoints are assumed to always be present and do not have endpoint descriptors.

21

Figure 7. Illustration of USB descriptors in a HP Mouse obtained with lsusb -v command and

string descriptors have been parsed.

3.2.3 Transfer types

The USB data transfer types determine what transfer characteristics are favored, such as

bandwidth or latency [29], and they are used to support the different requirements of USB

devices. The transfer type of an endpoint is read from endpoint descriptors. USB data can be

transferred with control, interrupt, bulk, or isochronous transfer methods. The following is a

short introduction of each of the transfer types.

22

Control

Every USB device supports control transfers on the default pipe. They are delivered with a

“best-effort” strategy. Control transfers are used for querying device-specific information and

configuring the device. For instance, the requests and descriptors are handled using control

transfers. The control transfers use a message pipe, which means that the format of the data

has a USB defined format.

Bulk

Bulk transfers are allocated when the bus is not busy with other transfer types. Bulk transfers

ensure delivery without guaranteed bandwidth or latency. This transfer type is commonly

used in flash drives, which transfer large amounts of data.

Interrupt

Despite the name, interrupt transfers are host-initiated. They are suitable for transferring data

periodically. For example, keyboards, mice, and other human interface devices commonly use

interrupt transfers. These devices may only have new data available at regular intervals.

Isochronous

Isochronous transfers are scheduled at fixed intervals, allowing a constant data rate. Transfers

are not retried in the case of delivery failure. Isochronous transfers are often used with real-

time audio and video devices.

3.3 Hardware

This section gives an overview of the components for host USB support. This view does not

include USB On-The-Go (USB OTG) support, where a device can act as a host or a

peripheral.

3.3.1 Host controller

The host controller is conventionally a physical hardware module that enables communication

with USB peripherals. Physical USB wires connect to the host controller and data is driven to

the bus with the help of a root hub contained in it. Host controllers use physical layer circuitry

to implement the low-level physical aspects of USB required for communicating with

peripherals. The host controller may be a separate chip or included as an intellectual property

block implemented in custom silicon. The host controller itself can connect to the computer in

various ways. Commonly, in desktop computers, the host controller connects via the

Peripheral Component Interconnect (PCI) bus, but many other options are available.

There are four commonly used interface standards for physical host controllers: Universal

Host Controller Interface (UHCI) and Open Host Controller Interface (OHCI) for USB 1.0

23

and 1.1; Enhanced Host Controller Interface (EHCI) for USB 2.0; and eXtensible Host

Controller Interface (xHCI), which is designed to replace the previous host controller

standards and supports USB speeds including USB 3.0. These interfaces define the methods

for communicating with the host controller. Each interface requires its own set of host

controller drivers.

3.3.2 Hub

USB hubs have the special purpose of extending the number of USB ports on a computer.

Hubs appear as regular USB devices that implement hub class functionality. They can be

stand-alone devices but are sometimes integrated into peripherals. Host controllers contain a

root hub integrated into them that is the first device on a USB bus [28]. The root hub should

appear and function as any other hub.

USB hubs are polled continuously to detect attached or removed devices. The hubs have an

interrupt endpoint which, when polled, reports the status changes of each of the ports. After

the host learns about a change, it can then take appropriate action. Some of the responsibilities

of hubs include suspending devices and disabling ports as requested by the host. High-speed

capable hubs contain a transaction translator that converts high-speed transactions to lower-

speed transactions for devices that require it.

3.4 Software in the Linux kernel

This chapter has so far offered a general introduction to USB hardware and software. The

USB 2.0 specification suggests how software for USB support should be implemented. The

specification breaks the USB support into layers, which all have distinct tasks. In a simple

view, these layers consist of client software for using the functions defined by USB device

interfaces; the USB driver, which abstracts host controller implementations; and host

controller drivers, which communicate with host controller hardware. USB data is moved

between the client and the host controller drivers in I/O Request Packets (IRPs). This layered

structure is also present in the Linux USB stack.

This section attempts to illustrate how the USB functions are implemented in the Linux

kernel. Depending on the hardware, computers may support USB OTG, which allows both

host mode and peripheral mode. The peripheral mode is used by many mobile devices to

present themselves as a USB storage device or a serial communication device. This dual role

mode of operation is not explored in this chapter.

3.4.1 USB Request Block (URB)

The USB Request Block (URB) is a key data structure in the Linux USB subsystem. An URB

is used when transferring data to or from a USB device. It carries USB transfers between the

layers of the Linux USB stack. The URB contains all the data necessary to complete a USB

transfer and a callback function that is called after the transaction has been completed. Any

USB transfer can be expressed with a URB. The URB also includes a buffer for holding the

USB data and pipe information.

The URB contains many fields [28], but due to this thesis focusing on USB/IP, Table 2

lists only the URB structure public member variables that are transferred with the USB/IP

24

protocol. A full list of data fields in URB can be found in the kernel source tree header file

/include/linux/usb.h.

Table 2. The USB/IP relevant fields in a Linux URB

Variable name Description

status Status for a completed URB. Valid for transfer types other than

isochronous.

transfer_flags Transfer flags modify the handling of a URB. For example, should

reading a shorter amount of data than requested be treated as an

error.

transfer_buffer The buffer that holds the data that is written to a USB device or

filled with data from a USB device.

transfer_buffer_length The size in bytes of the transfer_buffer. It is the amount of data

that is requested to be read or written.

actual_length The number of data bytes that were actually written or read.

setup_packet Eight bytes that are always used in control transfers

(bmRequestType, bRequest, wValue, wIndex, and wLength).

start_frame Initial frame number for isochronous transfers.

number_of_packets The number of isochronous transfer packets contained in the

transfer buffer. The description of which is contained in

iso_frame_desc.

interval Polling interval of interrupt and isochronous transfers.

error_count The number of failed isochronous transfers.

iso_frame_desc Information about the isochronous buffers in transfer_buffer. This

allows a single URB to define multiple isochronous transfers.

3.4.2 Linux USB stack

The USB support in the Linux kernel is implemented in a layered manner. In the simplest

view, the USB stack consists of device drivers, the USB core, and host controller drivers.

Device drivers, in general, implement the functions of USB devices. The USB core abstracts

host controller differences from USB device drivers. Host controller drivers access host

controllers in a hardware-defined manner. Figure 8 presents a simplified overview of the

Linux USB stack.

25

Figure 8. A simplified high-level illustration of Linux USB support.

Device drivers

USB device drivers bind to interfaces [28], which allows one USB device to provide multiple

functions. On top of the USB device driver layer, there are other Linux subsystems [28] that

decouple the USB transport method from the actual useful functions. Therefore, a device that

implements a specific software interface could be attached to the system using many different

hardware interfaces. The carried protocols might include, for example, Small Computer

System Interface (SCSI) commands for flash drives and the HID protocol for input. In

essence, the USB itself is a data channel that requires no structure for the data it delivers [28].

USB device drivers can be class-specific or vendor-specific. A vendor-specific driver is

required when a device implements a custom software interface. However, if a device

conforms to a predefined class, a hardware vendor does not need to provide custom drivers

since most classes are supported in the Linux kernel [30].

There is no single place for USB device drivers in the Linux kernel. For example, USB

mass storage drivers can be found in drivers/usb/storage. These USB mass storage drivers

submit URBs and provide a layer for communicating with upper-level SCSI drivers using the

SCSI protocol [31]. The logic of USB SCSI mass storage is thus handled by the Linux SCSI

subsystem. Device drivers use functions defined in the USB core to transfer data using URBs.

This interface is exposed in include/linux/usb.h. Device drivers can use usb_control_msg(),

usb_submit_urb(), usb_get_descriptor(), usb_set_interface() and others.

26

The USB core and core functions

The USB core sits between device drivers and host controller drivers [28] and can be

essentially thought of as an abstraction layer for device drivers to access host controllers [31].

The USB core can support multiple different USB device drivers and host controllers. Other

core capabilities, such as a USB filesystem (usbfs) and a hub device driver, are closely

integrated in the core to provide USB support. The USB core, along with other core functions,

can be found in the folder drivers/usb/core in the Linux source distribution.

The USB core provides interfaces for device drivers to access a USB device without

knowledge of the used host controller implementation. There are two Application

Programming Interfaces (APIs), one for general-purpose drivers and the other for essential

drivers that are part of the core, such as a hub driver and HCDs [32]. As an example, the USB

core provides as a part of the device driver interface usb_submit_urb() and usb_kill_urb()

functions that queue and cancel USB I/O requests, respectively. When a USB device is first

inserted into the system, the hub driver detects this. After initial detection by the hub driver,

the device is enumerated, which should bring the device to a functional state.

The usbfs provides support for developing user-space USB drivers [31]. This allows

devices to be detached from enumeration-time assigned drivers and provide full control of

USB data transfers into user space. There is a libUSB library available that wraps this

interface into an easier-to-use form [33].

Host controller drivers

A host controller driver accesses the underlying host controller hardware through a hardware-

specific interface. These drivers are managed by the USB core. The core USB functions in

Linux include a host controller driver framework, which delegates to a hardware-specific

driver only when necessary [34]. Most of the host controller driver implementations are

located at drivers/usb/host in the kernel source tree. That folder includes drivers for

previously introduced OHCI, UHCI, EHCI, and xHCI host controller implementations. The

USB/IP VHCI host controller drivers are in the Linux kernel source tree in folder

drivers/usb/usbip.

27

4 USB/IP COMPONENTS AND PROTOCOL

USB request over IP (USB/IP) is an operating system independent way of extending USB

over an IP network [6]. It was introduced by Takahiro Hirofuchi et al. and operates by using a

virtual host controller on the client and a universal device driver on the server capable of

communicating with any USB device. USB/IP allows USB devices to be used remotely just

as if they were connected locally. This chapter summarizes and presents information about the

existing implementation of USB/IP on Linux systems and presents the existing USB/IP tool

protocol. Initially, USB/IP was only available on Linux, but has since then been extended to

work on Windows as well.

In the previous chapter, it was found that USB software support in Linux consists of three

fundamental layers: device drivers, USB core, and host controller drivers. The host controller

driver conventionally controls a physical host controller device that communicates with USB

devices. Requests for data transfers usually originate from enumeration time assigned device

drivers, which operate a device using the protocol implemented by the device. USB/IP on a

client replaces the host controller layer with a virtual implementation that wraps URBs it

receives with a USB/IP specific protocol and transfers them to the server using a TCP/IP

connection. This VHCI driver is operated by the USB core using the same host controller

interfaces as physical controllers. At the server end, a STUB device driver receives the URBs.

The STUB driver is a universal device driver that allows any type of USB data transfer to be

performed as instructed by client-side device drivers. The STUB completes the received

URBs through a regular USB stack on the server. This method joins the two USB stacks on

the client and server computers, providing the client access to server devices as if they were

locally connected. Figure 9 illustrates these layers [6].

Figure 9. An illustration of the hierarchy of USB and USB/IP module interactions on two

separate computers (client on the left and server on the right) connected by a TCP/IP

connection.

28

The USB/IP tools include user space applications for controlling the USB/IP system,

which is otherwise mostly implemented in the kernel. These applications were explored in the

second chapter. The applications control the USB/IP kernel drivers via the sysfs interface. The

sysfs is a pseudo filesystem that is usually mounted in the /sys folder. The logic of

determining which devices are to be used is performed in user space, and USB data is

transferred in kernel space. User space applications and kernel space drivers talk with each

other using distinct protocols. Both protocols [35] are explored in detail in this chapter.

4.1 User space applications

The USB/IP user space tools consist of two executables, which are usbip for both server and

client, and usbipd, which is used on the server only. The core function of the user space

applications is to allow a host to find a suitable device for use and then facilitate the start of

USB data transfers. To achieve this, the USB/IP system supports device listing and attaching

commands in the user space USB/IP tool protocol.

Before USB devices can be used by clients, they need to first be bound on the server to the

STUB driver, after which they will be attachable by clients and present in device listings.

Then, after the user space tools have negotiated a USB device to be exported, they pass open

network sockets to the kernel drivers where USB data transfer takes place. This means no

USB data is transferred between usbip and usbipd executables, and the USB requests are

transferred between the kernel drivers.

Linux USB/IP tools also include virtual USB device controller functionality. It is

implemented in a usbip-vudc driver that is loaded on the server. This allows the host to export

gadget devices (emulated peripherals) to remote clients. This mode of function is not explored

in this chapter. User space USB/IP-related source code can be found in the kernel source tree

folder location tools/usb/usbip.

4.1.2 Protocol and capabilities

The usbip and usbipd processes communicate with the user space USB/IP tool protocol. The

protocol contains, at the time of writing, two Protocol Data Units (PDUs), which are referred

to as commands in this chapter. One command is for remote device listing and the other is for

attaching. Both commands originate exclusively from clients. The rest of the application

functions need no network communication.

At the protocol level, all USB/IP user-space commands include an 8-byte long header that

is present in every transaction. The header contains a version number for detecting protocol

support, a command type, and a status field that is used for checking that the command was

executed successfully on the server. Packets sent from the client to the server are named with

“REQ” prefixes, indicating they request an action to be performed by the server. Server

replies are named with “REP” prefixes, indicating they contain a reply to a request. The

following sections present the user space protocol and application-supported features in detail.

29

Device listing

A client initiates a remote device listing by issuing an OP_REQ_DEVLIST request. This

command consists only of a header that instructs the server to generate and return a device

listing. Space for status value is always included in the protocol header but is set to zero in

request headers. Status is only used to return status information from the server to the client.

Figure 10 shows the OP_REQ_DEVLIST command with fields, the size of which represents

the number of bytes each variable consumes.

Figure 10. The OP_REQ_DEVLIST command, which is sent by clients requesting the list of

available USB devices from the associated server.

A server replies to the previous device listing command by sending an

OP_REP_DEVLIST reply. The reply is variable-sized and accommodates information about

devices that are connected and bound to the server. The reply includes the protocol header and

the number of devices, followed by device representations. A device is represented using a

device information section followed by interface information sections. Device information

contains general information about a device. This includes how it is connected to the server

and contains basic information values as read from USB descriptors. The contained values

include, for example, idVendor and idProduct numbers, which in theory define a specific

device from a given vendor. This information is used to display to the user what devices are

present and what capabilities a specific device has. The contents and structure of

OP_REP_DEVLIST are presented in Figure 11.

30

Figure 11. The OP_REP_DEVLIST command, which is the server’s response to the

OP_REQ_DEVLIST.

The device listing data returned during OP_REP_DEVLIST is formatted by the usbip

executable so that it is suitable to be displayed for a user. Notably, although USB devices

contain string descriptors for human-readable information, they are not used by the existing

USB/IP system. Instead, the usbip tool displays the USB device names using a lookup file

that matches idVendor and idProduct values with a list of known devices.

The usbip tool supports local device listings that are useful on servers to see information

about locally present devices. These local listings are not transferred over the network and are

useful on servers for finding devices to bind.

Attaching

A client starts the attaching process by selecting a device for use from the device listing

information. From this data, the “bus id” value is selected and sent to the server, identifying

the target device. The bus id is the unique combination of bus and port numbers that can be

used to uniquely refer to a USB port on a server.

The request that allows a client to attach a USB device is OP_REQ_IMPORT, which

includes the desired bus id. The server replies to the request with an OP_REP_IMPORT

reply. The reply contains the success of the request and, if successful, also the device

information that was present in the requested port at attach time. The following Figure 12

shows an attaching request that is used to indicate the desired bus id for the server. Figure 13

is the reply to the previous request.

31

Figure 12. A device is attached to a client with the OP_REQ_IMPORT command.

The reply to attaching request contains a header that tells a client whether the command

was successful at the server end. If the execution was successful, the server has passed the

open network connection to the STUB driver. After learning about this, the client will also

pass its end of the socket to the USB/IP virtual host controller, and the protocol that is

exchanged in the connection changes to the kernel space USB/IP protocol.

The control is passed to kernel drivers on the client by writing a sequence of the desired

port number, open socket file descriptor, device id, and device speed to the vhci-hcd kernel

driver provided sysfs attach file node. Likewise, the server uses the STUB driver provided

usbip_sockfd sysfs file node to transfer the socket file descriptor. The passing event

effectively equals plugging a new device into the client system.

Figure 13. The OP_REP_IMPORT command, which is the server response to the

OP_REQ_IMPORT request.

Detaching

Detaching a previously attached device requires no protocol communication over the network.

When detaching a device, the usbip application on a client writes the virtual host controller

port number where the target device is connected to the VHCI driver detach sysfs file node.

This will then break the connection and remove the USB device from the client.

32

Binding

Servers bind and unbind devices with the STUB driver to enable and disable devices to be

used with USB/IP tools. When a device is bound to the USB/IP driver, it is detached from the

driver that was assigned to it during enumeration and, while bound, cannot be used by the

server. When binding, the usbip application requests a bus id, which it then uses to unbind old

drivers and assign the STUB driver. Binding requires no communication over the network.

4.2 Linux drivers

The USB/IP kernel drivers provide the means for USB remote use. On Linux, they expose

their services through a filesystem interface for the user space USB/IP applications. This

section presents the internal details, protocol, and functions of these drivers. While this

chapter focuses on the Linux drivers, the protocol is the same on Windows as well.

The kernel module that is used by clients is the vhci-hcd, shortened to VHCI driver in this

chapter, and the module used by servers is the usbip-host STUB device driver. The VHCI

driver implements the virtual host controller and root hub functions. Servers utilize a STUB

device driver that can communicate with any USB device. These drivers require a common

usbip-core library, the use of which is transparent for users. The USB/IP kernel driver source

code is in the Linux source code directory under drivers/usb/usbip.

All network TCP transfers between the kernel modules in USB/IP are done with Nagle’s

algorithm disabled. Nagle’s algorithm is designed to buffer data and send it in larger chunks,

which reduces network traffic since protocol headers do not need to be transferred as often

[36]. However, this is critical to being disabled with USB/IP since it renders most devices

unusable due to the increased delay and buffering.

Data in the USB cable has tight timing requirements, but it does not prohibit the use of

USB devices with USB/IP since it does not deal with the USB physical layer. However,

USB/IP and the network add delay to the USB transfers, and it can be a problem depending

on the forwarded USB transfer type. For instance, some devices, such as high-definition USB

web cameras, may be unable to be used at their maximum resolution. The effect of delay in

the connection is investigated in the measurement chapter.

4.2.1 VHCI driver

As explored in the USB chapter, USB transfers start from device drivers and travel through

the USB core to a host controller and then onto USB peripherals. Host controllers implement

a root hub which is used as the starting point for data transfers. With USB/IP, a software-

defined virtual host controller is used instead of a physical host controller. This virtual host

controller driver implements the root hub in software. Rather than generating USB cable

traffic, the virtual root hub forwards URBs it receives to the USB/IP server.

The USB/IP VHCI driver implements the Linux USB host controller interface, which

makes the virtual host controller appear like any other physical host controller as far as Linux

is concerned. New devices are introduced to the virtual root hub using user space tools by

writing to the driver sysfs attach node. Like with conventional host controllers and their root

hubs, the Linux USB subsystem on the client computer polls the ports of the virtual root hub

to learn information about new devices. The virtual host controller is transparent in

33

enumeration and data transfer and only routes all data to the server. The server STUB driver
then completes the data requests through a regular USB stack.

Linux distributions such as Ubuntu, in general, include one VHCI driver instance that is
capable of handling eight USB1.x or USB 2.0 devices and eight USB 3.0 devices. There is a
compile-time configuration option to increase the allowed number of USB devices
(USBIP_VHCI_HC_PORTS) to 30 in total (15 USB 2.0 capable + 15 USB 3 capable). To
further increase the limit, there is a USBIP_VHCI_NR_HCS compile time option that allows
up to 128 virtual host controllers.

The VHCI host controller kernel module implements services that user space host
applications use. The VHCI driver’s main sysfs functions are to allow checking the status of
the root hub, attaching new devices, and detaching attached devices. These file nodes can be
found in the folder /sys/devices/platform/vhci-hcd.n folder where the “n” indicates the index
of the controller. While there can be more than one VHCI controller, common Linux
distributions are compiled with only one enabled. Figure 14 presents the contents of the VHCI
driver platform device node. The files attach, detach, nports, status, and usbip_debug are
generated by the driver, and the rest are automatically generated by the Linux system.

Figure 14. Linux virtual host controller driver sysfs directory listing.

The attach node is a write-only file that is used to establish a virtual USB connection. It
accepts a port number, a socket file descriptor with a connection to the server, a device id, and
speed written into it. The driver validates the arguments, reserves a port from the root hub,
and eventually starts USB device data transfers.

The detach node is also a write-only node, and it accepts a virtual root hub port number to
be written into it. This will cause data transfers to be stopped, the socket to be closed, and the
root hub port to become vacant. If the server computer devices are physically removed, they
will also be automatically detached from the client.

The nports is a read-only node that returns the number of total root hub ports. The
usbip_debug node allows reading or writing of a mask value that can be used to enable driver
debugging features.

The status node is important because it is used to convey the internal status of the virtual
host controller to user space applications. The status node is read-only and contains entries for
each port of the VHCI root hub. It displays information about attached devices and the state
of ports. Figure 15 presents an example of the contents of the status node.

34

Figure 15. Contents of the Linux virtual host controller status node showing one attached
device to a high-speed root hub port.

The values returned by the status node are as follows:

• hub: The hub that is associated with the port (hs – USB 2.0 / ss – USB 3.0).
• port: The root hub’s port number index.
• sta: Status of the port.

4 – VDEV_ST_NULL: The port has no connection and is ready to use.
5 – VDEV_ST_NOTASSIGNED: A connection is being established.
6 – VDEV_ST_USED: The port is currently in use.
7 – VDEV_ST_ERROR: The port is in an error state.

• spd: Speed of the connected device.
0 – Unknown
1 – Low-speed (1.5 Mbps)
2 – Full-speed (12 Mbps)
3 – High-speed (480 Mbps)
4 – Wireless USB (WUSB)
6 – SuperSpeed (5 Gbps)

• dev: Device identification number. The USB/IP user space tools derive it from the bus
and address values which are assigned by the server.

• sockfd: The socket file descriptor number of an established connection.
• local_busid: These are the bus and port numbers on the client that were assigned to the

virtual device.

4.2.2 STUB driver

The STUB driver implements the server part of USB/IP. It is a USB device driver running on
a server and assumes full control of USB devices and their interfaces. It replaces previous
device drivers that were automatically assigned to a USB device during enumeration. The

35

function of the STUB driver is to receive URBs as given by client-side device drivers and

complete them through a conventional USB stack. The STUB is implemented in the usbip-

host module, and the source files can be found in the Linux kernel source tree source

directory drivers/usb/usbip. This section introduces the STUB driver and its functions.

STUB device driver sysfs entries become available for use after binding the driver with a

USB device. The usbipd server daemon uses the STUB driver sysfs interface in its operation

and passes the client-facing socket to the driver usbip_sockfd node to start USB data transfer.

After the socket descriptor is given to the driver, the client and server can start exchanging the

USB/IP tool protocol data. STUB also provides a usbip_debug node that can enable

debugging features and a usbip_status node that reflects the internal status of the USB/IP

state. The status can have one of the following values: 1 – SDEV_ST_AVAILABLE when

the device is bound but not used by clients; 2 – SDEV_ST_USED when it is in use; or 3 –

SDEV_ST_ERROR when a fatal error has occurred.

4.2.3 Protocol

The kernel space USB/IP protocol is used when exchanging USB data between VHCI and

STUB drivers. In brief, the protocol consists of two client-initiated commands:

USBIP_CMD_SUBMIT and USBIP_CMD_UNLINK. Both originate from the VHCI driver

and allow submitting URBs and canceling previously sent uncompleted URBs. The STUB

driver on the server replies to these commands with USBIP_RET_SUBMIT and

USBIP_RET_UNLINK commands.

All commands are sent over the network in network byte order. This makes the USB/IP

system processor architecture agnostic. The first 20 bytes of every protocol packet follow a

standard structure defining a base header. The header is always followed by at least 28 bytes,

which define a full 48-byte USB/IP command. There may also be a variable amount of data

after a command that is used when reading or writing USB device data.

The base header consists of five 32-bit fields, which are:

• Command type: Identifies the command following the base header.

• Sequence number: A rolling number that identifies each sent command. It is used

when referring to packets at unlink time.

• Device id: A value that identifies the device that is referenced by the command.

• Transfer direction: Used to identify whether data is transferred to or from a peripheral.

• Target endpoint: Identifies the endpoint buffer to which the data transfer is targeted. It

contains only the endpoint number, which is the four lowest bits of bEndpointAddress

without direction information.

Not all header fields are relevant for every protocol command. Only the command type,

sequence number, and device id are mandatory fields for all headers. The following sections

introduce each of the protocol commands.

36

URB submission

The URBs originate from the client device drivers. The command that allows an URB to be

sent from a client to the server is USBIP_CMD_SUBMIT, and the server responds after

handling it with USBIP_RET_SUBMIT. This URB submission command is presented in this

section.

The command USBIP_CMD_SUBMIT complements the previously shown base header

with additional fields which are: transfer flags, transfer buffer length, start frame, number of

packets, interval, and 8 bytes of setup data. These values are read from the original URB on

the client-side. Figure 16 shows the contents of the full USB_CMD_SUBMIT command.

Figure 16. The USBIP_CMD_SUBMIT command, which transfers URBs from the client

VHCI driver to the associated server STUB driver.

The USB/IP tools support all four USB transfer types: CONTROL, INTERRUPT, BULK,

and ISOCHRONOUS. The URBs that carry these USB transactions are used to read or write

USB data as indicated by the transfer direction and endpoint they are sent to. The direction in

the base header describes from the client’s point of view whether data is sent from peripheral

(IN) or to peripheral (OUT). The transfer type changes the internal handling of the command.

The data flow of CONTROL, INTERRUPT, and BULK transfers is handled similarly, but the

transfer direction causes a slight variation in the command handling. The network transfers

and data flow of a USBIP_CMD_SUBMIT command with CONTROL, INTERRUPT, and

BULK transfers are shown in Figure 17 from the server’s point of view.

37

Figure 17. The USB/IP server handling of CONTROL, INTERRUPT, or BULK transfers.

Control transfers are sent to the default pipe, which handles both IN and OUT functions.

However, the direction is not present in the endpoint value, and instead, the direction field is

used to indicate this. Control transfers always use 8 bytes to represent a request, and these are

included in the command header.

The client sets the direction IN to read data from a USB device. Otherwise, the client sets

direction to OUT and transfer buffer size accordingly to indicate it wants to send additional

data to be written to the device during USBIP_CMD_SUBMIT handling.

USB/IP carries information about how the URB should be handled when it is submitted.

This information is included in the transfer flags, but not all existing flags apply to USB/IP.

Isochronous transfers have additional data transfers to carry isochronous (ISO) descriptors.

These descriptors may contain information about many transfers and how data is structured in

the transfer buffer. The following Figure 18 shows the structure of a USBIP_CMD_SUBMIT

command in the case of isochronous transfer.

38

Figure 18. USB/IP server ISOCHRONOUS transfer handling.

A USBIP_RET_SUBMIT command is issued after a URB has been handled on a server.

This command includes status, actual_length, start_frame, number_of_packets, and error

count fields which reflect the values from completed URBs. If data was requested from a

USB device, it is sent during the command handling. The status value employs standard

Linux error codes and can contain information such as indicating device detachment or error

conditions in endpoints. Figure 19 shows the contents of the USB_RET_SUBMIT command.

Figure 19. The USBIP_RET_SUBMIT command is a server response to the previously sent

URB inside a USBIP_CMD_SUBMIT command.

39

As an exception, USBIP_RET_SUBMIT will not be sent in the case that a related

USBIP_CMD_SUBMIT command was unlinked before completion. The unlinking causes

related USB transfers to be canceled, and the command to support this canceling is presented

next.

URB canceling

The USB system allows the cancellation of previously sent but not yet completed URBs. This

feature is part of the required functions of a USB system as defined in the USB 2.0

specification. To support this feature, the VHCI driver sends a USBIP_CMD_UNLINK

command that can be triggered by a call to usb_kill_urb() on a client device driver.

When the server receives this USBIP_CMD_UNLINK command, it attempts to find a

previously sent USB/IP package with the given sequence id. If such a package is found,

associated USB requests are canceled on the server and a USBIP_RET_UNLINK package is

sent back to the client. When an existing USB/IP submit package was found and canceled, the

related USBIP_RET_SUBMIT package is not sent to the client. Figure 20 shows the

USBIP_CMD_UNLINK packet and Figure 21 shows the USBIP_RET_UNLINK packet.

Figure 20. The USBIP_CMD_UNLINK command attempts to cancel a previously sent

USBIP_CMD_SUBMIT and its associated URB.

40

Figure 21. The USBIP_RET_UNLINK command is the status of a previously sent unlink.

The status of an unlink also uses Linux error codes. As opposed to a conventional value of

zero for a successful action, the unlink is successful when the status is -ECONNRESET.

41

5 IMPLEMENTATION

The Virtual I/O Box (VIOBox) project was used to evaluate whether a commercial USB

sharing system could be built with open-source software and commercial off-the-shelf

hardware. During this project, a prototype VIOBox device was built for evaluation and

demonstration purposes. The hardware and mechanical aspects of this VIOBox prototype are

first presented in this chapter for general background. The creation of a new RemoteHub USB

device remote sharing tool for use in VIOBox was the goal of this project and is presented

after the general device overview.

5.1 VIOBox device

The VIOBox device is comprised of a commercial-off-the-shelf Single-Board Computer

(SBC) integrated into an Aava tablet charging station. This section presents the hardware

choices in VIOBox.

5.1.1 Single-board computer

Two alternative SBCs were evaluated to be used with VIOBox. These were a Raspberry Pi 3

Model B and an Orange Pi Zero. These are referred to as the Raspberry Pi and the Orange Pi

in the following text. The main capabilities of each are listed below in Table 3. Both SBCs

were in the desired price range and were expected to suit the needs of VIOBox. Overall,

comparing the features of the evaluated SBCs, the Raspberry Pi was more capable. However,

it also included features such as HDMI and camera connectors, which were not needed in the

VIOBox. [37][38]

Table 3. High-level comparison of evaluated SBC devices

 Orange Pi Zero Raspberry Pi 3 Model B

Price at the start of the

project

~15€ ~30€

Processor Allwinner H2+ (ARM) Broadcom BCM2835 (ARM)

Memory 512 MB 1 GB

Storage medium microSD card microSD card

USB port count 3 (With extension shield) 4

Integrated ethernet speed 100 Mbps 100 Mbps

There are three USB ports in an Aava Mobile docking station. Therefore, VIOBox was

also required to have at least three integrated USB ports. The Raspberry Pi had four USB

ports integrated, but the Orange Pi contained only one. One solution to add more ports would

have been to use a standard hub connected to the SBC. The Orange Pi also allowed extending

the ports with an extension card module. The Orange Pi extension module used USB traces

that were routed to pins on the SBC board. However, this card also included redundant

features for VIOBox, and the USB ports were in the opposite direction of the existing port.

For this reason, a custom USB port extension solution was built for the Orange Pi.

Both SBCs contain an Advanced RISC Machines (ARM)-based Central Processing Unit

(CPU). The Orange Pi uses the Allwinner H2+, which contains four Cortex-A7 cores. The

Raspberry Pi includes the Broadcom BCM2837, which has four Cortex-A53 cores. The 32-bit

42

Cortex-A7 was introduced in 2011 and supports the ARMv7 instruction set. The Cortex-A53

supports 64-bit ARMv8 instructions and is the successor to the A7. Considering raw

performance, the processor in the Raspberry Pi is more performant.

A hardware-based cryptographic accelerator could help boost TLS performance. However,

neither of the two computers had true ARM cryptographic extensions. However, the Orange

Pi includes a crypto engine that, among other ciphers, supports the AES algorithm. This

extension is implemented as a proprietary intellectual property block that requires software

support and may only be of limited help [39].

Both SBCs support Linux-based operating systems. More specifically, in this project, 32-

bit Raspbian was used on the Raspberry Pi and 32-bit Armbian on the Orange Pi. While the

processor in the Raspberry Pi supports 64-bit instructions, the support in Raspbian has been

implemented only recently. The Raspberry Pi foundation has used 32-bit images so that they

can be used on all Raspberry Pi devices, avoiding customer confusion. Performance-wise,

there is some improvement using the 64-bit instruction set, but this is currently mostly visible

during benchmarking and not in real-world use [40].

Both computers were tested as the computer in VIOBox. Orange Pi was decided to be the

better option. It was more cost-efficient and fit into the existing data module dimensions.

5.1.2 Mechanical construction

The VIOBox was designed to appear similar in comparison to other Aava Mobile docks. For

reference, Aava has two types of tablet docks: charging-only docks and combined data and

charging docks. The charging-only dock contains charging pins that connect to Aava tablets

and has the same external dimensions as the data dock. The combined data dock includes an

additional module that adds a traditional three-port USB hub and an HDMI port.

The first prototype VIOBox used the Raspberry Pi, and a case for it was 3D printed. This

case was connected externally to the dock because of the dimensions of the Raspberry Pi.

Figure 22 depicts this device. The second prototype was based on the Orange Pi and was

much more compact. The second prototype module filled the extension module opening at the

back of the dock, visible in Figure 22.

Figure 22. The VIOBox dock with the Raspberry Pi 3 Model B connected as an external

module.

43

5.2 Software requirements and design choices

When exploring existing open-source software tools, it was found that they would not be

suitable for VIOBox as is. Existing USB/IP tools were limited in the necessary data security

and automatic use aspects. Therefore, new software was decided to be built, and this section

describes the initial software planning. First, VIOBox software was assigned core

requirements that reflect the functions that needed to be supported. These were used as a

guideline for development. Requirements were split into two categories, functional and non-

functional requirements. Functional requirements define what the system should do, and non-

functional requirements define how the system should operate [41]. The requirements were

given priorities in the spirit of RFC 2119 [42], which reflects their importance in VIOBox.

The following is a list of functional requirements:

• The system MUST support hot plugging, which means USB devices are automatically

exported from the server to the client. The client starts automatically using USB

devices when they are attached to the server.

• The client MUST be able to find servers automatically on the local network. When a

client detects that a suitable server is present in the network, it can automatically start

communicating with it.

• When there are multiple servers in the same network, the client MUST have the

capability to distinguish them and have the capability to determine which servers to

use.

• The server MUST hide certain USB devices so that they are not visible to clients.

These include, for example, internal USB network adapters or other private devices.

• The client MAY be able to use the server manually. A connection can also be

established with a server in cases where automatic discovery cannot be used, such as

over the public internet.

The following is a list of non-functional requirements:

• Transferred data between server and client MUST be encrypted. This includes both the

protocol commands and USB data.

• The server application MUST support the Linux environment.

• Applications MUST NOT require manual configuration after initial setup. After the

applications have started, they work fully autonomously.

• The applications MUST support initialization with configuration files.

• The software MUST support at least three USB devices simultaneously.

44

• The USB devices MUST be attached in a reasonable time (<10s) after plugging them

into the server computer.

• The applications SHOULD provide a command-line-based user interface for

debugging. The server and client print information about their internal operation.

The previously introduced requirements could be addressed in VIOBox software by

creating scripts for existing USB/IP tools. The scripts would need to control all the necessary

separate applications for implementing the requirements. However, this was determined not to

be optimal due to maintainability and the general feel of the system. Another option would

have been to modify the existing USB/IP tools and implement the required functions using

software libraries. However, VIOBox would benefit from a system that is built to prioritize

the new requirements. Building a new set of tools would allow good flexibility with the

software execution flow and future improvements. Therefore, the server and client were

rebuilt with the VIOBox use case in mind in this project.

The new set of tools, named RemoteHub, implement the previously introduced

requirements and are used in the prototype VIOBox device and Aava Linux tablets. The client

application uses the existing USB/IP virtual host controller kernel driver like the usbip tool

does, but the usbipd and usbip-host functions are both implemented in user space. Although

user space STUB server implementation was cautioned by Hirofuchi to introduce memory

copy overhead and is the main reason current USB/IP drivers exist in kernel space [6], it

would allow for better maintainability and portability for future expansion. If needed in the

future, RemoteHub can be extended with capabilities such as a graphical user interface or

fine-grained user access controls.

From a technical standpoint, RemoteHub implements data encryption and verification

actions with TLS and uses a custom UDP broadcast solution for server discovery. The

existing USB/IP protocol is utilized to make use of the USB/IP VHCI driver and ease possible

future development with Windows USB/IP tools. The following sections describe the

implementation choices in more detail.

5.2.1 Security

RemoteHub uses the TLS protocol with certificates to provide data security between the client

and server applications. The fundamental background of TLS was presented in the second

chapter. The library in use is MbedTLS by TrustedFirmware [43], which is a well-

documented library suitable for C applications. MbedTLS is available on both Linux and

Windows. This library was also tested with a proof-of-concept Windows USBIP-win

implementation. MbedTLS claims to have been purpose-built for resource-constrained

devices, which should be helpful considering the hardware that VIOBox uses as a prototype

and in the future. Testing was conducted to find a cipher suite with good performance, and the

results are presented in the sixth chapter. MbedTLS supported up to TLS 1.2 at the time of

implementation, and a subset of the TLS version 1.2 compatible cipher suites were used in the

evaluation. RemoteHub was built to optionally support unencrypted TCP transfers without

data security features to allow performance comparisons. This was done by adding an

abstraction layer that allows mostly unified data transfer without knowledge of the underlying

transport method. Due to this implementation, assessing different TLS libraries in the future is

expected to be straight-forward.

45

5.2.2 Automatic discovery and unattended use

The RemoteHub server advertises its existence by periodically sending UDP broadcast

packets. These packets are not exchanged reliably but are configured to be sent once every

five seconds. The lack of reliability is acceptable since a client is still expected to receive

most of these packets. The UDP approach requires no knowledge from the server of clients in

the network, which facilitates the automatic operation. When a server sends this package to

the router, it is broadcast by the router to all other devices on the same network. Clients can

either ignore these packets or establish a connection automatically with the help of the

accompanying server information. The information in these packets includes the server’s

name, TLS support, and the port that is listening on the server. Clients also extract the

server’s IP address from the packet.

The automatic discovery enables VIOBox to be used unattended. Because VIOBox

contains no real user interface, this was a necessity. Another implemented feature was hot

plugging. This means all devices that are plugged into VIOBox are automatically taken into

use by the client. This was desired so that the system resembles a conventional USB hub.

5.3 RemoteHub library and application design

As described previously, RemoteHub includes the VIOBox-specific technical requirements

regarding data security and automatic use. The RemoteHub server application is a Linux

executable that bundles the functions of the USB/IP STUB driver and usbipd connection

daemon into one package. The server application implements the STUB as a user space driver

with libUSB, which uses the Linux USB device driver interface internally. User space

implementation allows better maintainability and debugging options [28], and supports easier

portability to other platforms if needed in the future. The existing USB/IP and the new

RemoteHub are compared in the sixth chapter.

USB devices are not bound to the server STUB driver in RemoteHub but are rather

automatically taken into use by clients at run time. To support automatic operation, device

listing and attaching requests are automatically executed using the previously explored

USB/IP user space protocol. Internally, RemoteHub tools are written in the C language.

Figure 23 shows the internal data flows and how they fit into the Linux USB system.

RemoteHub is an open-source project freely available on GitHub [44]. It can operate on a

wide range of devices despite being designed for VIOBox.

46

Figure 23. Illustration of the RemoteHub hierarchy of data flows on two separate computers

(client on the left and server on the right).

This section presents the internal design choices of RemoteHub applications and libraries

in more detail. Most of the application logic is available through the RemoteHub libraries,

which the applications use through an API. There are specially crafted libraries for both server

and client use cases. They provide most network and USB functions in an asynchronous

manner. This means that most network-related client commands do not block, and instead a

callback function is invoked after the library has executed the command.

Internally, the libraries consist of multiple separate tasks that work independently. The

tasks in the libraries communicate with each other using events. The events are delivered by

type to tasks that are subscribed to receive them. This design is referred to as the Publish-

Subscribe pattern [45]. This pattern allows for loose coupling between tasks, which

encourages code re-use and can make the codebase more maintainable. The following Figure

24 shows the internal tasks and data flows in both client and server applications.

47

Figure 24. RemoteHub high-level architecture diagram.

All created source code was written to comply with the kernel coding style. The kernel

coding style by Linus Torvalds provides a good set of rules for maintainable C code [46].

Coding style preferences vary widely among coders, but keeping a single coding style

throughout the codebase allows readers to focus on the program logic rather than varying

syntax.

5.3.1 Libraries

RemoteHub itself consists of three core libraries. There are separate libraries for server and

client use cases, and a third library that contains common functions for both use cases. There

are also third-party libraries that implement the USB transfer, TLS, and JavaScript Object

Notation (JSON) features. Most libraries are designed to be statically linked, which means

they are archives containing executable code. This way, the final compiled application

executables contain most of the necessary functions built in. One exception is the libUSB

library, which is dynamically linked. Dynamic linking reduces the executable size by

allowing multiple programs to use the same library that is stored only in a single location.

Users of the RemoteHub server application need to have this libUSB library available to be

able to use the program.

48

Common library

The common library provides functions that are used by both client and server libraries

internally. These functions include event driving, network, and debugging utilities. The event

framework in the common library facilitates the transfer of information between tasks that the

server and client libraries consist of. The event framework is identical for server and client

libraries and is therefore included in the common library. Events are distinguished by the type

identifier that is set when enqueuing them. They can also carry arbitrary data using a pointer.

The framework and tasks use the pthread library extensively for threading and

synchronization.

Tasks in the libraries are first registered with the event framework by calling the

event_task_register() function. This function is called with a bit field of events the task is

interested in. The task starts a new thread for receiving these events. While running, the task

can produce events for other tasks. The framework will handle the event delivery logic

internally, providing event_enqueue() and event_dequeue() functions for convenience. The

event_dequeue() function blocks when no events are available for a particular task. When the

system is wanted to be terminated, the stopping is facilitated with a terminating event. This

will cause all tasks to finish their execution, allowing the system to be brought down in a

controlled manner. The following Figure 25 presents a simplified lifecycle of a task, including

event handling related functions.

Figure 25. The life cycle of a task in RemoteHub.

The common library contains a synchronized debug printing facility for printing

information about the internal operation if enabled. There are six debug levels available that

print information with increasing verbosity. The levels are presented in Table 4. Debugging

can be enabled by calling the function rh_set_debug_level() with the desired level. All traces

above the target level are also printed when selecting a debug level. For example, the “Trace”

level prints all possible debugging traces.

49

Table 4. Debugging log levels in RemoteHub

Debug level Description

Critical A fatal error has occurred, and the execution cannot continue. This

terminates the execution forcefully with the SIGABRT signal after

printing the error.

Error Something has failed, but execution may be able to continue. For

example, failing a connection with a client would be printed as an error.

Warning Something has failed, but execution can continue. For example, if some

operation is not supported in a specific system.

Information Traces that are expected to be informative.

Debug Traces that are expected to be less relevant or only relevant in a specific

section of the code.

Trace Anything else, can be very verbose. For example, printing the received

USB/IP command data.

Client library

The client library is the backbone for client applications. The main functions of the library are

to find servers, list server devices, and attach them. It uses the existing USB/IP VHCI driver

internally for USB data transfer and host controller functions. The library acts as a proxy in

the USB data transfer process. Proxy threads are created for transferring encrypted data over

one link and unencrypted data with the VHCI driver over another. The socket that is used

with the VHCI driver is a stream-oriented UNIX domain socket that is ideal for inter-process

communication.

The client library is made of four tasks that communicate with each other to produce

services for the client application. Table 5 shows these tasks and the events they produce and

consume.

Table 5. Event flows in the client library

Task Produces events Consumes events Description

Manager DEVICELIST_READY

DEVICELIST_FAILED

DETACHED

DETACH_FAILED

ATTACHED

ATTACH_FAILED

TIMER_5S

DEVICELIST_REQUEST

ATTACH_REQUESTED

DETACH_REQUESTED

Sends USB/IP

requests to the server

and manages imported

USB devices.

Beacon SERVER_DISCOVERED - Receives server

beacon packets.

Timer TIMER_5S - Creates timing events

for other tasks.

Interface DEVICELIST_REQUEST

ATTACH_REQUESTED

DETACH_REQUESTED

SERVER_DISCOVERED

DEVICELIST_READY

DEVICELIST_FAILED

DETACHED

DETACH_FAILED

ATTACHED

ATTACH_FAILED

Provides

asynchronous

callbacks for

applications.

50

The manager task is responsible for initiating connections with servers as requested by the

client application. It uses the USB/IP user space protocol to fetch device lists and attach

devices. Network connections that are initiated by the manager support both TLS-secured and

unencrypted transfers by using an abstraction layer that provides a unified interface for both.

However, only either one can be used after the library has been started. Figure 26 illustrates

this new connection initialization process in the client.

Figure 26. The RemoteHub client network connection process.

The manager is responsible for keeping track of attached devices in a linked list so that

they can be safely found when needed. It also starts and oversees the data proxy threads for

communicating with the VHCI driver. The beacon task supplies information about detected

servers to the client application. After the client application receives this information from a

callback function, it can attempt to connect to the server in question. The timer task is the

simplest task available. It only generates 1 s and 5 s timing events, which are used by other

tasks. The interface task acts as the asynchronous callback provider for applications. Like in

the server library, it receives events from other tasks and passes them to the applications. The

interface layer allows applications to toggle individual callbacks in an orderly fashion.

Server library

The RemoteHub server library implements the STUB driver in user space and allows a server

application to monitor the server’s internal state. The server implementation is a difference

compared to existing USB/IP tools by Hirofuchi, which implement the STUB portion in

kernel space. The implemented STUB server communicates with client VHCI drivers using

the previously presented USB/IP kernel protocol. The USB transfers are routed through the

51

RemoteHub client library proxy to enable the encryption. However, the server is compatible

with existing USB/IP tools without encryption.

Like the client library, the server library also consists of tasks. The server library

implements five distinct tasks, which are presented in Table 6 with the flow of events.

Table 6. Event flows in the server library

Task Produces events Consumes events Description

Command REQ_DEVICELIST

REQ_IMPORT

- Receives

USB/IP

commands from

clients.

Beacon - TIMER_5S Broadcasts

presence for

clients in 5s

intervals.

Timer TIMER_5S

TIMER_1S

- Creates timer

events for other

tasks.

Interface - LOCAL_DEVICELIST

DEVICE_ATTACHED

DEVICE_DETACHED

DEVICE_EXPORTED

DEVICE_UNEXPORTED

Provides the

asynchronous

callbacks for

applications.

USB device LOCAL_DEVICELIST

DEVICE_ATTACHED

DEVICE_DETACHED

DEVICE_EXPORTED

DEVICE_UNEXPORTED

REQ_DEVICELIST

REQ_IMPORT

TIMER_1S

Handles USB

device-related

functions such

as detection and

data transfer.

The command task receives USB/IP commands sent by clients. The valid commands are

for device listing and attaching using the USB/IP user space protocol. It can receive either

TLS or unencrypted TCP communications as configured during initialization. As with the

client, network access is abstracted to hide connection methods.

The beacon task generates UDP broadcast packets periodically for clients. These packets

are sent to a special broadcast address, which causes them to be propagated to all the devices

on the same network. In the initial version, the interval is 5s.

The timer task is essentially the same that is used on the client; it generates periodic timing

events for beacon and other tasks. Also, like on the client, the interface task provides

asynchronous callbacks for server application executables. Applications subscribe to being

notified when an event of interest is received by using callback functions. The interface uses

mutual exclusions, which makes all access thread-safe.

The USB device task is the most complex task. It drives the user space STUB driver and

handles USB device housekeeping and discovery functions. It relies on the libUSB library for

all USB-related functions and transfers. libUSB is a multi-platform library for accessing USB

devices and allows asynchronous USB data transfers on Linux. In the initial RemoteHub

version, USB devices are discovered using periodical polling. Upon detection of a new

device, the task stores a reference to it in an internal linked list of present devices for future

use. This is needed to send device listings to clients and facilitate a graceful exit of the

application. The internal view of a USB device includes USB descriptor information, which is

52

read during the initial detection phase. As opposed to the existing USB/IP tools, which

display device and manufacturer names using a lookup file, the RemoteHub server reads these

from the USB device itself.

USB device insertion and removal actions generate events that can be captured by the

server application and can be used for logging or other purposes. Internally, the included

STUB driver starts transmission and receiving threads for each remotely used USB device.

Using these threads, the STUB handles USB/IP protocol CMD_SUBMIT commands as

shown in Appendices 1 and 2 and CMD_UNLINK commands as presented in Appendix 3.

5.3.2 Applications

Both server and client applications are built using an API that is defined by the RemoteHub

libraries. It is important to note that the information here applies only to the initial version of

RemoteHub. The RemoteHub libraries follow the semantic versioning scheme [47], and as

long as the major version number is zero, anything in the API can change.

The applications and the libraries are built using the CMake [48] build automation toolkit.

CMake can create build scripts for several platforms. This support is good to have for possible

future development, although RemoteHub initially only supports Linux.

Client application

The RemoteHub client executable is built from the rh_client.c source file. The client

communicates with the server to import USB devices that are present on the server. All

network communication is abstracted in the libraries, which the applications control through

the API. Like the server application, the client is a standard C program and supports Linux

systems. Only the most relevant aspects of the application are covered in this section. A

minimal usage example of the client application is shown in Figure 27.

int main(int argc, char *argv[])

{

 signal(SIGINT, sig_handler);

. . .

 rh_client_config_init(conf_path);

. . .

 while (running)

 usleep(5000000);

 rh_client_exit();

 return 0;

}

Figure 27. Minimal client main() function where error handling has been omitted for brevity.

The main() function is the starting point for execution. First, the signal() function is called

during initialization, which registers a signal handler named sig_handler(). In the RemoteHub

use case, only the SIGINT signal is caught. This signal is generated, for example, with a

CTRL+C key combination. Catching this signal allows the program to shut down gracefully

53

because it enables the rh_client_exit() function to be called before exiting. This function only

exits after all internal tasks have been shut down and internal memory reservations have been

released. The example signal handler is presented in Figure 28.

void sig_handler(int sig)

{

 running = false;

}

Figure 28. An example of the signal handler function.

The library is started and terminated by calling the rh_client_config_init() and

rh_client_exit() functions. The rh_client_config_init() function accepts a path to a JSON

configuration file which, among other configuration options, contains the CA certificate path

that will be used in the server verification process.

The application in

Figure 27 only starts the library, and additional logic is needed to start using the remote

USB devices. The automatic operation is established by using callbacks that create a sort of

pipeline that is automatically executed. Once a server is discovered, a device listing is

immediately requested. If the command was executed successfully, all devices indicated by

the listing are attempted to be attached. Finally, an attach callback is invoked when a device

has been successfully connected.

Figure 29 shows the function calls that are used when subscribing to events, and Figure 30

shows the callback function skeletons that would be called when the respective events have

fired.

 rh_usbip_devicelist_subscribe(usbip_devlist_callback);

 rh_attach_subscribe(attach_callback);

 rh_detach_subscribe(detach_callback);

 rh_server_discovery_subscribe(on_server_discovered);

Figure 29. The function calls that are used to subscribe the client application to library

notifications.

54

void attach_callback(bool success, char *server, uint16_t port,

 struct usbip_usb_device dev)

{

. . .

}

void detach_callback(bool success, char *server, uint16_t port,

 struct usbip_usb_device dev)

{

. . .

}

void usbip_devlist_callback(bool success, char *server, uint16_t port,

 struct usbip_usb_device *devlist, uint32_t count)

{

 for (uint32_t i = 0; i < count; i++)

 rh_attach_device(server, port, devlist[i]);

 rh_free_client_devlist(devlist);

}

void on_server_discovered(char *server_ip, uint16_t port, char *name)

{

 rh_get_devicelist(server_ip, port);

}

Figure 30. The function skeletons with a sample logic flow that will be invoked by the

RemoteHub client library.

Initially, the devices that are not desired to be used are only detected and skipped in the

device listing callback usbip_devlist_callback(). The device listing callback is called with a

list of USB device representations on the server. This is the information that is transferred

with the USB/IP user space protocol. Additionally, if automatic server discovery is not

desired, the rh_get_devicelist() function can be manually used to connect to a server.

However, the auto-discovery is always needed when using VIOBox.

Server application

This section presents the RemoteHub server application implementation. The executable is

built from the rh_server.c source file. Only the most relevant aspects of the implementation

are covered here. A simplified application logic flow is presented in Figure 31, which closely

resembles the client application.

55

int main(int argc, char *argv[])

{

 signal(SIGINT, sig_handler);

. . .

 rh_server_config_init(conf_path);

. . .

 while (running)

 usleep(100000);

 rh_server_exit();

 return 0;

}

Figure 31. Minimal server main() function where error handling has been omitted for brevity.

The rh_server_config_init() function is used to start the server library. Like the client

application, it accepts a path to a JSON-formatted configuration file. This file contains

important instructions such as the port to use and the paths of the server certificate and private

key for TLS connections. The contents of this file are presented later in this chapter.

During initialization, the server subscribes to necessary asynchronous notifications

generated by the library. The application will be notified each time a USB device is physically

attached or detached if rh_attached_subscribe() and rh_detached_subscribe() have been used

to subscribe a callback to the events. The rh_exported_subscribe() and

rh_unexported_subscribe() registered callbacks are called when a client attaches or detaches a

device from the server. All these functions accept a function with the same signature. The

function rh_devicelist_subscribe() is used to subscribe to local device listings that are only

needed for the user interface. Figure 32 shows these functions being used to assign

device_state_changed() and devlist_handler() functions for the events. Figure 33 shows

minimal implementations of these functions.

 rh_devicelist_subscribe(devlist_handler);

 rh_attached_subscribe(device_state_changed);

 rh_detached_subscribe(device_state_changed);

 rh_exported_subscribe(device_state_changed);

 rh_unexported_subscribe(device_state_changed);

Figure 32. The calls that are used to subscribe the application for library notifications.

56

void device_state_changed(enum usb_dev_state state,

 struct usbip_usb_device dev)

{

. . .

}

void devlist_handler(struct usb_device_info *devlist, int count)

{

. . .

 rh_free_server_devlist(devlist);

}

Figure 33. The function skeletons which are invoked by the RemoteHub server library after

previous subscription.

In the previous functions, the enum usb_dev_state can be one of: ATTACHED,

DETACHED, EXPORTED, or UNEXPORTED and reflects the event that generated it. The

structure usbip_usb_device contains USB device information that is transferred with the

USB/IP user space tool protocol. The structure usb_device_info contains additional data such

as the manufacturer name, but also includes the usbip_usb_device information internally.

5.3.3 Licenses

This section presents the licensing information of the third-party libraries in RemoteHub and

how these can affect the created software. License types of the used libraries are presented in

Table 7.

Table 7. Licenses of software libraries used in RemoteHub

Library License

libUSB GNU’s Not UNIX (GNU) Lesser General Public License version 2.1

(LGPLv2.1)

MbedTLS Apache License, Version 2.0

cJSON Massachusetts Institute of Technology (MIT) License

GPL licenses are generally designed as copyleft licenses. This means that users are free to

use code under such licenses, but derivative works need to be distributed under the same

license. The libUSB library is under the LGPLv2.1 license [49]. This “lesser” GPL license is

more permissive since it allows the library to be used even in proprietary software under some

conditions. For example, an LGPLv2.1 licensed library can generally be used without

disclosing source code when it is distributed separately, or in other words, dynamically linked

[50].

MbedTLS is distributed under the Apache 2.0 license. Code licensed with Apache 2.0 can

be used freely, even in commercial closed source programs. However, problems may arise

when mixing code under different licenses. Due to the licensing requirements, Apache 2.0

code can be included in GPLv3 applications, but not the other way around. Furthermore,

Apache 2.0 and GPLv2 are not compatible [51].

57

The MIT license in cJSON [52] is a permissive license that imposes minimal restrictions

on the use of code. It can be used in proprietary or GPL licensed programs, requiring only the

license text to be included in the software.

The RemoteHub itself was chosen to be distributed under the GPLv3 license, which means

it is open source and free for use outside of Aava Mobile. This license permits the use of the

libraries and follows the spirit of the original USB/IP tools. The USB/IP driver files in the

kernel source directory folder drivers/usb/usbip are licensed under the GPLv2 or any later

version.

5.4 RemoteHub usage

The RemoteHub client and server applications are configurable command-line executables

but can in the future be extended with a graphical user interface. Initially, the applications

were built to only display information about their internal state. This is only informative data

and is not needed for operation. The server command line output is shown in Figure 34, and

the client interface is presented in Figure 35.

Figure 34. The RemoteHub server interface shows devices attached to the server.

Figure 35. RemoteHub client interface showing device attach events.

RemoteHub is designed to be used autonomously, meaning that after the initial

configuration, there is no need for user input. During initial configuration, the server and

client are given a path where TLS certificates are located. Both server and client applications

use configuration files to convey the TLS certificate path and other initial information. The

configuration files are JSON formatted, and for parsing these files, RemoteHub uses the

cJSON library [44]. The initially supported configuration file parameters for client and server

are presented in Table 8 and Table 9, respectively, along with a description of each value.

58

Table 8. RemoteHub client supported configuration file options

Configuration

option

Data

format

Description

config_version Number The configuration file version supported by the application.

The initial RemoteHub application supports version 1.

use_tls Boolean Whether to use TLS security or unsecured TCP for existing

USB/IP application compatibility.

ca_path String The path in the VIOBox folder hierarchy to the certification

authority certificate that can be used to verify whether a

detected server can be trusted, and the connection

initialized.

Table 9. RemoteHub server supported configuration file options

Configuration

option

Data

format

Description

config_version Number The configuration file version supported by the application.

The initial RemoteHub application supports version 1.

server_name String A human-readable name that is assigned to this server. It

will be broadcast to the client applications. The client

application can then evaluate whether a connection will be

attempted.

bcast_enabled Boolean Whether to send automatic UDP detection packets or not.

use_tls Boolean Whether to use TLS security or plain TCP for existing

USB/IP application compatibility.

port Number Which network port to set listening for client requests.

cert_path String The path to the Privacy Enhanced Mail (PEM) formatted

TLS public certificate assigned to this server and associated

with the following private key.

key_path String The path to the PEM formatted TLS private key of this

server.

key_pass String The password to use to decrypt the private key if protected.

disable_array Array of

numbers

An array of disabled USB buses that are ignored by the

application. Clients cannot use devices connected to them.

The client application is started by first loading the existing USB/IP VHCI host controller

driver module with the “modprobe vhci-hcd” command and then starting RemoteHub with the

command “rh_client -c <path to configuration file>”. Likewise, the server startup command

is in a similar format “rh_server -c <path to configuration file>” but with the server, no

kernel modules need to be loaded. After startup, a user can insert a USB device into the

server, and it will automatically be usable on the client. All parameters accepted by the

created applications are listed in Table 10.

59

Table 10. RemoteHub supported application parameters

Parameter Application Description

-c / --config <path to config file> Client and

Server

Used to pass the configuration file

during initialization.

-v / --version Client and

Server

Returns the version of RemoteHub

and the versions of the used

libraries.

-i / --ip <IPv4 address> Client Forces the client to use a specific

server at a given IP address.

-p / --port <port number> Client Forces the client to use a specific

port with a previously given IP

address.

Applications can be stopped with a SIGINT signal generated by issuing a Ctrl+C key

combination or other means. After catching this signal, they exit controllably, terminating

open connections and performing exit cleanup.

5.5 USBIP-win software

The existing USBIP-win client application can be used with VIOBox to support Windows

devices because RemoteHub is compliant with the existing USB/IP tool protocol. However,

without modifications, only unencrypted transfers are possible. As a proof of concept, a test

build of USBIP-win was created with TLS support. The TLS was implemented with the

Windows MbedTLS library. However, the automatic discovery was not implemented. The

system was functional but needs additional work that is left for the future.

60

6 RESULTS

After the initial RemoteHub software work was completed, measurements were conducted to

evaluate performance and optimize the software. Most of the tests measured data transfer

speed by transferring data from a USB 3.0 flash drive. This performance test setup was

expected to stress the system greatly and return easily quantifiable results. The usability of a

USB web camera and a mouse was also assessed. These devices enabled the testing of all four

USB transfer types, which was necessary to uncover possible underlying issues in the

software.

RemoteHub was first tested in an optimal environment where only the software

performance was measured while keeping the other test variables as constant as possible.

Issues that affected performance were thought to at least include network delays and

encryption ciphers. From the technical perspective, transfer speed tests were run with the help

of a script that automated the testing process. This allowed averaging to be easily added for

reliable measurements. During all the performance tests, one gibibyte (GiB) of test data was

read from the USB stick, and transfers were averaged five times.

The tests were conducted using the dd command presented in Figure 36 that read data from

the flash drive to the /dev/null node to avoid erroneous results due to the use of the client file

system and storage medium. Prior to testing, it was discovered that an 8 MiB block size

worked well with the test flash drive, and this was used in all tests. System memory caches

were also cleared using the command in Figure 37 before every read to avoid the caches

affecting performance.

dd if=${TEST_FILE_PATH} of=/dev/null bs=8M conv=fdatasync

Figure 36. Command that was used to read test files during performance testing.

echo 3 > /proc/sys/vm/drop_caches

Figure 37. Command that was used to clear memory caches.

The first tests were run in a loopback environment, where no data was transferred over the

network and server and client were run on the same computer. Following that, the focus was

shifted to VIOBox hardware. The VIOBox hardware tests were carried out on both the

Raspberry Pi 3 Model B and the Orange Pi Zero SBCs with either an x86 computer or an

Aava tablet as a client. These tests were performed to evaluate overall performance and to

find the optimal encryption ciphers for use. Finally, the actual VIOBox system was tested in

real-life scenarios with an Aava tablet client connected to it through a wireless network.

61

6.1 Optimal environment

The RemoteHub and the existing USB/IP tools were measured in an optimal environment,

and a setup was created where software comparisons could be reliable. The computer used in

these tests was an HP EliteBook 8570w with an Intel i7-3840QM processor and Manjaro

Linux as the operating system. The network-related influence was mitigated by running both

the server and client on the same computer using a localhost loopback interface with no

communication over network cables. This setup was ideal for isolating the effects of network

delays, which were known to have a severe impact on performance. The network Round-Trip

Time (RTT) was measured with the ping command to be 0.083 ms in an average of 100

packets on localhost. Also, a local copy test was performed for reference. The local copy was

a baseline that represented the absolute maximum transfer speed with a standard USB

connection. Then, a 1 GiB test file with either random data or only the value zero was

transferred from the Kingston USB 3.0 stick into the /dev/null device node. The results are

presented in Table 11.

Table 11. Transfer rates measured from a Kingston USB 3.0 flash drive (unless otherwise

specified, connected to a USB 3.0 port on the server computer)

Test setup Test data Avg transfer speed (5 reads)

Local copy 1 GiB of random 95.93 MiB/s

Local copy 1 GiB of zero 95.76 MiB/s

Existing USB/IP tools 1 GiB of random 71.02 MiB/s

Existing USB/IP tools 1 GiB of zero 72.96 MiB/s

Unencrypted RemoteHub 1 GiB of random 62.57 MiB/s

Unencrypted RemoteHub 1 GiB of zero 64.11 MiB/s

Unencrypted RemoteHub

(USB 2.0 port)

1 GiB of random 25.90 MiB/s

Unencrypted RemoteHub

(USB 2.0 port)

1 GiB of zero 25.84 MiB/s

Following the performance comparisons, TLS performance was evaluated to see how

encryption affected the speed of RemoteHub. In these tests, only 1 GiB random data files

were used. During initial testing, it was found that the RemoteHub TLS libraries were

compiled with debug settings, reducing cryptographic performance. After this issue was fixed,

the cipher performance is presented in Figure 38. Although a full TLS cipher suite contains

additional ciphers, only the encryption and verification ciphers are shown in Figure 38. Other

ciphers would not have contributed to the performance since the test was conducted after a

connection had been established. However, the used key exchange and authentication ciphers

were DHE-RSA in all cases.

62

Figure 38. Effect of cipher suite data encryption and verification ciphers on locally used

RemoteHub, where 1 GiB of random data was read from a Kingston flash drive connected to

a USB 3.0 port.

During encryption cipher tests, it was seen that CPU use was correlated with the transfer

speed. Processor use was the highest with CAMELLIA_128_GCM_SHA256 and the lowest

with CHACHA20_POLY_1305_SHA256.

Next, the effect of network delay was also useful to be measured in the optimal

environment because it can be synthetically generated and controlled. The delay was

generated using the command shown in Figure 39.

tc qdisc add dev lo root netem delay <delay value>

Figure 39. The command that was used to add delay to the socket communication.

The used delay was set to half of the desired RTT value since the delay shaping affected

both server and client applications. The delay was verified with the ping command. These

tests were conducted with an unencrypted RemoteHub setup, and the results are presented in

Figure 40.

0

10

20

30

40

50

60

70

A
vg

 t
ra

n
sf

er
 s

p
ee

d
 M

iB
/s

Effect of encryption on transfer speed

63

Figure 40. The RTT between client and server on the same computer and the effect on transfer

speed.

Following these tests, a Web camera and mouse were tested in an unencrypted

environment. First, a Logitech MX518 mouse was used. It has an HID report polling interval

(bInterval) of 10, which indicates a period of 10 ms. However, due to rounding in the kernel,

it was actually read at 8 ms intervals (125Hz) [53]. During testing, starting at a delay of 20

ms, the mouse movement visibly started to slow down. A delay of 150 ms or more could be

considered completely unusable. A Microsoft LifeCam HD-5000 was tested with the

Webcamoid web camera application. It was seen that a 640x480 30fps preview stream was

functional up until a delay of approximately 10 ms when the preview stopped functioning.

The preview was still working with a delay of 8 ms.

6.2 VIOBox device

First, VIOBox tests were performed to find the optimal encryption ciphers for use. These tests

were like the transfer speed tests conducted previously. However, this time, the VIOBox

server and an Intel i7-2600-based x86 client computer were connected by a wired network

connection. Transfer speeds using different encryption and verification cipher suites are

presented in the following Figure 41. These are the same suites that were used in the optimal

environment.

0

10

20

30

40

50

60

70

baseline
(0.083ms)

+1ms +2ms +3ms +4ms +5ms

Sp
ee

d
 (

M
iB

/s
)

RTT

Effect of network delay on transfer speed

64

Figure 41. The impact of data encryption and verification ciphers on the transfer speed

between the VIOBox server and an x86 computer client using RemoteHub.

The ping command reported an average RTT of 0.411 ms between the client and

Raspberry Pi 3 Model B and, likewise, 0.240 ms between the client and Orange Pi Zero on an

average of 100 tests. The used network cables were gigabit capable, and the same on both

tests.

In real-life performance tests, the Orange Pi Zero-based VIOBox was used with an Aava

x86-based tablet client with an Intel Atom E3940 processor. The most suitable cipher suite,

TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256, was selected and used during

the tests. The VIOBox was connected to the network using an ethernet cable, but the tablet

used a Wireless Local Area Network (WLAN) connection. Two distances were tested, with a

separation of 50 cm and 4 m between the router and tablet. The tablet also had an

unobstructed line of sight to the router. As a note, the exact fine positioning of the device was

observed to affect the RTT. Transfer speeds and RTT values are shown in Table 12.

Table 12. Transfer speed and observed delay with Aava tablet as client and Orange Pi

VIOBox as a server

Distance Transfer speed RTT (Avg. of 100) RTT std. dev.

50 cm 3.20 MiB/s 2.67 ms 0.75 ms

4 m 2.71 MiB/s 3.65 ms 2.29 ms

More testing was performed in the 50 cm range to assess the impact on input devices. A

Logitech MX518 mouse was tested with the evhz tool [54]. It was seen that on average the

mouse was returning data at 125 Hz, the rate being occasionally higher and lower than this

0

1

2

3

4

5

6

7

8

A
vg

 t
ra

n
sf

er
 s

p
ee

d
 M

iB
/s

Effect of cipher suite on transfer speed between VIOBox and
x86 client

Raspberry Pi 3 Model B Orange Pi Zero

65

value. The Microsoft LifeCam HD-5000 web camera was tested with the V4L2 test

benchmark tool qv4l2 [55]. It was seen that the video was only suitable to be used at a

maximum 424x240 resolution. Above this, the video was either not working or frame

dropping was too severe for use. The camera was set to output data video at 30 fps, and it was

verified that the frame rate was 29.98 when connected to the tablet directly. Using VIOBox,

occasional dropped frames were present at that resolution, and the frame rate was around 19

fps in the same conditions as the reference test. It was seen that even with a minimum

resolution of 160x120, the average frame rate was also at around 19 fps.

RemoteHub-related requirements were also verified during these tests. This especially

meant testing three USB devices simultaneously and ensuring that the hot-plugging delay was

under 10 seconds. Both requirements were supported.

66

7. DISCUSSION

Part of this thesis was to evaluate how existing open-source USB/IP software components

could be used or extended to implement data security and automatic use features. The

presented solution was to create new RemoteHub USB sharing tools. RemoteHub was built to

use TLS for data security and UDP broadcast packets for automatic discovery. It leverages the

USB/IP tool protocol and the existing USB/IP virtual host controller that is included in most

Linux distributions. This also helps with future development, since there is a Windows

implementation that could be updated with the required features in the future. As a part of the

software work, the USB/IP server was built in user space. This enables better maintainability

and portability, but also imposes a small performance penalty on the operation.

After the software work was concluded, the RemoteHub software and the VIOBox

accessory performance were measured and optimized. The main goal of this testing was to

find the main performance bottlenecks in the prototype VIOBox system for future reference.

Most tests were conducted using a script that read data from a physical USB 3.0 flash drive,

simulating USB mass storage use cases. This testing returned quantifiable results and was

used for benchmarking. Additionally, a web camera and input devices were assessed at a

more general and subjective level. Testing was conducted both on a theoretical optimal

simulation environment and on VIOBox hardware.

First, RemoteHub was tested in optimal conditions to isolate network delay. During these

tests, both server and client applications were used on the same computer using the localhost

loopback interface. It was verified that the newly created implementation had some negative

performance impact. Remotehub with the user space server was approximately 12 % slower

than existing Linux USB/IP tools which operate in kernel space. The main issue is likely the

data copying between kernel and user space, which was identified by Hirofuchi in his

research. However, the execution logic of RemoteHub and libUSB may also add overhead.

The addition of data security features imposed additional penalties depending on the

hardware and used cipher suite. Optimal environment performance with optimal encryption

ciphers was approximately half of that without encryption. Luckily, this did not fully translate

to VIOBox. When optimizing VIOBox encryption ciphers, it was seen that on the selected

Orange Pi Zero hardware, this resulted in approximately 8 % slower performance with the

most optimal TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 cipher suite

compared to being unencrypted. It is also important to note the varying security implications

of the tested cipher suites. However, at the time of testing, the optimal cipher suite was also

classified as secure [56].

Network delays introduced significant performance degradation. This can be especially

problematic with VIOBox since it uses a wireless network connection, which introduced more

delay compared to a wired connection. The measured RTT values were also more

unpredictable compared to a wired connection. The issue of network latency was also

discovered in the original USB/IP research [6]. The VIOBox data transfer performance

degradation with increasing latency can likely be attributed to the client USB drivers being

designed to work in conventional, minimal latency USB environments. Performance is

affected if a client needs to wait for an URB to be completed before a new one is issued. The

performance degradation due to encryption can likely be attributed to delay caused by a

higher processor workload.

From the VIOBox hardware perspective, the network adapters in used SBCs were only

capable of operating at a maximum speed of 100 Mbps and the USB ports were only capable

of USB 2.0. The performance of VIOBox could likely be improved by changing the used

hardware. However, as seen in the optimal environment, the improvements may be limited

67

due to latency in the network, which sets a ceiling for transfer speed and can be hard to

control on user premises.

The performance of the RemoteHub software was deemed acceptable in the intended use

case. The use of lower-performance hardware can be accepted as a cost-saving measure. As

was determined during testing, input devices should not be notably impacted by the VIOBox

system due to the relaxed polling intervals in USB interrupt transfers. However, VIOBox still

needs further development before it is ready for commercial use. For instance, the delivery

mechanism for the initial data has not been decided. Some options include, for example,

reading it from an NFC tag, a USB flash drive, or using SSH / Secure Copy (SCP) methods

during provisioning. Proper services or startup scripts should also be created so that both the

client and server can automatically begin execution after startup.

The RemoteHub software has many aspects that can be developed further, and some

existing choices also worked well. Following the prototype phase, Android and Windows

support could be added, so that all Aava devices are supported. A GUI using which the

system could be managed would be nice to have but not necessary. It was seen in an optimal

environment that the content of transferred data had a negligible effect on transfer speed. To

speed up VIOBox operation, data compression could be added to attempt to boost

performance. The compression likely hurts performance on fast networks and optimal

hardware but could possibly be of help on VIOBox. Also, more fine-grained access controls

could be added. The prototype used TLS certificates themselves for rudimentary access

control. This was possible since the system was designed to use all the devices on the server.

Perhaps in the future, VIOBox could also be offered in other forms, such as a larger server

that could serve multiple clients. Then, controlling access would become more relevant. One

internal improvement would be to lift more functionality to the application level so that the

libraries stay as lean and flexible as possible. There are also other smaller improvements to be

made, some of which have undoubtedly not yet been uncovered. Due to this, user experience

testing would also be beneficial. In the current design, asynchronous callbacks worked well

for handling the application logic. This enabled, for example, the client to connect

immediately and automatically to a server after receiving a notification.

68

8. SUMMARY

This thesis documented the software development process for an Aava Mobile VIOBox USB

remote use prototype accessory, which was designed to serve as a remote wireless USB hub

for Aava tablets. The existing open-source software USB remote use tools were discovered to

be insufficient for VIOBox as is. VIOBox was required to support secure data transfers and

function without user intervention. Therefore, after evaluation of options, new RemoteHub

tools were decided to be created. These tools consist of server and client applications for

Linux-based operating systems and use the existing USB/IP protocol and virtual host

controller on the client.

This thesis began with the evaluation of existing commercial and open-source USB remote

use solutions. Open-source USB/IP tool features and limitations were explored in more detail,

and some ways to overcome the key limitations were presented. The evaluation was followed

by a review of the USB and USB/IP technical background. This was necessary as preparation

for creating the new RemoteHub system. After the review of theory, the RemoteHub tool was

introduced. The RemoteHub requirements, design choices, and internal details were also

presented, along with a brief overview of the VIOBox device hardware and mechanics.

Finally, the RemoteHub software and VIOBox device were benchmarked. First,

measurements verified that network delay had a great effect on performance. It was seen that

in an optimal environment, even one millisecond of delay can lead to a halving of the data

transfer speed when reading data from a USB stick. Delay also originated from the encryption

implementation. The encryption calculations also halved the transfer speed, even with the

most favorable ciphers in an optimal environment.

It was also seen that the selected VIOBox HW components were limited in performance

aspects. Due to higher latency, slower network adapters, and the lack of USB 3.0 ports, the

performance was approximately 10 % of the optimal environment. It was found that both the

evaluated Orange Pi Zero and the Raspberry Pi 3 Model B SBCs had similar performance,

with the Raspberry Pi being slightly faster. Further assessing the actual use case with an Aava

tablet and wireless network connection, the performance was again roughly half of the speed

achievable with a wired connection. The data transfer speed that was achieved when reading

data from a USB stick with the Orange Pi Zero VIOBox was approximately 3 MiB/s from 50

cm of the access point using the optimal encryption ciphers. However, the performance issues

were determined not to be critical for the VIOBox use case. It is acceptable for the occasional

flash drive data transfer to be less performant. The VIOBox is mainly dedicated to human

interface devices that were seen to tolerate real-life network conditions well. Devices such as

keyboards and mice were not seen to be meaningfully affected when using the VIOBox.

69

9. REFERENCES

[1] Universal Serial Bus Specification Revision 2.0 (2000). Compaq Computer

Corporation, Hewlett-Packard Company, Intel Corporation, Lucent Technologies Inc,

Microsoft Corporation, NEC Corporation, Koninklijke Philips Electronics N.V., 622 p.

[2] Hirofuchi, T., Kawai, E., Fujikawa, K. & Sunahara H. (2005) USB/IP—A Peripheral

Bus Extension for Device Sharing over IP Network. In: The Proceedings of the

FREENIX Track: USENIX Annual Technical Conference, p. 47–60.

[3] Digi International and Inside Out Networks (read 3.5.2022) Inside Out Networks

Revolutionizes Remote Peripheral Connectivity with Debut of USB Over IP™

Technology. URL:

https://web.archive.org/web/20020603232319/http://www.digi.com/corporateinfo/news/

newsreleases/111201.html

[4] Inside Out Networks (read 3.5.2022) Remote USB Over IP Concentrator Preliminary

Specs. URL:

https://web.archive.org/web/20030421060700/http://www.ionetworks.com/products/any

whereusb.pdf

[5] Hirofuchi T. (2004) A design of device control and sharing system over IP network and

its implementation. Master’s thesis. Nara Institute of Science and Technology, Graduate

School of Information Science, Department of Information Systems.

[6] Hirofuchi T. (2007) USB/IP: universal serial bus extension over IP network. Doctoral

dissertation. Nara Institute of Science and Technology, Graduate School of Information

Science, Department of Information Systems.

[7] Hirofuchi T. (read 22.5.2022) Staging: USB/IP: add common functions needed. URL:

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=05a1f28e8

79e3b4d6a9c08e30b1898943f77b6e7

[8] Hirofuchi T. (read 22.5.2022) staging: usbip: add userspace code. URL:

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0945b4fe3f

016900f1f68255e24920b28624a9aa

[9] Torvalds L. (read 22.5.2022) Merge tag 'usb-3.17-rc3'. of

git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb. URL:

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=848298c6f

b36fbe459854e376ce90af32ba6e1ce

[10] Du Y. (read 22.5.2022) usbip: vhci-hcd: Add USB3 SuperSpeed support. URL:

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1c9de5bf4

28612458427943b724bea51abde520a

https://web.archive.org/web/20020603232319/http:/www.digi.com/corporateinfo/news/newsreleases/111201.html
https://web.archive.org/web/20020603232319/http:/www.digi.com/corporateinfo/news/newsreleases/111201.html
https://web.archive.org/web/20030421060700/http:/www.ionetworks.com/products/anywhereusb.pdf
https://web.archive.org/web/20030421060700/http:/www.ionetworks.com/products/anywhereusb.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=05a1f28e879e3b4d6a9c08e30b1898943f77b6e7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=05a1f28e879e3b4d6a9c08e30b1898943f77b6e7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0945b4fe3f016900f1f68255e24920b28624a9aa
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0945b4fe3f016900f1f68255e24920b28624a9aa
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=848298c6fb36fbe459854e376ce90af32ba6e1ce
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=848298c6fb36fbe459854e376ce90af32ba6e1ce
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1c9de5bf428612458427943b724bea51abde520a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1c9de5bf428612458427943b724bea51abde520a

70

[11] lepton-wu (read 22.5.2022) usbip and vbus driver for windows. URL:

https://sourceforge.net/p/usbip/git-

windows/ci/6e9ddd379dd0a9f1123bbe095c4a634bca2a59e7

[12] Digi international (read 22.5.2022) AnywhereUSB® Plus User Guide. URL:

https://www.digi.com/resources/documentation/digidocs/90002383/default.htm

[13] Solid State Supplies Ltd (read 28.5.2022) Digi AnywhereUSB Plus. URL:

https://www.sssltd.com/product/digi-anywhereusb-plus/

[14] Coolgear Inc (read 22.5.2022) AnyplaceUSB-S2 USB SERVER USER’S MANUAL.

URL: https://www.coolgear.com/wp-content/uploads/2020/01/AnyplaceUSB-S2-

Manual.pdf

[15] USBGear.com (read 28.5.2022) 2-Port USB over Ethernet USB Device Server. URL:

https://www.usbgear.com/AnyplaceUSB-S2.html

[16] VirtualHere Pty. Ltd. (read 22.5.2022) VirtualHere EasyFind FAQ. URL:

https://www.virtualhere.com/easyfind_faq

[17] VirtualHere Pty. Ltd. (read 22.5.2022) VirtualHere website. URL:

https://www.virtualhere.com/

[18] Electronic Team, Inc (read 22.5.2022) USB Network Gate. URL: https://www.net-

usb.com/

[19] Cho K. (read 22.5.2022) USB/IP for Windows. URL: https://github.com/cezanne/usbip-

win

[20] Microsoft Corporation (read 22.5.2022) Driver Signing Policy. URL:

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-

signing-policy--windows-vista-and-later-

[21] Samonas S. (2014) THE CIA STRIKES BACK: REDEFINING CONFIDENTIALITY,

INTEGRITY AND AVAILABILITY IN SECURITY. Journal of Information System

Security (JISSec), Volume 10, Issue 3, p. 21-45

[22] SSL.com (read 22.5.2022) What Is a Certificate Authority (CA)? URL:

https://www.ssl.com/faqs/what-is-a-certificate-authority/

[23] Computerphile (read 22.5.2022) TLS Handshake Explained. URL:

https://youtu.be/86cQJ0MMses

[24] Driscoll M. (read 22.5.2022) The Illustrated TLS 1.2 Connection. URL:

https://tls12.ulfheim.net/

https://sourceforge.net/p/usbip/git-windows/ci/6e9ddd379dd0a9f1123bbe095c4a634bca2a59e7
https://sourceforge.net/p/usbip/git-windows/ci/6e9ddd379dd0a9f1123bbe095c4a634bca2a59e7
https://www.digi.com/resources/documentation/digidocs/90002383/default.htm
https://www.sssltd.com/product/digi-anywhereusb-plus/
https://www.coolgear.com/wp-content/uploads/2020/01/AnyplaceUSB-S2-Manual.pdf
https://www.coolgear.com/wp-content/uploads/2020/01/AnyplaceUSB-S2-Manual.pdf
https://www.usbgear.com/AnyplaceUSB-S2.html
https://www.virtualhere.com/easyfind_faq
https://www.virtualhere.com/
https://www.net-usb.com/
https://www.net-usb.com/
https://github.com/cezanne/usbip-win
https://github.com/cezanne/usbip-win
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://www.ssl.com/faqs/what-is-a-certificate-authority/
https://youtu.be/86cQJ0MMses
https://tls12.ulfheim.net/

71

[25] Keyfactor (read 4.6.2022) An Introduction to Cipher Suites. URL:

https://www.keyfactor.com/blog/cipher-suites-

explained/#:~:text=Cipher%20suites%20are%20sets%20of,communications%20betwee

n%20clients%20and%20servers.

[26] Microsoft Corporation (read 22.5.2022) USB endpoints and their pipes. URL:

https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-endpoints-and-

their-pipes#:~:text=those%20two%20terms.-

,USB%20endpoint,into%20control%20and%20data%20endpoints

[27] Future Technology Devices International Ltd. (read 22.5.2022) Technical Note TN_113

- Simplified Description of USB Device Enumeration. URL: https://ftdichip.com/wp-

content/uploads/2020/08/TN_113_Simplified-Description-of-USB-Device-

Enumeration.pdf

[28] Corbet J., Rubini A. & Kroah-Hartman G. (2005) Linux Device Drivers, Third Edition,

615 p.

[29] Microchip Technology Incorporated (read 22.5.2022) USB Transfer Types. URL:

https://microchipdeveloper.com/usb:transfer

[30] Kroah-Hartman G. (read 22.5.2022) Writing USB Device Drivers. URL:

https://www.kernel.org/doc/html/latest/driver-api/usb/writing_usb_driver.html

[31] Venkateswaran S. (2008) Essential Linux Device Drivers, 744 p.

[32] The kernel development community (read 22.5.2022) Platform Devices and Drivers.

URL: https://www.kernel.org/doc/html/latest/driver-api/usb/usb.html#usb-host-side-api-

model

[33] The libUSB project (read 22.5.2022) libUSB wiki. URL:

https://github.com/libusb/libusb/wiki

[34] The kernel development community (read 22.5.2022) The Linux kernel v5.17.9 source

tree file hcd.c. URL: https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/hcd.c

[35] The kernel development community (read 4.6.2022) USB/IP protocol. URL:

https://www.kernel.org/doc/html/latest/usb/usbip_protocol.html

[36] Nagle J. (1984) RFC 896 - Congestion Control in IP/TCP Internetworks

[37] The Raspberry Pi Foundation (read 22.5.2022) Raspberry Pi 3 Model B. URL:

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

https://www.keyfactor.com/blog/cipher-suites-explained/#:~:text=Cipher%20suites%20are%20sets%20of,communications%20between%20clients%20and%20servers
https://www.keyfactor.com/blog/cipher-suites-explained/#:~:text=Cipher%20suites%20are%20sets%20of,communications%20between%20clients%20and%20servers
https://www.keyfactor.com/blog/cipher-suites-explained/#:~:text=Cipher%20suites%20are%20sets%20of,communications%20between%20clients%20and%20servers
https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-endpoints-and-their-pipes#:~:text=those%20two%20terms.-,USB%20endpoint,into%20control%20and%20data%20endpoints
https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-endpoints-and-their-pipes#:~:text=those%20two%20terms.-,USB%20endpoint,into%20control%20and%20data%20endpoints
https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-endpoints-and-their-pipes#:~:text=those%20two%20terms.-,USB%20endpoint,into%20control%20and%20data%20endpoints
https://ftdichip.com/wp-content/uploads/2020/08/TN_113_Simplified-Description-of-USB-Device-Enumeration.pdf
https://ftdichip.com/wp-content/uploads/2020/08/TN_113_Simplified-Description-of-USB-Device-Enumeration.pdf
https://ftdichip.com/wp-content/uploads/2020/08/TN_113_Simplified-Description-of-USB-Device-Enumeration.pdf
https://microchipdeveloper.com/usb:transfer
https://www.kernel.org/doc/html/latest/driver-api/usb/writing_usb_driver.html
https://www.kernel.org/doc/html/latest/driver-api/usb/usb.html#usb-host-side-api-model
https://www.kernel.org/doc/html/latest/driver-api/usb/usb.html#usb-host-side-api-model
https://github.com/libusb/libusb/wiki
https://elixir.bootlin.com/linux/latest/source/drivers/usb/core/hcd.c
https://www.kernel.org/doc/html/latest/usb/usbip_protocol.html
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

72

[38] Shenzhen Xunlong Software CO., Limited (read 22.5.2022) What’s Orange Pi Zero?

URL: http://www.orangepi.org/orangepizero/

[39] Armbian forum (read 22.5.2022) crypto engine (openvpn related, aes-ni). URL:

https://forum.armbian.com/topic/2099-crypto-engine-openvpn-related-aes-ni/

[40] The Raspberry Pi Foundation (read 22.5.2022) Raspberry Pi OS (64-bit). URL:

https://www.raspberrypi.com/news/raspberry-pi-os-64-bit

[41] Zhou J.Y (2004) Functional Requirements and Non-functional requirements, Concordia

university, Montreal, Quebec, Canada

[42] Bradner S. (1997) RFC2119 - Key words for use in RFCs to Indicate Requirement

Levels

[43] TrustedFirmware.org (read 22.5.2022) MbedTLS info page. URL:

https://www.trustedfirmware.org/projects/mbed-tls/

[44] Laitinen J. (read 22.5.2022) RemoteHub Git repository. URL:

https://github.com/Prototyyppi/RemoteHub

[45] Amazon.com, Inc. (read 22.5.2022) Pub/Sub Messaging - Asynchronous event

notifications. URL: https://aws.amazon.com/pub-sub-messaging/

[46] The kernel development community (read 22.5.2022) Linux kernel coding style. URL:

https://www.kernel.org/doc/html/latest/process/coding-style.html

[47] Preston-Werner T. (read 22.5.2022) Semantic Versioning 2.0.0. URL:

https://semver.org/

[48] Kitware, Inc and Contributors (read 5.6.2022) CMake Reference Documentation. URL:

https://cmake.org/cmake/help/latest/index.html

[49] The libUSB project (read 22.5.2022) libUSB license. URL:

https://github.com/libusb/libusb/blob/master/COPYING

[50] The Free Software Foundation (read 22.5.2022) Frequently Asked Questions about the

GNU Licenses. URL: https://www.gnu.org/licenses/gpl-

faq.en.html#LGPLStaticVsDynamic

[51] The Apache Software Foundation (read 22.5.2022) APACHE LICENSE V2.0 AND

GPL COMPATIBILITY. URL: https://www.apache.org/licenses/GPL-

compatibility.html

[52] Gamble D. and cJSON contributors (read 22.5.2022) cJSON license. URL:

https://github.com/DaveGamble/cJSON#license

http://www.orangepi.org/orangepizero/
https://forum.armbian.com/topic/2099-crypto-engine-openvpn-related-aes-ni/
https://www.raspberrypi.com/news/raspberry-pi-os-64-bit
https://www.trustedfirmware.org/projects/mbed-tls/
https://github.com/Prototyyppi/RemoteHub
https://aws.amazon.com/pub-sub-messaging/
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://semver.org/
https://github.com/libusb/libusb/blob/master/COPYING
https://www.gnu.org/licenses/gpl-faq.en.html#LGPLStaticVsDynamic
https://www.gnu.org/licenses/gpl-faq.en.html#LGPLStaticVsDynamic
https://www.apache.org/licenses/GPL-compatibility.html
https://www.apache.org/licenses/GPL-compatibility.html
https://github.com/DaveGamble/cJSON#license

73

[53] Archwiki (read 29.5.2022) Mouse polling rate. URL:

https://wiki.archlinux.org/title/mouse_polling_rate

[54] Kelling I. (read 29.5.2022) evhz git repository. URL: https://git.sr.ht/~iank/evhz

[55] Ubuntu manuals (read 29.5.2022) qv4l2 - A test bench application for video4linux

devices. URL: http://manpages.ubuntu.com/manpages/impish/man1/qv4l2.1.html

[56] ciphersuite.info – Rudolph H.C & Grundmann N. (read 22.5.2022)

TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 evaluation result. URL:

https://ciphersuite.info/cs/TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256/

https://wiki.archlinux.org/title/mouse_polling_rate
https://git.sr.ht/~iank/evhz
http://manpages.ubuntu.com/manpages/impish/man1/qv4l2.1.html
https://ciphersuite.info/cs/TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256/

74

10. APPENDICES

Appendix 1 The handling of IN direction USBIP_CMD_SUBMIT in RemoteHub server

Appendix 2 The handling of OUT direction USBIP_CMD_SUBMIT in RemoteHub server

Appendix 3 The handling of USBIP_CMD_UNLINK in RemoteHub server

75

Appendix 1 The handling of IN direction USBIP_CMD_SUBMIT in RemoteHub server

76

Appendix 2 The handling of OUT direction USBIP_CMD_SUBMIT in RemoteHub server

77

Appendix 3 The handling of USBIP_CMD_UNLINK in RemoteHub server

