
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING
DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING

MASTER’S THESIS

DEEP LEARNING BASED PILOT
ASSIGNMENT IN MASSIVE MIMO SYSTEMS

Author Isuru Rathnayaka

Supervisor Dr. Markus Leinonen

Second Examiner Prof. Markku Juntti

(Technical Advisor Lucas Ribeiro)

June 2022

Rathnayaka I. (2022) Deep Learning Based Pilot Assignment in Massive
MIMO Systems. University of Oulu, Faculty of Information Technology and Electrical
Engineering, Degree Programme in Wireless Communications Engineering, 49 p.

ABSTRACT

This thesis proposes a solution to the pilot contamination problem in
massive multiple-input multiple-output systems by intelligently reusing pilot
sequences using deep learning. The considered single-cell network is a massive
machine-type communication system that has multiple sectors, each equipped
with a uniform linear array antenna. Channels between the base station and
the user equipment are modeled as spatially correlated and directive, where
the angular domain interference primarily dictates pilot contamination. The
main idea behind the proposed solution is that pilot sequences can be shared
by a set of user equipment that do not have overlapping angle-of-arrival
ranges at the base station, without causing significant mutual interference.
The problem is formulated as a regression problem where the loss function
represents the total pilot contamination in the network. A deep feedforward
neural network architecture is used with the unsupervised learning approach
to solve the problem, where the channel covariance matrices estimated at the
base station are used as the input. A tailored training approach is proposed
that is made up of two strategies as follows. First, the neural network
is trained with constrained user equipment locations where the constraint
gradually changes as the learning progresses. Second, the input data is
rearranged to make the feature extraction easier for the neural network.
Numerical experiments show that the proposed solution performs close to the
exhaustive search solution when trained on a single network instance. When
trained on a batch of training samples and validated on a batch of previously
unseen samples, the proposed method generalizes well and subsequently
performs on par with existing solutions.

Keywords: Massive machine-type communication, pilot contamination, pilot
reuse, deep learning, feedforward network, unsupervised learning

Rathnayaka I. (2022) Syväoppimiseen pohjautuva pilottien allokointi
massiivisissa moniantennijärjestelmissä. Oulun yliopisto, Sähkötekniikan tutkinto-
ohjelma, 49 s.

TIIVISTELMÄ

Tässä opinnäytetyössä ehdotetaan ratkaisua pilottisekvenssien keskinäisen
häiriön vaimentamiseksi massiivisissa moniantennijärjestelmissä
pilottisekvenssien älykkäällä uudelleenkäytöllä syväoppimisen avulla.
Tarkasteltu yksisoluinen verkko on massiivinen konetietoliikennejärjestelmä,
jakaantuen useaan sektoriin, joista kukin toimii lineaarisella ryhmäantennilla.
Tukiaseman ja käyttäjälaitteiden väliset kanavat ovat korreloituneita
tilatasossa sekä suuntavia, joissa kulmatason häiriö on ensisijainen
pilottihäiriön lähde. Ehdotetun ratkaisun pääajatus on, että pilottisekvenssit
voidaan jakaa sellaisten käyttäjälaitteiden kanssa, joilla ei ole päällekkäisiä
saapumiskulma-alueita tukiasemalla, täten aiheuttamatta merkittäviä
keskinäisiä häiriöitä. Ongelma muotoillaan regressio-ongelmaksi,
jossa kustannusfunktio edustaa verkon pilottihäiriön kokonaismäärää.
Ongelman ratkaisemiseksi käytetään syvää eteenpäin kytkettyä
neuroverkkoarkkitehtuuria ohjaamattoman oppimisen kanssa, jossa tulona
käytetään tukiasemassa arvioituja kanavakovarianssimatriiseja. Työssä
ehdotetaan kahta räätälöityä oppimisstrategiaa. Ensin neuroverkkoa
koulutetaan rajoitetuilla käyttäjälaitteiden sijainneilla, joissa rajoitus
muuttuu vähitellen oppimisen edetessä. Toiseksi syöttödata järjestetään
uudelleen, jotta piirteiden erottaminen neuroverkolle olisi helpompaa.
Numeeriset kokeet osoittavat, että ratkaisu on lähes optimaalinen, kun
se koulutetaan yhteen verkkorealisaatioon. Kun ehdotettu menetelmä
koulutetaan käyttäen harjoitusnäytteitä, ehdotettu menetelmä yleistyy hyvin
uusiin näytteisiin sekä antaa yhtä hyvän suorituskyvyn kuin olemassa olevat
ratkaisut.

Avainsanat: Massiivinen konetietoliikenne, pilottien keskinäinen
häiriö, pilottien uudelleenkäyttö, syväoppiminen, eteenpäin kytketty
neuroverkkoarkkitehtuuri, ohjaamaton oppiminen

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1 INTRODUCTION 8
2 BACKGROUND 11

2.1 Massive MIMO networks . 11
2.2 Massive machine type communication . 11
2.3 Machine learning. 11
2.4 Deep learning . 12
2.5 Types of deep neural networks. 13
2.6 Types of machine learning . 15
2.7 Existing solutions for pilot reuse and allocation . 16

3 NETWORK MODEL AND PROBLEM FORMULATION 19
3.1 Network model overview . 19
3.2 Correlated Rayleigh fading . 19
3.3 Local scattering spatial correlation model . 20
3.4 Covariance matrix distance metric . 22
3.5 Problem formulation. 23

4 STRUCTURE OF THE NEURAL NETWORK 24
4.1 Input layer . 24
4.2 Custom output layer. 26
4.3 Hidden layers. 28
4.4 Activation function . 28
4.5 Batch normalization . 29

5 TRAINING THE NEURAL NETWORK 30
5.1 Loss function . 31
5.2 Derivatives and backpropagation in the custom layer . 31
5.3 Testing the feasibility of solution . 32
5.4 Training with discrete UE locations . 34
5.5 Input preprocessing . 35
5.6 Training and validation process . 36
5.7 Impact of the validation set size . 37
5.8 Network simulation . 38

6 DISCUSSION 43
7 SUMMARY 46
8 REFERENCES 47

FOREWORD

This thesis work focuses on using deep learning to allocate pilot sequences to the
user equipment in a single-cell network. Specifically, it uses statistical channel state
information available at the base station to train a deep feedforward network to allocate
pilot sequences using unsupervised learning.

I would like to thank my supervisor Dr. Markus Leinonen and my technical advisor
Lucas Ribeiro, for the immense support and guidance. They constantly provided
technical guidance and encouragement. I extend my gratitude to Prof. Markku Juntti
for providing me the opportunity to work on this topic and for providing guidance.

I remember with appreciation my teachers during the master’s program as well as
throughout my life, and my colleagues. Special thanks go to my family members who
are always supportive. Last but not least, I would like to thank those whom I have not
mentioned by name here, but who helped me in various ways on this work.

This thesis is dedicated to the people of my home country Sri Lanka, who invested in
the free education that I was fortunate to receive, and who are now going through a hard
time.

Oulu, 23rd June, 2022

Isuru Rathnayaka

LIST OF ABBREVIATIONS AND SYMBOLS

AoA Angle of Arrival
ASD Angular Standard Distribution
BS Base Station
CNN Convolutional Neural Network
IoT Internet of Things
MIMO Multiple-Input Multiple-Output
mMIMO Massive Multiple-Input Multiple-Output
MTC Machine-Type Communication
mMTC Massive Machine-Type Communication
NASE Normalized Average Square Error
RNN Recurrent Neural Network
SER Symbol Error Rate
TDD Time Division Duplexing
UE User Equipment
ULA Uniform Linear Array

an ULA response vector
di,j Covariance matrix distance between user ith and jth equipment
fcn nth fully connected layer
gn Antenna gain
h Channel response vector
hn nth hidden layer
K Number of user equipment
M Number of antenna elements in the uniform linear array
om The set of τ neurons that represent power allocations for mth

user equipment
oi,j Neuron in the output layer that represents the power that

should be allocated by ith user equipment to jth pilot sequence
pi,j Fraction of power allocated by ith user equipment to jth pilot

sequence
R Channel covariance matrix

φ̄n Angle between the plane wave and the antenna axis
φ Nominal angle from the base station to user equipment
δ Random deviation from φ
σφ Standard deviation of δ
β Total average gain of antenna
τ Length of pilot sequence
π Set of orthogonal pilot sequences
πi ith orthogonal pilot sequence
ϕj Pilot sequence assigned to jth user equipment
µB Mini-batch mean
σ2

B Mini-batch variance
γ(k) Scale parameter of kth neuron in batch normalization

β(k) Shift parameter of kth neuron in batch normalization

()⊤ Transpose
()H Conjugate transpose
|.| Absolute value
tr{.} Trace of matrix
∥.∥F Frobenius norm

N Gaussian distribution
Lap Laplace distribution
U Uniform distribution
NC Circular complex Gaussian distribution

E() Expected value function
a() Activation function
arccos() Inverse cosine function
ceil() Ceil function: returns the smallest integer greater than or

equal to the given number
cmd() Covariance matrix distance
floor() Floor function: returns the largest integer less than or equal

to the given number
L Loss function of the neural network
s() Softmax function

8

1 INTRODUCTION

Since its start in the late 19th century, wireless communication has rapidly spread to
become the dominant form of communication in modern digital society. With the
widespread adoption of new wireless communication standards such as 5G and 6G,
wireless communication is spreading into countless new domains in technology. These
domains range from healthcare and automation to artificial intelligence and the internet
of things (IoT). With these changes, a new pattern has started to emerge: the machines
are talking to each other more and more. This type of communication, known as machine-
type communication (MTC) is crucial to technologies such as IoT and automation.

Motivation

Channel estimation is an important function in any wireless communication network to
use the channel efficiently and reliably. Since practical channels change with time, this
estimation should be done periodically. Channel estimation is usually done by sending
a predetermined sequence of symbols so that the receiver can use the received symbols
and previous knowledge about the transmitted symbols to estimate the channel. These
sequences of symbols are known as pilot sequences.

Since the channel estimation is done for the channels of several user equipment (UE) at
once, there should be no mutual interference between the pilot sequences used by different
UEs. Otherwise, the interference will lead to poor channel estimates and consequently
poor utilization of the channel.

However, the requirement that the pilot sequences should not interfere, that is the
requirement of orthogonal pilot sequences, causes problems. If the number of UEs
increases, longer pilot sequences are needed to achieve orthogonality (or low correlation).
Longer pilot sequences mean that most of the available time is spent estimating
the channel, reducing the amount of time available for transmitting the actual data.
This becomes a very serious problem in networks that have a large number of UEs
communicating with the same base station (BS). Massive machine-type communication
(mMTC) represents such a scenario.

In scenarios where a network/BS cannot afford to assign each UE a unique pilot
sequence, at least a portion of the pilot sequences must be assigned to more than one
UE. In other words, pilot reuse is inevitable. This pilot reuse leads to interference among
pilot sequences of different UEs. This problem is known as pilot contamination.

When multiple UEs are active, the base station or stations receive a superposition
of signals from those UEs. When pilot contamination happens, the BS has no way to
separate the signals, so the channel estimates for these UEs are going to be contaminated
as well. Furthermore, the interference makes the estimates of these channels statistically
dependent even though in reality the channels are statistically independent. [1 p. 252]

If the pilot sequences must be reused, they should be assigned to UEs intelligently to
reduce the pilot contamination. Attempting to formulate this problem as an optimization
problem usually leads to a non-convex objective function, due to the combinatorial nature
of all possible pilot assignments. Brute-force solutions are only practical with very small
networks due to exponentially increasing computational resource requirements. As a
result, there are several proposed methods for pilot allocation with different trade-offs
between complexity and resulting pilot contamination.

9

Research problem

The work presented in this thesis aims at giving a solution to the pilot contamination
problem using deep learning, which is a branch of machine learning. We can break down
the pilot contamination problem addressed in this thesis research into four components,
as detailed below. The first research question is if a neural network is capable of finding
a close to optimal pilot allocation using only the statistical channel state information
(CSI). This means the neural network cannot, for example, use the actual locations of
UEs since finding this information probably will not be available in a real-world system.

The second problem is if the neural network can be trained without providing labeled
data for reference. In other words, whether the task can be achieved with unsupervised
learning. This problem is important as in real-world applications the wireless network is
too large to find optimal pilot allocations as reference data. To this end, the proposed
design uses a loss function that reflects the amount of pilot contamination in the wireless
network but does not depend on the labels of input data. In supervised learning terms, the
loss of the neural network is the difference between the neural network’s pilot allocation
and the exhaustive search’s optimal pilot allocation. In unsupervised learning approach,
the loss function can be thought of as a proxy for that loss. By minimizing the value of
this loss function we aim to minimize the real loss.

The third problem is whether the neural network can provide an instance-optimal
solution to a single instance of the wireless network. In this stage, we train the neural
network on a single sample and evaluate if the network converges on a solution that is
close to the exhaustive search’s optimal solution.

The fourth and final problem is if the designed neural network can be trained on a
training set that represents the typical samples, so that it ultimately can learn general
patterns. In other words, whether the neural network can do good pilot allocations
when presented with previously unseen network and UE layouts. To be clear, these new
samples will have to share some system parameters (i.e., the number of UEs and the
length of pilots) with the training data to make sure that the network architecture will
not need any changes.

Scope

Similar to most research work, this work also has a self-imposed scope, as well as
assumptions and limitations. For example, the details of the cell structure of the network
and assumptions about initial estimates belong under these topics.

Deep learning offers multiple neural network architectures that one can choose from.
In this work, the feedforward network architecture is used.

The research presented here focuses on a network with a single cell that has several
sectors, which is a simplification of the more general multi-cell wireless network. It is
assumed that each sector is equipped with a uniform linear array (ULA). This helps with
resolving the problem of mirror angles associated with ULAs. [1 p. 240]

The research focuses on mMTC communication. This leads to the assumption that
the number of UEs a particular base station serves is higher than the number of unique
pilot sequences that the base station can use. If each UE is assigned a pilot sequence,
which is orthogonal to all other pilot sequences used, this means that the pilot sequences
have to be reused even within the same cell.

10

It is assumed that the network uses time-division duplexing (TDD) protocol. This
means that the same frequency band is used for both uplink and downlink transmission.
Therefore, using the property of channel reciprocity, the estimate of the uplink channel
(UE to BS) can be used to derive an estimate for the downlink channel (BS to UE) [2].
This means that only the base station has to perform channel estimation, resulting in
reduced signaling overhead.

Finally, this thesis assumes the massive MIMO (mMIMO) property which states that a
mMIMO base station is equipped with more antennas than the number of single-antenna
UEs that it communicates with simultaneously [1 p. 217].

Previous work used in implementation

In [3], Ribeiro et al. proposed a pilot reuse strategy to allocate a pool of orthogonal pilot
sequences in a single-cell mMIMO scenario. Therefore, several components in the system
model were directly adopted from this work. Here, similarly, we propose a new pilot
allocation strategy to reduce pilot contamination in such scenarios. The main difference
between the two approaches is that this thesis research proposes a learning-based solution,
as opposed to the channel charting solution in [3].

Several components were directly reused or modified to generate input data for the
deep neural network model. The channel and network models as well as the covariance
matrix distance metric calculation are such components.

Apart from that, the interference metric that is used to calculate the loss of the neural
network is also taken from [3].

11

2 BACKGROUND

2.1 Massive MIMO networks

Massive MIMO does not have a widely used single concise definition. This thesis uses the
following definition adopted from Björnson et al. [1 p. 217]. Let us denote the number
of antennas in the base station by M and the number of UEs the base station serves
simultaneously on each time/frequency sample by K. Then the network is a massive
MIMO network if it meets the criteria M ≫ 1 and M/K > 1.

The main advantage of mMIMO comes through using spatial division multiple access
to achieve a multiplexing gain by serving multiple users at the same time using the same
frequency range. It uses more BS antenna elements than UEs (M/K > 1) to reject
interference by spatial processing. [1 p. 217]

2.2 Massive machine type communication

In human-type communication, the devices are operated directly by humans. On the
other hand, in MTC the devices are not directly operated by humans. Traditional
wireless networks are designed to support human-type communication since most of the
UEs used to be human-operated devices such as mobile phones. However, machine-
type communication has gained more attention with the increase in popularity of new
concepts such as the IoT and the internet of everything [4]. This trend has led to newer
communication standards to increasingly support MTC. The 5G standard also supports
mMTC technology [4].

In mMTC, the network can provide connectivity to up to tens of billions of devices
[4, 5, 6]. Because of this massive number of UEs and some other factors such as small
packet sizes, uplink-dominated transmissions, low data rates, sporadic user activity, and
low-complexity and low-energy UEs, mMTC needs completely different technologies
instead of the current technologies which are targeting human-type communication.
Intra-cell pilot reuse, compressed-sensing-based multiuser detection, and sparse code
multiple access are examples of such technologies. Because of the high complexity and
lack of models for these problems, machine learning is a promising option that could
provide good solutions. [4]

2.3 Machine learning

Since ancient Greece, humans have dreamed about creating machines that can think.
Since programmable computers were created, computer scientists have tried to use
computers to build such machines. Early efforts in this field have mostly focused on hard-
coding human knowledge to create devices that can think. However, these efforts have
not been significantly successful due to the sheer complexity of accurately describing the
world that the devices should learn about. This realization has caused later generations
of researchers to decide that the machine should be able to learn on its own without being
explicitly programmed on these complex topics related to human thought and intuition.
This is the beginning of machine learning. [7 pp. 1-2]

12

There is no single universally agreed-upon definition of machine learning. In simple
terms, machine learning can be defined as the capability of a system to obtain knowledge
on its own by extracting patterns from raw data instead of depending on hard-coded
knowledge [7 p. 2]. This definition of machine learning is considered in later sections of
this thesis.

2.4 Deep learning

How we choose to represent the input data has a vast impact on the performance of the
machine learning algorithm. In complex problems, it is not a trivial task for humans to
decide the best way to formulate input data or features. As a solution to this problem,
we can use machine learning to learn the best representation of data. [7 pp. 3-10]

Let us consider an image processing problem. It is easy to learn simple features such as
edges, directly from raw data. However, learning complex features such as shapes directly
from raw data is much more difficult. This represents a problem that is seen in some
complex machine learning problems. In general terms, it can be said that, it is difficult
to learn high-level, abstract features directly from raw data. Deep learning solves this
problem by building complex representations using other simpler representations (e.g.,
shapes can be represented by using edges). [7 pp. 3-10]

Deep learning can be defined as a type of machine learning in which the world is
represented as a hierarchy of concepts. Each of these concepts is defined in terms of
similar but simpler and less abstract concepts. Figure 1, adopted from [7 p. 10], shows
the different components of a typical deep learning system. The shaded boxes represent
the components that are capable of learning from data. [7 pp. 3-10]

Figure 1. Different parts of a deep learning system.

Neural networks, also called artificial neural networks, is the result of this deep
learning approach. Neural networks were originally inspired by biology. Since the 1940s,
researchers have tried to implement algorithms that are inspired by the biological neural
network organization in the human brain. More specifically, these algorithms try to
represent neurons and connections among them. The development of these algorithms is
usually broken down into three periods. [7 p. 14]

The first period or wave started with cybernetics during the 1940s-1960s which was
based on theories of biological learning. The most notable implementation of this period
is the perceptron model which is an abstract model of a neuron in a hypothetical nervous
system. This view has been inspired by the successes of boolean logic and digital
computers. A perceptron provides a method to train a single artificial neuron for certain
tasks by learning the proper weights. [8 p. 387]

With time, some researchers identified the limitations of these linear models. Linear
models’ inability to learn even simple non-linear behaviors such as the XOR function

13

caused a loss of confidence and the popularity of neural networks dropped for some time.
[7 p. 15]

The second wave of development started with the so-called “connectionist” approach
of cognitive science in the 1980-1995 time period. The key idea of connectionism is that
when a large number of simple computational units (e.g., perceptrons) are networked
together they can achieve intelligent behavior. Because of this, neural networks with
multiple layers of neurons/perceptrons became popular. Since the layers apart from the
input and output layers are not directly visible, these middle layers got the name hidden
layers. In [9], Rumelhart et al. came up with the back-propagation algorithm where the
errors calculated in the final layer of the neural network are propagated backward to all
the hidden layers using the chain rule in calculus. These propagated error values are used
to update the weights of connections in the network, using a method such as gradient
descent or stochastic gradient descent. This algorithm became popular and successful at
training these new neural networks, which had multiple layers of neurons between the
input and the output. This event resulted in a revival in deep learning. [9]

Around the mid-1990s, deep neural network research came across some issues. On one
hand, researchers were beginning to believe that neural networks were hard to train. This
was probably because of the limitations of computational resources at the time and not of
the algorithms. On the other hand, unrealistic expectations and underperforming results
combined with the faster advances in other types of machine learning again caused a loss
of interest in neural networks. [7 p. 18]

This again changed in 2006 with the third and current wave of neural network research.
In 2006, Hinton et al. proposed a method in [10] to successfully train a type of deep neural
network called a belief network that has many hidden layers and dense connections (with
dense connections each neuron in a hidden layer connects to all neurons in the previous
hidden layers) among layers. This method relied on using a fast, greedy algorithm to
provide a good initialization for weights so that the slow learning phase gets a good
starting point. Other researchers successfully used this strategy in their works. This gave
researchers the confidence that very deep neural networks can now be trained successfully.
This wave also popularized the term “deep learning” indicating the ability of researchers
to train very deep neural networks now. [10] [7 p. 19]

2.5 Types of deep neural networks

The classic example of a deep learning model is the deep feedforward network, also
known as multilayer perceptron (MLP) [7 p. 168]. These models are called feedforward
as the information only flows in the forward direction, from input through intermediate
layers to output. There are no feedback connections where the output (or part of the
output) is fed back into earlier layers. Apart from being the first and fundamental type
of deep learning model, the feedforward network model also provided a starting point for
specialized models that were conceived later. Convolutional neural networks (CNN) and
recurrent neural networks (RNN) are examples of such models. [7 p. 168]

Figure 2 shows the typical layout of a feedforward neural network. In this example,
the neural network consists of two hidden layers in between the input and output layers.
This is the type of neural network architecture considered in this thesis.

14

Figure 2. Feedforward neural network architecture.

Even though the following network architectures are outside the scope of this research,
they will be briefly discussed as they can provide some insights and ideas for the future
development of this topic.

CNNs are a specialization of feedforward neural networks, that has origins in image
processing applications. This model is generally preferred when the input data has a
grid-like topology. Time series data which has a 1D grid structure and image data
which has a 2D grid structure are examples. The difference in these networks is that
at least in one layer, the convolution mathematical operation is used instead of matrix
multiplication. When applicable, this lets the network greatly reduce computational
complexity by reusing some learned features. [7 p. 330]

Figure 3 shows a typical layout of a CNN. It is very common to have a few fully
connected hidden layers at the end of a CNN. Apart from that, the remaining layers
are going to be convolutional layers and layers that simply reduce the dimensions of the
input.

RNNs are an extension of feedforward neural networks that are used to process
sequential data such as voice and text. The sequence-based specialization makes it
possible for these models to scale up to much longer sequences than what is practically
possible for models without sequence specialization (e.g., feedforward or convolutional
networks). Apart from that, unlike most neural network models, most recurrent network
models can process sequences of variable length. [7 p. 373]

15

Figure 3. Convolutional neural network architecture.

2.6 Types of machine learning

Machine learning algorithms are divided into two main classes as supervised and
unsupervised learning. The difference between these two types lies in the type of
information that is provided to the algorithm. [7 p. 104]

Supervised algorithms go through (or experience) a dataset and learn how to associate
each example in the dataset with a predetermined label or a target, such as a class in
classification problems. This is the approach that is most prominent in most current
research as well as applications. Popular types of machine learning such as classification
and regression belong under supervised learning. [7 p. 105] [11]

In unsupervised algorithms, there are no targets or labels. Instead, the algorithm
experiences the dataset and tries to learn useful properties of its structure. This
approach is very popular for tasks where we try to learn the inherent structure of data.
Some popular algorithms such as k-means clustering, principal component analysis, and
autoencoder fall under unsupervised learning. The machine learning algorithm model
used in this thesis belongs under unsupervised learning algorithms. [7 p. 105] [11]

Apart from these two categories, there is a third category of machine learning known
as reinforcement learning. In reinforcement learning, an autonomous agent has to learn
how to perform a given task through trial and error without human guidance. However,
this agent can perceive its environment as well as calculate a predetermined reward.
The agent can perform trial actions at random and observe the resulting change in the
environment. Then these observed changes are used to find rewarding actions.

Additionally, there is another emerging type of machine learning known as semi-
supervised learning. This method lies in between supervised and unsupervised machine
learning approaches. Semi-supervised learning uses a small amount of labeled data with
a large amount of unlabeled data for learning. This trait becomes very useful in some
real-world applications due to reasons such as labeling data being difficult/expensive (e.g.
speech to text applications) or the application having a continuous stream of data (e.g.
social media feeds/messages). Naturally, this method is not applicable always. However,
when certain conditions are met, semi-supervised learning is a very useful tool. [11]

Types of machine learning tasks

Machine learning tasks can be described by how machine learning systems should
process examples. There are several widely used types of machine learning problems

16

such as classification, regression, transcription, and machine translation. From these,
classification and regression tasks are widely used because of their applicability in a wide
range of applications.

In classification tasks, the machine learning algorithm is asked to assign the input to one
of the k predefined categories. Let us denote the input of the machine learning algorithm
by the n dimensional vector x and the output by the scalar or vector y. Usually, the
learning algorithm has to learn a function f : Rn → {1, . . . , k} such that when y = f(x)
is computed, the input x is assigned to one of the k categories by the resulting y. Object
recognition tasks such as face recognition are classification tasks. [7 p. 100]

In regression tasks, the machine learning algorithm is asked to predict a numeric
value for a given input. The learning algorithm has to learn a function in the form
of f : Rn → Rm to perform this task. There are several types of regression such as simple
linear regression, univariate regression, and multivariate regression. An example of a
regression problem is predicting commodity or securities prices. [7 p. 100]

The pilot allocation problem can be formulated as either a classification problem or
a regression problem. Inspired by [12], the pilot allocation problem is formulated as a
regression problem; further details are presented in section 4.2.

2.7 Existing solutions for pilot reuse and allocation

Several researchers have proposed methods to allocate pilot sequences to the user
equipment when pilot signals are reused in mMIMO networks [3, 13, 14, 15].

As explained in the introduction chapter, it is difficult to solve the pilot allocation
problem by an analytical or brute-force method. Generally, a better pilot allocation
result (lower interference) usually requires higher computational resources. Therefore,
many researchers have come up with alternative solutions where the solution is a
trade-off between computational complexity and the capability to mitigate the pilot
contamination.

Although there are many existing solutions to the pilot contamination problem, this
thesis is only presenting three existing methods in the following sections. The first two
methods use the same information that the proposed solution uses as a starting point,
which is channel covariance matrices. The third approach is based on deep learning.
The proposed method is compared with these approaches, using numerical evaluations,
in later chapters.

Channel charting based pilot allocation

Channel charting is an unsupervised method that can learn the radio geometry of MIMO
networks. The channel charting framework was introduced by Studer et al. in [16]. This
approach uses characteristics of multi-antenna elements in mMIMO systems to learn the
radio geometry of the antennas’ surrounding area. The channel chart captures the spatial
geometry of the network in the sense that UEs that are close in space are also going to
be close in the channel chart, and vice versa. [16]

Channel charting is done through statistical CSI data gathered at base stations.
Channel features are extracted from CSI and then used with a dimensionality reduction
technique (such as principal component analysis), a deep neural network (such as

17

an autoencoder), or some manifold learning technique to generate the channel chart.
Because of this approach, the channel chart generation is fully unsupervised. Figure 4,
which is taken from [16], shows an overview of the channel charting process. [16]

Figure 4. Overview of channel charting.

A concrete example for the network element that generates the channel chart is a
base station with multiple antennas in a cellular network. Then the area covered under
charting would be the served area of the cell. [16]

Channel-charting-based pilot allocation was first proposed by Ribeiro et al. in [17].
This method uses the property of channel charts that the distance between two UEs in
the channel chart can give an idea about the amount of interference between two UEs.
The core idea of the proposed method is that this distance can be used to estimate
the pilot contamination that would happen if both UEs were assigned the same pilot
sequence.

Statistical greedy pilot scheduling

Statistical greedy pilot scheduling (SGPS) is a pilot allocation algorithm introduced in
You et al. [13]. This algorithm is applicable in a single-cell scenario and uses the channel
covariance matrices computed from CSI as input.

The main idea behind this approach is that the channel covariance matrices of UEs
that are using the same pilot sequence should be as orthogonal as possible. The reasoning
behind this strategy is that when the channel covariance matrices of two UEs are
orthogonal, the angle of arrival (AoA) ranges of those two UEs are also non-overlapping.
This strategy in turn makes sure that the UEs that are using the same pilot sequences
do not have overlapping AoA intervals. If overlapping AoA is unavoidable, the algorithm
selects the UEs (assigned with the same pilot sequence) so that the overlap would be as
small as possible.

Deep learning based pilot allocation

The field of deep learning is seeing rapid improvements and an increase in popularity
lately. Accordingly, deep learning has found its way also to the pilot allocation problem
in the literature. Two such approaches are proposed in [12] and [18].

Both of these approaches use a feedforward neural network for learning. The input of
the network is some information that depends on the location of the UEs. The output
layer represents how the pilot sequences should be allocated. Both approaches use an
objective function that would reduce in value when the pilot allocation represented by
the output layer gets better at reducing the interference among UEs.

18

Even though the overall idea is similar, the two approaches vary widely. A supervised
learning approach is used in [18], where the input is labeled data. The input of the neural
network is the real locations of the UEs. The output layer assigns an orthogonal pilot
sequence to each UE. Each pilot sequence is only used once in a given cell.

On the other hand, [12] uses an unsupervised learning approach. Large-scale fading
coefficients are used as the input of the neural network. Pilot sequences to be assigned to
the UEs are weighted sums of orthogonal pilot sequences. The output layer of the network
gives the power that should be allocated to each orthogonal pilot sequence for each UE.
The proposed method is based on this approach. However, there are some differences
such as using channel covariance matrices instead of large-scale fading coefficients as the
input and using a pilot contamination metric as the loss function instead of directly using
channel estimation error.

Therefore, we can see that the deep learning approach can offer a wide range of methods
to solve the pilot allocation problem.

19

3 NETWORK MODEL AND PROBLEM FORMULATION

Since the conducted research is centered on a wireless communication network, we need a
theoretical model to simplify some of the complex real-world entities and phenomena such
as the wireless channel and the nature of scattering in the network. These models need to
be complex enough to provide a close enough representation of the real world. However,
unnecessary details will complicate the models and make them hard to simulate.

As these models are simplifications of reality, certain assumptions are made when the
model is applied. Apart from that, inevitably there are limitations of the model. Finally,
there are some statistics and metrics that are used to extract useful information from the
raw statistical CSI data. These models, assumptions, limitations, metrics, and problem
formulation are presented in this section.

3.1 Network model overview

The wireless network model defined in Chapter 2 is a single-cell network with K UEs.
The BS has M antenna elements. There is a pool of τ pilot sequences of length τ , which
are orthogonal to each other. The BS can assign them to UEs. It is assumed that the
number of UEs K is larger than τ , meaning that at least a portion of the pool of pilot
sequences must be reused.

The set of τ orthogonal pilot sequences is denoted by π. These pilot sequences are
treated as complex in this work. The pilot sequence assigned to UE i is represented by
ϕi where i ∈ {1 . . . K}. Each ϕi pilot sequence is formulated as a linear combination of
the set of orthogonal pilot sequences π. This approach is adopted from [12] which is also
a neural network based solution to the pilot allocation problem. In [12], formulating the
assigned pilot sequence as a linear combination of orthogonal pilot sequences has been
inspired by the pilot design in [19]. If we take the set of orthogonal pilot sequences as
π = {π1, π2, . . . , πτ }, we can write the pilot sequence allocated to UE n as

ϕn = pn,1π1 + pn,2π2 + . . . + pn,τ πτ =
τ∑

i=1
pn,iπi, (1)

where the weights pn,i represent power allocations for each orthogonal pilot sequence that
is used to create the pilot sequence for UE n.

3.2 Correlated Rayleigh fading

Details of the theoretical channel model used in the research as well as why it was chosen
and related assumptions are explained in the following text.

There are several aspects of a channel model. The first and simplest aspect is the
propagation type. Propagation type can be broadly categorized as line-of-sight (LoS)
and non-line-of-sight (NLoS). Since we are concerned about massive MTC systems, UEs
in general will not have a line of sight path with a base station. Therefore, the signal
propagation should be modeled as NLoS.

Atmospheric conditions such as rainfall and being shadowed by different objects cause
signals to attenuate. This is known as fading. Fading changes with time and frequency.

20

The maximum bandwidth over which the signal fading is highly correlated is known as
the coherence bandwidth. If this coherence bandwidth is larger than the bandwidth of
the signal that is being transmitted, it is known as a flat-fading channel. This thesis
considers a flat-fading channel. [20]

When the BS has multiple antennas, the channel response becomes a vector. Therefore,
like any other vector, it is defined by its magnitude and direction. For a fading channel,
both of these are random variables. The channel model defines the distribution and
statistical dependence or independence of these random variables.

If the channel is spatially uncorrelated, the channel gain is the same in any direction
in 3D space. Otherwise, the channel is spatially correlated. In [1 p. 222], Björnson et
al. formally define spatially correlated and uncorrelated channels as follows. A fading
channel h ∈ CM is spatially uncorrelated if the gain of the channel ∥h∥ and the direction
of the channel, which is defined by the unit vector h/∥h∥, are independent random
variables and the direction of the channel is uniformly distributed over the unit sphere
in the space CM .

As previously mentioned, the propagation environment in mMIMO mMTC networks
is in general NLoS. Furthermore, all practical channels are spatially correlated. This is
primarily because of the non-uniform radiation patterns of antennas and the properties
of the propagation environment making certain directions better suited to carry radio
signals. Finally, the Rayleigh distribution is frequently used to model NLoS channels.
Because of these reasons, this thesis models the channel between UEs and the base station
as a correlated Rayleigh fading channel. Therefore, the channel vector for ith UE can be
written as

hi ∼ NC(0M , Ri), (2)

where Ri ∈ CM×M is the positive semi-definite spatial covariance matrix and 0M ∈ CM

is the M dimensional vector with all zeros. [1 p. 223]

3.3 Local scattering spatial correlation model

In the single-cell network scenario, the pilot interference predominantly depends on the
AoA of UEs. If two UEs have non-overlapping AoA the potential mutual interference is
not significant. If there is an overlap, the interference between the UEs increases as the
overlap increases. Therefore, it is beneficial to parameterize the scattering model with
the azimuth angle from the BS to UEs. To meet this target, this thesis uses a tractable
scattering model from [1 p. 235]. This scattering model provides the channel covariance
matrix for an NLoS channel between any UE and a ULA. [1 p. 235]

We can make a few reasonable assumptions about the network. The first one is that the
BS antenna is located at an elevated position and therefore does not have any scatterers
close to it (in other words, in its near field). This is reasonable since BS antennas are
usually mounted on towers or tall buildings. The second assumption is that the scattering
is localized around the UE. This is assumed because the BS has no scatterers in its near
field and the multipath components that are due to reflections from scatters far from
both the UE and the BS will most probably offer little power at the BS. [1 p. 235]

21

Under these assumptions, each multipath component from the UE arrives at the ULA
in the BS as a plane wave. By denoting the angle between the plane wave and the
antenna axis as φ̄n, the array response for the nth path an ∈ CM , can be written as

an = gn[1 e2πjd sin(φ̄n) . . . e2πjd(M−1) sin(φ̄n)]⊤, (3)

where d is the spacing between antenna elements in the ULA measured in terms of the
number of wavelengths. The angles φ̄n are independent and identically distributed (i.i.d.)
random variables with a probability density function (PDF) f(φ̄). Gains gn ∈ C are i.i.d.
random variables with zero mean and variance E{|gn|2} that represent both gain and the
phase rotation of the particular path. This variance is also the average gain of the nth

multipath component. Therefore, the total average gain is the sum of variances denoted
by β = ∑Npath

n=1 E{|gn|2}.
Now the channel response vector h ∈ CM can be written as the sum of array responses

for all Npath multipath components as

h =
Npath∑
n=1

an. (4)

Due to the multidimensional central limit theorem we get the result

h → NC(0M , R), Npath → ∞, (5)

where the covariance matrix R = E{∑
n anaH

n }. Now, each element of R can be calculated
as:

Rl,m =
Npath∑
n=1

E{|gn|2}E{e2πjd(l−1) sin(φ̄n)e−2πjd(m−1) sin(φ̄n)}

= β
∫

e2πjd(l−m) sin(φ̄)f(φ̄)dφ̄.

(6)

From equation (6), we can see that the elements of R only depend on the difference
between the column and row indices instead of the indices themselves. That means R is
a Toeplitz matrix. [1 p. 236]

Since we assumed that the BS has no scatterers in its near field and that scattering
is localized around the UE, we can further assume that all multipath components
originate from a scattering cluster around the UE. Let φ denote the deterministic
nominal angle from the BS to UE and δ denote the random deviation from φ, which
has zero mean and a standard deviation of σφ, as shown in Figure 5. Then the angle
between the plane wave and the antenna axis can be written as φ̄ = φ + δ. This
model is referred to as the local scattering model. [1 p. 236] Several distributions
are used to model the random deviation δ in existing literature such as the Gaussian
distribution δ ∼ N (0, σ2

φ) [21, 22], the Laplace distribution δ ∼ Lap(0, σφ/
√

2) [23] and
the Uniform distribution δ ∼ U [−

√
3σφ,

√
3σφ] [21, 23, 24, 25, 26]. The scattering model

with uniformly distributed random deviation in angle is also known as the one-ring model,
as the scatterers can be assumed to lie on a circle with the UE at the centre. [1 p. 236]

The standard deviation σφ dictates how large the deviations of φ̄ can be from the
nominal angle φ. Accordingly, standard deviation σφ is also known as the angular
standard deviation (ASD). In urban environments, σφ is typically assumed to be about
10◦. In flat rural areas where the channels are more directive, it is going to be smaller,
whereas in rural areas with hills it is usually larger. [1 p. 235-236]

22

Figure 5. Propagation under local scattering model.

3.4 Covariance matrix distance metric

The metric used to estimate the angle between two user equipment (from the point of
view of the base station) is described in this section. This estimated angle is then used as
a basis to quantify the interference between the two user equipment if they were assigned
the same pilot signal.

Spatial orthogonality is a metric used to measure the difference between two covariance
matrices. If we denote the trace operation by tr{.}, two covariance matrices R1 and R2
are said to be orthogonal if they meet the criterion

tr(R1R2) = 0. (7)

Covariance matrix distance (CMD) extends this idea to give a numeric value in the
range from 0 to 1 to the orthogonality between two channel covariance matrices. CMD
between two channel covariance matrices R1 and R2 is defined as

cmd(R1, R2) = 1 − tr(RH
1 R2)

∥R1∥F ∥R2∥F

, (8)

where ∥.∥F represents the Frobenius norm and RH is the conjugate transpose of R. When
the two covariance matrices are orthogonal, their inner product becomes zero. This gives
the CMD a value of one which is the highest value. When the covariance matrices are
equal or equal up to some scaling factor, the inner product achieves the highest value.
To make the lowest possible value of CMD zero, the inner product is normalized by the
norms of both matrices. [27, 28]

We can derive the complement of the CMD metric as

δ(R1, R2) = tr(RH
1 R2)

∥R1∥F ∥R2∥F

, (9)

which represents the similarity between the two covariance matrices. This can be used
as an estimate of the angle between two UEs (from the point of view of BS). This angle
estimate is useful when we are later trying to quantify the potential amount of interference
between two UEs (that will be caused by assigning the same pilot sequence to those two
UEs).

Originally the CMD metric has been used to quantify how much the channel covariance
matrix and in turn the channel statistics have changed for a particular channel [28].

23

That is why the CMD metric focuses on dissimilarity. Since we are more focused on the
similarity of two covariance matrices, and in turn their corresponding channels, the use
of the corresponding similarity metric makes more sense herein.

3.5 Problem formulation

This research treats pilot allocation as a regression problem. Therefore, the problem
needs to be formulated as a minimization (or maximization) problem. To this end, the
total pilot contamination metric introduced in Ribeiro el at. in [3] is used.

As linear combinations of orthogonal pilot sequences are assigned to UEs, the pilot
sequences used by different UEs have varying degrees of orthogonality to each other. Let
us consider the pilot sequences assigned to two UEs n and i as ϕn and ϕi, respectively.
We can measure the orthogonality between these two pilot sequences as the inner product
ϕ⊤

n ϕi.
Next, a metric is needed to estimate the mutual interference of a pair of UEs depending

on their locations. In the single-cell scenario, we assume that, the interference is mainly
affected by the difference in the AoA of the UEs at the BS, which can be represented by
the orthogonality between the channels of the two UEs. We represent the orthogonality
between the channels using the orthogonality of their covariance matrices. The metric in
Equation (9) is used for this purpose.

Let K = {1, . . . , K} denote the set of UEs. By combining these two metrics and
normalizing by the number of orthogonality calculations and the pilot length, an
expression for the total interference in the network can be derived. Therefore, this work
aims to minimize the total pilot contamination, proposed in [3], in the network by solving
the minimization problem

minimize
ϕn,ϕi

1
τK(K − 1)/2

∑
n∈K

∑
i>n

δ(Rn, Ri)ϕH
n ϕi, (10)

where the pilot sequence assigned to ith UE is denoted by ϕi (which is a weighted sum
of orthogonal pilot sequences in π) while δ(Rn, Ri) was defined in (9).

24

4 STRUCTURE OF THE NEURAL NETWORK

There are several architectural choices that shape the neural network implementation.
These choices include selecting the type of neural network architecture to use, inputs and
outputs of the network, and the design of the layers of the network.

The first choice is the type of network architecture that needs to be used. Feedforward
network architecture is an obvious and safe choice due to its simplicity and applicability
to a wide range of problems. Since the network input is spatial data in some sense, CNN
architecture is another possible choice. The remaining architecture choices are either
not suitable for the data and the problem (e.g., sequence models such as RNN) or seem
overly complicated (e.g., inception network, residual neural network) at this stage.

The CNN architecture can focus on small spatial areas individually to reuse weights and
reduce computational complexity. This is an attractive property in the pilot allocation
problem as the highest interference is caused by UEs that are spatially close. However,
this creates a constraint. Now the neural network input data should be arranged so
that the data from UEs that are spatially close is also given to adjacent input nodes in
the network. In other words, the knowledge about UEs real locations is required at the
base station. While this could be practical in human-type communication systems it is
highly unlikely that an mMTC system can provide the base station with real locations
of billions of devices. This problem makes the CNN architecture, even though attractive,
not practical. Due to above mentioned reasons, the feedforward network architecture is
used in this work.

4.1 Input layer

We provide the raw data to our neural network through the input layer in the form of
numbers. In our case, this input data should be extracted from the statistical CSI
data computed at the base station. The choice of input data is important for the
accuracy of the neural network output. Additionally, the complexity of the final network
depends on the choice of input data. Finally, we can optimize our solution by intelligently
preprocessing the CSI data before providing it to the network.

First of all, we should look at the use of real UE locations as the neural network input.
Kim et al. [18] have used the real location of UEs as the input of a neural network that
allocates pilot sequences as the output. As explained in the previous section, it is not
practical to find the real locations of all UEs in an mMTC network. The UEs in MTC
systems likely will not be able to determine their locations. Further, due to the sheer
number of devices, it is not feasible to measure the locations of devices one by one.
Because of these constraints, it was decided not to use the real locations of UEs as the
input to the neural network.

Now turning to CSI data, several types of CSI data can be used as an aid in the pilot
allocation problem. The first and simplest would be the large-scale fading coefficients
(the estimated gains). Usage of this metric can be seen in the literature frequently. An
example is Xu et al. [12], where the channel large-scale fading coefficients are used as
the input of the neural network. The metric could become very useful in some situations
making it preferable to other options. One situation is when the channel model that
is used is assuming uncorrelated fading. Another situation is when pilot sequences are

25

reused across cells in multi-cell networks without reuse within the same cell. Zhu et al.
[29] use large-scale fading coefficients in a problem where both of these properties are
present.

The other option is using channel covariance matrices estimated at the base station.
The main advantage of this metric is that the covariance matrices contain information
about the location of UEs relative to the BS if the channel is spatially correlated. As
practical channels are generally correlated, incorporating covariance matrices into the
neural network is beneficial. This is true in this work as the used channel model has
spatial correlation. You et al use this approach in their work which is also assuming a
spatially correlated channel [13].

However, there is a problem with using the covariance matrices as the neural network
input as well. If we take the number of antennas at the base station as M and the
number of UEs active at a moment in the cell as K, the total number of neurons needed
in the input layer is M2K. Strictly speaking, this can be reduced to KM(M + 1)/2. We
assume M ≥ K under the massive MIMO definition. Therefore, as the number of UEs
in the cell grows, the number of input neurons in the network scales with its third power.
This results in a more complicated neural network and resource-intensive training (time,
memory, and storage).

Finally, there is the option of using both the large-scale fading coefficients and channel
covariance matrices as neural network inputs. Covariance matrices contain information
on both the direction and distance of UEs. Large-scale fading coefficients can still
supplement the distance information since it contains the distance information more
directly in the form of gains.

In our case, we are considering a network with a single cell. Therefore, the pilot
contamination predominantly depends on the angle of UEs relative to the base station.
Furthermore, it is beneficial to extract only the directional information from covariance
matrices since the distance information contained in covariance matrices in the form of
power is not needed in our case. This is where the previously discussed CMD metric in
Equation (8) is important.

The metric in (9) can be thought of as the cosine of the angle between the two
covariance matrices. Strictly speaking, the angle θ (0 ≤ θ ≤ π/2) between two covariance
matrices can be defined as

θ1,2(R1, R2) = arccos tr(RH
1 R2)

∥R1∥F ∥R2∥F

. (11)

Therefore, we can use the CMD metric or some other metric derived from it as the
input to our neural network. This also provides some preprocessing to raw data before
it is fed to the network. The obvious stage of preprocessing is the division of matrix
product by the norms of both matrices. This removes power information stored in the
covariance matrices from the metric, getting rid of distance information. The second
most important feature of this metric is that it reduces the size of neural network input.
Now only K2 values need to be provided to the neural network (Strictly speaking, this

26

can be reduced to K(K − 1)/2). These K2 CMD values can be arranged in a matrix
where the row and column indices represent the indices of the UEs as

d1,1 d1,2 d1,3 . . . d1,K−1 d1,K

d2,1 d2,2 d2,3 . . . d2,K−1 d2,K

d3,1 d3,2 d3,3 . . . d3,K−1 d3,K
...

dK,1 dK,2 dK,3 . . . dK,K−1 dK,K

 , (12)

where di,j represents the CMD between ith and jth UEs. However, there is no need
to calculate all of these values, because the matrix is symmetric and diagonal values
are constants. For the CMD metric, all diagonal entries are zero since the covariance
matrices are the same. If we are calculating the metric in equation (9) the diagonal
values will be ones. Furthermore, these metrics do not depend on the ordering of the
covariance matrices. That is cmd(R1, R2) = cmd(R2, R1) and δ(R1, R2) = δ(R2, R1).
These properties mean that we only have to calculate the upper (or lower) triangular
values, meaning only K(K − 1)/2 input neurons are needed.

Figure 6 shows the input layer of the neural network that was derived after the previous
considerations. CMD values are picked from the matrix in column-wise (or row-wise)
order in this illustration. The downside of this input layer is that if the number of

Figure 6. Input layer of the neural network.

active users changes, the length of the layer has to be changed. This means that a neural
network trained on a particular number of users cannot be reused with a different number
of users. However, this drawback is present in every neural network based solution for
pilot allocation in literature since it is hard to work around this problem.

4.2 Custom output layer

The output layer of the neural network should represent the pilot allocation to all the
active users. If we take the number of orthogonal pilot sequences available as τ , we can
represent the pilot allocations as K one-hot vectors of length τ . This gives us an output
layer with Kτ neurons.

It is possible to reduce the number of neurons in the output layer below this number.
This will help reduce the complexity of the network somewhat which improves both
backpropagation and forward propagation time. However, this output layer is beneficial

27

for two reasons. The first is that it makes the formulation of the loss function and in
turn the formulation of its derivatives less complicated. The second reason is that having
effectively τ neurons to represent the pilot signal allocated to a UE lets us generalize the
problem by assuming that each UE is assigned a linear combination of all orthogonal
pilot sequences as shown in (1).

We must make sure that the power allocation coefficients pn,i in (1) always sum to a
constant. This is done to ensure that the solution given by the neural network does not
break any power constraints. We use the softmax function to meet this requirement. The
softmax function s : Rn → (0, 1)n is defined as

s(xi) = exi∑n
j=1 exj

, (13)

where x = [x1, . . . , xn] is an n dimensional vector. Each layer of a neural network has
an associated activation function. This activation function decides whether each neuron
of the layer will be activated and carried forward to the next layer. Another way to
understand the activation function is that it adds non-linearity to the output function of
the neural network [30]. The softmax function given in equation (13) is a popular choice
as the activation function for the output layer in neural networks used for classification
problems.

Softmax function maps its input to outputs with a one-to-one mapping so that the
sum of all outputs is one. It is frequently used in deep learning since this represents the
probabilities of each class in multi-class classification. The softmax function can be used
on the τ neurons that represent the pilot mapping of each user to get the final results.
This gives us an output layer that is made up of K softmax layers of length τ . The
output vector for each UE can be thought of as either the probabilities that each pilot
sequence should be assigned to the particular UE or the power allocation for each pilot
sequence. In this implementation the the output vectors are treated as power allocations.

If the outputs of the network are treated as power allocations, the neural network can
decide if it is better to allocate all available power to one pilot sequence or if using a
combination of pilot sequences would be preferable. This gives more degrees of freedom
to the solution.

It is also possible to allocate distinct pilot sequences directly from the available set
of orthogonal pilot sequences. To do that, the pilot sequence with maximum power
allocation for each UE should be selected. Finally, if needed, with this method, the
performances of the two pilot assignment strategies can be compared. If allocating a
single orthogonal pilot sequence to each UE is more effective, the neural network will
also assign all power to a single pilot in its output. Figure 7 shows the last hidden layer
(nth fully connected layer) and the output layer of the neural network. Output neurons
are divided into K sets of τ neurons. The ith set of consecutive τ output nodes represents
the power allocations for the ith UE. The output layer shown above has a drawback
similar to the input layer. Its size depends on both the number of UEs K and the number
of orthogonal pilot sequences available τ . This limitation means that a neural network
trained on a particular number of orthogonal pilot sequences cannot be directly reused
for a different number of orthogonal pilots. Similar to the size of the input layer, this is
a prevalent problem in literature as there is no easy workaround.

28

Figure 7. Output layer of the neural network.

4.3 Hidden layers

The neural network has a few fully connected hidden layers. For small numbers of UEs
(e.g., K = 10) two hidden layers showed to be enough. However, when the number of
UEs increase, adding more hidden layers to the network results in better performance.

This behavior can be interpreted as a result of the increasing input layer size. Since
the number of input neurons is a second-order function of the number of UEs K, input
layer grows significantly for higher values of K.

4.4 Activation function

As previously mentioned, the activation function decides whether each neuron of the
layer will be activated and carried forward to the next layer. It was explained in the
previous section that the last layer of the neural network is using the softmax function
as the activation function. This is fixed due to the nature of our problem formulation,
which can be interpreted as a multi-class classification problem.

Hidden layers were tested with several activation functions such as tanh, ReLU, and
leaky ReLU. ReLU and leaky ReLU functions gave better performance than tanh. ReLU
was selected due to its good performance and lower complexity which will likely speed
up both backward and forward propagation of the neural network.

29

The ReLU activation function can be written as

a(x) = max(0, x), (14)

whereas the leaky ReLU activation function, which is a version of ReLU is given by

a(x) = max(bx, x), (15)

where the hyperparameter b is set to a small number such as 0.01. Finally, the tanh tanh
activation function can be calculated as

a(x) = tanh(x) = ex − e−x

ex + e−x
. (16)

4.5 Batch normalization

The gradients calculated during the backpropagation tell how the learnable parameters
(e.g., weights and biases) should be changed assuming that the other layers will not
change. In reality, the parameters of all layers are updated simultaneously. This can
lead to unexpected results, especially when the number of hidden layers increases. As a
result, it becomes hard to select an appropriate learning rate, because depending on the
weights in the hidden layers, even a small learning rate might cause large changes in the
output after parameter update. [7 p. 317]

Another way to view this problem is by considering the input distribution of hidden
and input layers. As the previous layers’ parameters are updated, each layer’s input
distribution changes. This presents a challenge as the layers now continuously have to
adapt to the new distribution. The main idea behind batch normalization is to normalize
layer inputs, fixing the distribution. What is special about this method is that this
normalization is included in the model architecture as a layer and the normalization is
done for each mini-batch. The normalization can be done by the transform

x̂(k) = x(k) − µB√
σ2

B + ϵ
, (17)

where x(k) represents a single activation in the layer, µB denotes the mini-batch mean,
σ2

B represents the mini-batch variance while ϵ is a small positive constant included for
numerical stability. [31]

However, this normalization causes another problem. The normalization could change
what the layer can represent. For example, this could push all inputs of a sigmoid layer
to the linear range. To stop this, the normalization is followed by a transformation
that can represent the identity transform combined with batch normalization. This new
transformation can be represented by

y(k) = γ(k)x̂(k) + β(k), (18)

where for each activation x(k), the two learnable parameters γ(k) and β(k) scale and shift
the normalized input. Batch normalization layer can learn the identity transform by
setting β(k) = µB and γ(k) =

√
σ2

B. [31]
Because of these advantages, batch normalization is used after each hidden layer in the

neural network model.

30

5 TRAINING THE NEURAL NETWORK

Once the structure of the neural network is finalized, there are a few decisions to be
made before training can start. This chapter focuses on those decisions and the reasoning
behind the choices that were made.

The first decision is whether to use supervised or unsupervised learning. Both
approaches have been used in the literature. For example, [18] has used the supervised
learning approach with labeled data obtained through an exhaustive search. On the other
hand, [12] has used the unsupervised learning approach.

Both approaches have their strengths and weaknesses. In supervised learning, the
neural network has a ground truth to target in the form of labels (in our case we would
have to use an exhaustive search to find the ground truth). The learning algorithm can
compare the results from the neural network with the ground truth and decide how good
it is doing and how the updates should be done. In unsupervised learning, this is not so
clear. With the absence of labels, the algorithm should use some other metric to measure
its performance and decide on the updates. The problem lies in the fact that this metric
might not represent our target well enough. This mismatch will cause the neural network
to underperform.

Supervised learning has some advantages when it comes to the cost function as well.
The cost function (also called objective function or loss function) is what the neural
network is trying to minimize during training. The value of this function represents how
well the neural network is doing. In the case of supervised learning, the cost function
can be formulated easily. There are several tried and tested cost functions such as mean
square error and cross-entropy loss which can be easily used in supervised learning.
These cost functions have additional benefits such as improved numerical stability and
gradients that do not change rapidly. On the other hand, in unsupervised learning, we
should formulate a cost function. This cost function might not be easy to compute and
might not have the favorable properties of common cost functions.

The advantage of unsupervised learning is that we do not have to provide labels for
the samples. This property becomes very useful if it is hard or practically impossible to
know the ground truth. This is the situation we face in the pilot allocation problem. The
pilot allocation problem unfortunately cannot be formulated as a convex optimization
problem. Therefore, an exhaustive search should be used to find the optimal allocation.
This conclusion is probably only true if we assume each UE is assigned a single orthogonal
pilot sequence. If UEs use linear combinations of orthogonal pilot sequences, it makes
the problem more complex due to the addition of continuous variables. If some linear
combination of multiple pilot sequences gives the best solution, then an exhaustive search
that does not consider combinations of pilot sequences would give a suboptimal solution.

In the exhaustive search, if there are K UEs and τ orthogonal pilots, there is a total
of τK possible pilot allocations. It is not needed to check all of these combinations
as the total number includes inefficient arrangements where some pilots are unused or
underused while some pilots are overused. However, the total number of pilot allocations
grows exponentially with K. Therefore, even if the redundant pilot combinations are
removed, the exhaustive search still has to go through an enormous number of possible
pilot allocations when the number of UEs K increases.

In simulations, if a small number of UEs is used, it could be possible to find the
exhaustive search results to label training data. However, in a real application with

31

a large number of UEs active at a time, it is not practical to provide labels using an
exhaustive search. Therefore, this work uses the unsupervised learning approach.

5.1 Loss function

As the optimization problem in (10) is formulated as a minimization problem, it can be
directly adopted for the loss function of the neural network. Specifically, the expression
for total pilot contamination can be used to represent the loss of the neural network as

L = 1
τK(K − 1)/2

∑
n∈K

∑
i>n

δ(Rn, Ri)ϕH
n ϕi. (19)

5.2 Derivatives and backpropagation in the custom layer

Calculations of derivatives of weights and biases w.r.t. the loss function and details of
gradient descent are given for the custom output layer in the following text. This is not
done for the remaining layers as those are standard implementations [32].

We can expand the pilot sequence assigned to nth and ith UEs in (19) using (1) as

L = 1
τK(K − 1)/2

∑
n∈K

∑
i>n

δn,i(Rn, Ri){
τ∑

j=1
pn,jπ

H
j

τ∑
k=1

pi,kπk}. (20)

The pilot sequences in π are orthogonal to each other (i.e., πH
j πk = 0 if j ̸= k and

πH
j πk = τ if j = k). Therefore, (20) can be simplified as

L = 1
K(K − 1)/2

∑
n∈K

∑
i>n

δn,i(Rn, Ri)
τ∑

j=1
pn,jpi,j. (21)

This loss function in (21) can be differentiated w.r.t. an output neuron om,j. The
activation of neuron om,j represents the power allocation of UE m to the orthogonal pilot
sequence j, which is pm,j. In simple terms, pm,j = om,j. After differentiating (21) w.r.t.
om,j, we get the partial derivative

∂L

∂om,j

= 1
K(K − 1)/2

∑
i∈K,i ̸=m

δm,i(Rm, Ri)pi,j. (22)

The output layer of the neural network does not have any learnable parameters.
However, we need to use this derivative of the loss function w.r.t. the network output, to
propagate updates to earlier layers of the network.

Next, the gradient of the loss w.r.t. the last hidden layer of the network has to be
calculated. The chain rule in calculus can be used to simplify this calculation since
the gradient of the loss w.r.t. the output layer is already calculated. As we previously
mentioned, the softmax function is used to map the last hidden layer to the output layer.

Derivative of the softmax function that has τ outputs s1, s2, . . . , sτ can be written as

Jsoftmax =

s1(1 − s1) −s1s2 −s1s3 . . . −s1sτ

−s2s1 s2(1 − s2) −s2s3 . . . −s2sτ

−s3s1 −s3s2 s3(1 − s3) . . . −s3sτ
...

−sτ s1 −sτ s2 −sτ s3 . . . sτ (1 − sτ)

 , (23)

32

which is a τ × τ Jacobian matrix. Using this equation, we can write the derivative of mth

set of τ neurons in the output layer (i.e., the neurons that represent the power allocations
of mth UE) w.r.t. the corresponding neurons in the last hidden layer as

∂om

∂hnm

=

om,1(1 − om,1) −om,1om,2 −om,1om,3 . . . −om,1om,τ

−om,2om,1 om,2(1 − om,2) −om,2om,3 . . . −om,2om,τ

−om,3om,1 −om,3om,2 om,3(1 − om,3) . . . −om,3om,τ
...

−om,τ om,1 −om,τ om,2 −om,τ om,3 . . . om,τ (1 − om,τ)

 , (24)

where om denotes the output layer’s mth set of τ neurons (i.e., om = [om,1, . . . , om,τ]) and
hnm denotes the last (hn stands for nth hidden layer) hidden layer’s mth set of τ neurons
(i.e., hnm = {hnm,1, . . . , hnm,τ }), respectively. Using equation (22), we can write the
derivative of the loss w.r.t. mth set of τ neurons in the output layer as

∂L

∂om

= 1
K(K − 1)/2

∑

i∈K,i ̸=m δm,i(Rm, Ri)pi,1∑
i∈K,i ̸=m δm,i(Rm, Ri)pi,2

...∑
i∈K,i ̸=m δm,i(Rm, Ri)pi,τ

 . (25)

We can expand the gradient of the loss w.r.t. the mth set of τ neurons in the last hidden
layer using the chain rule as shown in equation (26). Since we already have the two partial
derivatives on the right-hand side of the equation, we can calculate the gradient using
them. We can continue this method to find the gradient of the loss w.r.t. all the layers
in the neural network.

∂L

∂hnm

= ∂L

∂om

∂om

∂hnm

(26)

This method of applying the chain rule to find the gradients of the loss w.r.t. earlier
layers of the network iteratively is known as backpropagation. This step is followed by
updating the learnable parameters (i.e., weights, biases, and shift/scale parameters) and
then recomputing the loss, which is known as gradient descent.

5.3 Testing the feasibility of solution

During the early stages of implementation, the feasibility of the neural network
implementation was tested using a single sample. The testing procedure is simple. Only
one network instance is considered. That is a single set of K(K −1)/2 CMD values. The
goal is to find the optimal pilot allocation for this fixed setup, by running backpropagation
and gradient descent for the single data sample. This was done before going ahead with
the full implementation, to see if the approach looks promising and to check if there were
any visible issues.

Since the unsupervised approach is used, it is important to check if the loss function
is good enough. Therefore, the hypothesis tested in this section is that by reducing the
loss function’s value, the neural network can choose a pilot allocation that is close to
optimal. Apart from that, this test can also tell if the neural network implementation is
complex enough to solve the pilot allocation problem.

33

A reference is needed to measure the performance of the implementation. This
feasibility test uses the exhaustive search as the reference, providing the best possible pilot
allocation. Although the search algorithm is computationally expensive, it is possible to
use the exhaustive search with a small number of UEs and a small number of orthogonal
pilot sequences.

Random pilot allocation is used for comparison as an upper bound for the pilot
contamination metric. This method allocates pilot sequences to UEs randomly. However,
it keeps the reuse factor of each pilot sequence close to the overall pilot reuse factor K/τ
as much as possible. Therefore, each pilot sequence has a pilot reuse factor of floor(K/τ)
or ceil(K/τ). As this method does not do any optimizations, it can be considered as the
worst performance for a pilot allocation method.

Figure 8 shows the results, from one such test, which are values of the cost function,
defined in (19). The simulation was done with K = 10 UEs and pilot length values
τ = 1, . . . , 6. Due to the exponential complexity τK , the simulator either ran out of
memory or seemed to freeze for τ = 7, 8, 9 during the exhaustive search.

Figure 8. Instance optimal pilot allocation.

Although the exact figures change depending on the selected sample, the graph
represents the results in general. However, the loss of random pilot allocation had to
be averaged as it varies widely depending on the simulation seed.

From Figure 8, it can be seen that the proposed method represented by the ‘DNN’
curve almost coincides with the exhaustive search results curve. There are some small
deviations at some values of τ , and at other values the difference is negligible. When
compared with the random pilot allocation curve, it can be seen that the proposed method
offers a high reduction in pilot contamination.

34

5.4 Training with discrete UE locations

After feasibility testing, we started training the neural network on a large number of
samples. However, the training was slow, especially when the pilot reuse factor (i.e.,
K/τ) is high. Therefore, we included a technique to speed up training as well as expose
the neural network to more samples. The method uses multiple training sets with different
constraints on the locations of UEs. The motivation behind this method is that we can
make the learning easier for the neural network, by presenting a simple problem first and
then gradually increasing the problems’ complexity.

In the general case, we are adding UEs to random locations in the network. This
means that some UEs could have overlapping AoA. Therefore, on average the loss (total
pilot contamination) will be high, even if the optimal pilot allocation is achieved. As
a consequence, the neural network will have only a small opportunity in each iteration
to learn. This problem will make itself visible in the form of small gradients during the
backpropagation.

On the other hand, if we can artificially increase the separation between AoA of UEs
in the beginning, the achievable loss will be low. This will lead to large gradients and
fast convergence of the network. The neural network will be able to learn fast.

This implementation uses training sets with discrete UE locations in the beginning.
This makes sure that the UEs only have a finite number of possible location combinations,
meaning only a discrete set of CMD values are included in the samples. Further, the UEs
will have a high angular separation early in the training. Figure 9 shows how the discrete
UE locations are achieved. The cell is divided into n ≥ K sectors.

Figure 9. Cell sectors used for constraining UE locations.

UEs are randomly added on the perimeter of this circle in the middle points that belong
to each sector’s arc. Therefore, each pair of UEs is guaranteed to have a minimum angle
of 2π/n separating them from the point of view of the BS. Since we are only concerned
about the AoA in our single-cell setup the distance from UEs to BS is not important.
Therefore, we simply keep the UEs on a circle’s perimeter.

In the first training set, the number of sectors n is kept small (close to K). In later
cells n is increased, reducing the minimum separation between UEs. The final training

35

set has truly random UE locations. The idea is that by the time that training starts on
this training set, the neural network will have learned the task to a significant level.

Alternatively, only the discrete UE locations can be used in training. While this is a
good approach, there are a couple of reasons against the choice. The first is that the
neural networks perform best when they are trained and used on samples taken from
the same distribution. Truly random UE locations probably best represent the situation
in a real network. The second reason is that discrete UE locations always guarantee a
minimum angle of separation. With continuous UE locations, multiple UEs could end
up having roughly the same angle w.r.t. the BS (but separated spatially) since there is
no minimum angular separation.

Finally, regardless of our decision in the training set, we should use truly random
UE locations in the validation set. We use the validation set to measure how well the
neural network generalizes to previously unseen network arrangements. Therefore, it is
important that these network configurations represent a real-world network as much as
possible.

5.5 Input preprocessing

Input data provided to most neural network implementations have spatial or temporal
order. For example, in an image processing application, pixel values are fed to the input
layer in a determined order. In audio or text processing applications, the words or audio
samples are given to the network in order. On the other hand, it can be seen that this is
not the situation in the statistical CSI data gathered at the BS. The UEs are appearing
in a random order which has nothing to do with their spatial arrangement.

As the actual locations of UEs are not available, the input data cannot be rearranged
to represent the spatial order of UEs. However, the UEs can be rearranged so that UEs
with similar channels will appear close in the order. Since CMD values are the only data
we have at the neural network input, this rearrangement or permutation has to be done
by only looking at the CMD values.

The permutation algorithm works as follows. Let us denote the original order of
UEs by {1, 2, . . . , K}. The first UE in the input order is fixed as the reference.
Then from the remaining K − 1 UEs {2, . . . , K}, the algorithm selects the UE that
has the minimum CMD with the first UE. Let us consider that the mth UE has the
minimum CMD with the first (reference) UE. In the next step of the algorithm, the
second UE (UE after the reference) and mth UE are swapped. Now, the new order of
UEs is {1, m, 3, . . . , m − 1, 2, m + 1, . . . , K}. Next, both the first and second (originally
mth) UEs are fixed. Those UEs are not permuted anymore. In the next step, the
algorithm considers the new second UE (which is the mth UE in the original order)
as the reference. Then from the remaining K − 2 UEs (except first and second UEs
in current order), the algorithm selects the UE that has the minimum CMD with the
reference UE. Let us consider that the nth UE has the minimum CMD with the reference
UE. In the next step of the algorithm, the UE after the reference (third) and nth UE
are swapped. Now, (assuming n > m without loss of generality) the new order of
UEs is {1, m, n, 4, . . . , m − 1, 2, m + 1, . . . , n − 1, 3, n + 1, . . . , K}. In the next step, the
algorithm considers the new third UE (which is the nth UE in the original order) as the
reference. After K − 2 iterations of the algorithm, the permutation is done.

36

The new order of UEs has as small CMD values as possible with each consecutive pair
of UEs. Next, the algorithm calculates the permutation needed to undo the permutations
that were carried out and stores them.

The second part of the algorithm uses the reversing permutation saved in the first
part. Once the forward propagation is done, the algorithm uses the saved reversing
permutation to permute the neural network’s output. This permutation makes the pilot
assignments align with the original order of the UEs.

5.6 Training and validation process

Neural network implementation is done in Matlab. The training/validation data
generator and the single-cell network simulator taken from Ribeiro et al. [3] are also
implemented in Matlab.

The training/validation data generator taken from [3], is primarily used to prepare
samples for training and evaluating the deep learning solution. Apart from that, the
data generator is used to prepare the data needed for existing pilot assignment strategies
that are compared with the proposed solution. The neural network is implemented with
the aid of Matlab’s deep learning toolbox. Finally, the single-cell network simulator taken
from [3], is used to evaluate the performance of the neural network implementation using
Normalized Average Square Error (NASE) of the channel estimation and Symbol Error
Rate (SER).

In the first stage, the neural network is trained and its performance is validated by
testing it on a separate validation data set. This shows how the neural network performs
on previously unseen data. At this stage, it is considered that the validation loss of the
neural network represents the performance of the implementation.

Next, we calculate the loss of pilot assignments given by SGPS method [13] and
exhaustive search using the same metric. This lets us compare the performance of
our implementation with those methods at this stage. Due to the high computational
complexity of the exhaustive search, we cannot run it on the full validation set. It is also
difficult/unrealistic to find the loss of exhaustive search of configurations with a high
number of pilot sequences.

For the neural network training, four discrete UE location training sets are used, which
have 2048 samples in each set. This is followed by a 10240 sample training set with fully
random UE locations. The neural network is trained in each training set once, which
is also known as one ‘epoch’ of training. Mini-batch gradient descent with the Adam
optimizer is used for gradient descent [33]. In mini-batch gradient descent, the training
samples are divided into a set of equal-sized (mini)batches and these batches are used
one by one to train the neural network. Mini-batch size 32 is used in discrete UE location
training sets while the mini-batch size is 64 in the last training set. The validation set
has 5120 samples.

Figure 10 plots the pilot contamination metric in the validation set against the number
of orthogonal pilot sequences (τ) for the network configuration with 10 UEs (K=10). The
cell has three sectors and each sector has a ULA with 4 elements (M=4) to meet the
massive MIMO criterion. In this test, for each UE, all power is allocated to the pilot
sequence with the highest power coefficient in the neural network’s output. This process
termed hard thresholding.

37

Figure 10. Pilot interference metric in the validation set.

From Figure 10, it can be seen that the proposed solution (represented by the ‘DNN’
curve) shows a large reduction of pilot contamination over the random pilot allocation.
It is also clear that the proposed method’s solutions are close to the optimal solutions
given by the exhaustive search. The difference in pilot contamination between optimal
solutions and the proposed method’s solutions reduces as the number of pilot sequences
τ increases. When compared with the existing solution SGPS, the proposed method
performs about at the same level, whereas there are some minor differences. Specifically,
the proposed method slightly outperforms SGPS, when high pilot reuse factors are used.
SGPS method slightly outperforms the proposed method, when low pilot reuse factors
are used.

5.7 Impact of the validation set size

The size of the validation set has an impact on the accuracy of the calculated pilot
contamination (loss) value. We can understand that the validation loss will have a large
variance when it is calculated with only a few samples. However, a very large validation
set will increase our simulation time. Therefore, it is important that we systematically
pick a value range for the validation set size.

Figure 11 plots the validation loss (pilot contamination metric in validation set) against
the validation set size for K = 10, τ = 2 configuration. To be precise, validation loss
is calculated with and without hard thresholding. The two curves are almost identical
suggesting that the neural network has probably assigned all power to individual pilot
sequences. It can be seen that the validation loss has a high variance when the validation
set is small. We can use a moving window to calculate the average variance of the
validation loss across the range. This lets us to select a minimum size for the validation
set. We used a window size of 500 samples in testing. The Matlab code calculates the
average loss within the window and uses that to calculate the variance of loss within the

38

Figure 11. Validation loss against validation set size.

window. The window is moved from left to right until the loss decreases enough to meet
a predefined value.

If we set the maximum allowed average variance to 10−8 for the data in the previous
graph, the validation set size needs to be at least 1249. If we reduce the allowed variance
to 10−9, the validation set size should be increased to at least 2879. The goal of 10−10

average variance requires more than 10000 samples.

5.8 Network simulation

The deep learning based pilot allocation is simulated in a single-cell network setup for
the final evaluation, using the Matlab simulator created by Ribeiro et al. in [3]. As
mentioned earlier, the SER and NASE of channel estimation are used as performance
metrics. Several existing pilot allocation strategies are used for comparison.

This section uses the models trained and saved previously (described in section 5.6).
Pilot sequences are rows/columns of the τ ×τ Hadamard matrix, where τ is the number of
orthogonal pilot sequences. Because of the constraint on the order of Hadamard matrices,
only τ=2,4,8 configurations can be used to generate the orthogonal pilot sequences using
this method.

The simulation assumes a correlated Rayleigh fading channel between the BS and the
UEs. The local scattering spatial correlation model is used, where a uniform distribution
is used with ASD set to 10 degrees. The Monte Carlo simulations in the network simulator
were run using 2000 network realizations (i.e., different UE arrangements) and each
network layout was simulated with 10 channel realizations.

In the graphs, ‘DNN’ stands for the deep neural network, which is the proposed method.
Apart from the channel chart based pilot allocation and SGPS algorithm, which were
detailed in Section 2.7, three other existing pilot allocation methods are used in the
simulation.

Real-position based method, represented by the ’Real’ curves, uses the knowledge of the
exact locations of the UEs and uses that information to calculate the angular distances

39

among UEs. This distance data is then used to perform pilot allocation so that the
distances between UEs that use the same pilot sequence are maximized.

Random pilot allocation is represented by the curves labeled ’Random’. This method
allocates pilot sequences to UEs randomly. However, it keeps the reuse factor of each
pilot sequence close to the overall pilot reuse factor K/τ as much as possible. Therefore,
each pilot sequence has a pilot reuse factor of floor(K/τ) or ceil(K/τ).

CMD-aided pilot assignment method introduced by Ribeiro et al. in [15] is represented
by the curve ‘CMD’. It uses the CMD metrics directly as a distance measure. The
pilot sequences are allocated such that the distance among UEs that use the same pilot
sequence is maximized.

Figures 12 and 13 show the simulation results for the configuration with K = 10
UEs and τ = 2 orthogonal pilot sequences. In Figure 12, it can be seen that the
proposed method has better NASE than the SGPS method. The real-location based
method provides the best (lowest) NASE, while the channel charting based method
and CMD based method perform about at the same level as the proposed method.
As expected, the random pilot allocation has a much higher NASE. Figure 13 shows
similar results. Random pilot allocation performs the worst (highest SER), whereas the
real-location based method provides the best results. The proposed method, channel
charting based method, and CMD based method performs about at the same level as
the real-location based method. SGPS method has a slightly higher SER than these
methods, but much lower than random pilot allocation. The ‘Perfect’ curve represents
the SER values achievable with perfect channel estimates. This is the theoretical upper
bound on SER performance.

Figure 12. NASE against SNR for K=10, τ=2 configuration.

40

Figure 13. SER against SNR for K=10, τ=2 configuration.

Figures 14 and 15 show the simulation results for the configuration with K = 10 and
τ = 4. From Figure 14 it can be seen that the proposed method, channel charting based
method, CMD based method, and the SGPS method have NASE values about at the same
level. The real-location based method again has the lowest NASE values, while random
pilot allocation gives much higher NASE values. Figure 15 shows the same pattern. The
proposed method, channel charting based method, CMD based method, and the SGPS
method have SER values about at the same level. The real-location based method again
has the lowest SER values (slightly lower than previously mentioned methods), while
random pilot allocation gives much higher SER values.

Figures 16 and 17 show the simulation results for the configuration with K = 10 and
τ = 8. In Figure 16, SGPS has the best NASE curve which is performing significantly
better than all other methods. The random pilot allocation has the highest NASE values
as expected. The proposed method, channel charting based method, and CMD based
method have about the same level of performance, while the real-location based pilot
allocation has NASE values somewhat higher than these methods. Figure 17 shows the
SGPS method having the lowest SER values which are slightly lower than the SER values
of the proposed method, channel charting based method, CMD based method, and the
real-location based method (these four methods are about at the same level). Again, the
random pilot allocation has the highest SER values.

41

Figure 14. NASE against SNR for K=10, τ=4 configuration.

Figure 15. SER against SNR for K=10, τ=4 configuration.

42

Figure 16. NASE against SNR for K=10, τ=8 configuration.

Figure 17. SER against SNR for K=10, τ=8 configuration.

43

6 DISCUSSION

Deep learning is successfully getting applied in many scientific fields. Wireless
communication has also seen a similar trend. This research aimed to develop a deep
learning based pilot allocation method for mMTC systems.

The results show that a successful deep feedforward network solution to mitigate pilot
contamination can be developed, which only uses the channel covariance matrices as the
input. This neural network is trained in an unsupervised manner removing the need for
optimal solutions for training data. Finally, the proposed solution performs on par with
the existing pilot allocation methods.

The final solution required some unique changes to the training process. Training the
neural network with discrete UE locations first, improved the performance and speeded
up the training process. Preprocessing input data proved to be a key in closing the
performance gap between the proposed method and existing solutions.

SGPS method was primarily used in the performance comparison. Both the pilot
contamination metric in the validation set as well as the SER and NASE of channel
estimation metric in network simulation were used to evaluate the performance of the
proposed solution. From both of these comparisons, it can be seen that the proposed
solution performs about equally as SGPS. Further, in some settings, there are minor
differences in both directions. Specifically, the proposed solution seems to perform slightly
better with high pilot reuse factors, while SGPS seems to perform slightly better with
low pilot reuse factors.

From the network simulation, it can be seen that the proposed method performs much
better than random pilot allocation, as expected. The performance of the proposed
method seems close to the real-location based pilot allocation, channel charting based
pilot allocation, and CMD-based pilot allocation. The deviations are even smaller
than what can be seen in the comparison with SGPS. It is not easy to compare the
performances of different approaches since the differences in NASE and SER performances
are small. We can try to better inspect these differences by using a network configuration
with a higher number of UEs. It allows the use of higher pilot reuse factors and effectively
widens the range of pilot reuse factors that can be tested.

Finally, from the simulation, it can be seen that there is no clear performance advantage
of using the proposed solution over existing methods. It has to be seen if a more complex
neural network architecture or a more complicated training method can change this.

Looking at possible next steps, a multi-cell network extension naturally makes sense.
One option for a multi-cell extension is extending the current deep feedforward neural
network architecture. However, this will cause the size of the input layer of the network
to increase, increasing the complexity of both forward and backward propagation.

CNN architecture can solve this problem. The neural network likely has to learn some
set of similar features from each cell in a multi-cell network. This lets a CNN share
weights across subsections of the network, reducing complexity and speeding up the
learning. The input of the CNN can be arranged such that inputs from neighboring cells
appear closely. This will help the CNN share some weights that account for neighboring
cells as well. In either case, including the large-scale fading coefficients as inputs of the
neural network is important.

The input rearrangement that improved the proposed method opens up some
possibilities for using more advanced neural network architectures as well. As explained

44

previously, the main obstacle in applying the CNN architecture at the cell level is that the
spatial arrangement of UEs is unknown. However, the UE permutation that the thesis
introduced, rearranges the UEs to get minimum CMD between consecutive UEs. We can
reasonably assume that this means consecutive UEs are now spatially adjacent as well.
With this change and assumption, we can expect the CNN architecture to perform well
even in the single-cell problem. This approach is a promising option when the number
of UEs K increases.

The RNN architecture also seems to be an option worth investigating due to the input
rearrangement. RNNs belong to the class of neural network architectures that are known
as sequential models. These models have the unique property of being able to deal with
varying sizes of inputs, by reading the input as a sequence. These sequences are usually
time-series data such as words. However, we can use an RNN for the pilot allocation
problem and provide the input as individual CMD values if the CMD values can be
arranged as a sequence. If successful, this method makes it possible to use the same
neural network with different numbers of UEs in the network.

We previously saw that the size of the output layer depends on both the number of
UEs K and the number of orthogonal pilot sequences τ used in the system. Therefore,
if either K or τ changes, the neural network should be retrained from scratch. Machine
learning has a method that might be able to make sure that the change in the number of
orthogonal pilots does not mean we need to start from scratch. This solution is known
as transfer learning.

Transfer learning can be used when the neural network has to learn to perform two
or more related tasks which share common factors that explain the variations in each
task. For example, if a neural network is trained to tell images of cats and dogs apart
(classification), the same neural network can be used with some modifications in a
problem where the requirement is to classify images of bees and hornets. Since the
network is trying to learn to reduce the interference among UEs, the low-level features
learned by early layers of the network will be similar in different networks that target
different numbers of orthogonal pilot sequences. Therefore, we can reasonably expect a
neural network trained for example with two orthogonal pilot sequences can be used with
some modifications in a case where there are four pilot sequences with the same number
of UEs. [7 p.536]

Therefore, the early layers (which are probably common) can be kept and only the last
task-dependent layer or two can be trained with a small number of samples to obtain a
neural network for the new set of orthogonal pilots. Figure 18, which is taken from [7
p. 245], shows the idea of this approach. All neural network implementations share the
input x and the first few hidden layers h(shared). One or more of the last hidden layers
are specific to the number of pilot sequences available (τ). [7 p. 245]

Finally, some attention should be paid to the supervised learning approach. This work
did not use the supervised learning approach as it is too expensive and even impractical to
find optimal pilot allocations for training samples to use as the ground truth. However,
if we obtain labeled samples through an exhaustive search or via another algorithmic
method, then supervised learning becomes a viable option. In that case, the neural
network’s loss will be the difference between the optimal solution and the predicted
solution. This can be treated as an objective loss, whereas the pilot contamination loss
metric that is used in this work is a proxy loss. Therefore, we can reasonably predict

45

Figure 18. Transfer learning or multi-task learning.

that the supervised learning approach could improve the performance of the proposed
method.

46

7 SUMMARY

Massive MTC poses many challenges that require different solutions than traditional
human-type communication or even traditional MTC. We can utilize machine learning
and massive MIMO to provide novel solutions to many of these problems. One such
challenge is allocating pilot sequences to UEs.

The work we presented here aimed to minimize the pilot contamination in a single-cell
mMTC system (where mMIMO is also used) by intelligent pilot reuse using the deep
learning approach. Specifically, we developed a deep feedforward neural network that
takes statistical CSI data (channel covariance matrices) available at the BS as input and
provides a pilot sequence allocation that minimizes pilot contamination in the network
as the output.

Our results show that the proposed solution can reach (in some cases even exceed)
the performance of existing pilot allocation strategies. The solution only uses channel
covariance matrices estimated at the base station as the input.

The proposed solution uses unsupervised learning, instead of the supervised learning
approach that is popular in deep learning. Using unsupervised learning lets us avoid
calculating the optimal pilot allocations of training samples. This is a crucial advantage
since calculating optimal solutions is not practical at the scale of real-world networks.
This implementation uses a cost function that is based on the pilot loss contamination
metric introduced in [3]. This cost function acts as a proxy for the difference between
the pilot allocation provided by the proposed method and the optimal pilot allocation.

We showed that the developed neural network can find a good pilot allocation to a static
network arrangement through backpropagation. There are some variations depending on
the specific network instance. However, the results are promising when compared with
the optimal pilot allocation.

Finally, we showed that the proposed solution can learn from a batch of sample data
and provide pilot allocations for previously unseen network instances, that are on par
with existing methods. This indicates that the solution generalizes well, and the neural
network has learned the general patterns instead of learning to provide good solutions
just to the training data.

47

8 REFERENCES

[1] Björnson E., Hoydis J. & Sanguinetti L. (2017) Massive MIMO networks: Spectral,
energy, and hardware efficiency. Foundations and Trends in Signal Processing 11,
pp. 154–655.

[2] Al-hubaishi A.S., Noordin N.K., Sali A., Subramaniam S. & Mansoor A.M. (2019)
An efficient pilot assignment scheme for addressing pilot contamination in multicell
massive MIMO systems. Electronics 8. URL: https://www.mdpi.com/2079-9292/
8/4/372.

[3] Ribeiro L., Leinonen M., Al-Tous H., Tirkkonen O. & Juntti M. (2022), Pilot reuse
for mMTC with spatially correlated MIMO channels: A channel charting approach.
https://arxiv.org/abs/2203.06651.

[4] Bockelmann C., Pratas N., Nikopour H., Au K., Svensson T., Stefanovic C.,
Popovski P. & Dekorsy A. (2016) Massive machine-type communications in 5G:
physical and MAC-layer solutions. IEEE Communications Magazine 54, pp. 59–65.

[5] de Carvalho E., Björnson E., Sørensen J.H., Larsson E.G. & Popovski P. (2017)
Random pilot and data access in massive MIMO for Machine-Type Communications.
IEEE Transactions on Wireless Communications 16, pp. 7703–7717.

[6] Saad W., Bennis M. & Chen M. (2020) A vision of 6G wireless systems: Applications,
trends, technologies, and open research problems. IEEE Network 34, pp. 134–142.

[7] Goodfellow I., Bengio Y. & Courville A. (2016) Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

[8] Rosenblatt F. (1958) The perceptron: A probabilistic model for information storage
and organization in the brain. IEEE Communications Magazine 65, pp. 386–408.

[9] Rumelhart D.E., Hinton G.E. & Williamson R.J. (1986a) Learning representations
by back-propagating errors. Nature 323, pp. 533–536.

[10] Hinton G.E., Osindero S. & Teh Y.W. (2006) A fast learning algorithm for deep
belief nets. Neural Computation 18, pp. 1527–1554.

[11] Soni D., Understanding the different types of machine learning models.
https://towardsdatascience.com/understanding-the-different-types-
of-machine-learning-models-9c47350bb68a.

[12] Xu J., Zhu P., Li J. & You X. (2019) Deep learning-based pilot design for multi-user
distributed massive MIMO systems. IEEE Wireless Communications Letters 8, pp.
1016–1019.

[13] You L., Gao X., Xia X.G., Ma N. & Peng Y. (2015) Pilot reuse for massive MIMO
transmission over spatially correlated Rayleigh fading channels. IEEE transactions
on wireless communications 14, pp. 3352–3366.

[14] Li P., Gao Y., Li Z. & Yang D. (2018) User grouping and pilot allocation for spatially
correlated massive MIMO systems. IEEE Access 6, pp. 47959–47968.

48

[15] Ribeiro L., Leinonen M., Al-Tous H., Tirkkonen O. & Juntti M. (2021) Exploiting
spatial correlation for pilot reuse in single-cell mMTC. In: 2021 IEEE 32nd Annual
International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), pp. 654–659.

[16] Studer C., Medjkouh S., Gonultaş E., Goldstein T. & Tirkkonen O. (2018)
Channel Charting: Locating users within the radio environment using channel state
information. IEEE Access 6, pp. 47682–47698.

[17] Ribeiro L., Leinonen M., Djelouat H. & Juntti M. (2020) Channel charting for
pilot reuse in mMTC with spatially correlated MIMO channels. IEEE Globecom
Workshops .

[18] Kim K., Lee J. & Choi J. (2018) Deep learning based pilot allocation scheme (DL-
PAS) for 5G massive MIMO system. IEEE Communications Letters 22, pp. 828–831.

[19] Van Chien T., Björnson E. & Larsson E.G. (2018) Joint pilot design and uplink power
allocation in multi-cell massive MIMO systems. IEEE Transactions on Wireless
Communications 17, pp. 2000–2015.

[20] Goldsmith A. (2005) Wireless Communications 5th edition. Cambridge University
Press, 561 p.

[21] Yin H., Gesbert D., Filippou M. & Liu Y. (2013) A coordinated approach to channel
estimation in large-scale multiple-antenna systems. IEEE Journal on Selected Areas
in Communications 31, pp. 264–273.

[22] Zetterberg P. & Ottersten B. (1994) The spectrum efficiency of a base station
antenna array system for spatially selective transmission. In: Proceedings of IEEE
Vehicular Technology Conference (VTC), pp. 1517–1521 vol.3.

[23] Jiang Z., Molisch A.F., Caire G. & Niu Z. (2015) Achievable rates of FDD massive
MIMO systems with spatial channel correlation. IEEE Transactions on Wireless
Communications 14, pp. 2868–2882.

[24] Adhikary A., Nam J., Ahn J.Y. & Caire G. (2013) Joint spatial division and
multiplexing - the large-scale array regime. IEEE Transactions on Information
Theory 59, pp. 6441–6463.

[25] Salz J. & Winters J. (1994) Effect of fading correlation on adaptive arrays in digital
mobile radio. IEEE Transactions on Vehicular Technology 43, pp. 1049–1057.

[26] Shiu D.S., Foschini G., Gans M. & Kahn J. (2000) Fading correlation and its
effect on the capacity of multielement antenna systems. IEEE Transactions on
Communications 48, pp. 502–513.

[27] Herdin M. & Bonek E., A MIMO correlation matrix based metric for characterizing
non-stationarity. https://publik.tuwien.ac.at/files/pub-et_8791.pdf.

[28] Herdin M., Czink N., Ozcelik H. & Bonek E. (2005) Correlation matrix distance,
a meaningful measure for evaluation of non-stationary MIMO channels. IEEE 61st
Vehicular Technology Conference 1.

49

[29] Zhu X., Dai L. & Wang Z. (2015) Graph coloring based pilot allocation to mitigate
pilot contamination for multi-cell massive MIMO systems. IEEE Communications
Letters 19, pp. 1842–1845.

[30] Brodtman Z., The importance and reasoning behind activation functions.
https://towardsdatascience.com/the-importance-and-reasoning-behind-
activation-functions-4dc00e74db41.

[31] Ioffe S. & Szegedy C. (2015) Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In: F. Bach & D. Blei (eds.) Proceedings
of the 32nd International Conference on Machine Learning, Proceedings of Machine
Learning Research, vol. 37, PMLR, Lille, France, Proceedings of Machine Learning
Research, vol. 37, pp. 448–456. URL: https://proceedings.mlr.press/v37/
ioffe15.html.

[32] List of deep learning layers. https://www.mathworks.com/help/deeplearning/
ug/list-of-deep-learning-layers.html.

[33] Kingma D. & Ba J. (2015) Adam: A method for stochastic optimization.
International Conference on Learning Representations .

