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ABSTRACT

Human aware robot navigation refers to the navigation of a robot in an

environment shared with humans in such a way that the humans should feel

comfortable, and natural with the presence of the robot. On top of that, the

robot navigation should comply with the social norms of the environment. The

robot can interact with humans in the environment, such as avoiding them,

approaching them, or following them. In this thesis, we specifically focus on

the approach behavior of the robot, keeping the other use cases still in mind.

Studying and analyzing how humans move around other humans gives us the

idea about the kind of navigation behaviors that we expect the robots to exhibit.

Most of the previous research does not focus much on understanding such

behavioral aspects while approaching people. On top of that, a straightforward

mathematical modeling of complex human behaviors is very difficult. So, in this

thesis, we proposed an Inverse Reinforcement Learning (IRL) framework based

on Guided Cost Learning (GCL) to learn these behaviors from demonstration.

After analyzing the CongreG8 dataset, we found that the incoming human tends

to make an O-space (circle) with the rest of the group. Also, the approaching

velocity slows down when the approaching human gets closer to the group. We

utilized these findings in our framework that can learn the optimal reward and

policy from the example demonstrations and imitate similar human motion.

Keywords: Approaching Humans, Guided Cost Learning, Inverse Reinforcement

Learning, O-Space, Optimization
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1. INTRODUCTION

Remote working has been normal since the COVID-19 pandemic, and the practice

tends to grow in the future [1]. Most professional, academic, or personal interactions,

such as meetings, seminars, lectures, or even musical shows, were conducted through

video calling technologies. The popularity boom of remote meeting software such as

Zoom, Teams, Slack, etc. [2] shows that remote interactions and communications were

the key factors that helped maintain similar productivity during such a difficult time.

Nevertheless, the interaction over present video calling/conferencing technologies does

not feel real and natural and limits the mobility as in the actual scenario.

Telepresence provides a sensation to the user of a different physical location from

their actual location with the help of audio and visual devices such as cameras and

screens. In other words, the user experiences teleportation with an enhanced sense

of connectedness. Telepresence, in general, is a vague concept, and one can argue

that a video calling app is a telepresence technology. It is valid to some extent, but

the important thing we are missing is that telepresence technology should be able to

give the experience of virtually being in another environment. Virtual Reality (VR)

technology, using Head-Mounted Displays (HMD), can achieve the objective to a

large extent. It uses two lenses for eyes, headphones/speakers for ears, and body

tracking sensors to track the movement of the head or other body parts. The system

tries to deceive human perception by showing and playing the information about a

different environment A telepresence robot with integrated telepresence technology

can be the intersection between the virtual and real environment of such interactions.

Their application spans domains of industries and more unstructured environments

such as offices, public spaces, universities, hospitals, and houses.

Humans are considered dynamic obstacles for robots in most research. However,

human behavior is often not considered for making predictions based on movement.

Those that model the behavior of humans in the environment, do so only to avoid

collision with them. There is little research on how to approach to have an interaction

rather than avoid humans in an environment. Also, there is almost no such research that

focuses on telepresence robots. Although there are state-of-the-art robots with a high

degree of autonomy for navigation in deployed domains [3], due to the unpredictable

nature of the environment and humans, efficient interaction during navigation is

challenging to accomplish. Sequential methods [4], and mathematical modeling [5]

have been used to approach people by understanding human behaviors. The problem

is that these methods fail to capture the dynamics of the environment and cannot be

scaled.

Since humans intrinsically follow these basic characteristics, we can study human

behaviors for different navigation scenarios including how to approach people, and

implement these behaviors into the robot. Yet, things are not that easy because it’s

hard to understand and generalize human behaviors. Previous methods have tried

using sequential methods [4], and mathematical modeling [5] to approach people. The

problem here is that these methods fail to capture the dynamics of the environment,

and cannot be scaled. Even though human behaviors are difficult to model as a

mathematical function, we can assume that humans subconsciously optimize some

quantity while making rational decisions. So if we model such quantity as a function

of learnable parameters, we can learn the parameters using learning algorithms like
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Inverse Reinforcement Learning (IRL) [6] by looking at the examples of humans

behaving in such scenarios. Then, we can use these learned parameters to replicate

these behaviors in the robot.

In IRL, the quantity that we want to learn the parameters of and optimize is called

reward. Similarly, the actions that lead to those rewards are behaviors or, in technical

terms, policy. We have to model our environment into states in such a way that there

are actions for different states and there are rewards for those actions. Also, the states

change according to the actions. IRL is different from Reinforcement Learning (RL)

because, in RL, we have to learn an optimal policy when the reward is given. Whereas,

in IRL, we have to estimate the reward from the expert demonstration examples. But

one issue of IRL is that, at each optimization step, we have to solve a full RL problem

to find the optimal policy for the new reward. The guided Cost Learning (GCL)

algorithm handles the problem pretty well by using Deep Neural Networks (DNN)

to approximate rewards and policy [7].

We take the trajectory examples from the CongreG8 dataset [8] because they have

the trajectories of the same scenario that we are trying to study, i.e., approaching and

joining a group. First, we preprocess the dataset and convert it into the format that

can be used in the IRL framework. During this process, we analyze the trajectories

and try to understand the properties that can be helpful while using them in the IRL

framework.

We want robots to understand the environment better so that they can be seamlessly

integrated into our daily lives. There is also a big gap in research on behavioral

expectations and execution when it comes to robot navigation around humans.

Although the research in HAN is ramping up some speed, there is still so much work

to be done to better understand the scenario, and its properties and integrate it with

telepresence technologies. In this thesis, I propose a learning framework that can learn

the behavior of a specific scenario, i.e., while joining a group, using already present

examples. Also, I analyze a dataset to find the properties that can be applied to make

some assumptions for the framework. The framework helps us to learn the rewards

associated with the trajectories of this specific scenario, and generate a path that has

similar properties as that of examples.

The main objectives of this thesis are to analyze a dataset for the approaching

scenario of HAN, establish the mathematical foundation for an IRL framework, and

structure the dataset into the input format required by the framework to learn the reward

functions and policy associated with the example trajectories.

1.1. Structure of Thesis

The Chapter 1 of this thesis introduces the thesis, motivation for the thesis, and

provides the objectives of this research. The Chapter 2 consists of the relevant

background concept and mentions the past works in HAN, telepresence, learning

from demonstration, and available datasets. The Chapter 3 has a detailed description

of the proposed framework. This section describes the dataset, data preprocessing

methods, and algorithms. Similarly, the mathematical formulation of the problem and

the approach to solving the problem are also explained here. The results and illustration

obtained in the various stages of our study are presented in Chapter 4. The discussion
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and analysis of the obtained results and future research ideas are also done in this

chapter. Finally, the Chapter 5 consists of the conclusion of the thesis.
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2. BACKGROUND AND RELATED WORKS

This section describes the background concepts and technical terms of HAN and

telepresence. It also mentions the relevant past works for HAN, learning by

demonstration, and datasets available.

2.1. Human Aware Navigation

Human Aware Navigation is the intersection between HRI and robot motion planning

[9]. HRI involves the study of interaction dynamics between humans and robots [10].

Robot motion planning is to plan and execute the navigation of the robot from a start

position to a goal position.

As the research in robotics navigation is increasing, HAN is also becoming a very

broad topic. Different aspects of HAN include criteria for robot navigation, additional

criteria for coexisting with humans, and different navigation scenarios. The minimum

criterion to satisfy in robot navigation is to avoid collisions by using robust navigation

strategies. Additional criteria are to enable the smooth coexistence of robots and

humans in the same environment is to make humans feel comfortable, natural, and

social. In a normal case, the humans around the robots should be able to acknowledge

and accept the existence of a robot. In the telepresence case, the humans around

the robot and the humans virtually inside the robot should feel comfortable, natural,

and social. In a broad sense, the scope of HAN is to provide a general navigation

framework that fits the essential criteria [9].

Scientists and engineers have successfully deployed autonomous robots in the same

environment with humans [11] such as: Rhino [12], Robox [13±15], Minerva [16],

Rackham [17], Mobot [18], and Cice [19]. These robots had robust navigation modules

that would avoid humans or other obstacles and navigate through an environment. The

strategies used were stop-and-wait, i.e., wait until the path was cleared or a minimal

required obstacle distance, which is a minimum distance the robot should maintain

when it sees an obstacle on its path. These methods mostly focused on avoiding critical

situations and failed to address the social aspect of navigation.

When navigating a robot in an environment with humans, the robot might cause

discomfort, harm, or surprise to the humans there. For example, a guider-robot might

move too slow or fast and might fail to avoid distraction to the person and the person

cannot follow it. When moving around a person, failing to maintain appropriate

distance might annoy or frighten the humans, depending on the context. Unnecessary

long routes, getting in the way of humans, overreacting near obstacles (suddenly

stopping or making noise), and approaching from behind are some other examples

that could discomfort humans due to robot navigation.

While comfort is a subjective concept, and it’s difficult to fulfill individual criteria,

some minimum things can be done to make humans feel comfortable. Humans, in

general, feel uncomfortable when the agents they are interacting with are either too

close or too far in terms of physical distance. So, the majority of literature for solving

the comfort issue in HAN considers the distance between the robot and humans [9]. A

virtual space known as ªProxemicsº [20], and its derivations, which define interaction



12

distances mutually respected by humans based on context and relationship, are quite

popular in HAN. More details about proxemics can be seen in Table 1.

Table 1. Proxemics distance depending on relationship and context [20].

Type Specification Details

Intimate 0 ± 45 cm Embracing, Touching, Whispering

Personal 45 ± 120 cm Friends

Social 1.2 ± 3.6 m Acquaintances and Strangers

Public > 3.6 m Public Speaking

Comfortable navigation can be ensured by eliminating obvious causes of discomfort.

Defining the area around humans as a cost function and potential field are effective

solutions, as they balance the goal of navigation and caused discomfort. For e.g., a

robot has to pass through a human in a confined space, using cost function or potential

field, robots can achieve the goal even by moving close to a human. But if we just

define the area around the human as forbidden, then the robot is stuck since there is

no room for compromise [21±23]. Another idea could be signaling at an appropriate

distance before performing anything that might cause discomfort [24].

Several studies have tried to make robots move similar to humans to make robots

acceptable to humans because it makes robots predictable, intuitive, or ªnaturalº [9].

This behavior may also sometimes cause humans some discomfort, the ªuncanny

valleyº [25]. This issue has not caused any impact on robot navigation so far because

the issue only about looks [9]. So we can safely say that the benefit of making robots

more human-like outweighs the risks.

One of the methods used by researchers to make the robot motion natural is to make

the motion smooth. The velocity and geometry of the path can be made smooth by

minimizing the jerk of the motion and making the robots move more human-like [26].

For relative motion, sharing the direction [27], and following a formation [28] are some

properties exhibited by humans. Approaching from the front [29] rather than from the

back can be another approach to make the motion feel more natural.

Additionally, robots are expected to comply with norms of the society. Examples of

those norms can be: taking a side to move in narrow corridors, not causing unnecessary

discomfort or disturbance, staying in the queue, letting people leave the room before

entering through the doors, and so on. Most of the robots are hard-coded to behave

in a certain way while following the social norms like not violating the distance norm,

taking a side, or circumventing a group of people rather than passing through it [28,

30,31]. Robots are sometimes made to divert from the shortest path while crossing the

roads or standing in a queue [32] to value the social aspect of navigation.

All three criteria of HAN; comfort, naturalness, and sociability are interlinked with

each other. Compromising any one of them seems to affect another to some extent.

So, balancing these criteria can be a better idea than trying to break them and achieve

them separately. In summary, some ideas that can be implemented are: respecting

personal zones and affordance space, avoiding erratic or disturbing motion along with

culturally scorned behaviors, modulating speed, direction while approaching, and gaze

direction [9].
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obstacles by avoiding being in the position where the obstacle might be in the future.

Prediction can be done using geometric reasoning as well as learning using data or

by a combination of both. A trajectory is normally straight with constant velocity but

slows down while changing direction [33], stochastic grid map of likelihood position

[34], a potential field for attraction/repulsion [35], continuous probabilistic models

(uncertainty) [36], stochastically maximizing the expectation of random paths to avoid

collision (this method uses both prediction and local planning together) [37], using

social forces while walking in a formation or group [38], etc. are the popular ideas for

prediction using geometric reasoning.

While the generalization of prediction may fail in some special cases, the calculation

is also expensive with an increase in information, so it does not scale. There also

lies the challenge of modeling uncertainty, which gives rise to the freezing robot

problem and requires human cooperation to solve it [3]. Learning, on the other hand,

improves over time as it gathers data to adapt in special cases with comparatively

low online computation costs. Data library can be used to predict short-term and

long-term trajectories using Expectation-Maximization (EM) and converting it into

a classification problem [39]. IRL and MDP-based methods are popular nowadays

because they have performed quite well for unstructured environments [40]. Most of

the learning-based methods at present are coupled with the planning steps [3].

Deliberation focuses on the action, pose selection, path planning, and finally

behavior selection. A planner has to make all these decisions to find the optimal

solution. Action planning and behavior planning are similar, where the former decides

on ªwhatº and ªwhetherº, and the latter on the ªhowº of the motion planning. Pose

selection is the position in which the robot will perform some specific task like stopping

or manipulation [9]. Path planning is to find a valid solution from start to goal. Pose

selection can be done to comply with our requirements of comfort, naturalness, and

social norms. For this part, a dynamic potential field can be created around the goal or

obstacle based on context [21].

Path planning yields a set of waypoints that have to be followed by the robot for

optimally achieving the navigation goal from the start position to the goal position.

Graph-based search in a 2D map (which has the information about the environment,

and obstacles) is the most common approach. Graphs that have square grids, arbitrary

lattices, or expanding random trees are used in this application [9]. Kinematic

constraints are also to be considered as well, as the design of a good cost function

is also challenging. A cost function depends on the combination of action and context.

If we represent a cost function in a 2D map, it becomes the costmap. This costmap

can be utilized by the global planner to construct the plan. The costmap can be

composed of different cost functions that capture different scenarios that might occur

during the navigation like object padding, occlusion, hidden zones, zones of high or

low noise, comfort distance, visibility, interaction regions, pass through left, inertia,

crowd density, velocity similarity, etc [9]. Similarly, a time dimension can be added

in planning to avoid blocking the path for each robot however, the computation cost is

increased exponentially, so the temporal planning is more commonly done in the local

planning step [36].

Selection of behaviors can be done to perform interaction tasks such as avoiding

and interacting with humans by defining appropriate behaviors for different scenarios.

State machines can be used to switch between different behaviors, like approaching,
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In the thesis by Rios et al., they proposed a risk-based navigation framework

for mobile robots [32]. The proposed methods integrated traditional approaches

of prediction of moving obstacles with social considerations such as proxemics,

formation, activity space, etc. The models attempted to address the estimated

discomfort and risk of disturbance on the path caused by robot navigation. However,

dynamic adjustment to different scenarios and the consideration of their shape and

appearance of them can be addressed in the framework. Bevilacqua et al. maximized

human comfort in a Human Aware Navigation scenario by solving an optimal control

problem to generate smooth trajectories [49]. The solution consisted of a two-tier

approach where the first generated waypoints and the second module would optimize

the path to enhance the user comfort. The cost function consisted of several parameters

that would represent different dimensions of user comfort.

Social Force Model (SFM) [50] is a popular approach for modeling pedestrian

dynamics. In simple terms, this model measures the aggregate virtual force (maybe

attraction or repulsion depending on context) exerted on the pedestrian by goals,

obstacles, other pedestrians, etc. This concept can be applied to applications such as

the formation of groups, group dynamics, and also human-robot navigation behaviors.

The system described by Hansen et al. used motion-pattern analysis to estimate the

intent of the human and move the robot accordingly. The system also used potential

fields around the human obstacle based on the intent estimate, and the robot would

move towards the region of the lowest value. This research aimed to make robots more

acceptable and natural by respecting the personal distance in different scenarios [21].

Qualitative Trajectory Calculus (QTC) [51] utilizes the relative spatial positioning of

the robot and human and encodes it into a state-space representation. QTC combined

with distance measure and probabilistic behavior model was applied into a sequential

model to study the joint spatial behavior of humans and robots. This approach can be

applied to study behaviors such as guiding, approaching, departing, or coordinating in

narrow spaces between humans and robots. A computational framework of proxemics-

based data-driven probabilistic models of social signaling in human-robot interaction

[52] used a concept that features such as physical, psychological, and psycho-physical

determine the proxemics behavior during interaction. On top of that, an interaction

potential-based trajectory planner and reactive proxemic controller were developed to

navigate the robot to conduct social interactions with the human.

In the research by Martinez et al., a multi-robot system architecture was developed

to guide a group of humans. The robot followed strategies to localize multi-humans,

and create a trajectory to control the group [38]. An architecture for multi-robot

communication was also developed for this purpose. The Social Force Model (SFM)

and center of gravity concept were the fundamentals for formulating the trajectory to

control the group. Lam et al. proposed a navigation algorithm for the harmonious

coexistence of humans and robots in the same environment. The navigation algorithm

used different rules regarding sensitive zones and yielded a virtual sensitive field

that included different scenarios. Then a motion planning algorithm would plan

and navigate the robot in that environment. However, inaccuracies in the movement

tracking of humans adversely affected the performance of this algorithm [53].

Banisetty et al. introduced a Pareto Concavity Elimination Transformation

(PaCcET) based planner which was integrated into Robot Operating System’s (ROS)

local planner [54]. The approach successfully worked on scenarios such as a hallway,
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art gallery, queue, and group interaction. The robot performed well in terms of

efficiency and cost in scenarios where the robot required prior knowledge on what

interaction task to perform.

The review paper by He et al. reviewed several robot motion planning methods,

including classical as well as more modern reinforcement learning-based methods.

Classical methods have different stages starting from map acquisition, discrete path

searching, and trajectory generation to trajectory tracking using local planners.

Reinforcement learning-based methods can have the map of the environment and

optimize using learning algorithms or can be mapless and have end-to-end architecture.

The latter method can also be extended to work on multi-robot planning problems.

However, there are still many performance and scalability issues to tackle before

deploying these algorithms in real, unstructured environments [55].

HAN: Avoiding Humans

A concept called reciprocal velocity obstacles [56] can be used for autonomous

collision and oscillation-free navigation among static and dynamic obstacles.

Reciprocal Velocity Obstacles is a modification of velocity obstacles [57] designed

to overcome the oscillation problem observed in the original method. This concept

works in two-dimension space, and multi-agent scenarios (1000 agents) and also can

be extended to work in high-speed obstacles and three-dimensional space. A proactive

social motion model [58] used ideas from the extended social force model and hybrid

reciprocal velocity obstacle technique to enable a robot to navigate safely and socially

in a crowded dynamic environment.

For stabilizing the formation of multiple moving agents, Tanner et al. developed a

decentralized controller that worked in a cooperative approach using local navigation

functions [59]. The agents used relative orientation and position to form a stable

formation and avoid a collision. This was achieved by fine-tuning the parameters

of the navigation functions, which are based on the geometry of the space and

the degree of interconnection between the agents. The approach was tested in

the simulated environment of three and four moving agents. By tackling socially

aware robot navigation as a learning problem rather than a traditional model-based

problem, better human relative motion behavior can be reproduced [60]. The research

took the annotated surveillance data, learned the human relative motion behavior

using unsupervised learning to compute a dynamic costmap, and finally plan socially

acceptable avoidance maneuvers.

By explicitly modeling the negative examples (collision or discomfort) for socially-

aware robot navigation, Liu et al. were able to reduce the collision rates compared to

different state-of-the-art methods [61]. The researchers proposed a social contrastive

learning method and formulate a loss that represented sufficient information for

distinguishing the positive and negative events during navigation. The research by

Finean et al. predicted the human motion in a dynamic environment and used

trajectory optimization-based motion planning [62]. The human motion prediction

was carried out in multiple stages using image processing algorithms, mapping, and

intent recognition. The information was integrated into the occupancy gridmap and

finally, the trajectory optimization algorithm was used to plan the path. Finally, the

verification of the results was done both in simulation and in physical robots.
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HAN: Approaching Humans

Researchers developed a multi-stage method to initiate the conversation between

robot and human [4]. The proposed model included predicting the walking behavior,

choosing the target, planning the approach path, and finally, non-verbally indicating

the intention to start the conversation.

Kato et al. designed and analyzed polite approaching behaviors for a customer

service robot by replicating the behavior exhibited by a customer and service staff

before initiating conversations [63]. First, the data was collected and then categorized

into different intention categories using Support Vector Machine (SVM) for estimation.

A state transition model was designed for the robot to exhibit one of three behaviors

depending on the observed intention of the customer. The researchers found out that

the model was effective for initiating a polite conversation however, the modeling is not

generalizable to other deployment scenarios or places with different social norms. The

robot designed by Repiso et al. was capable of approaching and engaging people [5].

The robot was able to predict the best encounter point to engage itself in the interaction

by modifying its pose and orientation. The calculation for the encounter point was

done by using the gradient descent method that considered the predictions of human

motions. It also used the extended social force model to include the dynamic goal. The

verification and validation of the concept in terms of social acceptance were done in

simulation as well as in real-life robots for various scenarios.

A proactive approach method for human service robots was proposed in [64]. This

method tackled the problem of estimating the pose and orientation of a human, and

the risk of unacceptability and discomfort caused by robot motion, by proactively

approaching the human in a socially acceptable manner. For doing so, the researchers

integrated the motion and interaction modules using behavior trees. A strategy for

the robot on how to approach people, not in a friendly way but for admonishment

by Mizumaru et al. [65]. First, the researchers observed the human motion for both

admonishment and friendly scenarios. Then, they implemented the findings in the

robot and verified the effectiveness of a real robot.

2.2. Virtual Reality (VR) and Telepresence

VR technology can be used to enable an immersive telepresence experience during

HAN scenarios. Because of the reason that this area is relatively new, the research in

this area is quite behind compared to other areas. The comfort and naturalness aspect

of the navigation holds in the case of telepresence, but in a slightly different viewpoint,

the viewpoint of the operator. The contemporary research also focuses on creating

comfortable and intuitive immersive telepresence technologies. On top of that, there

are researches creating remotely controllable telepresence robots.

Desai et al. described the essential features of a modern telepresence robot as

guidelines. The features include video, audio, user interface, physical features, and

autonomous behaviors [66]. Tsui et al. mentioned the iterative design process of a

semi-autonomous telepresence robot, which is a follow-up on a previous paper [67,68].

The papers have a detailed explanation of each stage of development, along with
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a lot of theoretical expertise, there is room for performance issues due to imperfect

modeling. Learning methods are getting popularity because it is simple to implement

and efficient [6].

Researchers learned different driving styles using demonstrations as examples to

understand the dynamics of driving styles that make the vehicles safe and reliable [78].

A linear parameterized sum of features associated with driving styles was used as the

cost function for the inverse reinforcement learning model to understand the driving

style of different drivers. A modular approach proposed by Kim et al. for path

planning of robots in a human environment using inverse reinforcement learning [79].

The first module extracted the features to characterize the state information (velocity

and density of obstacles) using a depth camera sensor. The second module used

inverse reinforcement learning to learn expert behaviors from the demonstration in

different states. Finally, the planning module integrated the prior information and used

a path planning algorithm to determine the shortest path. Also, the low-level planning

and execution including the immediate obstacle avoidance were handled by a typical

approach. Ramirez et al. studied inverse reinforcement learning in two scenarios

that took into account social norms for navigation [80]. First, the planner learned the

appropriate way to approach a person in an open area without static obstacles. Later,

the information was translated into learning the costmap using linear combinations of

continuous functions to generate a path.

Deep reinforcement learning to develop a time-efficient navigation policy that

respects the common social norms [81]. This method modeled the behavior of two

humans navigating at walking speed. Further, the approach was generalized to work

in an environment with multiple agents. A method for constructing an HRI policy

for multimodal probabilistic future scenarios was developed by Schmerling et al. [82].

This method learned the policy from a multimodal probability distribution for future

human actions by sampling the human responses to the actions predicted by the robot.

This concept was tested in a highway-like scenario using simulation.

Attention-based deep reinforcement learning network can be used to model

crowd-robot interaction [83]. By jointly modeling human-robot and human-human

interaction, the network was able to anticipate the crowd dynamics and navigate into

the time-efficient paths. Similarly, a dual social attention deep reinforcement learning

method found a feasible, collision-free path for a robot in a crowded environment [84].

Here, the dual social attention network would model the complex interaction of the

neighboring agents that helped the collision-free and efficient navigation of the robot

in that environment.

A reinforcement learning-based end-to-end learning method used Deep Q Learning

Network (D3QN) with convolution neural network (CNN) as its core network was

successful in learning to navigate a robot by avoiding obstacles using images from

Red Green Blue-Depth (RGB-D) camera [85]. A robust behavior cloning pipeline was

employed to train and deploy the human driving behaviors into autonomous vehicles

by Samak et al. [86]. The steering angle was predicted from a neural network model

that used camera images as input. The velocity commands were derived from the

steering output using a control function proposed in the paper. Extensive testing in

various simulated scenarios was carried out to analyze the computational efficiency

and robustness of the proposed pipeline.
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By balancing the social preference with the desire to reach the goal, a model was able

to learn the human-aware robot navigation using inverse reinforcement learning [87].

The proposed system used a force sensor to record the user input during navigation

and optimized a cost function to learn the behavior while navigating. The approach

was verified by deploying it into a real robot and using a user-based survey. The

approach proposed by Smith et al. predicted the future human intention to generate a

socially robust human avoidance behavior in the robot while remaining robust to the

uncertainty of the human intention and motion variance [88]. This method employed

a novel framework of cooperative MDP that considers the previous studies done on

human motion, intention, and preference. Here, the behavior of humans is modeled

into a discrete behavior model and the Co-MDP algorithm, which is a similar but

extended form of multi-agent MDP, predicts the action integrating both human and

robot behaviors and their joint transition function.

Decentralized Structural Recurrent Neural Network (DS-RNN) [89] learned the

spatial ad temporal relationship between robot and crowd to make decisions when

navigating through it. A model-free reinforcement learning method was applied to

learn in an unsupervised setting. Later, the policy was deployed and verified into a

real-world robot. Cui et al. used model-based reinforcement learning to learn the

policies to navigate through a crowded environment [90]. The reward functions were

designed to capture social conventions such as distance from other humans. This

method successfully avoided the obstacles and navigated through the crowd.

2.4. Available Dataset

We can find several datasets of HAN scenarios developed by researchers for research.

Most of the datasets are not for the general research of HAN but their specific study.

In particular, we searched for the dataset that is most relevant to our research with the

possibility of using it in our research. A dataset is typically composed of trajectory

data in a human environment that can be used to model the dynamics associated with

the environment.

The Edinburgh Informatics Forum Pedestrian Dataset [91] consists of over 90000

trajectories of pedestrians. The main objective of the research was to understand

pedestrian behavior in open spaces and entries. The data was taken from above. ETH

Pedestrian Dataset [92] used overhead cameras to track multi-person trajectories. It

contained over 650 trajectories and was more than 25 minutes in length. Crowds UCY

Dataset wanted to do the crowd simulation [93] by collecting 200 trajectories data.

Similarly, Train Station Dataset [94] used 33 minutes of footage by annotating it as

key-point trajectories to conduct crowd behavior analysis.

The Stanford Dome Dataset [95] took it to the next level by using 60 videos

and, 20000 detected participants. It used bounding boxes in the videos to track the

trajectories. The PETS Dataset [96] multipurpose dataset was released in 2009 as a

challenge that annotated crowd density, and person count in a 5-gigabyte video. It was

raw data and the detection and estimation were to be done by the researchers using it

for their research.
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The CongreG8 [8] is a dataset that has the trajectories along with body marker

data from the participants for an approaching scenario. It has 385 trajectories data

for human approaching and 38 robot approaching trials.
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for multiple frames. Decreasing the frame rate also reduces the memory and time

requirement during data processing.

The next thing we did was to convert the real-world position and orientation into

our discrete grid world format. As mentioned above, the resolution for the position

is 0.1 m whereas for orientation is 10◦. Also, the lower bound and higher bounds for

position and orientation in the real world are (-3, 3), and (−π, π), respectively. So, we

used the following equations to calculate the grid coordinates from world coordinates.

(xgrid, ygrid) = (
x− xmin

xres
,
y − ymin

yres
)

θgrid =
θ − θmin

θres

Here, (xgrid, ygrid), and θgrid are the position and orientation of a player in the

grid world which is derived from the position(x, y) and orientation(θ) from world

coordinates. Also, xmin, ymin, θmin, xres, yres, and θres are the low bound for x, y,

θ, and resolution for x, y, and θ. The table 3 has value of these parameters.

Table 3. Grid world parameters

Parameters Value Unit

xmin -3 meter (m)

ymin -3 meter (m)

θmin −π or 180 radian or degree (◦)

xres 0.1 meter (m)

yres 0.1 meter (m)

θres 10 degree (◦)

Finally, we label the data (which coordinate belongs to the approaching participant

and which coordinates belong to the group’s participants) and generate trajectories in

terms of state and action pairs, which we will describe in the later section.

3.3. Problem Formulation

To solve a problem by using mathematical tools such as algorithms, logic, or

calculation, we need to properly define the problem in mathematical terms. This

process is also known as problem formulation. This section describes how we use

mathematics to structure the problem in that terms and related mathematical concepts

along with their evolution. First, we introduce the concept of the Markov Decision

Process (MDP), followed by Reinforcement Learning (RL) and Inverse Reinforcement

Learning (IRL). Finally, we describe the application of these concepts in our research.

3.3.1. Markov Decision Process

An MDP [99] is a discrete stochastic process that provides a framework for modeling

the situations where we know the probability of occurrence of some event depends on
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For a RL problem, we are provided with an MDP (S,A, Pa(s, s
′), Ra(s, s

′)), discount

factor γ, an environment (simulated or real) where we can do multiple trials. Now, the

objective for RL is to learn a policy π, such that it maximizes the expected cumulative

reward. A policy function π(s), as described above, gives an action for a state. For

a stochastic process, we can define a policy function π(a, s) = p(at = a|st = s). In

other words, π(a|s) gives the probability of taking action a when the state is s at any

time t.

If the process starts from any state s, then the total expected reward by following

a policy π is known as the value function, Vπ(s) which is given by the following

equation:

Vπ(s) = E[R|s0 = s] = E

[

∞
∑

t=0

γtRat(st, st+1)|s0 = s

]

Here, st+1 is the next state after st under π. The value function can be broken down

into a recursive relationship as follows:

Vπ(s) =
∑

a∈A

π(a|s)
[

Ra(s, s
′) + γ

∑

s′∈S

Pa(s, s
′)Vπ(s

′)

]

Similarly, the action-value function Qπ(s, a) is the expected reward when starting

from s, taking action a, and then following the policy π. The equation for Q-value

function is as follows:

Qπ(s, a) = E[R|s0 = s, a0 = a] = E

[

∞
∑

t=0

γtRat(st, st+1)|s0 = s, a0 = a

]

Here, the Vπ(s) has the following relation with Qπ(s, a):

Vπ(s) =
∑

a∈A

π(a|s)Qπ(s, a)

Therefore, we can write:

Qπ(s, a) = Ra(s, s
′) + γ

∑

s′∈S

Pa(s, s
′)Vπ(s

′)

Finally, the optimal policy π∗ that we are so interested in, is the policy that

maximizes the Vπ(s), and Qπ(s, a) among all the policies. Also, the optimal value

is the maximum value function over all the policies:

V ∗(s) = max
π

Vπ(s)

Similarly, the optimal action-value is the maximum action-value function over all the

policies:

Q∗(s, a) = max
π

Qπ(s, a)

For simplicity, we define a policy π to be better than or equal to (≥) another policy

π′, if the result of the value function of π is greater than or equal to that of π′, for all

the states s in S.

π ≥ π′, ifVπ(s) ≥ Vπ′(s), ∀s
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In this PGM, our aim is to learn the reward parameters ψ. So, by adding ψ to the

optimality variable, we get:

p(Ot|st, at, ψ) = exp(Rψ(st, at))

and

p(τ |O1:T , ψ) ∝ p(τ)exp(
∑

t

Rψ(st, at))

Since we already have samples {τi} from π∗(τ), we use Maximum Likelihood

Estimation (MLE) [102] to maximize the probability of the trajectories that we have

observed. The p(τ) is independent of the parameter vector ψ, so we can ignore it for

the MLE:

max
ψ

1

N

N
∑

i=1

logp(τ |O1:T , ψ) = max
ψ

1

N

N
∑

i=1

Rψ(τi)− logZ

Here, N is the total number of sample trajectories and log(Z) is the log normalizer.

The normalizer Z, also known as the partition function, is equal to:

Z =

∫

p(τ)exp(Rψ(τ)) dτ

By taking the gradient of our MLE problem, we get:

∆ψL =
1

N

N
∑

i=1

∆ψRψ(τi)−
1

Z

∫

p(τ)exp(Rψ(τ))∆ψRψ(τ) dτ

which we can write as:

∆ψL = Eτ∼π∗(tau)[∆ψRψ(τi)]− Eτ∼p(τ |O1:T ,ψ)[∆ψRψ(τ)]

In the above equation, we can see that, the gradient of MLE can be obtained by

subtracting the expected value of the gradient of reward under p(τ) given current ψ

from the expected value of the gradient of reward under optimal policy π∗. So, we

can estimate the first term from the expert samples whereas, we can run the inference

on soft-optimal policy for current reward parameters to estimate the second term. To

determine the soft-optimal policy, we should solve the whole problem of reinforcement

learning for the current reward.

3.4. Proposed Approach

This section consists of the description of the MDP that we used, along with the IRL

algorithm.

3.4.1. Environment

As already explained in earlier sections, to solve an IRL problem, we need to properly

define an MDP (S,A, Pa(s, s
′), Ra(s, s

′)). In our research, the state vector is

s = (x1, y1, x2, y2, x3, y3, x4, y4)
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2. The distance between the center of the virtual circle formed by the group and the

starting position of the approaching participant be greater than or equal to
√
7,5

times the radius of the virtual circle. i.e.:

(x1 − xc)
2 + (y1 − yc)

2 ≥ 7,5r2c

Referring to the PDA, the goal state condition for our case is: the position of p1
touches the circumference of the virtual circle made by the group. Mathematically:

(x1 − xc)
2 + (y1 − yc)

2 ≤ r2c

After initializing the start state and defining the goal condition, the simulator starts

generating actions for the states. A policy generator is the policy function that

generates an action for a state. The next section explains the details of the policy

generator. State transition occurs when the simulator applies the action, and we get the

new state. Figure 13 represents an example of how the state transition occurs. Now, the

next step is to check the goal condition, if the new state satisfies the goal condition, the

simulator stops the simulation and returns the path list, else it uses the policy generator

to get an action for the new state; the process repeats until the new state satisfies the

goal condition.

3.4.2. IRL Algorithm

Since, our state space is large (for one participant it is 3600), enumerating all state-

action tuples is impractical. Also, we need to solve the RL problem at each parameter

gradient step to get a soft optimal policy, which is not feasible because of the unknown

dynamics of our problem. One thing that we can do at this stage is to use a policy that

is not optimal, but a suboptimal policy. It means that we can use a policy that is not

fully optimized but is better than the previous step, i.e, in the direction of optimality.

This idea is the basis of the algorithm that we are using in this research. Guided Cost

Learning (GCL) [7] learns the optimal reward values from the human demonstrations

by using Deep Neural Networks (DNN).

The GCD is a DNN-based IRL algorithm that simultaneously learns the optimal cost

and policy from the expert demonstrations. It optimizes the same IRL equation that we

mentioned in previous sections. Here, we represent the reward function and the policy

function as DNN and use Algorithm 1 to optimize the respective networks.
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Here, δLψ, and δLβ are the loss functions for the reward network and policy network,

respectively. N and M are the total number of sampled trajectories from τ̂demo and

τ̂samp, respectively. The equation to estimate δLψ is:

δLψ =
1

N

∑

τi∈τdemo

Rψ(τi) + log
1

M

∑

τj∈τsamp

zjexp(−Rψ(τj))

where, zj is the importance weight of the sampled trajectory, which is equal to zj =
(p(τj))

−1. The policy generator also estimates the value of zj . We can estimate δLβ
for the policy network by using:

Lβ = − 1

M

∑

τj∈τtraj

[

∑

ak∈A

[log(p(τj))πψ(s, ak))]Rψ(τj)−H(τj)

]

The term H(τj) is the entropy of the trajectory, whose value is equal to H(τj) =
−
∑

τj∈τtraj
p(τj)log(p(τj)). M in the above equation denotes the total number of

generated trajectory τtraj . For optimization, we used Adam optimizer [103] and

pytorch environment [104].
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5. CONCLUSION

This thesis focused on understanding the human behavior while approaching a group

to find a policy that generates human-like trajectories for an autonomous mobile

telepresence robot in similar scenarios. To this end, we analyzed a dataset of human

trajectories collected in a similar case. We found that people, while interacting as a

group, tend to make a circle, and a person who is approaching the group slows down

as he or she gets closer to it. Based on the conditions derived from analyzing the dataset

of trajectories, we proposed an IRL framework that can be used to simultaneously learn

the optimal reward and policy from human demonstrations.

Future works include a user study to test whether the policy learned using the

proposed framework is acceptable to people, and a comparison against different

methods to find a policy. Proper experiments are needed to claim that the framework

performs better than other methods. Especially, there lies a lot of choices in policy

network, so it can be studied and experimented in more detail.
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