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ABSTRACT

We study the implementation and functionality of autoencoders based on the
predictive coding model and the free energy framework, which have seen
relatively little experimentation. This framework offers an alternative approach
to constructing artificial neural networks in place of traditional backpropagation
networks. The limited number of studies published on the subject indicate that
the framework could provide better solutions to applications employing artificial
intelligence.

This work is meant to accessible to any university student wishing to gain a
preliminary understanding for the concepts involved. To this end we provide a
detailed walkthrough of the core mathematical ideas behind the implementation
using Bogacz’s great tutorial as a guide.

We document the implementation process of two autoencoders that learn to
recreate handwritten digits from the MNIST dataset in an unsupervised learning
scenario. Both of these implementations utilize fully connected layers and are
tasked with encoding and decoding of handwritten digits from the MNIST
dataset. We analyze graphs of the different variable values and compare the final
images produced by the autoencoder to the original ones.

The first implementation is an attempt at constructing an original network and
serves as an example of how error sensitive the construction of these networks
from the ground up can be. We study the applicability of the theory of predictive
coding in practice and diagnose the issues that we encounter. In particular, we
showcase problems relating to the update of variances within the network and
general difficulties in achieving convergence for all nodes in the network.

The second implementation is built on top of a predictive coding library built
by B. Millidge and A. Tschantz and showcases the potential of predictive coding
model as a basis for a functional autoencoder. We partially replicate the results
obtained by Millidge to establish a baseline for the network’s performance.
Furthermore, we study the effects of tuning different aspects of these networks
to better understand the function of these types of networks. These aspects
include the network depth, number of nodes per layer and activation functions.
Subjective evaluation on the effects of these modifications is conducted.

Our findings regarding the second implementation indicate that the most
important factor in determining final image quality and classification capability
is the width of the code layer of the autoencoder. Our experiments using different
activation functions do not reveal significant performance gains for any of the
functions used. Lastly, we look at the effects of deepening the network but find
equal or worse performance when compared to shallow networks.

Keywords: Predictive coding, free energy principle, neural network, autoencoder,
MNIST
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1. INTRODUCTION

Understanding how the brain extracts information from the stimuli it receives is
an important long-standing problem in neuroscience. The predictive coding model
coupled together with Fristons later work on the free-energy principle offer a
compelling framework for examining this problem. In addition to locality, Rao &
Ballard demonstrated that the nodes in this type of network exhibit behavior similar to
biological neurons in that the features a node recognizes resemble receptive fields of
neurons [1]. These types of connections between predictive coding and biological
brains make the theory relevant to neuroscience. In short, the predictive coding
model suggests that the brain generates predictions about its own states. It calculates
prediction errors defined as the difference between the predicted and the actual
activities of neurons. Then improves its predictions over time by minimizing these
prediction errors. According to Friston, this process can be understood more generally
as the minimization of the system’s statistical free-energy [2]. This explanation is quite
interesting because it has been proposed that networks structured in this manner could
potentially be implemented in a biologically plausible way. Computations carried out
by a predictive coding network are local and only depend on the activity of presynaptic
and postsynaptic neurons or nodes excluding couple nuanced cases. This emphasis on
locality is a key difference between a predictive coding network and a classical artificial
neural network that utilizes a global loss function in learning.

After Rao & Ballards paper demonstrated the initial connections to biological
circuits through emphasis on locality, plasticity and the exhibited receptive field
effects, the field of predictive coding has been expanded upon significantly. These
extensions include the role of action in error minimization, learning the variance of
features (as opposed to just the mean values of features), formal mathematical work
and further connections to other related theories in the study of perception, namely
the free-energy principle. However, relatively little work has been done on studying
implementations of predictive coding networks.

The work that has been done on this suggests predictive coding can outperform
traditional artificial neural networks in certain tasks [3]. Because of this, we feel it is
prudent to probe the efficacy of predictive coding networks in different tasks as the
model could provide superior solutions to existing and future problems where artificial
intelligence is employed.

We will implement an autoencoder following the mathematics and principles
provided in Bogacz’s tutorial [4] by coding everything ourselves using Python as
the programming language. We will also utilize the implementation of the predictive
coding in Python by Millidge[5] as our second implementation’s framework. Our final
goal is to compare these two implementations by testing what results they give and
how many iterations they need. Our hope is that by evaluating the results of each
implementation we can help future work on practical implementations of predictive
coding networks.
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1.1. Background

The idea of perception as an unconscious inference was first presented by Hermann
von Helmholtz [6] and can be seen as the precursor for later work which led to
the conception of predictive coding. The predictive coding model as such properly
originated in the late 1900s. While there were other studies published on predictive
coding in the 1980s and 1990s it was the work of Rao Ballard [1] that acted as the
catalyst for newfound interest in the field. The paper showcased predictive coding
in the context of artificial neural networks for the first time which yielded new
practical results and the previously mentioned possible biological connections. They
demonstrated through simulations that a network consisting of both feedforward and
feedback connections was capable of exhibiting some extra-classical receptive-field
effects such as back-stopping.

The biological plausibility of the predictive coding model has made it an exciting
research topic in both neuroscience and computational fields as it suggests possible
explanations for empirical observations from studies on the different mechanisms of
the brain. It should be noted however, that there are many unanswered questions
regarding both the function of biological neurons and the predictive coding model’s
accuracy in representing those neurons. The biological plausibility has two constraints.
Firstly, a neuron must do computations only based on its input neurons and synaptic
weights associated to those inputs. Secondly, the change of synaptic plasticity has to be
based only on the pre-synaptic and post-synaptic neurons activity. This means that the
synaptic weights must only be altered by the two neurons which the synapse connects.

The model described in Rao and Ballard’s paper [1] is a network where higher level
nodes predict the activity of lower level nodes through a feedback connection and
the lower level nodes send prediction errors to higher levels through a feedforward
connection. These prediction errors describe the difference between the prediction and
the actual activity and they are used to enhance the predictions made at the higher
level about the lower level. The network learns by maximizing the likelihood of
model parameters given the stimulus the network encounters. This maximization is
implemented by minimizing a derived optimization function through gradient descent.
This structure forms the basis for any predictive coding network.

A later model on predictive coding developed by Karl Friston [7] did not completely
satisfy the biological constraints. The alterations and extensions needed to mend
the model are introduced in a tutorial written by Rafal Bogacz [4]. In this tutorial
Bogacz illustrates how learning can be framed as the minimization of free-energy.
This ties together predictive coding and an idea called free-energy principle presented
in a paper written by Friston, Kilner and Harrison [8]. The tutorial builds up the
mathematical elements of the model and applies them to simple scenarios that illustrate
the functionality of the model. Our first implementation will refer to the mathematical
equations used in Bogacz’s tutorial [4]. In particular, we will utilize the internal
dynamics and the parameter update rules. We feel Bogatz’s tutorial [4] is an excellent
introduction to the predictive coding model, and we provide a detailed walkthrough of
this paper in Section 2.
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1.2. The Free Energy Principle

The free energy principle aims to describe how the brain works by stating that every
change in the brain is trying to minimize free energy. It was first introduced by K.
Friston, J. Kilner and L. Harrison [8]. Minimizing free energy is described with
Bayesian equations. The free energy principle states that the brain has internal states
and the world has external or hidden states. These states do not interact directly, but the
external states provide information which is seen as sensations by the internal states in
predictive coding. The sensations affect internal states which in turn can respond to the
sensations by taking actions to affect the external states. These actions try to steer the
world toward something that is less bewildering and the brain is more familiar with.
The brain tries to minimize surprise. Brain continuously corrects its internal model in
order to better match its own model of reality.

Mathematically the minimization of free energy of a system can be achieved by
minimizing the Kullback-Leibler divergence of two probability distributions. The
first distribution is the system’s model for the environment and the second is the true
probability distribution of the environment. Kullback-Leibler divergence can be hard
to understand but it can be thought of as the ratio of the two distributions with the
property that this ratio gets larger as the distributions get farther apart and goes to zero
if the distributions are equal.

1.3. Predictive Coding Network Models

Predictive coding networks can be employed to accurately perform a variety of
different artificial intelligence tasks. In their paper on deep predictive coding for video
prediction[9] Lotter and Kreima use neural network named "PredNet" which is based
on the predictive coding paradigm to predict future frames of a video sequence. Their
network was able to predict future movements of synthetic objects well and scale up to
complex real world image streams from which it was able to take into account parallax
and movement of other objects. Another example of a predictive coding network model
is the deep predictive coding network used for recognising objects in a 2018 study
[3]. In this study, a deep predictive coding network was evaluated against classical
and state-of-the-art models in multiple image recognition tasks. The predictive coding
network outperformed its feedforward-only counterpart and was also competitive with
the much wider and deeper state-of-the-art models. Additionally, the study makes
note of the fact that the predictive coding network was able to reconstruct the input
image with good accuracy from its top-down representations even when it is trained to
classify images (as opposed to generate them).

A deep predictive coding network used for object recognition is introduced in
Beren Millidge’s study about different applications of the free energy principle[5].
In this study Millige considers a traditional convolutional neural network (CNN) and
implements feedforward, feedback and recurrent connections forming a predictive
coding network (PCN). Then he compares this PCN against the CNN. He found that
the PCN outperforms the CNN in various tasks. The PCN achieved higher accuracy
given more cycles of computation. Compared with state of the art models it achieved



7

competitive performance with fewer layers and less optimization, leaving room to
improve and iterate on this design.

A predictive coding algorithm used to encode elements which can be predicted
across time is presented in a study about planning in latent space[10]. In this study
the writers showcase how using a predictive coding network for encoding and then
applying reinforcement learning to the generated latent space allowed them to achieve
better performance on a challenging modification of a DeepMindControl task. These
are tasks where the agent must perform certain actions based on its environment.

It has been discovered that applying a reinforcement learning algorithm to these
situations directly is inefficient due to the complexity of the scenes. Because of this,
some type of encoder is usually employed to reduce the dimensionality of the problem
to a point where reinforcement algorithms can solve them effectively. When the
backgrounds of these environments (which should be irrelevant to the control tasks)
were replaced with natural video, the predictive coding network outperformed other
encoder solutions[10]. This indicates that the predictive coding model may be more
efficient at extracting the most important representations from the input space when
learning the latent states. This property of a system being robust against excessive
noise in the input could be crucial in certain real world applications of automated
systems. The predictive coding encoder also stayed competitive in the standard non-
natural video background task where noise in the input space was reduced.

1.4. Biological Constraints

The possible biological plausibility of the predictive coding model has made it an
exciting research topic in neuroscience and computational fields. The constraints
mentioned in Section 1.1 were that a neuron has to make computations based only
on its input neurons and that the change of synaptic weights must be based only on the
pre-synaptic and post-synaptic neurons activity. This means that the synaptic weights
have to only be altered by the neuron pair which is connected by the synapse. There
has been limited research focused on tightening these constraints.

In [11] the writers make two modifications to the predictive coding framework to
better match neurological reality. The first modification is related to the issue of
bidirectional synapses and transferring the transpose of forward weights. In [11] the
writers propose two solutions for achieving this. The first of these is by using random
matrices instead of the transpose, derived from research done on back propagating
networks. The second proposed solution uses a method developed by Kolen and
Pollack [12] and extended by Akrout et al. [13], in which they train backward matrices
so that they converge to match the transposes of the forward matrices.

The second modification relates to the continuous values of neurons interpreted as
the firing rate of the neuron. This value can go negative, but biologically neurons
never have negative firing rates. In the paper the neuronal activity is fixed to zero if
it gets negative. This however will lead to a gradient loss, so to prevent the loss a
constant positive bias term is added to the model. This way the values will always
stay positive. The writers present three error neuron encoding schemes: subtractive
separated encoding, subtractive threshold encoding, and division mismatch encoding.
These are all aimed to keep the neuron firing rates positive and biologically plausible.
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Comparing the resulting network against a traditional backpropagating network and an
unmodified predictive coding network using the MNIST dataset demonstrates that the
modifications have little impact on performance.

1.5. Autoencoder Applications

Autoencoders are neural networks that take in data, compress and encode the input data
and then reconstruct the data from the encoded representation to produce an output of
the same size as the input [14]. An autoencoder is trained until loss or error is minimal
and the image or data that is fed in is recreated as accurately as possible. Because the
data is compressed, the autoencoder has to learn the important features found in the
data. These features are sometimes called components. Autoencoders can be trained
to do various things such as removing noise from images and detecting anomalies from
a given data set.

In [5], Beren Millidge presents an autoencoder based on the predictive coding
framework. The autoencoder model demonstrates capability by recreating digits from
the MNIST dataset successfully, also recreating unseen MNIST digits with a slightly
lower fidelity. Additionally it can generate (or, as they put it, “dream”) new never
before seen digits. Millidge also tested the network with CIFAR images, achieving
very high fidelity. Having learned the latent space, the network was able to interpolate
between images. We use this autoencoder as reference when evaluating the results of
our second implementation, which is built on top of the same predictive coding library
done by Millidge and Tschantz [15].

1.6. Scope

The predictive coding model can be described mathematically through variational
methods that formalize the ideas contained within the theory and links it to other related
subjects [16]. However, in this thesis we focus primarily on the software side of the
implementation since in order to scrutinize the mathematical aspects of the framework
a substantially deeper mathematical background than the authors possess is required.
Even so, there are many important mathematical concepts and steps that need to be
understood in order to make sense of how the network functions. To this end, we
provide a walkthrough of the required concepts in Section 2.

Once a functional network has been obtained, we will devote our attention to
studying its properties and comparing it to other similar implementations, namely
[15]. As for the scope of our implementation, we will initially limit ourselves
to studying the autoencoder in an unsupervised learning task utilizing the MNIST
dataset of handwritten digits. The most important aspect will be the proper function
of the network, meaning that it performs reasonably well in its task and that the
implementation follows the predictive coding model properly. Where we are forced
to deviate from the theory, this will be noted and its implications acknowledged
accordingly.

The dataset we use in the training and testing is the MNIST dataset which contains
a large collection of images of handwritten digits [17]. The images are 28x28 pixels
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in size and are in grayscale. The dataset contains 60000 training images and 10000
testing images. Usually it is used to train classifier type neural networks where the
output layer is connected to the correct labels for each image. In this thesis we use the
MNIST dataset to train an autoencoder in an unsupervised setting where correct labels
will not be presented to the network.

Figure 1. A minimalistic representation of a predictive coding network. In Section
2 we showcase the dynamics which lead to convergence of the prediction and error
values.
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2. PREDICTIVE CODING WALKTHROUGH

In this section we provide a walkthrough of the core principles guiding the predictive
coding paradigm. We aim to provide the reader with an intuitive feel for the type of
network we are building. This section is heavily inspired by Bogacz’s tutorial [4].

2.1. Task Introduction and Framework Setup

In order to help the reader gain an understanding of the predictive coding framework
we first assume the simplest conceivable scenario of perception. In this scenario, we
task the network with inferring a single feature from a single stimulus. We borrow the
example used in [4] where this single feature is the diameter of a food object s and the
stimulus is the light intensity i that is observed from the object. We assume that these
two values are connected via some function f . This function could in principle be of an
arbitrary form but for simplicity we will assume f(s) = s2. Intuitively, this equation
could be interpreted to simply mean that the light intensity reflected off an object is
proportional to its surface area (as s is a measure of length, s2 would be a measure
of area). Also, we will assume that i (our observed stimulus) is noisy. This means
that instead of i always equaling f(s) it is distributed according to some probability
distribution. For simplicity, let us assume that i is normally distributed with mean f(s)
and some arbitrary variance Σi > 0. In addition, we will assume that over time the
network accumulates some sense for what size the food objects tend to be. Like the
observed light intensity, we will assume that this “prior” expectation for the size is
normally distributed with mean sp and variance Σp. We can now write the probability
density of any expectation p(s) or observation p(i|s) as

N(x;µ,Σ) =
1√
2πΣ

exp

(
−(x− µ)2

2Σ

)
. (1)

In the case of the observation we substitute i, f(s) and Σi for x, µ and Σ respectively.
For the expectation we similarly substitute the values s, sp and Σp. This completes the
setup for the assumed scenario.

We will now tackle the problem of predicting the size of a food object based on
the observed stimuli and prior knowledge about food object sizes. Our objective is to
find the most likely size i.e. p(s|i) given the stimuli and our prior knowledge. This
probability density can be calculated exactly using Bayes’ Theorem

p(s|i) = p(s)p(i|s)
p(i)

. (2)

The left hand side of equation (2) denotes the posterior probability of the diameter
s given observed light intensity i. The term “posterior” signifies the fact that the
probability distribution of s is evaluated after the evidence i has been observed. On
the right hand side, the term p(s) is called prior probability and it measures the
probability of encountering an object of size s in general, without any knowledge about
the stimulus. The term p(i|s) is called likelihood and it is a measure of how well i the
observed evidence fits our guess of the size s. Both terms in the numerator are easily
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obtained by substituting the corresponding values into equation (1). The term p(i) of
the right hand side denominator is called marginal likelihood or model evidence and
acts as a static normalization term for the whole expression. That is to say, it ensures
that the integral of the probability distribution p(s|i) equals 1. Its value is defined as
the integral

p(i) =

∫
p(s)p(i|s)ds. (3)

In principle, knowing what all the terms are, it is possible to compute the entire
probability distribution p(s|i) for some i. From this distribution we can identify the
value of s which maximizes the value of the probability density function as our best
guess. As the evidence i changes so too does our best guess. This process of updating
the probability of a hypothesis (like our guess for s) based on new evidence is called
Bayesian inference and it is the central element of the predictive coding model as it is
the method by which the network updates its predictions.

2.2. Solution Approximation with Model Variables

There are, however, two problems with this straightforward application of Bayes’
Theorem to figure out the most likely value of s in terms of the model’s biological
feasibility. The first and more easily recognizable problem is that the evaluation of
equation (2) requires the computation of the normalization term p(i) which is defined
through the integral in equation (3). This computation is generally thought to be
infeasible in a biological circuit as it implies the summation of infinitely many values.
The second problem is that the representation of the probability distribution p(s|i)
may require infinitely many calculations if it cannot be represented neatly with a finite
amount of numbers (unlike for example a normal distribution which can be represented
with just its mean and variance). According to Bogacz, this type of standard shape
cannot be guaranteed as soon as the function f is non-linear (like it is in this example).

To avoid these problems we will focus solely on finding the value of s that
maximizes the probability density p(s|i) instead of mapping out the entire distribution.
We call this the most likely size of the food object ϕ. When we calculate the posterior
probability p(ϕ|i) we employ a similar equation as we did for s in equation (2). The
posterior probability p(ϕ|i) is what we wish to maximize. A key difference in contrast
to the exact solution in Section 2.1 is that the denominator p(i) is independent of
ϕ. This means that in looking for the ϕ that maximizes p(ϕ|i) we can ignore the
denominator in equation (2) and focus only on maximizing the numerator p(ϕ)p(i|ϕ).
In order to make the following computations simpler (and to make the connection of
this procedure to free energy more apparent later) we now take the logarithm of the
numerator and use the property ln (ab) = ln a+ ln b to write the quantity we are trying
to maximize as

F (ϕ) = ln p(ϕ) + ln p(i|ϕ). (4)

Since "the logarithm" is a monotonic function it is maximized by the same value of
ϕ as the numerator p(ϕ)(i|ϕ). When we expand the two terms in F using the normal
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distributions defined earlier in equation (1) we obtain the following equation:

F = lnN(ϕ; sp,Σp) + lnN(i; f(ϕ),Σi)

= ln

[
1√
2πΣp

exp

(
−(ϕ− sp)

2

2Σp

)]
+ ln

[
1√
2πΣi

exp

(
−(i− f(ϕ))2

2Σi

)]
=

1

2

(
− lnΣp −

(ϕ− sp)
2

Σp

− lnΣi −
(i− f(ϕ))2

Σi

)
+ C.

(5)

The term C contains constant values that arise from expanding the expression in the
second row. This term can safely be ignored since it will vanish during differentiation.
By computing the partial derivative of F with respect to ϕ we obtain the direction in
which we should move ϕ in order to increase the value of F the fastest. When F settles
to its maximum (the calculated derivative becomes sufficiently small) we have found
the approximate value of ϕ which maximizes p(ϕ)p(i|ϕ) and subsequently p(ϕ|i) and
thus the inference problem is solved. The partial derivative we are looking for works
out to be:

∂F

∂ϕ
=

sp − ϕ

Σp

+
i− f(ϕ)

Σi

f ′(ϕ). (6)

In order to find the ϕ that maximizes F we simply have to calculate this derivative
with some initialized values for the model parameters sp, Σp and Σi. We will also
have to specify the function f , the observed light intensity i and an initial guess for
ϕ. Once the equation has been initialized, gradient ascent is performed by evaluating
∂F
∂ϕ

, updating ϕ by adding to it this derivative times some small constant ∆t and then
repeating these two steps for some sufficient number of rounds. Bogacz notes that this
derivative can be understood intuitively as a composition of two simultaneous effects
acting on ϕ. The first term in equation (6) moves the current guess for ϕ towards the
mean of the prior distributions while the second term moves ϕ depending on how well
ϕ’s true light intensity matches the observed light intensity. Additionally both terms
are weighted by the variances of their associated distributions which can be understood
as the model assigning reliability to these two measures. To keep all of the notation as
simple as possible we will assign two new variables to these measures:

ϵp =
ϕ− dp
Σp

, ϵu =
i− f(ϕ)

Σi

. (7)

These two terms are called prediction errors and they encode how much the predicted
size ϕ and the observed light intensity i differ from their respective expectations.
Rephrasing equation (6) using the two measures in equation (7) gives us a simpler
representation of the update rule for ϕ:

∂F

∂ϕ
= ϵif

′(ϕ)− ϵp. (8)
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Similarly, we can derive dynamics for the prediction errors

∂F

∂ϵp
= ϕ− sp − Σpϵp, (9)

∂F

∂ϵi
= i− f(ϕ)− Σiϵi. (10)

To understand where these dynamics come from we assume a state in which the
network has converged to an equilibrium. In this state equation (9) and equation (10)
equal 0. If we then solve these two equations for the prediction errors with the left
hand side set to 0 we obtain the two forms in equation (7). Thus these dynamics
provide us with a structure that has fixed points at desired values. Through these
three differential equations we can also understand the implied architecture of the
network. For instance, the node ϕ is connected to node ϵi with strength f ′(ϕ) and
node ϵp with strength 1. Nodes ϵi and ϵp implement their dynamics similarly . Positive
signs indicate excitatory connections and negative signs inhibitory connections. With
these dynamics implemented it is possible to infer the most likely size ϕ, given a static
observed light intensity i, by following the flow defined by equations (8)-(10) for
variable ϕ for a sufficient amount of time. It should also be noted that the above rules
satisfy an important condition considering the biological feasibility of this model.
This condition is referred to as local computation which demands that every neuron
in the network only carries out calculations involving values of its input neurons
(meaning physically neighbouring neurons) and their associated weights.

Figure 2. Convergence of prediction ϕ and prediction errors ϵi and ϵp.



14

2.3. Learning with Model Parameters

The logical next step in making the network more robust is to implement a mechanism
by which it can improve the accuracy of the model parameters sp, Σp and Σi. These
parameters essentially encode the network’s “world view” and their refinement can
be understood as the network learning something new about the world it inhabits.
According to the free energy principle the internal dynamics of a perceptual system can
be interpreted, in terns of Bayesian inference, to maintain a probabilistic description
of the outside world that minimises the surprisal of sensory input overtime. With this
principle in mind it is sensible to choose the model parameters in such a way that the
light intensities the network encounters are as expected as can be. This means we have
to maximize p(i) in relation to the model parameters. However, as mentioned earlier
computing p(i) is difficult and considered infeasible by a biological circuit. Because
of this, a different approach is required. Luckily such an approach exists and it will
simultaneously solve the problem at hand and illustrate a clear connection between the
predictive coding model and the free energy principle.

To tackle this issue we will reframe a step we made earlier. Instead of finding the
value of ϕ that maximizes p(ϕ)p(i|ϕ) we will look for a simple probability distribution
that best approximates the actual posterior distribution p(s|i). Importantly, we have
complete control over the shape of the new approximate distribution q(s) so we can be
sure that it can be characterized by a finite number of parameters. Following Bogacz’s
example we will define q = δϕ where δϕ is a delta distribution centered at ϕ. The delta
distribution is a probability distribution that has all of its mass concentrated at a single
point resembling an impulse. Additionally its integral is defined to equal 1. As before,
ϕ denotes the most likely value of s, given some observed i. Our objective now is to
minimize the dissimilarity between the probability distributions q(s) and p(s|i) which
is formally measured as their Kullback-Leibler divergence

KL(q(s), p(s|i)) =
∫

q(s) ln
q(s)

p(s|i)
ds. (11)

We are still unable to minimize this quantity directly since p(s|i) includes the term
p(i) that we are trying to avoid. To circumvent this we must apply the definition of
conditional probability to the term p(s|i) i.e. p(s|i) = p(i,s)

p(i)
. With this substitution we

get

KL(q(s), p(s|i)) =
∫

q(s) ln
q(s)p(i)

p(i, s)
ds

=

∫
q(s) ln

q(s)

p(i, s)
ds+

∫
q(s)ds ln p(i)

=

∫
q(s) ln

q(s)

p(i, s)
ds+ ln p(i).

(12)
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Here we have divided the integral into two parts using the property ln (ab) = ln a+
ln b. Additionally, we have used the fact that the integral of the delta distribution is 1.
From this we can see that the term ln p(i) does not depend on ϕ and so the value of ϕ
that minimizes the integral in the third line is the same value that minimizes the whole
expression. Bogacz calls this integral free energy in [4]. Let us denote this integral by
E and see what form it takes when q = δϕ, as assumed earlier:

E =

∫
q(s) ln

q(s)

p(i, s)
ds

=

∫
q(s) ln q(s)ds−

∫
q(s) ln p(i, s)ds

= C1 − ln p(i, ϕ).

(13)

Again we divide the integral in two using the fact that ln a
b

= ln a − ln b and
apply the knowledge that

∫
h(x)δ(x) = h(ϕ) when h is any function and δ is a delta

distribution with the center of ϕ. Also, since the first integral does not depend on ϕ
we simply assume it to be some constant C1 (since it will disappear when we later
perform the gradient ascent). If we now ignore the constant and apply the definition of
conditional probability we obtain that E = − ln p(ϕ)p(i|ϕ) which is just the negative
of equation (4) i.e. −F . This means that the task of minimizing the Kullback-Leibler
divergence for the defined distributions, which is the same as finding the the most likely
value of ϕ given a stimulus i and solved by minimizing E, is equivalently solved by
maximizing F .

To achieve our original goal for this reframing let us see what this setup tells us
about the computationally problematic p(i). Denoting the integral of the last line in
equation (12) as E (or −F ) and rearranging to solve for p(i) gives

ln p(i) = KL(s, i)− E = KL(s, i) + F . (14)

Here we can see that due to Kullback-Leibler divegence being non-negative, ln p(i)
is maximized by either minimizing E or maximizing F . Thus we conclude that the
model parameters can be optimized by maximizing F since maximizing F maximizes
ln p(i). The difference in the optimization of the model parameters in contrast to
the variables ϕ, ϵp and ϵi is that we want the parameters to maximize p(i) over
many different observations. Therefore, we will only slightly change the parameter
values per observation instead of letting the system run to convergence (i.e. till F is
maximized (or E is minimized)). Finally, we can obtain the dynamics for updating
the model parameters by simply taking the partial derivative of F (equation (5)) with
respect to each parameter

∂F

∂sp
=

ϕ− sp
Σp

= ϵp, (15)

∂F

∂Σp

=
1

2

(
(ϕ− sp)

2

Σ2
p

− 1

Σp

)
=

1

2

(
ϵ2p −

1

Σp

)
, (16)
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∂F

∂Σi

=
1

2

(
(i− f(s))2

Σ2
i

− 1

Σi

)
=

1

2

(
ϵ2i −

1

Σi

)
. (17)

We note here that all the above rules satisfy the condition of local plasticity. This
means that when the network learns (when it tunes its parameters) the updates on
the values of these parameters only depend on the activity of pre-synaptic and post-
synaptic neurons. In other words, the change in the connection weight between neurons
only depend on the activity of those particular neurons. Sometimes this principle is
referred to as Hebbian learning [18]. The intuition behind it is that neurons that "fire
together, wire together."

With dynamics (8)-(10) and (15)-(17) the network could now be initialized randomly
and it could start learning to model its world through the model parameters. This is
executed by inferring the most likely size of a food object given the light intensity the
network observes (and given its current sense of the world) by maximizing F with
respect to all model variables and then by updating its model model parameters (i.e.
updating its sense of the world) by taking a small step in the direction of equations
(15)-(17). By repeating this process over many different stimuli the network would
learn to model its environment correctly meaning that it would predict food object
sizes accurately.

The separation of time scales in updating the variables (ϕ, ϵp and ϵi) and the
parameters (sp, Σp and Σi) has a biological interpretation: the variables change often
so their values indicate activity of neurons and the parameters change less often so
their values are coded in the weights of synaptic connections between neurons. At
the same time, this temporal separation can be seen as a potential flaw if biological
circuits do not function with similar separation taking place.

2.4. Tuning the Activation Function

The last aspect of the network we have yet to cover in this simple case of a single
inferred variable from a single observed stimulus is the function f relating these two.
At the start we defined f as f(s) = s2 but this information may not be axiomatically
known by the network. If f is not known, it should be learned. For our purposes, this
examination of f can be divided into two distinct scenarios: one, in which this function
is linear i.e. of the form θs, and another where the function is nonlinear i.e. of the form
θh(s) where h is nonlinear function of s. Here θ is a parameter of f(s, θ) and it can
be learned like all the other model parameters. The linear case turns out to be simple
while the nonlinear case presents challenges for the neural implementation side of the
model. In both scenarios, obtaining the dynamics for the model variables is easy as we
only need to substitute the aforementioned forms in place of f in equations (8)-(10).
It is similarly straightforward to obtain the update rule for θ as the partial derivative
of F over θ as F now depends on θ. Dynamics for the linear case are given by the
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differential equations

∂F

∂ϕ
= ϵuθ − ϵp, (18)

∂F

∂ϵp
= ϕ− sp − Σpϵp, (19)

∂F

∂ϵi
= i− θϕ− Σiϵi, (20)

∂F

∂θ
= ϵuϕ. (21)

Analogously, the dynamics for the nonlinear case become

∂F

∂ϕ
= ϵuθh

′(ϕ)− ϵp, (22)

∂F

∂ϵp
= ϕ− sp − Σpϵp, (23)

∂F

∂ϵi
= i− θh(ϕ)− Σiϵi, (24)

∂F

∂θ
= ϵuh

′(ϕ). (25)

Here we note that the update rules for the other model parameters do not need to
be reformulated depending on the form of f since the effect of the change in f will
be dealt with in the calculation of the prediction errors (see the rightmost form of
equations (15)-(17)).

In the linear case, all update rules are Hebbian and satisfy the rule of local
computation. In the nonlinear case however, it is not obvious as to how one should
organize the network in order for every node and connection to satisfy the constraints
that make the model biologically feasible. It should also be noted that in the nonlinear
case the network must be initialized with some h(s) since the form of this function
(polynomial, rational, exponential etc.) cannot be learned by the model presently.
Only the multiplier θ can be tuned. Indeed, the nonlinear case requires further
research in order for the model to explain perception and learning in biological circuits
completely.
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2.5. Multiple Features, Stimuli and Layers

We have now described all the aspects of the predictive coding model needed for
operation in the simplest case of perception where we infer a single variable from a
single noisy observation. Next we will present how these methods can be scaled up to
include multiple stimuli, inferrable features and layers of neurons.

The extension to multiple stimuli and inferable features is relatively straightforward
as we only have to reformulate F using the higher dimensional definition of the normal
distribution

N(x⃗; µ⃗,Σ) =
1√

(2π)n detΣ
exp

(
−1

2
(x⃗− µ⃗)TΣ−1(x⃗− µ⃗)

)
. (26)

Here n denotes the length of the vector x⃗ and Σ is a matrix. Writing the terms ln p(ϕ⃗)
and ln p(⃗i|ϕ⃗) using this new definition and applying the correct means and variance
matrices we can obtain a more generalized F . Analogously to the simple one variable
version, we can then take the partial derivatives with respect to each model variable
and parameter to derive all the update rules necessary for the model to function. To
further extend the model to include multiple layers we assume that the activity of a
layer is dependent on the activity of the layer above through the function f . Thus,

E(s⃗i) = fi( ⃗si+1,Θi) = Θihi( ⃗si+1), (27)

where the matrix Θi is the generalized version of θ and i = 1 is the input layer. The
likelihood of activity (the current estimation of s or the prediction), given the above
layer’s activity becomes

p(s⃗i| ⃗si+1) = N(s⃗i; fi( ⃗si+1,Θi),Σi). (28)

Here the model no longer contains the individually named layers i and p but is
instead described using the hierarchy of the layers. We can obtain update rules for
the new model variables ϕ⃗i and ϵ⃗i and the model parameters Σi and Θi by once again
forming a new F based on equation (28) and computing the required partial derivatives.
In this generalized model ϕ⃗i is the activity in layer i, ϵ⃗i is the prediction error in layer
i, Σi is the covariance matrix for features in layer i and Θi describes how the mean
values of features in one layer depend on the next layer. The form of these rules will be
displayed later in the implementation Section 3.3.1. It should be noted that there arises
a problem with these update rules regarding the biological feasibility aspect of the
model. It turns out that the update rule for Σi does not satisfy the locality constraints
defined earlier. Bogacz [4] presents a solution to this in his tutorial and we showcase
this in Section 3.3.4.
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3. IMPLEMENTATION

In this section we describe our implementation process from the plans and objectives to
the results of the implementations. We explain the network architecture and go through
the experimentation and testing we did with these implementations.

3.1. Plans and Objectives

The first step in our design was to try and understand the mathematical concepts behind
predictive coding and implementing them in Python. We went through the tutorial [4]
and did the exercises provided in the paper in Python. This familiarized us with the
mathematical concepts of the theory and gave us crude visualizations of the math in
action to help grasp the inner workings of the process. Some tinkering of parameters
in the code provided insight into their effects on the performance of the system. Due
to our prior experience and the availability of great premade libraries like Pytorch we
chose to implement these networks using Python.

Following these introductory tasks we set out to implement two different predictive
coding networks which we planned to compare once they were complete. The
first network was built from the ground up following the structure and mathematics
presented in Bogacz’s tutorial. The second was constructed on top of an existing
implementation by Millidge [15] which contained all the necessary building blocks
for our needs. The Millidge implementation contains scripts for both generative and
classifier networks so we had to modify them to obtain the autoencoder we wished to
obtain. Pursuing two different networks also had the advantage of giving our project
some robustness against possible complications that we thought we might encounter.
We recognized our limited experience with coding in general and neural network in
particular and so we believed it would be wise to give ourselves the opportunity to lean
on an already working implementation in the case that our original network did not
function as we hoped.

Use cases for the autoencoders we had envisioned include image denoising and
image compression. Noisy images could be restored by running them through an
autoencoder which has been trained on clear images. For the compression application
we can imagine a scenario where a large image file is sent through a low bandwidth
connection. Using an autoencoder, the sender could compress the image on their end
and the receiver could then recover the original image by decompressing the data they
received with the same autoencoder. In practise, however, autoencoders are not used
for these types of compression tasks due to the loss that occurs in the encoding and
decoding of the image.

For this project, the main goal for both networks was to recreate MNIST digits in
a way that they remain classifiable by human observers. The mathematics guiding all
the learning that takes place should follow the theory presented by Bogacz’s tutorial
[4] as closely as possible. There are some key differences between the tutorial and
the Millidge API when it comes to implementing these dynamics and they will be
highlighted later when we discuss the technical details of that API. Furthermore, we
studied the performance impacts of altering different aspects of the network such
as the number of layers and nodes and the use of different activation functions and
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learning rates. We also pursued expanding the networks with more features as the
timetable of the project permits it. These features include expanding the networks
functionality to datasets other than MNIST, implementation of alternative learning
rules and implementation of different connectivity schemes between layers.

3.2. Network Architecture

The initial macrostructure for both implementations was a simple symmetric network.
Input layer is where the image is entered into the system. The MNIST dataset contains
images of size 28x28 pixels meaning that 784 input nodes are required in total. The
network needs to then compress the image into some small number of nodes. Then
the network widens again and decodes and reconstructs the image back to 784 output
nodes which can then be arranged back to a 28x28 pixel picture. This compression
from the initial 784 data points down to a few dozen values, in a way where the original
data can be reconstructed from these few values, signifies that the network has learned
the most important components of the input space. While input and output layers are
constrained by the size of the image, the inner layers can be tuned in terms of their
amount and the number of nodes in each layer. To obtain a frame of reference we will
initially implement a three layer network with 20 nodes in the middle layer similar to
the one implemented by Millidge. Comparing our results to Millidge’s will help us
confirm whether the network is functioning properly or not.

Both networks will at least initially utilise a fully connected layer structure where
each node in a given layer is connected to every other node in the adjacent layers.
Although this approach is not optimal from the perspective of learning, it is the most
straightforward to implement. Implementing convolutional variants at a later stage
could be an interesting experiment since convolutional neural networks (CNN) perform
very well on these types of tasks. In a CNN only certain nodes are connected to certain
other nodes in the adjacent layers. The motivation behind this design is to help the
network figure out the most important components of the input space by not including
certain inputs in the same components. For example, it probably does not make sense
to include the top-left and bottom-right pixels in the same component since there is
a low likelihood that there exists a component sharing these two far away pixels. In
essence, we are leveraging our intuition about the plausible components the network
might look for and so we make the networks search for components easier.
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Figure 3. Fully connected design for the network architecture. 784 nodes for input and
output layers with 20 nodes in the code layer.

3.3. Bogacz Inspired Original Implementation

We started the implementation process by trying to build a network from the ground
up following the principles of the tutorial by Bogacz. The implementation of the
first network demonstrated several difficulties associated with the construction of
networks employing the predictive coding architecture. After extensive debugging and
experimenting with different setups, we conclude that a straightforward translation
of the equations in Bogacz’s tutorial into code is not sufficient to obtain a functional
neural network. The implementation of the model into a neural network revealed issues
relating to the convergence of different values in the network. In particular, the update
rules for the variances and covariance matrices in the model exhibit unwanted behavior,
which we cover in more detail in Section 3.3.4. Additionally, the convergence of model
variables in the high dimensional case, where we deal with multiple inputs and outputs,
is not self-evident. In general, the model seems to be very sensitive to the initial values
of the parameters when multiple inputs and outputs are involved. We have conducted
extensive testing with different types of simpler networks in order to gain insight into
to inner workings of the predictive coding model. We present all relevant findings in
more detail in Sections 3.3.1 - 3.3.4.

3.3.1. Initial Implementation

Having familiarized ourselves with the predictive coding model in the previous phase
we set out to implement the network we had envisioned. Our plan was to simply adapt
the equations provided in the Bogacz tutorial into an appropriate architecture and then
feed the MNIST images into the network as the input. The architecture we settled
on would first compress the 28x28 pixel image into the values of 16 code neurons
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and then decode those values back to the original dimensionality of 784. In addition
to the inputs and the prediction nodes, each layer requires the same amount of error
nodes. That is to say, the first layer had 784 input nodes and 784 error nodes, the
second layer had 16 prediction nodes and 16 error nodes and so on. For the parameters
of the network we had to initialize two 784x784 covariance matrices for the input
and output layers and one more 16x16 covariance matrix for the code layer. Lastly,
for the connection weights between layers we needed weight matrices of dimensions
16x784 and 784x16 and a tonic weight vector with length 784. All of the values were
initialized randomly with a uniform distribution between zero and one. Symmetry in
the covariance matrices was achieved by multiplying each matrix by its transpose. We
then divided the matrices with their maximum values to normalize all values between
zero and one. In order for the input image to be fed into the network we flattened the
28x28 array into a vector of length 784 and normalized all pixel values by dividing by
255, which is the maximum intensity of a pixel in a grayscale image. This concludes
the initialization of the values in the autoencoder network. We then proceeded to
implement the inner loop of the predictive coding model. This is the loop that iterates
the values of model variables until they converge. For each loop we would pull a new
image from the MNIST dataset and feed it to the network. Here we calculate the partial
derivatives of F , which is based on equation (28). These partial derivatives turn out to
be

∂F

∂ϕ⃗i

= −ϵ⃗i + h′(ϕ⃗i) ∗Θi−1
T ⃗ϵi−1, (29)

∂F

∂ϵ⃗i
= ϕ⃗i −Θih( ⃗ϕi+1)−Σiϵ⃗i, (30)

for predictions and errors respectively. These partial derivatives provide us with the
direction we should step in to increase F the fastest and so we can perform gradient
ascent by iterating these equations for a sufficient time. Initially we iterated these
dynamics for 1000 steps with a learning rate of 0.01. Here, however, we hit our first
major problem.

We found that the values of the variables do not always converge. At this point it was
very difficult to guess as to why the provided equations would produce this result, since
analysing the dynamics is not easy to visualise and monitor in this high a dimension.
We proceeded to debug the network by varying the initialization values, but our control
was limited here as configuring large matrices is not very efficient. We found that with
certain constant multipliers we could get the values to not explode during the iteration,
but there was never any guarantee that all the values would indeed converge and not
just diverge slowly. These inconsistencies in the behaviour of the model prompted
us to simplify the scenario significantly. This would allow us to easily monitor the
progression of each value in the system and could potentially aid us in understanding
why the more complex case is so sensitive to its initial conditions.
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Figure 4. Divergence of different prediction and prediction error values in the complex
case. Here we only showcase one arbitrarily chosen prediction and error for each
layer (input, code and output) as plotting thousands of variables would make the image
unintelligible.

3.3.2. A Simplified Architecture

In order to make sense of the inner workings of the dynamics at play, we simplified
the network architecture as much as possible. We constructed the simplest conceivable
network, which consisted of a single input, a single output and one error node for each
of these nodes. This network was also used in one of the exercises in Bogacz’s tutorial
[4]. In this model we could easily configure all of the initial values of the system as
there were only four nodes and three parameters (two variance values, one for each
error node and a single tonic weight). We set things up analogously with the more
complex architecture by constructing the inner loop with the appropriate dynamics
following equations (8)-(10). For the function f we chose f(ϕ) = ϕ2 in order to
illustrate the effect of non-linearity. For the input, we sampled a random value from a
normal distribution with some reasonable mean and variance.

Testing revealed the behaviour of this very simple network to be very robust against
different initializations. The system would eventually diverge if the initialized values
became unreasonably large (tens, hundreds or thousands). It was, however, possible
to bring these divergent scenarios back in line by decreasing the learning rate in the
gradient ascent step, which brought the step size low enough. Doing this does naturally
result in the system requiring more iteration steps to reach the convergence point.
Another nice property of this network is that if the solutions of the system of equations
(8)-(10) do converge, the asymptotic values do not depend on the initial values of the
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variables. That is to say, for a given set of model parameters, the model variables have
a unique limit. This is true even for initializations which diverge with one learning
rate, but converge with another. The only case where divergence seems to be eminent
is when we set one or both of the variances to negative values, which is reassuring,
since a negative variance is nonsensical and we would not even wish for the model to
function in such a case.

Figure 5. Two different initial values for the variables (prediction ϕ and prediction
errors ϵp, ϵi) lead to convergence towards same asymptotic values (in our code ϵi = ϵu).
On the left all variables start at 1 whereas on the right they start at 3.

This improved stability encouraged us to try and implement the model parameter
update rules on top of this simple network. This was achieved by nesting the inner loop
inside an outer loop that would contain the dynamics for the update of the parameters.
These dynamics are represented by equations (15)-(17). Due to our choice of the
function f we did not implement the update rule for the parameter Θ described by
equation (21) or equation (25). A key difference in the implementation of the inner
and the outer loops is that while we let the inner loop run for a long time (thousands
of steps) in order for the variable values to reach convergence, we only evaluate the
parameter updates once per input signal. This is done with the motivation that the
parameter values should change with respect to the whole set of possible inputs and
not be biased towards any particular input. Thus, we hope to obtain better performance
over the whole input space. For testing we ran the outer loop for thousands or
sometimes tens of thousands of iterations, choosing the input signal randomly from
a predefined normal distribution for each loop. After each run through the outer loop
we logged the three parameter values into lists and after the experiment concluded
we constructed plots from these lists in order to visualise the behaviour of model
parameters.

From these experiments we found that the update rule for the tonic weight behaves
appropriately and converges to the real mean value of the chosen normal distribution
with good accuracy. Unfortunately, however, the updates for the two variance
parameters exhibit unwanted behaviour. These two values seem to be diverging
towards negative infinity regardless of initialization of the systems values. This
problem with the variance update has been a major area of research for us in our
implementation phase and we will go over all the experiments we have conducted
in Section 3.3.4. Here we just note that we have not found a perfect solution to this
problem.
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In summary, this simplification of the network architecture showcases a couple of
important aspects of the framework. Firstly, it confirms that the foundation for the
equations used for variable updates in the complex case is solid, since the analogous
one-dimensional equivalents consistently produce correct results in the simple case.
Secondly, it is quite clear that there are additional obstacles left to solve even after
sorting out the partial divergence of the inner loop in the higher-dimensional case due
to the surprising behaviour of the variance update rules.

3.3.3. Expanding the Simplest Case

To further investigate the behaviour of the model we proceeded to build some slightly
more complex networks in comparison to the one in the previous Section 3.3.2. The
first of these was a three layer network with a single activity and a single error node
in each layer. The setup is completely analogous to the simple case with the obvious
differences being the addition of an extra variance parameter and a pair of equations
for the third layer’s prediction and error. We found that the convergence of the inner
loop works out just as in the simple network. The nice properties of a single point
of convergence for each variable and imperviousness to initial conditions seemed to
transition over from the simple case seamlessly. Implementing the outer loop into this
network provided less familiar results. While the variance update resulted in similar
behaviour as previously, the tonic weight update behaved unexpectedly. Although the
tonic weight seemed to converge consistently, the value it converged to was never the
mean of the distribution we sampled our inputs from. We have not investigated this
effect fully but our initial hypothesis is that this value related to the real mean of the
distribution logarithmically. That is to say, when we plot the values the tonic weight
converges to with respect to the true mean, for some constant set of variances, the
values follow a logarithmic function y = a + b lnµ, where µ is the true mean. The
reasons and consequences of this behaviour remain unknown and could possibly be
investigated further.

For the second expansion of the simple network architecture we increased the
dimensionality of the network while keeping the layer count at two. This expansion
has undergone a few iterations as we have increased the dimension from two to four
during the course of the implementation phase. For these networks we have always
matched the number inputs to the number of outputs to keep everything as simple as
possible for testing purposes. Here we were able to manually set all the values in the
required vectors and matrices, unlike in the original attempt. For the input signal we
sampled four values from four distinct normal distributions into a vector. Again, we
observed that the inner loop converges consistently but the values of different variables
seem more densely grouped than in the one dimensional scenarios. Specifically, all
error nodes in a layer seem to converge to the same value and predictions behave
similarly. As for the outer loop and associated parameter updates, we found that the
values do converge with the exception of the variances as has been the case for all
the experiments we have presented so far. The convergence of the tonic weights here
depend on the the connectivity of the input and output layer. If we connect the input
layer error nodes one-to-one with the corresponding output layer prediction nodes we
can learn all the true means of input distributions through the tonic weights. This
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setup is in some sense just four of our simple 1-1 networks stitched together. When we
implement full connectivity between the two layers we no longer obtain the true means
but the network does still converge like it did in the three layer experiment. This time,
however, the tonic weights’ relation to the mean values of all the input distributions is
less clear.

The results from these experiments showcase that in principle there should not
be any obstacles preventing us from scaling up the network towards the originally
envisioned autoencoder structure. Unfortunately, getting the variables to converge in
the inner loop remains an issue in practice. A logical next step in our experimentation
would be to combine the previous two setups into a three layer network with more than
one input and output. Even this might not provide an answer to the initial problem
though, since it does seem like the sheer size of the matrices and other elements in the
original setup play a role in its behaviour.

3.3.4. Problems with the Variance Update

In this section we take a closer look at the problems regarding the update rules for the
variances in the network. These tests were conducted on the simple network with only
a single input and output. Firstly, let us briefly analyse the equations

∂F

∂Σp

=
1

2

(
ϵ2p −

1

Σp

)
, (31)

∂F

∂Σi

=
1

2

(
ϵ2i −

1

Σi

)
. (32)

When we evaluate these expressions the most important aspect of that value is
actually its sign. This is because regardless of the amplitude of the value, the sign
alone will tell us to which direction to shift the parameter in question to increase F . Of
course, the amplitude does encode how far off we still are from the correct value, but
the speed at which we converge towards that value is not critical for the functionality
of the network. Looking at equations (31) and (32) we can see that the first term
is always positive and the second term is always negative because the variances Σi,
Σp are by definition non-negative. Therefore, we can infer that when the value of
the variance parameters dives towards negative infinity, the error terms must be small.
By studying the limits of the error variables we found that if the tonic weights are
close to their correct values then the errors tend to be small. When this happens, the
gradients tend to be negative since squaring the error makes it smaller still when we
are in the range from zero to one. Negative gradient results in the variance becoming
smaller and thus it makes the second term larger. This repeats causing the variance
to drop ever lower. In our testing we would often see graphs of these variances dive
downwards and then jumping very rapidly upwards once they went negative. This is
explained by the fact that when the variance goes negative the gradient is guaranteed to
be positive. Additionally, the magnitude of the jump is due to the variance happening
to hit a value very close to zero, in which case the magnitude of the second term will
be large. A possible solution to this problem could be to initialize the tonic weight
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far away from true mean of the input distribution, but in general this might not be the
correct approach. In the case of the original autoencoder network, the means are not
known at the start of the experiment so setting the weights correctly is probably not
feasible.

Figure 6. Variances exhibiting unwanted bouncing behaviour. The plotted values
sigma_p, sigma_u and vp correspond to Σp, Σi and sp respectively.

Another aspect worth considering turns out to be the order of the parameter updates.
Since errors tend to be very small when the tonic weights are correct, it may be helpful
for the stability of the updating scheme to run the variance updates first for some time
and only then move on to updating the tonic weights. It should be noted that updating
these parameters simultaneously has not yielded any positive results and the system
becomes generally quite chaotic when this strategy is adopted. These ideas concerning
the order in the parameter updates were only experimented with at a late stage in the
implementation phase and so their full merits are yet to be determined with confidence.

To avoid the observed divergence in our implementation of the variance update rules,
we experimented with alternative ways of updating these parameters. One of these
was provided in [4] Chapter 5 and another was developed by us. The first alternative
approach was to use a new set of equations that utilized an additional node in the
network architecture called inter node. This idea was presented as a solution to a
locality violation that arose in the multidimensional case of the update rule for the
covariance matrices. Bogacz presents the following dynamics for the inter node ei and
the error node ϵi associated with layer i:

ėi = Σiϵi − ei, (33)

ϵ̇i = ϕi − fi(ϕi+1)− ei. (34)

We implemented these equations in a secondary inner loop which would run after the
other model variables had converged in the primary loop. After the values of the error
and inter node had converged we updated the corresponding variance according to the
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equation

∆Σi = α(ϵiei − 1), (35)

also provided in [4] in (35), parameter α is some small constant that acts as the learning
rate. As before, this update is only performed once per input signal. Similarly to
equations (16) and (17), this rule also tended to drag variances downward until they hit
a very small negative number after which the value would make a large jump upwards.
The explanation here could be the same as before: when the tonic weight is correct
or close to correct the values of the error and inter nodes are close to zero and so the
gradient is dominated by the −1 in equation (35). Interestingly, this tending towards
negative infinity seems to only affect the variance of the output layer and not both. The
system is quite unpredictable when this strategy was used and it is hard to make any
strong claims about the general behaviour of the network.

Figure 7. Divergence and convergence of variances when using inter nodes.

After experimenting with the above mentioned methods we decided to try and come
up with our own rule for the parameter update in the case of variance. For these new
rules we simply aim at moving the variance in the direction of our best guess. For
example, the variance of ϕ can be estimated as (ϕ − sp)

2 and therefore we define the
gradient to simply be (ϕ − sp)

2 − Σp. This value is then multiplied by a constant
learning rate and added to the prior value of Σp. Similar reasoning can be used in the
case of Σi to obtain an analogous update rule. These new rules seem to behave more
predictably than the previous ones. This is likely due to the fact that the second term,
which is responsible for decreasing the value of Σ, decreases as Σ itself decreases.
In practice, this enables us to avoid the unwanted rapid changes to the value of these
parameters when Σ gets close to zero. In our testing we observed that the value of Σp

tends towards zero in a stable manner while the value of Σi approaches (the vicinity
of) the variance of the input distribution. Additionally, the network seems to predict
values near the tonic weight with more confidence as we tune the variances using the
above method. However, this method for updating the variances does not conform to
the locality constraints that are a core motivation for the predictive coding paradigm.
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Figure 8. Variance update using the improvised learning rule. The guess for the mean
is learned first and variances second. The variance of the input layer settles to the
neigbourhood of the real value while the variance of the output layer approaches zero
gently.

3.4. Implementation Based on an Existing Framework

After our own implementation of the predictive coding network did not produce desired
results, we set our focus on producing results by modifying existing implementations.
The aim was to create an autoencoder that functions correctly and produces concrete
results in the form of recreated MNIST digit images. As the basis of our second
implementation we used a Python source provided in [15, 19]. It is an implementation
of predictive coding in Python utilizing PyTorch. It supports two modes of operation
in the form of scripts. The supervised script is a classifier which takes an image as an
input and produces an output that corresponds to the label it thinks is the most likely.
The generative script is the reverse. It receives a label as an input and then it constructs
an image that corresponds to that label.

The implementation [15, 19] is constructed using Python classes. It has
appropriately named variables and is well organized but it was initially hard to grasp
the structure as a whole with our limited experience with Python classes. After a
few videos on Python’s classes we began our analysis of the code. We started from
the script files and followed through the code, jumping from file to file and trying to
understand what every line did and where every variable came from. At the same time
we are able to learn about mathematics and coding with this thorough approach.

There are some major differences between our first and second implementations.
These include activation function performing its function in a different place, no
gradient use for prediction errors, utilization of an adaptive gradient descent algorithm
Adam and the simplification of the variance’s role in the calculations. One of the
biggest differences between the implementations is variance. While we tried to
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implement variance with gradient updates, Millidge leaves the updates out completely.
All covariance matrices are effectively replaced with identity matrices, meaning all
feature variances are set to 1 and all covariances are set to 0. These values remain
static for the whole duration of a run. Updating the covariance matrices has been
known to cause issues before in these types of networks.

Regarding the use of the activation function, in our implementation it is applied
to the calculated value as the last step in forming the gradient. In Millidge’s
implementation it is used to calculate the activation strengths of all the connections
which are then used to calculate the final gradient with other relevant values.
Additionally, the activation function’s form is significantly different from what was
showcased earlier. In Millidge’s implementation the connection weights are not
parameters of the activation function and instead of an arbitrary polynomial, the
function takes the form of a spesifically chosen function. These are the Tanh, ReLU,
Sigmoid and Linear functions.

As for the calculation of prediction errors, we do not employ a gradient descent
on the error values directly as Bogacz instructs. Instead, we simply define the
prediction error at every step as the difference between a given nodes activity and
the corresponding prediction. The predictions and activities are iterated using gradient
decent and so the desired effect of closing in on a value is achieved indirectly, in the
case of the errors. This approach is probably responsible for the elimination of the
oscillation of model variables’ values that we saw earlier in Figures 2 and 4.

For the purposes of updating the connection weights, [19] includes two different
algorithms. The first is stochastic gradient descent which naively shifts a given value
according to the associated gradient. The second is Adam, an adaptive optimizer,
which allows for more intelligent shifting of the value in question. Adam takes into
account not only the current gradient but also adjusts the learning rate dynamically
based on how fast the value we are shifting has shifted in previous iterations [20].
Adam gives the network a considerable performance increase compared to SGD. That
is to say, the network converges to a solution at a significantly greater pace [15, 19].

Our implementation was constructed in a way that makes the code very modular.
This allows for an easy way to take an existing script and make small modifications to
match our requirements. First we needed to change the network structure to support an
autoencoder. This was easily accomplished by changing a few numbers inside a list to
correspond to our desired form of 784 input nodes, 20 code layer nodes and 784 output
nodes. We also needed to set both the input and output targets as the image we are
having the network learn how to encode and decode. We found that these two changes
were effectively all that was needed in order to obtain a functional autoencoder. The
included accuracy measurement was not deemed applicable to our needs and so it was
discarded. Millidge provides 3 options for an activation function: Linear, Rectified
Linear Unit, or ReLU, and Tanh. We added the Sigmoid function as an additional
option since it has been a popular option in these types of tasks. It should also be noted
that the original step size of 0.01 for the inner loop was not large enough for the values
to properly reach their convergent values in 50 steps. We found that a step size of 0.05
was sufficient.
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3.5. Results of the Second Implementation

Here we showcase the results obtained by way of experimenting with different
configurations of our implementation. We will go through the experiments one at a
time with the motivation that the effects of any singular modification can be isolated
from the others. The results will be presented and analyzed visually as no numeric
evaluation method was devised or deemed necessary for understanding the impact of
the modifications. As we present these results we will simultaneously comment on
the experimentation process and share our interpretations regarding these results. All
of the data used in these experiments comes from the MNIST dataset of hand written
digits which is composed of a training set of 60000 images and a testing set of 10000
images. A summary of all the results along with concluding remarks on the project are
provided in Section 4.2.

3.5.1. Convergence of the Model Variables

Before presenting the results of our experiments we wish to highlight a key difference
in the behaviour of this network in comparison to the earlier attempt. This has to do
with the way in which the model variables (predictions and prediction errors) settle
onto their convergent values. As was mentioned in Section 3.4, the calculation for the
updates of these variables does not include a separate gradient for the prediction errors.
Instead, the prediction error is defined at every step to be the difference between the
node’s value and the corresponding prediction. The iteration of prediction values still
utilizes a gradient that is almost identical to the one presented in [4] with a small change
in the way the activation function is defined. Whereas in [4] the connection weight
matrix was defined as a parameter of the activation function, Millidge [5] assumes it to
be independent and so the form of the dynamics is slightly altered.

This discrepancy in the model definition probably does not adversely impact the
network’s performance. The fact that the update cycle for the variables contains a
single gradient instead of the previous two is likely much more significant and we
hypothesise that it is responsible for eliminating the oscillation of variable values
which we saw earlier in Figures 2 and 4. Also, in contrast to the situation described
in Figure 4, this network converges to a set of values for the variables consistently
without problems. For the convergence of variable values see Figure 9.

3.5.2. Replicating Millidge’s Results

In order to achieve a baseline for the performance of the network and to confirm that
it was functioning as intended we first set out to recreate the results Millidge had
showcased in his report [19]. In this experiment we used stochastic gradient decent,
the learning rate was set to 0.01 and the experiment was run for 100 epochs. The
activation function was set as the linear function, the code layer width was set to 20
nodes. The training set was limited to 10000 images instead of the full 60000 images,
which sped up the training process significantly. In this configuration the network
produces reconstructed images with decent fidelity, meaning that most of the digits
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Figure 9. Convergence of code layer predictions and prediction errors respectively in
the network implementation based on [15, 19].

are easily classifiable by human. While we did not see it to be necessary to construct
a numerical method for the purposes of accuracy evaluation, we note here that our
subjective quality of the reconstructions is clearly not perfect. This manifests most
notably in the lack of contrast between the actual digit and the background and the
smoothness of certain lines. In general the backgrounds remain light gray for the
whole duration of the experiment as opposed to tending towards the complete black
background present in the input image. Classifying certain digits such as three and five,
may prove challenging due to the smoothness of the distinguishing edges. The results
we obtained are largely consistent with the ones presented in [21]. This indicates that
the network is performing correctly, providing justification for proceeding with further
experiments.

Figure 10. Left: A snapshot of the recreated digits using the network configuration
provided in [15, 19]. Right: True images from the MNIST dataset.

3.5.3. Activation Function Experiments

Our implementation used a linear activation function. As previously mentioned the
code provided us with two additional activation functions, Rectified Linear Unit, or
ReLU, and Tanh, with sigmoid being our addition. Our goal is to test the different
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approaches to the activation function and see if they produce noticeably different, or
desirably better images when compared to one another.

The different activation functions display distinct looking effects on the images they
produce, though they are quite subtle. The results are compared in Figure 11. Effects
vary from different hues of gray on the background to more smooth or ragged edges on
the digits. None of the activation function demonstrated superior performance when
compared with the others.

Figure 11. Top left: Linear; Top right: ReLU; Bottom left: Sigmoid; Bottom right:
Tanh

The digits that appear in these results differ from the ones seen in the previous
experiment because this time we did not limit the training set but in stead allowed
for all images to be used in training. This causes the set of printed images to shift
somewhat. Since each epoch had a more comprehensive set of data to learn from, we
simultaneously decreased the number of epochs to 20 in order to keep the experiment
duration manageable.
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3.5.4. Impact of Code Layer Width

Next we moved on to study the effects of architectural changes to the network. The
first of these experiments had to do with the width of the layers between the input and
output layers. To isolate this parameter’s effect we conducted tests in the three layer
network where the code layer consisted of a single layer. The width of this layer is
simply defined as the number of nodes in that layer which in the earlier experiments
was kept at 20.

The results of this experiment were unsurprising and the explanation is similarly
intuitive. As the width of the code layer increases so does the image fidelity over all
the images. This is a straightforward consequence of the code layer acting as the most
important bottleneck of the network as it defines the amount of compression that an
input image is subjected to. The code layer’s width can in some sense be thought of as
the amount of features the network is capable of extracting from the entire collection
of training data. Each of the code layer nodes can encode the strength of a certain
configuration of input layer nodes. This can be understood more clearly if we consider
a code layer whose width coincides with the input layer’s width. In this scenario each
pixel of the input image can in principle be represented by a single node in the code
layer and thus no compression is required. This scenario is referred to as an identity
mapping by Millidge [5].

Figure 12. From top left 8, 32, 64, 128 nodes wide respectively. As the width of the
code layer increases, the edges become sharper and the images representing the same
digit become less uniform.
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3.5.5. Deep Network Experiments

Continuing with the architectural investigation, we proceeded to make the network
deeper by inserting additional layers into both the encoder and decoder parts. We kept
the network symmetrical and added eight layers, making the code layer nine layers
wide as a whole. This change increased the total number of weights in the network
from about 30000 to just over a million. The bottleneck layer was increased from 20
nodes to 32. Resulting images can be observed in Figure 13. Results do not appear to
improve over the original three-layer network.

It is not entirely clear why the performance of this deeper network is not visibly
better when compared to more shallow ones especially with the extra width in the
bottleneck. One possible explanation is that the extra complexity in the network simply
does not have a corresponding element in the input space. That is to say, there is
nothing meaningful to map onto the extra nodes of the network. This effect might be
amplified by the fact that we are using fully connected layers which possibly prevents
us from picking up on the potential features present in the compressed intermediate
representations of the additional layers.

Another reason for the performance, or lack thereof, could be that the sizes of the
intermediate layers have to be chosen more systematically, paying attention to the
data that is presented to the network. When conducting this experiment we chose a
relatively steadily narrowing architecture without any solid motivation for the structure
of the network. These results were somewhat disappointing, but given that the duration
of each experiment is quite long due to the large number of calculations required, we
decided it was not prudent to proceed with further experiments on deep architectures
in the context of this project.

Figure 13. Left: Deep neural network with nine hidden layers. Right: The original
three-layer network.
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4. CONCLUSIONS

In this section summarize the key elements of this thesis. We also evaluate the two
implementations produced in this project and offer our thoughts on the implementation
process. We conclude with future work possibilities regarding what we have and have
not achieved during the thesis work.

4.1. Summary

In this thesis we have introduced the topic of predictive coding alongside the most
important related concepts. We briefly presented the history and background of the
theory and motivated the model with both its apparent compatibility with biological
circuits and its efficacy in different tasks involving artificial intelligence solutions. The
model’s relevance as a potential alternative to traditional back-propagation networks
was showcased through a survey of related literature in which we highlighted some
of the more interesting applications of networks of this kind. We concluded the
introduction with a description of our plan to implement an autoencoder, using the
predictive coding model as the basis for the calculations required for the network
to achieve learning. The task assigned to this autoencoder is the reconstruction of
handwritten MNIST digits from their compressed representations.

Before presenting our implementations, we provided a walkthrough of the predictive
coding model and the free-energy framework using Bogacz’s tutorial as inspiration.
In this chapter we go through in detail all the key principles and ideas guiding this
paradigm. We also showcase how the mathematical side of the predictive coding model
links to statistical free energy. In addition to verbally explaining the core of the theory
we present the relevant mathematics needed to implement the network. Most notably
this includes the source and form of the dynamics which govern how the different
variables and parameters are to be tuned in order for the network to achieve the goal
set for it.

After introducing the predictive coding model, we moved on to present the
implementation phase of the project. Here we described the implementation process
and results of two different autoencoders, one of which was our attempt at creating
an original network and the other was built on top of an existing predictive coding
library written in python by Millidge. The implementation of the original network
began by us familiarizing ourselves with the framework presented by Bogacz [4].
The goal then was to extrapolate the mathematics from the provided exercises into
a proper autoencoder network capable of reconstructing MNIST digits. However it
soon turned out to be a much more complicated procedure than we anticiåated. While
we were ultimately unsuccessful in achieving expected functionality with the original
implementation it served as a great lesson into the intricacies of building a neural
network from the ground up. We documented the problems we encountered while
implementing this network and gained some insight into what could be the source
of the difficulties. In particular we encountered problems regarding the update rule
of feature variance which did not function as intended even in an simplified network
setup. As a result of these problems, no research results could be obtained regarding
the original implementation excluding the problem analysis we have conducted. While
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we did not find any conclusive answers relating to the dysfunction of the first network,
we have gotten several potential modification ideas (see Section (4.3)) from studying
the Millidge implementation [15] and from constructing our second implementation.

Since our initial implementation did not turn out as we intended we pivoted into
studying an existing implementation [15] with the motivation of being able to convert
it into a functioning autoencoder. We proceeded to document the main differences
of the Millidge implementation in comparison to the theory as it was presented in
Bogacz’s tutorial. It turned out to be a straightforward process to convert the existing
library into an autoencoder with which we were able to obtain the results we had been
anticipating. The Millidge implementation functioned as a library of all necessary
pieces needed to construct the network we were looking to implement. We modified
the layer structure of the network, making it symmetric and changed the target of the
network to match the input signal (as the autoencoder requires). The results were
then showcased and different configurations of the network were experimented with.
The overall conclusion we draw from these results is that the model is capable of
enabling learning in this task with good efficacy despite the suboptimal architecture
which uses fully connected layers as opposed to convolutional ones. The experiments
we conducted had to do with the effects of activation function choice, code layer width
and network depth. With regards to these tests we conclude that: there is no clear
indication as to which activation function is optimal for image quality, the width of
the code layer is likely the most important factor when considering image quality,
and that increasing the depth, at least somewhat arbitrarily, will not improve image
quality even at the expense of greatly increased time complexity. We also replicated
the configuration Millidge showcases in his report [19] for this network and conclude
that the reuslts are very similar.

4.2. Project Evaluation

In the process of working on this project we have gained an appreciation for
the practical side of predictive coding and have been positively impressed by its
applicability to the chosen learning task. While the paradigm has, in its practical form
at least, proven to not abide by the strict biological restrictions as closely as we had
initially thought, it has remained a distinctive option to traditional neural networks. It
has been an interesting process in its own way to observe how the implementations
forego certain biologically based restrictions in order to optimize for performance in
the task at hand.

Our biggest and only regret in the execution of this project is the miscalculation
relating to the original implementation attempt. Had there been more thorough
preparation or perhaps less insistence on our part we could have moved on to other
aspects of the project more quickly instead of committing as much time on it as we
did. While the documentation of the many problems we faced was interesting in its
own way, it would have definitely been more so to conduct additional experiments
with a functioning network.

What has made the implementation of the complex network difficult is the large
amount of variables and parameters involved, which in turn makes analysing the
network’s function almost impossible. There simply is not a way to keep track of all
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the values involved and all the calculations that happen in parallel. After experimenting
with the smaller test networks it would seem to be the case that the difficulties
regarding diverging values has to do with the size of the matrices and vectors involved.
The calculations might include some unwanted compounding effects which we have
not been able to identify yet. For instance, when we multiply together the elements in
the last term of equation (30) each element of the resulting vector consists of a sum
of values where each individual element of the sum is the product of an element in Σi

and ϵ⃗i. In the case of the input layer of our 784 dimensional network this sum will have
784 terms. It could be that these sums, which play a major role in forming the gradient
for some node, are significantly larger in magnitude than the values they are meant to
change. This might cause the system to quickly diverge. As mentioned earlier, this
type of analysis is difficult to conduct in practise due to the reasons given above.

In addition to these computational complexities we have become aware of other
problematic aspects of the original implementation. These findings are largely the
result of working with the functional predictive coding library [15] and becoming more
familiar with neural networks in general. For instance, we did not properly attach the
output layer to the target (input signal) during training which causes obvious problems
for the network’s function. Additionally, we were uninformed on the specificity of the
activation functions in the context of neural networks. The function we used for our
original implementation was found to be inadequate for the application at hand. Lastly,
it seems to be the case that the variance update can be left out of the netowork without
sacrificing core functionality. This was the most persistent problem we struggled with
during the entire project.

The pivot to the network based on the Millidge implementation was absolutely the
correct choice as it allowed us to reach the goals we had originally set for ourselves
and the results we were able to obtain were satisfying. The second network performs
well in the task of recreating digits from the MNIST dataset and while no objective
evaluation of the final images was constructed we are impressed with the network’s
performance. Additionally, being able to conduct experiments with the second
network provided us with understanding of how a network constructed in this manner
responds to the kinds of modifications we made. For instance, we showcase that the
activation function does not seem to meaningfully impact performance regardless of
the configuration otherwise when using fully connected layers. Also we demonstrate
how the width of the code layer has significant impact on the quality of the output both
in terms of image fidelity and proper classification. Overall we were pleased with the
results we got and believe we were able to reach the goals we set even if the road there
was not always as straightforward as we would have liked.

4.3. Future Work

While the preliminary results from our experiment are informative, there is surely
much more potential for further study regarding these specific networks. Perhaps
the most interesting addition one could make to the second implementation is the
addition of convolutional layers to replace the currently fully connected ones. We
hypothesize that this would yield greater performance in terms of image quality as this
architecture has proven to be the superior one in traditional neural networks utilizing
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back-propagation. The Millidge implementation already contains the building blocks
for this addition but to fully implement it would most certainly take time and careful
study as the architecture does seem to become significantly more complicated.

A less ambitious but still interesting extension could be the enable experiments with
alternative datasets such as CIFAR-10 or Fashion-MNIST. While we do not expect
the performance to differ drastically between datasets it would still help to prove that a
network built on these principles has the robustness that alternative approaches possess.
Just as for the convolutional layers, the building blocks for extending the networks
functionality to these alternate datasets already exist within the Millidge library.

Finally, we believe it is not inconceivable that the lessons learned through the
Millidge implementation could be used to mend the original implementation in a
meaningful way. We now have a much better understanding of how the mathematics
needs to be configured in order for the network to function smoothly. We are aware
of multiple aspects of the original network, each of which by themselves probably
prevent proper function. These include the improper usage of activation functions, the
improper setup of input and target values during training and the inclusion of variance
which should be viewed as an optional addition which often causes malfunction. In
addition to these we also know that it is possible to implement alternative approaches
in the update rules for the variables as we saw in the case of the prediction error in
Millidge’s implementation. While pursuing the original network could end up being
an exceptionally rewarding endeavour it might be more prudent to focus primarily on
extending the functionality of the second implementation as it has already been shown
to work. Attaining general results by way of said extensions is in all likelihood more
important the pursuit of unproven novelties.

4.4. Contributions

Roni Latva:

- Main author on Chapters 2 and 4. Partial participation in writing rest of the
chapters.

- Reading focused on the core texts relating to the predictive coding framework
[1, 4, 21].

- Resoponsible for coding extensive experiments relating to the first implementation
and documenting results of said experiments. Partial participation in building the
second implementation and main responsibility in documenting its experiment results.

Santtu Orava:

- Main author on Chapter 3. Partial participant in Chapter 4.

- Base work on finding previous code for predictive coding implementations [15, 22]
and building the second implementation based on them.
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- Main responsibility on finding related works [3, 9, 10, 11] on relevant subjects.

Casimir Saastamoinen:

- Main author on Chapter 1. Partial participation in Chapters 3 and 4.

- Reading focused on related and similar works [1, 8, 11, 14, 23].

- Some experimentation with both implementations and testing with the Python
code. A partial participation in building the implementation based on [15].
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