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Abstract

In this thesis continuous measurement is first introduced in the context
of optical physics, and the derivation for the stochastic differential equations
for quantum jumps, homodyne and heterodyne measurement is shown in
outline. To study continuous measurement in superconducting circuits, the
transmon device is introduced. The Bose-Hubbard model is used to model
interacting transmons in an array. The circuit functionality needed for
the measurement and control of transmons in a superconducting circuit is
discussed. The stochastic master equation and the stochastic Schrödinger
equation for the heterodyne measurement of transmons is provided. A guide
for using the programming language Julia with the differential equations
package to solve the continuous measurement problems is given, and the
suitability of Julia for numerically simulating continuous measurement
is examined. Julia is found to be efficient and a great tool for solving
stochastic differential equations when used together with the differential
equations package. To further demonstrate the capabilities of the numerical
program implemented, we model five transmons, where the transmon in the
middle is being continuously measured. We plot the boson number at the
middle and at the end of the array. Furthermore, we plot the entanglement
entropy between the first two and the last three transmons.

1 Introduction

Measurements are necessary to learn more about the fine details of nature. This
thesis focuses on continuous measurements, in which information is extracted
from a system continuously over a period of time. The theory of continuous
measurements is applied for an array of transmons. The transmon is a super-
conducting circuit device, which can be used as a quantum bit. Continuously
measured transmons are modeled with stochastic differential equations. These
kind of equations can be difficult to solve analytically. Here, the programming
language Julia is used to solve the stochastic differential equations. After reading
the thesis, the reader is left with an intuitive understanding on how continuous
measurement is derived and modeled. The reader will be familiar with the basics
of superconductivity, and with the superconducting circuit elements used to
control and measure transmons. The programming language Julia is introduced,
so that the reader should feel confident in using it to solve the continuous
measurement problems.

This thesis is in the field of quantum information and superconducting circuits.
The potential of superconducting circuits for quantum information processing
has been known for some time, but it is the recent years where there has
been significant progress. Today it is possible to produce measurable and
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controllable long-lived qubits. The continuous measurement of qubits enables
quantum feedback, which is a crucial component for several quantum information
processes, e.g. fault tolerant quantum computing. Further studying continuously
measured transmons is a step toward a practical quantum computer. [1, 2]

The groundwork for understanding continuous measurement is laid in Chapter 2,
where the measurement postulate is introduced, followed by projective measure-
ment and an introduction to the density operator. Chapter 2 also introduces
the idea of a probe, a separate system that interacts with the system that we
are trying to measure, enabling the measurement of the target. Chapter 3
goes through the main ideas behind the derivation of the stochastic master
equations, that depict quantum jumps, homodyne and heterodyne measurement.
These continuous measurement problems are handled in the context of optical
physics. To approach the continuous measurement of transmons, Chapter 4
gives an introduction to superconductivity and the transmon device. Multiple
transmons interacting only with the neighboring transmon can be modeled with
the Bose-Hubbard Hamiltonian, which is introduced at the end of Chapter 4.
The circuitry that is typically found in superconducting circuits for controlling
and measuring transmons is introduced in Chapter 5. Furthermore the super-
conducting cavity is presented, which is a crucial tool that enables both the
measurement and the control of transmons. The concept of amplifying quantum
mechanical signals is briefly discussed, followed by a depiction for what is needed
for the heterodyne measurement of transmons. The Chapter 5 and the theory
of this thesis is concluded by presenting the stochastic master equation and the
stochastic Schrödinger equation used for modeling heterodyne measurement
of transmons. Chapter 6 introduces the programming language Julia, which is
used together with the differential equations package to solve the stochastic
differential equations relating to the continuous measurement problems. A guide
is given on how to use the differential equations package to solve the continuous
measurement problems numerically. In Chapter 7 the code written in Chapter 6
is used to calculate the boson number of the transmons being measured, the
boson number at the end of the array and the entanglement entropy between
the first two and the last three transmons of the array. The thesis concludes
with Chapter 8, where some ideas are given for expanding and improving the
thesis.
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2 Fundamentals of Measurement Theory

This chapter provides the tools needed to discuss continuous measurement. In
this chapter the measurement postulate is introduced, followed by a brief look
at projective measurements. To address situations where there are probabilities
originating from the superposition, and probabilities due to lacking knowledge
of the state of the system, the density operator is introduced. With these in
mind, in the last chapter a more general picture for measurements in quantum
mechanics is shown, by using a probe to realize the measurement of a given
system.

2.1 The Measurement Postulate

In quantum mechanics, observable quantities are represented by Hermitian1

operators M̂ . The eigenvalues {λm} of the operator M̂ are real and they
correspond to possible measurement outcomes. The eigenstates {|m〉} of the
operator M̂ form an orthonormal basis. With these eigenstates the state of the
system |Ψ〉, which is a normalized complex vector, can be represented as

|Ψ〉 =
∑

m

cm |m〉 , (2.1)

where cm = 〈m|Ψ〉 and
∑

m |cm|2 = 1. The probability of getting the mea-
surement result λm is |〈m|Ψ〉|2 = |cm|2 and the state of the system after the
measurement is the corresponding eigenstate |m〉. This is called the measure-
ment postulate. Here, and in the following chapters, it is assumed that the
eigenvalues are discrete and non-degenerate. [3–5]

2.1.1 Example: Application of the Measurement Postulate

Consider that your friend is capable of preparing a system for you in some
unknown quantum state |Ψ〉, and your task is to figure out what the quantum
state specifically is. You have done measurements and you have found the
measurement results to be either −1 or 1. Then according to the measurement
postulate the eigenvalues {λm} of the operator representing the measurement
are λ0 = −1 and λ1 = 1. The matrix with these eigenvalues is the Pauli spin
matrix

σ̂z =

(

1 0
0 −1

)

, (2.2)

1If the operator Â is Hermitian then Â = Â
†.
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and the eigenstates of this matrix are

|m := 0〉 = |↓〉 =

(

0
1

)

, |m := 1〉 = |↑〉 =

(

1
0

)

. (2.3)

Comparing to Eq. (2.1), in the basis of these eigenstates the state of the system
is

|Ψ〉 = c↓ |↓〉 + c↑ |↑〉 , (2.4)

with some unknown constants c↓ and c↑. Now let us say that you did several
measurements and got the result λ1 = 1 one-third of the time. Since the
probability of getting the result is

|〈↑|Ψ〉|2 = |c↑|2 =
1

3
, (2.5)

it follows that c↑ = 1√
3

and due to normalization c↓ =
√

2
3
. From this it follows

that the quantum state of the system can be represented as

|Ψ〉 =

√

2

3
|↓〉 +

1√
3

eiφ |↑〉 , (2.6)

for some phase φ. Realizations of this could be the measurement of spin or the
measurement of the state of a qubit.

2.2 Projective Measurements

Coming from the measurement postulate the effect of a measurement |Ψ〉 → |m〉
is not very descriptive. To achieve a more mathematical picture, projective
operators {P̂m} can be defined. The Hermitian operator M̂ can be diagonalized
as

M̂ =
∑

m

λm |m〉 〈m| , (2.7)

so that in the basis of the eigenstates {|m〉}, the projective operators are

P̂m ≡ |m〉 〈m| . (2.8)

The probability pm of getting the measurement result λm is

pm = 〈Ψ| P̂ †
mP̂m |Ψ〉 = 〈Ψ| P̂m |Ψ〉 = |〈m|Ψ〉|2, (2.9)

and the state of the system after the measurement is

|Ψ〉 → P̂m |Ψ〉√
pm

. (2.10)

The types of measurements presented here and in the previous chapter are called
von Neumann measurements. [6, 7]
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2.3 Density Operator

The density operator ρ̂, or the density matrix, can be used to describe the system
when we simply do not know in which state the system is [5]. Consider that
we know that the system is in the state |Ψ〉, then the corresponding density
operator is

ρ̂ = |Ψ〉 〈Ψ| . (2.11)

Now if we do not know in which state the system is, instead we know that it
is in the state |Ψ1〉 with the probability p1 = 0.4 or in the state |Ψ2〉 with the
probability p2 = 0.6, then the corresponding density operator is

ρ̂ = 0.4 |Ψ1〉 〈Ψ1| + 0.6 |Ψ2〉 〈Ψ2| . (2.12)

This type of states are called mixed. The type of states as in Eq. (2.11) are
called pure. Analogous to Eq. (2.12) the density operator can be a mixture of
any number of states ρ̂ =

∑

i pi |Ψi〉 〈Ψi|, with each having a probability of pi.
The trace of the density operator is the sum of the probabilities of finding it in
any of the possible states, thus for every valid density operator Tr (ρ̂) = 1. This
is somewhat analogous to the norm of the state vector being equal to one. The
purity of a given density operator can be calculated as Tr

(

ρ̂2
)

∈ [0, 1], where
one is equal to the state being completely pure. For the following chapters we
need the density operator versions of the projective measurement equations from
the previous chapter. To handle mixed states, equation (2.9) becomes

pm = Tr

(

P̂mρ̂P̂ †
m

)

, (2.13)

and equation (2.10)

ρ̂ → P̂mρ̂P̂ †
m

pm

. (2.14)

With these tools we are ready to discuss measurement via a probe. [5, 7]

2.4 General Quantum Measurements

In practice the quantum system of interest is never directly measured. To
measure it a separate system is needed. This separate system works as the
measurement device. Von Neumann measurements do not describe every possible
measurement and applying them directly to the system of interest might not
yield correct results. Nevertheless, they can be used to derive all other types of
measurements. In the following, the system of interest will be referred to simply
as the system, as long as there is no risk of confusion, and the measurement
device will be referred to as the probe. To describe more general measurements,
the interaction between these two systems is needed.
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Before the system and the probe are brought into contact, the system and the
probe are assumed to be in the states ρ̂S and ρ̂P respectively. The initial state
ρ̂I of the combined system is

ρ̂I = ρ̂P ⊗ ρ̂S. (2.15)

These two system are allowed to interact for some period of time. This interaction
is described by some unitary operator Û . After the interaction, the states of
the probe are correlated with the states of the system. Now the state of the
combined system is

ρ̂U = Û ρ̂IÛ
† = Û (ρ̂P ⊗ ρ̂S) Û †. (2.16)

Due to the correlation it is possible to obtain information of the system of interest
by doing a projective measurement on the probe. This projective measurement
is done in a basis state |n〉 of the probe. The projective measurement concludes
the measurement of the system of interest, and after this, by using Eq. (2.14),
the state of the combined system is

ρ̂M =
(

|n〉 〈n| ⊗ Î
)

ρ̂U

(

|n〉 〈n| ⊗ Î
)

(2.17)

=
(

|n〉 〈n| ⊗ Î
)

Û (ρ̂P ⊗ ρ̂S) Û †
(

|n〉 〈n| ⊗ Î
)

. (2.18)

Notice that for convenience the normalization has been dropped out.

To proceed, it can be noted that since there are no restrictions on the unitary
operator Û , the initial state of the probe can be chosen to be ρ̂P = |0〉 〈0|. The
unitary operator can be presented as

Û =
∑

nn′

|n〉
〈

n′∣
∣⊗ Ânn′ , (2.19)

where Ânn′ are operators acting on the system of interest. Since Û is a unitary
operator, we find that

Î ⊗ Î = Û †Û =

(

∑

nn′

|n〉
〈

n′∣
∣⊗ Â†

n′n

)(

∑

mm′

|m〉
〈

m′∣
∣⊗ Âmm′

)

(2.20)

=
∑

nn′m′

|n〉
〈

m′∣
∣⊗ Â†

n′nÂn′m′ (2.21)

=
∑

ij

|i〉 〈j| ⊗
∑

n

Â†
niÂnj . (2.22)

Due to the equality with identity, it has to be so that
∑

n Â†
niÂnj = Îδij . The

state of the combined system after the measurement is

ρ̂M =
(

|n〉 〈n| ⊗ Î
)

Û (|0〉 〈0| ⊗ ρ̂S) Û †
(

|n〉 〈n| ⊗ Î
)

(2.23)

=

(

∑

n′

|n〉
〈

n′∣
∣⊗ Ânn′

)

(|0〉 〈0| ⊗ ρ̂S)

(

∑

m′

∣

∣m′〉 〈n| ⊗ Â†
nm′

)

(2.24)

= |n〉 〈n| ⊗ Ân0ρ̂SÂ†
n0. (2.25)
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Now we see that due to the initial state of the probe, the only relevant operators
are Ân0 ≡ Ân. These operators are restricted by the rule from above, so that
∑

n Â†
nÂn = Î. We also see that the normalized state of the system, after

observing the probe to be in the state |n〉, is

ρ̂n =
Ânρ̂SÂ†

n

Tr

(

Ânρ̂SÂ†
n

) . (2.26)

Using Eq. (2.13), the probability of observing the probe to be in this state after
the interaction is

pn = Tr

((

|n〉 〈n| ⊗ Î
)

ρ̂U

(

|n〉 〈n| ⊗ Î
))

= Tr (ρ̂M) (2.27)

= Tr

(

|n〉 〈n| ⊗ Ânρ̂SÂ†
n

)

= Tr (|n〉 〈n|) Tr

(

Ânρ̂SÂ†
n

)

(2.28)

= Tr

(

Ânρ̂SÂ†
n

)

. (2.29)

General quantum measurements are described by an interaction between the
probe and the system of interest. For every set of operators {Ân} that satisfies the
rule

∑

n Â†
nÂn = Î, it is possible to devise a probe that realizes this interaction,

at least in theory. The state of the system, after the projective measurement of
the probe, is given by Eq. (2.26), and the probability for this by Eq. (2.27). The
operators Ân are called the measurement operators or the Kraus operators. [5,7]

2.4.1 Example: Weak Measurement

Consider a qubit that is initially in the mixed state ρ̂ = 1/2 (|0〉 〈0| + |1〉 〈1|).
Then consider the set of operators {Â0, Â1}

Â0 =
√

ε |0〉 〈0| +
√

1 − ε |1〉 〈1| =

(√
ε 0

0
√

1 − ε

)

, (2.30)

Â1 =
√

1 − ε |0〉 〈0| +
√

ε |1〉 〈1| =

(√
1 − ε 0
0

√
ε

)

, (2.31)

so that
Â†

0Â0 + Â†
1Â1 = |0〉 〈0| + |1〉 〈1| = Î . (2.32)

Therefore these operators are possible measurement operators. Finding the
unitary operator that realizes these operators is not necessary. Using Eq. (2.26),
the state of the system after observing the measurement result 0 is

ρ̂0 =
Â0ρ̂Â†

0

Tr

(

Â0ρ̂Â†
0

) =

(

ε 0
0 1 − ε

)

. (2.33)
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3 Continuous Measurement

The measurements in the previous chapter affected the system of interest for
a single moment in time. In practice every measurement takes some time
to be completed. This chapter gives an introduction to measurements that
extract information out of the system over a period of time. These types of
measurements are called continuous measurements. The different kinds of
continuous measurements that will be introduced in this chapter are counting
the photons emitted from a system, homodyne detection, balanced homodyne
detection and heterodyne detection. Later we will be interested in the heterodyne
measurement of transmons, so the role of the other continuous measurement
types is to lead up to heterodyne detection. The goal is to provide the stochastic
differential equations that simulate these measurements, and to give an intuitive
understanding for how these equations are derived. A short introduction to
Itō calculus is given, and how it is used in dealing with stochastic differential
equations is demonstrated. Measurements are a way to gain information about
the state of a system, but they also have an effect on it, and as such are a way
to manipulate the system. Here the interest lies in how the quantum system
reacts to it being measured.

3.1 Quantum Jumps

Discontinuous changes in the evolution of the system due to continuous mea-
surement are characteristic for quantum jumps. This abrupt change in the state
of the system follows, from example, when counting the photons emitted from
a system. The times when the photons are emitted is random by nature, so
the evolution of the system is described by differential equations that have a
random component. This random component is called noise. The noise can be
realized in infinite many ways, and thus there exists infinite many solutions to
the given problem. A single solution to this type of a differential equation is
called a trajectory and these type of differential equations are called stochastic
differential equations. Quantum jumps are not limited to photon counting. To
not lose generality, the emitting of a photon can be thought of as an event,
and the counting of photons is then counting of events. In this chapter the
differential equation for counting of events will be provided, followed by an
example of counting the photons emitted by a two-level atom. This chapter
follows closely the Chapter 3.3 of Ref. [5].

Generally speaking, the probability that an event occurs in a time interval dt
can be defined to be λdt, where λ is called the probability rate. Then the
probability that the event does not occur is 1 − λdt. These events can be

11



counted by introducing the random variable N (t) that gives the integer number
of events that have occurred in the time t. N(t) can also be referred to as a
counting process. Since in every time interval there can occur only one event, the
increment of N (t), dN , has two possible values: dN = 0 or dN = 1. From this
it follows that dN2 = dN . Now the probability that dN = 1 in a given interval
is just the probability that an event occurs: Prob[dN = 1] = λdt. Similarly
Prob[dN = 0] = 1 − λdt.

The system needs to be measured for us to be able to count the possible events.
So for us to be able to count the events, we need to do a measurement in every
time-step dt. This measurement has two possible outcomes: we see that an
event occurred or that it did not. This implies that the outcomes correspond to
two measurement operators. Let Â1 be the operator that corresponds to the
outcome that an event occurred, and Â0 correspond to the outcome that no
event occurred. From the previous chapter, we see that the probability that we
observe the measurement outcome to be the one relating to the measurement
operator Â1, is given by Eq. (2.13). This has to agree with the probability of
the event occurring:

Tr

(

Â1ρ̂Â†
1

)

= λdt. (3.1)

For the left hand side to be proportional to dt, Â1 has to be proportional to
√

dt.
So let’s choose Â1 = Ω̂

√
dt, where Ω̂ is some constant operator. Since Â0 and

Â1 are measurement operators, they have to obey they rule Â†
0Â0 + Â†

1Â1 = Î.
From this it follows that

Â†
0Â0 = Î − Ω̂†Ω̂dt. (3.2)

Now setting Â0 = Î + X̂dt, inserting it to the equation above and expanding to
the first order in dt, we end up with

(

Î + X̂†dt
) (

Î + X̂dt
)

= Î +
(

X̂† + X̂
)

dt = Î − Ω̂†Ω̂dt. (3.3)

So X̂† + X̂ = −Ω̂†Ω̂. Since Ω̂†Ω̂ is hermitian, X̂ can also be chosen to be
hermitian, and we end up with

X̂ = − Ω̂†Ω̂

2
. (3.4)

Using this, we see that the proper measurement operators are

Â1 = Ω̂
√

dt, (3.5)

Â0 = Î − Ω̂†Ω̂

2
dt, (3.6)

for some constant operator Ω̂. Inserting Â1 to Eq. (3.1), we also see that the
probability rate, also referred to as the instantaneous rate of counts, is given by

λ = Tr

(

Ω̂ρ̂Ω̂†
)

=
〈

Ω̂†Ω̂
〉

. (3.7)
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The last thing to derive is how the state of the system changes as the events
are being recorded. If there is no event, the state of the system is given by the
measurement operator Â0 and Eq. (2.26) to the first order in dt:

ρ̂ → ρ̂′ =
Â0ρ̂Â†

0
〈

Â†
0Â0

〉 (3.8)

=

(

Î − Ω̂†Ω̂
2

dt
)

ρ̂
(

Î − Ω̂†Ω̂
2

dt
)

〈

(

Î − Ω̂†Ω̂
2

dt
)2
〉 (3.9)

=
ρ̂ −

(

Ω̂†Ω̂
2

ρ̂ + ρ̂ Ω̂†Ω̂
2

)

dt

1 −
〈

Ω̂†Ω̂
〉

dt
(3.10)

=

(

ρ̂ −
(

Ω̂†Ω̂

2
ρ̂ + ρ̂

Ω̂†Ω̂

2

)

dt

)

(

1 +
〈

Ω̂†Ω̂
〉

dt
)

(3.11)

=ρ̂ +

(

〈

Ω̂†Ω̂
〉

ρ̂ − 1

2

{

Ω̂†Ω̂, ρ̂
}

)

dt. (3.12)

Here on line (3.10) in the denominator the relation 1/ (1 − x) = 1 + x + x2...
was used, and {Â, B̂} = ÂB̂ + B̂Â is the anticommutator. Similarly if the event
occurs the state is given by

ρ̂ → ρ̂′ =
Ω̂ρ̂Ω̂†
〈

Ω̂†Ω̂
〉 (3.13)

Since these changes happen in every time interval dt, this implies that ρ̂′ = ρ̂+dρ̂.
In the case of no event occurring we find that

dρ̂ =

(

〈

Ω̂†Ω̂
〉

ρ̂ − 1

2

{

Ω̂†Ω̂, ρ̂
}

)

dt, (3.14)

and in the case of the event occurring

dρ̂ =
Ω̂ρ̂Ω̂†
〈

Ω̂†Ω̂
〉 − ρ̂. (3.15)

If we take a look at Eq. (3.14), we see that in the case of no event occurring,
the change in the state of the system is infinitesimal. This is comparable to
a weak measurement. When an event occurs, we see from Eq. (3.15) that it
compares to a strong measurement. The probability that an event occurs is

given by λdt =
〈

Ω̂†Ω̂
〉

dt, so that in every time-step it is more likely for the

event to not occur. From these we can piece together that the evolution of the
state is continuous until an event occurs. When an event does occur the effect
of it is an abrupt and discontinuous change in the state of the system. The
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system jumps from one state to another. Moving forward, we can combine these
equations to form the differential equation for quantum jumps. By using dN ,
that is dN = 1 when an event occurs and zero otherwise, we find the following
differential equation

dρ̂ = − i

~

[

Ĥ, ρ̂
]

dt + (1 − dN)

(

〈

Ω̂†Ω̂
〉

ρ̂ − 1

2

{

Ω̂†Ω̂, ρ̂
}

)

dt

+





Ω̂ρ̂Ω̂†
〈

Ω̂†Ω̂
〉 − ρ̂



 dN (3.16)

= − i

~

[

Ĥ, ρ̂
]

dt − 1

2
H
[

Ω̂†Ω̂
]

ρ̂ + J
[

Ω̂
]

ρ̂dN. (3.17)

Here the evolution due to the Hamiltonian of the system has been added and
the rule dtdN = 0 has been used. The jump superoperator J [Ω̂]ρ̂ and the
measurement superoperator H[Ω̂†Ω̂]ρ̂ are defined as

J [ĉ] ρ̂ ≡ ĉρ̂ĉ†

〈ĉ†ĉ〉 − ρ̂, H [ĉ] ρ̂ ≡ ĉρ̂ + ρ̂ĉ† −
〈

ĉ + ĉ†
〉

ρ̂, (3.18)

respectively. The differential equation (3.17) is called the stochastic master
equation (SME). To use this differential equation to solve different event counting
problems, the only thing left to do is to derive the operator Ω̂ in a given situation.

In practice the increments dN are realized from the measurement result. Then
Eq. (3.17) can be used to simulate the evolution of the quantum state due to
the measurement. The Eq. (3.17) is said to give the evolution of the quantum
state conditioned on the measurement result. By ignoring the measurement
record, or discarding the information given by the measurement, one arrives at
the unconditioned master equation. This can be derived2 by taking the ensemble
average of Eq. (3.17). The unconditioned master equation is then

d 〈〈ρ̂〉〉 = − i

~

[

Ĥ, 〈〈ρ̂〉〉
]

dt + D
[

Ω̂
]

〈〈ρ̂〉〉 dt, (3.19)

where 〈〈ρ̂〉〉 is the ensemble averaged density operator and D
[

Ω̂
]

〈〈ρ̂〉〉 is called

the Lindblad superoperator:

D [ĉ] ρ̂ ≡ ĉρ̂ĉ† − 1

2

{

ĉ†ĉ, ρ̂
}

. (3.20)

3.1.1 Example: Photon detection of a Two Level Atom

An atom coupled to a vacuum field can spontaneously emit a photon to the
field. Here the atom is modeled as a two-level system, and its basis is given

2More details in Chapter 18.1.1 of Ref. [8]
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by the ground state |g〉 and the excited state |e〉. The field can be measured
with a photon-detector, that clicks when it detects a photon. To study this
measurement, Eq. (3.17) can be used. But first we need to figure out what the
operator Ω̂ is in this case. The excited atom state decays as

ρ̇ee = −Γρee = −Γ
〈

σ̂†σ̂
〉

, (3.21)

where Γ is the spontaneous decay rate and σ̂ is the atomic two level lowering
operator. So Γ tells us the rate at which the photons are emitted to the field. If
our detector is perfect and catches every photon, then the rate of decay has to
match with the rate of events Eq. (3.7)

〈

Ω̂†Ω̂
〉

= Γ
〈

σ̂†σ̂
〉

. (3.22)

This implies that Ω̂ =
√

ΓÛ σ̂ with some unitary operator Û . Turns out that
choosing Û = Î gives the correct results. Then using Eq. (3.17) we see that the
dynamics of the atom under continuous detection of its emitted photon is given
by

dρ̂ = − i

~
[Ĥa, ρ̂]dt − Γ

2
H
[

σ̂†σ̂
]

ρ̂dt + J [σ̂] ρ̂dN, (3.23)

where Ĥa = ~ω |e〉 〈e| is the Hamiltonian for the atom, with the atomic transition
frequency ω. The Hamiltonian is chosen so that the ground state has zero energy.

An example trajectory of how the measurement affects the photon number
〈

σ̂†σ̂
〉

of the atom is presented in Fig. 2. A jump occurs at about tΓ = 2 and the effect
of it is intuitive: when a photon is detected the atom returns to the ground
state. We see that the atom seems to be decaying to the ground state even
when no photons are detected. The interpretation is that if the atom is excited,
then the photon has to be emitted at some point. So the longer it takes for the
atom to emit the photon, or for the photon to be detected, the more likely it
is to be in the ground state. If we never observe the photon, then the atom
had to be in the ground state originally. To see how the atom develops when
no photons are detected, we can set dN = 0 in Eq. (3.23). We see that there
still are additional terms to the Hamiltonian so the measurement affects the
evolution even when no photons are detected. This means that the measurement
is extracting information from the system at every given moment in time, not
just when a photon is detected. [5, 8]
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when dealing with the Wiener process. The change in the rules is known as the
Itō’s lemma: (dW )2 = dt, and the calculus of stochastic differential equations
is known as Itō calculus. When dealing with stochastic differential equations
with Wiener noise, it is very important to include the second-order terms in dW .
Usually the terms that are second-order or higher in the differential dt end up
not contributing to the final solution when compared to dt, so that dt2 = 0.
Now since the mean of the Wiener increment is zero and since its variance is
〈

(dW )2
〉

= dt, we see3 that the mean of (dW )2 is comparable to dt, and so
the term (dW )2 should not be discarded. The variance of the total contribution
of (dW )2 terms can be derived, with the result that it is zero. This means
that (dW )2 is actually deterministic and we can use the rule (dW )2 = dt in
calculations. Even though the term (dW )2 is great enough to contribute, terms
like dtdW are not, and they can be set to zero in calculations.

To see Itō calculus in action, let us consider that we know the increment of the
quantum state d |Ψ〉 and we want to figure out the increment dρ̂ for the density
operator.

ρ̂(t) + dρ̂ = ρ̂(t + dt) (3.25)

= |Ψ(t + dt)〉 〈Ψ(t + dt)| (3.26)

= (|Ψ(t)〉 + d |Ψ〉)((〈Ψ(t)| + d 〈Ψ|) (3.27)

= |Ψ(t)〉 〈Ψ(t)| + |Ψ(t)〉 d 〈Ψ| + d |Ψ〉 〈Ψ(t)| + d |Ψ〉 d 〈Ψ| (3.28)

→ dρ̂ = |Ψ(t)〉 d 〈Ψ| + d |Ψ〉 〈Ψ(t)| + d |Ψ〉 d 〈Ψ| . (3.29)

Normally, the term d |Ψ〉 d 〈Ψ| would vanish, but here it is very important due
to the Itō’s lemma. For the sake of simplicity, let us consider that d |Ψ〉 =
Γ |Ψ〉 dt +

√
Γ |Ψ〉 dW , for some real constant Γ. Notice that this increment

does not conserve the norm, so this example is purely to demonstrate the Itō’s
lemma. Inserting this to the equation above, we get

dρ̂ = |Ψ〉 (Γ 〈Ψ| dt +
√

Γ 〈Ψ| dW )

+ (Γ |Ψ〉 dt +
√

Γ |Ψ〉 dW ) 〈Ψ|
+ (Γ |Ψ〉 dt +

√
Γ |Ψ〉 dW )(Γ 〈Ψ| dt +

√
Γ 〈Ψ| dW ) (3.30)

=2Γ |Ψ〉 〈Ψ| dt + 2
√

Γ |Ψ〉 〈Ψ| dW + Γ |Ψ〉 〈Ψ| dW 2 (3.31)

=3Γ |Ψ〉 〈Ψ| dt + 2
√

Γ |Ψ〉 〈Ψ| dW. (3.32)

Here the extra Γ |Ψ〉 〈Ψ| dt term is due to Itō’s lemma, and it would not appear
in standard calculus. A more detailed explanation for Itō calculus and derivation
for the Itō’s lemma can be found in Ref. [9].

3The expectation value is taken over all of the possible realizations of the noise.
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Since only one output mode of the beam splitter is being detected, the photons
coming from the field of the atom that pass through the beam splitter are wasted.
To make sure information is not wasted, the limit r → 1 is taken, meaning
that the beam splitter is made as reflecting as possible. If the field reflection
coefficient is r = 1 we see that this would reduce to simple direct detection of
the atom. To circumvent this, the amplitude of the local oscillator field α has
to be chosen great enough so that the transmitted field amplitude

β ≡ α
√

1 − r2, (3.37)

remains nonzero. Now the field that is being detected changes to

Ĉr → Ĉβ =
√

Γ (σ̂ + β) . (3.38)

One advantage of homodyne detection can now be seen. In the previous example

the average detection rate is given by 〈dN〉 = Γ
〈

σ̂†σ̂
〉

dt =
〈

Ĉ†Ĉ
〉

dt. For

homodyne detection the average rate of detection is then

〈dN〉 =
〈

Ĉ†
βĈβ

〉

dt = Γ
(〈

σ̂†σ̂
〉

+
〈

β∗σ + βσ̂†
〉

+ |β|2
)

dt. (3.39)

Now the amplitude of the local oscillator field is chosen to be so great, that the

term
〈

σ̂†σ̂
〉

can be neglected when compared to |β|2. The term |β|2 is just a

constant term that can be subtracted. The average rate of detection still depends

on the state of the atom, since it depends on the term
〈

β∗σ + βσ̂†
〉

, but it is

essentially boosted by a factor of |β|. This is advantageous if the detector is
prone to unwanted background noise. Another aspect to note is that homodyne
detection does not simply measure the photon number of the atom as was in
the previous example, it seems to measure something different. What exactly
homodyne detection measures will be talked about at the end of this chapter.
Before getting into the stochastic master equation for homodyne detection, let
us look at the effect of detecting a photon in the homodyne detection scheme
has on the state of the atom. The change in the state of the atom is given by

ρ̂ →
Ĉβ ρ̂Ĉ†

β
〈

Ĉ†
βĈβ

〉 =
(σ̂ + β) ρ̂

(

σ̂† + β∗
)

〈(σ̂† + β∗) (σ̂ + β)〉 . (3.40)

If we consider the atom to be in a pure state ρ̂ = |Ψ〉 〈Ψ|, we see that the effect
of the detection on the atom is the projection to a superposition of a photon
being detected directly from the atom and the atom being unaffected. This
happens since we are unable to distinguish the origin of the photon.

The homodyne detection scheme changed the measurement operator from
√

Γσ̂
to

√
Γ (σ̂ + β). This implies that we can derive the stochastic master equation

for homodyne detection by doing the transformation

σ̂ → σ̂ + β, (3.41)
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in Eq. (3.23). But if we remove the detector, or discard the information from
the measurement, the unconditioned master equation Eq. (3.19), that is

d 〈〈ρ̂〉〉 = − i

~

[

Ĥ, 〈〈ρ̂〉〉
]

dt + ΓD [σ̂] 〈〈ρ̂〉〉 dt, (3.42)

in the case of direct detection of the atom, should stay the same. Skipping the
short derivation, we see that

D [σ̂ + β] ρ̂ = D [σ̂] ρ̂ − i

~

[

i~

2

(

β∗σ̂ − βσ̂†
)

, ρ̂

]

. (3.43)

Then doing the transformation in Eq. (3.41) and

Ĥ → Ĥ − i~Γ

2

(

β∗σ̂ − βσ̂†
)

, (3.44)

leaves the unconditioned master equation unchanged. Doing this, a bunch
of simplifications4, and taking the limit of |β| → ∞, the stochastic master
equation transforms into the form that is called the stochastic master equation
for homodyne detection:

dρ̂ = − i

~

[

Ĥ, ρ̂
]

dt + ΓD [σ̂] ρ̂dt +
√

ΓH
[

σ̂eiφ
]

ρ̂dW. (3.45)

Here φ is the phase of the local oscillator β ≡ |β|e−iφ. The Wiener increment
appears here because of the limit |β| → ∞. Due to this limit the counting
process N (t) can be approximated as a Gaussian random variable and dN
transform as

dN → Γ
〈(

σ̂† + β∗
)

(σ̂ + β)
〉

dt +
√

Γ 〈(σ̂† + β∗) (σ̂ + β)〉dW. (3.46)

This approximation is valid when the number of events occurred in a time-step is
very large, and it follows from the central limit theorem. Since the mean of dW
is zero, we see that the mean of the noise term is same as for dN . Previously
the noise term could only have values of zero or one, but now the value of the
noise in a time-step can be any real number.

To gain understanding of what homodyne detection is actually measuring, we can
take a look at the measurement record. The photodetector works by conducting
a charge Q for each detected photon. So photon detection causes the current

I(t) = Q
dN(t)

dt
, (3.47)

and this current can then be read from the device, providing information about
a photon detection event. In homodyne detection the current becomes

I(t) = QΓ
〈(

σ̂† + β∗
)

(σ̂ + β)
〉

+ Q
√

Γ 〈(σ̂† + β∗) (σ̂ + β)〉dW (t)

dt
. (3.48)

4More details about the derivation can be found in Chapter 18.2 of Ref. [8]
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From this the constant current QΓ|β|2 can be subtracted and it can then be
divided by Q|β| so that we get the normalized photocurrent:

Ĩ(t) ≡I(t) − QΓ|β|2
Q|β| (3.49)

=Γ





〈

σ̂†σ̂
〉

|β| +

〈

βσ̂† + β∗σ̂
〉

|β|





+

√

√

√

√Γ

(

〈σ̂†σ̂〉
|β|2

+
〈βσ̂† + β∗σ̂〉

|β|2
+

|β|2

|β|2

)

dW (t)

dt
(3.50)

=Γ
〈

σ̂eiφ + σ̂†e−iφ
〉

+
√

Γ
dW (t)

dt
, (3.51)

where the last line follows because of the limit |β| → ∞ and because of
β/|β| = e−iφ. Finally we can define the measurement record dr(t) for homodyne
detection to be

dr(t) ≡ Ĩ(t)dt = Γ
〈

σ̂eiφ + σ̂†e−iφ
〉

dt +
√

ΓdW (t). (3.52)

Now on average

〈〈dr(t)〉〉 = Γ
〈

σ̂eiφ + σ̂†e−iφ
〉

dt, (3.53)

so we see that homodyne detection extracts information about the quantity
〈

σ̂eiφ + σ̂†e−iφ
〉

. Choosing the phase of the local oscillator to be φ = 0 we get

〈〈dr(t)〉〉 = Γ
〈

σ̂ + σ̂†
〉

dt = Γ 〈σ̂x〉 dt. (3.54)

Similarly if the phase is chosen to be φ = π/2 we get

〈〈dr(t)〉〉 = Γ
〈

iσ̂ − iσ̂†
〉

dt = Γ 〈σ̂y〉 dt. (3.55)

Now notice that for a general quantum harmonic oscillator

x̂ ∝ â† + â, p̂ ∝ iâ† − iâ, (3.56)

so that the measurement with the phase φ = 0 relates to the measurement of
the position of a general quantum harmonic oscillator. Similarly for φ = π/2
relates to the measurement of momentum. The quantum harmonic oscillator
can be realized with superconducting circuits. The analogues for position and
momentum are the flux and charge respectively. Then homodyne detection can
be used to measure these quantities. The measurement with φ = 0 is said to
measure the Î quadrature and φ = π/2 is said to measure the Q̂ quadrature. [5,8]
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the terms that contain Γ. We end up with

dρ̂ = − i

~

[

Ĥ, ρ̂
]

dt

− r2 Γ

2
H
[

σ̂†σ̂
]

ρ̂dt + J [σ̂] ρ̂dN1

−
(

1 − r2
) Γ

2
H
[

σ̂†σ̂
]

ρ̂dt + J [σ̂] ρ̂dN2, (3.60)

where the second line represent detector 1 and the third line represents detector
2. Now if we look back to Eq. (3.58) we see that our operators related to the
modes of the fields being measured are given by

C1,direct =
√

Γrσ̂, C2,direct =
√

Γ
√

1 − r2σ̂. (3.61)

When we add the local oscillator, the output modes of the beam splitter are
given by

C1 =
√

Γ
(

rσ̂ +
√

1 − r2α
)

, (3.62)

for detector 1, and
C2 =

√
Γ
(
√

1 − r2σ̂ − rα
)

, (3.63)

for detector 2. To add the local oscillator to the Eq. (3.60), we need to do the
transformations C1,direct → C1 and C2,direct → C2. This can be achieved by
doing the following transformation

σ̂ → σ̂ +

√
1 − r2

r
α, (3.64)

for the part relating to detector 1, and

σ̂ → σ̂ − r√
1 − r2

α, (3.65)

for the part relating to detector 2, where α is the amplitude of the local oscillator.
Additionally, as before, we would need to transform the Hamiltonian to keep
the unconditioned master equation unchanged, but here the effect of these
replacements cancels out. Doing these transformations, taking the limit of a
strong local oscillator, |α| → ∞, and approximating the counting processes as
Gaussian random variables5 we get the stochastic master equation for balanced
homodyne detection:

dρ̂ = − i

~

[

Ĥ, ρ̂
]

dt + ΓD [σ̂] ρ̂dt +
√

ΓH
[

σ̂eiφ
]

ρ̂dW. (3.66)

This is the same equation as the stochastic master equation for homodyne
detection. The Wiener increment is just given by

dW = rdW1 +
√

1 − r2dW2, (3.67)

5More details about the derivation can be found in Chapter 18.2.6 of Ref. [8]
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where dW1 and dW2 are the Wiener increments from the approximations for the
counting processes dN1 and dN2.

Let us again take a look at the measurement record. The photocurrent for
detector 1 and detector 2 is given by

I1 = Q1

dN1

dt
, I2 = Q2

dN2

dt
, (3.68)

where Q1 and Q2 are the charges conducted by the detectors 1 and 2 respectively,
for each detection event. We can define the measurement record to be the the
difference between the currents I1 and I2, so that dr ≡ (I1 − I2)dt. In the limit
of a strong local oscillator we can again approximate the counting process as a
Gaussian random variable. If we additionally assume that Q1 = Q2 = Q and
that the beam splitter is perfectly balanced, r = 1/

√
2, then the measurement

record is given by

dr ≡ QΓ
〈

α∗σ̂ + ασ̂†
〉

dt + Q
√

Γ|α|dW, (3.69)

where dW = dW1/
√

2 + dW2/
√

2. The measurement record for homodyne
detection is the same as here, but the measurement record here is lacking
normalization. In general the Wiener increment here is not the same as the
one in Eq. (3.66). They are the same when the beam splitter is perfectly
balanced. We can see that the balanced homodyne detection is an improvement
on homodyne detection, since it does not require the beam splitter to be almost
completely reflecting and since there is no need to subtract the constant currents
from the measurement record. [8]

3.5 Heterodyne Detection

The difference between heterodyne and homodyne detection is in the frequency of
the local oscillator. In heterodyne detection the frequency of the local oscillator
is not assumed to be the same as the frequency of the system of interest. The
frequency difference causes a phase difference that accumulates in time. The
phase difference φ is given by φ = t∆, where ∆ = ωloc − ω is the detuning
between the frequencies, and the frequencies ωloc and ω are the frequencies of
the local oscillator and the system of interest respectively. Inserting this phase
to Eq. (3.45) transforms the equation to the stochastic master equation for
heterodyne detection:

dρ̂ = − i

~

[

Ĥ, ρ̂
]

dt + ΓD [σ̂] ρ̂dt +
√

ΓH
[

σ̂eit∆
]

ρ̂dW. (3.70)

The detuning is assumed to be large, meaning that in every time-step dt there
are many cycles in the term eit∆. The measurement record for heterodyne
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detection follows from Eq. (3.52) by replacing the phase

dr(t) = Γ
〈

σ̂eit∆ + σ̂†e−it∆
〉

dt +
√

ΓdW (t). (3.71)

The measurement record oscillates, but these oscillations can be removed by
multiplying the equation above with the function e−t∆. This gives

Γ
〈

σ̂ + σ̂†e−2it∆
〉

dt +
√

Γe−it∆dW (t) ≈ Γ 〈σ̂〉 dt +
√

ΓdV (t), (3.72)

where dV ≡ e−it∆dW is called the frequency-shifted noise process. The approx-
imation is valid because the term σ̂†e−2it∆ oscillates rapidly, and thus vanishes
when averaged over any reasonable time. From the measurement record we see
that heterodyne detection extracts information about the quantity 〈σ̂〉, so that
it extracts information about both of the quantities 〈σ̂x〉 and 〈σ̂y〉. An intuitive,
but not rigorous, explanation for this is given in Fig. 6. [8]
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4 The Transmon Device and the Bose-Hubbard Model

Quantum computers require quantum bits, or qubits, to operate. One way to
realize a qubit is with superconducting circuits [10]. The goal of this chapter
is to introduce the transmon device [11], a superconducting circuit element
that can be operated as a qubit. For example the IBM quantum computer
uses transmons as its qubits [12]. To understand the transmon device, some
basics of superconductivity are needed, and these are briefly introduced next.
For the following chapters we will need to know how to model several transmons
connected to each other as a chain, and for this the Bose-Hubbard model [13] is
introduced.

4.1 Superconductivity and the Josephson Junction

Some metals become superconductors when cooled sufficiently. This can be
seen e.g. in the resistance of the metal, which vanishes once the metal becomes
superconducting. In superconductors the electrons become bound to each other
and form pairs. These pairs are formed between electrons with the opposite
momentum and spin, and they are called Cooper pairs. Since the Cooper pairs
consist of two electors with opposite spin they are bosons, capable of occupying
the same quantum state. In an ideal superconductor all of the Cooper pairs
are condensed into the same ground state, and the whole superconductor is
described by a single macroscopic quantum state. Breaking apart the Cooper
pairs requires energy. This causes an energy gap between the ground state and
the excited states. Superconductors operate at very low temperatures so that
the superconductor is in its ground state and it does not have any energy to
release to the environment, while the environment does not have enough energy
to overcome the energy gap. Because of these properties, superconductors are
resistant to decoherence and dissipation caused by the environment. [5, 10,14]

The Josephson junction is a circuit element which is formed by two superconduc-
tors separated with an insulative gap. Since the superconductors obey quantum
mechanics, the Cooper pairs are capable of tunneling through the insulator
resulting in a supercurrent between the superconductors. Josephson junctions
also inherently have capacitance. The Hamiltonian that describes an isolated
Josephson junction is given by

Ĥ = 4ECn̂2 − EJ cos φ̂, (4.1)

where n̂ relates to the number of Cooper pairs on one of the superconductors
and φ̂ relates to the phase difference between the superconductors. The first
term describes the energy associated with charging the junction with Cooper
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pairs where EC = e2/2C is the charging energy of a single electron and C is the
capacitance of the junction. The second term describes the energy regarding the
inductance of the junction. EJ is the Josephson energy which gives the energy
associated with the tunneling of the Cooper pairs. [15]

4.2 The Transmon Device

By capacitively coupling the Josephson junction to a voltage source, a qubit
can be made. This type of a qubit is called a Cooper pair box qubit [14]. The
voltage source causes an offset charge ng so that the Hamiltonian for the Cooper
pair box is

Ĥ = 4EC (n̂ − ng)2 − EJ cos φ̂. (4.2)

Due to the gate capacitance Cg introduced with the voltage source the charging
energy is now EC = e2/2(CJ + Cg). The circuit diagram for this is depicted
in Fig. 7 on the left. The first three energy levels are shown in (a) in Fig. 8.
We see that the energy levels are not evenly separated unlike it would be for a
harmonic oscillator. This is called anharmonicity. We also see that the Cooper
pair box is sensitive to noise in ng. This noise changes the transition energy
from one state to another which then would affect the operating frequency of
the Cooper pair qubit. As seen in the figure, the sensitivity to noise in ng can be
improved by operating the qubit at a higher ratio of EJ/EC. By introducing a
new capacitor CB parallel to the Josephson junction the ratio can be controlled.
Including this capacitor the charging energy becomes EC = e2/2(CJ +Cg +CB),
and higher values of the ratio EJ/EC are now achievable. This is called the
transmon device and the circuit diagram for it can be seen in Fig. 7 on the right.
Increasing the ratio also decreases the anharmonicity which is crucial for the
different energy levels to be distinguishable and for the transmon to be usable
as a qubit. Luckily for the transmon the anharmonicity decreases slower than
the susceptibility to the noise in ng, so that there exists a sweet spot where the
reduction to susceptibility to noise is significant but the transmon is still operable
as a qubit. Together these lead to significant improvement on the dephasing
time when compared to the Cooper pair box qubit. The transmon uses two
Josephson junctions in parallel instead of just one. Two Josephson junctions in
parallel is called a SQUID (superconducting quantum interference device) and
it enables the Josephson energy EJ to be controlled by an external magnetic
flux. The Hamiltonian for a single transmon is the same as in Eq. (4.2), but
where EC and EJ have been changed as mentioned before. But the form of the
transmon Hamiltonian that we need is

Ĥ =
(

√

8EJEC − EC

)

n̂ − EC

2
n̂ (n̂ − 1) ≡ ~ωn̂ − ~U

2
n̂ (n̂ − 1) , (4.3)

29









5 Heterodyne Detection of a System of Transmons

For transmons to be useful they need to be controllable and measurable. This
chapter introduces the superconducting cavity [5] and its role in the control and
measurement of the transmons. Some examples on how to use microwave pulses
to control [17] the state of qubits are presented, followed by an introduction
to phase-preserving amplification [5, 18], necessary for realizing continuous
measurements. Finally this chapter provides a realistic stochastic master equation
[19] for the heterodyne detection of transmons. Four transmons together with
the required architecture to measure and control them is depicted in Fig. 10.

5.1 Superconducting Cavity

A stripline of superconducting material can support several different modes of
the electromagnetic field, similarly to an optical cavity. This type of a strip is
therefore referred to as a superconducting cavity. When the strip is made longer,
the superconducting line effectively supports a continuum of traveling waves.
These type of lines are called transmission lines. The transmission line can be
coupled capacitively to the cavity, enabling signals to be sent into the cavity and
the measurement of signals coming from the cavity. The transmission line cavity
setup is analogous to an optical cavity coupled to the outside world. A qubit
can be coupled to the cavity by simply inserting it inside the cavity. A coplanar
wave-guide is depicted in Fig. 11 which realizes the superconducting cavity. [5]

The dynamics of a qubit interacting with a single mode of the superconducting
cavity is described by the Jaynes-Cummings Hamiltonian

ĤJC = ~ω

(

â†â +
1

2

)

+ ~
Ω

2
σ̂z + ~g

(

â†σ̂− + âσ̂+
)

, (5.1)

where the first term describes the superconducting cavity, the second term
describes the qubit and the last term describes the interaction between the
qubit and the cavity with σ̂− and σ̂+ being the lowering and rising operators of
the qubit. Coupling of the qubit to other modes of the superconducting cavity
causes decay of the excited qubit state. The cavity couples to the transmission
lines which causes decay of the cavity. These can be modelled with additional
terms in the Hamiltonian Eq. (5.1), but they have been omitted here. When
there is a large detuning between the cavity resonance frequency ω and the
qubit transition frequency Ω compared to the coupling g i.e. ∆ = Ω − ω � g,
the cavity qubit system is said to be in the dispersive regime. In the dispersive
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regime the Jaynes-Cummings Hamiltonian can be approximated as

ĤJC ≈ ~

(

ω +
g2

∆
σ̂z

)

â†â +
~

2

(

Ω +
g2

∆

)

σ̂z. (5.2)

The important part here is in the first parenthesis. We see that the state of
the qubit changes the cavity transition frequency by ±g2/∆. This enables the
measurement of the qubit state by probing the cavity with microwave pulses.
Additionally in Eq. (5.2) we see that the qubit transition frequency is Lamb
shifted by g2/∆. [20]

Figure 11: The coplanar wave guide consists of a superconducting stripline
between the ground planes forming the cavity [21]. On the left and the right
you can see short segments of the input and the output transmission lines, and
between them is the cavity together with a Cooper pair box qubit, capacitively
coupled to the cavity. The picture is taken from [20].

5.2 Controlling a Transmon Qubit

For realizing quantum computation, quantum gates are needed. Quantum gates
change the state of qubits, and can be described as unitary operators. Quantum
gates can operate on any number of qubits. Quantum gates that operate on
one qubit can be represented as rotation around the Bloch sphere. An example
of a multi-qubit gate is the controlled NOT (CNOT) gate which switches the
state of a target qubit based on the state of a control qubit. It turns out that
any unitary operation on any number of qubits can be realized by using only
single qubit gates together with CNOT gates. This set of gates is said to be
universal, meaning that any quantum computation can be realized just by using
these gates. Note that there exists other sets that are universal, and not every
kind of a single qubit gate is needed for universality. [22]

34



Quantum gates can be realized by coupling a qubit to a superconducting cavity
and by using transmission lines to drive the cavity. By driving the cavity with
specific microwave pulses the qubit can be rotated around any axis of the Bloch
sphere, realizing a single qubit quantum gate. The driven cavity qubit system
is described by the Jaynes-Cummings Hamiltonian Eq. (5.1) with an additional
ĤD term describing the drive. In the dispersive regime (∆ = Ω − ω � g) and
when the cavity is driven near the qubit transition frequency, the Hamiltonian is
effectively given by

Ĥ ≈ ∆ωâ†â +
∆Ω

2
σ̂z +

ΩR

2
σ̂x, (5.3)

where ∆ω = ω − ωd is the detuning of the cavity and the drive frequency ωd,
∆Ω = Ω + g2/∆ − ωd is the detuning between the Lamb shifted qubit and the
drive and ΩR is the Rabi frequency. We see that by choosing ∆Ω = 0 we get
rotation around the x-axis, realizing what is called a bit-flip gate. By controlling
∆Ω, ΩR and the phase of the drive, rotation around any axis on the Bloch sphere
can be achieved, realizing any single qubit gate.

A gate known as the
√

iSWAP gate is known to be universal together with
single qubit gates. This gate can be realized by simply inserting two qubits inside
the same superconducting cavity and greatly detuning them from the cavity.
In this situation the qubits do not effectively couple to the cavity, but interact
through it with one another producing a term that realizes the

√
iSWAP gate,

when the qubits are allowed to interact for a certain period. To achieve this we
need to be able to turn on and off the gate at will. This can be achieved by
controlling the tuning between the qubits. Tuning the qubits off-resonance with
one another turns off the interaction. The interaction can be turned back on by
tuning the qubits to be on-resonance. One way to tune the transition frequency
of transmons qubits is with flux bias lines. [17]

5.3 Phase-Preserving Linear Amplifier

A measurement produces a classical number that describes the value of the
measured observable. For the measurement to be sensible the uncertainty of
the measurement result has to be as minimal as possible. To achieve this, real
measurements require amplification of the measurement signal so that the signal
being measured can be reliably recorded over background noise. It is crucial
for the amplifiers to introduce as little noise as possible. Measurement of noisy
signals is inefficient, meaning that some of the information in the signal is lost
among the noise. So to achieve efficient measurement amplifiers that add as
little as noise as possible are required. Continuous measurement is analogous to
an amplification process that produces a classical signal. [5]
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The signal we want to amplify is carried by a single-mode field [23]

Ŝ(t) =
1

2

(

âe−iωt + â†e−iωt
)

=
1√
2

(

Î cos ωt + Q̂ sin ωt
)

, (5.4)

where Î and Q̂ are the amplitude and the phase quadrature of the mode, with

the relation â = 1/
√

2
(

Î + iQ̂
)

. There are two types of linear amplifiers [24].

Phase-preserving linear amplifiers amplify both of the quadratures but the noise
they add is quantum limited, meaning that phase-preserving linear amplifiers
always add some noise to the output signal. Phase-sensitive linear amplifiers
amplify one of the quadratures while weakening the other. These type of
amplifiers do not need to add any noise [18] by producing a squeezed state,
where the noise in one quadrature is reduced at the expense of more noise in
the other. Since in heterodyne measurement we are interested in both of the
quadratures, phase-preserving linear amplifiers are preferred.

In a simple picture, a phase-preserving linear amplifier takes in an input mode
described by the operator âin and produces an output mode âout. The relation
between these two is given by

âout =
√

Gâin + N̂ , (5.5)

where G is the gain of the amplifier and the operator N̂ describes the noise
added by the amplifier. The operator N̂ is necessary so that the commutation
relations of the output mode are preserved. It can be shown that the noise
added by the amplifier has a minimum. In the high gain limit this is given by

(∆âout)
2

G
≥ (∆âin)2 +

1

2
, (5.6)

where (∆âin)2 is the noise in the input signal and (∆âout)
2 is the noise in the

output signal. Eq. (5.6) says that in the high gain limit a phase-preserving
linear amplifier is forced to add noise to the signal, which is equal to there
being an extra half a quantum of noise in the input signal. In more detail, a
phase-preserving linear amplifier achieves amplification by taking advantage of
an extra mode. This extra mode is referred to as the idler mode, and it is the
source of the extra noise in the amplification. The quantum limit Eq. (5.6)
originates from the zero-point fluctuations of the idler mode. [18]

A phase-preserving linear amplifier can be realized with a Josephson parametric
converter [24]. Simplified, it consists of four Josephson junctions placed in a
ring, some capacitors and two resonators (resonator A and resonator B). The
resonator A couples to the signal mode and the resonator B couples to the idler
mode. Additionally a pump mode is required which provides the energy required
for the amplification. When the pump mode is driven at the frequency that is the
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sum of the signal mode and the idler mode the Josephson parametric converter
functions as a phase-preserving linear amplifier. Additionally when the resonator
A is in resonance with the signal mode and when the resonator B is in resonance
with the idler mode, and in the limit of a wide amplification bandwidth, the
input-output relations for the signal and the idler mode are essentially given by

âsi, out =
√

Gâsi, in +
√

G − 1â†
id, in, (5.7)

âid, out =
√

Gâid, in +
√

G − 1â†
si, in. (5.8)

The Josephson parametric converter as an amplifier is capable of achieving power
gain of at least 40 dB and the upper bound on the noise added by the amplifier
is three times the quantum limit. [19, 24]

5.4 Heterodyne Detection of Transmons

We now have all the tools required for a realistic continuous measurement of
transmons. The measurement of a transmon has been achieved in practise in
Ref. [25], but here the discussion follows Ref. [19]. The transmons that we
want to measure are dispersively coupled to separate superconducting cavities.
The cavities are driven through their input ports. The state of the cavities
develop to a coherent state whose properties are dependant on the state of the
transmon, enabled by the dispersive coupling. The different coherent states
can be differentiated by their Î and Q̂ quadrature values. The cavities are
connected through their output ports with transmission lines to amplifiers. The
Î and Q̂ quadrature of the signal leaving the amplifier are then detectable,
realizing heterodyne measurement. The stochastic master equation describing
the heterodyne detection of transmons is given by

dρ̂ = − i

~

[

ĤBH, ρ̂
]

+
∑

i

Γi

2
D
[

σ̂i
]

ρ̂dt

+

√
Γi

2
H
[

σ̂i
]

ρ̂dW i
I +

√
Γi

2
H
[

iσ̂i
]

ρ̂dW i
Q, (5.9)

where Γi is the measurement rate for the i-th transmon, σ̂i is the measurement
operator and dW i

I and dW i
Q are the Wiener increments for the measurement

of the Î and Q̂ quadrature. In the high gain limit the amplification process
followed by the heterodyne detection of the signal is analogous to a 50-50 beam
splitter followed by phase-sensitive amplification and detection of both of the
output modes of the beam splitter, resulting in two different noise processes. In
a numerical problem the number of elements in the density matrix ρ̂ is given by
d = (sn)2, where s is the dimensions of a single transmon and n is the number
of transmons. In numerics the transmon can not have infinite basis states so the
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state space of the transmon has to be cut, defining the value of s. The size of
the density matrix ρ̂ quickly grows as more transmons are introduced, causing
the numerical problem to require more memory and in general become slower to
solve. To achieve larger systems we can use the stochastic Schrödinger equation
version of Eq. (5.9), which is given by

d |Ψ〉 = − i

~
ĤBH |Ψ〉 − Γ

4
σ̂2 |Ψ〉 dt +

Γ

4
〈σ̂〉 σ̂ |Ψ〉 dt − Γ

8
〈σ̂〉2 |Ψ〉 dt

+

√
Γ

2
(σ̂ − 〈σ̂〉) |Ψ〉 dWI −

√
Γ

2
iσ̂ |Ψ〉 dWQ, (5.10)

where only one transmon is being measured. The number of elements required
to represent the state vector is

√
d = sn. The connection between the stochastic

master equation and the stochastic Schrödinger equation is [8]

dρ̂ = (d |Ψ〉) 〈Ψ| + |Ψ〉 (d 〈Ψ|) + (d |Ψ〉) (d 〈Ψ|) , (5.11)

where the last term does not vanish since in Itō calculus we have that (dWI)2 =
(dWQ)2 = dt. In the following chapters both of these equations will be solved
and studied numerically.
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6 Simulating Continuous Measurement With Julia

This chapter introduces the programming language Julia, and explains how it can
be used together with the differential equations package to solve the continuous
measurement equations. Solving stochastic differential equations numerically
with the differential equations package is demonstrated with examples. These
examples focus on stochastic differential equations with jumps and equations with
Wiener noise. Optimizing performance in Julia is shortly introduced, followed by
the chapters presenting the most relevant parts of the code that was used to
solve the quantum mechanics specific stochastic differential equation problems.

6.1 Julia as a Programming Language

One of the design principles of Julia [26] was to create a language that combines
some of the best features of various different programming languages, to achieve
code that is easy to write and very fast [27]. Julia is not an object-oriented
language, and writing code in Julia feels similar to writing code in Python.
Similar to Python, Julia is a dynamic language, meaning that defining the type
of the variables is not necessary, unlike in languages like C. Julia takes advantage
of multiple dispatch, so that in Julia it is possible to define the same function to
do different tasks depending on the arguments of the function. Julia uses this
to achieve type-specific code. Another key functionality of Julia is that Julia
requires the code to be compiled to machine code before running. Languages
like C and C++ are similar to Julia in this aspect. Julia achieves performance
that rivals C by translating a given function to several different type-specific
methods, which are then compiled and ran [28]. The performance of Julia has
been compared to other programming languages in Fig. 12.
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In the stochastic part, the dN is the increment of the counting process N(t),
which was used in Chapter 3.1. In the differential equations package these type
of problems are known as jump problems. To solve this, we need to write a
function in code that describes f , write a function that describes the effect of g
and define the rate of the events. For a more concrete example, consider that

x(0) = 1, f = x, g = −1

2
x, λ = t, (6.2)

so that x(t) is an exponentially rising function except when it is interrupted by
jumps which then halve the value of it. The rate of events λ increases linearly
with time so that eventually the value of x starts to approach zero, since the
rate of events is so high. The function f can be defined in Julia as

function f(dx, x, p, t)

dx[1] = x[1]

end

Notice here that due to syntax, the x in the code is expected to be a vector
even though for us it is a real number, thus requiring the square brackets. Here
p is a parameters argument that can be used to store all the relevant parameters
that are needed for the differential equations, but here it is required only for
syntax reasons. The effect of the function g can be defined as

function affect!(integrator)

integrator.u.u[1] *= 0.5

end

Here the integrator.u.u is the same as x in the previous function. The rate
can be defined similarly as

function rate(x, p, t)

return t

end

Note that since these functions in code are simple, they could be written on
one-line, e.g. rate(x, p, t) = t. In Julia by default functions return the
value on the last line, so the return keyword is not necessary, but it has been
written here for clarity. Now that the functions defined, we need to define the
problem accordingly to the syntax of the differential equations package.
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where f and gi are again arbitrary functions, and where we have an unspecified
number of Wiener noise processes dWi, as in Chapter 3.2. Solving this numerically
is similar to solving the jump problem. We again define a function in the code
that contains the deterministic part and another function that contains the
stochastic part. The main difference here is just the syntax that we need to use.
Let us define

x(0) = 10, dx = −xdt +
1

1 + |x|dW1 − 1

1 + |x|dW2, (6.4)

so that x seems to be constantly damping, until reaching small enough values
where the noise terms start to be notable. Defining the deterministic part in
code is only trivially different to the jump problem. The function that determines
the stochastic part is defined in code as

function g(dx, x, p ,t)

dx[1,1] = 1/(1 + abs(x[1]))

dx[1,2] = -1/(1 + abs(x[1]))

end

where in dx[i,j] the i refers to the element of the vector which we are solving
and j refers to the noise process. Once these are defined, defining the rest of
the problem is easy

x_0 = [10.0]

tspan = (0.0, 10.0)

problem = SDEProblem(f, g, x_0, tspan,

noise_rate_prototype=zeros(1,2))

solution = solve(problem, Tsit5())

where there is one notable difference with the previous case, due to the use of
noise_rate_prototype=zeros(i,j), which is used so that the increment dx

in function g has the proper shape. In the noise_rate_prototype the index i

is the dimensions of the vector we are solving and the index j is the number of
different noise processes. Since the noise prototype requires the dimensions of a
vector it is not obvious how one might use this to solve matrices. This will be
discussed in more detail in Chapter 6.4.3. The solution to Eq. (6.4) is plotted in
Fig. 14.
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fixed by default. To store the time evolution at fixed time steps a saveat=dt

parameter can be included in the ODEProblem or SDEProblem definition. I found
it easiest to convert from the solution returned by the differential equations
package to a simple array, which contains only the time evolution of the system,
without the extra functionality found in the solution of the differential package.
This conversion is somewhat unnecessary, since all the information is already
contained in the solution, but I found this to be more intuitive to work with.
For ensemble solutions the solve function will return an array of solutions.
Since in quantum mechanics we are dealing with observables, we need to be
able to calculate these from the numerically solved time evolution. This can be
written conveniently as

result = [CalcObservable(psi, Args...) for psi in solution]

where the solution is an array containing the time evolution of the system.
Ensemble solutions cannot be handled on a single line. In Julia functions can be
passes as arguments to functions. To do this, in the function declaration the
type of the argument needs to specified as a function. Here is an example for
the syntax, and an idea for handling ensemble solutions

function CalculateMean(ensembleSolution,

CalcObservable::Function)

#Calculate the mean over trajectories

end

The differential equations package provides several different solver algorithms.
These have been compared in Fig. 15. There seems to be two different groups
of solutions, but the reason for this or which group is the "correct" group was
not found, thus the plots of this thesis should not be taken as exact results. The
algorithm that was used for the plots of this thesis was the SRA1 algorithm.
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the functions and operations to "vectorized" versions of them, and the other
trick was to use pre-allocated vectors and matrices. The "dot syntax" allows
Julia to combine computation to loops, which allows Julia to do the calculations
without unnecessary allocation. The "dot syntax" changes the function and
operations to perform element-wise. Here is an example on the "dot syntax":

result = s * v + s * m * v #Without dot syntax

result .= s . v .+ s .* m * v

where s is a scalar, v is a vector and m is a matrix. The second line on the
example above is the preferred way to write that type of calculations. Notice that
since the "dot syntax" changes the operations to be element-wise it cannot be
used in matrix-vector or matrix-matrix multiplication. The "dot syntax" can also
be used to do element-wise operations with functions, by writing f.(args...).
Note that the second line requires result to be defined before the calculation,
so that result needs to be pre-allocated. Pre-allocation means that memory,
that we know will be used in calculations, is reserved beforehand so that Julia
does not need to do unnecessary temporary allocations, and due to this possibly
unnecessary garbage collection. Here is an example on using pre-allocated
matrices.

result = m1 * m2 #Without pre-allocations

result = zeros(2, 2) #Pre-allocating the matrix

mul!(result, m1, m2) #Calculating m1 * m2

Here m1 and m2 are some 2x2 matrices and mul! is a function that calculates
the product of the two matrices and stores it in the matrix result. I found
changing the matrix and vector products to pre-allocated versions of them with
the mul! function had notable performance improvements.

The @code_warntype macro is used to make sure that functions do not have
type instability. The compiler in Julia uses the types of the variables to generate
machine code, so if there is ambiguity in the types of the variables, Julia will
not be able to compile the code to machine code that is as efficient as it could
be, i.e. type ambiguity leads to performance loss. The @code_warntype macro
declares type instability with a red highlight in its output. The type instability
issues are case dependant, the ones that I ran into were fixed by defining the
types of the function arguments.
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6.4 Numerically Solving the Continuous Measurement Problems

This chapter will provide the relevant parts of the code that was used to solve
the continuous measurement problems. Before introducing the code, how to
handle the parameters of the calculations is discussed. This chapter will conclude
with a look on the performance of the code.

6.4.1 Handling All the Parameters

These numerical problems are dependant on several parameters. For example
we have the number of transmons and the dimensions of one transmon or the
dimension cut, since in practise we cannot have infinite matrices or vectors.
We have the time span for which we are solving the time evolution. Then
there are the parameters for the Hamiltonian, such as the coupling strength or
anharmonicity. Dealing with all of them can be tedious. The parameters can be
divided in to two groups: the ones that are necessary to define the problem and
the ones that are necessary for the calculations. So for example we need to define
the transmon transition frequency etc. to be able to define the Hamiltonian,
but for the calculations we only need the Hamiltonian. The user should only be
required to provide the parameters that are required to define the problem, and
the parameters that are required for the calculations should be constructed from
them. I found structs to be a good way to handle the parameters. Structs allow
you to store different variables, but before the struct stores the variables it can
process them, so that you can provide it with all the parameters required for the
definition, and from them it will construct and store everything that is necessary
for the calculations. There are also other benefits to using a struct. Using a
parameters struct makes it easy to save the parameters in a file for note keeping,
since all of the parameters are stored in one place. Julia’s multiple dispatch can
also be utilized to define alternative versions of functions that take the struct as
an argument instead of the have parameters. This is convienient when writing
the code, and when there are functions that depend on many parameters. Lastly,
since we want to use pre-allocated matrices and vectors we need to store them
somewhere to have access to them. In Julia, mutable structs can be used to
store values that need to be change.

6.4.2 Numerically Solving Quantum Jumps

Let us take a look back at the photon detection of a two level atom, which was
handled in example 3.1.1. For convenience the stochastic master equation is

48



repeated here

dρ̂ = − i

~
[Ĥa, ρ̂]dt − Γ

2
H
[

σ̂†σ̂
]

ρ̂dt + J [σ̂] ρ̂dN. (3.23)

The rate of the jumps was given by
〈

Ω̂†Ω̂
〉

= Γ
〈

σ̂†σ̂
〉

. (3.22)

For a two level atom we know that after detecting a photon the atom has to be
in its ground state. In code, these functions can be defined as

function f(drho, rho, p, t)

dp .= (-1im * com(p.H, rho)

- p.G / 2 * MSO(p.o' * p.o, rho))

end

rate(rho, p, t) = p.G * expVal(rho, p.o' * p.o)

affect!(integrator) = (integrator.u.u .=

[0.0im 0.0; 0.0 1.0])

where p denotes the struct containing the parameters needed for the calculation,
with p.G = Γ and p.o = σ̂. The functions com, MSO and expVal calculate the
commutator, apply the measurement superoperator H and calculate the expec-
tation value respectively. The rest of the code is the same as in Chapter 6.2.1,
with the difference that the parameters struct p is passed as an argument in the
ODEProblem constructor after the time span. Note that in the code p.o is not
used by itself, it is only used in the matrix m = o’ * o, so it would have been
a good idea to calculate and define the matrix m before hand in the struct and
use it instead.

6.4.3 Numerically Solving Homodyne Detection

The stochastic differential equation that we are going to solve follows from
Eq. (3.45), and is given by

dρ̂ = − i

~

[

Ĥ, ρ̂
]

dt +
n
∑

j=1

ΓD [σ̂j ] ρ̂dt +
√

ΓH
[

σ̂jeiφ
]

ρ̂dWj , (6.5)

where there are n different measurement operators. Here it is assumed that all
the measurements have the same measurement rate Γ and phase φ. To account
for multiple Wiener processes in the code we need to define
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noise_rate_prototype = zeros(2 * d, n)

where d is the number of elements in the density operator. Due to the form of the
noise_rate_prototype we need to be able to transform the density operator
which is a complex matrix to an array of real numbers. Due to this transformation
the number 2 appears in the definition of the noise_rate_prototype. The
functions that I used to do these transformations are given here

#complex matrix -> real vector

function cmrv(m::Array{Complex{Float64},2})

cvrv(vec(m))

end

#real vector -> complex matrix

function rvcm(v::Array{Float64,1}, dim::Int64)

reshape(rvcv(v), dim, dim)

end

#complex vector -> real vector

function cvrv(v::Array{Complex{Float64},1})

vcat(real(v),imag(v))

end

#real vector -> complex vector

function rvcv(v::Array{Float64,1})

a = @view v[1:end÷2]

b = @view v[(end÷2+1):end]

a + 1im*b

end

These can be used to switch from complex matrices or complex vectors to an
array of real numbers. With these tools and with the optimizing tricks in mind,
we can write the code equivalent to Eq. (6.5). These are

function HomodyneDetection_f(drho, rho, p, t)

#p.mPA[4] = rho, as a matrix

p.mPA[4] .= rvcm(rho, p.dim)

#Calculating [H, rho] with pre-allocated matrices

p.mPA[5] .= -1im * com(p.H, p.mPA[4],

p.mPA[1], p.mPA[2])

for o in p.meas

#Applying the Lindblad superoperator

p.mPA[5] .+= p.sp.G * LSO(o, p.mPA[4],

p.mPA[1], p.mPA[2], p.mPA[3])
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end

#The increment is stored as an array of real numbers

drho .= cmrv(p.mPA[5])

end

function HomodyneDetection_g(drho, rho, p, t)

p.mPA[4] .= rvcm(rho, p.dim)

#Looping over the measurement processes

for (i,o) in enumerate(p.meas)

p.mPA[1] .= sqrt(p.sp.G) * MSO(o*exp(1im * p.phi),

p.mPA[4], p.mPA[2], p.mPA[3])

p.vPA .= cmrv(p.mPA[1])

for j in 1:(2*p.dim)

#Storing the stochastic part for

#the i-th Wiener process

drho[j,i] = p.vPA[j]

end

end

end

Here p.mPA is an array of pre-allocated matrices and similarly p.vPA is a
pre-allocated vector. The function LSO applies the Lindblad superoperator.
The pre-allocated matrix p.mPA[4] is used to store the density operator after
transforming it back to a complex matrix. Pre-allocated versions of the functions
LSO and MSO are used, hence the use of p.mPA[1], p.mPA[2] and p.mPA[3].
The resulting increment of the density operator is stored in p.mPA[5] which is
then transformed to a real array for the output. With these solving Eq. (6.5)
numerically follows the example in Chapter 6.2.2 closely.

6.4.4 Numerically Solving Heterodyne Detection

The equation that we are solving is

dρ̂ = − i

~

[

Ĥ, ρ̂
]

dt +
n
∑

j

ΓD [σ̂j ] ρ̂dt +
√

ΓH
[

σ̂jeit∆
]

ρ̂dWj , (6.6)

which follows from Eq. (3.70) similarly to Eq. (6.5) which was for homodyne
measurement. The only difference is that the phase in the exponent is time
dependant. Solving heterodyne detection numerically is exactly the same as for
homodyne detection, with the exception that the time dependency has to be
inserted in the function that handles the stochastic evolution. For handling the
equations for transmons, where there are two noise processes for one measurement
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operator, the dimensions of the noise_rate_prototype has to be changed so
that the part dependant of the number of measurement operators is doubled.
The function that I used for the stochastic part for transmons is

function TransmonsHeterodyneDetection_g(drho, rho, p, t)

p.mPA[4] .= rvcm(rho, p.dim)

for (i,o) in enumerate(p.meas)

p.mPA[1] .= 0.5 * sqrt(p.G) * MSO(o, p.mPA[4],

p.mPA[2], p.mPA[3])

p.vPA .= cmrv(p.mPA[1])

for j in 1:(2 * p.dim)

drho[j, 2*i - 1] = p.vPA[j]

end

p.mPA[1] .= 0.5 * sqrt(p.G) * MSO(1im*o, p.mPA[4],

p.mPA[2], p.mPA[3])

p.vPA .= cmrv(p.mPA[1])

for j in 1:(2 * p.dim)

drho[j, 2*i] = p.vPA[j]

end

end

end

Here the two noise processes are handled in their own loops. Writing the code
for the deterministic part is similar as it was for homodyne detection. For the
stochastic Schrödinger equation (5.10), writing the code should not require any
extra tricks that have not already been introduced, except that the stochastic
Schrödinger equation does not conserve the norm so that the state vector has to
be normalized in every time step. I did this by normalizing the state vector in the
deterministic part, before using it to calculate the increment. It is possible that
the differential equations package offers a better way to do this, but normalizing
the state vector this way was sufficient.

6.4.5 Performance of the Numerical Solutions

To get a general picture on the size of the systems that are solvable with this
code, we study the time it took to solve a single trajectory as a function of the
size of the system. Fig. 16 depicts the solving time of the stochastic master
equation Eq. (5.9), for different number of transmons nT and for different single
site dimensions d. For comparison, the same has been plotted for the stochastic
Schrödinger equation Eq. (5.10) in Fig. 17. For these plots the calculation time
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7 Example Observables for Continuously Measured

Transmons

This chapter demonstrates some results obtained from solving the time evolution
for five transmons, where the boson number of the transmon in the center is
being continuously measured. The equation solved numerically is

d |Ψ〉 = − i

~
ĤBH |Ψ〉 − Γ

4
n̂2

3 |Ψ〉 dt +
Γ

4
〈n̂3〉 n̂3 |Ψ〉 dt − Γ

8
〈n̂3〉2 |Ψ〉 dt

+

√
Γ

2
(n̂3 − 〈n̂3〉) |Ψ〉 dWI −

√
Γ

2
in̂3 |Ψ〉 dWQ, , (7.1)

which follows from Eq. (5.10). The Bose-Hubbard Hamiltonian Eq (4.4)

ĤBH/~ =
5
∑

i=1

ωin̂i − U

2

5
∑

i=1

n̂i (n̂i − 1) + J
4
∑

i=1

(

â†
i âi+1 + â†

i+1âi

)

. (7.2)

describes the five transmons. The measurement operator is the boson number
of the third site

n̂3 = I ⊗ I ⊗ n̂ ⊗ I ⊗ I, (7.3)

where n̂ is the number operator. The initial state was chosen to be

|Ψ(0)〉 = |10101〉 . (7.4)

In the following chapters various observables have been plotted for the transmons
that are described by Eq. (7.1). The observables have been plotted for different
values of the measurement rate Γ. Single trajectories are shown together with
the averaged result over one hundred trajectories. The parameters used in the
calculations can be found in Table. 1.

We study two cases: identical transmons and disordered transmons [32]. The
latter means that each transmon has its own transition frequency ωi. The
same quantities mentioned above have been calculated again for transmons with
disorder. The distribution of the disorder is assumed to be uniform, meaning
that the transition frequency of the i-th transmon is drawn from the interval
ωi = [−W, W ] where W is the disorder amplitude. A specific set of ωi is referred
to as a realization of the disorder. For the plots with disorder, ten realizations
were calculated with ten trajectories for every realization. For calculating the
observable, first the ten trajectories for each realization were averaged to get
an averaged density matrix, after this the observable was calculated, and the
resulting values were averaged to end up with an average observable value over
the realizations. In the plots without disorder, the average and the standard
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deviation have been calculated over the trajectories. In the plots with disorder,
the average and the standard deviation have been calculated over the realizations.

ω/2π 1 MHz t/J−1 5

U/2π 250 MHz dt/J−1 0.01

J/2π 1 MHz abstol 10−3

nT 5 reltol 10−3

dT 3

σ̂ n̂3 W/J 8 Mhz

|Ψ(0)〉 |10101〉 Ud/J 3.5 Mhz

Table 1: The parameters used for the results of this chapter. For the calculations
five transmons where chosen, where each transmon has three possible states,
hence dT = 3. The abstol and reltol are parameters for the differential
equation solver, which affect the accuracy of the solution. Anharmonicity of
Ud/J = 3.5 was used for the results with disorder W/J = 8. Other than these,
the parameters are same for the results with and without disorder.

7.1 Boson Number of the Observed Site

Here the boson number of the site being measured has been plotted as a function
of time. Single trajectories for different measurement rates are shown in Fig. 18a
and in Fig. 19a, without and with disorder respectively. One hundred trajectories
were calculated, and the average result together with the standard deviation is
shown in Fig. 18b. The same has been plotted in Fig. 19b, but for ten trajectories
per ten disorder realizations.

From Fig. 18a we see that when there is no measurement the excitations travel
between the transmons, so that there is oscillation in the boson number 〈n̂3〉.
For Γ/J = 1 we can still see the oscillations, so that the measurement is weak
and does not cause very significant back action on the system. For Γ/J = 15
the boson number is most of the time either at zero or at one, showing how the
measurement dynamics dominate the time evolution. Since we are measuring
the boson number, the strong measurement collapses the boson number to its
eigenstates which can be seen in the boson number getting "stuck" at zero
or one. In Fig. 18b we see that the oscillations remain for Γ/J = 0 and for
Γ/J = 1. For Γ/J = 15 the boson number is on average around half bosons.
This happens since the times at which the boson number is either at zero or
one, as seen in Fig. 18a, do not happen at specific times. This is then seen as a
average boson number of half, together with a large standard deviation.

For the plots with disorder, we see from Fig. 19a for Γ/J = 0 that the disorder
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how much the norm and the trace varied. They were chosen so that the general
nature of the time evolution can be seen, without the calculation becoming too
time consuming. Since the results here are only meant to be indicative, the
tolerances do not need to be strict. Additionally, the boson number should be
conserved for Eq. (7.1) and indeed it does, with similar volatility as the norm.

For these calculations I found one hundred trajectories to be sufficient to get a
general picture of the time evolution, while being sufficiently fast to calculate.
For the results with disorder, ten realizations with ten trajectories is not much. It
would be interesting to investigate how the results change with more realizations,
but since for every realization there has to be a set number of trajectories, the
calculation becomes very slow very quickly.

The cut of the single transmon dimension was chosen to be dT = 3, allowing
states |0〉, |1〉 and |2〉 for a transmon. The truncation was needed, since
otherwise the calculation would have taken too much time. Since the initial
state is |Ψ(0)〉 = |10101〉 in total we have three bosons, so that the state |3〉 is
possible for a single transmon. Due to this the cut does affect the evolution,
since it removes otherwise possible states from the basis. But, as we see from
Fig. 18b and Fig. 20b, the boson number does not significantly go above one,
so the cut should not have a major effect on the time evolution.

For single trajectories, decreasing the time step does not seem to change the
overall picture. Nevertheless, since the calculation becomes heavy when the time
step is decreased, the effect of changing the time step on the average results
was not investigated.

Lastly, there is the question on the validity of the solver algorithm, as in
Chapter 6.2.4. Since it was not found that if the solver algorithm for stochastic
differential equations used is somehow not suitable for these calculations, then the
results here can be quite unreliable. Definitely for more accurate results, which
go beyond this thesis, the solver accuracy should be thoroughly investigated, and
even for the results here, the correctness of the solver should have been figured
out.
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8 Conclusions

The basics of measurement theory were introduced to provide basis for studying
continuous measurement. The stochastic master equations for quantum jumps,
homodyne and heterodyne detection were derived in the context of optical
quantum mechanics, and the behaviour of these equations were demonstrated
graphically and conceptually. To bridge the gap to superconducting circuits,
superconductivity and the transmon device were introduced, followed by the
Bose-Hubbard model to understand how an array of transmons can be modeled.
What in practise is required on a superconducting circuit to measure transmons
was explained, by introducing the superconducting cavity as a key to probe
and control the transmons. Finally, the stochastic master equation, and the
stochastic Schrödinger equation, for the heterodyne measurement of transmons
was introduced, concluding the theory of this thesis.

The theory was tested numerically by solving the equations modeling the contin-
uous measurement of a transmon array with the differential equations package
found in Julia. The capabilities of Julia for numerically solving continuous
measurement problems were investigated, with the conclusion that Julia is an
efficient language, and when paired with the differential equations package
provides an easy way to solve various stochastic differential equations. The
performance of the written numerical program was tested, with the results
suggesting that the numerical solving of the stochastic Schrödinger equation
could be further optimized. Some observables were calculated and shown, to
further demonstrate the capabilities of the code written to solve the stochastic
Schrödinger equation relating to the heterodyne measurement of transmons.
With a personal computer, one hundred trajectories for five transmons with a
dimension cut of dT = 3 are easily calculable.

There are several ways to expand this thesis. Since the details of the derivation
of the transmon specific stochastic differential equations were left out, to further
developed understanding of continuous measurement with superconducting
circuits these details could be investigated. The numerical program works,
but better optimization is possible. Significant speed up could be achieved by
reducing the size of the matrices and vectors used in the calculations. This could
be done by using sparse matrices. Another approach is to change the program to
work in a reduced basis where there are only states with equal number of boson,
since for the stochastic Schrödinger equation used here the boson number is
conserved. This would enable the study of larger systems, and the use of more
trajectories and realizations. The results could be further analyzed, and the
program could be used to further study the details of the observables studied in
the previous chapter. Nevertheless, the absolute first step should be to figure
out which solver should be used for these types of calculations.
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