

Evaluating Ethereum Development Environments

University of Oulu

Information Processing Science

Master’s Thesis

Samu Honkamäki

6.6.2022

2

Abstract

Blockchain technology has been one of the hottest buzzwords in the early 2020s and one

of the main reasons for that is the interest towards decentralized applications, which use

the smart contracts located in the blockchain to serve the application’s business logic.

Ethereum is the biggest platform for decentralized applications, and this study focuses on

exploring what kind of support developers need for developing Ethereum based products.

This is done by first examining the state of the art by conducting a semi-systematic

literature review, followed by using a customized DESMET evaluation method, in which

the requirements are mapped as features along with the evaluation criteria, to see how

well the currently popular Ethereum development environments provide support for the

developers. A total of three development environments by the names of Hardhat, Truffle,

and Brownie are evaluated, and the achieved results are analysed to find the differences

in the level of support they offer for the developers. At the end the findings of the study

are summarized, the experiences from the customized DESMET evaluation method are

reported, the validity towards the achieved results are inspected, and the possible

directions to continue the work is discussed.

Keywords
Development environment, Ethereum, Smart contract, Smart contract development,

Decentralized application, Decentralized application development

Supervisor
University teacher Jouni Lappalainen

3

Contents

Abstract ... 2

Contents .. 3
1. Introduction .. 5

1.1 Research problem .. 6
1.2 Research questions ... 6
1.3 Research methods .. 7

1.4 Literature .. 7
1.5 Boundaries ... 8
1.6 Overview of the results .. 8

2. Ethereum blockchain .. 9

2.1 Ethereum virtual machine .. 10
2.2 Ethereum accounts and wallet ... 11
2.3 Gas .. 11
2.4 Decentralized applications ... 12

2.5 Smart contracts .. 12
3. Smart contract development ... 14

3.1 Challenges of smart contract development .. 15

3.2 Development tools and practices ... 17
3.2.1 Analysis tools ... 17
3.2.2 Readability .. 18

3.2.3 Code reuse .. 19
4. Research methods ... 20

4.1 Literature review .. 20
4.2 DESMET ... 25

4.2.1 DESMET evaluation .. 25
4.2.2 Evaluation methods .. 26

4.2.3 Limitations .. 27
4.2.4 Selecting the evaluation method ... 27
4.2.5 Practical issues and the evaluation method selection 29

5. Feature analysis .. 31

5.1 Screening mode .. 31
5.2 How feature set is created .. 32
5.3 Characteristics of a high-quality product ... 32
5.4 Feature set .. 34
5.5 How the evaluation is done .. 38

6. Results .. 39
6.1 Hardhat ... 39

6.2 Truffle .. 43
6.3 Brownie .. 46

7. Comparative analysis of the results .. 50
8. Discussion .. 56

8.1 Summarization of the results ... 56

8.2 How the results compare to the literature review .. 56
8.3 Importance of the results .. 57
8.4 Evaluation of the results and the used research method 58

9. Conclusion .. 60
9.1 Answer to the research problem .. 60

9.2 Limitations and threats to validity ... 61
9.3 Future work .. 61

4

References ... 63

Appendix A. Evaluation form. .. 67
Appendix B. Evaluation results... 75

5

1. Introduction

The potential of blockchain technology has been a hot topic on the IT-field especially for

the past 5 years. Professionals working on the field have been discussing how to utilize

blockchain technology in different instances, as for example both the structure and the

availability of the data stored into a blockchain differs vastly from a traditional way of

storing data in a centralized ledger. For information sharing, blockchain technology can

offer improvements in several categories, like in transparency, privacy, reliability, and

security (Ølnes et al., 2017). Blockchain technology has also been a hot topic outside the

IT-field, as people from the major news outlets to politicians and all the way to

cryptocurrency investors are interested with their own motives to see what the blockchain

technology will develop into. These aspects certainly play a role in the currently

happening investment rush towards the decentralized internet, which is powered by

blockchain technologies.

It is important to understand the technology behind the blockchain to fully grasp the

potential of it. Blockchain is a type of distributed ledger technology (DLT). Burkhardt et

al. (2018) explain the idea of DLT to be based on a decentralized record keeping, while

the main purpose of it is to log all the happened transactions. The explanation of

blockchain is similar, as Drescher (2017) summarizes it to be a distributed peer-to-peer

system of ledgers, that utilizes the same algorithm, which handles all the data that has

been stored into chained blocks. In simpler terms, blockchain technology enables

applications to use a publicly shared database, where the data should be impossible to

alter once it is written.

Zarir et al. (2021) explain Ethereum to be a blockchain platform, which enables the

blockchain-powered applications by supporting the usage of smart contracts. These kinds

of applications that utilize blockchain technology are called decentralized applications

(Dapps). What separates decentralized applications from centralized applications is the

use of smart contracts, which act as a backend for decentralized applications. In other

words, smart contracts serve the business logic for decentralized applications. Zou et al.

(2021) explain smart contracts as low-level code scripts, which are stored and executed

on a blockchain. Authors continue by explaining that smart contracts contain both data

and executable code, and its purpose is to facilitate a contract between two parties without

the need of a trusted third party.

The ability to cut off the middleman while retaining the trust towards the system is

groundbreaking, as it would make the companies operating as a trusted third party

unnecessary. While the obvious use cases for this kind of technology are within the

financial sector, lately non-fungible tokens (NFTs) and non-cryptocurrency Dapps have

also received some attention from the masses. Dowling (2021) describes NFTs to be a

blockchain traded rights to own any digital assets, like videos, images, or music, and it is

just one of the blockchain related technologies that is being explored to see what it shall

develop into.

Like NFTs, the whole blockchain technology is still under development and people are

trying to figure out where and how it should be utilized. It possesses a lot of good

characteristics, and when implemented well in a suitable context, it has the potential to

disrupt the existing markets.

6

1.1 Research problem

Regardless of the field, to produce a well-made product efficiently, a good set of tools is

a necessity. For a software developer this would mean having a well-thought and designed

software development environment (SDE), which would support and ease the

programmer’s tasks. Darrell Corbin (1991) describes SDE to be an integration of different

tools, standards, methodologies, and other related elements.

As previously mentioned, the difference between decentralized- and centralized

applications is that the decentralized applications use smart contracts to serve the

application’s business logic, thus being what a backend is for a centralized application.

Before deploying a smart contract into the Ethereum blockchain, a developer will first

develop, test, and compile the smart contract locally. Once deployed, smart contracts will

be placed into a specific address in the blockchain. Users can then interact with these

smart contracts by submitting a transaction into this address, which will execute a

function defined on the smart contract. By default, smart contracts can’t be deleted after

deployment and every interaction with them is irreversible. (Ethereum, 2022f).

The difference between smart contracts and traditional backends is that whereas a

developer is always able to make adjustments to the source code of the backend and push

it into the deployment pipeline to update the backend, smart contracts can’t be modified

or deleted once they have been deployed. However, there are some ways to bypass this

restriction, but overall, it isn’t as straightforward and effortless as updating the backend

of a centralized application. This increases the importance of certain aspects of the

software development process, such as testing. While testing is an important part of

software development by default, an increase in what deploying a faulty software costs

should make the developers to be even more motivated in ensuring the correctness of the

software they are about to deploy. Another aspect of the development process that differs

greatly is deployment process. For centralized applications, deployment pipelines have

been around for some time, and they have had the time to mature and improve their tools

and practices. As non-cryptocurrency Dapps are just starting to get attention, it is

understandable that the different development tools and practices have yet to be matured,

and it is expected that there is room for improvements in the currently used tools and

methods.

The aim of this study is to examine which tools and functionalities an Ethereum developer

needs to have in their development environment to develop a high-quality software

product efficiently and evaluate how well the currently existing solutions fulfill these

requirements.

1.2 Research questions

The paper answers to the research problem through the following research questions:

RQ1 What are the requirements for developing and deploying smart contracts

into the Ethereum blockchain and how can those requirements be

categorized?

RQ2 How can a development environment fulfill these requirements?

RQ3 How do the existing development environments meet the requirements?

7

The purpose of these research questions is to divide the research problem into smaller,

well-defined parts, so the research problem can be answered comprehensively.

1.3 Research methods

Two different research methods are used for different parts of the study in an attempt to

produce objective results that can be considered to be scientifically valid. The first method

is used in the making of the second and third chapter, in which the current state of

Ethereum development is examined to provide a solid base for the upcoming Ethereum

development environment evaluation. The literature review is conducted by using a semi-

systematic approach with a snowballing technique, in which additional papers to those

that are found during the systematic process, are identified by looking at references and

citations of the already included papers (Wohlin, 2014).

The second used research method in this study is called DESMET, which was developed

to evaluate software development tools and processes as objectively as possible.

DESMET is designed to evaluate the tools and processes of a specific group, when they

are performing similar tasks under similar conditions. The evaluation is based on an

assumption that there are several alternative ways to execute the same task, and the aim

of DESMET is to identify the best available option. A tool or method is evaluated based

on the features it offers, the characteristics of its supplier, and the amount of training it

requires. The qualitative research method of DESMET is called feature analysis, and the

purpose of it is to identify requirements for a particular task and then map those

requirements into features that the tool or method should possess. (Kitchenham, 1996a)

In this study, DESMET’s feature analysis is slightly modified to fit the evaluation context

better and to produce more accurate results. The made modification is about including the

level of importance of each feature within the evaluation criteria by adjusting the

maximum amount of points each feature will reward if the development environment

provides a full support for that feature. How the feature set and the evaluation criteria are

created is discussed in chapter five, and the experience and the evaluation of the success

of modifications are examined in chapter eight.

1.4 Literature

The literature for the study is gathered using a semi-systematic literature review process,

along with the snowballing technique. The vast majority of the scientific literature is

identified using the semi-systematic literature process and the snowballing technique, but

a few scientific papers were found conducting searches to the academic databases (e.g.,

IEEE, ACM, Google Scholar) with a specific search string. A paper by Zou et al. (2021)

provided valuable information about the challenges that Ethereum developers are

currently facing. However, as the selected topic of this study is advancing with great

speed, it is necessary to also include information from Ethereum’s documentation to

ensure that the used information is up to date.

The aim of the semi-systematic literature review is to identify scientific articles that

discuss the challenges of developing Ethereum-based products. The inclusion-,

exclusion-, and quality assurance criterions for the papers included during the semi-

systematic process are listed in chapter three.

8

During the feature analysis, once the requirements towards the development environment

has been identified and the feature set is created following the literature by Kitchenham

and Jones, the documentation of the development environment under evaluation is used

heavily, as the main selected method to conduct the feature analysis (i.e., feature

screening) is done by examining only the documentation of the tool or a process under

evaluation.

1.5 Boundaries

The study will focus on inspecting and analyzing the developer’s requirements towards a

development environment when developing Ethereum-based products. The reason for

focusing on Ethereum is that it is the largest blockchain that supports smart contracts by

market capitalization, which is calculated by multiplying the current price of the

blockchain’s cryptocurrency with the circulating supply. Ethereum’s market

capitalization is about 215 billion euros, while the BNB’s, which is second on the list,

market capitalization is less than 50 billion euros. In short, Ethereum is the biggest

blockchain platform by a large margin for the developers to develop smart contracts and

Dapps. (CoinMarketCap, 2022)

This study is not about exploring Ethereum or smart contracts as a technology, nor does

it inspect or evaluate in which situations choosing to use smart contracts would be a good

decision. The aim is to identify the requirements and list them as a feature set and create

an evaluation criteria for the ability to evaluate some of the currently existing Ethereum

development environments. The created feature set does not take web-based development

environments into consideration.

1.6 Overview of the results

The created feature set contains 40 features, which are categorized according to the

ISO/IEC standard 25010:2011, which determines the characteristics of a high-quality

software. The categories are functional suitability, performance efficiency, compatibility,

usability, reliability, security, maintainability, and portability.

Overall, all the evaluated Ethereum development environments (i.e., Hardhat, Truffle,

and Brownie) performed quite similarly across the feature set, but there are big

differences on some of the features. Hardhat performed the best on the evaluation scoring

136 points out of the 164 available points, which translated to around 83 percent. Truffle

came second with a score of 127, which translates to around 77 percent, while Brownie

scored 114 points, which in turn translates to around 70 percent.

9

2. Ethereum blockchain

This chapter explores the different aspects of Ethereum and how it operates, to provide a

context of the selected blockchain platform of the study. However, as the technical

implementation of Ethereum isn’t the focus of this study, the topic is examined in a

simplified manner.

Ethereum is a form of blockchain and at its core, Ethereum is a transaction-based state

machine. The state can hold information for example about accounts and their balances,

and as long as information can be represented by a computer, it can be included in the

Ethereum state. (Wood, 2014)

Hartel et al. (2019) describe blockchain as a peer-to-peer database, which contains the

history of every transaction that has happened thus far. Zou et al. (2021) explain

blockchain to be a chain of records called blocks, that contain some transaction data, the

hash value of the previous block, and a timestamp of the exact moment when the block

was mined and validated. These blocks are secured by using cryptography, and they form

a chain as each time a new block is mined and validated, it is being linked to the existing

chain of blocks. Blockchain can be understanded as a public ledger, where a part of all

transactions is stored in each block. Unlike the traditional web hosting, in which the

service is accessible on a specific address, the blockchain is stored on a network of nodes,

which all hold a copy of the blockchain.

Wang et al. (2019) elaborate that because blockchain has adopted the peer-to-peer

protocol, the blockchain system can tolerate a single point of failure. In other words,

blockchain won’t lose any data as long as the blockchain is running at least on a single

instance (i.e., node). The consensus mechanism is used to ensure that all nodes hold the

same identical version of blockchain. This is the core idea of blockchain, and because of

the utilization of this mechanism, blockchain is considered to have characteristics such as

decentralization, integrity, and auditability.

Blockchains can be divided into two categories: public and non-public blockchains. Non-

public blockchain grants access to new users (nodes) to join the blockchain, whereas

anyone can join a public one. Ethereum, the selected blockchain for this study, is an

example of a public blockchain. (Zou et al., 2021)

The most popular use case of blockchain technology is decentralized finance (DeFi).

DeFi is an umbrella term for all the financial functionalities that utilizes blockchain

technology and in the case of Ethereum, it can be split into four layers: the Ethereum

blockchain, the assets (i.e., cryptocurrencies such as ETH), the protocols (i.e., smart

contracts that provides functionalities), and applications that enables users to use

previously mentioned layers. DeFi is considered to be a new financial system that was

built for the internet age, and it promises to be better than traditional finance by being an

open platform and giving you the control and visibility of your money. It enables access

into global markets with just an internet connection and there aren’t any centralized

authorities that could block payments or limit your financial access. (Ethereum, 2022a)

Figure 1 displays Ethereum’s behaviour in a simplified manner to create an overview

about the upcoming topics, and to show the purpose of each element in the system.

10

Figure 1. How Ethereum operates in a simplified format.

As shown in Figure 1, the start of the EVM’s operating loop with a certain state. Once

users have created requests through using wallet and user accounts, new transaction

requests are created and sent for the miners to include them in a block. Once the block is

mined and verified by all the nodes in the network, a new “canonical” state is created and

agreed.

2.1 Ethereum virtual machine

Ethereum virtual machine (EVM) is a single entity, which is maintained by all the

computers running the Ethereum client. Ethereum is a distributed state machine, and its

state holds all the accounts and their balances, as well as a machine state, which can vary

between the different blocks according to the predefined rules. (Ethereum, 2022b)

Both Hwang and Ryu (2020) and Zou et al. (2021), among many others, explain that

Ethereum is one of the most popular blockchain platforms because it provides a

decentralized Turing-complete virtual machine called Ethereum virtual machine (EVM).

Hwang and Ryu (2020) continue by explaining that EVM can support on top of

cryptocurrency also other types of applications, like games, by using smart contracts.

Like Bitcoin, Ethereum is also a cryptocurrency backed blockchain platform and it is also

the second most valuable cryptocurrency after Bitcoin. The main innovation of Ethereum

11

is the introduction of smart contracts, which are small computer programs stored on the

blockchain. (Gupta & Shukla, 2019)

2.2 Ethereum accounts and wallet

Ethereum wallet is a tool that is used to manage Ethereum accounts. It enables the user to

check the balance of the account, make new transactions, and connect to applications.

Wallet isn’t bound to the account, and one wallet can manage several different accounts

at the same time. There are multiple types of wallets, which however have the same

functionalities. Wallets can be either in a physical form (e.g., USB stick), a mobile

application, a web wallet accessed via web browser, or a desktop application. (Ethereum,

2022c)

Unlike every blockchain, Ethereum has different accounts for different users on their

blockchain. Account can be either an externally owned account (EOA) or a contract

account. What separates these from each other is that the EOA account is controlled by a

private key, and it has no associated code, while the contract account has an associated

code, which will be executed when the account receives a transaction. Users can initialize

transactions only through an EOA account. EOA account will send a transaction, which

can include Ether and binary data as a payload. If the receiving account is a so-called

zero-account, a new smart contract will be created based on the transaction payload.

However, if the account receiving a transaction is a contract account, the account is

activated and the associated code of it will be executed in the local EVM, using the

transaction payload as an input. After this the transaction is sent to the blockchain

network, where it will be verified by miners. (Wang et al., 2019)

2.3 Gas

As executing smart contracts requires computational resources, Ethereum discourages

unnecessary smart contract usage by charging a fee called gas. Gas fee is charged for

every use of computation, which includes use cases such as executing functions on smart

contracts, making transactions, and creating new smart contracts. (Wood, 2014)

Chen et al. (2020) explain that Ethereum adopted the gas mechanism also for preventing

denial-of-service (DoS) attacks, which in this case would aim to exhaust the computing

resources of blockchain’s nodes. The gas mechanism charges the transaction sender for

deploying or invoking a smart contract. The size of the gas fee depends on the executed

operations of the smart contract, or when deploying a new contract, its size itself

determines the cost.

Zarir et al. (2021) describe gas as a measurement unit, which indicates the amount of

computational work in the Ethereum blockchain. The amount of computation that is

required to execute a transaction is called gas usage. The gas usage depends on the

number of functions and their complexity, and on the size of data that is stored in the

blockchain. Every transaction needs to be set up with two parameters before they can be

triggered. These parameters are the gas limit and the gas price. Gas limit sets the

maximum amount of gas that is allowed to be used for executing the transaction. Setting

the gas limit too low can cause an out-of-gas error while the transaction is being executed.

The gas price is given as a second argument, and it represents the per-unit price of gas,

and it is given in a format of Ether (ETH) cryptocurrency. The total transaction fee that

is paid by the transaction issuer is calculated by multiplying gas usage by gas price.

12

The above explained calculation format by Zarir et al. (2021) for calculating transaction

fee was changed in August 2021 with the Ethereum’s London upgrade. The motivation

for the change was to make estimating the transaction fee easier. After the upgrade every

block on blockchain has a base fee, which represents the minimum price of a gas unit to

be included on the block, and it is calculated automatically by the network. Once a new

block is mined, the base fees of it will be “burned” and removed from the circulation.

Priority fee (i.e., tip) is used after the London upgrade to motivate the miners to include

transactions into the blocks, because without the tips, it would be economically beneficial

for miners to mine empty blocks. This same mechanic can be used to prioritize

transactions. The larger the tip, the more likely it is to outbid other transactions and be

included in the block. Wallet providers will automatically generate a suggestion of

transaction fee, which includes both a base fee and a priority fee. Users have also been

given an option to include a parameter, which indicates the maximum price they are

willing to pay for the transaction to be executed. This limit must exceed the sum of the

base fee and the tip. The difference between the max fee and the sum of base fee and tip

is returned to the transaction sender. (Ethereum, 2022d)

2.4 Decentralized applications

Blockchain-powered applications (i.e., decentralized applications) use smart contracts for

executing the requests created by the user through the frontend in a web browser (Zarir

et al., 2021). For example, if the user wants to purchase a certain digital asset from an

application that uses smart contracts to execute the business logic, the request is sent to

the smart contract located in the blockchain, which will execute the request.

Decentralized applications differ from the traditional web applications due to the usage

of smart contracts. Some benefits that using smart contracts provides are having

“backend” constantly up and ready to execute incoming requests, having an increased

privacy and zero censorship, and a complete data integrity. These improvements come

naturally with some drawbacks, such as maintaining and scaling the application being

harder, as the Ethereum network can process only a limited number of transactions per

second. (Ethereum, 2022e)

2.5 Smart contracts

Smart contracts are low-level code scripts running on blockchain and their purpose is to

facilitate a contract between two parties without the need of the trusted third party. In

other words, a smart contract is a program that contains data of some sort and code, which

is automatically executed when a certain pre-condition is met. (Zou et al., 2021)

Zhang et al. (2020), and Gupta and Shukla (2019) explain that smart contracts have their

own addresses on the blockchain and are executed according to their logic by the EVM.

The smart contract is invoked by sending a transaction to its address. Gupta and Shukla

(2019) continue to explain that as the smart contract’s source code is stored on the

blockchain, it can be viewed and verified by anyone, and it also becomes tamper-proof

as the blockchain is immutable. This characteristic makes smart contracts useful for

different types of applications, and for example smart contracts have been used to address

concerns regarding security and privacy on connected vehicles.

Blockchain technology is evolving rapidly, and cryptocurrencies are no longer the only

applications that the technology is being used for (Pinna et al., 2019). Hartel et al. (2019)

13

found in their study that smart contracts are used for multiple different types of

applications, while the biggest categories are finance and entertainment. However, the

authors noted that the suitability of smart contract technology is being tested for different

use contexts, even when the traditional software approach might even achieve a better

result. Authors name health, energy, identity management, and other utilitarian topics as

fields, in which smart contracts are being utilized at.

Bytecode of every deployed smart contract is always available for everyone, as they are

stored in a public blockchain. The problem arises from the fact that the bytecode is not

readable for humans, so the availability doesn’t actually improve the trust of users or

anything else. However, the developers have an option to publish the source code, so the

users can read the smart contract by themselves. Authors name Etherscan.io as an

example of a third-party verification service provider, which compares and verifies the

source code and the bytecode to match. This verification confirms that the source code

provided by the authors is the same source code that the bytecode is compiled from.

(Pinna et al., 2019)

Zou et al. (2021) brought up how blockchain’s each node needs to execute and validate

every smart contract transaction. This reduces the privacy of smart contracts as all

relevant transactions are being visible to on the blockchain and the gas costs of executing

smart contracts can be high, especially if the smart contract contains complex

computation.

It was widely reported in April 2022 that a DeFi project called Beanstalk was robbed of

182 million US dollars. The attacker used a flash loan attack, in which the attacker takes

a so-called flash loan and buys an absurd number of tokens. As Beanstalk uses a proof-

of-stake consensus mechanism, by buying enough tokens to have over 50% of the voting

power, the attacker was able to transfer money from the protocol’s liquidity pools to their

own account. After this transaction, the attacker sold the tokens and returned the flash

loan. All of this was done in 13 seconds. As it is being said, blockchain technology is still

growing and improving.

14

3. Smart contract development

This chapter examines the smart contract development process and its challenges.

A smart contract is first developed by using a high-level programming language before it

is compiled into EVM bytecode. Once the smart contract is compiled, it can be deployed

into the Ethereum blockchain by a transaction, which requires gas. (Gupta & Shukla,

2019; Pinna et al., 2019; Zhang et al., 2020; Zou et al., 2021)

Ethereum smart contract developers can use different programming languages, such as

Solidity and Vyper, to develop complex smart contract applications. These two languages

are also the most active and maintained languages that are being used to develop smart

contracts on Ethereum. (Ethereum, 2022h; Zou et al., 2021)

Solidity and Vyper have been developed with different intentions. Solidity is an object-

oriented, curly-bracket programming language with a lot of functionalities, while Vyper

is a pythonic language, which aims to be more secure and easily auditable by providing

less functionalities. These languages are designed to be used by the majority of smart

contract developers, but for advanced developers there are languages called Yul and

Yul+, which are described to be simplistic and functional low-level languages. The main

benefit of using these languages is the ability to optimize the gas usage of the smart

contract. (Ethereum, 2022h)

There are multiple ways to attack against smart contracts and the importance of protection

against these attacks is high, as smart contracts are used in security-critical applications

like financial transactions. While Solidity is the most supported and maintained language

for smart contract development, it has had multiple severe security issues in the past.

(Hwang & Ryu, 2020)

Figure 2 displays a smart contract development process in a simplified manner to create

an overview of the process.

Figure 2. A simplified smart contract development process.

15

As shown in Figure 2, a typical smart contract development process contains a number of

iterations, in which a new feature is added to the smart contract. First, a new source code

is being written or already existing code is changed with the help of different tools, such

as linters (i.e., static code analysis tools, which is used for example to discover errors in

the code and ensure the same styling across the project) and debuggers. After this is done,

the source code will be compiled into EVM bytecode, which is used for testing. If testing

exposes some bugs or unwanted behaviour, the cycle will start again from the start. Once

all the tests pass and there is no feature left to be implemented, the smart contract is ready

to be deployed into the Ethereum mainnet.

It is recommended to use a development framework for developing smart contracts,

especially if the developer is inexperienced on smart contract development, as the aim of

the development environments and frameworks is to assist the developer during the

development process. Building a Dapp requires the usage of a lot of different technologies

and tools, and frameworks try to solve the problem of researching and selecting the tools

by hand. Frameworks include different tools by default and provide a plugin system for

the user to include external tools if they wish. These framework tools can have

functionalities to compile and test smart contracts, create a local blockchain for

development, and enable parallel frontend development. Ethereum’s documentation

highlights the most popular development frameworks and based on the stars given on

GitHub, the most popular ones are Truffle (13,213), Scaffold-ETH (7,146), Embark

(3,623), and Hardhat (3,332). (Ethereum, 2022g)

3.1 Challenges of smart contract development

As smart contract development, along with the whole IT field, is advancing quickly and

the best practices are still being tried to be identified, it is understandable that the smart

contract development process contains a lot of challenges that needs to be solved for

blockchain technology to advance and to become fully utilized.

Zou et al. (2021) conducted a study to identify major challenges and desired

improvements in smart contract development on the Ethereum platform. Authors

conducted 20 semi-structured interviews with smart contract developers and formed a

survey, which was then sent for other smart contract developers to validate their findings

during the interviews. They received a total of 232 answers for this survey. The biggest

overall challenge was guaranteeing the security of smart contracts, followed by the lack

of powerful development tools.

Challenges related to debugging, gas optimizing, and code reviewing were that it was

difficult to debug smart contract during the development, gas optimization was always

painful especially if the smart contract contained complex logic, a lack of qualified smart

contract developers who are able to find security flaws in code, and code reviewing being

very time consuming. At least 63.4% of survey answerers agreed with these challenges.

The most agreed challenges regarding smart contract testing were the difficulty to

consider all corner cases and scenarios, the potential of undiscovered flaws in compilers

and virtual machines, and a lack of mature testing frameworks that other languages have.

At least 49.5% of answerers agreed with these challenges.

The most wished improvements on Solidity were an increased number of general-purpose

libraries, more powerful functions for error logging and reporting errors, more standard

interfaces, and better support for checking the security of data types.

16

Authors noted that developers would be significantly more likely to rate a lack of online

learning resources and community help as a major challenge if they have little experience

on smart contract development.

Zou et al. (2021) summarized their results in five points. First was that as code security

is a high requirement for smart contracts, a new tool is needed for ensuring this as

developers don’t currently have an effective way to ensure the code security. Second point

was that current debugging tools are primitive and inefficient, and using them in practice

is very painful. Developers wished for more powerful debuggers, which would provide

more informative error messages during debugging. Third point was that the Solidity,

compiler, and EVM have undesired characteristics and because of them, it is difficult to

develop smart contracts effectively and efficiently. Fourth point was the need for gas-

estimation and optimization tools at the source code level, which would also consider

readability of the code. Fifth point was a lack of development resources, such as best

practices, code examples and third-party libraries.

Chen et al. (2020) found that a lot of deployed smart contracts contain multiple different

types of gas-inefficient code, which by their definition means that a smart contract

requires more gas than necessary. Authors explain that the cause of it is gas-inefficient

patterns in smart contract’s source code. Authors believe that there are various reasons

why gas-inefficient patterns exist on such a large scale on deployed smart contracts. They

name reasons such as inexperienced developers, unawareness of the gas waste, and the

absence of specialized tools for the task.

Hartel et al. (2019) concluded from the received survey answers that calculating the gas

estimation for smart contracts is too challenging. Developers also expressed their need

for integrated support for distributed storage, as it is not desirable or practical to store

smart contract’s all data on the blockchain.

Hwang and Ryu (2020) examined 55,046 live smart contracts to see if the Solidity smart

contract developers were aware of the importance of applying the Solidity security

patches to their smart contracts. The conclusion was that they are not, as 98.14% of the

examined smart contracts hadn’t applied the security patches for known security

vulnerabilities, and they detected 13,943 smart contracts that are potentially vulnerable

because of this. What’s even worse, the authors found hundreds of exploitable smart

contracts of which about a quarter had thousands of users. The authors gave a

recommendation for the developer to use the latest Solidity compiler to apply the security

patches, and for the Solidity team to release more security patches for known

vulnerabilities.

Sujeetha and Preetha (2021) conducted a literature review on smart contract testing and

analysis to emphasize the positives and negatives of the smart contract development

process. In the study authors identified two main challenges for smart contract testing,

which were the lack of best smart contract development practices and the lack of

specialized tools.

Hartel et al. (2019) observed from the survey they conducted that a common complaint

about Ethereum smart contract development was that the Ethereum technology wasn’t

mature enough, which was shown in the quality of the development tools. Authors also

found that open sourcing and formal verification increases the credibility and popularity

of the smart contract.

17

Overall, it has become clear that one of the biggest challenges on Ethereum smart contract

development is the immaturity of the system like Zou et al. (2021) and Sujeetha and

Preetha (2021) among others explain. It is natural, especially in software engineering, that

it takes time to develop a standardized way of working. However, at the moment the

developers desperately need improvements on documentations and tools (e.g., debuggers,

gas optimizer, etc.), ways to ensure the security of the contract, and overall the smart

contract development to mature.

3.2 Development tools and practices

This chapter introduces the commonly used smart contract development tools and

practices. At the start the characteristics and the purpose of the tool or practice is

explained, and at the end is the conclusion about the state of the tool or practice.

3.2.1 Analysis tools

The purpose of the software analysis tool is to read the source code of a program and then

make some modifications or report about some problems within the code. For example,

an analysis tool can be used to discover errors or unused parts (e.g., functions, variables)

in the source code.

In their study Zhang et al. (2020) evaluated among other things the state-of-the-art smart

contract analysis tools. During the study authors noticed that the bytecode-based tools

often become unusable when EVM was updated. The reason for this is that there is often

a lack of motivation to update and maintain smart contract development tools, and this

leads to limited availability of this kind of tools. Despite this, the authors found that

bytecode-based analysis tools have usually a higher precision of identifying a bug than

their counterparts, because they usually use techniques like control flow analysis, which

is used to determine the control flow of the software. As a result of their study, the authors

recommended using Mythril, Slither, or Remix for smart contract analysis. In their study

Mythril had the highest precision rate (i.e., how many of the detected bugs are relevant),

Remix had the highest recall rate (i.e., how many relevant bugs were detected), and Slither

detected most different kinds of bugs while having a good recall and precision rate.

Authors also praised the easy installations of these tools and claimed that they were also

very convenient to use.

Di Angelo and Salzer (2019) analyzed 27 different Ethereum smart contract development

tools. These tools were analyzed from the aspects of availability, maturity level, used

methods, and how they detect security issues on smart contracts. During the study authors

concluded that tools tend to persist when they are being developed as an open-source

project. As a result, authors highlighted five tools that they found inspiring. Two out of

the highlighted five tools are still being actively developed as an open-source project,

named Mythril and KEVM. Authors described Mythril as a prime example of a smart

contract security analysis tool, which also has a high usability. KEVM was appraised as

a favorite tool for formal verification of the smart contract due to its maturity. Authors

explain formal verification as using formal methods (i.e., mathematical techniques) to

ensure that the system works as intended. However, authors note that the drawback of the

tool is that it requires a lot of expertise to use it.

Hartel et al. (2019) found that a majority of smart contract developers who answered their

survey used or had used some sophisticated experimental smart contract development

18

tools, such as Echidna, MythX, SmartCheck, and Slither. However, the authors report that

many of the respondents expressed their opinion that the tools of development

environments such as Truffle framework and Remix are more important than the

sophisticated experimental tools. The reason for this was that the standard tools of

different development environments already have enough shortcomings. Authors

concluded that this indicates a lack of maturity in the available smart contract

development tools.

In their study Gupta and Shukla (2019) noticed that as they expected, static smart contract

analysis tools performed much faster than symbolic execution tools. Authors also noticed

that there are on average about five contracts inside a single smart contract, and tools

should take this fact into consideration when analyzing smart contracts. They also

observed that many active smart contracts were compiled using an outdated version, and

a lot of the code didn’t follow the good practices. Overall, the authors observed that

improper coding practices are the biggest issue in smart contract development.

It appears that there is a decent amount of analysis tools for developers to select from. In

general, this appears to be a good thing, but the cost of having multiple options might be

that it can take more time to mature into an excellent tool. However, Mythril and Slither

appear to be the most praised options of analysis tools, and at the time of writing this,

both tools are still popular and doing well.

3.2.2 Readability

In software engineering, readability refers to how easy it is for the developer to read and

understand the source code of the program. Martin Fowler has a saying which describes

readability well:

“Any fool can write code that a computer can understand. Good

programmers write code that humans can understand.” (Fowler, 2018,

p. 22)

Canfora et al. (2021) argued that since readability of source code is a key factor in

software quality and heavily affects code maintainability, portability, and reusability,

smart contracts would benefit from a tool, which would ensure better code readability.

This is emphasized by the fact that smart contract developers often inspect and reuse parts

from other smart contracts. Authors explained that the poor readability of smart contracts

could be caused by the attempt to make the source code as efficient as possible to reduce

the gas costs, which in practice means shorter source code.

Pinna et al. (2019) found that the publicly available source codes of smart contracts are

usually well commented. As reusing the already existing code is a common practice in

smart contract development, authors believed that the availability of well documented

source code is a great asset for new developers to understand the smart contract

development.

Readability in Ethereum smart contracts is a difficult topic as by improving the

readability, it is likely to come with a price of increased need of gas. This is

understandably a price that developers might not be willing to pay.

19

3.2.3 Code reuse

Code reuse means reusing already existing source code in another context/project. This

can be understanded as using already existing knowledge, and as the old saying goes,

there is no point to reinvent the wheel. There is a lot of reasons for software developers

to reuse code, such as it shortens the time to implement new features to the application, it

frees resources for other development tasks, and reusing code that implements features

that the developer is not too keen about implementing frees time to focus on those more

interesting features. (Haefliger et al., 2008)

Chen et al. (2021) studied code reuse in smart contracts. They explained that code reuse

might predispose smart contracts to severe threats, such as security attacks and resource

wasting. Authors defined the reused code blocks as “subcontracts” in their study. They

collected 146,452 open-source Ethereum smart contracts projects for their analysis. The

result was that code reuse is quite frequent in smart contract development, as over 26%

of subcontracts are reused at an average of 14.6 times, and over 91% smart contract

projects reuse more than one subcontracts. Authors found that the most reused

subcontracts were related to ERC20 token applications, and that developers don’t tend to

make major modifications to the reused subcontracts.

Pierro and Tonelli (2021) also studied source code duplication in smart contract

development by analyzing 7500 smart contracts, which had been deployed in the

Ethereum blockchain. They found that about 80% of the analyzed smart contracts

contained code, which was copied from another deployed smart contract. Authors believe

that the code cloning is caused either by the desire to copy successful smart contracts, or

by the lack of package manager, which could import external dependencies into the

project.

Gao (2020) had similar results about the code reuse in smart contracts on the Ethereum

ecosystem. In the study over 22,000 smart contracts were gathered from the Ethereum

blockchain and analyzed for code reuse, and the result was that the clone ratio of solidity

code is about 90%, which is much higher than on the traditional software.

Gupta and Shukla (2019) also noticed that a high percentage of smart contracts are reused

code. In their study they noticed that only 4.7% of smart contracts written in Solidity have

a unique bytecode. Authors noted that this implies that reusing code is very common

practice in smart contract development, and it emphasizes the importance of good security

practices, because security vulnerabilities will transfer with the reused code to other smart

contracts.

The results throughout the studies are similar; code reusing is a highly used method in

smart contract development. Such a one-sided conclusion can be accepted as the studies

had analyzed a great number of smart contracts, and the reasoning for it is well

understandable. As a great number of smart contracts deal with different tokens as Chen

et al. (2021) explained, one of the main benefits to reuse code is to free resources for

developing other aspects of the software. It is easy to see that a developer would like to

reuse existing code to implement a token within the smart contract to serve some purpose

for the actual business logic of the smart contract. By not having to implement the used

token system from scratch, developers can spend that time to implement those features,

which will make people actually use the smart contract (most often through a frontend).

However, the code reusing also creates problems, such as how to ensure the security of

the reused code, as the authors pointed out.

20

4. Research methods

To produce as objective and scientifically valid results as possible, the study uses two

research methods. Firstly, a semi-systematic literature review is conducted along with the

snowballing technique to examine the current state of the art of Ethereum smart contract

development. The second research method is a DESMET feature analysis, in which the

user requirements for performing a certain task or activity under specific circumstances

are identified, and then mapped to different features that a method or tool designed to

support the requirement should possess (Kitchenham, 1996).

4.1 Literature review

Snyder (2019) describes a consideration of prior, relevant literature to be an essential part

of every research project. The author continues by stating that the purpose of a literature

review is to map and assess the research area to provide justification to the study and

justify the research questions and hypothesis. Danson and Arshad (2014) worded this a

bit differently, as they believe a literature review is conducted to educate oneself about

the topic area before shaping an argument or justification in the study.

Danson and Arshad (2014) explain that there are different types of literature reviews, such

as traditional-, narrative-, systematic-, and meta-analysis literature reviews, and they

differ in their methodologies to provide options for studies to choose from as these

different literature reviews produce different kinds of results. Authors define narrative-

and systematic literature reviews to be the most dominant styles of literature reviews and

explain their difference to be that whereas a narrative literature review has a variety of

styles and methods, a systematic literature review has a highly structured approach

towards reviewing existing literature, and it excels in identifying all the existing literature

and ensuring that no existing literature or knowledge is missed during the literature

review. Authors claim that the common aspect between these two review styles is the

critical approach towards the literature. Snyder (2019) provides a slightly different

version on the approaches to literature reviews. Author identifies three broad types of

methods to conduct a literature review, which are systematic-, semi-systematic-, and

integrative approaches. The typical purpose of a systematic approach is to synthesize and

compare evidence, while the research question is specific. The purpose of the semi-

systematic approach is to overview the research area and map out how it has developed

over time, while the research questions aren’t usually too narrowed. The integrative

approach focuses on critiquing and synthesizing the literature, and the research questions

can be either narrow or broad. The names of different approaches describe the nature of

their search strategy well, and whereas a systematic approach deals with quantitative

articles, the integrative approach is more focused on qualitative sources, which can be in

the form of a research paper, a book or in another form of a published text. Systematic

approach can produce evidence of effect or inform policy, whereas integrative approach

can be used to create a theoretical model or a framework. Semi-systematic approach is

described to be between the systematic- and integrative approaches, and it is used to

produce a state of knowledge or a theoretical model (Snyder, 2019).

A purely integrative approach towards literature review would be a quite natural solution,

as it was examined by Snyder (2019) to produce theoretical models or frameworks. As

the topic area of this study is developing rapidly and the number of relevant scientific

articles is relatively speaking low, the literature review must also include other types of

qualitative sources than scientific articles. However, this shall not neglect nor weaken the

21

objectivity of the literature review. As Budgen and Brereton (2006) wrote, both research

papers and PhD theses in software engineering have rarely included a clear and systematic

process to objectively collect the literature, and authors have rather just picked the parts

that support the claims of their work. Kitchenham and Charters (2007) continue by stating

that unless a literature review is explained thoroughly and presented in a fair way, it holds

little scientific value. On top of the increased objectivity, reviewing literature with a

systematic process may provide other benefits as well. Niazi (2015) found that having a

formal literature review process leads to having additional high-quality primary studies,

which wouldn’t be found otherwise, and an increase in effectiveness in many aspects,

such as data extraction, synthesis, and overall literature management. However, the

informal literature review was able to identify more articles than the formal literature

review, and the author recommends having a formal literature review with the

snowballing technique, which Wohlin (2014) describes to be identifying additional

papers by using the reference list of a paper or looking the citations to the paper. At the

beginning of the snowballing procedure, a starting set of papers is identified by going

through a tentative set of papers with inclusion- and exclusion criteria. After this, each

paper will be snowballed both backwards and forwards. Each reference and citation will

be examined by the title, publication venue, and authors of the paper, and every promising

paper will be then examined more deeply by reading first the abstract, and eventually the

relevant parts of the whole paper to find out if the paper can be included in your study.

Based on these reasons, this study will benefit from using both systematic- and integrative

approaches for different purposes, so the semi-systematic approach is selected to be used

for conducting the literature review. As Snyder (2019) wrote, a potential contribution of

a semi-systematic review can be a synthesized state of the knowledge, which is the role

of the literature review in this study. The purpose of the literature review is to examine

Ethereum development tools and practices. The literature review process is started by

examining non-scientific sources, such as documentation of Ethereum, to identify

different aspects of Ethereum smart contract development, which the literature review

should cover. The second phase of the literature review is the systematic process, which

is conducted after the search string, inclusion- and exclusion criterions, and quality

assessments have been identified. The search string is developed by executing test

searches into the databases and evaluating the relevance and the number of results. As the

purpose of the literature review in this study is to provide background information for the

upcoming research methods and synthesize the current state of knowledge in the field,

rather than aiming for achieving a quantitative type of data, the goal is to gather a

relatively small amount of qualitative data as a form of high-quality and relevant scientific

papers. In practice this shows in the usage of a specific search string, which will produce

a relatively low number of results, but a decent percentage of the papers is expected to be

included in the study. The purpose of the usage of the systematic approach in this

literature review is to ensure the objectivity in the results and provide transparency and

reproducibility for the literature review process. The third phase of the literature review

is the usage of snowballing technique, in which additional sources are tried to be

identified from the citations and quotations from the main sources of the study. The last

phase of the literature review is ensuring that all the terms identified during the first phase

have been covered. If they haven’t been, additional sources are used to explain them.

As the scope of the study is limited into examining the Ethereum development

environment, which consists of different tools and processes, the focus of the systematic

literature review process is on learning how the smart contracts are being developed, what

kind of tools and practices the developers use, and what are the common challenges they

are facing during the development process. Table 1 displays terms related to Ethereum

22

that were identified during the initial search to be beneficial to explore during the

literature review.

Table 1. Identified relevant terms to explain the nature of Ethereum.

Term Description

Blockchain A public database.

Ethereum A specific blockchain technology.

Ethereum account An account, which is used to make transactions in blockchain.

Ethereum wallet Used to manage your Ethereum account.

Decentralized finance (DeFi) The most well-known use case of blockchain technology.

Decentralized application (Dapp) An application that utilizes smart contracts as its backend.

Smart contract A code script located in a specific address on blockchain. Acts as

a backend for decentralized applications.

Gas A fee that the developer has to pay each time their smart contract

is executed on blockchain.

Ethereum virtual machine (EVM) A virtual machine inside each full node of Ethereum blockchain.

Executes the smart contracts.

EVM bytecode A low-level programming language used by EVM to run smart

contracts. Compiled from a high-level language, like Solidity.

All the terms mentioned in Table 1 are explained in chapters two and three. The used

search string was developed by conducting tests searches to the databases and evaluating

the number and the quality of the results. The final search string was:

(Ethereum) AND (Smart contract) AND (Develop*)

All the words included in the search string were required to be found inside the abstract

of the paper. After the search was conducted with the above search string, both the

inclusion- and exclusion criterions were applied. These criterions are displayed in Table

2.

23

Table 2. An inclusion-, exclusion-, and quality assessment criterias.

Inclusion Exclusion Quality assessment

Published between 2019 and 2022 Published in 2018 or earlier The paper must contain

information about Ethereum

development tools or

practices

Peer-reviewed Not peer-reviewed The paper provides value for

the literature review

Written in English Written in another language than

English

Either a journal or a conference

paper

Not a journal of a conference

paper

 Not finished

As shown in Table 2, for the paper to be included it must be published in 2019 or after,

be peer-reviewed and written in English, and it must be either a journal or a conference

paper. On top of these, the paper must contain information about Ethereum development

tools or practices, and it must provide value for the literature review.

The search was conducted on 2.3.2022. Displayed in Figure 3, the search string resulted

in 266 papers on IEEE and 61 on ACM. After papers had gone through inclusion- and

exclusion criteria shown on Table 2, 50 papers from IEEE and 7 papers from ACM were

selected for full text inspection. After this the quality assessment described in Table 2

was applied. Each paper was examined to determine if they passed the quality assessment

criteria, and if they included information that would benefit the theoretical chapters.

An overview of the literature that systematic process produced is that a majority of the

papers deals with developing a tool on a specific use context. These kinds of papers don’t

offer too much information other than highlighting specific problems that are existing on

smart contract development. The most useful type of papers were the ones, which had

mapped the most popular and the most difficult problems to solve on smart contract

development. For example, Zou et al. (2021) mapped the challenges by conducting semi-

structured interviews and a survey. This paper provided valuable information about the

currently existing challenges on smart contract development and that information is

heavily relied on in this study.

As expected, the semi-systematic literature process left some gaps to the theoretical

chapters. A lightweight version of snowballing for the paper by Zou et al. (2021) was

conducted, and as the information gaps were mainly regarding Ethereum and not the

development tools or practices, the focus was on finding this kind of literature. The

Ethereum yellow paper by Wood (2014) was identified, and along with the help of

Ethereum’s documentation, these information gaps were filled. Including information

from Ethereum’s documentation also ensured that the most up-to-date information was

used.

24

Figure 3. Number of papers in different during each step in systematic literature review.

As described above and shown in Figure 3, a total of 16 papers were used from the

systematic part of the literature review. During the systematic literature review part, a

paper written by Di Angelo and Salzer (2019) was identified. While conducting their

study, the authors had made a perception of the state of smart contract tools studies. They

had found that examining state-of-the-art smart contract tools from research papers has

several shortcomings. First issue was that academic papers concentrate on the methods

rather than on the tools themselves. Authors of these studies were presenting different

tools on equal footing regardless of the state of the tool. This meant that proof-of-concept

tools received the same attention as fully functional and accepted tools. Second problem

was that these tool review studies relied often on the authors© previous studies. The last

problem was that academic surveys tended to disregard tools outside academia. Authors

give an example of an otherwise fine study, which had dismissed five smart contract tools,

because these tools weren’t accompanied by any academic paper, despite that information

about these tools were available in other forms.

The experience from conducting the literature review for this study differs in some ways,

but a lot of the literature that the used search string produced were exactly like Di Angelo

and Salzer (2019) described. These papers were about implementing a tool for a specific

purpose, with little to no consideration about the actual tool (e.g., usability,

maintainability, portability etc.). However, the papers which compared different smart

contract development tools did highlight Mythril and Slither as good analysis tools, which

also appears to be a consensus within the smart contract development community.

25

4.2 DESMET

The DESMET method can be used to evaluate methods or tools that are being used by a

software development team, which perform quite similar tasks under similar conditions,

or by academic institutions in a context of experimental software engineering. The

DESMET method was developed with a purpose to create an unbiased and reliable

evaluation method, which maximizes the probability of identifying the best method or

tool for the task. Making unbiased evaluations on the field of IT is a difficult task, as on

top of the technical difficulties, sociological and managerial factors can play a role in the

evaluation and it is quite easy to select a tool, which is not objectively the best choice for

the task. The ideology behind DESMET is that there are multiple ways to perform a single

software engineering task and the aim is to identify the best way for this specific

circumstance. The best option might even change between the group of developers, who

work on a similar task under similar circumstances (e.g., the developers in these groups

have different preferences on their workflows). However, DESMET has also formal

experiment evaluating methods, which are conducted under fully controlled conditions.

These kinds of evaluating methods are expected to produce the same kind of results

regardless of its organizer. (Kitchenham, 1996a)

As the purpose of the study is to evaluate development environments for Ethereum Dapps,

the evaluating method must aim to produce results through an evaluation process that is

as objective as possible, and which can be reproduced by other people. The DESMET

evaluating method fulfills these requirements set for the research method and is thus

selected to be used in this study.

4.2.1 DESMET evaluation

The DESMET method can be used to evaluate:

• A tool that is used to perform a specific task in software development.

• A method that contains a set of practices to execute a specific task.

• A generic method that contains a set of practices for a more generic software

engineering related task.

A set of tools or methods can be evaluated together by evaluating them in the same way

that they would be if they were to be evaluated as an individual tool or method. A tool-

and-method -combination is evaluated either as a tool or method, depending on what the

comparison will be done. Evaluation will be done as a method if the comparison is done

between different paradigms, and as a tool, if the comparison is done within the same

paradigms between different software support packages. (Kitchenham, 1996a)

The DESMET evaluation method can be used to measure an effect of a specific tool or

method, or to measure how well a certain tool or method fulfills the needs of the

development group on a specific task. Evaluations regarding the effect of a tool or process

is referred to as a quantitative or objective evaluation, and these kinds of evaluations are

based on developing measurable scales and conducting tests to evaluate whether a new

tool or process delivers the expected improvements. Evaluations that are concerned about

the appropriateness of a tool or method for a specific task are regarded as qualitative or

subjective evaluations, and it is referred to as a feature analysis. It is also possible to mix

both subjective and objective elements in evaluation, and DESMET refers to that kind of

evaluation as a hybrid method. These three different evaluation types form the first

evaluation dimension. The second evaluation dimension is formed by the different

26

evaluation procedures, which are formal experiment, case study, and survey. In a formal

experience, multiple people (i.e., software developers) perform a task using the tool or

method that is being evaluated. A case study is conducted by investigating a tool or

method while using it on a real software project, and in a survey, participants are people

who have used the tool or method under inspection on previous projects and their task is

to provide information about the evaluated tool or method. (Kitchenham, 1996a)

4.2.2 Evaluation methods

Kitchenham’s (1996a) DESMET has quantitative-, qualitative-, and hybrid evaluation

methods, and a total of nine different evaluation types:

1. Quantitative experiment evaluates the impact of a tool or process in a quantitative

manner under formal conditions.

2. Quantitative case study evaluates the impact of a tool or process in a quantitative

manner during a case study, in which the tool or process is used on a real software

project.

3. Quantitative survey evaluates the impact of a tool or process in a quantitative

manner through a survey, which is conducted after the participants have already

used the tool or process.

4. Qualitative screening evaluates the impact of a tool or process in a qualitative

manner, and it is done by a single person. Evaluation is done by first creating a

feature list and the rating scale for the evaluation, and then conducting the rating

process. This kind of evaluation is usually based on the literature of the topic

rather than an experience of using the tool or method.

5. Qualitative experiment evaluates the impact of a tool or process in a qualitative

manner through feature-based evaluation. The evaluators are a group of potential

users, whose task is to test the tool or method in practice, and then rate the tool or

method based on the feature list.

6. Qualitative case study evaluates the impact of a tool or process in a qualitative

manner through feature-based evaluation after the evaluator has used the tool or

process in a real software project.

7. Qualitative survey evaluates the impact of a tool or process in a qualitative manner

through feature-based evaluation by people who have either used or studied the

tool or method. Qualitative survey differs from qualitative experiment by giving

the evaluator a choice, whether they would like to participate in the evaluation.

8. Qualitative effect analysis evaluates the impact of a tool or process as a subjective

assessment in a quantitative manner by relying on the opinion of an expert.

9. Benchmarking usually evaluates the impact of a tool by testing it against other

tools in standardized tests.

As we can see, DESMET provides a great number of choices of different evaluation

methods to choose the best fitting one for your study. However, having multiple options

raises the challenge of identifying the correct one, and Kitchenham (1996a) explains that

the correct method depends on the maturity of the development group, and that task is for

the evaluation organizer to execute. For this study, this will be done in the next

subchapter.

27

4.2.3 Limitations

The DESMET method is intended to be used to evaluate one tool or method at the time,

and it doesn’t produce any information about how different tools or methods would

interact, or what kind of results they would produce if they were used together. The

exception for this is if hybrid methods are selected as an evaluation method (e.g., an

opinion of an expert is used). (Kitchenham, 1996a)

For this study this limitation means in practice that the result of using a combination of

different tools together can’t be measured. However, this isn’t the purpose of the study so

this limitation can be disregarded.

Another limitation of DESMET is that the software development process needs to be

standardized for the development group, or the results gained from the evaluation, which

focused on a single software project, don’t hold much of value. This is because the gained

results are valid only if the software project uses the same software development process

that was used on the project where the effect of the tool or process was evaluated.

(Kitchenham, 1996a)

This limitation also doesn’t concern this study, as the study is produced as a Master’s

thesis, and the selected evaluation procedure doesn’t include evaluation on a real software

project.

4.2.4 Selecting the evaluation method

Different evaluation methods require different things, both overall and from the software

development team, in order to produce valid results. Kitchenham’s (1996b) DESMET

method uses seven different aspects to consider, which evaluation method would be the

best option for your case:

1. Context

2. Expected impact

3. The type of the object under evaluation

4. Scope of impact

5. Maturity of the object under evaluation

6. Learning curve of the object under evaluation

7. Measurement capability of the organizer

Table 3 focuses on these aspects for determining which evaluation method should be used

under different circumstances.

28

Table 3. Optional conditions for each evaluation method (Kitchenham, 1996b).

Evaluation method Favouring conditions

Quantitative

experiment

Benefits can be measured clearly

Organization is willing to spend resources and has people available to

participate in experiments

Tool or method is used on a specific task

Learning the tool or process doesn’t take too much time

Aim is to evaluate the tool or process in a specific context

Quantitative case

study

Benefits can be measured in a single project

Results are achievable before product retirement

Standardized development process

The performance of participants is measured beforehand to be able to compare

results

Evaluation timescale matches the length of typical software projects

Quantitative survey Benefits can’t be measured in a single project

Data about productivity, quality, and tool or method from previous projects

exists

Experience of using the tool or method in a real software project

Qualitative screening A lot of tools or methods to evaluate

Limited time for evaluating

Qualitative

experiment

Challenging to quantify achieved benefits

Benefits can be observed from the result of the task

Limited time for learning the tool or method

The users of the tool or method vary greatly

Qualitative case

study

Challenging to quantify achieved benefits

Benefits can be observed during a single project

Standardized development process

Number of potential participants is limited

Evaluation timescale matches the length of typical software projects

Qualitative survey Challenging to quantify achieved benefits

The users of the tool or method vary greatly

Benefits can’t be measured in a single project

Experience of using the tool or method in a real software project, or intend to

conduct projects to learn about the tool or method

Qualitative effects

analysis

An expert opinion is available

Development process is not standardized

Necessary to combine the usage of different tools or methods

Purpose is to evaluate generic tools or methods

Benchmarking Tool or method doesn’t relate to human-intensive tasks

Results of testing can be ranked based on defined criteria

29

The evaluation method for this study is selected by eliminating those methods in Table 3

that have favouring conditions, which differs greatly from the conditions of this study.

Every quantitative evaluation method can be eliminated as the expected results of this

study can’t be clearly measured, which can be considered to be even a requirement for a

successful evaluation. Benchmarking is eliminated as the included tools deal heavily with

human-intensive tasks. Qualitative case study is eliminated also, because the evaluation

won’t be done during a real software project, as this evaluation is done with academic

purposes and not by an organization looking to improve their software development

process. The methods left are qualitative screening, qualitative experiment, qualitative

survey, and qualitative effects analysis, which all will be explored and analysed more

thoroughly next.

4.2.5 Practical issues and the evaluation method selection

A golden rule for selecting the correct evaluation method is to choose the simplest method

that satisfies the evaluation requirements, but there are also three practical aspects that

can influence the choice. The first aspect is the time needed for conducting the evaluation,

second is the required confidence towards the results of evaluation, and third is the cost

of the evaluation. These aspects can be used to determine the right evaluation method

choice if there are multiple options and the evaluation organizer is unable to select one

method over another, or if the evaluation organizer wants to ensure the success of the

evaluation. (Kitchenham, 1996c)

From the evaluation methods options left, Kitchenham (1996c) categorizes qualitative

experiment and qualitative screening to take several weeks, while quantitative survey and

-effects analysis would only take a few days, if the data for each method is already

gathered. For this study the data hasn’t been gathered, so the data gathering process would

probably take at least several weeks, as on effects analysis the expert to provide an

opinion would need to be discovered, and on survey it would be the participants who

would need to be found. This would put these methods to require more time than feature

screening and experiment.

Comparison of the relative costs of the potential methods are similar to the time it would

take to conduct them. Kitchenham (1996c) marks effects analysis evaluation as very low

cost, and survey evaluation as low in relative cost. However, it is noted that this evaluation

is done by assuming that the data is already gathered, and the gathering process would

require significant investment. Both screening and survey are categorized to have a

medium relative cost. On survey evaluation it is noted how creating the survey could

possibly take some time, as well as the survey participants must be given some time to

familiarize and answer the survey. On screening evaluation, it is noted how a single

person can conduct it in a few weeks, but how it would take longer if a more detailed

feature analysis were conducted. The comparison of relative cost of potential evaluation

methods would push the selection towards selecting screening evaluation, because overall

it appears as the most suitable option. Survey- and effects analysis evaluation would

probably be too costly to conduct, due to the need of gathering the data, and survey

evaluation remains quite neutral for the time being.

The last practical issue to consider is the relative risk of each evaluation method.

Kitchenham (1996c) explains that you should choose an evaluation method, which gives

you a good enough confidence to trust the results of the evaluation (e.g., if the tool under

evaluation is going to be used in a critical process, which would cost a lot in case of a

failure, you should choose an evaluation method, which produces highly reliable results).

30

From the evaluation methods left, the experiment evaluation has a low relative risk,

survey evaluation has medium risk, and both screening- and effects analysis evaluations

have very high risk. In this study the risk of failure is minimal, as it is conducted in

academic purposes, and the achieved results are not going to be used directly in any

commercial project. However, as this is a relatively new and certainly quickly advancing

topic, the possibility must be recognized that there might be people, who could potentially

come across this paper and use the achieved results on their projects. Still, the relative

risk of the selected evaluation method must be recognized and mentioned as a threat to

validity, so the reader is able to form their own opinion about the reliability of the results

and decide whether they are going to use the information or not.

It appears that screening evaluation based on feature analysis is the most suitable

evaluation method for this study. As the evaluation purpose of this study is to explore

different tools and functionalities that Dapp development environments should possess,

screening evaluation is the best choice as it is the only evaluation method that is suitable

for evaluating a large number of tools or methods at the same time. It is also expected that

documentations of different development environments and tools will be heavily relied

on for the evaluation, which is the way that screening evaluation is done. Other aspects

(i.e., relative risk, relative cost, and the length of evaluation) also indicates that the

selection is correct, or at least they don’t hint about it being a bad selection. The principles

and the process of how the feature set is created are explained in the next chapter.

31

5. Feature analysis

Kitchenham and Jones (1997a) explain that the purpose of feature analysis evaluation is

to try to put objective, rational reasoning behind a “gut feeling”, when it comes to

selecting a tool or method to be used. This chapter explains the background of feature

analysis more thoroughly, how feature set and evaluation criteria are created, showcases

the produced feature set, and explains how the evaluation process is carried out.

A simple way of understanding a feature analysis is to think of it as a checklist of features

a product should have. After an initial inspection you have limited your options into just

a few, and you can conduct a more detailed evaluation on those options left. However,

when it comes to software engineering, creating a simple checklist becomes a challenging

task to do. Usually, the requirements towards different tools and methods are not so

straightforward, that a simple yes or no answer would be sufficient enough to answer the

question. For free to use tools and methods, the evaluation is often conducted to provide

guidance for decisions to whether to use some specific tool or method on a specific task.

In this scenario, the results must provide information about how well the tool or method

suits the intended use case, are there any drawbacks that should be considered, and are

there any other advantages that using the tool or method could bring. (Kitchenham and

Jones, 1997a)

5.1 Screening mode

The reasoning and the process of selecting the screening mode to be the evaluation

method is explained in the previous main chapter. Screening evaluation is conducted by

a single person, and it is the best approach to evaluate a large set of tools or processes in

a complex context. During the evaluation, the evaluator must identify some candidate

tools or methods to be included on the evaluation, creating the evaluation criteria,

gathering information and scoring each feature of each tool or method, and analyse and

present the results. Evaluation is based only on documentation, and thus it produces not

so reliable results. Due to being conducted by a single person only, the results can also be

biased (Kitchenham and Jones, 1997c). However, the validity of the results can be

improved by performing a more detailed evaluation (Kitchenham and Jones, 1997a).

In order to increase the validity of the results, this study uses some elements of the case

study evaluation method. Even though the case study method wasn’t a good fit to be

selected as a main evaluation method, it possesses some aspects that could benefit the

screening mode evaluation, and thus the evaluation would produce more reliable results.

How the evaluation is conducted is explained later in the chapter.

Once the evaluation method is selected, Kitchenham and Jones (1997a) explain that the

next steps are:

1. Create a scoring/ranking system, which will be used to evaluate all the features.

2. Choose how the responsibilities of the actual feature evaluation will be shared.

3. Execute the evaluation.

4. Analyse the results.

5. Present the results.

32

5.2 How feature set is created

The aim of the feature analysis is to create an evaluation framework for smart contract

development environments. The evaluation is concerned about identifying and ranking

different features that developers would like to have within their development

environment to aid the development process. Each identified feature is listed and the

purpose of it explained, as well as is the reasoning for the evaluation criteria.

It is important to understand that a development environment/framework is not required

at all in software development. The purpose of it is to ease the developer’s task of

developing a software by automating some of the tasks as well as providing different tools

within the environment/framework to be used by the developer. Thus, none of the features

is evaluated as a mandatory feature to have, as Kitchenham and Jones (1997c) put it as

failing to meet a single mandatory feature would mean that the tool or process under

evaluation would be unusable. However, as the development environment/framework is

highly personal choice, which is influenced by the needs of the developer, the evaluation

can’t claim that some environment/framework is unusable if it doesn’t possess a certain

feature, as the developer might not care at all about that specific feature. This changes

however, if the development environment has a certain feature that doesn’t work as

intended, as this would mean that the environment doesn’t provide what it promises to

deliver, and in this scenario the development environment can be considered to be

unusable. However, in this study failing to execute some of the functionalities will be

noticed in the evaluation as a reduction of score, but no development environment will be

declared as unusable. In short, missing a feature doesn’t make the development

environment unusable, but failing to execute a promised feature reduces points.

The evaluation criteria features are created by merging the requirements identified in the

literature review chapters with the high-quality product characteristics, which are

described next.

5.3 Characteristics of a high-quality product

In order to create objective evaluation criteria for different tools, the characteristics of an

ideal tool must be first identified. ISO (International Organization for Standardization)

provides standards, which are developed from the expertise of the field’s experts, and

they describe optimal ways to do different tasks (e.g., how to manage people, how to

reduce accidents in the workplace, and how software engineers could keep their users

sensitive information secure) (ISO, 2022b). ISO standards have been widely accepted and

used throughout different industries and in academics it has been considered to be a norm

to use their standards for different purposes. ISO/IEC standard 25010:2011 provides

among other things a product quality model, which contains a total of eight different

characteristics along with their sub characteristics, that makes a high-quality product

(ISO, 2022a). The most suitable characteristics for the evaluation context that are taken

in consideration in this study are displayed in Figure 4.

33

Figure 4. Relevant characteristics of a high-quality software product.

Each of the top-level high-quality characteristics have multiple second level attributes

that essentially form the top-level characteristic. Functional suitability describes how well

the functions provided by the product satisfy the needs of the users on specific tasks, and

this study examines that by evaluating what functionalities the development environments

possess out-of-the-box. Performance efficiency is about how efficiently the software

product utilizes the resources it has, and it is evaluated by examining how much resources

the development environment requires and does using it affect the performance of other

programs. Compatibility is about how well the development environment works with

other programs, and it is evaluated by whether the environment restricts using other tools

or programs in any way. Usability indicates how well and efficiently the users are able to

use the product, and it is evaluated by how easy and efficient it is to control the

environment, and how excessive and good the documentation is. Reliability is about how

well the program works under normal conditions, and it is examined by its availability

and does it operate as expected. Security character category is concerned about the

security aspects of the program, and it is evaluated by the reputation of the development

environment and does any security related concerns arise during the evaluation.

Maintainability is about updating and keeping the software operating, and it is evaluated

by how easy it is to update the environment and how much effort it takes. The last

characteristic is portability, which concerns how well the software can be used and

transferred to other devices and environments, and in this study, it is evaluated by the

difficulty of the installation process of the development environment, and the plugins as

well as the external tools. (ISO, 2022a)

34

5.4 Feature set

As previously explained, not all the development environments are created to provide the

same functionalities, but this study is concerned with comprehensive frameworks, so it is

expected for the framework to have the most commonly requested functionalities (i.e.,

testing framework, debugger, compiler, deploying, ability to import external

plugins/tools) that are identified in chapters two and three. This, however, becomes

difficult to evaluate as it is common for the development environment to have an ability

of importing an external plugin or a tool within the environment. For example, if testing

functionality would be a mandatory feature of the development framework and one of the

development frameworks would come without one, with the purpose of allowing users to

import their favorite testing framework and good instructions of how to do it, that would

mean that this development environment would be deemed as unusable, which in my

opinion isn’t the case. The same problem arises with determining the importance of the

feature. Continuing with the testing example, in general having the functionality to test

the smart contracts is clearly a mandatory feature, but once again the problem is with the

evaluation scale, as in theory, it can be even a deliberate choice to ship the environment

without such functionality.

These are the reasons why the evaluation criteria don’t declare the importance of each

feature like Kitchenham and Jones (1997b) suggests, but rather emphasizes the

importance of each feature within the evaluation criteria by altering the rewarded points

based on the importance. Now, for example, if the development environment comes

without the testing functionality and it doesn’t allow importing any testing framework, it

will receive zero points. However, if the user is able to import a testing framework, it will

receive 2 points, and if it comes out-of-the-box with the testing functionality, it will

receive 5 points. This adds a bit of flexibility in the evaluation, and in general should

produce more accurate results.

Conducting the evaluation this way results in leaving gaps between the grades, but there

are reasons why it is the most suitable option in this case. As Kitchenham and Jones

(1997d) explain, the aim of the feature analysis is to identify the tool or method that best

meets the user requirements. With this approach, the achieved results from the evaluation

can be compared by their absolute scores, as the evaluation criteria grading already

contains the level of importance.

Tables 4 - 11 display the feature set by the characteristic categories along with the

subcategory and the possible scores from the feature. The full feature set, which includes

the evaluation criteria, can be viewed as an appendix A.

35

Table 4. Features related to functional suitability.

Id Description Subcategory Score

1 How environment supports testing? Functional completeness 0, 1, 2, 5

2 Environment supports mainnet forking for testing? Functional completeness 0, 5

3 Environment automatically compiles the code when

running tests (if there are any changes)?
Functional completeness,

Usability
0, 1

4 How environment supports debugging? Functional completeness 0, 1, 4

5 How environment supports compiling? Functional completeness 0, 1, 2, 5

6 How environment supports deploying? Functional completeness 0, 1, 5

7 How environment supports gas optimization? Functional completeness 0, 2, 3, 5

8 How environment supports ensuring the security of the

smart contracts?

Functional completeness 0, 3, 5

9 Does the development environment enable parallel

frontend development (e.g., exposes interface for the

frontend to connect)?

Functional completeness 0, 5

10 Development environment worked as intended during

the evaluation?

Functional correctness 0, 1, 3

11 How much the environment supports and overall eases

the development process?

Functional

appropriateness

0, 1, 3, 5

12 Development environment supports Solidity and

Vyper?

Functional completeness 0, 3, 5

13 Development environment provides an extension for

VS Code?

Functional completeness 0, 3

Table 4 shows the features related to functional suitability characteristic category, which

is concerned with how well the product satisfies the users requirements on a specific task,

and it is evaluated with 13 features, which fall into three subcategories. Table 5 displays

the features related to performance efficiency.

Table 5. Features related to performance efficiency.

Id Description Subcategory Score

14 Does the development environment operate as fast as expected? Time behaviour 0, 1, 2, 3, 4

15 Does the development environment require so much resources

that it negatively affects using the PC?
Resource

utilization
0, 1, 3

16 Development environment has restrictions regarding the size of

the project?
Capacity 0, 5

As seen in Table 5, the performance efficiency, which is concerned with how efficiently

the software operates, is evaluated with three features, which fall into three subcategories.

Table 6 displays the features related to compatibility.

36

Table 6. Features related to compatibility.

Id Description Subcategory Score

17 Can Open Zeppelin be imported (or is it by default) within the

development environment?
Co-existence,

Interoperability
0, 3

18 Can Ganache be imported (or is it by default) within the

development environment?
Co-existence,

Interoperability
0, 3

19 Can Waffle be imported (or is it by default) within the

development environment?
Co-existence,

Interoperability
0, 3

20 Environment allows importing plugins/ external tools within the

environment?
Co-existence,

Interoperability
0, 5

As shown in Table 6, compatibility, which is about how well the product operates with

other programs, is evaluated through four features, which all contain two subcategories.

Table 7 displays the usability related features.

Table 7. Features related to usability.

Id Description Subcategory Score

21 Where the suitability and the main features of the environment

can be determined?
Appropriateness

recognizability
0, 1, 2, 3, 4

22 Development environment documentation have a search

function?
Learnability 0, 1

23 Environment documentation provides up-to-date

information/instructions for installing the dependencies?
Learnability 0, 4

24 Development environment has smart contract and Dapp project

tutorials/examples?
Learnability 0, 1, 2, 4, 5

25 Generally (as there is always some outdated information), does

the documentation appears to be up to date?
Learnability 0, 2, 5

26 Documentation explains how plugins, external tools, or

alternative functionalities can be imported to the environment?
Learnability 0, 1, 2, 3

27 How much the documentation could be improved? Learnability 0 - 5

28 Development environment has its own forum, in which

developers can ask help from other developers?

Learnability 0, 1, 2

29 Are the default commands to execute functionalities/ operate

environment long and difficult? (e.g., majority of them contain

more than 20 characters, at first it is beneficial to save them in a

text file?)

Operability 0, 1, 2

30 Are you able to start a new project under 10 minutes with the

environment (including the installation and possible

configuration)?

Operability 0, 2

37

As seen in Table 7, usability, which is about how well and efficiently the users can use

the product, is evaluated through 10 features, which fall into three categories. Table 8

displays the features which are related to reliability.

Table 8. Features related to reliability.

Id Description Subcategory Score

31 How many open issues the GitHub repository has from the past 30

days?
Maturity 0 – 5

32 Under normal circumstances, development environment can be

used any given time (e.g., not down every night at the same time)?
Availability 0, 5

As shown in Table 8, reliability, which is concerned with how well the program works

under normal circumstances, is evaluated by two features, which fall into two

subcategories. Table 9 displays the security related features.

Table 9. Features related to security.

Id Description Subcategory Score

33 Can security flaws be detected, or is there any reason to

questionable the security (including template projects)?
Confidentiality,

Integrity
0, 1, 2, 5

34 What is the package's health score on Snyk

(https://snyk.io/advisor/)?
Confidentiality 0 - 5

As seen in Table 9, there are two security related features, which contain two subcategory

characteristics. Table 10 displays features related to maintainability.

Table 10. Features related to maintainability.

Id Description Subcategory Score

35 User can change some of the functionalities to alternative

solutions (e.g., testing framework, development node)?
Modularity 0, 5

36 How much effort it takes to update the development

environment?
(No subcategory) 0, 1, 3

37 What is the philosophy of the development environment about

balancing new technologies/functionalities and stability?
(No subcategory) 0, 2, 5

As shown in Table 10, maintainability, which is concerned about updating and keeping

the software functioning, is evaluated with three features, out of which only one has a

subcategory. Table 11 displays portability related features.

38

Table 11. Features related to portability.

Id Description Subcategory Score

38 Development environment can be used on Linux, macOS, and

on Windows 10?
Adaptability 0, 5

39 Does the development environment have pre-requirements for

installation, and how much effort installing those requires?
Installability 0, 2, 5

40 How much effort does the development environment installing

process require?
Installability 0, 2, 5

As seen in Table 11, portability, which is about how the software can be used and

transferred to new systems and platforms, is evaluated with three features, which fall into

two subcategories.

As it can be seen on Tables 4 - 11, not every feature will reward a maximum of five points

unlike Kitchenham and Jones (1997d) suggests, and this is due to the decision of including

the level of importance within the evaluation criteria. It also requires a little, but important

addition for presenting the results, as the reader is likely to assume that a development

environment doesn’t support a certain feature well if it receives only one point, despite it

being the highest available grade. This is why the maximum available score is reported

along with the results, as it improves the readability of the results and also presents the

results in a much truthful manner.

5.5 How the evaluation is done

Evaluations are conducted in May 2022 using Arch Linux (a rolling release Linux

distribution, version Linux x64 5.17.19-arch1-1) as an operating system. VSCodium (an

open-source binary distribution of VS Code, version 1.67.2) is used as a text editor and

version 16.15.0 of Node (newest long term supported version).

The same evaluation process is done for every development environment selected in the

study. The process is started by identifying if there are any tutorial projects that are aimed

for newcomers to try the development environment out. Having these kinds of tutorials

is expected to be found from every development environment, as practically every

popular web framework provides those for obvious reasons. The possible provided

tutorial is followed to build an overall understanding of the characteristics and the

behaviour of the environment. If the development environment doesn’t have tutorials, the

evaluator is to try the environment out by trying to build a simple project possibly by

using the code examples in the development environment documentation, or at the last

resort building something by themselves.

Once the evaluator has gained some familiarity with the development environment, it is

time to go through the evaluation form feature by feature and give each of them a score.

During the scoring it is necessary for the evaluator to read the documentation of the

development environment and to continue using the environment to be able to score each

feature. Once every feature on the evaluation form is scored, the scores from the form can

be extracted and the graphs for presenting the results can be made.

39

6. Results

In this chapter, the achieved results from the evaluations are presented for each

development environment separately by first introducing the development environment

under evaluation, followed by displaying the results of the evaluation.

Three development environments are evaluated, which are Hardhat, Truffle, and

Brownie. The reasoning behind selecting these development environments over others is

that these specific environments appear to be the most comprehensive and well-liked

environments among the Ethereum smart contract developers. Probably due to the

immaturity of the technology, the term “development environment/framework” is broad

and contains products that have different kinds of functionalities and tools. Another point

worth noting is that it is quite common that you can import at least some part of a

development environment to another one (e.g., you can use Truffle for testing inside

Hardhat). Scaffold-eth, which is a popular development environment (i.e., is active and

has 7,072 GitHub stars), is left out from the evaluation for this reason, as it heavily

depends on Hardhat (i.e., for running local networks, deploying, and testing). In the

chapter three mentioned Embark, which has the third most stars on GitHub repository, is

replaced by a Python based development environment called Brownie, as Embark hasn’t

received an update since 2020. More information about each evaluated environment is

provided before presenting the results they received.

The results are presented through different kinds of graphs to enable readers to be able to

quickly form an overview of the results. As the evaluation criteria has gaps between the

possible scores, displaying results only by the percentage of the maximum available score

doesn’t necessarily tell the truth as that feature might not be that important in a bigger

picture (i.e., feature can either receive a score of zero or one). In this case, the graph will

display that the feature received zero percent of the available score, but it fails to tell the

importance of that feature. To resolve this, a graph, which displays the received score

against the maximum available score, is also used.

The most interesting points (e.g., the results of the most important features) of each graph

are analysed within this chapter but comparing and analysing the differences between the

results of each development environment is done in the next chapter. The raw results are

attached as an appendix B.

6.1 Hardhat

Hardhat is an open-sourced development environment created by Nomic Foundation. It

self-describes to be an “Ethereum development environment for professionals”, and

highlights running local blockchain for development and testing purposes, being flexible

and extensible, and having their own plugin ecosystem (Hardhat, 2022). It has received

3,332 stars on GitHub.

Hardhat received a total of 136 points out of a maximum of 164, which translates to

around 83 percent. Figure 5 displays the evaluation scores as a percentage by the

characteristic categories of a high-quality software product.

40

Figure 5. Hardhat evaluation score as a percentage by the characteristic category.

As an overview seen in Figure 5, Hardhat performed relatively well in six characteristic

categories (i.e., having at least 77 percent of the maximum available score), and relatively

bad in two (i.e., 50 percent or less of the maximum available). The strongest characteristic

for it was compatibility, in which it received the highest score in every feature. Usability

was the second strongest category, being six percent behind the compatibility. Security

and reliability were the weakest characteristic categories for Hardhat.

Figure 6 displays the evaluation scores as a percentage by feature id.

Figure 6. Hardhat evaluation score as a percentage by feature id.

41

By examining the evaluation score percentages by feature ids shown in Figure 6, it can

be seen that only one feature out of 40 received a score of zero, while 29 features received

the maximum scores. It is also worth noting that only five features received less than 50

percent of the maximum available score. Two features received less than 25 percent, three

features between 25 percent and less than 50, four features between 50 percent and less

than 75, and 30 features received 75 percent or more. These points indicate that Hardhat

provides a comprehensive support for Ethereum smart contract developers.

Figure 7 shows the received scores against the maximum available scores between the

features 1 and 13.

Figure 7. Hardhat scores against maximum scores on features 1 – 13.

As shown in Figure 7, on the most important features (i.e., those with a maximum score

of five) Hardhat received full points on six out of nine. Those six features were related to

testing, mainnet forking, compiling, deploying, parallel frontend development, and

language support. The biggest lack of support is related to gas optimization, as Hardhat

provides only instructions on how to import external tools into the development

environment. The remaining two features which didn’t receive the maximum scoring

were related to ensuring the security of the smart contracts and how much does the

environment overall ease the development process. Hardhat provides documentation also

on how to import external smart contract security tools, but it comes out-of-the-box

without one. The lack of support in these areas is the reason why Hardhat doesn’t receive

the full score on how much it supports during the development process. All the remaining

four features received the maximum possible grading.

Figure 8 shows the received scores against the maximum available scores between the

features 14 and 26.

42

Figure 8. Hardhat scores against maximum scores on features 14 – 26.

On the features between 14 and 26 as shown in Figure 8, Hardhat received the full score

on 11 features. The only five-point feature that didn’t receive the full was related to

tutorial projects, and the reason for it was that the frontend of the “hackathon boilerplate”

tutorial project wasn’t implemented using the current standard practices.

Figure 9 shows the received scores against the maximum available scores between the

features 27 and 40.

Figure 9. Hardhat scores against maximum scores on features 27 – 40.

As displayed in Figure 9, between the features 27 and 40, there are 10 five-point features

and Hardhat received the full score only on five of them. The features that received the

full score of five were related to quality of the documentation, availability of the

43

development environment, ability to use alternative solutions for the functionalities (e.g.,

testing), availability on the three main operating systems (i.e., Windows, Linux, macOS),

and installing process. Feature 31 was the only one that received zero points, and it was

related to the number of open issues on the GitHub repository. Hardhat had 42 open issues

and to receive a score of one, the repository should have 40 or less open issues. However,

having a high number of open issues can be seen as a positive thing on the contrary of the

product being faulty, as it can also mean that the product is popular, and the community

are passionately trying to improve the quality of the product. This might be the case with

Hardhat, as it has performed relatively well on the evaluation, and no major bugs were

identified while conducting the evaluation. Feature 33 is the next worst graded five-point

feature on the set, and it received the score because the dependencies of a template project

were not up to date as it included one critical vulnerability. The last three five-point

features that didn’t receive the full scores were related to balancing between stability and

upgrades, installation pre-requirement process, and the score that an external service

called Snyk provides to the development environment.

6.2 Truffle

Truffle is an open-sourced development environment created by ConsenSys, and it self-

describes to be “a world class development environment, testing framework and asset

pipeline for blockchains using the Ethereum Virtual Machine (EVM), aiming to make life

as a developer easier” (Truffle Suite, 2022). Its GitHub repository has 13,213 stars.

Truffle received a total of 127 points out of a maximum of 164, which translates to around

77 percent. Figure 10 displays the evaluation scores as a percentage by the characteristic

categories of a high-quality software product.

Figure 10. Truffle evaluation score percentage by the characteristic category.

As seen in Figure 10, Truffle performed decently well on four characteristic categories

(i.e., functional suitability, usability, portability, and maintainability), decently on three

44

(i.e., reliability, performance efficiency, and compatibility), and weakly on one (i.e.,

security). Functional suitability is the strongest characteristic of Truffle, as it scored 89

percent of the maximum available score. Truffle also scored noticeably consistently, as

five characteristic categories out of the eight are within 13 percentage points, and six

within 20.

Figure 11 shows the evaluation scores as a percentage by feature id.

Figure 11. Truffle evaluation score as a percentage by feature id.

As shown in Figure 11, Truffle scored the maximum available score in 27 features out of

40, which indicates that Truffle supports developers very well in a lot of aspects.

However, it totally fails on three occasions (i.e., doesn’t score even a single point), and

on top of those it provides weak support in six features (i.e., percentage 50 or less). Four

features received less than 25 percent as well as between 25 percent and less than 50, five

features between 50 percent and less than 75, and 27 features received 75 percent or more.

Figure 12 shows the received scores against the maximum available scores between the

features 1 and 13.

45

Figure 12. Truffle scores against maximum scores on features 1 - 13

As shown in Figure 12, on the features between 1 and 13, Truffle received the maximum

amount of score on 10 features. The five-point features that provided full support were

related to testing, mainnet forking, compiling, deploying, parallel frontend development,

and language support. The two five-point features that failed to provide full support are

related to gas optimization and ensuring the security of the smart contracts. All the rest

features received the maximum amount of score available.

Figure 13 shows the received scores against the maximum available scores between the

features 14 and 26.

Figure 13. Truffle scores against maximum scores on features 14 – 26.

46

As shown in Figure 13, between the features 14 and 26, Truffle scored the maximum

available score on every five-point feature, and they were related to restrictions to project

size, importing external tools and plugins, tutorial/example projects, and documentation

being up to date. What’s noticeable is that Truffle doesn’t provide any support on three

features. These features are related to the ability to import Open Zeppelin or Waffle into

the environment, and documentation failing to provide instructions on how to install the

dependencies of the development environment. These instructions are provided only on

the tutorial project, which is separated from the documentation, which contains a quick

start section, which should have this information, or at least provide a link to where this

information can be found.

Figure 14 shows the received scores against the maximum available scores between the

features 27 and 40.

Figure 14. Truffle scores against maximum scores on features 27 – 40.

On features 27 to 40, displayed in Figure 14, Truffle received a maximum score on seven

features. On five-point features, Truffle was scored to provide full support on four

occasions out of 10, and these features were related to availability, using alternative

solutions for functionalities, being supported on every main operating system, and

installing process. The five-point features that could provide more support are related to

documentation, GitHub issues, security, Snyk score, balancing between updates and

stability, and pre-requirement installation process.

6.3 Brownie

Brownie is an open-source development environment, and it self-describes to be “a

Python-based development and testing framework for smart contracts targeting the

Ethereum Virtual Machine” (Brownie, 2022). It has 2,017 stars on the GitHub repository.

Brownie received a score of 114 out of 164, which translates to around 70 percent. Figure

15 displays the evaluation scores as a percentage by the characteristic categories of a high-

quality software product.

47

Figure 15. Brownie evaluation score percentage by the characteristic category.

As displayed in Figure 15, compatibility is the strongest characteristic of Brownie,

receiving the maximum available score, and security the weakest, receiving only 20

percent. Four characteristics were within seven percentage points, and five characteristics

received at least 77 percent of the maximum score. Only two characteristics received less

than 50 percent of the available score, but the actual scores were much lower than that

(i.e., 33 percent for portability and 20 for security). Brownie is lacking greatly in support

on these characteristics, while providing good support on five characteristics.

Figure 16 displays the evaluation scores as a percentage by feature id.

Figure 16. Brownie evaluation score as a percentage by feature id.

48

Shown in Figure 16, Brownie received a full score on 24 features out of 40, while failing

to receive any points on five features. Eight features received less than 25 percent, three

features between 25 percent and less than 50, five features between 50 percent and less

than 75, and 24 features received 75 percent or more.

Figure 17 shows the received scores against the maximum available scores between the

features 1 and 13.

Figure 17. Brownie scores against maximum scores on features 1 – 13.

Between the features 1 and 13 shown in Figure 17, Brownie received a maximum grade

on nine features. There are nine five-point features, and Brownie provides full support for

seven of them. These fully supported features are related to testing, mainnet forking,

compiling, deploying, ensuring smart contract security, parallel frontend development,

and language support. The two five-point features that Brownie fails to provide full

support are related to gas optimalization and how much does the environment ease the

development process. There are four features that can receive a score less than five, and

Brownie provides full support on two of them, while failing to provide any support on

one of them.

Figure 18 shows the received scores against the maximum available scores between the

features 14 and 26.

49

Figure 18. Brownie scores against maximum scores on features 14 – 26.

As shown in Figure 18, there are four five-point features between the features 14 and 26,

and Brownie fully supports two of them, and they are related to project size and importing

external tools and plugins. The two five-point features that Brownie fails to fully support

are related to example/tutorial projects, and how up-to-date the documentation is. Figure

19 shows the received scores against the maximum ones between the features 27 and 40.

Figure 19. Brownie scores against maximum scores on features 27 – 40.

The features from 27 to 40, displayed in Figure 19, show that Brownie fails to provide

full support on seven five-point features out of ten. These five-point features, that

Brownie doesn’t fully support, are related to documentation quality, the number of open

GitHub issues, security, Snyk’s score, the balance between new features and balance, pre-

requirement installation process, and development environment installation process.

50

7. Comparative analysis of the results

In this chapter, the results that each development environment received are compared and

analysed to identify what commonalities and differences they have, and which

environment provides the most comprehensive support for Ethereum developers.

As the evaluation criteria doesn’t have an acceptance threshold for the reasons stated

earlier, Kitchenham and Jones (1997d) explain that the scores from the evaluations must

be compared against each other. This is done by first examining the score percentages,

which each development environment received by characteristic categories. This

comparison is displayed in Figure 20. After this, the scores of all evaluated development

environments are presented feature by feature in Figures 21, 22, 23, and 24, and the

identified differences are analyzed. The colors in the figures represent the theme color of

each development environment, while black displays the maximum available score on

each feature.

Figure 20. Comparison of results by characteristic categories.

As seen in Figure 20, for the most parts, the evaluated development environments

performed quite similarly across the characteristics, maintainability being the prime

example, in which every environment received the same score. Hardhat either won or

shared the first place in six characteristic categories, while Brownie did so in three, and

Truffle in four.

On functional suitability, all the development environments provide a very similar level

of support for the developers, but Truffle wins the category narrowly with a percentage

of 89, followed by Hardhat with 88, and then Brownie with 84. On performance efficiency

Hardhat received the best score with 85 percentages, followed narrowly by Brownie with

77 and Truffle with 69. Hardhat and Brownie received the maximum available score on

compatibility, while Truffle only 57 percent. On usability Hardhat won with a decent

margin of 12 percentage points over Truffle, while Brownie received only 55 percent of

51

the maximum score. Brownie scored the highest on reliability with 80 percent, followed

by Truffle with 70 percent, and Hardhat with 50 percent. Hardhat and Truffle shared the

top place on security with 40 percent, while Brownie received only 20 percent. All three

development environments scored the same 77 percent on maintainability. Hardhat and

Truffle shared the first place on portability with 80 percent, while Brownie scored only

33 percent.

Figure 21 displays the comparison of scores between the features 1 – 10.

Figure 21. Comparison of scores between features 1 to 10.

As shown in Figure 21, all the development environments receive the maximum score on

the first six features, and to do so, the development environment must come out-of-the-

box with a testing functionality/framework along with a documentation about how to use

it, it must support mainnet forking (i.e., forking the state of the Ethereum mainnet for

testing purposes), compiling the smart contracts automatically when running tests,

providing debugging support with a documentation out-of-the-box, and supporting

deploying out-of-the-box. None of the environments provided full support on gas

optimization, which is the feature number seven. Truffle and Brownie provide a tool or

functionality to evaluate gas usage, while Hardhat provides documentation on how an

external tool or plugin can be imported to the development environment. Brownie is the

only one to provide full support on ensuring the security of the smart contracts, but it must

be noted that the integrated tool is MythX, which requires a paid subscription to be used.

Both Hardhat and Truffle provide instructions on how to integrate external tools. All the

development environments support parallel frontend development within the same

environment by providing an interface, in the form of a localhost port, for the frontend to

connect to. Hardhat and Truffle worked as expected during the evaluation, whereas at

first Brownie failed to run tests and to start a local blockchain. As Brownie was

successfully installed, it should be able to execute all the functionalities it provides.

However, the solution was related to the installation process (i.e., using pip instead of

pipx, which Brownie suggests to be used for installation), and it is discussed in greater

detail with the features 39 and 40.

52

Figure 22 displays the comparison of scores between the features 11 – 20.

Figure 22. Comparison of scores between features 11 to 20.

On features between 11 and 20 displayed in Figure 22, all the development environments

received the highest available score together on five features, and out of these five

features, three are five-point features. To receive a full score on feature 11, the

development environment must receive a full score of 43 on features between 1 and 10.

Receiving this score would mean that the development environment provides a full

support on every identified main Ethereum development environment functionality. As

every evaluated environment has some functionalities that could be improved, none of

them shall receive the full score. Every development environment supports both Solidity

and Vyper high-level programming languages, and they receive the maximum score on

feature 12. Both Hardhat and Truffle provide an extension for VS Code and receive the

full score, while Brownie does not, and thus doesn’t receive a single point. The purpose

of the extension is to provide all the necessary and useful editor functionalities (e.g.,

syntax highlighting, shortcuts to editor) available within the editor. On feature 14,

Hardhat receives the highest score in three points, as the out-of-the-box testing

functionality works noticeably fast. Brownie scores 2 points as no attention was paid to

the matter during the evaluation, and Truffle receives only a single point, because the out-

of-the-box testing functionality is slow (e.g., executing five tests takes 21 seconds). None

of the development environments are so resource heavy that using them could be noticed

while using the computer, nor do they have any restrictions on the project size. On

supporting one of the most popular Ethereum development tools, Hardhat and Brownie

support all three selected tools (Open Zeppelin, Ganache, Waffle), while Truffle supports

only Ganache. However, all three development environments allow external tools and

plugins to be imported inside the environment.

Figure 23 displays the comparison of scores between the features 21 – 30.

53

Figure 23. Comparison of scores between features 21 to 30.

As seen in Figure 23, all the development environments receive maximum scores on the

features 21 and 22, and it means that the suitability and the main features of the

development environment must be identifiable both on the homepage and on the GitHub

repository. Hardhat is the only environment, which provides up-to-date documentation

on how to install the dependencies, which is evaluated as feature 23. Truffle provides

both smart contract- and Dapp tutorial projects, with up-to-date instructions, while

Hardhat provides a good smart contract example, but the Dapp example project’s frontend

should be updated to follow the current best practices. Brownie has a smart contract

example as well, but it still receives a single point as the Dapp examples don’t have a

good enough documentation to follow along, and for example testing doesn’t work on

these templates, at least out-of-the-box. Even though the installation process of Brownie

was successful and all the documented dependencies, and those that are actually required,

but which the documentation fails to mention, were installed, it is possible that the testing

not working might be related to the environment. However, the fact that testing does work

on the smart contract tutorial project would suggest otherwise. Both Hardhat and Truffle

have their documentation up to date, while Brownie’s documentation contains some

outdated information (e.g., broken links, installation process should be updated). Feature

26 evaluates does the development environment’s documentation include instructions

how to import external tools within the environment, and all three evaluated environments

provide that information. Regarding the overall quality of the documentation, Hardhat

rises above the others. Its documentation is clear and well-structured, it provides code

examples, and there is not much to be improved. Truffle also has excellent documentation

as it provides code examples with a decent structure. It could improve it however by

including the instructions to install dependencies within the documentation or at least

explaining that the information for that can be found at the beginning of the tutorial.

Brownie’s documentation quality is what is expected from a technical documentation, as

it does not lack in any aspect, but nor does it stand out either. Feature 28 is about having

an own platform for discussion. Both Hardhat and Brownie have a discord community,

while Truffle uses GitHub discussion, which isn’t active. The commands used within

Truffle and Brownie are simple and easily remembered, while Hardhat’s are a bit longer,

54

and storing the commands to a text file might be beneficial, at least when starting out to

use it. Installing both the dependencies and the development environment, and starting a

new project, can be done in under 10 minutes on Hardhat and Truffle, while with Brownie

it took more than that.

Figure 24 displays the comparison of scores between the features 31 – 40.

Figure 24. Comparison of scores between features 31 to 40.

As shown in Figure 24, feature 31 rewards points based on the number of open issues

from the past 30 days in the GitHub repository. Brownie receives the highest score with

12 open issues, Brownie the second highest with 26, and Hardhat fails to get a single point

with 42 open issues. As explained earlier, while having a lot of open issues doesn’t

necessarily indicate about a good quality and secure software, it can also be seen as a

bright positive, as the community of the software is actively trying to improve the quality

of the product. In a long run this approach might be more beneficial for the development

environment. All the development environments score the highest available score of five

points in feature 32, as none of them have any regular downtime, when the developer

would not be able to use the environment. All the development environments have

security vulnerabilities on their tutorial/example project dependencies. Hardhat has two,

Truffle eight, and Brownie twelve critical dependencies, and they all receive a score of

one on this feature. Next feature gives scores based on the package’s health score on

Snyk, which is takes into consideration the popularity, maintenance, security, and

community of the open-source packages. Hardhat’s score is 89 and Truffle’s 86, and they

both receive three points, while Brownie receives only a single point, with the package

score of 79. All the development environments receive the full scores on features 35 and

36, as they all enable developers to change some of the functionalities to use alternative

solutions, and all the development environments can be updated from terminal in under

three minutes. All the development environments have a decent balance between

introducing new features and technologies and having the stability by not introducing

breaking changes. Feature 38 evaluates can the development environment be used on the

main operating systems (i.e., Linux, macOS, Windows) and as all the environments in the

evaluation can be used, they all receive the maximum amount of score. Regarding

55

installing the pre-requirements/dependencies of the development environment, all the

environments could do a better job. Hardhat and Truffle receive three points as they

provide the information about pre-requirements in a tutorial, which is separate from the

documentation. Out of these two Hardhat provides better support, as it has instructions

on how to install the pre-requirements, whereas Truffle provides only links to the

technologies it uses depends on. Brownie receives zero points, because while it does

actually include the pre-requirement information within the documentation, the provided

information is either outdated or simply wrong, as the development environment can be

installed, but all the functionalities do not work. On the last feature, Hardhat and Truffle

receive a full score of five points, as they can be installed from the terminal in under two

minutes. Brownie receives zero points, because of the reasoning on the previous feature,

although it can also be installed from terminal in under two minutes.

56

8. Discussion

In this chapter a summarization of the achieved results is presented, the importance of the

results for different stakeholders are discussed, the used research method is evaluated by

examining the produced results, and possible shortcomings of the study are discussed.

8.1 Summarization of the results

Overall, all the evaluated Ethereum development environments (i.e., Hardhat, Truffle,

and Brownie) received for the most part quite similar evaluation scores across the

characteristic categories. The maximum available score from the evaluation is 164, and

Hardhat received the most points with a score of 136, which translated to around 83

percent of the available points. Truffle was the second-best development environment

with a score of 127 points, which translated to around 77 percent, and Brownie was third

with a score of 114, which in turn translates to around 70 percent. When it comes to either

winning or sharing the first place in a characteristic category, Hardhat did so in six

categories, while Truffle in four, and Brownie in three.

Hardhat performed well throughout the evaluation, as it provides full support for a lot of

features, while lacking greatly only on a few. Hardhat shines by offering a fast, highly

modifiable development environment with excellent documentation. Hardhat promotes a

philosophy of enabling developers to import their own existing tools within the

development environment, and the results are well in line with that. However, as

Ethereum is constantly growing and new developers are transcending over, Hardhat could

either provide even more support in the form of tools out-of-the-box, or maybe create a

separate package which would be aimed at more inexperienced Ethereum developers,

who don’t have any experience or preferences to which smart contract development tools

they would like to use.

Truffle is the most popular development environment according to the amount of GitHub

stars, but it came second in this evaluation. One of the biggest features that Truffle is

lacking is testing, as executing tests simply takes too much time compared to the modern

standards. However, besides testing, Truffle is a tested development environment, which

has had time to mature, and this can be seen for example in the fluidity of operating the

environment, and in a comprehensive documentation. The boxes (i.e., template projects)

are a great way to kickstart a new project.

Brownie came last in the evaluation, but it must be noted how much the failure to provide

correct instructions for the installation process affects the final score. If Brownie would

have provided that instruction and worked correctly after installation, it would have

received a total of 130 points, and it would have come second in the evaluation. This

shows that Brownie is by no means a bad development environment in general once it is

up and running correctly.

8.2 How the results compare to the literature review

Looking at the commonly complained aspects of Ethereum development in the literature

review, the first common complaint was about not having a tool to ensure the security of

the smart contracts. Brownie was the only one to come with an integrated security

functionality, although the integrated tool was MythX, which requires a subscription to

57

be used. Hardhat and Truffle provided instructions on how to integrate security related

tools into the environment. Related to the topic, in the literature review praised Slither is

available to be used through GitHub actions, so every development environment can use

it in that way, and it could be one explanation of why Hardhat and Truffle ship without a

security related tool.

A second complaint was about the need for a tool which would optimize the gas usage

automatically at the source code level, and none of the development environments

supported this feature fully. Truffle and Brownie provided a functionality to view the

amount of gas that calling a function in the smart contract costs, while Hardhat provides

instructions on how to import a plugin inside the environment to provide the same

functionality that Truffle and Brownie ships with.

A third complaint that was mentioned often was about not having tools to debug the code.

All the evaluated development environments come with a functionality to debug the code

by logging, and Truffle provides even a debugger out-of-the-box. Debugging by logging

events is for most of the people the way they learn to debug the code, and the fight over

is it better to debug the code with a debugger or by logging is an ongoing argument, and

for some people providing a debugger is without a doubt a major positive.

Comparing these common complains that occurred in the literature review to the achieved

results, it can be said that Ethereum development environments provide a lot of the

required functionalities out-of-the-box and they do overall ease the development process,

but they can still do a better job by including a more comprehensive and effective tools

and functionalities.

8.3 Importance of the results

As Ethereum will likely continue to grow, the results of this study can be used for multiple

purposes by different stakeholders, main ones likely being Ethereum researchers and

developers, development environment communities, companies behind the development

environment development, and companies, which develop Ethereum based products.

The achieved results provide a good starting point for evaluating the Ethereum

development environments in academia. As stated before, to the author’s best knowledge,

no academic studies have been conducted to explore this topic, so this paper shall provide

the base for the topic for others to expand from. As Ethereum is a quickly advancing

technology, it is necessary for academia to produce new information to support its

development, and all the other aspects related to Ethereum. Some possible directions to

continue the academic research about the topic are listed in the next chapter.

For Ethereum developers, the results will provide a valuable insight of the differences

that exist between the currently popular Ethereum development environments. Using the

achieved results, the developers can compare the characteristics of each development

environment and make an informed decision of which one they choose to use for

developing Ethereum related software.

For both the communities and companies behind the development of development

environments, the results provide direct feedback on those environments that were

included in the evaluation, and those environments that were not included can use the

created evaluation criteria to evaluate their own development environment to see how

well they do support the needs of the developers.

58

The last stakeholder, who is likely to use the achieved results, is companies developing

Ethereum based products. They can use the results to figure out which development

environment they want to choose to be used in their organization, as well as what kind of

support developers typically need while developing Ethereum-based products.

8.4 Evaluation of the results and the used research method

A customized version of the DESMET evaluation method was used in this study and

doing so brought some positives and some negatives to the study. The DESMET method

was changed by including the importance of the feature within the evaluation criteria. For

example, providing a testing framework out-of-the-box is an important feature, so the

maximum available score for it is five points, whereas providing a plugin for editor is

more of a nice-to-have feature, as while it supports the developer in the task, it is not an

essential part of the development environment, so the maximum score for providing it is

only three points.

Importing the importance within the evaluation criteria rises some problems, like having

features rewarding different amount of maximum scores, as providing full support for

features of different level of importance must not receive the same amount of score (e.g.,

providing a testing framework with a comprehensive documentation is highly important

and it rewards five points, while offering a plugin for VS Code is more of a nice-to-have

feature, so it can reward only a maximum of three points). Combining this with the fact

that there are some simple yes/no features on the feature list and the evaluation criteria

might contain some gaps between the possible scores, will lead to some problems when

presenting the achieved results and evaluating the correctness of the achieved results.

However, to solve the problem of how to present the results, the results are presented by

using multiple different types of graphs to visualize the achieved results. First on the

chapter six, the results of each evaluated development environment are presented by

displaying on the first type of graph the percentage of achieved scores of each

characteristic categories, followed by displaying on the second graph the achieved

percentage score on each feature. After this, all the features are presented along with the

evaluated score and the maximum available score in absolute numbers. Following the

presentation of individual scores, on the chapter seven the achieved percentage scores by

characteristic categories of every development environment are displayed in the same

graph to visualize how their scores compare between each other. After this all the features

are gone through while displaying the scores of each development environment against

the maximum available score.

While the evaluated development environments shared a lot of commonalities, for

academic purposes it would be beneficial to be able to draw more differences between

the environments. In practice this could be done for example by focusing on a specific

characteristic category and creating the feature set in a greater detail so the odds of

receiving the same scores reduces, or by increasing the number of features in the set. The

future directions are discussed more in the next chapter.

The positive side of including the importance within the evaluation criteria is the

straightforwardness of reading the results and having a full control on setting the

importance to each feature separately, as another option would be to have either a

common multiplier on a certain character category, or to have a separated multiplier on

each feature. Having the same multiplier on every feature inside the characteristic

category is challenging, because it would mean that each feature should be created in a

59

way that they all share the level of importance. The problem with having a separated

importance on every feature is related to presenting the results, as displaying the results

in a same graph would require importing the importance of the feature to the received

score. With these alternative options, the choice of importing the importance within the

evaluation criteria seems justified and a correct decision.

60

9. Conclusion

In this chapter, the research problem is answered by answering research questions,

limitations and threats to the validity of the study are examined, and possible future

directions from the study are discussed.

9.1 Answer to the research problem

The research problem of the study was to examine which tools and functionalities an

Ethereum developer needs to have in their development environment to develop a high-

quality software product efficiently and evaluate how well the currently existing solutions

fulfill these requirements. This research problem was set to be answered through the

following three research questions:

RQ1 What are the requirements for developing and deploying smart contracts

into the Ethereum blockchain and how can those requirements be

categorized?

RQ2 How can a development environment fulfill these requirements?

RQ3 How do the existing development environments meet the requirements?

As an answer for RQ1, functional requirements set for the Ethereum development

environments are related to testing, mainnet forking, debugging, compiling, deploying,

gas optimization, ensuring the security, enabling parallel frontend development,

providing language support for both Solidity and Vyper, providing an extension for the

editor, enabling the integration of external tools within the environment, providing

tutorials and examples of Ethereum projects, and providing information on how to

develop Ethereum projects. On top of these Ethereum related requirements, the

development environment must also fulfill the requirements of a high-quality software

product. According to the ISO/IEC standard 25010:2011, these characteristics can be

categorized into functional suitability, performance efficiency, compatibility, usability,

reliability, security, maintainability, and portability.

Regarding RQ2, Ethereum development environments can fulfill these requirements by

providing support for the Ethereum related functional requirements as well as for the

characteristics of a high-quality software. To evaluate the level of support a development

environment provides for an Ethereum developer, a feature list including an evaluation

criteria was created to score the amount of support the development environment

provides. This feature list contains 40 features across the characteristic categories of a

high-quality software, including the Ethereum specific functional requirements.

As for RQ3, a total of three Ethereum development environments were evaluated.

Hardhat performed best at the evaluation and received around 83 percent of the maximum

points, Truffle came second with around 77 percent, and Brownie last with around 70

percent of the maximum points. Out of the eight characteristic categories, only in security

all the evaluated development environments failed to receive at least 50 percent of the

maximum score. All three evaluated development environments performed well in the

functional suitability characteristic category, as Hardhat received 88 percent of the

maximum points, while Truffle did 89 and Brownie 84 percent. Based on these points, it

61

can be said that the currently existing development environments provide at least a decent

support in all characteristic categories but one, while providing good support in Ethereum

related functional requirements.

9.2 Limitations and threats to validity

The study has one major limitation, and it is excluding the browser-based Ethereum

development environments from the feature set, meaning that the feature set is not

suitable for evaluating browser-based development environments. In the literature review

mentioned and praised Remix is this kind of development environment, and it is often

recommended as a quickest and simplest way to start developing Ethereum smart

contracts.

Another limitation in the study is that it does not take into consideration the quality of the

correctly operating functionalities of development environments, except the performance

speed of the functionalities. This can lead to inaccurate results as in a theory, a

development environment might be declared to be the best because it provides a lot of

functioning functionalities out-of-the-box, while the environment that comes second,

comes out-of-the-box with a more high-quality functionalities, which produce more

accurate results than the functionalities provided by the environment that won the

evaluation. As this can be a result of an informed decision of shipping the development

environment without a certain functionality and providing information to the user on how

to import the tool or functionality of their choosing, not winning the evaluation because

of this doesn’t represent the whole picture.

The existence of any biases was countered by implementing a semi-systematic process

for reviewing the scientific papers for the study. The systematic literature process includes

a systematic mapping of the papers included in each step, an inclusion- and exclusion

criteria, used databases, and a data extraction form. To increase the transparency, the

process of each step in the systematic process is documented.

It is necessary to recognize the ambitiousness of the study in trying to evaluate as

objectively as possible something, that is by its nature a someone’s preference of doing a

specific task. As stated previously, development environments/frameworks are built on a

specific idea of the most optimal way to do software development. Therefore, the

achieved results must not be understanded as a ranking of the absolute best development

environments, but rather as a good starting point for examining the requirements towards

Ethereum development environments, and how well the evaluated environments fulfill

these requirements.

9.3 Future work

As in the author’s best knowledge no academic research has been conducted to evaluate

Ethereum development environments, the produced feature set along with the evaluation

criteria can be used for multiple different purposes.

First option is to continue to improve the evaluation criteria. As explained in the threats

to validity, the topic under evaluation is difficult to be evaluated in an objective manner,

and the evaluation criteria can be improved by examining the topic from other points of

views. The feature set could also be improved in a way that browser-based Ethereum

development environments could also be included in the evaluation.

62

The second way to continue the research would be examining some of the characteristics

in greater detail. The features within the functional suitability category for example would

be a great choice, as by doing so the quality of the provided functionalities could also be

evaluated and taken into consideration when determining the best Ethereum development

environment.

The third option would be updating the feature set along with the evaluation criteria in

the future, when the requirements towards the Ethereum development environments have

changed. As Ethereum development and the blockchain technology as a whole are

advancing with great speed, it can be said with a great certainty that sooner or later the

requirements towards the Ethereum development environment will change. When this

happens, the evaluation criteria presented in this study needs to be updated with the

current knowledge about the topic to evaluate those features that the smart contract

developers are requiring at that moment.

The fourth option is to use the produced results as they are to serve some purpose in other

studies, such as comparing the results that this feature set produces against the results that

produced by using another feature set.

63

References

Brownie. (2022). Brownie. Retrieved June 6, 2022, from https://eth-

brownie.readthedocs.io/en/stable/

Budgen, D., & Brereton, P. (2006, May). Performing systematic literature reviews in

software engineering. In Proceedings of the 28th international conference on

Software engineering (pp. 1051-1052).

Burkhardt, D., Werling, M., & Lasi, H. (2018, June). Distributed ledger. In 2018 IEEE

international conference on engineering, technology and innovation

(ICE/ITMC) (pp. 1-9). IEEE.

Canfora, G., Di Sorbo, A., Fredella, M., Vacca, A., & Visaggio, C. A. (2021,

September). iSCREAM: a suite for Smart Contract REAdability assessMent.

In 2021 IEEE International Conference on Software Maintenance and Evolution

(ICSME) (pp. 579-583). IEEE.

Chen, T., Feng, Y., Li, Z., Zhou, H., Luo, X., Li, X., ... & Zhang, X. (2020).

Gaschecker: Scalable analysis for discovering gas-inefficient smart contracts. IEEE

Transactions on Emerging Topics in Computing, 9(3), 1433-1448.

Chen, X., Liao, P., Zhang, Y., Huang, Y., & Zheng, Z. (2021, March). Understanding

code reuse in smart contracts. In 2021 IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER) (pp. 470-479). IEEE.

CoinMarketCap. (2022). Top smart contract tokens by market capitalization. Retrieved

June 6, 2022, from https://coinmarketcap.com/view/smart-contracts/

Corbin, D. S. (1991). Establishing the software development environment. Journal of

Systems Management, 42(9), 28.

Danson, M., & Arshad, N. (2014). The literature review. Research methods for business

and management: A guide to writing your dissertation, 37-57.

Di Angelo, M., & Salzer, G. (2019, April). A survey of tools for analyzing ethereum

smart contracts. In 2019 IEEE International Conference on Decentralized

Applications and Infrastructures (DAPPCON) (pp. 69-78). IEEE.

Dowling, M. (2021). Fertile LAND: Pricing non-fungible tokens. Finance Research

Letters, 102096.

Drescher, D. (2017). Blockchain Basics: A Non-Technical Introduction in 25 Steps.

Apress.

Ethereum. (2022a). Decentralized finance (DeFi). Retrieved January 31, 2022, from

https://ethereum.org/en/defi/

Ethereum. (2022b). Ethereum virtual machine. Retrieved April 4, 2022, from

https://ethereum.org/en/developers/docs/evm/

64

Ethereum. (2022c). Ethereum wallets. Retrieved April 4, 2022, from

https://ethereum.org/en/wallets/

Ethereum. (2022d). Gas and fees. Retrieved April 3, 2022, from

https://ethereum.org/en/developers/docs/gas/

Ethereum. (2022e). Introduction to dapps. Retrieved May 5, 2022, from

https://ethereum.org/en/developers/docs/dapps/

Ethereum. (2022f). Introduction to smart contracts. Retrieved April 27, 2022, from

https://ethereum.org/en/developers/docs/smart-contracts/

Ethereum. (2022g). Set up your local development environment. Retrieved June 5, 2022,

from https://ethereum.org/en/developers/local-environment/

Ethereum. (2022h). Smart contract languages. Retrieved May 11, 2022, from

https://ethereum.org/en/developers/docs/smart-contracts/languages/

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley

Professional.

Gao, Z. (2020, December). When deep learning meets smart contracts. In Proceedings

of the 35th IEEE/ACM International Conference on Automated Software

Engineering (pp. 1400-1402).

Gupta, B. C., & Shukla, S. K. (2019, October). A study of inequality in the ethereum

smart contract ecosystem. In 2019 Sixth International Conference on Internet of

Things: Systems, Management and Security (IOTSMS) (pp. 441-449). IEEE.

Haefliger, S., Von Krogh, G., & Spaeth, S. (2008). Code reuse in open source

software. Management science, 54(1), 180-193.

Hardhat. (2022). Hardhat. Retrieved June 6, 2022, from https://hardhat.org/

Hartel, P., Homoliak, I., & Reijsbergen, D. (2019). An empirical study into the success

of listed smart contracts in ethereum. IEEE Access, 7, 177539-177555.

Hwang, S., & Ryu, S. (2020, June). Gap between theory and practice: An empirical

study of security patches in solidity. In Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering (pp. 542-553).

ISO. (2022a). ISO/IEC 25010:2011(en). Retrieved April 28, 2022, from

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

ISO. (2022b). Standards. Retrieved April 27, 2022, from

https://www.iso.org/standards.html

Kitchenham, B. A. (1996a). Evaluating software engineering methods and tool part 1:

The evaluation context and evaluation methods. ACM SIGSOFT Software

Engineering Notes, 21(1), 11-14.

Kitchenham, B. A. (1996b). Evaluating software engineering methods and tool part 2:

Selecting an appropriate evaluation method – technical criteria. ACM SIGSOFT

Software Engineering Notes, 21(2), 11-15.

65

Kitchenham, B. A. (1996c). Evaluating software engineering methods and tool part 3:

selecting an appropriate evaluation method – practical issues. ACM SIGSOFT

Software Engineering Notes, 21(4), 9-12.

Kitchenham, B. A., & Jones, L. (1997a). Evaluating software engineering methods and

tool part 5: the influence of human factors. ACM SIGSOFT Software Engineering

Notes, 22(1), 13-15.

Kitchenham, B. A., & Jones, L. (1997b). Evaluating software engineering methods and

tool part 6: identifying and scoring features. ACM SIGSOFT Software Engineering

Notes, 22(2), 16-18.

Kitchenham, B. A., & Jones, L. (1997c). Evaluating software engineering methods and

tool part 7: planning feature analysis evaluation. ACM SIGSOFT software

engineering Notes, 22(4), 21-24.

Kitchenham, B. A., & Jones, L. (1997d). Evaluating software engineering methods and

tool part 8: analysing a feature analysis evaluation. ACM SIGSOFT Software

Engineering Notes, 22(5), 10-12.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature

reviews in software engineering.

Niazi, M. (2015). Do systematic literature reviews outperform informal literature

reviews in the software engineering domain? An initial case study. Arabian Journal

for Science and Engineering, 40(3), 845-855.

Pierro, G. A., & Tonelli, R. (2021, March). Analysis of source code duplication in

ethreum smart contracts. In 2021 IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER) (pp. 701-707). IEEE.

Pinna, A., Ibba, S., Baralla, G., Tonelli, R., & Marchesi, M. (2019). A massive analysis

of ethereum smart contracts empirical study and code metrics. IEEE Access, 7,

78194-78213.

Snyder, H. (2019). Literature review as a research methodology: An overview and

guidelines. Journal of business research, 104, 333-339.

Sujeetha, R., & Preetha, C. S. D. (2021, October). A Literature Survey on Smart

Contract Testing and Analysis for Smart Contract Based Blockchain Application

Development. In 2021 2nd International Conference on Smart Electronics and

Communication (ICOSEC) (pp. 378-385). IEEE.

Truffle Suite. (2022). Truffle. Retrieved June 6, 2022, from

https://trufflesuite.com/docs/truffle/

Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., & Wang, F. Y. (2019). Blockchain-

enabled smart contracts: architecture, applications, and future trends. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 49(11), 2266-2277.

Wohlin, C. (2014, May). Guidelines for snowballing in systematic literature studies and

a replication in software engineering. In Proceedings of the 18th international

conference on evaluation and assessment in software engineering (pp. 1-10).

66

Wood, G. (2014). Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper, 151(2014), 1-32.

Zarir, A. A., Oliva, G. A., Jiang, Z. M., & Hassan, A. E. (2021). Developing cost-

effective blockchain-powered applications: A case study of the gas usage of smart

contract transactions in the ethereum blockchain platform. ACM Transactions on

Software Engineering and Methodology (TOSEM), 30(3), 1-38.

Zhang, P., Xiao, F., & Luo, X. (2020, September). A framework and dataset for bugs in

ethereum smart contracts. In 2020 IEEE International Conference on Software

Maintenance and Evolution (ICSME) (pp. 139-150). IEEE.

Zou, W., Lo, D., Kochhar, P. S., Le, X. B. D., Xia, X., Feng, Y., ... & Xu, B. (2021).

Smart Contract Development: Challenges and Opportunities. IEEE Transactions on

Software Engineering, 47(10), 2084-2106.

Ølnes, S., Ubacht, J., & Janssen, M. (2017). Blockchain in government: Benefits and

implications of distributed ledger technology for information sharing. Government

Information Quarterly, 34(3), 355-364.

67

Appendix A. Evaluation form.

 Id
 D

escrip
tio

n

C
a

teg
o

ry

0

p
o

in
ts

1
 p

o
in

t
2

 p
o

in
ts

3

p
o

in
ts

4
 p

o
in

ts
5

 p
o

in
ts

M
a

x

sco
re

1

H
o

w
 en

v
iro

n
m

en
t

su
p

p
o

rts testin
g

?

F
u

n
ctio

n
al

co
m

p
leten

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

su
p

p
o

rt

C
o

m
es w

ith
 a testin

g

fu
n

ctio
n

ality
/fram

ew
o

rk
, b

u
t it h

as

sh
o

rtco
m

in
g

s (e.g
., p

erfo
rm

an
ce is

rem
ark

ab
ly

 slo
w

, d
o

cu
m

en
tatio

n

lim
ited

, etc.), an
d

 it can
't b

e

ch
an

g
ed

 to
 an

 altern
ativ

e so
lu

tio
n

P
ro

v
id

es

d
o

cu
m

en
tatio

n
 h

o
w

ex
tern

al testin
g

fram
ew

o
rk

s can
 b

e

in
teg

rated
 in

to
 th

e

en
v

iro
n
m

en
t

C
o

m
es w

ith
 a

testin
g

fu
n

ctio
n

ality
/

fram
ew

o
rk

5

2

E
n

v
iro

n
m

en
t

su
p

p
o

rts m
ain

n
et

fo
rk

in
g

 fo
r

testin
g

?

F
u

n
ctio

n
al

co
m

p
leten

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

Y
es

5

3

E
n

v
iro

n
m

en
t

au
to

m
atically

co
m

p
iles th

e co
d

e

w
h

en
 ru

n
n

in
g

tests (if th
ere are

an
y

 ch
an

g
es)?

F
u

n
ctio

n
al

co
m

p
leten

ess,

U
sab

ility

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

Y

es

1

4

H
o

w
 en

v
iro

n
m

en
t

su
p

p
o

rts

d
eb

u
g
g

in
g

?

F
u

n
ctio

n
al

co
m

p
leten

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

su
p

p
o

rt

P
ro

v
id

es d
o

cu
m

en
tatio

n
 h

o
w

 an

ex
tern

al d
eb

u
g

g
er/ d

eb
u

g
g

in
g

to
o

ls can
 b

e in
teg

rated
 in

to
 th

e

en
v

iro
n
m

en
t

C
o

m
es

w
ith

d
eb

u
g
g

in
g

to
o

l(s)

4

5

H
o

w
 en

v
iro

n
m

en
t

su
p

p
o

rts

co
m

p
ilin

g
?

F
u

n
ctio

n
al

co
m

p
leten

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

su
p

p
o

rt

P
ro

v
id

es d
o

cu
m

en
tatio

n
 h

o
w

 a

co
m

p
iler can

 b
e in

teg
rated

 in
to

 th
e

en
v

iro
n
m

en
t o

r h
o

w
 th

e so
u

rce

co
d

e can
 b

e co
m

p
iled

C
o

m
es w

ith
 a

co
m

p
iler w

h
ich

can
't b

e co
n

fig
u
red

,

o
r th

e co
n

fig
u

ratio
n

isn
't ex

p
lain

ed
 in

th
e d

o
cu

m
en

tatio
n

C
o

m
es w

ith
 a

co
m

p
iler an

d
 a

d
o

cu
m

en
tatio

n

h
o

w
 it can

 b
e

co
n

fig
u
red

5

68

 Id

D
escrip

tio
n

C

a
teg

o
ry

0

 p
o

in
ts

1
 p

o
in

t
2

 p
o

in
ts

3
 p

o
in

ts
4

p
o

in
ts 5

 p
o

in
ts

M
a

x

sco
re

6

H
o

w
 en

v
iro

n
m

en
t

su
p

p
o

rts d
ep

lo
y

in
g

?

F
u

n
ctio

n
al

co
m

p
leten

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

 su
p

p
o

rt
P

ro
v

id
es d

o
cu

m
en

tatio
n

h
o

w
 d

ep
lo

y
in

g
 can

 b
e d

o
n
e

C
o

m
es w

ith
 a

to
o

l o
r a

fu
n

ctio
n

ality
 to

d
ep

lo
y

 sm
art

co
n

tracts

5

7

H
o

w
 en

v
iro

n
m

en
t

su
p

p
o

rts g
as

o
p

tim
izatio

n
?

F
u

n
ctio

n
al

co
m

p
leten

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

 su
p

p
o

rt

P
ro

v
id

es

d
o

cu
m

en
tatio

n
 h

o
w

 an

ex
tern

al to
o

l o
r p

lu
g

in

can
 b

e in
teg

rated
 in

to

th
e en

v
iro

n
m

en
t

C
o

m
es w

ith
 a to

o
l o

r a

fu
n

ctio
n

ality
 to

ev
alu

ate g
as u

sag
e

C
o

m
es w

ith
 a

to
o

l o
r a

fu
n

ctio
n

ality
 to

o
p

tim
ize g

as

u
sag

e

5

8

H
o

w
 en

v
iro

n
m

en
t

su
p

p
o

rts en
su

rin
g

 th
e

secu
rity

 o
f th

e sm
art

co
n

tracts?

F
u

n
ctio

n
al

co
m

p
leten

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

 su
p

p
o

rt

P
ro

v
id

es

d
o

cu
m

en
tatio

n
 h

o
w

 an

ex
tern

al to
o

l o
r p

lu
g

in

can
 b

e in
teg

rated
 in

to

th
e en

v
iro

n
m

en
t

C
o

m
es w

ith
 a

to
o

l o
r a

fu
n

ctio
n

ality
 to

im
p

ro
v

e th
e

secu
rity

5

9

D
o

es th
e d

ev
elo

p
m

en
t

en
v

iro
n
m

en
t en

ab
le

p
arallel fro

n
ten

d

d
ev

elo
p

m
en

t (e.g
.,

ex
p

o
ses in

terface fo
r th

e

fro
n

ten
d

 to
 co

n
n

ect)?

F
u

n
ctio

n
al

co
m

p
leten

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

Y
es

5

1
0

D

ev
elo

p
m

en
t

en
v

iro
n
m

en
t w

o
rk

ed
 as

in
ten

d
ed

 d
u

rin
g

 th
e

ev
alu

atio
n

?

F
u

n
ctio

n
al

co
rrectn

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

, eith
er

co
n

stan
tly

 m
in

o
r

tro
u

b
les o

r so
m

e

fu
n

ctio
n

ality

sim
p

ly
 d

o
esn

't

w
o

rk

A
 few

 m
in

o
r p

ro
b

lem
s m

ay

o
ccu

r (e.g
., an

 u
n

ex
p

ected

n
eed

 fo
r co

n
fig

u
ratio

n
), b

u
t

th
e p

ro
v

id
ed

 fu
n

ctio
n

alities

still o
p

erate as ex
p

ected

Y
es, n

o
 p

ro
b

lem

o
ccu

rs d
u
rin

g
 th

e

ev
alu

atio
n

3

69

Id

D
escrip

tio
n

C

a
teg

o
ry

0

 p
o

in
ts

1
 p

o
in

t
2

 p
o

in
ts

3
 p

o
in

ts
4

 p
o

in
ts

5
 p

o
in

ts
M

a
x

sco
re

1
1

H

o
w

 m
u

ch
 th

e

en
v

iro
n
m

en
t

su
p

p
o

rts an
d

o
v

erall eases th
e

d
ev

elo
p

m
en

t

p
ro

cess?

F
u

n
ctio

n
al

ap
p

ro
p

riaten
ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

t at all
Ju

st a b
it, lack

in
g

su
p

p
o

rt at least in

o
n

e fu
n

ctio
n

ality

E
n

v
iro

n
m

en
t p

ro
v

id
es a

d
ecen

t su
p

p
o

rt an
d

 b
en

efits

g
ain

ed
 fro

m
 u

sin
g

 it are

u
n

q
u

estio
n

ed
, b

u
t so

m
e

fu
n

ctio
n

alities co
u

ld
 b

e

eith
er im

p
ro

v
ed

 o
r th

e

en
v

iro
n
m

en
t is lack

in
g

so
m

e essen
tial

fu
n

ctio
n

alities

E
n

v
iro

n
m

en
t

p
ro

v
id

es fu
ll su

p
p

o
rt

fo
r d

ev
elo

p
ers in

id
en

tified

fu
n

ctio
n

alities (sco
re

fro
m

 featu
re id

s 0
-9

=
 4

3
)

5

1
2

D

ev
elo

p
m

en
t

en
v

iro
n
m

en
t

su
p

p
o

rts S
o

lid
ity

an
d

 V
y

p
er?

F
u

n
ctio

n
al

co
m

p
leten

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

Y
es, o

n
ly

 an
o

th
er

Y
es, b

o
th

5

1
3

D

ev
elo

p
m

en
t

en
v

iro
n
m

en
t

p
ro

v
id

es an

ex
ten

sio
n

 fo
r V

S

C
o

d
e?

F
u

n
ctio

n
al

co
m

p
leten

ess

(F
u

n
ctio

n
a

l

su
ita

b
ility

)

N
o

Y
es

3

1
4

D

o
es th

e

d
ev

elo
p

m
en

t

en
v

iro
n
m

en
t

o
p

erate as fast as

ex
p

ected
?

T
im

e b
eh

av
io

u
r

(P
er

fo
rm

a
n

ce

efficien
cy

)

N
o

, u
ser co

n
stan

tly

(eith
er o

n
 m

u
ltip

le

fu
n

ctio
n

alities o
r o

n

an
 h

o
u
rly

 b
asis)

th
in

k
s h

o
w

 slo
w

 it

is

N
o

, an
d

 so
m

etim
es

(eith
er o

n
 so

m
e

fu
n

ctio
n

ality
 o

r o
n

a d
aily

 b
asis) th

e

u
ser th

in
k

s th
at it is

slo
w

er th
an

ex
p

ected

Y
es, u

ser

d
o

esn
't p

ay

an
y

atten
tio

n
 to

th
e m

atter

Y
es, an

d
 so

m
etim

es (eith
er

o
n

 so
m

e fu
n

ctio
n

ality
 o

r

o
n

 a d
aily

 b
asis) th

e u
ser

n
o

tices th
at it is ev

en
 faster

th
an

 ex
p

ected

Y
es, u

ser co
n

stan
tly

(eith
er o

n
 m

u
ltip

le

fu
n

ctio
n

alities o
r o

n

an
 h

o
u
rly

 b
asis)

th
in

k
s th

at it is faster

th
an

 ex
p

ected

4

70

 Id

D
escrip

tio
n

C

a
teg

o
ry

0

 p
o

in
ts

1
 p

o
in

t
2

 p
o

in
ts

3
 p

o
in

ts
4

 p
o

in
ts

5

p
o

in
ts

M
a

x

sco
re

1
5

D

o
es th

e d
ev

elo
p
m

en
t

en
v

iro
n
m

en
t req

u
ire so

 m
u

ch

reso
u

rces th
at it n

eg
ativ

ely

affects u
sin

g
 th

e P
C

?

R
eso

u
rce u

tilizatio
n

(P
er

fo
rm

a
n

ce

efficien
cy

)

Y
es, an

d
 it can

 b
e

n
o

ticed
 co

n
stan

tly

(o
n

 an
 h

o
u

rly

b
asis)

Y
es, an

d
 it can

 b
e

n
o

ticed
 so

m
etim

es

(o
n

 a d
aily

 b
asis)

N
o

, u
sin

g
 th

e

d
ev

elo
p

m
en

t

en
v

iro
n
m

en
t d

o
es n

't

n
eg

ativ
ely

 affect u
sin

g

th
e P

C

3

1
6

D

ev
elo

p
m

en
t en

v
iro

n
m

en
t

h
as restrictio

n
s reg

ard
in

g
 th

e

size o
f th

e p
ro

ject?

C
ap

acity

(P
er

fo
rm

a
n

ce

efficien
cy

)

Y
es

N
o

5

1
7

C

an
 O

p
en

 Z
ep

p
elin

 b
e

im
p

o
rted

 (o
r is it b

y
 d

efau
lt)

w
ith

in
 th

e d
ev

elo
p

m
en

t

en
v

iro
n
m

en
t?

C
o

-ex
isten

ce,

In
tero

p
erab

ility

(C
o

m
p

a
tib

ility
)

N
o

Y
es

3

1
8

C

an
 G

an
ach

e b
e im

p
o

rted
 (o

r

is it b
y

 d
efau

lt) w
ith

in
 th

e

d
ev

elo
p

m
en

t en
v

iro
n

m
en

t?

C
o

-ex
isten

ce,

In
tero

p
erab

ility

(C
o

m
p

a
tib

ility
)

N
o

Y
es

3

1
9

C

an
 W

affle b
e im

p
o

rted
 (o

r

is it b
y

 d
efau

lt) w
ith

in
 th

e

d
ev

elo
p

m
en

t en
v

iro
n

m
en

t?

C
o

-ex
isten

ce,

In
tero

p
erab

ility

(C
o

m
p

a
tib

ility
)

N
o

Y
es

3

2
0

E

n
v

iro
n

m
en

t allo
w

s

im
p

o
rtin

g
 p

lu
g

in
s/ ex

tern
al

to
o

ls w
ith

in
 th

e

en
v

iro
n
m

en
t?

C
o

-ex
isten

ce,

In
tero

p
erab

ility

(C
o

m
p

a
tib

ility
)

N
o

Y

es
5

2
1

W

h
ere th

e su
itab

ility
 an

d
 th

e

m
ain

 featu
res o

f th
e

en
v

iro
n
m

en
t can

 b
e

d
eterm

in
ed

?

A
p

p
ro

p
riaten

ess

reco
g

n
izab

ility

(U
sa

b
ility

)

U
n

ab
le to

d
eterm

in
e fro

m

th
e in

tern
et

F
ro

m
 th

e in
tern

et
O

fficial

d
o

cu
m

en
tatio

n

E
ith

er o
n

 th
e h

o
m

ep
ag

e

o
r o

n
 th

e G
itH

u
b

rep
o

sito
ry

 R
E

A
D

M
E

B
o

th
 o

n
 th

e

h
o

m
ep

ag
e an

d
 o

n

th
e G

itH
u

b

rep
o

sito
ry

R
E

A
D

M
E

4

71

 Id

D
escrip

tio
n

C

a
teg

o
ry

0

 p
o

in
ts

1
 p

o
in

t
2

 p
o

in
ts

3
 p

o
in

ts
4

 p
o

in
ts

5
 p

o
in

ts
M

a
x

sco
re

2
2

D

ev
elo

p
m

en
t en

v
iro

n
m

en
t

d
o

cu
m

en
tatio

n
 h

av
e a search

fu
n

ctio
n

?

L
earn

ab
ility

(U
sa

b
ility

)

N
o

Y

es

1

2
3

E
n

v
iro

n
m

en
t d

o
cu

m
en

tatio
n

p
ro

v
id

es u
p

-to
-d

ate

in
fo

rm
atio

n
/in

stru
ctio

n
s fo

r

in
stallin

g
 th

e d
ep

en
d

en
cies?

L
earn

ab
ility

(U
sa

b
ility

)

N
o

Y
es

4

2
4

D

ev
elo

p
m

en
t en

v
iro

n
m

en
t

h
as sm

art co
n

tract an
d

 D
ap

p

p
ro

ject tu
to

rials/ex
am

p
les?

L
earn

ab
ility

(U
sa

b
ility

)

N
o

 p
ro

ject

tu
to

rials/ ex
am

p
les

Y
es, b

u
t th

e

ex
am

p
le(s) h

as a lo
t

o
f p

ro
b

lem
s (d

o
cs

o
u

td
ated

, co
n

fu
sin

g
,

etc.) an
d

 fo
llo

w
in

g
 it

is h
ig

h
ly

 ch
allen

g
in

g

Y
es, b

u
t th

e

ex
am

p
le(s) h

as so
m

e

p
ro

b
lem

s (d
o

cs

o
u

td
ated

, co
n

fu
sin

g
,

etc.), b
u

t tu
to

rial is

still fairly
 easily

fo
llo

w
ab

le

Ju
st o

n
e o

f th
e

tu
to

rials

ex
ists, an

d
 it is

accu
rate, u

p
-

to
-d

ate, an
d

easily

fo
llo

w
ab

le

Y
es, b

o
th

tu
to

rials ex
ist,

an
d

 th
ey

 are

accu
rate, u

p
-

to
-d

ate, an
d

easily

fo
llo

w
ab

le

5

2
5

G

en
erally

 (as th
ere is alw

ay
s

so
m

e o
u

td
ated

 in
fo

rm
atio

n
),

d
o

es th
e d

o
cu

m
en

tatio
n

ap
p

ears to
 b

e u
p

 to
 d

ate?

L
earn

ab
ility

(U
sa

b
ility

)

N
o

M
o

stly
 (certain

sectio
n

 is n
o

t u
p

 to

d
ate)

Y
es

5

2
6

D

o
cu

m
en

tatio
n

 ex
p

lain
s h

o
w

p
lu

g
in

s, ex
tern

al to
o

ls, o
r

altern
ativ

e fu
n

ctio
n

alities can

b
e im

p
o

rted
 to

 th
e

en
v

iro
n
m

en
t?

L
earn

ab
ility

(U
sa

b
ility

)

D
o

esn
't su

p
p

o
rt

im
p

o
rtin

g
 an

y
 o

f

th
ese, o

r

d
o

cu
m

en
tatio

n

d
o

esn
't ex

p
lain

h
o

w
 it can

 b
e d

o
n

e

D
o

cu
m

en
tatio

n
 is

co
n

fu
sin

g
 an

d
 h

ard

to
 fo

llo
w

D
o

cu
m

en
tatio

n

co
n

tain
s all th

e

relev
an

t in
fo

rm
atio

n
,

b
u

t it h
as so

m
e

sh
o

rtco
m

in
g
 (e.g

.,

co
n

fu
sin

g
 lay

o
u

t,

m
issin

g
 co

m
m

an
d

s

etc.)

D
o

cu
m

en
tatio

n

co
n

tain
s all th

e

relev
an

t in
fo

rm
atio

n
,

an
d

 it p
ro

v
id

es

ex
am

p
les o

f term
in

al

co
m

m
an

d
s an

d
/o

r

co
d

e ex
am

p
les

3

72

 Id

D
escrip

tio
n

C

a
teg

o
ry

0

 p
o

in
ts

1
 p

o
in

t
2

 p
o

in
ts

3
 p

o
in

ts
4

 p
o

in
ts

5
 p

o
in

ts
M

a
x

sco
re

2
7

H

o
w

 m
u

ch
 th

e

d
o

cu
m

en
tatio

n
 co

u
ld

 b
e

im
p

ro
v

ed
?

L
earn

ab
ility

(U
sa

b
ility

)

P
retty

 m
u

ch

an
y

 ch
an

g
e

w
o

u
ld

 b
e an

im
p

ro
v

em
en

t

A
 lo

t, th
ere is m

ajo
r

p
ro

b
lem

s w
ith

stru
ctu

re,

p
resen

tatio
n

,

lan
g

u
ag

e etc.

S
o

m
e, th

ere is

p
ro

b
lem

s w
ith

stru
ctu

re,

p
resen

tatio
n

,

lan
g

u
ag

e etc.

A
 b

it, th
e

stan
d

ard
 lev

el,

p
ro

v
id

es all th
e

b
asic in

fo
rm

atio
n

in
 a d

ecen
t

fo
rm

at, b
u

t

d
o

esn
't stan

d
 o

u
t

in
 an

y
 w

ay

N
o

t b
y

 m
u

ch
, few

m
in

o
r ch

an
g

es an
d

im
p

ro
v

em
en

ts to

stru
ctu

re,

p
resen

tatio
n

,

lan
g

u
ag

e etc.

D
o

cu
m

en
tatio

n
 is

n
early

 p
erfect, co

m
es

to
 p

erso
n

al p
referen

ce

w
h

eth
er an

y
 ch

an
g

e

w
o

u
ld

 im
p

ro
v

e th
e

d
o

cu
m

en
tatio

n

5

2
8

D

ev
elo

p
m

en
t en

v
iro

n
m

en
t

h
as its o

w
n

 fo
ru

m
, in

w
h

ich
 d

ev
elo

p
ers can

 ask

h
elp

 fro
m

 o
th

er

d
ev

elo
p

ers?

L
earn

ab
ility

(U
sa

b
ility

)

N
o

Y
es, b

u
t it isn

't activ
e

(th
ere are clearly

m
o

re su
itab

le

p
latfo

rm
s fo

r

d
iscu

ssio
n

, su
ch

 as

S
tack

O
v

erflo
w

)

Y
es, an

d
 it is

activ
e (h

as at least

1
0

0
0

 m
em

b
ers o

r

m
o

st o
f th

e

q
u

estio
n

s are b
ein

g

an
sw

ered
 w

ith
in

tw
o

 d
ay

s)

2

2
9

A

re th
e d

efau
lt co

m
m

an
d

s

to
 ex

ecu
te fu

n
ctio

n
alities/

o
p

erate en
v

iro
n
m

en
t lo

n
g

an
d

 d
ifficu

lt? (e.g
.,

m
ajo

rity
 o

f th
em

 co
n

tain

m
o

re th
an

 2
0

 ch
aracters, at

first it is b
en

eficial to
 sav

e

th
em

 in
 a tex

t file?)

O
p

erab
ility

(U
sa

b
ility

)

Y
es

S
o

m
e, b

u
t n

o
t all

N
o

2

3
0

A

re y
o

u
 ab

le to
 start a n

ew

p
ro

ject u
n
d

er 1
0

 m
in

u
tes

w
ith

 th
e en

v
iro

n
m

en
t

(in
clu

d
in

g
 th

e in
stallatio

n

an
d

 p
o

ssib
le

co
n

fig
u
ratio

n
)?

O
p

erab
ility

(U
sa

b
ility

)

N
o

Y
es

2

73

 Id

D
escrip

tio
n

C

a
teg

o
ry

0

 p
o

in
ts

1
 p

o
in

t
2

 p
o

in
ts

3
 p

o
in

ts
4

 p
o

in
ts

5
 p

o
in

ts
M

a
x

sco
re

3
1

H

o
w

 m
an

y
 o

p
en

 issu
es th

e

G
itH

u
b

 rep
o

sito
ry

 h
as fro

m
 th

e

p
ast 3

0
 d

ay
s?

M
atu

rity

(R
elia

b
ility

)

O
v

er 4
0

o
p

en
 issu

es

4
0

<
=

issu
es<

=
3

0

3
0

<
issu

es<
=

2
0

2

0
<

issu
es<

=
1

0

1

0
<

issu
es<

=
5

L

ess th
an

 5

o
p

en
 issu

es

5

3
2

U

n
d

er n
o

rm
al circu

m
stan

ces,

d
ev

elo
p

m
en

t en
v

iro
n

m
en

t can

b
e u

sed
 an

y
 g

iv
en

 tim
e (e.g

.,

n
o

t d
o

w
n
 ev

ery
 n

ig
h

t at th
e

sam
e tim

e)?

A
v

ailab
ility

(R
elia

b
ility

)

N
o

Y
es

5

3
3

C

an
 secu

rity
 flaw

s b
e d

etected
,

o
r is th

ere an
y

 reaso
n

 to

q
u

estio
n

ab
le th

e secu
rity

(in
clu

d
in

g
 tem

p
late p

ro
jects)?

C
o

n
fid

en
tiality

,

In
teg

rity

(S
ecu

rity
)

S
ecu

rity

flaw
s can

 b
e

d
etected

d
u

rin
g
 th

e

ev
alu

atio
n

T
h

ere are v
alid

 reaso
n

s

to
 q

u
estio

n
 th

e secu
rity

o
f th

e d
ev

elo
p

m
en

t

en
v

iro
n
m

en
t (e.g

.,

critical v
u

ln
erab

ilities

o
n

 d
ep

en
d

en
cies)

T
h

e secu
rity

 o
f th

e

d
ev

elo
p

m
en

t

en
v

iro
n
m

en
t d

o
esn

't

sp
ark

 tru
st to

w
ard

s it,

b
u

t n
o

 v
alid

 reaso
n

s to

q
u

estio
n

 it (e.g
.,

v
u

ln
erab

ilities o
n

d
ep

en
d

en
cies)

N
o

 reaso
n

 to

q
u

estio
n

 th
e

secu
rity

 o
f th

e

d
ev

elo
p

m
en

t

en
v

iro
n
m

en
t

5

3
4

W

h
at is th

e p
ack

ag
e's h

ealth

sco
re o

n
 S

n
y
k

(h
ttp

s://sn
y

k
.io

/ad
v

iso
r/)?

C
o

n
fid

en
tiality

(S
ecu

rity
)

S
co

re <
=

 7
5

7

5
<

 sco
re <

=
8
0

8
0

<
 sco

re <
=

8
5

8
5

<
 sco

re

<
=

9
0

9
0

<
 sco

re

<
=

9
5

S
co

re >
 9

5

5

3
5

U

ser can
 ch

an
g

e so
m

e o
f th

e

fu
n

ctio
n

alities to
 altern

ativ
e

so
lu

tio
n

s (e.g
., testin

g

fram
ew

o
rk

, d
ev

elo
p

m
en

t

n
o

d
e)?

M
o

d
u

larity

(M
a

in
ta

in
a

b
ility

)

U
n

ab
le

Y
es

5

74

 Id

D
escrip

tio
n

C

a
teg

o
ry

0

 p
o

in
ts

1
 p

o
in

t
2

 p
o

in
ts

3
 p

o
in

ts
4

p
o

in
ts

5
 p

o
in

ts
M

a
x

sco
re

3
6

H

o
w

 m
u

ch
 effo

rt it tak
es to

 u
p
d

ate

th
e d

ev
elo

p
m

en
t en

v
iro

n
m

en
t?

(M
a

in
ta

in
a

b
ility

)
R

eq
u

ires a lo
t o

f

w
o

rk
 an

d
 search

in
g

fo
r in

fo
rm

atio
n

(>
1

0
 m

in
)

R
eq

u
ires few

G
o

o
g

le search
es

o
r rev

iew
in

g

d
o

cu
m

en
tatio

n

(<
1

0
 m

in
)

E
ffo

rtless,

can
 b

e d
o

n
e

fro
m

term
in

al

u
n

d
er 3

m
in

u
tes

3

3
7

W

h
at is th

e p
h

ilo
so

p
h

y
 o

f th
e

d
ev

elo
p

m
en

t en
v

iro
n

m
en

t ab
o
u

t

b
alan

cin
g

 n
ew

tech
n

o
lo

g
ies/fu

n
ctio

n
alities an

d

stab
ility

?

(M
a

in
ta

in
a

b
ility

)
A

n
 ex

trem
e, u

ses

eith
er o

u
td

ated

tech
n

o
lo

g
ies o

r

co
n

stan
tly

in
tro

d
u

ces b
reak

in
g

ch
an

g
es w

ith
 n

ew

tech
n

o
lo

g
ies

A
 so

m
ew

h
at

b
alan

ced
, u

ses

relativ
ely

 n
ew

tech
n

o
lo

g
ies an

d

doesn’t often
in

tro
d

u
ce b

reak
in

g

ch
an

g
es

A
 p

erfect b
len

d
, u

ses

th
e n

ew
est

tech
n

o
lo

g
ies, b

u
t

d
o

esn
't still in

tro
d

u
ce

b
reak

in
g
 ch

an
g

es o
n

releases

5

3
8

D

ev
elo

p
m

en
t en

v
iro

n
m

en
t can

 b
e

u
sed

 o
n

 L
in

u
x

, m
acO

S
, an

d
 o

n

W
in

d
o

w
s 1

0
?

A
d

ap
tab

ility

(P
o

rta
b

ility
)

N
o

Y
es

5

3
9

D

o
es th

e d
ev

elo
p
m

en
t

en
v

iro
n
m

en
t h

av
e p

re -

req
u

irem
en

ts fo
r in

stallatio
n

, an
d

h
o

w
 m

u
ch

 effo
rt in

stallin
g

 th
o
se

req
u

ires?

In
stallab

ility

(P
o

rta
b

ility
)

P
re- req

u
irem

en
ts

req
u

ire a lo
t o

f

effo
rt (e.g

., p
ro

cess

is d
ifficu

lt an
d

co
n

fu
sin

g
, >

1
5

 m
in

)

P
re- req

u
irem

en
ts

req
u

ire so
m

e effo
rt

(e.g
., d

o
cu

m
en

tatio
n

ab
o

u
t th

e p
ro

cess

co
u

ld
 b

e clearer, <
1

5

m
in

)

N
o

 p
re- req

u
irem

en
ts,

o
r can

 b
e d

o
n

e fro
m

term
in

al u
n

d
er 3

m
in

u
tes w

ith
 th

e

in
stru

ctio
n

s o
n

d
o

cu
m

en
tatio

n

5

4
0

H

o
w

 m
u

ch
 effo

rt d
o

es th
e

d
ev

elo
p

m
en

t en
v

iro
n

m
en

t

in
stallin

g
 p

ro
cess req

u
ire?

In
stallab

ility

(P
o

rta
b

ility
)

In
stallatio

n
 p

ro
cess

is d
ifficu

lt, an
d

 it

req
u

ires a lo
t o

f

w
o

rk
 (>

1
0

 m
in

)

R
eq

u
ires few

 G
o

o
g

le

search
es o

r so
m

e

read
in

g
 o

f th
e

d
o

cu
m

en
tatio

n
 (<

1
0

m
in

)

C
an

 b
e in

stalled
 fro

m

term
in

al u
n

d
er 2

m
in

u
tes w

ith
 th

e

in
stru

ctio
n

s o
n

d
o

cu
m

en
tatio

n

5

75

Appendix B. Evaluation results.

Id Feature Max

score

Hardhat

score

Truffle

score

Brownie

score

1 How environment supports testing? 5 5 5 5

2 Environment supports mainnet forking for testing? 5 5 5 5

3 Environment automatically compiles the code when running

tests (if there are any changes)?

1 1 1 1

4 How environment supports debugging? 4 4 4 4

5 How environment supports compiling? 5 5 5 5

6 How environment supports deploying? 5 5 5 5

7 How environment supports gas optimization? 5 2 3 3

8 How environment supports ensuring the security of the

smart contracts?

5 3 3 5

9 Does the development environment enable parallel frontend

development (e.g., exposes interface for the frontend to

connect)?

5 5 5 5

10 Development environment worked as intended during the

evaluation?

3 3 3 1

11 How much the environment supports and overall eases the

development process?

5 3 3 3

12 Development environment supports Solidity and Vyper? 5 5 5 5

13 Development environment provides an extension for VS

Code?

3 3 3 0

14 Does the development environment operate as fast as

expected?

4 3 1 2

15 Does the development environment require so much

resources that it negatively affects using the PC?

3 3 3 3

16 Development environment has restrictions regarding the size

of the project?

5 5 5 5

17 Can Open Zeppelin be imported (or is it by default) within

the development environment?

3 3 0 3

18 Can Ganache be imported (or is it by default) within the

development environment?

3 3 3 3

19 Can Waffle be imported (or is it by default) within the

development environment?

3 3 0 3

76

Id Feature Max

score

Hardhat

score

Truffle

score

Brownie

score

20 Environment allows importing plugins/ external tools within

the environment?

5 5 5 5

21 Where the suitability and the main features of the

environment can be determined?

4 4 4 4

22 Development environment documentation have a search

function?

1 1 1 1

23 Environment documentation provides up-to-date

information/instructions for installing the dependencies?

4 4 0 0

24 Development environment has smart contract and Dapp

project tutorials/examples?

5 4 5 1

25 Generally (as there is always some outdated information),

does the documentation appears to be up to date?

5 5 5 2

26 Documentation explains how plugins, external tools, or

alternative functionalities can be imported to the

environment?

3 3 3 3

27 How much the documentation could be improved? 5 5 4 3

28 Development environment has its own forum, in which

developers can ask help from other developers?

2 2 1 2

29 Are the default commands to execute functionalities/

operate environment long and difficult? (e.g., majority of

them contain more than 20 characters, at first it is beneficial

to save them in a text file?)

2 1 2 2

30 Are you able to start a new project under 10 minutes with

the environment (including the installation and possible

configuration)?

2 2 2 0

31 How many open issues the GitHub repository has from the

past 30 days?

5 0 2 3

32 Under normal circumstances, development environment can

be used any given time (e.g., not down every night at the

same time)?

5 5 5 5

33 Can security flaws be detected, or is there any reason to

questionable the security (including template projects)?

5 1 1 1

34 What is the package's health score on Snyk

(https://snyk.io/advisor/)?

5 3 3 1

35 User can change some of the functionalities to alternative

solutions (e.g., testing framework, development node)?

5 5 5 5

36 How much effort it takes to update the development

environment?

3 3 3 3

77

Id Feature Max

score

Hardhat

score

Truffle

score

Brownie

score

37 What is the philosophy of the development environment

about balancing new technologies/functionalities and

stability?

5 2 2 2

38 Development environment can be used on Linux, macOS,

and on Windows 10?

5 5 5 5

39 Does the development environment have pre-requirements

for installation, and how much effort installing those

requires?

5 2 2 0

40 How much effort does the development environment

installing process require?

5 5 5 0

