
Evaluation of Stimulus tool in Nokia context

University of Oulu
Faculty of Information Technology and
Electrical Engineering / UNIT
Master’s Thesis
Ville Alakiuttu
3/2022

2

Abstract

The purpose of this thesis was to evaluate Stimulus requirements evaluation tool. This
evaluation was done at Nokia to see if the tool is suitable for Nokia’s use cases. The
thesis used design science research as research method. As the research artifact
requirements set was used. This requirement set was then demonstrated using Stimulus
tool. The data was collected from workshops held between team from Dassault and
team from Nokia. The participants in these workshops were software engineers and
requirements engineers. The result of the study was that Stimulus had a good number of
useful features but also issues were found. Further evaluation of the tool is needed to
determine whether all the issues can be fixed to make the tool suitable for Nokia.

Keywords
Requirements engineering, Stimulus, formal requirements, requirement validation,
requirement simulation

Supervisor
University lecturer, PhD Pertti Seppänen

3

Foreword

This thesis was written in co-operation with Nokia. I would like to thank Nokia and my
colleagues at Nokia for the support and opportunity to write this thesis. I would also like
to thank my supervisor from the university side Pertti Seppänen for your expertise and
patience with this thesis work.

4

ABBREVIATIONS

PTP Time Precision Protocol

UTAUT2 Unified Theory of Acceptance and Use of Technology second version

UML Unified Modelling Language

DOORS Dynamic Object-Oriented Requirements

MBSE Model-based system engineering

5

Contents

Abstract ... 2
Foreword ... 3
ABBREVIATIONS... 4
Contents... 5
1. Introduction .. 6
2. Prior research .. 8

2.1 Software requirement engineering ... 8
2.2 Requirement engineering formalization and standards.. 9
2.3 Requirement quality ... 10
2.4 Requirement evaluation methods... 11
2.5 Tools 13

3. Research methods ... 16
3.1 History.. 16
3.2 Implementation .. 18

4. Research Design ... 23
4.1 Literature Study.. 23
4.2 Empirical research.. 25

5. Research and findings... 27
5.1 Problem identification and motivation... 27
5.2 Verification artifact of the solution .. 27
5.3 Design and development of the artifact ... 28
5.4 Demonstration .. 31
5.5 Results .. 34
5.6 Evaluation .. 41

6. Conclusions .. 43
References ... 44
Appendix A. Requirements ... 49

6

1. Introduction

Requirement’s engineering is one the most important parts of the software development
process. As information systems grow larger and larger, getting more complex than ever
and, involving multiple stakeholder groups the importance of requirements engineering
becomes more important. (Kelanti, 2016)

Need for formalization of requirements has been identified and talked about for
decades. Formalization of requirements means use of formalized language in the
requirements presentation like Vienna Development Method or Z, or the use of semi-
formal languages like UML in the requirements presentation. These languages give
rules for the language used in the requirements. Natural language that is most often used
for requirements does not limit or give rules to what kind of form or wording should be
used in the requirements. (Osman & Zaharin, 2018) This causes multiple problems in
the requirements. One of the biggest problems being ambiguity. The requirements need
to be based on relevant information gathered from stakeholders and other domain
knowledge and written in a way that leaves no room for different interpretation than
what the requirements engineer has meant. (Ali, Ahmed, & Shafi, 2018)

There are multiple different standards for different aspects of requirements engineering.
there are multiple standards for the requirements specification process and
documentation. Standards for evaluating requirements management and evaluation
tools. But there is a lack of standards for requirements language and notation.
(Schneider & Berenbach, 2013)

Evaluation of requirements can be done manually or by tool. There are multiple
methods for both manual and tool-assisted requirement evaluation. One manual way is
requirement reviews and one tool-assisted way is simulations. In requirement reviews
inspectors will go through the requirements in a systematic way and try to find missed
areas and conflicts between the requirements. Simulations are a tool-assisted method of
evaluating requirements. there are multiple different types of simulations. One example
is doing test runs with the requirements with different inputs to see if the outputs match
and if there are conflicts in the logic. (Wallace & Fujii, 2002; Dassault Systèmes, 2021)

Stimulus is a requirements evaluation tool. Stimulus uses simulations to find conflicts
and gaps in requirements. This is done with program like runs with the requirements.
Stimulus uses models, mainly internal block diagrams to describe the system. The
requirements are attached to the internal block diagrams blocks so that the blocks
seemingly work as the real program would. The requirements have to be very detailed
low-level functional requirements. Nokia was interested in this tool as a need for such
tool has been identified.

Dassault of course could theoretically say that this is a good tool for Nokia, and they of
course had advertisement material that shows that the tool has benefits and is suitable
for Nokia’s needs. But Nokia wanted to see how the tool performs in real-world
scenarios and what are the potential benefits in the real-world for Nokia.

The validation of Stimulus tool was part of a bigger MBSE (model-based system
engineering) exercise at Nokia where new workflows using MBSE were developed for

7

Nokia. The benefits of Stimulus needed to be seen in Nokia context to better understand
how it could be utilized and included in the workflow.

The data for this thesis was collected from demonstration and workshops. To
demonstrate the capabilities of Stimulus set of requirements and model of the system
were made by Nokia. These were then provided to Dassault. Team at Dassault then
made the simulation model in Stimulus based on the provided material. In the
workshops knowledge about Stimulus and the demonstration system were exchanged,
Nokia team assisted with the creation of the simulation model, and results were
discussed.

As result of the workshops and demonstration were that in the current state Stimulus has
significant problems that need to be resolved before the tool can be implemented at
Nokia. These problems included poor integration with other Dassault products, issues in
translating the requirements, and high effort estimates.

As a conclusion from this thesis is that further development of Stimulus needs to be
done and further study to workflows to support Stimulus needs to be done.

8

2. Prior research

In this chapter prior research regarding software requirement specification, requirement
evaluation, and requirement tools will be discussed. About software requirement
specification What kinds of standards and guides there are regarding requirement
specification, different levels of formalization in requirement specification, and quality
of requirements will be shown. Requirement evaluation the main topics will be to show
different verification types and methods and focus more especially on automated
requirement verification methods. In requirement tools I will focus on requirement
verification and evaluation tools rather than requirement management tools.

2.1 Software requirement engineering

Aerospace engineering has been one of the main drivers in the development of
requirements and requirement specification. Good requirements and requirement
specification are crucial in ensuring safety in safety-critical systems. (Wiels, Delmas,
Doose, Garoche, Cazin & Durrieu, 2015) Modern information systems are often very
extensive and complex systems. Building these systems requires participation of
multiple stakeholder groups. There are many steps in software development one of them
being requirements engineering which is the heart of software development. (Kelanti,
2016)

Software requirement specification is the core document where requirements are
identified, defined, and verified. Software requirement specification is the most
important document in the software development life cycle as it forms the base for the
software. (Osman & Zaharin, 2018) The importance of requirements specification has
been identified by many studies but there are still major problems with requirements
specification practices and understanding the importance of requirements specification
in organizations. (Fanmuy, Fraga, & Llorens, 2012) Other problems identified for
software requirement specification include incorrect and ambiguous requirements,
incomplete, inconspicuous, or unmanaged software specification document. The
problems in software requirements specification may come expensive and timely for
organizations as it has been identified that problems in requirement specification can
lead to cost and time overruns. It is crucial that the potential problems in the software
requirement specification are found early on in the project as time goes on it becomes
more costly to solve and fix these problems. (Osman & Zaharin, 2018) Part of the
requirements engineering is requirements specification. Requirement engineering is the
process or activity where identification, extraction, analysis, verification, modelling, and
the specification of the requirements are done. These requirements are then collected
into the requirements specification document and the implementation phase of the
software or hardware may begin. (Shah & Jinwala, 2015)

Zave and Jackson (1997) in their article “Four Dark Corners of Requirements
Engineering” talked about how requirements need to be refined with the domain
knowledge in requirements engineering to make implementable specification. With this
they meant that people writing requirements must have information and knowledge
about the domain in which the system is being designed to. Implementable in this case
means that the specification should not include features that are not executable by the
system under design and replacing them with features that the system can fully support.

9

In the same article Zave and Jackson (1997) talk about that all requirements should
contain information about the environment. This ties into the domain knowledge to be
used in the specification. If optative statements often called requirements are used to
describe the environment of the system it is unnecessary to describe the system itself
(Zave & Jackson, 1997). ISO/IEC 29148 states that requirements need to be
“implementation-independent” meaning that the requirements should not place any
unnecessary constraints on the architectural design. (Ryan, Wheatcraft, Dick, & Zinni,
2014)
As already stated, ambiguity has been identified to be a major thread for requirements
engineering and requirement specification. About 30 percent of quality issues in
requirements were related or directly caused by ambiguity. Another 22 percent of
quality issues were related to whether requirements can be confirmed to be fitting and
good. (Ali, Ahmed, & Shafi, 2018) One of the major causes for ambiguity in
requirements engineering and requirements specification has been identified to be
natural language. (Osman & Zaharin, 2018; Shah & Jinwala, 2015) The biggest issue in
requirements engineering is to extract correct and most relevant requirements from the
users and other given source material. These requirements need to be specified in a
manner that is not ambiguous so that they can then be understood by others and the
integrity and correctness of the requirements can be verified. (Shah & Jinwala, 2015) In
requirements specification process it has been observed in studies that the most common
way of specifying requirements are non-formalized and semi-formalized methods.
(Osman & Zaharin, 2018; Shah & Jinwala, 2015) Requirements are also often initially
natural language during the requirement extraction process this means that even in some
projects where formal languages are used some of the information from the
requirements are lost in translation or the natural language is miss interpreted. (Shah &
Jinwala, 2015)

2.2 Requirement engineering formalization and standards

Formal languages like object constraint language, Z, and Vienna Development Method
have well-defined semantics and rules that help reduce ambiguity as they leave less to
be interpreted by the reader. (Shah & Jinwala, 2015) Also, semi-formal languages like
UML share some of the same advantages as formal languages while being slightly more
flexible. Non-formal, natural language meaning English or other similar language made
by human leave a lot to be interpreted by the reader and can easily lead to the
requirements or specification be miss interpreted. (Bruel et al., 2019; Shah & Jinwala,
2015) Standards like ISO/IEC/IEEE 24765:2010 system and software engineering
vocabulary can make the natural language less “natural” and more formal by
introducing some restrictions to the language. (Bruel et al., 2019; Schneider &
Berenbach, 2013)

There are software and system life cycle standards like ISO 15288 and ISO/IEC/IEEE
12207 that include and require the use of other ISO standards that focus on requirement
specification and verification of requirements. Use of standards has been found to help
minimize many of the problems faced during software development and requirements
specification. (Bruel et al. 2019; Schneider et al., 2013) These standards are commonly
used in system engineering. Many of the commonly used standards have been
harmonized and combined by ISO, IEC, and IEEE this is why many of the standards
have two or three of these standardization organizations listed in front of them. This has
been done due to the complexity of the software engineering domain but causes some
confusion in readers. (Schneider & Berenbach, 2013) These tie into a large group of
other ISO, IEC, and IEEE standards like ISO/IEC/IEEE 24765:2010 for vocabulary
used in software engineering, ISO/IEC/IEEE 24766:2010 which is a guide for
evaluating requirement engineering tools. Paredis et al. (2013) have made a mapping

10

study on how the different software engineering ISO, IEC, and IEEE standards tie
together and the predecessors for these standards.

Requirements are derived from a user’s needs. ISO/IEC 29148 and INCOSE -TP-2010-
006-01 characterise good requirements as necessary, implementation free or
implementation-independent, unambiguous, consistent, complete, singular, feasible,
traceable, verifiable. (Ryan, 2014)

There are plenty of standards for formalizing software requirements specification and
this has been formal specification has been widely accepted. Also, requirements
verification and requirements tools evaluation have standards like ISO/IEC 25030 and
ISO/IEC/IEEE 29148. However, requirements and requirement notations lack
standards. There are lots of notations and syntaxes for requirements but very little in
terms of standardisation of them. This causes problems as many tools use their own
proprietary notation or languages. This means that when companies develop software,
they have to take the language required by the tool and use that. If multiple tools are
chosen to be used the requirements have to be translated to the other notations. (Bruel et
al. 2019; Schneider et al., 2013) This translation issue was also present in Walia and
Carver’s (2009) study about software requirement errors.

ISO/IEC TR 24766:2009 is standard made for requirement tool evaluation. It gives
guidance on how the evaluation should be done and what kinds of things the evaluator
should pay attention to. This standard is to find out the capabilities of the tool in the
given context. This standard is aligned with IEEE 1220 application and management of
the system engineering process and ISO/IEC/IEEE 15288:2002 System life cycle
processes. According to Schneider and Berenbach (2013) some of the shortcomings of
this standard is that it does not consider that most requirement tools today do not come
with all of the necessary features out of the box and the tools need to be extended or
supplemented. The standard does not provide good guidance for this. Another problem
identified by Schneider and Berenbach (2013) was that the standard does not consider
toolchains. There is no guidance on how to work when there are multiple requirement
tools in use and how these should be linked together.

There are many different requirement languages that have different levels of
formalization. Most requirements are written in natural language and other examples of
notation types are mathematical and graph-based notations. Natural language
requirement notations can be formalized by setting rules and guidelines on the notation.
An example of this is Stimulus. (Bruel et al., 2019) For example in a case where light
switch is on and when switch gets turned off the light is turned off. Requirements for
this in Stimulus language would be “When light_switch is ON, light shall be ON” and
“When light_switch is OFF, light shall be OFF”. Another formalized natural language
notation similar to Stimulus language would be User Stories. User Stories uses template
of “As a <user> I want to <target> so that <benefit>”. This has one notable difference to
Stimulus that this requires a user or an actor, so it is more user-oriented than Stimulus
and is, therefore, more suitable for user-oriented designs or collecting user stories.
(Wautelet, Heng, Kolp, & Mirbel, 2014)

2.3 Requirement quality

Requirement’s quality is a big talking point in requirements engineering. In this, one
must remember that quality requirements are different from requirement quality.
Quality requirements are requirements that define some quality target that the system
must meet. (Bøegh, 2008) For software requirements there are quality models that can
be used to evaluate quality of requirements. One of these models is called NLSRS

11

Quality Model. In the model, requirements have two Goal properties, these being
requirement sentences quality and requirement document quality. The two Goal
Properties have some sub-properties for requirement sentence quality the sub-properties
are non-ambiguity, completeness, and understandability. The quality of the
requirements then directly impacts quality of requirement specification. (Fabbrini,
Fusani, Gnesi, & Lami, 2000) In Fabbini et al. (2000) study natural language is yet
again stated to be one of the major problems for ambiguity and understandability of
requirements. Fabbini et al. (2000) levels of formalization slightly vary from the other
literature as they have an additional category of structured natural language on top of
the three categories natural language, semi-formal, and formal that the other studies use.

Again, just like in the development of requirements and requirement specification
aerospace engineering has been the main driver in developing evaluation methods for
requirements and requirement specification.

Errors in requirements must be detected early in the development process as it becomes
more and more expensive to fix the issue in requirements as the development work
progresses. This creates a need for businesses to have a way to verify requirements.
(Terry Bahill & Henderson, 2005) There are many methods for requirements
verification. The most commonly used methods are reviews and checklists. These are
manual verification methods but there are also automated methods. Automated methods
commonly utilize simulations where requirements are tested against an external system
where requirements are used as input. (Terry Bahill & Henderson, 2005; Lutz, 1996)

2.4 Requirement evaluation methods

In reviews, requirements are published and then inspected by requirements engineers,
test engineers, and customer representatives. In the inspection, the requirements are
confirmed to be accurate and adequately represent the need that the customer has. This
method although simple has been identified to have major flaws. The first problem is
that requirements engineers have defined and written the requirements then they inspect.
Can their judgement be trusted as they can be blind to their own mistakes and for other
reasons effectively sop the issues with the requirements. Secondly, the customer
representatives often do not have the necessary knowledge and skills to spot the issues
with the requirements. (Fischer et al., 1979) Over the years different improvements to
the inspection method have been invented one of which is presented by Ficher et al.
(1979) in their study about the requirements verification process. The improvement
suggested by Fircher et al. (1979) is System Verification Diagrams in this the
requirements are presented in a diagram form. This makes the issues more easily
identifiable and in a more easily readable form for the customer representatives. Also,
quantitative analytics processes can be applied to the diagrams to verify the
completeness and consistency of the requirements.

Inspections can be applied to all documents relating to the software development
process. This includes requirements specification documents. There are multiple
different methods that have been developed over the years for conducting software
inspections. There are differences between the inspection methods and studies over the
years have argued which one method and what techniques are the best. (Bernárdez,
Genero, Durán, & Toro, 2004) Some argue that a checklist is vital for the inspection
process in order to align the inspectors and get the inspectors to focus on the important
parts of the software requirements (Bernárdez et al. 2004). Some argue that this leads
the inspectors to focus on a narrow range of aspects of the requirements and therefore
do not find all of the errors (Bernárdez et al. 2004). Some methods suggest that the

12

inspections are best to be conducted in groups or pairs others say engineers working as
individuals are the best. (Bernárdez et al. 2004)

The word error is also not explicit, and standards give different definitions for the word.
For example, IEEE standard 610 gives four different definitions for the word error.
(Walia & Carver, 2009)

Wiels et al. (2015) found in their research that reviews can be at least partially
automated. In their research the verification worked on two levels first structural errors
from the specification were identified by creating instances of the specification,
additionally static checkers were used to find the remaining errors. Secondly, it was
verified that the specification satisfies all the constraints using metamodels. (Wiels et
al., 2015) Singh (2018) has used a machine learning approach to automate reviews and
detect false positives from reviews. This machine learning requirements review is based
on machine learning techniques used in other textual based validation domains mainly
movie and product reviews.

Checklists can be considered to be one kind of review. Checklists are formalized
method of inspecting requirements where each requirement is checked against a list of
items. The checklist contains items that have been identified to be important or easily
missable aspects. Checklists can be made specifically for some software domain. Lutz
(1996) has developed a checklist for safety-related errors to be used in mission-critical
software. More specifically Lutz (1996) has intended his checklist to be used in the
aerospace domain. The checklist includes items like are actions for out-of-range values
specified, are cases where the desired input is not received handed and so on.

While reviews and checklists are mainly manual work there are automated options
available. Automated verification methods are of course heavily tool depended as the
software is what goes through the verification process. One method that automated
verification method tackle ambiguity in requirements is converting them from natural
language to formal languages. They also evaluate language used and have libraries of
words that are considered to be ambiguous. The tools count how many times these
words are used and use this to evaluate ambiguity in the requirement specification.
Evaluating the language used in requirements can also be used to evaluate the
completeness and lack of atomicity. Some automated verification methods require the
requirements to be presented in a formal language. These methods usually rely on
simulations and comparing requirements to each other to find inconsistencies and
completeness of the requirement specification. (Osman & Zaharin, 2018)

Requirement simulations are not a new thing as it has been talked about since the 1980s.
In requirement simulators, the language used in the requirement can be evaluated. This
is depended on the language and formality of the requirement. The requirements
simulation can make a program like run on the requirements to see if there are holes in
the requirements i.e., incomplete requirements or lack of atomicity. At the same time,
the requirements can be tested with different value inputs for requirements that give are
dependent on some value, like something requires minimum or maximum value of x.
(Wallace & Fujii, 2002; Dassault Systèmes, 2021)

A more modern example of requirement simulation verification is Pace (2004) where
conceptual model and simulation model specification is used to verify the requirements
specification.

There are also model-based requirement verification methods. One example of these is
Aceituna, Do, Walia, and Lee (2011). Their method transforms natural language
functional requirements into a state transition diagram in steps. First, the requirements

13

are transformed into state transition diagram building blocks where one requirement is
one block. These blocks can then be arranged into a diagram using transitions between
them.

2.5 Tools

There are many requirements tools that use different kinds of notations and use different
types of evaluation methods. Of course, not all requirement tools have evaluation
capabilities. Tools also have varying degrees of automation. (Bruel et al., 2019) Tools
can also be divided into two categories. Some tools are made for requirements
management, and some are for requirement evaluation or verification. for example, IBM
DOORS falls into the category of requirements management and Stimulus is a
requirements verification tool.

Regarding ambiguity in requirement specification, there is a large number of different
tools developed for detecting and resolving ambiguity. These can save a lot of resources
in the requirements specification process as learning and using language used in the
particular domain, requirement structures, and patterns in the language take a lot of time
from a human to understand processes, expertise, and knowledge (Shah & Jinwala,
2015). For example, tools like WSD, QuaARS, ARM, RESI, SREE, NAI, SR-elicitor
and NL2OCL just to name a few. (Shah & Jinwala, 2015) These tools can be
categorised into two categories automated and semi-automated tools. Shah and Jinwala
(2015) found that detecting ambiguity in requirements works efficiently and accurately
when using machine learning tools that utilize ontology approaches and domain
knowledge. The majority of tools do not use these approaches instead they rely on
natural language processing tools like Stanford parser and Dowser parser are not up to
the job yet to work effectively. If these parsers are not working effectively the rest of
the process will not work leading to waste of effort. As these tools rely on fixed pre-
sets, they do not work well on requirements that by nature change unpredictably thus
creating more ambiguity. But according to Shah and Jinwala (2015) no tool will
completely and automatically remove ambiguity from the requirements.

There are also tools that do not have verification features or functionalities for detecting
ambiguity but use different formal languages to reduce ambiguity. There are problems
with this approach as it reduces the readability of the requirements especially among
stakeholders that are not trained for that language. Examples of tools that use formalized
natural language would be Stimulus and KAOS. Examples of tools using graph-based
notation would be Petri Nets and Statecharts. And examples of tools using mathematical
notation would be VDM Alloy, or Event-B (Bruel et al., 2019)

Huertas and Juárez-Ramírez (2012) found that the NLARE natural language processing
tool for automated requirements evaluation found 96% of the errors in requirements that
human inspection found and 84% of atomicity problems. The differences found were at
the time still under investigation. Incompleteness evaluation NLARE tool was still
lacking as it only managed to score 56%. This was due to NLARE expected more detail
in the requirements than was actually given leading to NLARE’s lack of common sense.
NLARE checked over 200 requirements per minute while it was estimated that the
human reviewer can do less than one requirement per minute. The tool checking is
much faster than what a human can do which is a big part of why requirement
verification tools are so attractive as they save a lot of human resources. (Huertas &
Juárez-Ramírez, 2012)

There are multiple tools for generating UML diagrams from natural language
requirements. Some of which are CIRCE, LIDA, and UCDA (Joshi & Deshpande,

14

2012). Joshi and Deshpande (2012) in their study proposed a new methodology for
generating UML diagrams from natural language requirements. This new methodology
is Requirement analysis and UML diagram extraction. It works by first using a natural
language tool to clean the natural language into new sentences that are confirmed by the
tool to be semantically correct. These new requirements are then used to identify
concepts and their relationships to form UML presentations.

Traceability is an important part of requirements engineering and requirements tools.
Requirement traceability is mandated by many standards like U.S. Department of
Defence standard 2167A and MIL-STD-498 standard (Ramesh, Powers, Stubbs, &
Edwards, 1995; Ramesh, 1998). Traceability shows that the system requirements follow
the stakeholder needs and other design elements follow the requirements. Even though
traceability has been identified to be an important part of the system design process.
(Ramesh, Powers, Stubbs, & Edwards, 1995) Traceability is also seen as a trend in most
commonly used and purchased requirement tools as according to Bruel et al. (2019)
requirements tools with traceability support are to most commonly used.

IBM DOORS Next is a requirements management tool made by IBM. DOORS stands
for Dynamic Object-Oriented Requirements System. DOORS has the ability of
generating reports and publish the reports for reviews. DOORS Next has a traceability
system that allows linking requirements with tags and to other requirements. The users
can also see different test cases and test coverage of the requirements. Another
important feature Of DOORS Next is the ability to see the change history of the
requirements. This is a good feature for the reviews as the requirements can be easily
rolled back to the previous state if in the review it is seen that the changes were not up
to par or not necessary. (IBM Corporation, 2021)

Abbasi, Jabeen, Hafeez, Batool, & Fareen (2015) compared RationalRequisitePro,
Objectiver, CaseComplete, RMTrak, Optimal Trace, Analyst Pro, DOORS, and
GMARC requirement tools. Assessment attributes used by Abbasi et al. (2015) were
glossary, templates, traceability, tool integration, document support, graphical
representation, checklist, and scalability. It was not explained why these were chosen as
the evaluation attributes. Each tool was evaluated whether or not they have that
attribute. The elicitation methods used by each tool was also evaluated. According to
Abbasi et al. (2015) Objectiver was the best tool for software requirements.

Similarly, to Abbasi et al. (2015) Sharma and Sharma (2014) have made a similar study
evaluating software requirement tools. They also had a similar list of tools. Tools used
in the study were RationalRequisitePro, Objectiver, CaseComplete, RMTrak, and
Optimal Trace. Also, similarly to the Abbasi et al. (2015) study the attributes used to
evaluate the tools were glossary, templates, traceability, tool integration, document
support, graphical presentation, and checklist. Much like Abbasi et al. (2015) Sharma
and Sharma (2014) found that Objectiver was the best tool for software requirements as
it had all of the evaluation attributes. All thought confusingly in this study in the table
checkmark is labelled as feature is not available meaning that according to the table
Objectiver has none of the attributes.

Stimulus is a requirements verification tool made by Argosim. It has recently been
bought by Dassault systems. Stimulus uses simulations as its verification method.
Simulation run with multiple input values to see if there are caps or overlap in the
requirements. As it requires the requirements to be written in a formal manner it does
not evaluate the language used in the requirements. All ambiguities are expected to
show up in the simulations results. Stimulus does not support traceability as it focuses
solely on the requirements and does not consider other steps of the design process. The
tool is expected to be used with a requirement management tool that features

15

traceability. The simulation also only supports functional requirements and does not
cover quality or non-functional requirements. Stimulus offers state machines and block
diagrams to help users visualize the requirements and provide additional clarity on the
expected behaviour of the system. As Stimulus uses its own proprietary formal language
also called Stimulus it risks that non-experts may have hard time understanding the
language and requirements. (Bruel et al., 2019; Dassault Systèmes, 2021)

16

3. Research methods

In this chapter, the research methods and implementation of the research methods will
be gone through. The research method used was design science research. Snowballing
has been used to search for reference material.

3.1 History

In design science research aim is to solve and find a solution to a research problem by
developing and using an artifact. This is done in an iterative loop of development and
verification cycles. There is plenty of literature on design science research in
information systems and the IT field in general.

The idea to make design into science or combine design and science has been around at
least since the 1920s. In the 1920s there was a strong movement to find scientific search
and architect Le Corbusier described house as a machine made for living. But it was not
until the 1960s when design science started to form into an actual methodology. (Cross,
2001)

Design science research has its origins in the 1950s and 1960s. The 1960s space race to
launch the first human-made satellite showed that the American scientists and engineers
lacked creativity. The new research methodology was developed in a series of meetings
and conferences in the 1960s and 1970s held in the UK and USA. There were some
notable rejections of the new methodology by some of the original pioneers and
researchers of design methods. (Cross, 1993)

The first generation of design science method from the 1960s used the application of
systematic rational, and scientific methods as its base. The second generation of design
science method used a more practice focus approach in its base. In the second
generation the scientist were partners with the problem owners and tried to find
satisfactory and argumentative instead of trying to optimize and elevate the scientist
above other stakeholders of the problem. These two generations continued to develop
independently from each other. (Cross, 1993)

Two more later generations of the design science method although not as pronoun could
be considered to exist. First in the 1980s mainly developed and used in AI research and
second in the 1990s which was a mix of first- and second-generation design science
methods. The generation used in the AI development was hoped to automate and or
intelligently assist the design process. The third generation was a mix of the two
previous generations and focused to understand the communicative nature of the
problem being solved with the design and the communicative nature of the design itself.
(Cross, 1993)

IT and information systems are designed to serve a human purpose. These systems are
made to be used by humans and improve the efficiency and effectiveness of work in
organizations. Computer science does not study natural phenomena but artificial
instead. In classic natural sciences like physics, mathematics, and chemistry they use
laws, models, and theories to explain reality and the research process involves making

17

claims about reality and proving them right using norms of truth and explanatory power.
(March & Smith, 1995)

Natural science is also viewed as a composition of two activities discovery and
justification. While the scientific discovery has no ridged definition, the process of
which it happens or is not well understood the general thought is that there is some kind
of logic behind it. The scientific discovery in mainstream philosophy is thought to be a
creative process much like designing and creating artifacts for design science research.
The justification part is thought to be in mainstream philosophy disproving claims and
discoveries as a single negative instance can disprove the whole theory. (March &
Smith, 1995)

In design science research in the IT field the aim is to create something that serves a
human purpose more than explaining reality. Design science products can be four types
constructs, models, implementations, and methods. In design science research the
scientists can design and study artificial phenomena this is the dual nature of IT
research. The IT field is highly innovative and design science research is therefore a
suitable research method for the industry. The IT field is also fast-changing, and the
research needs, and artifacts change. Also, because the IT field is fast changing it
creates artifacts at an ever-increasing rate. (March & Smith, 1995)

Design science research engineering, artificial sciences and natural sciences in its base
and it aims to solve a practical problem. Design science research at its core has the
artifact. This artifact is created by the researcher. This drives innovation and creativity.
These artifacts are based on prior knowledge and are verified by the use of design
science methodology. (Hevner et. al 2004)

Design science research in information systems is a combination of behavioural science
and design science. Behavioural science comes from natural sciences and design science
in engineering. Behavioural science is interested in explaining and proving theories that
explain or predict human or organizational behaviour. On the other hand, design science
research attempts to create artifacts that are innovative and new and in this way push the
human and organizational capabilities. So behavioural science tries to explain what is
true in human and organizational behaviour and design science research tries to push the
boundaries of human and organizational boundaries. (Hevner et al. 2004)

The consensus in the IS research literature is that the research results of an empirical IS
study should be something implementable. This leads to the importance of design that is
also well recognized in the IS literature. The difficulty in good design is that it is very
difficult to design an useful artifact in a field or domain area where there is not a lot of
prior research and information on the topic on to base the artifact on. As the domain
knowledge is built the artifacts are being built in areas where it was not previously been
believed that IT support was possible. (Hevner et al. 2004)

One of the dangers of design science is related to both information system research
discussed in the previous paragraph and to behavioural science. If the artifact is well
designed and planned but does not have an adequate theory base it dangers of not being
applicable to the real world. Hence it is important to line up the artifact with a good
theory base and the real world. It must also be remembered that design science research
is not just about building an artifact but also rigorous and iterative testing and evaluation
of the artifact. (Hevner et al. 2004)

18

3.2 Implementation

In design science research the purpose is to solve the research problem using an artifact.
This artifact is a solution to the problem. Design science research process has six steps.
These steps being problem identification and motivation, objectives of a solution,
design and development, demonstration, evaluation, and communication. (Pfeffers et
al., 2006)

19

Figure 1. Pfeffers’ design science process

In problem identification the problem is defined, and the importance of the problem and
solution is shown. The problem needs to be identified on a level that is atomic enough

20

to be able to be used to build the artifact to solve. Meaning that if the problem is
complex then the problem needs to be understood well to build an effective solution to
the problem. Identifying the value of the solution is important as this shows the
importance of finding a solution to the problem and motivates the study. (Pfeffers et al.,
2006)

In the objectives of the solution the requirements for the solution are defined and the
objectives for the solution are defined. How and why the new solution would be better
than existing solutions if they exist. How the new solution is supposed to solve the
problem and what the objectives are that need to be filled by the artifact. This step may
need some extra domain knowledge and knowledge about the existing solutions.
(Pfeffers et al., 2006)

Designed and developed the artifact. The architecture of the artifact and the wanted
functionalities of the artifact are made. The artifact is then created. This step requires
knowledge about how the defined objectives of the solution turn into design and
knowledge about the implementation methods used, coding etc. (Pfeffers et al., 2006)

In the demonstration, it is shown how the artifact is used and how it solves the problem.
It is demonstrated that the artifact is an effective solution to the problem. This step can
include depending on the solution different methods of demonstration experimentation,
simulation, case study etc. (Pfeffers et al., 2006)

In evaluation, the artifact is evaluated. How well and effectively it performs and solves
the problem. The findings are then iterated back to the design. The results from the
demonstration step are now evaluated. The objectives are needed again in this step as it
needs to be evaluated whether the use of the artifact has yielded the desired results that
were set as objectives. This may include different evaluation methods depending on the
nature of the problem and solution. The effectiveness of the solution can be evaluated in
many different ways depending on the solution and artifact these can be for example
client feedback, simulations, or performance metrics. After this, the research may be
looped back to the design and development step. (Pfeffers et al., 2006)

Communication means reporting the result and the findings. Scientific publication is
written and published. It is important to weigh the problem and importance of the
problem and solution, the artifact, novelty or utility of the artefact, and the effectiveness
of the solution. Standard empirical research process structure (problem definition,
literature review, hypothesis, data collection, analysis, results, discussion, and
conclusions) may be used for the publication. (Pfeffers et al., 2006)

Design science research process has four possible entry points problem centred
approach, objective centred solution, and design and development centred approach.
Regardless of the entry point, all steps must be made. In problem centred approach the
research loop is started from the first step problem identification. In objective centred
solution the research loop is started from the second step objectives of a solution. In a
design and development centred approach, the research loop is entered in the third step
design and development. In the last possible entry point observing a solution is entered
from the fourth step demonstration. Even though the loop may be entered from later
than the first step it is possible to loop back to steps two or three from steps five and six.
(Pfeffers et al., 2006)

21

Figure 2. Hevner’s design science process

Hevner et al. (2004) give seven guidelines for conducting design science research in the
information systems domain. The first guideline is that as the product of design science
research there should be a usable artifact in a form of construct, model, method, or
instantiation. The second guideline is design science research focuses on solving
relevant and important business problems and the solution needs to reflect this. The
third guideline is that the artifact must be rigorously evaluated. The fourth guideline is
that the research must provide clear and verifiable contributions to the field that the
artifact operates in. The fifth guideline is research rigor, both construction and
evaluation of the design artifact must be done rigorously. The sixth guideline is design
as a research process all the domain knowledge and expertise must be used to create an
effective artifact. The last and seventh guideline is research communication the research
needs to be presented in an effective manner to the readers.

Hevner’s (2007) design science method varies slightly from Pfeffer’s et al.’s (2006)
version. Hevner (2007) divides design science into three parts environment, design
science research, and knowledge base. The environment is the domain space that the
artifact works in. The environment can consist of people, organizational systems, and
technical systems it also contains problems that the artifact solves. Design science
research consists of building and designing the artifact and evaluating the artifact. The
last part knowledge base is the foundation. It consists of theories and scientific methods.
It also contains the expertise and experiences collected from and needed for the
research.

Hevner (2007) has three design science cycles design cycle, rigor cycle, and relevance
cycle. The design cycle is the cycle between designing and building the artifact and
evaluating the artifact. This is the core cycle of any design science research. This
strengthens the feedback loop of building the artifact. The artifact is continuously built
and tested until it reaches the set objectives.

22

Rigor cycle is in between the design science research and the knowledge base. The
purpose of this cycle is to bring theories, scientific methods, expertise, and experiences
to the ongoing research. This ensures that the artifact is innovative. (Hevner, 2004)

Relevance cycle is for showing the improvement that the design brings. In the relevance
cycle, the acceptance criteria are made so that the results will be reflected against and
the acceptance criteria will show how the improvement can be measured and shown.
The results and reflection against the acceptance criteria will then tell if further
iterations are needed. In further iterations, the acceptance criterion can fine-tune and
improved if needed. (Hevner, 2004)

23

4. Research Design

4.1 Literature Study

The literature study of this thesis was carried out using backward snowballing combined
with database searches.

Jalili and Wohlin (2012) found that snowballing was very effective in terms of finding
relevant papers compared to database searches. In database searches, 85-percent of the
result papers were found to not be irrelevant and only 32-percent of the snowballing
search results were found to be irrelevant. For this reason, snowballing was chosen as
the method for finding references in this thesis. However prior experience of the
researcher heavily affects this as knowledge of the domain helps identify keywords and
activities from titles and knowing key authors in the area is also beneficial in finding
relevant articles. Snowballing can be done both backwards and forwards and Jalili and
Wholin (2012) recommend using both backwards and forwards snowballing in the
study. Jalili and Wohlin (2012) state that guidelines do not recommend using only
forward snowballing in the study, but it should be paired with backward snowballing. In
backward snowballing the idea is to go through the reference list of articles to find
further references. Forward snowballing means that a database is used to see which
articles use this article as a reference. Wohlin (2014) added that context should be taken
into count when snowballing and not just the reference list meaning that the articles
should be read and seen where articles have been referenced and what was written in the
article about the reference. This according to Wohlin (2014) helps identify the relevant
articles. One of the drawbacks of snowballing identified by Jalili and Wohlin (2012)
was that authors usually use their own papers or papers that they have been part of as
references which may lead to research bias.

Like for database searches, inclusion and exclusion criteria need to be decided before
starting the snowballing. This criterion is used for both forward and backward
snowballing.

In database searches, the first step is to formulate a suitable search string and identify
relevant keywords. Snowballing starts from an initial set of articles. For search of the
starting set, Google Scholar is recommended by Wohlin (2014) to avoid bias towards
any publishers. It is important that all of the communities that have made relevant
findings and articles on the subject get represented. The size of the starting set should be
chosen accordingly to the size of the subject being researched. The starting set must not
be too small. The starting set needs to be diverse and include papers from different
publishers, authors, and years. Wohlin (2014) also states that there is no golden path to
finding the best starting set and similar challenges are faced in this as in formulation
search strings for database searches.

After the initial starting set has been established. The snowballing can then be started.
First going through the reference lists and excluding papers not matching the basic
inclusion criteria and papers that have already been gone through. After this basic
exclusion, the rest of the papers are candidates for included references. Next, the papers
that were identified as potential references titles, publishers, publication venues, and
authors are examined. If there is no reason to exclude the papers Based on these, they

24

continue to the next phase. Then abstracts of the articles left are read and then further
examination can be done to finally include or exclude the paper. It is not recommended
to read the whole paper from start to finish but instead glance over the paper to see if
there is some useful information there.

Next forward snowballing can be used on the included papers. In this, the papers that
use this paper as a reference are examined. This can be done through Google Scholar
where the citations can be seen. A similar screening process is done to this list as was
done to the backwards snowballing papers.

Figure 3. Snowballing process

25

In this thesis the inclusion criterion was:

- Must have at least 5 citations
- Must be written in English
- Is not duplicate to already picked article
- Abstract must have mention about requirements
- Discussion part must be linked to requirements
- Full text must be available in the university of Oulu library or must be open

access

The initial set of papers was established by searching Google Scholar with the following
search terms “formal AND requirements AND specification”, “requirements AND
tools”, “requirements AND machine AND reading”, “requirement AND standard OR
standards”, “software AND requirements AND formalization”, “requirement AND
notation”, “software AND requirements AND quality” “software AND requirements
AND format”, and “software AND requirements AND guide OR guidelines”. The first
10 search results were first evaluated based on the title is suggests that the article has
valuable information. Then abstracts were read from the remaining articles to identify
the articles further. The citations did not matter for these as newer articles were
favoured over citations to get the starting point for backwards snowballing as new as
possible as the back limit was the year 1990. This initial set had 10 articles.

After the initial set was established the backward snowballing was started also at the
same time terminology such as “user story templates”, “axiomatic requirement”,
“software requirement tool comparison”, and “requirement notation OR syntax” and
standards ISO/IEC 29110, ISO/IEC/IEEE 12207, ISO/IEC 24766, and ISO/IEC 25030
were collected to further refine the search terms and especially on the standards further
searches were needed to determine what the standards were. The initial articles’
reference lists were read, and potential articles were identified by title. After this, it was
read wherein the text and in what context the references were referenced in. After this
the publishing years were checked, citations were checked, and abstracts were read. If
the reference fit the criterion it was picked as reference material for this thesis. This
yielded 27 articles after duplicates were removed. This also includes 3 articles that were
in the initial starting set of articles. Further 7 articles were gathered from additional
database searches. These searches included “software AND engineering AND
specification AND natural language processing OR NLP”, “ISO/IEC 29110”,
“ISO/IEC/IEEE 12207”, “ISO/IEC 24766”, “ISO/IEC 25030”. Further 5 articles were
recommended by the supervisor.

4.2 Empirical research

The research method used in this thesis was design science research. This research
method was selected because it was seen as the most fitting research method for this
application. The design research method allows demonstration and evaluation of the
real-world application of the tool. Nokia wanted to see how the tool performs in real-
world scenarios and what are the potential benefits in real-world. It was seen that this
way the benefits and weaknesses of the tool can be evaluated the best.

Pfeffers’ et al. (2006) method was selected over Hevner’s et al. (2007) version because
it is more straightforward and more fitting to Nokia’s existing workflow. The
demonstration part is also important in this thesis as the requirement set is sent to
Dassault who will then do the simulations on the tool and show how it was done.
Because of this, it is important to focus more on the demonstration to then be able to

26

properly evaluate time and effort spent on the simulation which is one of the main
objectives for the research.

This research started with problem identification. Nokia had already acknowledged
some problems with the existing requirements validation process and was interested in
testing the new tool. After the problem was identified prior research and state of the art
in requirements engineering domain was studied. This already answered some of the
questions identified in the problem identification like is there a standardized language
for machine-readable requirements. The objectives for the solution were then set. These
were based on the needs identified by Nokia and the problems identified previously.

The empirical research part of this thesis was carried out shortly as follows. A
requirement set was created that was then be sent to Dassault for feedback and
simulation. The requirement set was built in team meetings and smaller individual tasks.
The requirement set was then refined using feedback from Dassault. The simulation
process and simulation results were demonstrated by Dassault. The simulation results
and other data gathered from Dassault were reflected against the objectives and
evaluation criterion set for the study.

The results and data gathered from the simulation were then reflected on the objectives
set for the solution. Additional evaluation of the design and build process of the
simulation was done to determine ease of use and effort estimation.

27

5. Research and findings

In this chapter design, science research process is handled according to Pfeffer’s design
science process.

5.1 Problem identification and motivation

The goal of this thesis was to see if Stimulus tool is a beneficial and suitable tool to be
used for requirements analysis in Nokia. The tool could be used to evaluate new
requirements. Verifying that they are not overlapping with already existing
requirements as currently Nokia has a large number of requirements. This makes it hard
to identify overlapping requirements in manual reviews and during the process of
creating new requirements. Also, there has been cases in the past where some edge case
has not been identified and caused problems later on.

Another problem is that there are plenty of cases where there are multiple different
choices that lead to a certain goal. Meaning that there can be multiple different options
that are Boolean or numerical and these need to be compared to each other to determine
what is the final result. For example, if A is true, B is true, and C is false then perform
some specific tasks. Here also the edge cases are a risk as there may be some not so
obvious combinations that are rarely seen. Because there are many combinations it is
hard to manually make sure that all of them have been covered.

Simulating could also ease the load from reviews as manual reviews require lots of
resources.

5.2 Verification artifact of the solution

The biggest constraint of the solution is time. The solution should not be too complex so
that it does not take too long to design, construct, and demonstrate. But complex enough
to demonstrate that it is capable of effectively fit into Nokia’s domain. Nokia has many
complex systems that tie closely into each other. Finding a suitable part of one of them
that did not require too much simulating or building the outside system for the
demonstration was difficult.

The solution needs to effectively reflect the real world. There was a need for the
solution to be as close to Nokia’s real scenario as possible so that the true benefits and
weaknesses can be seen. Dassault is already able to provide some general examples of
how the tool performs but in this case the interest is to see how it performs for Nokia
and whether Nokia has suitable use for it and how it performs in Nokia’s domain.

1. Show how much time creation of the simulation takes. This way estimation can
be done if the benefits out weight the time and effort spent on creating and
running the simulation. Also, the time effort compared to the existing
requirements review method. Stimulus is not supposed to replace inspections but
possibly reduce the amount needed and simulations could be used paired with
inspections.

28

2. Demonstrate the simulation creation process. As the Nokia team did not get to
use the tool itself, there was a need to gather as much information about how the
tool is used as possible. This is also part of the effort estimation as there is a
need to see how easy the tool is to use and how much time would be needed on
training Nokia’s requirement engineers to use the tool and how many people are
needed to effectively use the tool. For example, if the tool is cumbersome to use
then more people is needed to build and run the simulations to get the results in a
reasonable time.

3. Show what kind of effort is needed to translate requirements to Stimulus
language. The requirements are written in natural language and need to be
translated in the Stimulus tool to Stimulus language. As already discussed in
section 2 translating requirements can lead to loss of information and incorrectly
translated requirements may convey wrong information.

4. Show how the requirements are translated. Stimulus tool has a function that will
assist in the translation process and Nokia is interested to see how this works in
practice. How much domain knowledge does the person doing the translations
need to do the work effectively for this it is good that someone outside the
company doing the job. This way it can be seen and evaluated how much
support and assistance they needed to complete the job.

5. Demonstrate how overlapping and gaps in requirements can be seen. Nokia team
was informed by the Stimulus team that this detection of overlapping and
insufficient requirements was something that Stimulus was capable of and even
good at. Nokia team was already aware that Nokia has some overlapping
requirements as few of them were found already when building the artifact.

These objectives are loosely based on the Unified Theory of Acceptance and Use of
Technology second version (UTAUT2) framework (Venkatesh, Thong, & Xu, 2012).
According to UTUAT2 people’s behavioural intentions to use technology is influenced
by four key concepts these being performance expectancy, effort expectancy, social
influence, and facilitating conditions. Social influence takes into consideration persons
gender, age, and experience so, what the user thinks others believe they should use as
technology. Facilitating conditions means how the user perceives the support and
resources available to perform tasks. Performance and effort expectancy are self-
explanatory. They describe the ease of use and what kinds benefits the use of
technology will bring to the user. Performance expectancy has been identified to be the
strongest of all of the four key constructs (Venkatesh et al., 2012) From the UTAUT2
framework the main interests were in performance expectancy, and effort expectancy.
The social influence has little impact on this as users will use the tools that the company
provides them and facilitating conditions Nokia is working on new improved working
methods and this is a commercial product so support to use the technology will be of
course provided by internal and external support personnel.

5.3 Design and development of the artifact

Discussions with Dassault had already begun during the problem identification phase on
how evaluation of the tool would be carried out. The end result of these discussions was
that Nokia will create requirements set and send it to Dassault where employees will
then create the simulation and then demonstrate it to Nokia. So, Nokia did not get any
evaluation licenses from Dassault and Nokia team did not get any first-hand use of the
tool.

Evaluation of Dassault’s Stimulus tool is done using a set of requirements. So, the
artefact in the thesis was the set of requirements and it was demonstrated using the
Stimulus tool the results from the tool were then analysed.

29

Creation of the requirement set started from identifying suitable feature that the
requirements would be derived from. In this case, feature means some functionality of a
software system that satisfies the requirements. The feature that was chosen to be used
was point-to-point connect profile that supports ITU-T G.8275.2 standard. Feature name
“ToP Light phase & time synchronization support (IEEE 1588 & ITU-T G.8275.2)”.
This feature adds a new synchronization profile that enables users to deploy networks
according to ITU-T G.8275.2 to networks where the backhaul only meets ITU-T
G.8265.1 standard.

The requirements set that was used as the artefact for design science research used in
this thesis was created in team discussions and smaller individual tasks. First, the
feature was chosen where the requirements would be made from. This feature was
already derived from a customer need and a feasibility study had been conducted. The
main criterion for picking the feature was that it had to be from a real customer need,
had to be already scheduled for implementation somewhere next year, and had to be
small enough to be demonstrated in the given timeframe for this study. After the
development of the requirements set started by going through the feasibility study and
the feature was about support for standard documentation for this standard was read.
These gave an understanding of what new would have to be created on top of the
existing software and the required domain knowledge. Based on this crude system
requirements were identified. These were then refined and chopped into smaller
requirements. Some base and surrounding requirements were needed from the existing
database to give some context for the Dassault team. One of the team members was
tasked to search the existing database for requirements that apply to this feature. This
served as a base for the feature. The requirements were on the level of “Network two-
way packet delay must not exceed 125us” and “5G FDD (handover) shall be able to
maintain phase and time synchronization accuracy within 250us”. The “legacy”
requirements were a little more detailed and this delta feature mainly relied on the
existing requirements and did not add much on top of them. These legacy requirements
were taken from the existing requirements database. They were modified to fit this use
case and as this study is part of a bigger model-based system engineering pilot where
new workflows and work practises were tested the requirements were also needed in
this.

It was already agreed at the beginning that Dassault would assist Nokia team with the
creation of the requirements set so that Nokia would have a better understanding of
what is required from the requirements so that they can be simulated using the tool. The
requirements would be sent to Dassault and the team there would give feedback on how
to develop the set further and then when a suitable set for simulation is established build
and run the simulation and share the process and results with us. The first set of
requirements was sent to Dassault and the result of the meeting held between the
Dassault and Nokia team was that these requirements were too high level. The key was
that requirements for Stimulus tool need to have clear inputs and outputs. For example,
interface requirements where it is clearly stated what kind of data the interface provides
as output and what are the clear inputs for the interface. As this feature is a delta feature
it provides little in terms of such functionality instead of relying on already existing
interfaces and data. The requirements set was then refined based on the first meeting
with Dassault team.

The simulation was designed and built by Dassault team based on the requirements
given. As Dassault’s knowledge about the Nokia domain was limited discussions were
held where the necessary knowledge was shared in order to build the simulation
correctly.

30

Some examples of the previous existing requirements “Support for PTP slave
functionality according to ITU-T G.8275.2 unicast standard profile” “Phase
synchronization mode must have 120s tuning cycle length with PTP as synchronization
reference” “Initial coarse tuning cycle length must be parametrized to following list
[12s, 60s]” “Coarse tuning packet selection window max length must be 1 tuning cycle
 with Normal PTP profile” “Coarse tuning packet selection window max length must be
10 tuning cycles  with Custom PTP profile” “Normal tuning packet selection window
must be 5 tuning cycles”.

The first meeting with Dassault showed Nokia that the requirements need to be much
more detailed. They advised Nokia team to draw a UML state machine of the system to
help identify the inputs and outputs of the system. A new set of requirements was
created based on the previous that split the system requirements into smaller functional
requirements. The target piece of the system where the requirements were created from
was also chosen to be such that clear input outputs can be shown in the requirements.
Also, for this illustrative picture (Figure 4.) below can be seen for a better understanding
of the system. This set of requirements can be seen in appendix A.

Figure 4. Illustrative picture of the target system

The requirements were sent to Dassault for the simulation process. Dassault arranged a
meeting where the requirements were gone through and they gave Nokia team feedback

31

on how the requirements needed to be refined in order to simulate them. The problem
with that set of requirements was that it was system-level requirements, but Stimulus is
only capable of simulating functional requirements with clear inputs and outputs. The
new set with more detailed requirements were then sent again to Dassault for feedback.

The requirements are stored in DOORS Next requirements management tool which is
used by Nokia. Dassault also offers their own requirements management system. The
requirements are created in DOORS and the language used for the requirements is
natural language. This creates challenges in requirements management in Stimulus as
Nokia did not know how Stimulus is going to show changes in the requirements. For
example, if a set of requirements are translated and then changed in DOORS how can it
be seen which requirements the change affects in Stimulus and do the changes have to
be done manually or can Stimulus do the changes automatically.

5.4 Demonstration

Dassault builds and runs simulations and then demonstrates to Nokia how it worked and
how it was done. To help assist Dassault with the creation of the simulation model
SysML activity diagram was drawn (Figure 4) of the target system to show where and
how the requirements were used in the system.

The requirement set (Appendix A) sent to Dassault was used in the simulation. The
requirements were translated to Stimulus language in the Stimulus tool. The
requirements will be stored in DOORS Next in a normal situation but in this case to
ease the communication between Dassault and Nokia the requirements were shared by
email. Stimulus assists with this translation process by providing a library where partly
done sentences can be picked (figure 5) that are missing actors and objectives that can
be picked from another library that contains all the parts of the system that the user has
configured. For example, a sentence like in figure 5 “message” shall be sent through
“message interface” is a ready-made sentence structure where the user needs to drop the
desired message and message interface that the user has previously configured. In the
menu in figure 6 message and message_interface are examples of interfaces that can be
used to fill in the requirement sentence. These interfaces connect the PTP Monitor
Block and Fault Manager block. The sentence templates can also be customized or
created by users. Template use is not mandatory, and the requirements can be typed out
if there is no suitable template for that requirement.

Figure 5. Requirement creation in Stimulus

32

Figure 6. Interface library

Additionally, to the requirements test environment must be created. This environment is
SysML internal block diagram which can be imported to Stimulus or created in the tool
itself. In this case, the automatic import did not work and figure 6 had to be manually
created in Stimulus. The requirements are then attached or included in the blocks. This
way either part of the test environment can be simulated as in a single block or the
whole system. This way the interfaces can be tested too. This feature was also
demonstrated by Dassault for Nokia. They also showed how the blocks can be reused
for creating quick individual test systems for the blocks.

As a base for the demonstration internal block diagram as in figure 7 was used. This
figure was provided by Nokia, and it included explanations for the system. Dassault
created a library containing the relevant glossary and interfaces for this case. The
interfaces made were user interface, network, ptp_packet_analyser, and
configuration_handler. These interfaces can be seen in figure 7 connecting the blocks
and going out of the system. The blocks in the figure were imported into the
demonstration in Stimulus.

Inner internal block diagrams were made inside these top-level ones to explain the
functions and related requirements of each block. In the demonstration, these blocks
contain the translated requirements and the information required for the simulation.

In this demonstration, the ranges were given by Nokia to Dassault. These were included
in the inner levels of the provided internal block diagram (figure 7). For example, the
configuration that can be seen going in between user interface and configuration handler
has three attributes domain number, packet rate, and clock class. The ranges set for
these were 44 to 63 for domain number, list of power to 2 from 2^0 to 2^7 for packet
rate, and list of 6, 7, 135, 140, 150, 160, 165, 248 were given for clock class. These
values are taken from the network protocol standard.

33

Figure 7. Top-level internal block diagram of the system

The simulation parameters and ranges are automatically generated for the requirements
by Stimulus. These parameters can also be manually adjusted or created from scratch.
For integer or float values the steps can be adjusted accordingly. How many runs of the
simulation can be chosen. Multiple simulations can be run end-to-end with different
parameter values for better coverage.

Observers can be set to observe the simulation output and input values. If the observer
rules are violated then the observer indicates this. Multiple observers can be set for the
simulation with different rules. These observers are created by choosing a block or
interface that the user wants to observe then choosing what attribute or attributes the
user wants to observe, and the value the user wants to observe. For example, the
observer can be set for fault manager to see when both missing reference source and
PTP time and phase error faults are not active. This is one of the observers demonstrated
to use.

Simulation draws a graph while the simulation is being run. The graph shows the values
that the parameters get during the run and the values that the observers get. The graph
can be used to observe the moment when the observers are violated or other desired
moment during the simulation to see what was where the values of the parameters at
that moment. This gives an idea if there is a missing requirement, or the existing
requirements are not complete.

In figure 8 there is an example of how the graphs are displayed. In this graph PTP
(Precision Time Protocol) availability is depicted. PTP availability can get four states
depending on requirements. Where the line is in the picture at roughly 35 seconds PTP
availability state first is WaitToRestore and changes to Available.

34

Figure 8. Example of simulation graphs

The test log file is outputted after the simulation is run. This file contains a table of all
the parameters used in the simulation and the values the parameters got during the test.
This file can be used for further analysis with different tools or manual analysis. This
way the test results can also be stored for future reference or be shared with others.

5.5 Results

As a result of the demonstration given to Nokia by Dassault, Nokia got a presentation of
the demonstration with a recording of it and a report of the Stimulus mode including
requirements and details about the model. More data was collected from workshops
held between Nokia and Dassault. This data is in a form of notes that were written
during the workshops. In the workshops, the model created in Stimulus, requirements in
Stimulus and general use of Stimulus were discussed.

There were four workshops in total held. The participants in the workshops from Nokia
included three to four experienced system architects with a minimum of five years of
experience in the company and of course me. From Dassault’s side, the workshops had
two to three sales specialists and one to two industry process specialists. All of the
Dassault personnel were experienced users of Stimulus and did not have any prior
experience with the system presented by Nokia. Nokia personnel had no prior
experiences or knowledge of Stimulus but had extensive knowledge of the system. After
each workshop meeting between the Nokia personnel was held where the results and
events were discussed, and thoughts were exchanged.

Two additional requirements were added to the set to get Stimulus to find a conflict.
Requirements 58, and 59 in Appendix A. These two requirements were relatively simple
but added enough complexity to the system to cause a conflict that stimulus found.

As the requirement set was created by Nokia without any experience of the tool this
issue with the requirements set was not initially known. Nokia team tried to create a set
that would show the capabilities as good as possible but as no one from the team had
used Stimulus Nokia team could only guess what kind of requirements would show the
capabilities the best.

The glossary in figure 9 shows the attributes used in the Stimulus requirements. In
figure 10 is one of the requirements from Stimulus where the use of the glossary can be
seen in action. The user first chooses one of the requirement templates and then drag
and drops the wanted attributes or items into the template. In this case When and
Otherwise templates have been used. As parameters configured domain number,
configured message rate, and configured clock class have been dropped into the
requirement template. This Stimulus requirement says that all the given attributes must
be in the given ranges for the configuration received from the user to be valid.
Comparing this to the original requirements written in natural language this requirement
comes from requirements 1, 2, 48. These requirements define the given attributes. Here
is also the first missing requirement as our provided list did not explicitly state that the
configuration must contain these attributes. This was not the only requirement that was

35

added.

Figure 9. Glossary of the attributes from Stimulus

Figure 10. Stimulus requirements for configuration validity

36

The requirement in figure 10 is relatively simple and easy to understand but the
requirements can get cluttered, long, and hard to understand for an untrained eye. As an
example, requirement in figure 11. There are lots of people who need to read these
requirements some with less knowledge about the system. For example, requirements
need to be readable by implementation teams and managers. This is a common problem
with formal requirement languages as discussed in the prior research chapter. To
improve readability for stakeholders who have not been trained to read Stimulus
language the requirements need to be translated to natural language. Translating
requirements can cause ambiguity in the translated requirements and translation
mistakes where the translated requirement does not fully match the original
requirement.

Another issue related to having requirements written in two different formats. This
doubles the work while creating and maintaining the requirements as they need to be
changed in two different places. Meaning that the same requirement would be in
DOORS twice with a different presentation. At the moment Stimulus does not have any
function that would assist with the translation work. Also, the suggestion was that only
the requirement written in Stimulus would be fixed using the tool and that would
replace the requirement written in natural language.

37

Figure 11. Stimulus requirements for fault management

38

Figure 12. A proposed fix to the requirement in figure 11

Figure 11 contains the conflicting requirement if this is run in Stimulus it would create
an error that is displayed (figure 13) in Stimulus. The error occurs because there is a
situation where PTP availability status is both unavailable and losing at the same time or
there is no differencing which one of these states should become active after this state
change. As the PTP availability can only get one state at a time this creates a problem as
one of them would have to be picked over the other one. Figure 12 is a proposed fix by
the Dassault person who made the model in Stimulus and translated the requirements to
Stimulus. The last two lines are the lines that needed to be added. On these lines, it is
stated that if the previous state was available the next state should be unavailable. This
is incorrect as the state after available should always be losing.

There are also two other mistakes that come from translating the requirements. These
mistakes can be seen in both figures 11 and 12. Both are on the line ‘When ((

Network.Announce_Messages.Message_Rate * 110[s]) ∈ [0[s] , 110[s]]) ,’. The
mistakes here being that the original requirement states that sync messages should be
calculated and not announce messages. Secondly, this line means that announce
message rate times 110 seconds should be in between 0 and 110 seconds. This should be
sync message rate times measurement period which is the 100 seconds should be the
same or less than the number of sync messages received in 110 second measurement
time. This message is likely caused by the translator’s lack of domain knowledge. Even
though for the Nokia team the requirement was clear, and some time was spent to make
sure that this requirement is written as understandably as possible.

Errors found in requirement in Stimulus are displayed like in figure 13. This is a similar
way to which many code compilers and integrated developer environments would
display error messages. The error message contains path where the conflict occurs,
block where the error occurs, error level if its error or warning, for example, error
message explaining the error in more detail, and the step on which the error occurred. In
this case, the error occurs on step 5001 of the first run.

39

Figure 13. Error message in Stimulus

When comparing the internal block diagram (figure 5) that was sent to Dassault to the
block diagram in figure 14 they are similar. The only major difference is that the
outgoing network and user interface interfaces do not seem to go out of the diagram but
are displayed as blocks inside the diagram. These blocks could not be in this case be
directly imported from Magic Draw that was used to draw the original picture that was
provided to Stimulus team. This was because this feature of Stimulus was still under
construction. The requirement in figure 11 would be in the Configuration_Validator.
Based on the input received from user_interface the Configuration_Validator block will
send Configuration_Validation1 true or false to PTP_Monitor. Rest of the blocks work
in a similar fashion where they have some input, the input is validated against
requirements given for that block, and an appropriate response is sent to the next block
based on requirements and input.

Figure 14. Block diagram in Stimulus

Nokia has extensive UML models of the base transceiver station synchronization
system that at least at the moment cannot be imported to Stimulus. This creates lots of
extra effort as the models would have to be manually drawn in Stimulus. On top of this,
there are now two models that have to be maintained.

In figure 15 is a test case made for testing requirement in figures 11 and 12. This test
also yields an error in figure 13 when run on requirement 13. Down at the bottom, the
default values for the attributes can be seen. If in this stage, the value for the attribute is
not given then this value is used. In stage0 where the execution starts the announce
message rate is set to 1pkts/s for 12 seconds. In the next stage stage3, the announce
message rate is changed to 8pkts/s for 8 seconds. Next stage stage4 message rate is 1
like in the first step. In stage1 the message rate is varied between 1, 2, 4. The greyed
text in this stage is ‘commented out’ so it is not run. The value is randomly changed

40

every 0.01 seconds which can also be adjusted. In the last step, the message rate is set to
4.

Figure 15. Test automation

Here the translation error in the requirements is apparent again. Not only the wrong
message is being tested but the message rate here should not be the only variable. The
other variable should be the number of received messages. This is because the original
requirement was to make sure that the system receives enough messages in a 100-
second time frame with the given message rate. The basic random function is not good
enough to test the change in the received message rate as it would mean that the
message rate changes 100 times in one second. This is unrealistic and would require the

41

engineer to build simulation sequency to test this variability. This increases efforts as
there are lots of these kinds of variations in the system.

Based on the demonstration fixing the issues with the test case is a fast and relatively
easy process. Although it is apparent that careful attention needs to be paid to the
attributes and logic of the test case to avoid situations like this where a test case is
created that is not correct. These kinds of issues are caused by a lack of technical
domain knowledge of this specific case.

At first, the major drawback of this demonstration was that the requirement set was not
able to show all of the capabilities of Stimulus. No conflicting or overlapping
requirements were found. This was due to the nature of the requirement set. As the
requirement set was heavily based on a standard that dictated most of the contents of the
requirements there was not a change that Stimulus would find some conflict.
Synchronization is an area where standards dictate most of the requirements in this
regard the requirement set was realistic and true to what the real requirements are, but it
was not a good set of requirements to show the capabilities of Stimulus. The
requirement set would have had to contain two sets of requirements that modify the
same output. The requirements set was also only 57 requirements, so it was still easy to
manually check that there were no duplicates.

5.6 Evaluation

Reflection against the solution objectives set in chapter 5.2.

The first objective was to show how much time creation of the simulation takes. It took
around three weeks from the Dassault person to create the simulation. The exact amount
of time spent is not known and it is hard to estimate how many hours in the three weeks
were actually spent on the simulation. During the demonstration, the tool seemed simple
and reasonably fast tempo to use but on the other hand, the required simulation models
in real use would be massive. At the moment as the integration between Magic Draw
and Stimulus is not working well this increases the time required to create the
simulation as the models cannot be imported from Magic Draw.

The second objective was to demonstrate the simulation creation process. The creation
process was demonstrated, and the tool was seen as easy to use but some trainings
would be necessary in order to implement the tool. Stimulus had many useful features
aiding in the simulation creation process. The missing integration between Magic Draw
and Stimulus somewhat hinders this process as the simulation model needs to be drawn
by hand even though Magic Draw already contains this kind of diagram. Meaning that
the Magic Draw model cannot be directly imported to Stimulus.

The third objective was to show what kind of effort is needed to translate requirements
to Stimulus language. The translation process was somewhat troublesome as there were
translation errors made during the demonstration. At the moment the effort required is
huge as Stimulus does not provide good integration with Magic Draw. As result from
this the models have to be drawn and maintained twice in both Magic Draw and
Stimulus. The initial effort to translate the huge amount of requirements Nokia has
would be a huge undertaking but this was to be expected as Stimulus does not have any
automated system for translating bulks of requirements.

The fourth objective was to show how the requirements are translated. Stimulus tool has
a function that will assist in the translation process and Nokia is interested to see how
this works in practice. During the demonstration, Dassault personnel demonstrated how

42

new requirements are created using the template system that Stimulus provides to assist
with the translation work. The demonstration showed that the person doing the
translation work needs to have good domain knowledge of the system. The issue was in
translation errors as the Dassault personnel lacked the knowledge of the system, they
were not able to successfully translate all of the requirements. The translation work
requires precision as errors in the translation also affects preparing the simulation. The
proposal from Dassault was that the requirements would be first defined in Stimulus
stored in DOORS where the requirements management is done in Stimulus syntax.

The final objective was to demonstrate how overlapping and gaps in requirements can
be seen. This was seen in the last two requirements where Stimulus gave an error.
Stimulus pointed out in the error where the error occurred and what happened during the
run. This was relatively easy to understand for people with programming background as
the error message was displayed in a similar manner to compiler errors. Creation of the
test cases requires domain knowledge of the system to design. This was seen in figure
15. where the test case was not realistic.

43

6. Conclusions

In this thesis, it was evaluated whether Stimulus requirements evaluation tool is suitable
for Nokia. Design science research was used as the research method and as the research
artifact a set of requirements were used (Appendix A). This set of requirements was
provided to team at Dassault who then demonstrated how this requirement set works in
Stimulus. workshops were used to discuss and develop the demonstration.

As result from the study was that Stimulus has a lot of potential and offers a good set of
features to evaluate requirements and fix gaps and overlapping requirements. There
were problems too with the tool some of which were related to integration with other
tools. The requirements and requirement set must be a certain type to be used in
Stimulus. For example, only detailed functional requirements can be used and
additionally the requirement set has to contain multiple requirements modifying the
same output for Stimulus to find problems with the requirements. Stimulus requires its
own nonstandard language to be used meaning that either all of the requirements used in
the company have to be in Stimulus language heavily tying the company to this tool or
the requirements need to be translated to Stimulus language. Just having the
requirements in DOORS using the Stimulus language is not enough but the benefits of
using the syntax do not realize until the Stimulus tool is used. This translation process
causes its own problems as Stimulus does not offer any automated system for this and a
lot of mistakes can be made in the translation process.

In Nokia team, there was also discussion on whether the Stimulus language takes a
stand on implementation. For example, in the attribute and interface names and
Stimulus language in general is very code like. As discussed in chapter 2 Prior research
this may be against good practices.

The results show that further examination is needed to determine whether the tool is
useful for Nokia or not. The biggest hinder at the moment with Stimulus is the poor
integration with Magic Draw. Dassault has promised to fix these issues in future. More
examination is needed to see if the issues are fixed accordingly. At the moment because
of this issue, the effort required to create and maintain the models reduces significantly
the effort versus benefits gained from the tool.

The workflow also needs to be thought accordingly. As Nokia does not want to tie itself
too much to one tool and because the requirements need to be read and understood by
people with no knowledge of Stimulus and with only basic understanding of the system,
the requirements need to be displayed in natural language in DOORS which is the main
requirements management tool used. The workflow used in this study would cause
problems as requirements would have to be translated twice. First, the requirements
would be created in natural language then translated to Stimulus language and then back
to natural language once the issues have been fixed. This increases the effort hugely and
the issues that come with translation come twice in the workflow. In further
examination better workflow needs to be thought out. The MBSE exercise at Nokia will
go to the next phase where these issues with the workflow need to be thought through.

44

References

Abbasi, M. A., Jabeen, J., Hafeez, Y., Batool, D., & Fareen, N. (2015). Assessment of

requirement elicitation tools and techniques by various parameters. Software

Engineering, 3(2), 7-11.

Ali, S. W., Ahmed, Q. A., & Shafi, I. (2018). Process to enhance the quality of software

requirement specification document. Paper presented at the 2018 International

Conference on Engineering and Emerging Technologies (ICEET), 1-7.

Azuma, M. (1996). Software products evaluation system: Quality models, metrics and

processes—International standards and Japanese practice. Information and

Software Technology, 38(3), 145-154.

Boegh, J. (2008). A new standard for quality requirements. IEEE Software, 25(2), 57.

Bruel, J., Ebersold, S., Galinier, F., Naumchev, A., Mazzara, M., & Meyer, B. (2019).

The role of formalism in system requirements (full version). arXiv Preprint

arXiv:1911.02564,

Collofello, J. S. (1988). Introduction to software verification and validation.

Introduction to Software Verification and Validation,

Cross, N. (1993). A history of design methodology. Design Methodology and

Relationships with Science, , 15-27.

Cross, N. (2001). Designerly ways of knowing: Design discipline versus design science.

Design Issues, 17(3), 49-55.

Dassault Systèmes. (2021). STIMULUS – Requirement simulation – CATIA - Dassault

Systèmes. https://www.3ds.com/products-services/catia/products/stimulus/

45

de Gea, Juan M Carrillo, Nicolás, J., Alemán, J. L. F., Toval, A., Ebert, C., & Vizcaíno,

A. (2011). Requirements engineering tools. IEEE Software, 28(4), 86-91.

Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2000). Quality evaluation of software

requirement specifications. Paper presented at the Proceedings of the Software and

Internet Quality Week 2000 Conference, 1-18.

Fanmuy, G., Fraga, A., & Llorens, J. (2012). Requirements verification in the industry.

Complex systems design & management (pp. 145-160) Springer.

Fischer, K. F., & Walker, M. G. (1979). Improved software reliability through

requirements verification. IEEE Transactions on Reliability, 28(3), 233-240.

Fuentes, J., Fraga, A., Génova, G., Parra, E., Alvarez, J. M., & Llorens, J. (2016).

Applying INCOSE rules for writing high‐quality requirements in industry. Paper

presented at the INCOSE International Symposium, , 26(1) 1875-1889.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian

Journal of Information Systems, 19(2), 4.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information

systems research 1. MIS Quarterly, 28(1), 75-105. Retrieved from

https://www.proquest.com/scholarly-journals/design-science-information-systems-

research-1/docview/218119584/se-2?accountid=13031

Huertas, C., & Juárez-Ramírez, R. (2012). NLARE, a natural language processing tool

for automatic requirements evaluation. Paper presented at the Proceedings of the

CUBE International Information Technology Conference, 371-378.

IBM Corporation. (2021). Overview of DOORS Next - IBM Documentation.

https://www.ibm.com/docs/en/elm/7.0.3?topic=capabilities-doors-next

https://www.proquest.com/scholarly-journals/design-science-information-systems-research-1/docview/218119584/se-2?accountid=13031
https://www.proquest.com/scholarly-journals/design-science-information-systems-research-1/docview/218119584/se-2?accountid=13031
https://www.ibm.com/docs/en/elm/7.0.3?topic=capabilities-doors-next

46

J. Bubenko, C. Rolland, P. Loucopoulos, & V. DeAntonellis. (1994). Facilitating "fuzzy

to formal" requirements modelling. Paper presented at the - Proceedings of IEEE

International Conference on Requirements Engineering, 154-157.

doi:10.1109/ICRE.1994.292391

Joshi, S. D., & Deshpande, D. (2012). Textual requirement analysis for UML diagram

extraction by using NLP. International Journal of Computer Applications, 50(8),

42-46.

Kelanti, M. (2016). Stakeholder analysis in software-intensive systems development

Retrieved from https://oula.finna.fi/Record/oy.9915207173906252

Lee, B., Hwang, M., Lee, Y., Lee, H., Baik, J., & Lee, C. (2009). Design and

development of a standard guidance for software requirement specification.

Journal of KIISE: Software and Applications, 36(7), 531-538.

Lutz, R. R. (1996). Targeting safety-related errors during software requirements

analysis. Journal of Systems and Software, 34(3), 223-230.

Nazir, F., Butt, W. H., Anwar, M. W., & Khattak, M. A. K. (2017). The applications of

natural language processing (NLP) for software requirement engineering-a

systematic literature review. Paper presented at the International Conference on

Information Science and Applications, 485-493.

Osman, M. H., & Zaharin, M. F. (2018). Ambiguous software requirement specification

detection: An automated approach. Paper presented at the 2018 IEEE/ACM 5th

International Workshop on Requirements Engineering and Testing (RET), 33-40.

Pace, D. K. (2004). Modeling and simulation verification and validation challenges.

Johns Hopkins APL Technical Digest, 25(2), 163-172.

https://oula.finna.fi/Record/oy.9915207173906252

47

Pfeffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V., & Bragge,

J. (2006). The design science research process: A model for producing and

presenting information systems research. Paper presented at the Proceedings of the

First International Conference on Design Science Research in Information Systems

and Technology (DESRIST 2006), Claremont, CA, USA, 83-106.

Powell, P. B. (1982). Software validation, verification, and testing technique and tool

reference guide.

Ramesh, B. (1998). Factors influencing requirements traceability practice.

Communications of the ACM, 41(12), 37-44.

Ramesh, B., Powers, T., Stubbs, C., & Edwards, M. (1995). Implementing requirements

traceability: A case study. Paper presented at the Proceedings of 1995 IEEE

International Symposium on Requirements Engineering (RE'95), 89-95.

Ryan, M. J., Wheatcraft, L. S., Dick, J., & Zinni, R. (2014). An improved taxonomy for

definitions associated with a requirement expression. Systems Engineering and Test

and Evaluation, 28 Apr-30,

Schneider, F., & Berenbach, B. (2013). A literature survey on international standards for

systems requirements engineering. Procedia Computer Science, 16, 796-805.

Shah, U. S., & Jinwala, D. C. (2015). Resolving ambiguities in natural language

software requirements: A comprehensive survey. ACM SIGSOFT Software

Engineering Notes, 40(5), 1-7.

Sharma, Y., & Sharma, A. K. (2014). Evaluation of the software requirement tools.

International Journal of Engineering Research, 3(3)

48

Singh, M. (2018). Automated validation of requirement reviews: A machine learning

approach. Paper presented at the 2018 IEEE 26th International Requirements

Engineering Conference (RE), 460-465.

Walia, G. S., & Carver, J. C. (2009). A systematic literature review to identify and

classify software requirement errors. Information and Software Technology, 51(7),

1087-1109.

Wautelet, Y., Heng, S., Kolp, M., & Mirbel, I. (2014). Unifying and extending user

story models. Paper presented at the International Conference on Advanced

Information Systems Engineering, 211-225.

Wiels, V., Delmas, R., Doose, D., Garoche, P., Cazin, J., & Durrieu, G. (2012). Formal

verification of critical aerospace software. AerospaceLab, (4), p. 1-8.

49

Appendix A. Requirements

Name Text

1 4477383 Clock class can only get values from
the given list

Clock class can only get
values from the given
list
Valid list of Clock class
= [6, 7, 135, 140, 150,
160, 165, 248]

2 4477384 Domain number needs to be equal
or between 44 and 63

Domain number needs
to be equal or between
44 and 63
43 < Domain number <
64

3 4477387 PTP Time needs to be traceable PTP Time needs to be
traceable

4 4477388 Current UTC offset received in
Announce Message must be valid

Current UTC offset
received in Announce
Message must be valid

5 4477390 PTP tuning profile for non-compliant
networks

Configurable PTP
tuning profile for non-
compliant networks

6 4477403 Network two-way packet delay
must not exceed 125us

Network two-way
packet delay must not
exceed 125us
(pktSelected2WayTE
metric from ITU-T
G.8260 clause I.3.2.2)

7 4477404 Alarm must be raised if phase and
time synchronization threshold is exceeded

Alarm must be raised if
phase and time
synchronization
threshold is exceeded

8 4477405 Filtering time for raising the alarm
shall be 5s

Filtering time for
raising the alarm shall
be 5s

50

Name Text

9 4477578 PTP Time Scale must be true PTP Time Scale must be
true
Parameter PTP Time
Scale = True

10 4477581 Frequency needs to be traceable Frequency needs to be
traceable
Set with parameter
Frequency Traceable =
True

11 4477925 Configurable synchronization mode
support

Configurable
synchronization mode
support

12 4477926 Synchronization mode support for
network level time and phase
synchronization.

Synchronization mode
support for network
level time and phase
synchronization.

13 4477927 PTP tuning profile for compliant
network

Configurable PTP
tuning profile for loose
G.8275.2 support on
G.8265.1 networks

14 4477928 PTP tuning profile for loose phase Configurable PTP
tuning profile for loose
phase

15 4477930 Loose PTP time and phase
synchronization threshold absolute value is
250us

Loose PTP time and
phase synchronization
threshold absolute
value is 250us

16 4477931 Filtering time for clearing the alarm
shall be 5s

Filtering time for
clearing the alarm shall
be 5s

51

Name Text

17 4478036 Synchronization reference source
needs to support PTP 1588v2-2019

Synchronization
reference source needs
to support PTP 1588v2-
2019

18 4478155 PTP estimator optimization for
250us loose PTP synchronization solution.

PTP estimator
optimization for 250us
loose PTP
synchronization
solution.

19 4478156 PTP jump detector shall be disabled
for PTP loose profile

PTP jump detector shall
be disabled for PTP
loose profile

20 4478754 Support for PTP protocol according
to IEEE 1588v2.1-2019

Support for PTP
protocol according to
IEEE 1588v2.1-2019

21 4478755 Support for PTP slave functionality
according to ITU-T G.8265.1 frequency
standard profile

Support for PTP slave
functionality according
to ITU-T G.8265.1
frequency standard
profile

22 4478756 Support for PTP slave functionality
according to ITU-T G.8275.1 multicast
standard profile

Support for PTP slave
functionality according
to ITU-T G.8275.1
multicast standard
profile

23 4478757 Support for PTP slave functionality
according to ITU-T G.8275.2 unicast standard
profile

Support for PTP slave
functionality according
to ITU-T G.8275.2
unicast standard profile

24 4478758 Phase synchronization mode must
have 120s tuning cycle length with PTP as
synchronization reference

Phase synchronization
mode must have 120s
tuning cycle length
with PTP as
synchronization
reference

52

Name Text

25 4478759 Initial coarse tuning cycle length
must be parametrized

Initial coarse tuning
cycle length must be
parametrized to
following list [12s, 60s]

26 4478760 Coarse tuning packet selection
window max length must be 1 tuning cycle
with Normal PTP profile

Coarse tuning packet
selection window max
length must be 1
tuning cycle with
Normal PTP profile

27 4478761 Coarse tuning packet selection
window max length must be 10 tuning cycles
with Custom PTP profile

Coarse tuning packet
selection window max
length must be 10
tuning cycles with
Custom PTP profile

28 4478762 Normal tuning packet selection
window must be 5 tuning cycles

Normal tuning packet
selection window must
be 5 tuning cycles

29 4478763 Provide BTS system clock phase
error and frequency deviation against
external synchronization reference source

Provide BTS system
clock phase error and
frequency deviation
against external
synchronization
reference source

30 4478764 Packet counters for received and
sent PTP messages must be provided

Packet counters for
received and sent PTP
messages must be
provided

31 4478765 PTP slave packet selection window
must be flushed and restarted when common
BCN is set with other reference source

PTP slave packet
selection window must
be flushed and
restarted when
common BCN is set
with other reference
source

32 4478766 Packet selection window
timestamps must be rescaled based on
tuning frequency change

Packet selection
window timestamps
must be rescaled based
on tuning frequency
change

53

Name Text

33 4478767 Availability status must be provided
for all configured masters

Availability status must
be provided for all
configured masters

34 4478768 PTP Slave must monitor availability
of all configured PTP masters

PTP Slave must
monitor availability of
all configured PTP
masters based on
received PTP messages

35 4478769 PTP Slave must not set configured
PTP master available until messages are
received

PTP Slave must set
configured PTP master
available only when
Announce message,
Sync message and
Delay_resp messages
are received from PTP
Master

36 4478770 PTP slave must monitor announce
messages

PTP slave must validate
and save status
parameters from
received announce
messages

37 4478771 PTP slave must support PTP masters
modes

PTP slave must support
PTP masters using one-
step and two-step
mode

38 4478772 PTP slave must automatically switch
to the PTP master mode

PTP slave must be able
to automatically adopt
mode used by the PTP
master

39 4478773 Configured PTP master must be
usable only under certain conditions

Configured PTP master
must be usable only
when received clock
class, domain number
and sync message rate
are within configured
ranges

40 4478774 BTS must be able to detect phase
jumps in PTP timing packets

BTS must be able to
detect phase jumps in
PTP timing packets

54

Name Text

41 4478775 BTS must tolerate phase jumps in
PTP network

BTS must tolerate
phase jumps larger
than 2.8us in PTP
network

42 4478776 PTP slave must be unavailable when
phase jump is detected

PTP slave must be
unavailable for 6 tuning
cycles when phase
jump is detected

43 4478777 PTP slave must restart counting
tuning cycles if another phase jump happens
during unavailability

PTP slave must restart
counting of 6 tuning
cycles if during
unavailability there is
detected another
phase jump larger than
2.8us

44 4478778 Reference source selection must be
based on configured priority and reference
usability and availability

Reference source
selection must be
based on configured
priority and reference
usability and
availability

45 4478779 Reference source without
configured priority must not be selected as
reference source

Reference source
without configured
priority must not be
selected as reference
source

46 4478780 BTS must start holdover algorithm
in case of no reference source available and
usable

BTS must start
holdover algorithm in
case of no reference
source available and
usable

47 4478781 PTP slave must be time source when
it is selected as reference source

PTP slave must be time
source when it is
selected as reference
source

48 4498918 Allowed message rates [1, 16, 32,
64, 128] pkt/s

Allowed message rates
[1, 16, 32, 64, 128]
pkt/s

55

Name Text

49 4498927 Measurement period [100-200s] Measurement period
[100-200s]

50 4498958 Total number of the received sync
messages (message rate * measurement
time) must meet configured message rate
within measurement time (measurement
period + 10% tolerance)

Total number of the
received sync messages
(message rate *
measurement time)
must meet configured
message rate within
measurement time
(measurement period +
10% tolerance)

51 4498989 Announce message must be
received at least once within 5s

Announce message
must be received at
least once within 5s

52 4498996 Sync message must be received at
least in period max[0.5s ; time for 4 packets
with configured Message Rate]

Sync message must be
received at least in
period max[0.5s ; time
for 4 packets with
configured Message
Rate]

53 4498999 Delay_respmessage must be
received at least in period max[0.5s ; time for
4 packets with configured Message Rate]

Delay_respmessage
must be received at
least in period max[0.5s
; time for 4 packets with
configured Message
Rate]

54 4499004 Received clock class in announce
messages must match with configured
(allowed) clock classes

Received clock class in
announce messages
must match with
configured (allowed)
clock classes

55 4499009 Received Domain Number must be
same as configured Domain Number in all
messages (announce, sync, delay_resp)

Received Domain
Number must be same
as configured Domain
Number in all messages
(announce, sync,
delay_resp)

56 4499016 Fault must be raised about “Missing
PTP reference” if source remain
“Unavailable” or “Unusable” over 5min

Fault must be raised
about “Missing PTP
reference” if source
remain “Unavailable” or
“Unusable” over 5min

56

Name Text

57 4499024 “Missing PTP reference” fault must
be cleared immediately when source become
“Available” and “Usable” again

“Missing PTP reference”
fault must be cleared
immediately when
source become
“Available” and
“Usable” again

58 PTP availability must have 5s unavailable
available timer

PTP availability must
have 5s losing timer in
between available and
unavailable states to
avoid too short state
transition between
main states
(unavailable/available)

59 PTP availability states 15s restore timer PTP availability must
have 15s wait to restore
timer between
unavailable and
available to avoid too
short state transition
between main states
(unavailable/available)

	Abstract
	Keywords
	Supervisor

	Foreword
	ABBREVIATIONS
	Contents
	1. Introduction
	2. Prior research
	2.1 Software requirement engineering
	2.2 Requirement engineering formalization and standards
	2.3 Requirement quality
	2.4 Requirement evaluation methods
	2.5 Tools

	3. Research methods
	3.1 History
	3.2 Implementation

	4. Research Design
	4.1 Literature Study
	4.2 Empirical research

	5. Research and findings
	5.1 Problem identification and motivation
	5.2 Verification artifact of the solution
	5.3 Design and development of the artifact
	5.4 Demonstration
	5.5 Results
	5.6 Evaluation

	6. Conclusions
	References
	Appendix A. Requirements

