

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

DEGREE PROGRAMME IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

BACHELOR’S THESIS

Automated UVM testbench generation

 Author Vili-Valtteri Ojala

 Supervisor Juha Häkkinen

May 2022

Ojala V. (2022) Automated UVM testbench generation. University of Oulu, Degree

Programme in Electronics and Communications Engineering. Bachelor’s Thesis, 23 p.

ABSTRACT

This thesis studies the possibilities to automate UVM testbench creation in the

telecommunications industry. First, the ideas behind UVM are looked at and automatable

parts of the testbench coding process are studied. Facilitating the reuse of code is also

examined.

Development of an automation script with python for Nokia is covered in the work, and

the possibilities for future improvements are discussed.

Key words: Universal Verification Methodology, SystemVerilog, verification, code

generation, UVM reuse, telecommunications, System-on-Chip.

Ojala V. (2022) Automatisoitu UVM testipenkin generointi. Oulun yliopisto, tieto- ja

sähkötekniikan tiedekunta, elektroniikan ja tietoliikennetekniikan tutkinto-ohjelma.

Kandidaatintyö, 23 s.

TIIVISTELMÄ

Tämä kandidaatintyö tutkii mahdollisuuksia automatisoida UVM testipenkin kehitystä

tietoliikennetekniikan saralla. Aluksi käydään läpi UVM:n taustaideat ja pohditaan

automatisoitavia osia koodausprosessissa. Koodin uudelleenkäytettävyyttä tutkitaan

myös tarkasti.

Työssä käydään läpi automaatioskriptin kehitys Nokialle pythonilla ja mietitään

mahdollisia suuntia jatkokehitykselle.

Avainsanat: Universaali varmennusmenetelmä, SystemVerilog, koodin generointi, UVM

uudelleenkäyttö, tietoliikennetekniikka, System-on-Chip.

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1 INTRODUCTION .. 7

2 UNIVERSAL VERIFICATION METHODOLOGY ... 8

2.1 SystemVerilog OOP .. 8

2.2 UVM Theory ... 9

2.3 Testbench architecture ... 10

2.4 Enabling code reuse ... 12

3 AUTOMATED TESTBENCH GENERATION .. 14

3.1 Previous research ... 14

3.2 Implementation .. 14

3.2.1 Filesystem creation .. 14

3.2.2 Parsing signal data from VHDL code ... 15

3.2.3 Creating UVM components ... 15

3.2.4 Debugging ... 16

3.3 Test and sequence generation .. 16

3.4 Development summary .. 17

4 DISCUSSION ... 18

5 SUMMARY .. 19

6 REFERENCES ... 20

7 APPENDICES .. 21

FOREWORD

This Bachelor’s thesis was produced at Nokia. UVM as a topic is quite challenging, but I had

done some UVM work before which helped a lot in the process.

Thanks to Juha Häkkinen for supervising this thesis and to Nokia for financing the work. I

also want to thank Matti Niemistö for helping in the writing process and Ashish Balanna Prabhu

for giving me the topic and supporting in the work. I had a good time with writing and

developing python code and studying UVM.

Oulu, May 13, 2022

Vili-Valtteri Ojala

LIST OF ABBREVIATIONS AND SYMBOLS

ASIC Application Specific Integrated Circuit

DFE Digital front-end

DL Downlink

DSP Digital signal processing

DUT Design under test

EDA Electronic design automation

FSM Finite State Machine

HW Hardware

IDE Integrated development environment

IP Intellectual property

JSON JavaScript Object Notation

OOP Object-Oriented Programming

RAL Register abstraction layer

RTL Register-transfer level

RX Receiver

SoC System on chip

SV SystemVerilog

SW Software

TX Transmitter

UL Uplink

UVM Universal verification methodology

VHDL Very High-Speed Integrated Circuit Hardware Description Language

VIP Verification intellectual property

1 INTRODUCTION

In system-on-a-chip (SoC) development, the verification process to prove designs correctness

takes up the most resources and time in the project. Errors in verification can lead to

catastrophic increase in development time and cost. In designs, where reusable intellectual

property (IP) blocks are implemented, verification takes around 70 - 80% of the total

development time. Increasing complexity of SoCs makes verification even more challenging

and error prone [1].

As an answer to the problem, universal verification methodology (UVM) has been

developed. UVM introduces object-oriented programming (OOP) paradigms to verification and

enables verification intellectual property (VIP) reuse across abstraction levels and different

projects. UVM also raises the abstraction level from individual pins to transactions. UVM relies

heavily on constrained random stimulus generation that has proven to be an effective method

in verification [2]. However due to bad coding practices and varying architectural choices, the

desired reuse of VIP is hindered, especially from IP-block to system level. In

telecommunications, the SoCs are very complex, containing numerous IPs and often a

processor integrated in the same chip, which emphasizes the problem.

 This thesis studies the possibilities to automate and unify the UVM based functional

verification process to reduce development time and increase reusability. Focus is on digital

circuits in telecommunications industry. Aim is to create a tool for generating an easily reusable

and understandable UVM verification environment trunk and filesystem from scratch. Study

focuses on a scenario, where most of the lower-level VIP is reusable from old projects and the

testbench architecture is the main problem. Emphasis is on creating an easily reusable

environment template based on given input parameters. Design Under Test (DUT) top-level

VHDL code file parsing will also be experimented on. Tool is implemented with python due to

its advanced string manipulation capabilities and execution time not being an issue. Input

parameters are given to the tool in form of a text file. A graphical user interface may be

developed in the future, to make the usage easier.

 Ideas behind UVM are also discussed and the testbench architectures permitting reutilization

reflected on. Some parts of the developed python code will be shown in the appendices.

8

2 UNIVERSAL VERIFICATION METHODOLOGY

This chapter looks into UVM generally. First section goes briefly through Object-Oriented

Programming (OOP) in SystemVerilog (SV), and the second section handles the theory behind

UVM. Third section gives an overview of developing a testbench with UVM and in last section

the architectural choices and coding styles enabling VIP reuse are looked in, with emphasis on

telecommunications.

2.1 SystemVerilog OOP

OOP means, that code composes of classes that model some behavior. Instantiations of the

classes are called objects. These classes can have variables and functions in them called

methods. The classes can inherit properties and functionality from other classes, a feature called

inheritance. Other fundamental properties of OOP are polymorphism and encapsulation [3].

Encapsulation means that some properties and implementation details are hidden from the user

of the class. Polymorphism is a possibility for different classes to respond differently to the

same command. These features help in raising abstraction level and increase productivity,

especially in larger projects.

SV, which supports OOP, has two different function types, a task, and a function. Difference

between them is that tasks can consume time, but functions cannot. Additionally, it is possible

in SV to declare variables random with certain constraints [4], which is very important property

for constrained random stimulus generation. For example, in the figure 1. two SV classes are

created. Long_frame inherits variables addr and payload from frame. Payload is overridden, as

is its constraint. Rand keyword means that a variable is randomizable.

 Figure 1. SV-classes.

In the figure 2. a handle is declared for each class, and classes are constructed using the

default new constructor, that creates an instance of an object. Inside the for loop, classes are

randomized, with the built in randomize method that takes into account the written constraints.

9

 Figure 2. SV-classes instantiated and randomized.

2.2 UVM Theory

UVM is and open-source class library provided by Accellera [5]. UVM is built on OOP

principles with SV, and it models the circuit functionality in transaction level, with component

reuse kept in mind. Functional coverage, which is used for monitoring the maturity of the

verification work, is typically tracked in UVM by writing SV coverage groups. UVM eases

test writing by enabling the reuse of the environment in different tests. Environment is just

configured differently when needed. Configuration is done via configuration objects that are

passed to the actual components with UVM database. There exists uvm_config_db and

uvm_resource_db, but they are actually based on the same database and there is very little

difference between them. In this thesis uvm_config_db is used. Set method is used for setting

configurations in the database and get for getting. Also, a register abstraction layer (RAL) exists

to ease register reads and writes by enabling access via names instead of addresses. RAL can

be used with the bus protocol, which is used in the actual chip and through backdoor access

methods. Backdoor access is very handy in monitoring finite state machine (FSM) status and

interrupt registers. [6]

UVM handles transactions with the DUT via interfaces and agents. There can be multiple

agents in one environment. An agent can contain a driver that converts the transactions into pin-

level activity to the interface. Virtual interface handle is provided to the driver via the

configuration database. Inside each agent containing a driver, there is also a sequencer, that

delivers the executed sequences to the driver. Sequence is a component, that consists of

sequence items, that model the bus transactions or other sequences. Driver and sequencer are

always parametrized to drive one type of sequence item. For monitoring the stimulus and the

responses the DUT provides, agent can also contain a monitor. UVM environment also usually

contains a scoreboard, that collects the data from the monitors analysis port. Scoreboard can

contain a checker that compares the data to the one generated by the reference model based on

inputs driven to the DUT. One testbench can contain multiple environments, and environments

can be created hierarchically, inside each other. [6]

In UVM, factory is used to construct all components and objects to ease overriding.

Overriding means changing a handle pointing to one object to another. A standard new

constructor method is created for every class/component. Constructors are never used in the

testbench code since creation of all components is handled in factory with the create method.

All components are registered in the factory immediately under the class declaration with a

10

registration macro that is defined in uvm_pkg, that is imported in every package in an UVM

project. It is possible to override one instance of an object with set_inst_override and all

instances with set_type_override. Overriding comes in handy when one test requires more strict

constraints on some parameters. Then it’s possible to just extend a configuration class from the

old one and write the constraints with the same names, as done in a previous code sample with

the frame classes.[6][5]

2.3 Testbench architecture

UVM classes are typically written in header files that are then included in package file.

Package files are created for different levels, for example tests can have their own package file,

which is then imported into the testbench top-level file. Environment classes, sequences and

RAL usually has their own package as well. DUT signals and VIP components interfaces are

declared in the top file. Signals are then connected to the interfaces and then set up in the

configuration database. In the figure below, is an example of simple UVM testbench. It is

important to remember, that the testbench can contain multiple environments, and each

environment can contain multiple agents and other environments. Figure 3. presents a simple

UVM testbench architecture with one environment containing one agent.

 Figure 3. Simple UVM testbench architecture.

UVM uses phases to keep the timing between components in sync. UVM phases listed in

the table below. Important insight is that in SV, functions cannot consume simulation time, but

tasks can. Phases are always executed in the same order as in the table. It is also possible for

the user to create their own phases [6]. In the code, moving to the next phase is restricted with

an objection. Objection is raised in the beginning of the implemented phase inside a component.

When the needed tasks are done, the objection is dropped, allowing simulation to proceed.

Phases are described in table 1. [7].

11

Table 1. UVM phases

Name Usage Category Type

build_phase instantiating testbench

components

build function

connect_phase connecting

component’s (TLM)

ports

build function

end_of_eloaboration displaying testbench

architecture and

executing other

functions

build function

start_of_simulation setting initial

configuration

build function

run_phase Simulating the DUT.

Executing sequences

run task

extract_phase Collecting data from

scoreboard and

computing expected

data e.g based on

golden reference

model

clean function

check_phase Checking data integrity

against the reference

clean function

report_phase Displaying data from

checkers

clean function

final_phase Last operations before

the simulation ends

clean function

There are also phases that are executed parallel to the run_phase. These are listed in the table

2. [7]. These phases are typically used in the actual test cases instead of the run_phase, to split

the test into more easily understandable pieces. Usage of the phases not restricted in any way.

Inconsistent use of phases can introduce bugs that are hard to detect and restrain reuse of the

code.

12

Table 2. UVM run_phase

Name Usage

Pre_reset_phase Tasks right before reset

Reset_phase Resetting DUT

Post_reset_phase Tasks after immediately after reset

Pre_configure_phase Tasks before configuration

Configure_phase Configuring DUT. E.g applying

configuration parameters to registers

Post_configure_phase Tasks after configuration

Pre_main_phase Tasks right before main_phase

Main_phase Launching functional sequences to the DUT

Post_main_phase Tasks after main

Pre_shutdown_phase Tasks before shutting the simulation down

Shutdown_phase Shutting down the simulation

Post_shutdown_phase After shutdown

It is important to note, that all the tasks done in the phases above can also be done in

run_phase. There is no strict guideline whether should be used, but the ”sub-phases” are a quite

recent addition to the class library [6].

2.4 Enabling code reuse

Code reuse can be achieved in two ways. As reuse between abstraction layers, here mainly

meaning the reuse of VIP between IP and SoC level, and reuse between different versions of

the same IP. Former is called vertical reuse and latter horizontal reuse. This thesis focuses more

on the vertical reuse. For instance, a good way to achieve vertical reuse, is to instantiate the

IP/subsystem-level UVM environment class in SoC-level environment. Horizontal reuse can

be advanced by parametrizing the testbench as much as possible, to make scaling up or down

easy. It can be done for example by declaring macros for interface sizes, component counts and

bus transaction formats and then using these macros across the testbench.

In telecommunications, the downlink (DL) and uplink (UL) data paths can be verified

separately. This is often the case to get quicker simulation times and ease bug spotting. In

contrast to this, it makes sense to have a common structure for all verification environments.

When verifying an IP, the connections buses between IPs are modeled with VIPs. However, in

the SoC level, these VIPs are not needed, since the actual IPs are connected to each other.

Therefore, each verification environment should have an easy way of disabling these VIPs. It

also makes sense to separate the environment into downlink and uplink parts, when possible.

Of course, the digital signal processing (DSP) algorithms are different in uplink and downlink

and not all IPs even exist in both paths. When that is the case, the IP could be paired with

another or others, when creating the UVM environment for verification. This would enable all

the environments to be constructed and controlled the same way, saving time in SoC-level

verification.

DUT and environment configuration is another key factor in reusability. If configuration is

spread across various phases and components, reuse in higher level becomes very difficult.

Therefore, separate configuration sequences could be used. One possibility of implementation

is to create one base sequence with virtual methods and extend separate base sequences for

receiver (RX) and transmitter (TX) from that. They would have the mandatory new constructor

and a set_config method with arguments to the register model and to environment configuration

13

object. These sequences could be executed in the run_phase or main_phase in any test, both IP

and SoC level. Environment configurations would be normally overridden in

end_of_elaboration, for example. This would augment vertical reuse considerably.

14

3 AUTOMATED TESTBENCH GENERATION

This chapter takes a quick look into previous research and implementations on automated UVM

testbench and filesystem generation and describes the process of creating a python script for

that purpose. As seen in the previous chapter, UVM has many repetitive patterns and mandatory

code structures and methods that can be conveniently automated.

3.1 Previous research

Automated testbench creation has been studied in some level before, and there are good

results in using such solutions for register class creation in practice. Register classes include

maybe the most repetitive code aside the port connections and signal declarations in the entire

testbench, so it is intrinsic to automate it [8]. The step can be even combined with the register

RTL code generation for the design itself. There also exists one commercial UVM testbench

generator by Cadence [9] and couple of amateur open-source solutions [10]. A better solution

can be developed for telecommunications SoCs, which can be thought as a DSP pipeline. This,

and the knowledge of common architectures of the IPs can be exploited when developing the

script.

The Cadences tool is more generally developed to match a wide range of applications. This

produces a lot of configuration needs for the tool, which in turn creates overhead for the usage.

Other downside with the Cadences tool is license price, upside is that it promises to create a

fully functional UVM testbench. The best open-source tool is also a very general solution.

However, it does not produce a fully functional testbench, only templates for components. It is

easy to use with graphical user interface, but the source code is very low quality and impossible

to understand without considerable efforts. Therefore, an implementation of UVM testbench

generation script for telecommunications needs to be studied. The script has been made

especially with the Digital Front-end (DFE) in mind.

3.2 Implementation

Next, the thinking behind the implementation of the script will be explained. This also serves

as a documentation for the tool. The script is implanted with functional programming and a git

repository is used for version control. To make future modifications and reuse easier, functions

are kept small and parametrized as much as possible.

3.2.1 Filesystem creation

In UVM verification projects, there are typically dozens of folders, and the directory structure

can be very deep and complex. Although creating folders manually is not the most challenging

task, automating it comes very naturally along the code generation, since it is prominent to

know the directory structure while generating files. Therefore, the first challenge in the project

was to create a filesystem according to given input.

 It was decided that the filesystem is described in a text file with “-“ sign meaning a transition

to lower directory. Parsing the data from the input file was implemented in one python function

and separate functions were created for the folder generation and UVM component folder

mappings. Certain folder names expected to be found from the filesystem were hardcoded to

the script. For example, the script expects the user to specify an “env” named folder. When a

folder with hardcoded name is found, it’s path is added to a python dictionary, which consists

15

of key-value pairs. These folder paths are also written to a JavaScript Object Notation (JSON)

[11] file for later use.

After a “%” sign in the input file, parameter values are given to the script. These are also

saved in a dictionary and in the same JSON file. Parameters contain names and integer values,

but they are all saved as strings. Numbers are converted to integers, when used. The

functionality is implemented as state-machine in the script.

 While generating the UVM-code, script checks that a folder is specified for a group of

components. For example, while creating uvm_env classes and their configuration objects, the

existence of “env” folder is checked from the dictionary. If the folder is not found, the script

won’t create any files, which are meant to be in that folder.

3.2.2 Parsing signal data from VHDL code

DUTs port widths and names were parsed from the top-level VHDL file with the script. Certain

style of coding was expected from the file, e.g. certain number of spaces between downto

keyword and signal width. These signals are then written into the top level testbench file with

SV and also appended to the previously mentioned JSON file.

Clock VIP modules are instantiated, based on port names indicating a clock. Virtual

interfaces are created for them and set in the uvm_config_db. Standard register access bus

protocol VIP is connected to the DUT, and its interfaces are set up too. There is a default

connection mode implemented in script, which the user can turn off in the input file. Default

connection mode makes port connections between the SV and VHDL signals sharing the same

name. However, this is not very handy since many times the names used in the VIPs and the

VHDL code don’t match. If same names were to be used, there would be greater possibilities

for automation.

Polishing the VHDL parsing functionality is decided to be done in the future, since it would

require very strict naming and coding rules to be really effective, but the formidable possibilities

in it are definitely recognized.

3.2.3 Creating UVM components

The actual UVM components are created based on templates. Templates are written with python

as multi-line strings and certain values and names are parametrized in them. In the generation,

pythons string formatting is used. Some files are also written line by line based on templates

consisting of just one line, or couple of lines. A standard template header is also made, that is

used in every generated file. Using python os and time modules, creators name and date are

written into the header. Copyright notices are also written into the header.

In the code, each group of components is created in its own function. Paths to folders and

variable values and names are retrieved from the dictionary that was created when parsing the

input file. For configuration objects, there is a separate function. Configuration object is

automatically created for uvm_env components, DUT (rx, tx, and rxtx separately) and for

standard bus protocol agents. Table 3. presents all generatable UVM components.

16

Table 3. Generatable UVM components

Name Type

{module_name}_tbtop.sv SystemVerilog file

{module_name}_{env}_env.svh uvm_env

{module_name}_{env}_{component}_config.svh uvm_object

{module_name}_{env}_sb.svh uvm_scoreboard

{module_name}_{env}_sw_model.svh uvm_object

{module_name}_env_pkg.sv package file

{module_name}_{env}_test_sequence.svh uvm_object

{module_name}_interface_sequence.svh uvm_object

{module_name}_base_config_seq.svh uvm_sequence

{module_name}_sequence_pkg.sv package file

{module_name}_{env}_base_test.svh uvm_test

{module_name}_test_pkg.sv package file

{module_name}_ral.svh uvm_reg_block

{module_name}_mem_backdoor.svh uvm_reg_backdoor

{module_name}_ral.pkg package file

3.2.4 Debugging

The generated UVM code was debugged with DVT Eclipse, and UVM aware IDE. A build file

was crated and provided to the IDE for compiling the generated code. Use of the IDE eased the

debugging a lot, by providing visual sight of the errors in the code. It would have been a big

task to create a dummy DUT and an entire makefile to compile the generated code.

After first compilation, there was quite a lot of errors, but with some time, they were easy to

spot and fix. The IDE was an extraordinary tool in debugging, since it showed the syntax errors

in the code straight away in a visual manner. Build file had to be modified many times, due to

many package files.

At the end, a concept for an entire makefile template was designed for the tool. It would

enable the tool to create a fully functional makefile for compiling the generated code. The

structure of the makefile is dependent on the directory structure and how the packages are

ordered. Common VIP components also need to be addressed in it, and some macros pointing

to the DUT and RAL are also usually defined in there.

3.3 Test and sequence generation

After the actual testbench is created, the next step in the project is to create testcases that test

different parts of the DUTs functionality. Additional sequences for the testcases to execute also

have to be created. Since there is already so much information about the project collected by

the script, testcase and sequence generation are reasonable to add.

Two additional scripts were created for this purpose. Scripts take test/sequence name and

the parent class as an argument. The purpose of these is to shorten development time and unify

coding styles across teams, to make the code easier to understand, debug and reuse. In the tests,

aim is especially to standardize phase usage. Scripts also ensure that the sequences and tests

are created in the right folders. The scripts create constructors for the generated class and

declare prototypes and implement the most used phases and methods in the test cases.

17

Constructors are fully implemented, and factory registration is also done for both. In the start

of implemented phases, script adds raise objection and drop objection in the end of the phase.

As an additional functionality, the scripts check that the generated file does not already exist.

If it exists, the execution is terminated.

3.4 Development summary

The time used for developing the scripts was about 50 hours and 12 files were written with

a total of well over a thousand lines of code. Table 4. describes all files developed during the

project. A git repository was used for version control locally. If more people get involved in

development in the future, a remote repository needs to be created.

Table 4. All developed files

Name Description

uvm_generator.py Main script. Generates the previously listed

components and writes data to uvm.json file.

Executed from command line, reads

parameters from input.txt

make.py Functions for uvm_generator.py

input.txt Input parameter file with usage instructions,

located in separate source folder.

uvm.json File for storing data for later use, located in

separate source folder.

testbench.py SystemVerilog templates for

uvm_generator.py located in separate

templates folder

makefiles.py Unfinished makefile template, located in

separate templates folder

seq_gen.py Script for generating an individual sequence.

Executed from command line with

parameters for parent sequence and a name

for the generated one.

test_gen.py Script for generating an individual test.

Executed from command line with

parameters for parent test and a name for the

generated one

testcase.py SystemVerilog templates for test_gen.py and

seq_gen.py located in separate templates

folder

__init.py__ Empty file located in the templates folder to

enable importing the template files.

default.build Build file for compiling the project in the

IDE.

.gitignore File that specifies files and folders for version

control to ignore.

18

4 DISCUSSION

The goal of this thesis was to study the possibilities to automate UVM testbench creation.

Testbench reusability was an important criteria in the research. Purpose of this was to unify the

testbench architectures, decrease errors in repetitive parts of the code, unify the coding style

and to reduce human labor. A script was successfully developed for that purpose. The script is

able to generate a filesystem and a large quantity of the necessary UVM components and files.

It was found out that UVM classes have many repetitive and even rather long parts of code that

were simple to write in a template with python multi-line strings with some parameters. With

that style of implementation, the parts requiring logic are more difficult to generate, since an

entire file is generated at once. If even greater level of automation was desired, the templates

would need to be splitted in smaller parts, even to single lines or parts of lines.

Possibilities to analyze the DUTs top-level VHDL code were also thought and experimented

on. It was perceived that port names and widths can be parsed from the VHDL code and then

declared in the SV top-level testbench file, which saves time, since there are usually hundreds

of signals. Successfully automating the signal data parsing was a great success in this study

because the data interfaces between IPs are similar, or can be standardized, in many projects.

If the VIP modules interfaces and the VHDL ports had the same names, it could be possible

to determine the number of needed VIP components from the signal data. This would also open

the door for automatically connecting the components and the declared signals and the whole

top level testbench file, which is the longest and most repetitive in the entire testbench aside the

register classes, would be fully generatable. That would save a large amount of human labor in

the beginning of the project and help to avoid hardly detectable errors. Achieving that would

however require much more resources than one trainee working with the tool approximately 10

hours per week. The signal naming would also require commitment across the entire project or

maybe even everyone working with the SoCs. The port connection generation should be

controllable from the text file, where the parameters are written by the user, in case the tool is

used in the SoC level verification. There the interfaces are harder to predict.

The sequence and test generation scripts can be further improved to add more detail to the

generated code by using the data collected during the initial testbench creation. It would also

be possible for the scripts to include the created files in a corresponding package file. For

instance, if a new sequence is generated, it would be automatically included to the package file

containing all the sequences. Automated makefile creation would also save time in the

verification.

This topic can be further researched, and the more detailed automation can be continued to

the lower level in the UVM testbench with the signal data available. The horizontal reusability

of the generated testbench can be improved by generating a parameter macro file in the same

folder as the top testbench file. To serve the same purpose, an additional feature for re-parsing

the VHDL code and modifying the top level testbench accordingly for a possible later version

of a same IP.

To conclude, the objectives of this study were met and many ways to automate UVM

testbench generation were found, although all not that easy and fast to implement. Increasing

the automation in the process of functional verification is definitely achievable, given the

appropriate resources, time and commitment.

19

5 SUMMARY

Due to SoC verification taking such a heavy toll on time and resources, new ways to speed up

the process have to be studied. The automated creation of UVM testbenches used in functional

verification could be one solution to the problem.

In this thesis, the automation possibilities of UVM testbench generation were studied. First,

the necessary theory to understand the workings of UVM was discussed, focusing on SV OOP,

on which UVM is built, and the necessary UVM components to build a testbench. Testbench

architectures and coding styles allowing reuse of testbenches both horizontally and vertically

were also considered.

Automation possibilities were reflected by taking a look into previous research made on the

topic, and mainly by developing an automation script with python. Script utilized pythons

multi-line strings and string formatting to build UVM components from templates. DUTs port

connection parsing from VHDL files was also experimented on. Signal names and widths were

successfully parsed from the DUTs top-level VHDL file. With the data parsed, it was possible

to automate writing hundreds of lines of code into the testbench top-level file. It was noticed,

that this approach has enormous potential for future development, even the majority of the

testbench could be created automatically with a script, by utilizing the known interface types

between IPs.

The component templates and files generated by the script were compiled to get rid of any

errors made when coding up the templates. An IDE was exploited for this task, to make the

debugging easier. In the end, the things learned while developing the script were discussed, and

future improvement ideas presented.

20

6 REFERENCES

[1] B. Vineeth and B. B. Tripura Sundari, "UVM Based Testbench Architecture for

Coverage Driven Functional Verification of SPI Protocol," 2018 International

Conference on Advances in Computing, Communications and Informatics (ICACCI),

2018, pp. 307-310, doi: 10.1109/ICACCI.2018.8554919.

[2] N. B. Harshitha, Y. G. Praveen Kumar and M. Z. Kurian, "An Introduction to

Universal Verification Methodology for the digital design of Integrated circuits

(IC’s): A Review," 2021 International Conference on Artificial Intelligence and

Smart Systems (ICAIS), 2021, pp. 1710-1713, doi:

10.1109/ICAIS50930.2021.9396034.

[3] R. Tymerski, D. Li and X. Wang, "Object oriented design of a power electronics

circuit simulator," [Proceedings] 1992 IEEE Workshop on Computers in Power

Electronics, 1992, pp. 101-108, doi: 10.1109/CIPE.1992.247288.

[4] "IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and

Verification Language," in IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012) ,

vol., no., pp.1-1315, 22 Feb. 2018, doi: 10.1109/IEEESTD.2018.8299595.

[5] Accellera, (2014) Universal Verification Methodology (UVM) 1.2 Class Reference,

Accessed 14.04.2022. URL:

https://www.accellera.org/images/downloads/standards/uvm/UVM_Class_Referenc

e_Manual_1.2.pdf

[6] Accellera, (2015) Universal Verification Methodology (UVM) 1.2 User’s Guide,

Accessed 14.04.2022 URL:

https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.

pdf

[7] Chipverify, UVM-phases, Accessed 20.04.2022.

URL:https://www.chipverify.com/uvm/uvm-phases

[8] Namdo Kim, Young-Nam Yun, Young-Rae Cho, J. B. Kim and Byeong Min, "How

to automate millions lines of top-level UVM testbench and handle huge register

classes," 2012 International SoC Design Conference (ISOCC), 2012, pp. 405-407,

doi: 10.1109/ISOCC.2012.6407127.

[9] Cadence, System testbench generator, Accessed 11.05.2022 URL:

https://www.cadence.com/en_US/home/tools/system-design-and-

verification/system-vip/system-testbench-generator.html

[10] Github, hellovimo uvm_testbench_gen, Accessed 11.05.2022 URL:

https://github.com/hellovimo/uvm_testbench_gen

[11] B. Lin, Y. Chen, X. Chen and Y. Yu, "Comparison between JSON and XML in

Applications Based on AJAX," 2012 International Conference on Computer Science

and Service System, 2012, pp. 1174-1177, doi: 10.1109/CSSS.2012.297.

https://www.accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.chipverify.com/uvm/uvm-phases
https://www.cadence.com/en_US/home/tools/system-design-and-verification/system-vip/system-testbench-generator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/system-vip/system-testbench-generator.html
https://github.com/hellovimo/uvm_testbench_gen

21

7 APPENDICES

Appendix 1. Python samples

22

Appendix 1. Python samples

Hardcoded parameters

parameters

OUTPUT_PATH = 'source/uvm.json'

INPUT_PATH = 'source/input.txt'

ROOT_DIR = 'verif'

LAUNCH_DIR = os.getcwd()

ENVS = ['rxtx', 'rx', 'tx']

uvm_folders = { # paths for uvm files

 'sequences': '',

 'env': '',

 'tb': '',

 'tests': '',

 'ral': '',

 'assertions': '',

 'scripts': ''

}

Directory generation function

def create_dir(int, name):

 """

 Navigates up in the filesystem according to

 given value and then creates a directory

 cd:s to the created direcotry

 """

 if int >= 0:

 back = '..'

 path = back

 for i in range(int):

 path = os.path.join(path, back)

 os.chdir(path)

 os.mkdir(name)

 os.chdir(name)

Counter and parser function

def count_marks(mark, string):

 """

 Counts given characters in a string

 Returns: count, and string stripped of

 the chars

 """

 count = 0

 for char in string:

 if char == mark:

 count += 1

 return count, string.replace(mark, '')

23

UVM directory finder function

def map_uvm_dirs():

 """

 Checks if directory is UVM dir and stores the path

 """

 path = os.getcwd()

 name = path.split('/')[-1]

 if name in uvm_folders:

 uvm_folders[name] = path

 print('Adding folder: ' + name + ' to uvm_folders')

Part of a VHDL parser function that also declares signals in the tb

if 'downto' in words:

 length = words[words.index('downto') - 1] # getting width of the

signal

 if length != '':

 bits = '[{}:0]'.format(length)

 else:

 length = 0

 dict_name[name] = length # saving to dict

 genfile.write(' logic {width} {signal};\n'.format(

 width=bits,

 signal=name

))

Port connection function

def connect_ports(genfile, dict_name, module_name):

 """

 Arguments: File for writing, dictionary containing signal data and module

name

 Makes port connections to ports with the same name

 """

 genfile.write('\n // Port connections\n {module_name}_top #()

{module_name}_top(\n'.format(module_name=module_name))

 for i, signal in enumerate(dict_name):

 if i == len(dict_name) - 1:

 genfile.write(' .{signal} ({signal})\n'.format(signal=signal))

 else:

 genfile.write(' .{signal} ({signal}),\n'.format(signal=signal))

 genfile.write(');\n')

