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Abstract 

Computer Vision algorithms are widely used in many every-day life applications in recent 

years, taking advantage of the advancements in processing power and data transferring 

speeds. Car Make and Model Recognition implementations are using such algorithms and 

have become an important element of modern, intelligent transport systems. This diploma 

thesis presents a complete approach of a real-time Car Make and Model identification system 

from video stream frames. It analyzes, the creation of a car frontal images database, image 

data pre-processing, region of interest and frame features extraction and classification model 

training. The proposed solution, is time efficient and accurate when running on a modern 

x86 processor and an attempt in implementing it on a reconfigurable Xilinx platform 

utilizing its low frequency processor and FPGAs is also examined. 
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Περίληψη 

Οι αλγόριθμοι Υπολογιστικής Όρασης χρησιμοποιούνται ευρέως σε πολλές εφαρμογές της 

καθημερινής ζωής τα τελευταία χρόνια, εκμεταλλευόμενοι τις εξελίξεις στην επεξεργαστική 

ισχύ και τις ταχύτητες μεταφοράς δεδομένων. Οι εφαρμογές αναγνώρισης της μάρκας και 

μοντέλου αυτοκινήτων, χρησιμοποιούν τέτοιους αλγόριθμους και έχουν εξελιχθεί σε ένα 

σημαντικό στοιχείο των σύγχρονων, ευφυών συστημάτων μεταφορών. Αυτή η διπλωματική 

εργασία παρουσιάζει μια ολοκληρωμένη προσέγγιση ενός συστήματος αναγνώρισης 

μάρκας και μοντέλου αυτοκινήτου πραγματικού χρόνου, από εικόνες μιας ροής βίντεο. 

Συμπεριλαμβάνει μεταξύ άλλων, τη δημιουργία μιας βάσης δεδομένων εικόνων 

αυτοκινήτων, την προεπεξεργασία των δεδομένων, την εξαγωγής περιοχής ενδιαφέροντος 

και χαρακτηριστικών, αλλά και την εκπαίδευση μοντέλων ταξινόμησης. Η προτεινόμενη 

λύση, είναι χρονικά αποδοτική και ακριβής όταν εκτελείται σε έναν σύγχρονο επεξεργαστή 

x86 και εξετάζεται επίσης μια προσπάθεια υλοποίησής της σε μια επαναπρογραμματιζόμενη 

πλακέτα της Xilinx χρησιμοποιώντας τον χαμηλής συχνότητας επεξεργαστή και τις FPGA 

που διαθέτει. 
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Chapter 1 

Introduction 

The rising number of cars usage over the last decades has made matters of safety and 

efficiency on the roads of utmost importance. Modern Intelligent Transport Systems (ITS) 

offer a plethora of solutions that aim to improve the management and operation of transport 

systems by automating their functions. Such applications introduce automated vehicular 

surveillance (AVS) frameworks, advanced driver-assistance systems (ADASs), and traffic 

activity monitoring. Car Make and Model recognition grows great interest between these 

applications in recent years, due to the advanced security it can offer in an ITS. 

 

A CMMR system can be used when buying or selling cars, where the interested buyer can 

have, after taking a photo of the vehicle, a good information about its specific make and 

model. It can further be used for statistical studies of traffic in a specific area but also in 

monitored parking areas where the owner of the site needs a complete knowledge of the cars 

it hosts at any time. However, the basic need of a CMMR system is its use in cases of 

imperative car identification for law enforcement. In surveillance applications, for example, 

it can be used as a complement to Automatic License Plate Recognition (LPR) systems for 

suspected cars detection.  

 

LRP techniques are widely used for the recognition of a vehicle’s make and model. They try 

to achieve this by cross-checking the detected license plate data with those existing in the 

registered vehicles database. However, such systems become inoperative when there is poor 

image quality or fraudulent use of license plates. A license plate can be forged, contain 

indistinguishable characters or be worn out, and in all these cases we will have failed car 

identification. CMMR offers a robust and accurate identification solution when LPR 

algorithms fail and can also be used as detection validation when they can be usable.  
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Figure 1: Cases in which LPR algorithms fail [1] 

 

The process of creating an efficient CMMR system can be highly challenging. Different 

lighting conditions effect the car’s appearance and strong intra-class similarity usually exists 

among models of the same car make, especially when they are of the same generation. 

However, studies have shown that these problems can be tackled with the correct analysis 

and usage of computer vision algorithms. 

 

1.1 Related Work 

Analysis of the literature presents that the majority of the recent CMMR publications 

approach the issue with a feature-based approach. Feature based methods use local or global 

invariant features to classify car models, and hence their performance depends on the 

accurate representation of those features. Some use the full front or rear view of the car to 

examine their features in their workflow and others try to localize certain parts of a car’s 

body, basing their recognition process on those locations. For the classification process, 

those features are fed in a classifier network in order for their class to be predicted. Support 

Vector Machines (SVM), Nearest Neighbor Classifier (NNC) and Artificial Neural 

Networks (ANN) appear to be the most used classifiers in CMMR solutions.  

 

Psyllos et al. [2] used an LPR algorithm for vehicle frontal view segmentation first and then 

a Probabilistic Neural Network that predicts the car manufacturer based on the logo. The 

same PNN network is fed with SIFT keypoints extracted from the frontal car view to output 

the predicted model. Baran et al. [3] developed a system that extracts SURF features from 

frontal car images and then after partitioned in a set of clusters (vocabulary generation), are 

given in a trained multiclass SVM model to predict their labels. Chen et al. [4] proposed a 

symmetrical SURF descriptor for vehicle detection, that after a car’s ROI is detected, its 
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HOG features are extracted. The make and model are finally predicted using a novel 

Hamming distance classification scheme. The same detection technique was used by 

Manzoor et al. [5] that used HOG and GIST feature descriptors for their ROI. For the 

classification process, they applied SVM and Random Forest classifiers to the extracted 

features. Pearce et al. [6] included in their work a comparison of many feature extraction 

methods including Canny Edge Detection, Squared Mapped Gradients Harris Corner 

strengths. To classify their data, they examined Nearest Neighbors and Naïve Bayes 

techniques. A Bag of Expressions approach was presented by Jamil et al. [7], that use a 

combination of HOG descriptor and different keypoint detectors to extract car features. Their 

classification process was completed with a SVM classifier. Lee et al. [1] utilized and 

optimized the SqueezeNet, a smaller CNN network for their whole recognition process. 

 

1.2 Thesis Subject and Contributions 

As described above, the problem of CMMR has been addressed by many researchers in 

recent years as its importance in ITS has grown. This thesis describes a CMMR solution that 

could be able to work on a low power embedded platform, which was not the final goal for 

any of the examined approaches. The workflow it introduces was developed using C++ and 

Python programming languages, and tested on both Windows and Linux operating systems. 

We are going to present all the steps needed in order to create an efficient CMMR algorithm 

having zero starting resources. 

 

At first, a database that could match our needs was created. Some projects that base their 

recognition on certain car parts such as the logo or the headlights could suffer from occlusion 

and poor image quality problems. For this reason, in our work the whole frontal view of a 

car was used. The robust HOG feature descriptor was applied for the extraction of cars image 

features. Those features are then fed into a SVM network for training the classifier model 

that will eventually predict a car’s make and model. Our target was to create a system that 

would be fast enough to be used for real time applications, meaning to be able to recognize 

a moving car’s model from video frames. This is achieved by finding the region where the 

car lies in each frame and then giving this area’s features as an input to our pre-trained SVM 

model. A series of image processing algorithms and contour detection functions were 

utilized in order to find this region of interest. The computational performance and accuracy 
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were sufficient enough for our needs and they are compared with other similar methods from 

the literature. 

 

The last part of this work includes an attempt to make the proposed framework work on the 

Zedboard evaluation kit provided by our university.  It is an embedded platform that has a 

CPU together with reconfigurable hardware components. The need for less power while at 

the same time utilizing less resources and creating faster systems has become a norm in 

recent years. This is why such heterogenous platforms exist, to accelerate applications by 

using their reconfigurable hardware parts. Our method’s performance while running through 

a real-time OS on this device’s CPU is analyzed. Finally, hardware optimizations examined 

with the Vitis HLS tool are proposed. 

 

1.3 Thesis Outline 

Having described our thesis workflow, the remainder of this dissertation is organized as 

follows: 

• Chapter 2.  In this part, the database creation is analyzed along with the image 

manipulation taken into account for every inserted car image. 

• Chapter 3.  Here the feature extraction technique is firstly described. Then, the 

classifier training process and the classification metrics are reported. 

• Chapter 4.  This chapter gives a detailed description of the real time CMMR flow 

proposed and discusses the performance results along with further optimizations. 

• Chapter 5.  A description of the embedded platform and its performance while 

running the algorithm is given here, together with a detailed attempt for hardware 

optimization. 

• Chapter 6.  Finally, a conclusion is drawn about the proposed solution and future 

improvements are also presented.
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Chapter 2 

Database Creation 

2.1 Database Selection 

The first challenge in this problem was to create or find a database, from which we want to 

extract the features that will be later used in the pipeline of car identification. For this topic, 

several databases have been developed such as NTOU-MMR [4] which has been used by 

several related works [5,7] and others that are not publicly available from their creators [2,6]. 

All the existing databases, however, do not correspond to Greek reality, which is our goal 

for validation purposes, either because they consist of vehicles circulating only in the USA 

or China, or because they are based on other aspects of the car and not on the front, which is 

the requested for the proposed solution. Therefore, the creation of a new database became a 

priority. Due to the fact that it can be used in many cases of identification, as this is how the 

cameras are usually mounted on streets and parking lots, only images that clearly depict the 

front view of cars were selected for the new database. The selection of the images was made 

manually by websites of used and non-used cars such as autoscout24.com and car.gr and 

included cars that were high in sales in both the Greek and the European market in the last 

decade. The following table illustrates all the car models in the database and the number of 

images collected for each one. 

 

Model Date Number of Images 

AUDI A3 2012 24 

BMW SERIES 1 2016 23 

CITROEN C3 2014 27 

FORD FIESTA 2017 28 

MERCEDES A-CLASS 2019 26 

OPEL CORSA 2015 21 

RENAULT CLIO 2012 23 

TOYOTA YARIS 2015 28 

VW POLO 2014 22 

 

Table 1: Models of the created database. 
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2.2 Selection Criteria 

The point of attention at this stage, was the images chosen, only depict the front view of the 

vehicle and no other parts of it such as large part of the roof or side views such as the car 

doors. Thus, all the images in this database are taken from the imaginary straight line that 

connects the camera with the center of the vehicle's mask with a height deviation between 

them of not more than half a meter, so that only the car front is clearly visible. The edges of 

each image are a few centimeters away from each side of the car, i.e. right and left mirror, 

roof (top) and tires contact with the ground (bottom). Moreover, 25 images of non-cars were 

added to the database, so that if a picture of a non-car is examined, to be correctly predicted 

at the classification stage. 

 

Since all the photos are not captured from the same distance, lenses of different focal lengths 

are needed for different distances from the object, in order to achieve the object always being 

the same centered and equidistant from the desired edges. In Figure 2 below, the W-width 

car is captured from points a and c. As the distance d1(c-b) is less than the distance d2(a-b), 

the angle θ is obtained greater than the angle φ to record the same desired view. In the images 

selected, care was taken to ensure that there is not a very large viewing angle due to ultra-

wide angle lenses and thus no visual distortion caused to the photographed object (vehicle). 

Finally, when needed, images were cropped at their edges such as the appearance of the 

vehicle’s front view is properly and equally centered. 

 

 

Figure 2: Distances and viewing angles when capturing an object.
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Chapter 3  

Classification Process 

Having all the car photos collected and organized into specific folders, the next step is to 

develop a classification model for this multiclass problem, that takes image features as inputs 

and outputs their Make and Model. Image features should be extracted using a feature 

description algorithm and then fed into the selected classifier network in order to train the 

classification model. 

 

3.1 Histogram of Oriented Gradients 

The feature descriptor algorithm we use, should be descriptive enough for the differences 

between the models to be clearly visible in the next stage of identification, since it is a 

problem involving multiple car models (classes). For this, the Histogram of Oriented 

Gradients was chosen, as it has better accuracy than other descriptors like Canny Edge 

Detector and SIFT (Scale Invariant and Feature Transform) because it uses the magnitude 

along with the angle of the gradient to compute the features. HOG became known on a large 

scale in 2005, when Navneet Dalal and Bill Triggs presented their work on pedestrian 

detection using HOG descriptors at the Conference on Computer Vision and Pattern 

Recognition (CVPR) [8]. It is now widely used for object detection projects and other 

computer vision applications. Like most feature descriptors, HOG extracts useful 

information from an image and creates a feature vector of user specified length (depending 

on the algorithm options and need for accuracy). In our case, the information is collected by 

the distribution of directions (histogram) of gradients for each image. The steps for 

histogram calculation are described below. 

 

3.1.1 Input Images Preprocessing 

Every image should have the same feature vector length as an output of HOG and since they 

are not all of the same size, a resizing to specific dimensions must happen to all of them. It 

was noticed that the suitable size for those car photos is resizing them to 128x128 pixels, as 
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in this size not much useful information is lost and the feature extraction becomes more time 

efficient due to smaller feature vector length. To further limit algorithm’s computation time, 

each resized image was converted from RGB to grayscale, reducing the color channels from 

three to just one and producing an image more fitting to edge detection functions. 

 

3.1.2 Calculating Image Gradients 

In order to create the histogram, we must initially calculate each pixel’s vertical and 

horizontal gradient, which is achieved by filtering the image (convolutionally) with the 

kernels: 

-1 0 1 

 

 

 

 

Table 2: Image Filtering Kernels. 

 

The gradient of each pixel is computed as shown below:  

Gx(x,y) = f(x + 1, y) – f(x − 1, y)  (3.1) 

Gy(x,y) = f(x + 1, y) − f(x − 1, y)  (3.2) 

where f(x,y) is the image pixel with coordinates x and y, Gx is the gradient of the horizontal 

direction and Gy is the gradient of the vertical direction. 

Then, the magnitude and orientation of each pixel are computed as: 

 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝐺(𝑥, 𝑦) = √𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)2 (3.3) 

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝜃 = tan−1 𝐺𝑦(𝑥,𝑦)

𝐺𝑥(𝑥,𝑦)
 (3.4) 

 

3.1.3 Creating Histograms of Gradients in 8x8 cells 

Next step in the process, is the division of the image into 8x8 cells and the calculation of 

histogram of gradients for every such cell. In this way, we achieve not only a more compact 

representation but also a more robust to noise one. 

 

-1 

0 

1 
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For each cell, the values of magnitude from 64 pixels are placed depending on their direction 

(orientation) in 9 bins, one bin for every 20 degrees from 0 to 180, cumulatively. If the 

direction of a pixel gradient is between two bins, then the value of its magnitude is split 

accordingly, based on the distance from each respective bin, in 2 parts and then these are 

added to each bin. For example, if a pixel has a magnitude of 4 and an angle of 10 degrees, 

it is between the bins with degrees 0 and 20, so we will add 2 to 0 degree bin and 2 to 20 

degree bin, as shown in Figure 3. 

 

 

 

Figure 3: Attaching the magnitude values in bins. [9] 

 

3.1.4 Block Normalization 

To calculate the final feature vector, we divide the image into blocks of 16x16 pixels, i.e. 

into sets of 4 cells (2x2), so each block is described by 4 concatenated histograms combined, 

to form a vector of 4 cells x 9 bins = 36 elements. Since each area of the image does not have 

the same lighting intensity, the 36 values of each histogram have to be normalized with their 

L2 norm before being inserted into the final feature vector. For a given vector V = [v1, v2, 

v3…v36] in order to normalize it, will divide its values by the square root of the sum of 

squares of the values: 𝑛 =  √𝑣12 + 𝑣22 + 𝑣32 + ⋯ + 𝑣362  (3.5)  and the normalized 

vector is computed as:  𝑉𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = [
𝑣1

𝑛
,

𝑣2

𝑛
,

𝑣3

𝑛
, … ,

𝑣36

𝑛
] (3.6) 
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Eventually, the image is scanned with 16x16 blocks with a stride of 8 pixels (half block) in 

an overlapping manner, into 15 horizontal and 15 vertical positions (128pixels/8pixels stride 

-1 block width = 15) as shown in Figure 4. Hence each block is described by a vector of 36 

elements, the final feature vector length is 15 x 15 x 36 = 8100. 

 

 

 

Figure 4: Blocks size, Stride size and scanning positions given the numbers described. 

 

3.2 Classification Algorithm 

After having extracted the “useful” data of every car depiction, those data need to be fed into 

a classifier network in order to train the classification model that will eventually predict the 

matching car make and model for every image it is given as an input. For this purpose, a 

Multiclass Support Vector Machine [10] was selected for our non-binary problem, as it is 

proven from related works [3,5,7] that it works respectably with HOG features and it is a 

memory efficient prediction method.  



 

11 

An SVM can be described as a representation of the input characteristics (samples) at points 

in space which aims for their maximum separation by a hyperplane in classes. Having two 

parallel hyperplanes to separate the two classes so that the distance between them is the 

maximum, the desired maximum-margin hyperplane is the one lying halfway between them. 

This hyperplane therefore depends on the marginal values – samples that are closest to it and 

these samples are called support vectors. 

 

The above description follows the formula: 

 

𝐹𝑜𝑟 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑥𝑖 ∈  𝑅𝑝 ,  𝑖 = 1, … , 𝑛 𝑤𝑖𝑡ℎ 𝑦𝑖 ∈ {−1,1}𝑛 𝑜𝑢𝑟 𝑔𝑜𝑎𝑙 𝑖𝑠 𝑡𝑜 𝑓𝑖𝑛𝑑 

𝑤 ∈ 𝑅𝑝 𝑎𝑛𝑑 𝑏 ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 

𝑏𝑦 𝑠𝑖𝑔𝑛(𝑤𝑇𝜑(𝑥) + 𝑏) 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟 𝑚𝑜𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

 

More specifically we are solving the problem:  

 

 subject to    (3.7) 

 

for 𝜁𝑖 ≥ 0 , 𝑖 = 0, … , 𝑛 , with w being the weight vector, b the distance from axis origin, C > 

0 a regularization (penalty) parameter and ζ the distance from their correct margin boundary. 

 

For this work, the LIBSVM library [11] was used, which provides support for many types 

of SVMs and is developed for use in several programming languages. This implementation 

was made with the C-SVM type with parameter C = 1.0 and linear kernel function, having 

as input the HOG characteristics of each image (X) and the number of its class (Y), 

corresponding to the name of the car model. 

 

As this is a multiclass problem, LIBSVM implements a “one-against-one” approach to 

classification, i.e. for K number of classes, K*(K-1)/2 classifiers are created, each of which 

is trained with data from 2 classes. This way the problem splits into many binary problems. 

When solving - classifying for each binary problem, the class that will have in its total the 

most features - points gets a vote and so the final predicted class and output of the classifier 

is the class with the most votes.   
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From our database, 80% of the images were used for training (train set) the SVM predictor 

model and the remaining 20% for testing its accuracy (test set). The selection of images for 

training and testing was done in a random way each time and many SVM models were 

trained and saved in files to create a more complete statistical view of the whole algorithm. 

The testing results were similar between all the trained models and their overall performance 

is described in the next section. 

3.3 Classification Results 

In order to evaluate the classifier prediction results, three widely used metrics in 

classification problems were examined: precision, recall and F1-score. To explain the above 

metrics, the following table presents a possible prediction in relation to the expected (actual) 

value. 

 

 

Table 3: Confusion matrix of binary prediction results. 

 

Precision is derived from the fraction: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

In other words, it presents the percentage: from the total positive predictions of the 

classification model, how many are really positive. 

 

Recall or otherwise Sensitivity shows the percentage of how many from the set of really 

positive values the model predicted as positive and is calculated by the fraction: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

  PREDICTION 

  POSITIVE NEGATIVE 

REAL VALUE 

POSITIVE 
TRUE 

POSTITIVE(TP) 

FALSE 

NEGATIVE(FN) 

NEGATIVE 
FALSE 

POSITIVE(FP) 

TRUE 

NEGATIVE(TN) 
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The F1-score displays the harmonic mean of accuracy and recall. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

As each test set is randomly selected from the entire database as mentioned at the end of 

subchapter 3.2, the samples given from each class are different in every trained and examined 

model. Taking into account this imbalance, the above metrics were noted for each trained 

SVM model based on the weighted average between the classes. The results obtained on 

average from 25 trained SVM models are presented in the table below. 

 

Precision Recall F1-score 

98,13% 97,56% 97,59% 

 

Table 4: Average of performance metrics from trained classification models.  

 

Although it may be a product of our relatively small database, the models trained on those 

data generate almost perfect results, with an average accuracy of 98%. The HOG features 

extraction and SVM model training were developed in Python and it took almost 5 seconds 

to complete the whole process in our system. 

 

 

Figure 5: Confusion matrix of a trained SVM model.
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Chapter 4 

Car Make and Model Recognition from video frames 

With the prediction process described, we can classify a static car’s front view image to the 

specific Make and Model if it exits in the database. The goal however is developing a real-

time recognition approach, where given a video stream, the algorithm will be able to 

recognize where and if a vehicle exists in each video frame and then predict its class using 

the classification process already discussed. This chapter analyzes the creation of such a real-

time system presenting the frame preprocessing routine, the recognition technique and 

identification method and the performance measurements of this system. The open source 

computer vision library OpenCV [12] was used to form all the required steps. 

 

 4.1 Frame Preprocessing 

Having a video file as input, the first thing is to grab every frame of it in order to process it.  

The approach selected, recognizes a moving object using a background segmentation 

method and all the functions below contribute to drawing a low noise foreground image in 

each frame. 

 

4.1.1 Grayscale Conversion 

After grabbing the video frame, we have an RGB image which has 3 color channels and a 

size of 1280x720 pixels in our case. We convert this image to Grayscale, which is a 

description of colors based on their lightness, with values ranging from 0 (black) to 255 

(white). The new image may have less information but is a simplified depiction since it has 

only 1 color channel to process and that reduces the computational requirements. There are 

many ways to achieving this color conversion like the Average method, the Lightness 

method, the Gleam method etc. [13] OpenCV uses the Luminosity method which is a 

weighted one and tries to match the human brightness perception. The formula for 

converting every pixel value is: 
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𝐺𝑟𝑎𝑦 = 0.299 ∗ 𝑅 + 0.587 ∗ 𝐺 + 0.114 ∗ 𝐵  (4.1) 

 

4.1.2 Gaussian Blurring 

The grayscaled image is then convolved by a Gaussian kernel of size 3x3 in order to smooth 

sharp edges and reduce unwanted details. The formula calculating each pixel value using the 

Gaussian function is described as: 

 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2    (4.2) 

 

where x is the distance to the horizontal kernel center, y is the distance to the vertical kernel 

center and σ is the standard deviation of the Gaussian kernel. [14] 

 

4.1.3 Background Subtraction 

The next challenge is to have a clear view of foreground objects which may be moving cars, 

so a background subtraction algorithm is used in order to extract the moving foreground 

from the static background in the already blurred image. Several subtraction methods have 

been developed and their performance has been thoroughly examined in [15]. Most of these 

algorithms include: a) processing of N frames to provide the background image, b) definition 

of background representation, c) updating the model for every H number of frames, defined 

by the user and d) classifying pixels to sets of background and foreground. In this work a 

Gaussian Mixture-based segmentation method is used as described in [16]. 

 

In the Mixture of Gaussians technique, each background pixel is approached by modelling 

it as a mixture of k Gaussian distribution models, with k being between 3 and 5. In this 

method, it is assumed that each different distribution represents the different background and 

foreground colors. The model is weighted meaning that each distribution’s weight is 

proportional to the amount of time each color remains on that pixel. Therefore, when a 

pixel’s distribution weight is high, that pixel will be noted as background. This method has 

the ability to detect shadows if this option is activated. In our scenarios, the number of frames 

taken into account to define the background image, also known as history, was opted to be 
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60 and the threshold of distance between each pixel and the model to decide whether it 

belongs to the background or not, was selected to be 48. 

 

4.1.4 Morphological Transformations 

At this point, we have an image where segmented as foreground objects are totally white, 

while the areas forming the background are black. This subtraction may not be without 

noise however and some black spots may exist inside the foreground white areas. To 

eliminate those points, a technique known as Closing was followed, where Dilation and 

subsequently Erosion filtering is operated on the image. 

 

4.1.4.1 Dilation 

This function primarily expands the white area of foreground objects by dilating the binary 

image with a structuring element. This element is a kernel, which shape and size determines 

the pixel neighborhood over which the following check is involved: 

 

(4.3) 

 

where dst is the destination – output image, src is the input image and x,y the coordinates of 

each pixel. 

 In this way, if at least one pixel under the kernel is “1” the pixel element is determined as 

“1”. The kernel shape in our case is a rectangle with a 3x3 size, meaning we have a 3x3 

matrix of ones. 

 

4.1.4.1 Erosion 

The Erosion process is the opposite the Dilation one. It erodes the foregrounds’ objects 

boundaries by eroding the image with the structuring element mentioned above. The 

formula that determines each pixel’s color here is: 

 

(4.4) 
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In this case, if only all pixels under the kernel are “1”, the pixel element is considered as “1”. 

Kernel shape and size here are the same with those used for Dilation. The final preprocessed 

image is presented in the upper part of Figure 7. 

 

4.2 Object Recognition 

Now that we have a clearer separation of foreground areas from the black background, we 

need to outline those areas and then threshold them depending on their size, in order to 

choose which of them are large enough to be considered as Regions of Interest for our 

prediction system. A useful method for object recognition problems is to find contours in 

the image. 

 

4.2.1 Contours Detection 

Contour is a curve, joining all continuous points that have the same color in our problem, 

forming this way the boundary of an object. The opencv findContours function [18], stores 

the (x,y) coordinates of object boundary points but has two Contour Approximation methods 

to decide which of all coordinates to keep. The first one is CHAIN_APPROX_NONE and 

stores all the boundary points for each contour. The other is CHAIN_APPROX_SIMPLE, 

that compresses horizontal, vertical, and diagonal segments and keeps only their end points. 

For example, in a straight line we do not need all of its points to describe it but the start and 

the end of it. The later method was selected as it has very lower memory requirements 

compared to the former one. 

 

Another interesting option when searching for contours is the Contour Retrieval technique. 

An object may contain another shape-object inside its area and we can name the outer object 

as parent of the inner ones (children) declaring this way levels of contours hierarchy. The 

specific OpenCV function provides four Contour Retrieval modes: a) RETR_EXTERNAL 

which retrieves only the outer contours (the parent ones), b) RETR_LIST that does not 

establish any parent child relationship between the extracted contours, c) RETR_CCOMP 

where every contour in the image is retrieved and sorted in a 2 level hierarchy way: level 1 

for all the outer contours (object boundaries) and level 2 for all the inner contours and d) 

RETR_TREE in which not only all the contours are retrieved but also organized with a multi-
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level hierarchy, meaning that even if a contour is contained inside four other contour areas 

it will have its own hierarchy, with its level defined by the parent-child relationship 

described. It becomes obvious that RETR_TREE requires the maximum computation time 

between them, because of the level of detail it provides and RETR_EXTERNAL takes the 

least time to execute. With the preprocessing already discussed, it is almost guaranteed that 

no small “holes” will exist inside a bigger contour, resulting in a simpler hierarchy between 

the contours and for that, the RETR_TREE technique was selected.  

 

 

Figure 6: Contours detected using CHAIN_APPROX_SIMPLE method. [17] 

4.2.2 Contours Thresholding 

With all the contours stored, we need to declare which of them can represent a Region of 

Interest, meaning an area inside the whole frame where a moving car may exist. Considering 

that the object we want to classify must be detailed enough for our classifier to predict, all 

contours with area less than 128x128 pixels are discarded. For those contours with area 

larger than that, we draw a straight rectangle around them. 

 

Cars inside a video frame in our scenario appear in an almost rectangular shape, so our 

Region of Interest should be selected likewise. Therefore, we threshold all the 

aforementioned rectangles based on their height and width and keep only those that obey to 

the relation:  0,7 ∗ 𝑤𝑖𝑑𝑡ℎ ≤ ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 1,3 ∗ 𝑤𝑖𝑑𝑡ℎ . The remaining ones constitute our 

Regions of Interest of this frame. The area where this rectangle lies is cropped from the 
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original RGB frame (not the final processed image) and copied to a new image. This image 

is fed to our classification process described in chapter 3 in order for its class to be predicted. 

The SVM prediction (output) can then be stored and used in many ways, including drawn 

wherever in the frame we want or printed on the screen. An example of this can be seen in 

the lower part of Figure 7. Every prediction is written in a list and every (user specified) 

number of frames we apply majority voting in it in order to decide by the number of 

occurrences which Make and Model the depicted car is. 

 

 

Figure 7: Final preprocessed image (Up) and predicted car model in this ROI (Down). 
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A full representation of the steps followed for training the classification model and 

recognizing the Make and Model of cars from video frames is presented in the following 

diagram.  

 

 

 

Figure 8: SVM Training and real-time CMMR process flows. 
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4.3 Recognition results and software optimizations 

The above CMMR process was tested on a modern laptop with an 8-core AMD Ryzen 

4800H CPU, 16 GBs of DDR4-3200 RAM and NVME storage. While having MP4 videos 

with a framerate of 25 to 30 FPS as input, the described solution can process more than 30 

frames per second in this system, achieving to satisfy our real-time requirements. In 

particular, each frame’s maximum time taken to process is less than 5ms. This makes this 

system able to process more than 250 FPS when image display functions are not used. The 

computation time is distributed as: 60-65% for the image preprocessing stage, 11-15% for 

Contours Detection and Thresholding and 16-22% for the classification process. The timing 

distribution for 3 videos of different total time and different capturing locations is presented 

in the next chart.  

 

 

 

Figure 9: Timing totals of algorithm segments. 

 

Since it is not possible to optimize the way SVM network predicts nor the contours detection 

functions we used, effort was made to reduce the frame’s preprocessing computational 

complexity. The Background Subtraction method mentioned, took almost half of the 

preprocessing time and it became evident that this part could be improved. This foreground 

segmentation can happen manually, by subtracting our current frame’s blurred image from 
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an N previous frame’s one and then threshold this difference in order to have a binary image 

with black background and white foreground objects. The N previous frame image 

represents the background out of which we want to segment the moving object area existing 

in our current frame. N can be changed depending on video demands (how fast objects - cars 

move) and in tested scenarios it was sufficient enough to assign it to 45. To make it clearer, 

every 45 frames we copy this current frame and use it as a background image for the next 

ones. The accuracy falls down a bit but it is very acceptable compared to the timing gains 

this change offered. Additionally, the optical changes happening from frame-to-frame are 

usually minimal, so we can apply our whole recognition process every 2 or 3 frames if we 

want to drastically reduce the computation time.  

 

Comparing our implementation with other CMMR approaches from the literature shows that 

a more simplistic approach like ours appears to be more suitable for a modern real-time 

recognition system. The accuracy when trying to identify a car model from a moving 

foreground object may be less than most of the examined methods but performance/accuracy 

ratio is far better than any other approach. The more recent computer specifications used in 

our work have surely affected this performance but the usage of of HOG and SVM instead 

of a combination of feature descriptors and Neural Networks, proved to be a lot more time 

efficient. A detailed comparison with other works is presented in the next table. 
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Work Feature 

Descriptor 

Classifier Samples/Classes Accuracy Time in ms 

(FPS if 

real-time) 

Psyllos 

et al. [2] 

(2011) 

 

SIFT 

 

PNN 

 

110 / 11 

 

85% make / 

54% model 

 

363 / no 

real-time 

Pearce et 

al. [6] 

(2011) 

Many 

feature 

descriptors 

Nearest 

Neighbors / 

Naïve Bayes 

 

262 / 74 

 

96% on best 

combination 

 

100 / no 

real-time 

Chen et 

al. [4] 

(2015) 

 

Symmetric 

SURF 

Sparse 

representation 

and hamming 

distance 

 

4502 / 39 

NTOU-MMR 

dataset 

 

91% 

 

43.83 FPS 

Baran et 

al. [3] 

(2015) 

 

SURF / 

SIFT 

 

SVM 

 

3859 / 17 

 

91 

 

33.9 + 4.24 

Manzoor 

et al. [5] 

(2019) 

 

HOG 

 

Random 

Forest / SVM 

2725+3110 / 39 

NTOU-MMR 

dataset 

 

94.53% / 

97.89% 

 

35.7 FPS / 

13.9 FPS 

Lee et 

al. [1] 

(2019) 

 

Same as 

Classifier 

 

Residual 

Squeeze Net 

 

291,602 / 766 

 

96.33% 

 

109.5 

Jamil et 

al. [7] 

(2020) 

 

HOG + Bag 

of elements 

 

SVM 

 

NTOU-MMR 

dataset 

 

98.2% best 

options 

 

24.7 FPS 

best options 

Our 

approach 

 

HOG 

 

SVM 

 

225 / 10 

98% static / 

85% real-

time 

~5ms / 

more than 

250 FPS 

 

Table 5: Comparison of our work with other implementations from the literature.
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Chapter 5

Embedded System Analysis 

Our system runs great on a high-performance laptop but what happens if we were to test it 

in a more compact and portable device with low power consumption requirements, appears 

as a challenge. Mobile platforms usually rely on less powerful batteries, making their power 

draw limited to low levels. As a result, although CMMR algorithms have worked with high 

accuracy levels on GPUs and traditional CPUs, those processing units do not pose as an 

option in our case, due to their high-power consumption. This problem can be tackled with 

the use of FPGAs. They have proved to be power efficient, highly adjustable as they are re-

configurable and built for simultaneous computing. Many Computer Vision algorithms have 

been implemented in FPGAs over the last decade including LPR, Pedestrian Detection and 

Objects Recognition even with the use of CNN architectures. Before we analyze the 

performance of our system in an embedded device, we present some basic knowledge about 

the circuits and tools used.  

 

5.1 FPGA 

A field programmable gate array is an integrated circuit designed to be re-configurable by a 

developer for every application he wants to implement. FPGAs are formed using an array of 

configurable logic blocks that are wired together via reconfigurable interconnects and their 

configuration is specified by a hardware description language (HDL). Their hierarchy can 

be configured to create combinational logic gates or even simpler ones like XNOR and AND. 

Modern hard logic blocks usually consist of look up tables (LUTs), flip flops (FFs), high 

speed I/O buses as well as embedded memory objects (RAM blocks). The die shrinkage in 

recent years has allowed major FPGA manufacturers like Xilinx and Intel providing FPGAs 

with more than 40 billion transistors. Due to this advancement, they are nowadays used for 

AI applications and Data Centers acceleration. 
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Figure 10: Intel Stratix 10 FPGA. [19] 

 

FPGAs can be regularly confused with Application-Specific Integrated Circuits (ASIC). 

Their most obvious difference is that FPGAs are multipurpose chips that can be 

reprogrammed for multiple applications while ASICs are manufactured for a specific 

application. ASICs are more efficient and consume less power compared to FPGAs but are 

not nearly as flexible as them. Although ASIC’s more complex design results in higher 

performance, FPGA’s reprogrammability is great for creating prototypes and for future 

changes in the application. 

 

The performance of FPGAs can in some cases be compared with that of GPUs. Though 

GPUs can execute thousands of (usually floating point) operations in parallel, data processed 

should be uniformed, with the same operation run multiple times. Some algorithms may not 

be possible to be easily parallelized and that can give an edge to the FPGAs reconfigurable 

concept. Recently, attempts have been made to translate and port ML frameworks written in 

higher level languages for use in FPGAs.  Many ML applications that require a certain 

environment different from the static office or server room can benefit from such 

implementations. Self-driving cars, robotics and smart city meters use neural networks 

nowadays to compute their tasks and compact, low-powered FPGAs can be used for their 

services. 
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Figure 11: FPGA and GPU comparison in selected algorithms by Cong et al. [20] 

 

5.2 System-on-a-Chip (SoC) 

A system-on-a-chip is an integrated circuit with all the necessary electronic elements and 

parts for a computer system, such as a smartphone or a tablet, combined into a single chip. 

A SoC always includes a CPU, peripheral controllers, memory interfaces and the most 

modern of them may include also GPUs, Digital Signal Processors and dedicated Neural 

Network hardware. The reduced space, power efficiency and lower manufacturing cost have 

made SoCs an un-changeable element of modern mobile and embedded systems. SoCs are 

designed to minimize latency and interconnection delays with boosted communication 

throughput between the parts. Their performance along with their durability have made them 

suitable for hardware accelerated applications. The embedded system used for this thesis has 

a SoC that combines its Processing System (CPU) with Programmable Logic (FPGA) and is 

presented next. 
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5.3 Zedboard Development Kit 

The board we worked on uses the Xilinx Zynq®-7000 All Programmable SoC along with 

all the necessary ports and interfaces for embedded applications development. More 

specifically it mainly contains a Dual-core ARM Cortex®-A9 CPU, 28nm programmable 

logic, 512 Mb of DDR3 Memory, SD card reader, Ethernet USB and HDMI ports, 128x32 

OLED screen, 8 User Switches and 7 user push buttons and 9 LEDs. Its detailed view is 

shown below. 

 

 

Figure 12: Overlay view of the Zedboard Development Board. [21] 

 

5.3 Embedded Software Implementation 

Trying to implement our solution on the embedded device, the first step is to build the system 

that will host our executables and binaries. PetaLinux [22] is an embedded Linux distribution 

for Xilinx Zynq chips which is supported by its own tools for building and deploying custom 
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embedded Linux solutions. By configuring these tools we were able to create a Linux 

filesystem with OpenCV libraries installed. Using commands from the Vitis Unified 

Software Platform [23] it was achieved to compile, build and package the host and kernel 

executables along with the device binary and other required files. Our system runs on the 

ARM processors through a SD card. For this to happen, we flashed the SD card with our 

data and two partitions were created: the root filesystem partition that contains the Petalinux 

filesystem and the BOOT partition where the bootloader and the application executables 

(host executable and kernel bitstream) are placed. 

 

The first attempt, which is used as a baseline for our experiments, is to run our algorithm 

only on the Processing System. The results were far worse from what the laptop achieved, 

but this was to be expected for this low frequency processor. The board could process 2-3 

FPS depending on the video demands every time. Images were read from a folder in a 

sequence and not from a video file, but that may had low impact on the overall performance. 

Timing distribution of the functions where similar to that of the x86 processor, described in 

chapter 4. This result is not close to a real-time solution and as a final step, optimization 

using the hardware resources (FPGA) must be done. 

 

5.4 Hardware Optimization Attempt 

Knowing that more than half of our algorithm time is spent during the frame pre-processing, 

we are going to analyze techniques that can decrease this number, when those functions are 

run through a hardware kernel. In recent years, Xilinx has developed the Vitis Vision Library 

[24]. It is a set of 90+ kernels based on the OpenCV library written in C++, optimized for 

Xilinx SoCs. Fortunately enough, all the functions that form our pre-processing step are 

included in this library. We used the Vitis HLS tool to put together and edit these functions 

in order to create and preview our kernel code. Optimization directives (pragmas) to modify 

and control the implementation of the internal logic and I/O ports are carefully placed inside 

the code. 
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5.4.1 Pipelining (pragma HLS pipeline) 

By using this directive, we allow concurrent execution of operations. This way the initiation 

interval (II) of a function or a loop is reduced. For example, if there is no data dependency, 

functions can execute concurrently in an out of order execution way, with the first function 

of a second loop iteration executing before the first iteration finishes its last function, as 

shown in the next figure.  

 

 

 

Figure 13: Loop Pipelining. [25] 

5.4.2 Dataflow Optimization (pragma HLS dataflow) 

This technique also known as task level parallelism, creates an architecture of concurrent 

processes for a series of sequential tasks. The compiler is allowed to schedule multiple 

functions inside the kernel to run concurrently achieving this way higher throughput and 

lower latency. The following figure shows an example of what can be achieved with this 

optimization. Function func_A is scheduled to execute as soon as data are available and not 

when func_C is completed. 
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Figure 14: Dataflow Optimization. [25] 

5.4.3 Synthesis Review 

With the optimizations described applied to our functions, the HLS synthesis results are 

presented below. The top kernel function managed to reduce LUT utilization by more than 

25% compared to the original attempt and latency is down by 20%. In addition, the initiation 

interval reduced to 12 cycles for the whole process. Unfortunately, this implementation uses 

a streaming interface where data are fed into our function as matrix pointers of arbitrary 

precision type (ap_uint) and the accelerated functions that convert them to accelerated 

OpenCV matrices (xf::Mat) must be used while being time consuming. 

 

 

Figure 15: Synthesis Report of Vitis HLS GUI.  
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Analyzing the above metics, given a clock of 100MHz the Zedboard PL could run a loop 

cycle of pre-processing functions in less than 10ms compared to the ARM CPU that takes 

more than 100ms to complete the same process, a 10x speedup. OpenCL API can then be 

used by both the host application and the accelerated kernel in order for their interactions to 

happen efficiently. 
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Chapter 6 

Conclusion and Future Work 

The work presented can efficiently predict the make a model of a car appearing in a video 

frame in real-time, when running on a modern x86 CPU. The process of selecting a database, 

a feature extractor algorithm and a classification network can be used in many computer 

vision applications. The choice of SVM as classifier proved to be accurate enough even for 

our real-time approach where the position and size of the presented car changes every 

second. More complex networks like CNNs were not examined, due to their usually larger 

memory requirements that appeared as not suitable to be efficiently used in a less powerful 

embedded system. This network may be able to distinguish at a high-rate car models from 

different makes but it is unable to note the difference between intra-class models, due to our 

small dataset. A great upgrade could be to enrich this dataset with more models and more 

photos of every model and then re-train the SVM classifier. Our embedded system approach 

looks promising not only from the HLS report but also from the usage of recently developed 

accelerated OpenCV functions. Vitis Design Flow is demanding and requires more work to 

be done for this system to be ready to run in real hardware, which is the next step for this 

implementation. Finally, the described algorithm could be accelerated in GPUs with the help 

of the OpenCL API. 
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