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ABSTRACT
We prove a stochastic version of the Gronwall lemma assuming that
the underlying martingale has a terminal random value in Lp, where
1 � p < 1: The proof of the present result is mainly based on a
sharp martingale inequality of the Doob-type.
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1. Introduction

In [1], Scheutzow proved a stochastic version of the Gronwall lemma. The proof in [1]
and also in the present author’s paper [2] are essentially based on the Burkholder mar-
tingale inequality [3]. Recently, various authors (see [4–7],etc) have established different
versions of the stochastic Gronwall lemma. The aim of the present paper is to prove
some new and related results. Throughout the paper, we shall assume that the underly-
ing martingale has a terminal random value in Lp, where 1 � p < 1: Under this
restriction, our proof employs a sharp martingale inequality of the Doob-type ([8,9])
proved independently by Gilat [10] and Jacka [11]. The present results are quite useful
in establishing estimates for moments of solutions for a certain class of stochastic differ-
ential equations. For estimates of such type or their variants, see for instance Lapeyre
[12], where these estimates are established by entirely using Fernique’s inequality [13].
Let M be a martingale defined on a filtered probability space ðX,F , ðF tÞt�0,PÞ:

Assume that M terminates at a random variable X in Lp with 1 � p < 1: In what fol-
lows, jjXjj denotes the Lp-norm of the random variable X and M� is the maximal func-
tion of the modulus of M. For p, q > 1 such that 1

p þ 1
q ¼ 1, it is proved in [10] and

[11] that

E M�½ � � Cðqþ 1Þ� �1=qjjXjjp, (1)

where Cðqþ 1Þ is a gamma function, and is the best possible. In the special case when
p ¼ q ¼ 2, see Dubins and Schwarz [14].
In the next section, we shall state and prove a stochastic version of the Gronwall

lemma. The proof is a consequence of the martingale inequality (1).
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2. Main result

The following theorem is the main result of this paper. The result supplements
Theorem 4 in [1].

Theorem 2.1. Assume that Z and H are non-negative, adapted processes with continuous
paths. Let w be non-negative, progressively measurable and M be a continuous martingale
terminating at a random variable X in Lp for p, q > 1 such that 1

p þ 1
q ¼ 1. Suppose that

ZðtÞ � HðtÞ þ
ðt
0

ðs
0
wðuÞZðuÞ du

� �
dsþMðtÞ (2)

for all 0 � s � t:
Then, for 0 < h < 1 and �1, �2 > 1 such that 1

�1
þ 1

�2
¼ 1 and h�i < 1 with i¼ 1, 2,

E sup
0�s�t

ZhðsÞ � 1þ EðN�ðtÞÞh�1
� �1=�1

EðH�ðtÞÞh�2 þ Cðqþ 1Þ� �h�2
q jjXjjp
� �h�2� �1=�2

,

(3)

where Cðqþ 1Þ is a gamma function, N�ðtÞ ¼ sup
0�s�t

ð1� bðsÞÞ1=q
1� ð1� bðsÞÞ1=q

and

bðtÞ ¼ exp � 1

ðpþ 1Þq=p
ðt
0
wqðsÞsqþq

p ds

 !
: (4)

Proof. Using integration by parts in (2), then

ZðtÞ � HðtÞ þ
ðt
0
ðt � sÞwðsÞZðsÞ dsþMðtÞ: (5)

By the H€older inequality, it follows from (5) that

ZðtÞ � HðtÞ þ jMðtÞj þ
ðt
0
ðt � sÞp ds

 !1=p ðt
0
wqðsÞZqðsÞ ds

 !1=q

¼ HðtÞ þ jMðtÞj þ t1þ
1
p

ðpþ 1Þ1=p
ðt
0
wqðsÞZqðsÞ ds

 !1=q

:

(6)

Hence, using Theorem 1 in [15], we now have

ZðtÞ � HðtÞ þ jMðtÞj þ t1þ
1
p

ðpþ 1Þ1=p

Ð t
0 w

qðsÞðHðsÞ þ jMðsÞjÞqbðsÞ ds
� �1=q

1� ð1� bðtÞÞ1=q
: (7)

Define N(t) by

NðtÞ :¼ t1þ
1
p

ðpþ 1Þ1=p

Ð t
0 w

qðsÞbðsÞ ds
� �1=q
1� ð1� bðtÞÞ1=q

: (8)
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Therefore, we have

ZðtÞ � ð1þ NðtÞÞðH�ðtÞ þM�ðtÞÞ (9)

which follows immediately from (7).
Let bðtÞ be a process given in (4). Using Ito’s formula, we have

dbðtÞ ¼ � 1

ðpþ 1Þq=p
tqþ

q
pwqðtÞbðtÞdt: (10)

This implies that

NðtÞ ¼ ð1� bðtÞÞ1=q
1� ð1� bðtÞÞ1=q

: (11)

Combining (9, 11) and using the H€older inequality, we deduce that

E sup
0�s�t

ZhðsÞ � Eð1þ N�ðtÞÞhðH�ðtÞ þM�ðtÞÞh

� Eð1þ N�ðtÞÞh�1
� �1=�1

EðH�ðtÞ þM�ðtÞÞh�2
� �1=�2

� 1þ EðN�ðtÞÞh�1
� �1=�1

EðH�ðtÞÞh�2 þ EðM�ðtÞÞh�2
� �1=�2

:

(12)

Then, applying the Jensen inequality and the martingale inequality in (1) (see
[10,11]), it follows that

EðM�ðtÞÞh�2 � EðM�ðtÞÞð Þh�2

� Cðqþ 1Þ� �h�2
q jjXjjp
� �h�2

:
(13)

The desired result now follows immediately from (12) and (13). This completes the
proof. w

Remark 1. It is interesting to compare the upper estimate obtained in Theorem 4 in [1]
with that established in our Theorem 2.1. Assuming that the process Z(u) under the
integral sign in (2) is replaced by its running maximum process, then one could prove
an interesting extension of our present result and Theorem 2.1 in [6]. The details are
left to the interested reader.

Remark 2. It should be noted that (5) is a stochastic integral inequality with a convolu-
tion kernel Kðt, sÞ ¼ ðt � sÞk of order one (k¼ 1). The results and proofs in [7] do not
cover the particular case k¼ 1, but deal mainly with the case �1 < k < 0, see for
instance Theorems 2.2, 2.3 and 2.4 in [7]. We also note that the proofs in [7] employ
the Burkholder martingale inequality [3] and the martingale inequality in Bismut and
Yor [16]. For related results, see [5], where the proofs are based on the well-known
M�etivier-Pellaumail inequality for semimartingales.

Remark 3. Finally, it is important to note that the present result and its proof do not
immediately extend to the case when the exponent h � 1: For versions of the stochastic
Gronwall lemma, assuming that the underlying process is a general Itô process under
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certain restrictions, these are proved in [4] strictly for the case when h 2 ½2,1Þ: The
result in Banuelos and Osekowski [17] plays an important role in proving versions of
the stochastic Gronwall lemma in [4].
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