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1. Introduction

Mathematical modeling and analysis can provide us with characteristic properties of important
phenomena and processes arising in real-world situations as well as predict the possible scenarios in
reality (see, for example, [1–12]. In particular, the study of mathematical models describing
infectious diseases has become one of the powerful and effective approaches to analyze, understand
and predict transmission mechanisms as well as characteristics of infectious diseases. For many years,
a great number of mathematical models of infectious diseases have been constructed and studied by
many mathematicians, biologists, and epidemiologists (see, for example, [1–4, 8–10] and references
therein). Studying these models can provide us with suitable strategies for controlling and preventing
diseases and for protecting the public health. In recent works [13–15] we have studied some epidemic
models and their real-world applications.

In March 11, 2020, the World Health Organization (WHO) declared the Coronavirus disease 2019
(COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak a
global pandemic [16] and in terms of the number of people infected, deaths, and the unprecedented
demand for healthcare services, COVID-19 had appeared in the top 10 worst infectious disease
pandemic in history in just less than 2 years after the first case was detected. Similarly to the previous
outbreak of other diseases, mathematical modeling and analysis of SARS-CoV-2 epidemic has
strongly attracted the attention of many researchers with many useful applications in both theory and
practice, especially in disease prevention. Consequently, a large number of mathematical models of
COVID-19 corresponding to different strategies have been proposed analyzed by many infectious
disease experts (see, for instance, [17–35] and references therein).

It is worth noting that the mathematical models of the COVID-19 transmission are constructed
based on principles of mathematics of epidemics, strategies and measures for combating the
epidemic. Therefore, strategies for confronting the COVID-19 epidemic of each country/region may
lead to a different mathematical model. In other words, there can be many mathematical models of
COVID-19 transmission depending on strategies and measures for confronting the COVID-19
epidemic. Motivated and inspired by the importance of mathematical models of epidemics, we
provide in this work a new mathematical study for the transmission dynamics of SARS-CoV-2. More
clearly, a new mathematical model describing transmission dynamics of SARS-CoV-2 epidemic is
formulated and analyzed rigorously. This model is based on hypothesis that COVID-19 has
threatened to collapse hospital and ICU services in most of nations of the world and it has affected the
care programs for non-COVID-19 patients [36]. Hence, mathematical model designed to optimize
predictions related to the need for hospitalization and ICU admission by COVID-19 patients will of
great important. Mathematical model of COVID-19 dynamics represented by a system of nonlinear
ordinary differential equations including seven classes, which are susceptible class (S), exposed class
(E), asymptomatic infected class (A), severely infected class (V), hospitalized class (H), hospitalized
class but in ICU (C) and recovered class (R). The positivity and boundedness of the new proposed
model are established based on comparison principles for ODEs, and its basic reproduction number is
calculated by using the approach developed in [37]. Next, the asymptotic stability properties of the
model are investigated by the Lyapunov stability theory and the relationship between the basic
reproduction number and global stability of disease free equilibrium. As an important consequence,
dynamical properties of the model are established fully and some mitigation and prevention measures
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of COVID-19 outbreaks are also suggested. In addition, a set of numerical simulations using real data
is reported to support and illustrate the theoretical results. The obtained results indicate that there is a
good agreement between numerical simulation results and the theoretical ones. The plan of this work
is as follows. The mathematical model is formulated in Section 2. Dynamics of the proposed models
is analyzed in Section 3. Numerical experiments are reported in Section 4. The last section provides
some remarks and conclusion.

2. Model formulation

In this section, we formulate mathematical model for transmission dynamics of COVID-19. In
this model, the total population is divided into seven classes. The mathematical model transitions
through the following classes: Susceptible (S), Exposed (E), asymptomatic (A), severely infected (V),
hospitalized in general ward (H), hospitalized in ICU (C) and recovered (R). The model assume that
recovered individuals experiences immunity waning, η [38]. The model has a constant recruitment
rate Λ to the susceptible class, S. The transmission rate from asymptomatic, A, and severely infected
individuals, V, to susceptible individuals, S is given by β with a modification parameters ϵ (0 < ϵ < 1)
on β for the severely infected individuals since it generally assumed that the asymptomatic individuals
are more infectious than the symptomatic individuals [20]. The asymptomatic, severely infected and
hospitalized individuals transit to the recovered class at rate γA, γV and γH, respectively. It is assumed
that those individuals severely infected, hospitalized in general ward and hospitalized in ICU can die
due to COVID-19 disease at rate δ [39]. p and q is the rate at which exposed individual transit to
asymptomatic and severely infected individuals, respectively. We considered demographic factor such
as natural death in each of the class as rate µ. Severely infected individuals are hospitalized at rate κ
and hospitalized individuals transit to ICU at rate, α while the those recovered from ICU return to the
hospital general wards at rate, σ. In the model, we do not consider non-pharmaceutical intervention
such as isolation or lockdowns.

Following Figure 1 and Table 1, the dynamics of COVID-19 transmission is modeled by the
following system of nonlinear ordinary differential equations:

dS
dt
= Λ − µS − βAS − βES − βϵVS + ηR,

dE
dt
= βAS + βES + βϵVS − pE − qE − µE,

dA
dt
= pE − γAA − µA,

dV
dt
= qE − κV − γVV − (µ + δ)V,

dH
dt
= κV + σC − αH − γHH − (µ + δ)H,

dC
dt
= αH − σC − (µ + δ)C,

dR
dt
= γAA + γVV + γHH − µR − ηR,

(2.1)
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subject to the initial data

S (0) > 0, E(0) ≥ 0, A(0) ≥ 0, V(0) ≥ 0, H(0) ≥ 0, C(0) ≥ 0, R(0) ≥ 0.

The parameter 0 < ϵ < 1 is a modification parameter since generally the asymptomatic individuals are
assumed to be more infectious than the symptomatic individuals [20] and η is the rate at which those
who recover from the disease become susceptible again over time [29].

For the model (2.1), we denote the total population by N, i.e,

N(t) := S (t) + E(t) + A(t) + V(t) + H(t) +C(t) + R(t), t ≥ 0.

Table 1. Parameter symbols and their descriptions.

Symbol Description
S Susceptible class
E Exposed class
A Asymptomatic infected class
V Severely infected class
H Hospitalized class
C Hospitalized class but in ICU
R Recovered class
β Rate at which infected individuals infect susceptibles
p Proportion of asymptomatic infected
q Proportion of severe infected
κ Proportion of severe progressing to hospitalise
α Proportion of hospitalise progressing to critical
σ Proportion of critical progressing to hospitalise
γA Recovery proportion of asymptomatic
γV Recovery proportion of mild
γH Recovery proportion of severe
η Rate of COVID-19 waning immunity
ϵ Infectious rate by the symptomatic individuals
µ Natural death rate
δ COVID-19 related death rate
Λ Recruitment rate
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Figure 1. Compartment representation of COVID-19 transmission dynamics.

By using comparison theorems for ODEs [40], it is easy to establish the positivity and boundedness
of the model as follows.

Theorem 1 (Positivity and boundedness of solutions). The set

R7
+ :=
{(

S , E, A,V,H, I,R
)
∈ R7
∣∣∣S , E, A,V,H, I,R ≥ 0

}
is a positively invariant set of the model (2.1). Furthermore, we have the following estimate

lim sup
t→∞

N(t) ≤
Λ

µ
.

Proof. First, it follows from (2.1) that

dS
dt

∣∣∣∣
S=0
= Λ + ηR > 0,

dE
dt

∣∣∣∣
E=0
= βAS + βϵVS ≥ 0,

dA
dt

∣∣∣∣
A=0
= pE ≥ 0,

dV
dt

∣∣∣∣
V=0
= qE ≥ 0,

dH
dt

∣∣∣∣
H=0
= κV + σC ≥ 0,

dC
dt

∣∣∣∣
C=0
= αH ≥ 0,

dR
dt

∣∣∣∣
R=0
= γAA + γVV + γHH ≥ 0.
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By [40, Theorem B.7], we deduce that the set R7
+ is a positively invariant set of the model (2.1).

Next, from (2.1) we obtain

dN
dt
= Λ − µN − δV − δH − δC ≤ Λ − µN.

By using a comparison theorem for ODEs [40, Theorem B.1], we obtain

lim sup
t→∞

N(t) ≤
Λ

µ
.

The proof is complete. □

3. Dynamical analysis of the mathematical model

In this section, we will analyze dynamical properties of the model (2.1). As a consequence of
Theorem 1, we only need to study dynamics of the model (2.1) on a feasible set defined by

Ω =

{
(S , E, A,V,H,C,R) ∈ R7

+

∣∣∣∣S + E + A + V + H +C + R ≤
Λ

µ

}
. (3.1)

3.1. Equilibria and the basic reproduction number

We solve the following non-linear algebraic system in order to determine equilibria of the
model (2.1):

Λ − µS − βAS − βES − βϵVS + ηR = 0,
βAS + βES + βϵVS − pE − qE − µE = 0,
pE − γAA − µA = 0,
qE − κV − γVV − (µ + δ)V = 0,
κV + σC − αH − γHH − (µ + δ)H = 0,
αH − σC − (µ + δ)C = 0,
γAA + γVV + γHH − µR − ηR = 0.

(3.2)

For convenience, we introduce the following notations:

τ1 :=
σ + µ + δ

α
,

τ2 :=
(α + γH + µ + δ)τ1 − σ

κ
,

τ3 :=
κ + γV + µ + δ

q
τ2,

τ4 :=
p

γA + µ
τ3,

τ5 :=
γAτ4 + γVτ2 + γHτ1

µ + η
,

τ6 := (p + q + µ)τ3 − ητ5.

(3.3)
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It follows from the 6th, 5th, 4th, 3rd and 7th equations of the system (3.2) that

H = τ1C, V = τ2C, E = τ3C, A = τ4C, R = τ5C. (3.4)

On the other hand, adding side-by-side the 1st and 2nd equations of (3.2) we obtain

Λ − µS = τ6C. (3.5)

Combining (3.4), (3.5) with the 1st equation of (3.2) we have an equation for C

C
[
τ6 − β

(
Λ − τ6C
µ

)
(ϵτ2 + τ3 + τ4) + ητ5

]
= 0. (3.6)

The Eq (3.6) always possesses a trivial solution C = 0. In this case, we have

E0 = A0 = V0 = H0 = C0 = R0 = 0, S 0 =
Λ

µ
,

which corresponds to a unique disease-free equilibrium point.

Lemma 1. The model (2.1) always possesses a disease-free equilibrium (DFE) point given by

E0 =
(
S 0, E0, A0, V0, H0, C0, R0

)
=

(
Λ

µ
, 0, 0, 0, 0, 0, 0

)
. (3.7)

We now use the approach developed by van den Driessche and Watmough [37] to compute the basic
reproduction of the model. For this purpose, we set X = (E, A,V,H,C,R, S ) and rewrite the model (2.1)
in the matrix form

dX
dt
= F (X) −V(X),

where

X =



E

A

V

H

C

R

S



, F =



βES + βS A + βϵS V

0

0

0

0

0

0



, V =



(p + q + µ)E

−pE + (γA + µ)A

−qE + (κ + γV + µ + δ)V

−κV − σC + (µ + δ + α + γH)H

−αH + (σ + µ + δ)C

−γAA − γVV − γV H + µR + ηR

−Λ + µS + βS E + βS A + βϵS V − ηR



.

At the equilibrium point E0, we obtain

F =



βΛ

µ

βΛ

µ

βϵΛ

µ

0 0 0

0 0 0


, V =


p + q + µ 0 0

−p µ + γA 0

−q 0 κ + µ + δ + γV


.
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Consequently, the basic reproduction number of the model can be computed by

R0 = ρ(FV−1) =
βΛ

µ(p + q + µ)
+

βΛp
µ(p + q + µ)(γA + µ)

+
βΛqϵ

µ(p + q + µ)(κ + γV + µ + δ)
, (3.8)

which is the number of secondary SARS-CoV-2 infections caused by one infectious individual during
the infectious period in a completely susceptible population [32].

We now determine disease-endemic equilibrium (DEE) points by reconsidering (3.6). By simple
algebraic manipulation, we obtain the non-trivial solution

C∗ =
Λ

τ6
−

(τ6 + ητ5)µ
βτ6(ϵτ2 + τ3 + τ4)

. (3.9)

It is easy to verify that C∗ > 0 if and only if R0 > 1. In this case, we obtain a unique (positive) DEE
point by using (3.4) and (3.5).

Lemma 2. If R0 > 1, then the model (2.1) has a unique DEE point
E∗ = (S ∗, E∗, A∗, V∗, H∗, C∗, R∗), where C∗ is given by (3.9), E∗, A∗,V∗,H∗,R∗ are given by (3.4)
and S ∗ is given by (3.5).

Combining Lemmas 1 and 2, we have the following result.

Theorem 2. The model (2.1) always possess a DFE point E0 for all values of the parameters, whereas,
the unique DEE point E∗ exists if and only if R0 > 1.

3.2. Stability analysis

In this subsection, we analyze asymptotic stability of the model (2.1). For convenience, let us denote

ζ1 := p + q + µ,

ζ2 := γA + µ,

ζ3 := κ + γV + µ + δ,

ζ4 := γV + δ + κ.

Theorem 3 (Local stability of the DFE point). The DFE point of the model (2.1) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.
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Proof. The Jacobian matrix of the model (2.1) evaluating at the DFE point is given by

J(E0) =



−µ −
βΛ

µ
−
βΛ

µ
−
βϵΛ

µ
0 0 η

0
βΛ

µ
− ζ1

βΛ

µ

βϵΛ

µ
0 0 0

0 p −ζ2 0 0 0 0

0 q 0 −ζ3 0 0 0

0 0 0 κ −(α + γH + µ + δ) σ 0

0 0 0 0 α −(σ + µ + δ) 0

0 0 γA γV γH 0 −(µ + η)



.

We now determine eigenvalues of J(E0). Since J(E0) is a block matrix, it is sufficient to determine
eigenvalues of the three following sub-matrices

J0 =
(
−µ
)
,

and

J1 =



βΛ

µ
− ζ1

βΛ

µ

βϵΛ

µ

p −ζ2 0

q 0 −ζ3


, (3.10)

and

J2 =


−(α + γH + µ + δ) σ 0

α −(σ + µ + δ) 0

γH 0 −(µ + η)


. (3.11)

The matrix J0 has only one eigenvalue −µ < 0. Meanwhile, the matrix J2 has an eigenvalue is −(µ+η) <
0, and the remaining eigenvalues are the ones of the sub-matrix

J′2 =


−(α + γH + µ + δ) σ

α −(σ + µ + δ)

 . (3.12)

Since det(J′2) > 0 and tr(J′2) < 0, real parts of two eigenvalues of J′2 are all negative. Consequently,
real parts of three eigenvalues of J2 are all negative.

On the other hand, thanks to Schur-Cohn criterion (see [1]) it is easy to verify that if R0 < 1 then real
parts of all the eigenvalues of J1 are negative. Hence, the local asymptotic stability of E0 is proved. □
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We now study the global stability of the DEE point based on the approach constructed by Castillo-
Chavez et al. [41]. For this reason, consider a system of ODEs of the form

dx
dt
= F(x, I),

dI
dt
= G(x, I), G(x, 0) = 0,

(3.13)

where x ∈ Rm denotes (its components) the number of uninfected individuals and I ∈ Rn denotes (its
components) the number of infected individuals including latent, infectious, etc. Let U0 = (x∗, 0) be
the disease-free equilibrium and R0 be the basic reproduction number of this system.

The conditions (H1) and (H2) below must be met to guarantee local asymptotic stability.

(H1) For
dx
dt
= F(x, 0), x∗ is globally asymptotically stable (g.a.s.).

(H2) G(x, I) = AI − Ĝ(x, I), Ĝ(x, I) ≥ 0 for (x, I) ∈ Ω,
where A = DIG(x∗, 0) is an M-matrix (the off diagonal elements of A are nonnegative) and Ω is the
region where the model makes biological sense.

Corollary 1 ( [41]). The fixed point U0 = (x∗, 0) is a globally asymptotic stable (g.a.s.) equilibrium
of (3.13) provided that R0 < 1 (l.a.s.) and that assumptions (H1) and (H2) are satisfied.

Theorem 4 (Global asymptotic stability of the DFE point). The DFE point E0 of the model (2.1) is
globally asymptotically stable if R0 < 1.

Proof. First, we rewrite the model (2.1) in the form (3.13) by setting x = S and I = (E, A,V,H,C,R).
Then, the DFE point becomes U0 = (x∗, 0) = (Λ/µ, 0) and the system dx/dt = F(x, 0) becomes

dS
dt
= Λ − µS .

This equation has a unique equilibrium point x∗ = Λ/µ, which is globally asymptotically stable.
Therefore, the condition (H1) is satisfied.

We now verify the condition (H2). For the model (2.1), we have

G(x, I) =



βAS + βES + βϵVS − pE − qE − µE

pE − γAA − µA

qE − κV − γVV − (µ + δ)V

κV + σC − αH − γHH − (µ + δ)H

αH − σC − (µ + δ)C

γAA + γVV + γHH − µR − ηR



,
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and

DIG(x∗, 0) =



β
Λ

µ
− ζ1 β

Λ

µ
βϵ
Λ

µ
0 0 0

p −ζ2 0 0 0 0

q 0 −ζ3 0 0 0

0 0 κ −α − γH − (µ + δ) σ 0

0 0 0 α −(σ + µ + δ) 0

0 γA γV γH 0 −(µ + η)



.

Clearly, all the off diagonal elements of A := G(x, I) are non-negative. Furthermore, we have

Ĝ = AI −G(x, I) =



βE
(
Λ

µ
− S
)
+ βA

(
Λ

µ
− S
)
+ βϵV

(
Λ

µ
− S
)

0

0

0

0

0



, (3.14)

which implies that Ĝ(x, I) ≥ 0 for all (x, I) ∈ Ω. Therefore, the conditions (H1) and (H2) are satisfied.
By Corollary 1 the global stability of the DEE point is obtained. The proof is complete. □

Remark 1. In order to investigate the local stability of J(E∗), we consider the Jacobian of the
model (2.1) at E∗, which is given by

J(E∗) =



−µ − βE∗ − βA∗ − βϵV∗ −βS ∗ −βS ∗ −βϵS ∗ 0 0 η

βE∗ + βA∗ + βϵV∗ βS ∗ − ζ1 βS ∗ βϵS ∗ 0 0 0

0 p −ζ2 0 0 0 0

0 q 0 −ζ3 0 0 0

0 0 0 κ −(α + γH + µ + δ) σ 0

0 0 0 0 α −(σ + µ + δ) 0

0 0 γA γV γH 0 −(µ + η)



.

Note that the DEE point exists if and only if R0 > 1. Since J(E∗) is very complicated, it is very
difficult to have a format proof which shows that all the eigenvalues of J(E∗) have negative real parts.
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However, based on existing results on the asymptotic stability of mathematical models arising in
biology, ecology and epidemiology (see, for instance, [1–4, 8–10]), we can conjecture that the DEE
point is not only locally asymptotically stable but also globally asymptotically stable if R0 > 1.
Furthermore, in numerical examples performed in the next section, we will see that E∗ is
asymptotically stable when R0 > 1. The asymptotic stability analysis of the DEE point is an
interesting mathematical problem but in real-world applications, our main objective is to control the
parameters by suitable strategies such that R0 ≤ 1. In this case, the DFE point is globally stable, i.e,
the disease is eradicated.

3.3. Sensitivity of the basic reproduction number

Sensitivity analysis studies how uncertainty in the output of a model can be apportioned to different
source of uncertainty in the model input. It is commonly used to determine the robustness of model
predictions to parameter values. In this study, the normalized forward sensitivity index of R0 will
be computed to identify parameters that have a high influence on R0. This can be used to improve
intervention strategies. The normalized forward sensitivity index of a variable to a parameter is the
ratio of the relative change in the variable to the relative change in the parameter [19].

Definition 1. (see [19]) The normalized forward sensitivity index of a variable, L, that depends
differentiably on a parameter, u, is defined as:

ΥL
u =

u
L
∂L
∂u
.

The formula (1) evaluates the sensitivity of an outcome to all input variables. Given the basic
reproduction number R0 above, we derive the sensitivity index of R0 with respect to each parameters
in R0 as follows.

Υ
R0
β =

β

R0

∂R0

∂β
= 1,

Υ
R0
Λ
=
Λ

R0

∂R0

∂Λ
= 1,

ΥR0
p =

p
R0

∂R0

∂p
= −

(((ϵ − 1) q + γA) µ + (qϵ + δ + γV + κ) γA − q (γV + δ + κ)) p(
µ2 + (qϵ + δ + γA + γV + κ + p) µ + (qϵ + δ + γV + κ) γA + pζ4

)
ζ1
,

ΥR0
q =

q
R0

∂R0

∂q
=

q
(
(ϵ − 1) µ2 + ((ϵ − 1) γA + (ϵ − 1) p − γV − δ − κ) µ + (ϵ p − δ − γV − κ) γA − pζ4

)(
µ2 + (qϵ + δ + γA + γV + κ + p) µ + (qϵ + δ + γV + κ) γA + pζ4

)
ζ1

,

ΥR0
γA
=
γA

R0

∂R0

∂γA
= −

γA p (κ + γV + µ + δ)(
µ2 + (qϵ + δ + γA + γV + κ + p) µ + (qϵ + δ + γV + κ) γA + pζ4

)
(γA + µ)

,

ΥR0
γV
=
γV

R0

∂R0

∂γV
= −

γV qϵ (γA + µ)(
µ2 + (qϵ + δ + γA + γV + κ + p) µ + (qϵ + δ + γV + κ) γA + pζ4

)
ζ3
,

ΥR0
κ =

κ

R0

∂R0

∂κ
= −

κ qϵ (γA + µ)(
µ2 + (qϵ + δ + γA + γV + κ + p) µ + (qϵ + δ + γV + κ) γA + pζ4

)
ζ3
,

Υ
R0
δ =

δ

R0

∂R0

∂δ
= −

δ qϵ (γA + µ)(
µ2 + (qϵ + δ + γA + γV + κ + p) µ + (qϵ + δ + γV + κ) γA + pζ4

)
ζ3
,

ΥR0
ϵ =

ϵ

R0

∂R0

∂ϵ
=

qϵ (γA + µ)
µ2 + (qϵ + δ + γA + γV + κ + p) µ + (qϵ + δ + γV + κ) γA + pζ4

.
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Table 2 provides sensitivity indices of R0 with respect to parameters given in Set 1 of Table 3.

Table 2. Sensitivity indices of R0 with respect to parameters given in Set 1 of Table 4.

Parameter Sensitivity Index
β 1
Λ 1
p -0.181
q -0.096
γA -0.698
γV -0.010
κ -0.013
ϵ 0.023

Table 3. The parameters used in Example 1.

Parameter Value Source Parameter Value Source

β 0.034 assumed µ
1

64.13 × 365
Estimated

p 0.1760 [18, 19] δ 1.7826 × 10−5 [18, 19]
q 0.0240 [18, 19] Λ = µ × N(0) 2533.8 Estimated
κ 0.08 [18, 19] η 0.008 [29]
σ 0.2 [18, 19] ϵ 0.5 [42]
α 0.15 [18, 19] γH 0.047 fitted
γA 0.07 fitted R0 0.61 Computed
γV 0.061 fitted

Table 4. The parameters used in Example 2.

Parameter Value Source Parameter Value Source

β 0.34 fitted µ
1

64.13 × 365
Estimated

p 0.1760 [18, 19] δ 1.7826 × 10−5 [18, 19]
q 0.0240 [18, 19] Λ = µ × N(0) 2533.8 Estimated
κ 0.08 [18, 19] η 0.008 [29]
σ 0.2 [18, 19] ϵ 0.5 [42]
α 0.15 [18, 19] γH 0.047 fitted
γA 0.07 fitted R0 6.11 Computed
γV 0.061 fitted
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The implication of the above investigation for intervention strategy is that decreasing β orΛ by 10%
decreases R0 by 10%. Also, the most negative sensitive parameter is the proportion of asymptomatic
infected, γA, with ΥR0

p = −0.698. If γA increase by 10%, then the basic reproduction number R0

decreases approximately 7%. We have not included the sensitivity index related to death rates due to
ethical reasons. Therefore, compliance with COVID-19 mitigation measures such as social distancing,
wearing a face mask, and washing hands is needed to reduce the transmission parameter β; furthermore,
the spread of COVID-19 infection can be reduced by quarantining infected people and/or by using
COVID-19 vaccines.

4. Numerical experiments

In this section, we provide the biological parameters of the proposed COVID-19 model (2.1) using
the confirmed COVID-19 cases in South Africa during the Omicron wave period from November 27,
2021 to January 20, 2022 [43]. Using the using Poisson maximum likelihood and the dataset, we
estimate parameter values in the model.

The initial value of the total population of South Africa based on the data is N(0) = 59310000

and the average life span is
1

64.13
years. The fitting result to the reported data through our model is

compared in Figure 2. Hence, it can be seen that the simulation model is quite in accordance with the
actual data. We perform some numerical experiments with initial condition given in Table 5. For this
purpose, we utilize the classical fourth order Runge-Kutta (RK4) method with step-size h = 10−4 to
simulate the model (2.1). In addition, the following set of initial data will be also used in numerical
simulations.
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Model with parameter estimates

Figure 2. South Africa COVID-19 data between the period of November 27, 2021 and
January 20, 2022 fitted to COVID-19 model.
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Table 5. The initial data used in numerical examples.

S (0) E(0) A(0) V(0) H(0) C(0) R(0) N(0) Ref
29675142 21968562 2861104 715275 572220 114444 3403253 59310000 [44]

Example 1 (The dynamics of the transmission model when R0 < 1). Consider the model (2.1) with
the parameters given in Table 3. This scenario is to show the dynamic of the model when R0 < 1.

In this example, R0 < 1 and hence, the DFE point E0 =
(Λ
µ
, 0, 0, 0, 0, 0, 0

)
is globally

asymptotically stable. This implies that the epidemic will be eradicated. The solutions of the
model (2.1) are depicted in Figure 3. It is clear that the DFE point is globally asymptotically stable.
Therefore, the validity of Theorems 3 and 4 is supported.

Example 2 (The dynamics of the transmission model when R0 > 1). Consider the model (2.1) with
the parameters given in Table 4. This scenario is to show the dynamic of the model when R0 > 1.

In this case R0 > 1 and therefore, the DEE point E∗ is locally asymptotically stable. The solutions
of the model are depicted in Figure 4. It is clear that the DEE point is locally asymptotically stable.
This is a evidence supporting the comments in Remark 1. Also, we can observe that the DEE point
may be not only locally stable but also globally stable. Based on this, it is reasonable to conjecture the
global asymptotic stability of the DEE point as reported in Remark 1.

Figure 5 shows that variable duration of immunity has impact on the dynamics of the diseases.
If there is relatively quick loss of immunity, accumulation of susceptible individual may results in
a disproportionately large outbreak in a subsequent wave. in Figure 5, when η = 0.0111, which
corresponded to the fasted loss of immunity in all the η considered, we observed accumulation of more
susceptible individuals and low number of recovered individuals. Figure 6(a) shows that an increase
in the transmission rate will increase the R0 while Figure 6(b) shows that the values of R0 can be kept
below 1 as long as the values of transmission rate do not exceed a certain threshold (β ≈ 0.11).
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Figure 3. The solutions in Example 2 with Set 2 of the initial data.
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Figure 4. The solutions in Example 2 with Set 2 of the initial data.
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Figure 5. Variation of total number of susceptible and recovered individuals with different
values of waning immunity (η).
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Figure 6. Contour plots of the reproduction number (R0) of the model as a function of
transmission rate β and asymptomatic (γA) and symptomatic (γV).

5. Conclusions and remarks

In this work, a mathematical model of the transmission dynamics of SARS-CoV-2 epidemic has
been formulated and its dynamical properties have been investigated rigorously. By the rigorous
mathematical analyses, we have computed the basic reproduction number R0, proved the positivity
and boundedness of solutions and established the asymptotic stability properties of the DFE and DEE
points. It was proved that the DFE point is globally asymptotically stable if R0 ≤ 1, whereas, the DEE
point is locally asymptotically stable if R0 > 1. The normalized sensitivity index of R0 has been
considered. We adopted the Poisson maximum likelihood to estimate and fit the model parameters
using the reported active cases of COVID-19 in South Africa. The results indicate that the use of
Poisson maximum likelihood yields a good fit as shown in Figure 2. Also, we have conducted a set of
numerical experiments with with estimated parameters to support and illustrate the constructed
theoretical results.

The constructed model and theoretical analysis not only provide us with a new observation of the
transmission dynamics of COVID-19 but also suggest effective disease prevention measures. More
clearly, an important consequence obtained from the theoretical analysis is that we determined the
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basic reproduction number R0 and identified the parameters that influence the R0. Based on this, some
mitigation and preventative measures of COVID-19 outbreaks have been suggested. These mitigation
and preventative measures can be useful in real situations and consistence with the WHO’s
recommendations.

In the current model, we incorporate infection-induced waning immunity. However, promising
development directions for model (2.1) are to consider it along with vaccine waning immunity and
optimal control strategies. Especially, in the context that the vaccination is being promoted in all
countries, the study of the impact of vaccines, waning immunity and optimal control strategies are
very important. This can provide us with effective vaccination strategies as well as disease prevention.

The proposed model is not exhaustive and can be extended in various ways. In the near future,
we intend to develop this work to construct new mathematical models for transmission dynamics of
SARS-CoV-2 epidemic and study practical applications of the proposed model. Also, pharmaceutical
and non-pharmaceutical interventions, and optimal control strategies will be considered for the SARS-
CoV-2 epidemic model.
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