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ABSTRACT
We present pulse width measurements for a sample of radio pulsars observed with the MeerKAT telescope as part of the
Thousand-Pulsar-Array (TPA) programme in the MeerTime project. For a centre frequency of 1284 MHz, we obtain 762 W10

measurements across the total bandwidth of 775 MHz, where W10 is the width at the 10 per cent level of the pulse peak. We
also measure about 400 W10 values in each of the four or eight frequency sub-bands. Assuming, the width is a function of the
rotation period P, this relationship can be described with a power law with power law index μ = −0.29 ± 0.03. However, using
orthogonal distance regression, we determine a steeper power law with μ = −0.63 ± 0.06. A density plot of the period-width
data reveals such a fit to align well with the contours of highest density. Building on a previous population synthesis model,
we obtain population-based estimates of the obliquity of the magnetic axis with respect to the rotation axis for our pulsars.
Investigating the width changes over frequency, we unambiguously identify a group of pulsars that have width broadening
at higher frequencies. The measured width changes show a monotonic behaviour with frequency for the whole TPA pulsar
population, whether the pulses are becoming narrower or broader with increasing frequency. We exclude a sensitivity bias,
scattering and noticeable differences in the pulse component numbers as explanations for these width changes, and attempt an
explanation using a qualitative model of five contributing Gaussian pulse components with flux density spectra that depend on
their rotational phase.

Key words: surveys – pulsars: general – radio continuum: stars.

1 IN T RO D U C T I O N

Radio pulsars show a large variety of pulse profile widths, W. The
width is one of the simplest descriptors of the pulse morphology. The
observed widths depend on the radio emission physics of the neutron
star, the viewing geometry, the properties of the interstellar medium
(ISM) through which the radio emission passes until detection,
as well as the instrumental set-up such as observing frequency
and bandwidth. Investigating some of these dependences, many
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previous works in the literature have therefore studied the widths
of pulsar profiles of various pulsar samples. Key works include
Lyne & Manchester (1988), Rankin (1990, 1993), Gil, Kijak &
Seiradakis (1993), Kramer et al. (1994), Gould & Lyne (1998), Tauris
& Manchester (1998), and Mitra & Rankin (2002). The possible
constraints on pulsar emission models and pulsar geometry provided
by pulse width measurements remain a topic of intensive study
with more recent works including Young et al. (2010), Maciesiak
& Gil (2011), Maciesiak, Gil & Melikidze (2012), Skrzypczak
et al. (2018), and Johnston & Karastergiou (2019, hereafter JK19).
According to the textbook description, intrinsic factors that influence
the measured pulse widths include the height of the radio emission
above the surface of the star, hem, the radio beam properties (e.g. its
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shape, discernable components, and whether it is filled or patchy),
the number of radio emitting regions (i.e. multipolar or dipolar
structures), but also the size of the region with open magnetic field
lines, represented by the radius of the (assumed to be small) polar
cap. For a dipole field, this is (e.g. Ruderman & Sutherland 1975)

rp = (
R3

NS/RLC

)1/2 = [
2πR3

NS/(cP )
]1/2

. (1)

where RLC = cP/(2π ) is the radius of the light cylinder, c is the
speed of light, RNS is the radius of the neutron star, and P is the
pulsar’s rotation period. For a constant emission height, the width of
the assumed (circular and filled) radio emission beam cone, defined
as the full opening angle 2ρ, can be expressed by rp and thus P, as
illustrated by Rankin (1990):

wbeam = 2ρ = 3h1/2
em rpR

−3/2
NS = [(18πhem)/(cP )]1/2 . (2)

The intrinsic beamwidth wbeam is modified by a geometric factor to
the observable pulse profile width, W as

cos(wbeam/2) = cos α cos ζ + sin α sin ζ cos(W/2), (3)

where α is the angle between the rotation axis and magnetic axis,
ζ = α + β with β as the angle between the observer’s line of sight
and the magnetic axis (Gil, Gronkowski & Rudnicki 1984). Even
in the case of the simplest assumptions (a circular, filled beam, and
all emission originating from the same height), the geometric effects
can modify the W ∝ P−1/2 relation that one would expect at α = 90◦

and β = 0◦. Despite this, the above-mentioned studies found that the
relation between P and W can be described by a power law (PL) with
slightly varying slopes depending on samples, observation frequency
and method of width measurement. These results indicated a more
complex radio beam with varying emission heights and potential
dependence on the pulsar evolution as explored by, e.g. Gupta &
Gangadhara (2003) and JK19.

Rankin (1990) discovered the existence of a Lower Boundary
Line (LBL) in the scatter plot of core-component pulse widths of
interpulsars with a relation W50 ∝ P−1/2, where W50 is the measured
pulse width at 50 per cent of the pulse profile peak. The LBL
width relation has been confirmed for core and conal emission
of interpulsars in several follow-up studies, e.g. by Maciesiak &
Gil (2011), Maciesiak et al. (2012), and Skrzypczak et al. (2018).
Maciesiak & Gil (2011) found that the lower boundary region is
not only populated by interpulsars, a fact that was exploited by
Skrzypczak et al. (2018) to confirm the P−1/2 dependence of the
LBL with 123 pulsars using quantile regression.

A large, homogeneously measured P − W sample over a wide
range of periods has the potential to further illuminate the physics
of the radio emission beam, and propel us towards a position of
being able to disentangle intrinsic (beam structure, pulsar spin-down
power, magnetic field strength, geometry α) and exterior (viewing
geometry β, ISM interaction) factors.

Pulse profile widths are also interesting with respect to the
multifrequency view of neutron stars. For example, it was suggested
that the so-called X-ray dim isolated neutron stars are radio-quiet
because they are viewed well off-axis from the radio beam (e.g.
Kaspi 2010). Such a suggestion implicitly makes use of the fact that
these neutron stars have long periods (>4 s), with expected small
beam widths according to the period-width relation, hence likely
narrow radio beams that can easily miss Earth. Considering radio
and γ -ray emission detections, Rookyard et al. (2017) and Johnston
et al. (2020a) identified a demarcation line of radio pulse widths
measured against the spin-down energy, above which γ -ray pulsars
are rarely seen.

1.1 Frequency-dependent pulse widths

The availability of sensitive radio telescopes covering a broad range
of radio frequencies has resulted in pulse width measurements at
different frequencies. Recent works considering non-recycled pulsars
include LOFAR-based measurements at 10–240 MHz (Pilia et al.
2016), measurements with the Green Bank telescope at 350 MHz
(McEwen et al. 2020) and, at the high frequency end, pulse width
measurements at 5 GHz and 8.6 GHz by Zhao et al. (2017, 2019), and
at 32 GHz by Xilouris et al. (1996). Multifrequency investigations
of integrated pulse profiles have been carried out, e.g. by Olszanski,
Mitra & Rankin (2019) for 46 pulsars at three frequencies (327 MHz,
1.4 GHz, and 4.5 GHz), by Mitra et al. (2016) for 93 pulsars at
two frequencies (333 MHz, 618 MHz), by Johnston et al. (2008)
for 34 pulsars at five frequencies (243–1400 MHz), while Chen &
Wang (2014) studied the frequency dependence of the pulse widths
of 150 normal pulsars, having at least four width measurements
between 0.4 GHz and 4.85 GHz. Based on earlier work by Thorsett
(1991), Chen & Wang (2014) used the measured pulse widths at
the 10 per cent maximum of their pulse profiles, W10, at different
frequencies ν to carry out fitting of the relation

W10 = AT νμ + W10,0, (4)

where AT is their best-fitting coefficient A, W10,0 is an asymptotic
constant, and μ is the index reflecting (to some extent) the degree of
broadening or narrowing of the pulse profile with frequency. As Chen
& Wang (2014) discussed, μ alone is not enough as a single parameter
to classify different kinds of pulse width evolution. This is mostly due
to measurement uncertainties and the existence of the third parameter
W10,0. To comprehensively characterize their data, Chen & Wang
(2014) calculated fractional pulse width changes, defined as the W10–
difference between their highest and lowest frequency, normalized
by the width at the lowest frequency.

The previous studies (e.g. Johnston et al. 2008; Chen & Wang
2014; Noutsos et al. 2015; Pilia et al. 2016; Zhao et al. 2019)
found narrowing of the pulse width (or component separation) with
frequency for many pulsars as per the textbook scenario of radius-to-
frequency mapping (e.g. Komesaroff 1970; Cordes 1978), where
lower frequencies are thought to be emitted from higher in the
pulsar magnetosphere than high frequencies. Assuming the emission
comes from the same set of open field lines, the beam opening
angle is greater at higher heights. A complementary interpretation
of this width change attributes the effect to propagation in the
magnetosphere (e.g. McKinnon 1997; Lyubarskii & Petrova 1998;
Noutsos et al. 2015). However, for some pulsars the above studies also
reported the opposite width change behaviour. Johnston et al. (2008),
for example, found the pulse width increasing with frequency for one
third of their sample. Chen & Wang (2014) reported about 20 per cent
of their pulsars to show clearly increasing pulse width over frequency,
and noted that these challenge the conventional picture where radio
beam size is assumed to shrink with increasing frequency. Testing
for a geometrical effect where emission beam shrinkage could lead
to a steepening of the emission spectrum, Chen & Wang (2014)
reported negative results. Instead, assuming a broad-band nature for
the radio emission as well as a fan beam model, Chen & Wang (2014)
suggested that the pulse width change is a consequence of differences
in the spectrum across the emission region.

Here, we present measurements of a homogeneous large sample
of pulse widths from the Thousand-Pulsar-Array (TPA) programme
(Johnston et al. 2020b) on the MeerKAT telescope. We concentrate
on a population-wide interpretation of these measurements and
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also study their frequency dependence within the bandwidth of the
MeerKAT L-Band receiver

2 O BSERVATIONS

Our pulsar observations were carried out as part of the TPA
programme (Johnston et al. 2020b) on the MeerKAT telescope, a 64-
dish radio interferometer. MeerKAT is located in the Karoo region of
South Africa and is operated by the South African Radio Astronomy
Observatory (SARAO). Bailes et al. (2020) presented in detail the
instrumentation of MeerKAT for pulsar observations.

In this paper, we use data obtained with the L-band receiver. It
is centred at a frequency of 1284 MHz. We use a total bandwidth
of 775 MHz. The channelized time series were processed by the
Pulsar Timing User Supplied Equipment (PTUSE) machines. There
are four PTUSE machines that can each process one tied-array beam
at a time. We use fold-mode observations obtained with ∼ all 64
antennas (full array) or about half the array (subarray) until 2020
October 30. Overall 1274 unique pulsars were observed between
2019 March 8 and 2020 October 30 (6277 individual observations),
partly during the commissioning phase of the MeerKAT telescope.
The population properties of the pulsar sample are discussed in an
accompanying paper (Posselt et al., in preparation).

3 DATA A NA LY SIS

3.1 Data reduction

The software library DSPSR1 (van Straten & Bailes 2011) provides the
pipelines to process the data. The resulting data have 1024 frequency
channels, sub-integration times of 8 s, and all four Stokes parameters.

The data were folded using parameters obtained from PSRCAT

(Manchester et al. 2005),2 or a recent ephemeris from ongoing
pulsar timing programmes at the Jodrell Bank Observatory or Parkes
Observatory. Some of the catalogue ephemerides had errors in
the pulse period large enough to create a phase drift across the
longer observations. In these cases, the pulsar frequency parameter
was corrected by forming 8 time-of-arrival measurements over the
longest single observation using PSRCHIVE (van Straten, Demorest &
Oslowski 2012), and re-fitting the pulsar spin frequency parameter
with TEMPO2 (Edwards, Hobbs & Manchester 2006; Hobbs, Edwards
& Manchester 2006). After updating the pulsar parameters each
observation was individually inspected to confirm that the phase drift
was no longer present. We also computed and updated the dispersion
measures, DM, of the pulsars. We are preparing details of these
measurements in a catalogue (Posselt et al., in preparation) where
the iterative process of profile template generation will be described
as well. The pulsar data were de-dispersed, and cleaned of Radio
Frequency Interference using COASTGUARD (Lazarus et al. 2016).

For a number of pulsars, data were taken on multiple epochs.
Appropriate weighting of the data, e.g. by the number of antennas
used per epoch and the observing time, was carried out. After
the data were reprocessed with the updated ephemeris, we used
TEMPO2 to obtain the phase shift of each individual observation in
comparison to a reference epoch. Correcting for these phase shifts,
data from individual observing epochs were then aligned and added
using PSRCHIVE. The aligned individual and combined pulse profiles
(averaged in frequency) were visually checked for consistency. There
are 827 pulsars with a combined data set that we consider in addition

1http://dspsr.sourceforge.net
2http://www.atnf.csiro.au/research/pulsar/psrcat

to the individual observations. For the width measurements, the data
were time-integrated to a single Stokes I profile per observation
with our standard resolution of 1024 bins per pulse period. In order
not to miss faint pulses, we additionally measured widths for a
resolution of 256 bins per pulse period. In this paper, we consider
the frequency-averaged profiles, as well as data divided into four and
eight frequency sub-bands.

3.2 Width measurements

In order to obtain smooth noiseless pulse profiles, we use the method
presented by JK19 and Brook, Karastergiou & Johnston (2019) and
derive a Gaussian Process (GP) for each pulse profile. The GP
also allows us to determine the noise variances, σ GP, of the input
(observed) pulse profiles. Roberts et al. (2012) and Rasmussen &
Williams (2006) describe the general features and applicability of
the GP. Briefly, it is a Bayesian, non-parametric model that does
not require any assumption about the functional form of the pulse
profile. The method assumes that the data consist of a smooth signal
and a (homoscedastic) white noise term. We employ the Python
GP-package George3 by Ambikasaran et al. (2015). Following
JK19, we use a squared exponential kernel, resulting in a model with
three hyper-parameters: magnitude and length-scale of the squared
exponential and standard deviation of the white noise term σ GP.
The model was found to perform very well in producing noiseless
profiles of high fidelity. This GP method allows easy separation of
signal and noise model components in the measurement without
the requirement to pre-define on-pulse and off-pulse regions, and
is therefore particularly useful for modelling profiles and obtaining
a noise variance in pulsars with large duty cycles (e.g. millisecond
pulsars). The profile model also allows for analytical computation
of the derivatives of the signal, which we are experimenting with in
counting the number of distinct components in a profile.

In order to measure pulse widths, we define a contiguous analysis
region (or on-pulse region) around the pulse. We use the pulse profile
data (after baseline subtraction), the GP-derived noiseless profile, and
σ GP, by requiring the edges to have a minimum signal-to-noise ratio
of three in (at least) five subsequent bins. The peak of the noiseless
profile and σ GP define our peak signal-to-noise ratio, S/N. The pulse
widths W50, W10, W5, W1 correspond to measurements where the
noiseless pulse profile is 50 per cent, 10 per cent, 5 per cent, and
1 per cent of its peak value, respectively. Width uncertainties are
obtained from taking measurements at ±1σ GP, e.g. for W50 the width
measurement at 50 per cent of the peak value ±1σ GP defines the ±1σ

uncertainty of W50, respectively. This approach only returns whole
phase bin values, and for very small uncertainties (<0.5 bin) a value
of 0 is returned. In such cases, we set the uncertainty to a conservative
0.5 bin value for the following analysis steps. The width uncertainties
are often slightly asymmetric (σ+, σ−) as can be seen from the listed
values in Table 1. Where we applied symmetric errors in subsequent
analysis (e.g. PL fits), we chose the larger of the two uncertainties.
Based on the binning of our data and our error definitions, we require
width measurements to be at least 3 bins (or approximately 1 degree
in rotational phase) to be included in our further analysis. Fig. 1 shows
that this criterion together with our standard 1024 bin sampling for
one full pulse period is sufficient to detect nearly all narrow instances
of W10, i.e. there is no significant ‘bin bias’ for narrow profiles.

We have checked that our peak-based W10 values are consis-
tent with results from an alternative width measurement method

3https://george.readthedocs.io
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Table 1. Pulse profile widths as measured for the frequency-averaged data of 1208 TPA pulsars (excerpt). Listed are period, P, and the dispersion measure,
DM, used to obtain our folded pulse profiles, W50, W10, (W5, W1 online only), their respective positive and negative 1σ , in case of W10, the larger of both, listed
separately as W10Err, was used when symmetric uncertainties were considered (see text). The Gflag (True if it is 1) indicates whether a width measurement
fulfils our criterion for a ‘valid’ measurement (see text) to be included in our further analysis. The IPflag indicates pulsars that are thought to have interpulses,
the component lists whether the measurement is for the major or minor peak in the pulse profile of the interpulse pulsar. The Sflag (True if it is 1) indicates
scattered pulsars from the list of Oswald et al. (2021). These pulsars are excluded in our analysis of W10-relations. The full table is available as supplementary
material.

PSRJ P DM IPflag comp. Sflag W50 σ+
W50 σ−

W50 W50Gflag W10 σ+
W10 σ−

W10 W10Err W10Gflag
s cm−3 1/2 ◦ ◦ ◦ ◦ ◦ ◦ ◦

J0034−0721 0.94 10.92 ··· 1 ··· 20.39 0.18 − 0.35 1 45.70 0.18 −0.70 0.70 1
J0038−2501 0.26 5.71 ··· 1 ··· 19.34 20.74 − 2.81 1 ··· ··· ··· ··· ···
J0045−7042 0.63 70.00 ··· 1 ··· 11.25 1.05 − 1.05 1 ··· ··· ··· ··· ···
J0108−1431 0.81 2.38 ··· 1 ··· 13.36 0.18 − 0.35 1 27.07 4.22 −0.18 4.22 1
J0111−7131 0.69 76.00 ··· 1 ··· 7.73 1.05 − 1.05 1 ··· ··· ··· ··· ···
J0113−7220 0.33 125.49 ··· 1 ··· 4.92 0.35 − 0.35 1 12.66 0.70 −0.70 0.70 1
J0131−7310 0.35 205.20 ··· 1 ··· 4.57 0.18 − 0.70 1 ··· ··· ··· ··· ···
J0133−6957 0.46 22.95 ··· 1 ··· 3.52 0.18 − 0.35 1 ··· ··· ··· ··· ···
J0134−2937 0.14 21.81 ··· 1 ··· 6.68 0.18 − 0.70 1 18.63 0.35 −0.18 0.35 1
J0151−0635 1.46 25.66 ··· 1 ··· 29.88 0.18 − 0.35 1 36.56 0.35 −0.18 0.35 1
(continued online)

Figure 1. Width histograms for the frequency-averaged data after applying
all filters described in Section 3.2. Only widths larger than the low limit
(1 degree), indicated by the dotted red line, are considered for further analysis.

described in Noutsos et al. (2015). Their method excludes a two-
tailed percentage (left and right bound) from the cumulative flux-
density distribution and produces a smoother evolution of the pulse
width with frequency. Considering a 90 per cent fraction of the total
pulse energy for the method by Noutsos et al. (2015), we evaluated
the width differences (without errors) from the two methods, and
conclude that, for this sample of profiles, both methods produce very
similar results with negligible differences.

We carry out the pulse width measurements for all the data
with an observing time covering at least 500 pulsar rotations. The
choice of this criterion and its implication for our analysis are
discussed in more detail in Section 4.1. We use observations from
individual epochs as well as multi-epoch combined data for the
respective pulsar. For each pulsar, we obtain measurements for the
total band (frequency-averaged) data as well as for each of the eight

(or four) frequency sub-bands. In some cases, bad data from one
long epoch can influence a combined data set with a short clean
observation from another epoch. The latter would provide more
significant measurements than the combined data set. To avoid such
cases, we select the observational data set with the highest S/N in
a chosen frequency band. In most cases, these are the combined
multi-epoch data (if available), as expected. The minimum S/Ns of
pulsars with W50 and W10 measurements in the frequency-averaged
data are 8 and 40, respectively. For pulsars with known interpulses
or profiles with components that resemble interpulses but where
there is no conclusive evidence we actually observe emission from
both magnetic poles (indicated in Table 1 with a flag), two width
measurements (for main and interpulse) are carried out and reported if
significant. We exclude 113 pulsars from our ‘scattered’ list (Oswald
et al. 2021) from further analysis. Their width measurements are,
however, included in the listed measurements.

A width measurement is selected as reliable enough for further
investigation if the GP-defined on-pulse region includes WX + 1σ+.
This ensures a reasonable uncertainty measurement. We further
require the analysis region to be less than three quarters of the total
rotational phase space (covering one full period), i.e. <75 per cent
duty cycle. This cut was introduced after visual cross checks of
width measurements and corresponding profiles. This restriction in
rotational phase lead to the automatic exclusion of the occasional
contaminated observation where the baselines showed systematic
‘wiggles’, and any missed strongly scattered pulsars. The visual
checks only found such scattered pulsars to have these extremely
wide profiles.

In order to also obtain W10 measurements for faint profiles in
noisier data, we used wider bins, i.e. 256 phase bins per pulse period.
These 256-bin measurements were only used when the 1024-bin data
did not result in reliable W10 widths. For the frequency-averaged data,
for example, 67 out of the reliable 762 W10 measurements are based
on the 256-bin data.

3.3 Determining width relations and their uncertainties

It is standard practice (e.g. Rankin 1990) to assume PL relations of
the width with period, W10 = f(P), or spin-down energy, W10 = f (Ė).
We tested several objective functions for ordinary least-square
minimization (OLS) for a PL fit (e.g. W10 = A × (P/s)μ + c) of the
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data with and without a constant offset, c, from zero. We considered
a straight-line fit in logarithmic space, a PL-fit in linear space and
its corresponding error-weighted variant, utilizing Python’s SciPy
and lmfit libraries (Newville et al. 2016; Virtanen et al. 2020).
The third parameter, the offset c, was only used in linear space. If
an offset was considered, the fits were found to be highly dependent
on the chosen initial conditions of the fit parameters. Since we were
not able to obtain reliable fits, we restricted to a two-parameter
fit with amplitude A and PL-index μ. Even in such a fit, the
parameters are highly correlated and we found that slight changes
in the sample size shifted the best-fitting results. Typical uncertainty
estimates, such as obtained using Markov chain Monte Carlo, gave
unreliably small values. Therefore, we used bootstrapping (BT) to
derive more reliable confidence intervals. Creating 10 000 random
samples with replacements we studied the distribution of the resulting
fit parameters, its general shape, and in particular the 16 per cent,
50 per cent, and 84 percentiles. In the case of a Gaussian-shaped
distribution of the fit parameters, we report in the following their
standard deviation, otherwise the 50–16 per cent, 84–50 per cent
quantile values as their confidence intervals. The BT-derived fit
parameters are robust against slight changes in the size of the pulsar
sample. The width uncertainties (only considered for the PL-fit in
linear space) were found to have a negligible effect on the fit result
since the actual spread of (well-constrained) width measurements in a
chosen period bin is much larger. Therefore, in the following we only
discuss the results from the straight-line fits in logarithmic space.

As shown in Section 4, the width-period sample can be represented
by a contour or density plot instead of a scatter plot. For these
contour plots, we employed a kernel density estimator within
python’s seaborn-package (Waskom & the seaborn development
team 2020). In particular, we used a 2D-Gaussian kernel with bin
widths according to Scott’s rule (Scott 1992) after testing also for
other bin width values. The resulting density plots (see Section 4)
clearly show a deviation of the OLS-fit from the line along the
highest density region. This indicates a problem with the OLS-fit
due to the fact that the distribution of widths in a small period bin
is typically not Gaussian and even difficult to describe with the
same specific distribution over the whole period range. To describe
the line of highest source density, we used orthogonal distance
regression (ODR) that minimizes the distances to the line for all
variables, in contrast to the OLS that only uses distances (residuals)
of the dependent variable, i.e. the width. For comparison of the
minimization statistics, our OLS objective function is

OFOLS(μ,LA) =
√∑n

i=1
(log W calc,i − log Wi)2, (5)

where log Wcalc correspond to the pulse widths that one would
obtain with the current (linear) fit parameters (slope μ and intercept
LA which is related to the PL amplitude A = 10LA), and log W
correspond to the width measurements for n pulsars. The ODR
objective function4 is

OFODR(μ, LA) =
n∑

i=1

[ (
log W calc,i − log Wi

)2

+ (
log P calc,i − log Pi

)2
]
, (6)

4This follows the ODRPACK documentation of the applied scipy.odr
implementation.

where Pi is the ith pulsar’s period, and

log P calc,i =
log W calc,i + 1

μ
log Pi − LA

μ + 1
μ

. (7)

No uncertainties are considered for the ODR-fits of the width
relations. The width scatter is much larger than their respective
uncertainties and the periods have negligible uncertainties anyway.
We use bootstrap to determine the confidence intervals in similar
way as for the OLS-results. These results and their implications are
discussed in more detail in Section 5.

Following the approach by Skrzypczak et al. (2018), we use
quantile regression (QR) to estimate the LBL of our width-period
sample. Similarly to these authors we use the QR-implementation
in the python statsmodel-package (Seabold & Perktold 2010)
to carry out straight-line fits of the frequency-averaged data in
logarithmic space.5 In this work, we do not differentiate between
conal or core components.

We attempted to fit width-frequency relations according to equa-
tion (4) (Thorsett 1991) using the measurements in the eight
frequency sub-bands of the TPA pulsars. We found the fit results
to be in general very uncertain and very dependent upon the choice
of initial conditions. There are strong correlations between the fit
parameters μ, AT, and W10,0 which are difficult to break within the
limited scope of our bandwidth. While some individual pulsars (such
as those with high S/N and strong width-frequency dependence)
may allow reasonable fits, the results for the overall population had
uncertainties that were too large to be meaningful. Therefore, we
investigated the frequency dependence of the pulse width indirectly
by characterizing the properties of the width differences for two
frequency sub-bands in Section 4.4.

4 R ESULTS

Table 1 lists the W50, W10, W5, W1 measurements for the frequency-
averaged data, while Table 2 reports W10 in each frequency sub-band.
Appendix A shows a few examples of the pulse profiles and the
respective W10 measurements. A summary histogram of the measured
widths of the frequency-averaged data is shown in Fig. 1. For W10,
this histogram confirms that there is no significant measurement bias
at narrow widths. Fig. 2 shows the W50, W10, W5, W1 distributions
with respect to the pulse period.

4.1 Width variability and consistency of used W10

Pulse shape variations and associated width variability can be due
to different reasons. Short-term changes (within a few rotation
periods) are often seen in single-pulse studies, e.g. due to stochastic
pulse-to-pulse variability, nulling events, mode-changing or pulse
drifting (e.g. Lyne et al. 2010). For rotation-powered pulsars, a
stable pulse profile is typically established after folding over a
few hundred rotation periods, Nfold. The ideal minimum number
of considered rotation periods depends on the chosen limits for the
pulse profile fidelity. Using some simplifying assumptions, Song
et al. (2021) discussed that the optimal observation lengths for the
TPA pulsars should cover at least 200 rotation periods for a σ shape =
0.1 uncertainty of the shape parameter which measures the flux
differences of two pulse profile bins of interest. For our analysis of

5For the QR objective function, we refer to formula 14 in the appendix of
Skrzypczak et al. (2018).
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4254 B. Posselt et al.

Table 2. Overview table for pulse width measurements for the data in the individual frequency sub-bands, width differences, and width contrasts. The full
tables are available as supplementary material (also at ViZieR at the CDS).

Label Description 4-band Table 8-band Table

PSRJ pulsar as in Table 1
IPflag as in Table 1
component as in Table 1
fX centre freq. in band X X from 1 to 4 X from 1 to 8
W10 X W10 in sub-band X X from 1 to 4 X from 1 to 8
psigW10 X σ+

W10 in sub-band X X from 1 to 4 X from 1 to 8
nsigW10 X σ−

W10 in sub-band X X from 1 to 4 X from 1 to 8
uncW10 X W10Err as in Table 1, but in sub-band X X from 1 to 4 X from 1 to 8
W10Gflag X W10Gflag in sub-band X X from 1 to 4 X from 1 to 8
colW10 XY CXY (Section 4.4) XY= 43,42,41,32,31,21 XY= 87,86,85,84,83,82,81,

76,75,74,73,72,71,65,64,63,
62,61,54,53,52,51,43,42,41,

32,31,21
uncColW10 XY conservative CXY uncertainty (Section 4.4) XY= 43,42,41,32,31,21 XY= 87,86,85,84,83,82,81,

76,75,74,73,72,71,65,64,63,
62,61,54,53,52,51,43,42,41,

32,31,21
psigColW10 XY σ+

CXY
(Section 4.4) XY= 43,42,41,32,31,21 XY= 87,86,85,84,83,82,81,

76,75,74,73,72,71,65,64,63,
62,61,54,53,52,51,43,42,41,

32,31,21
msigColW10 XY σ−

CXY
(Section 4.4) XY= 43,42,41,32,31,21 XY= 87,86,85,84,83,82,81,

76,75,74,73,72,71,65,64,63,
62,61,54,53,52,51,43,42,41,

32,31,21
KonW10 XY KXY, t (Section 4.4) XY= 43,42,41,32,31,21 XY= 87,86,85,84,83,82,81,

76,75,74,73,72,71,65,64,63,
62,61,54,53,52,51,43,42,41,

32,31,21
uncKonW10 XY conservative KXY, t uncertainty (Section 4.4) XY= 43,42,41,32,31,21 XY= 87,86,85,84,83,82,81,

76,75,74,73,72,71,65,64,63,
62,61,54,53,52,51,43,42,41,

32,31,21

Figure 2. Widths over period plots for the frequency-averaged data. The
underlying shaded areas represent the kernel density estimate (KDE) plots
(2D Gaussian, smoothing bandwidth chosen using Scott’s rule, Scott 1992),
while the dots mark the individual width measurements.

pulse widths, we tested different Nfold values for potential influence
on the width measurements, and decided to use Nfold larger than at
least 500 for all considered observations. Long-term (weeks, months,
years) changes of the short-term averaged pulse profile are also seen
for some pulsars, and regularly in magnetars. This can indicate, for
example, interesting changes in individual pulse profile components
due to large-scale changes in the magnetosphere, which may be
correlated with observed changes in the spindown rate.

For a consistent analysis of the width relations of the general
pulsar population we want to avoid any potential strongly variable
pulse widths. For this reason, we analysed all observations of an
individual pulsar for width variability (using the complete frequency
bandwidth of 775 MHz). We considered 5σ uncertainties of the
widths and checked for overlap of the uncertainty regions. For W50,
we find slightly different numbers of pulsars with variable width if
we consider Nfold > 500 (16 pulsars) or >1000 (8 pulsars). These
are shown for reference in Fig. 3. However, in our analysis below
we actually only consider W10. We identify only two pulsars with
long-term variable W10, regardless of whether we consider Nfold >

500 or >1000. PSR J1048−5832 has nine valid measurements, the
largest deviation of W10 is 43 per cent. PSR J1057−5226 (main pulse
component) has nine valid measurements, the largest deviation of
W10 is 20 per cent. We consider these differences small enough to not
influence our statistical population width analysis. Therefore, for our
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TPA – pulse widths 4255

Figure 3. Variability of W50 for those TPA pulsars where the 5σ uncertainties
of W50 do not overlap for at least two observations covering at least 500
rotation periods (all listed pulsar names), or 1000 rotation periods (black
pulsar names only). Individual observations are plotted in blue, combined
data sets in red. The dotted blue lines indicate the minimum and maximum
considered widths according to Section 3.2. This plot shows 5σ uncertainties.

studies below, we include these pulsars and their W10 measurements,
using the data with the highest S/N as outlined in Section 3.2.

4.2 Width relations

W10 was used to investigate correlations with other pulsar param-
eters. Fig. 4 shows the period-width relations derived from the
measurements for the pulsars without obvious strong scattering for
the frequency-averaged data. We obtained a slope (or PL-index) of
μ = −0.29 ± 0.03 (amplitude of 14.2 ± 0.4 degrees; see also Table 3)
for our bootstrap of the OLS-fit.

A density plot of our data in Fig. 4 indicates that the OLS-fit
noticeably deviates from the region of highest densities, in particular
for P > 0.5 s. Mathematically, this is due to the minimization of
residuals along the width axis only, while there is also a large
spread of width values. This is shown in more detail in the multiple
histogram plot in the Appendix, Fig. B1. Minimizing the orthogonal
distances to the model curve, the ODR-fit (with bootstrap) results in a
steeper slope of μ = −0.63 ± 0.06 (amplitude of 11.9 ± 0.4 degrees)
for our PL-fit. The ODR-fit is a better representation of the behaviour
of the highest number densities in the KDE-plot.

Table 3 and Fig. 4 also show the results of the QR for quantiles
5 per cent and 10 per cent. These results represent LBL estimates if we
follow the approach by Skrzypczak et al. (2018). We also employed
the QR for lower quantiles (down to 1 per cent) and higher ones, and
obtained similar slopes (agreement within 1σ of the 5 per cent fit).

For completeness, we also show W10 with respect to the period
derivative Ṗ and spin-down energy Ė in Fig. 5. Assuming a
PL relation between W10 and Ṗ , we obtain a PL-index of μ =
−0.06 ± 0.02 with OLS (μ = −0.07 ± 0.02 with ODR). For the
relation with Ė, we obtained a slope of μ = 0.03 ± 0.01 with OLS
(the same for ODR).

For the four and eight frequency sub-bands, we carried out a similar
analysis for the period-width relations. Table 3 lists all values, while
Fig. 6 shows the PL indices over frequency. There is some fluctuation
of the derived parameters over the sub-bands, but all values overlap
considering the bootstrap-derived 3σ uncertainties. This is true for
the OLS and the ODR. Since we chose for each width the file with the

Figure 4. Profile widths W10 versus period for the total bandwidth data in
logarithmic space. The 762 width measurements (including separate widths
for main and interpulses) are shown as a scatter plot with uncertainties as
well as a KDE-plot (2D Gaussian kernel). The red line and shaded area show
the result of our OLS-fit and its uncertainties as obtained by using bootstrap.
The slope of the OLS-line (or the PL-index in linear space) agrees well with
recent literature values. As an example, the slope derived by JK19 is shown
in orange. The blue line and shaded area represent the result of our ODR-fit
and the respective BT-constrained uncertainty. The two dashed cyan lines and
their uncertainties show estimates of the LBL that were obtained via quantile
regression as introduced by Skrzypczak et al. (2018).

highest S/N in the respective frequency band, we checked whether
the used files deviate from files used for the frequency-averaged data.
Typically, fewer than 7 per cent of the sub-band files are not the ones
used for the fit over the total bandwidth, and the influence on the
final result is negligible.

4.3 Geometry constraints based on the population statistics

The observed pulse width depends on the viewing geometry of the
pulsar, in particular, the obliquity α which is the angle between
magnetic and rotation axes, and the angle, β, between the magnetic
axis and the observer’s line of sight. In addition to the viewing
geometry there are of course other parameters, e.g. the properties
of the radio beam, influencing the observed pulse widths of pulsars.
Assuming that pulsars have similar emission properties for similar
physical parameters, one can use a statistical approach to describe
the expected pulse widths of the pulsar population. In principle, once
a model is established, it can be used to invert the model to derive
probabilistic geometry constraints for a given pulsar based on its data.
Independent geometric constraints such as analysing the polarized
radio emission within the framework of the Rotating Vector Model,
the knowledge of interpulse pulsars (α ≈ 90◦), or other measurements
such as the orientation of jets and tori in X-ray detected pulsar wind
nebulae can then be used to test the underlying model assumptions.

JK19 developed a parametric model to simulate the period-width
relationship they observed for 600 pulsars with pulse width measure-
ments from the Parkes radio telescope. This work built on the results
of Johnston & Karastergiou (2017) where a population of pulsars
matching the observed P − Ṗ diagram was synthesized assuming
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Table 3. Results of the PL-fit, W10 = A(P/s)μ with amplitude, A, and PL
index, μ, for the relation between period, P, and pulse width W10. The listed
results and their uncertainties correspond to the 50 per cent, 50–16 per cent,
and 84–50 percentiles of the respective BT simulations for the NW valid W10

measurements (only the highest S/N ones of each pulsar are used). Note that
centre frequencies νc are median values since they slightly vary between
observations in dependence of the number of good frequency channels in the
nominal bandwidth, BW. Pulsars with and without interpulse components
are considered.

Channel νc BW A μ NW

MHz MHz deg

OLS-fit for frequency-averaged data
1284 775.75 14.2 ± 0.4 − 0.29 ± 0.03 762

OLS-fits for four channels
ch14 996 ∼194 14.1 ± 0.4 − 0.29 ± 0.03 622
ch24 1179 ∼194 13.8+0.5

−0.4 − 0.26 ± 0.03 532

ch34 1381 ∼194 13.7+0.5
−0.4 − 0.28 ± 0.04 562

ch44 1576 ∼194 13.5 ± 0.5 − 0.25 ± 0.04 447

OLS-fits for eight channels
ch18 944 ∼97 14.5 ± 0.5 − 0.26 ± 0.04 531
ch28 1040 ∼97 13.9+0.5

−0.4 − 0.28 ± 0.03 531
ch38 1135 ∼97 14.0 ± 0.5 − 0.23 ± 0.04 466
ch48 1232 ∼97 14.0 ± 0.6 − 0.25 ± 0.04 399
ch58 1333 ∼97 13.8 ± 0.5 − 0.25 ± 0.04 460
ch68 1429 ∼97 13.7 ± 0.5 − 0.24 ± 0.04 443
ch78 1520 ∼97 13.5 ± 0.6 − 0.22 ± 0.05 361
ch88 1627 ∼97 13.2 ± 0.6 − 0.24 ± 0.05 332

ODR-fit for frequency-averaged data
1284 775.75 11.9 ± 0.4 − 0.63 ± 0.06 762

ODR-fits for four channels
ch14 996 ∼194 12.0 ± 0.4 − 0.65 ± 0.07 622
ch24 1179 ∼194 11.7+0.5

−0.4 − 0.60 ± 0.08 532
ch34 1381 ∼194 11.5 ± 0.5 − 0.65 ± 0.08 562
ch44 1576 ∼194 11.6 ± 0.5 − 0.56 ± 0.08 447

ch18 944 ∼97 12.2 ± 0.5 −0.64+0.08
−0.09 531

ch28 1040 ∼97 12.0 ± 0.4 − 0.61 ± 0.7 531
ch38 1135 ∼97 11.9+0.6

−0.5 −0.58+0.08
−0.10 466

ch48 1232 ∼97 11.9 ± 0.6 −0.57+0.08
−0.09 399

ch58 1333 ∼97 11.8 ± 0.6 − 0.57 ± 0.08 460
ch68 1429 ∼97 11.9 ± 0.5 − 0.54 ± 0.08 443
ch78 1521 ∼97 11.8 ± 0.6 − 0.48 ± 0.09 361
ch88 1626 ∼97 11.4+0.7

−0.6 − 0.52 ± 0.09 332

QR-fit for frequency-averaged data
q = 5
per cent

1284 775.75 6.12 ± 0.03 − 0.28 ± 0.05 762

q = 10
per cent

1284 775.75 7.26 ± 0.03 − 0.28 ± 0.03 762

a particular decay of the obliquity α, but no magnetic field decay.
Employing a model for the obliquity α (with possible dependence on
age and period), and simplified descriptions for emission height (with
possible dependence from age and spin-down energy), beam filling
factor (for a circular beam), and the ratio of the emission longitude
to the size of the polar cap (with possible dependence on α), JK19
concluded that profile width measurements also support the statement
that α decays with time. Only then were they able to explain the
observed period-width distribution of the Parkes-observed pulsars.
The period-W10 distribution of the frequency-averaged data of the
TPA-pulsars resulted in an OLS-derived slope that is within 1σ of
the slope reported by JK19 (see listed relations 8 and 9), while the

amplitude has a small offset due to different frequency range covered.
Thus, it can be expected that the JK19 simulation for the model with
α-decay is a reasonable description of our data too. We tested this
by producing probability distributions for the difference between
simulated and observed widths for three period ranges, similar to the
fig. 9 from JK19. Overall, we found a good agreement of our width
distribution with their model prediction that considers α-decay. Only
for the fastest pulsars do we see a small difference in the peak location
of the width-differences (indicating slightly smaller observed widths
than simulated). A similar comparison is shown in more detail (nine
period ranges instead of three) in the Appendix, in Fig. B1, where
the JK19 predictions are plotted as black probability curves.

We use the simulation data set by JK19 to obtain estimates of the
angles α for each pulsar based on its known period and measured W10,
by marginalizing over the parameters height and beam filling factor
in the JK19 model, and assuming ≥0 for β6 for simplicity. Typically
two values (i.e. α and 180◦ − α, correspond to a specific P, W10

pair. We obtain the 16 per cent, 50 per cent, and 84 percentiles of the
parameters using a range of 0–90◦ for α. Based on visual inspection
of the 2D-density plots, we chose the following criteria for reporting:
If the 84 per cent quantile of α is smaller than 80◦, two peaks can
be clearly separated, and we report the 16 per cent, 50 per cent,
and 84 percentiles for <90◦ in Table C1. For the remaining cases, we
report an α ≈ 90◦. The distribution of α of the TPA pulsars as obtained
from the input simulation by JK19 is shown in Fig. 7. We emphasize
that these geometry estimates are based on a simplified model at
the moment, and that this model uses a statistical population-based
approach. For an individual pulsar, these estimates should be used
with care. Examples are shown in Appendix C.

4.4 Width colours and contrasts

In order to describe frequency-dependent changes of the widths,
we define width colours, Cxy, and width contrasts, Kxy. The width
colour is the difference of two width measurements in two frequency
channels x and y, Cxy = W10,x − W10,y where channels 1 to 4 (or 8)
represent the frequency sub-bands with median values of 996 MHz,
1179 MHz, 1381 MHz, and 1576 MHz (or the respective values of the
8-channel data, see Table 3). The W10 measurements typically have
heteroscedastic uncertainties. We consider this heteroscedasticity in
the colour uncertainty estimates in a conservative way. Thus, for
the negative (positive) uncertainty of Cxy, we consider the negative
(positive) error of W10,x and the positive (negative) error of W10,y

for the error propagation. For the width contrasts, we tested two
definitions Kxy = (W10,x − W10,y)/(W10,x + W10,y) and Kxy,t = (W10,x

− W10,y)/W10,t where W10,t is the width measurement in the total
frequency band. Differences are minute, so we use Kxy,t. For the
uncertainty estimate of the contrast, we use error propagation with
the maximum error of each width measurement. The contrast is useful
to emphasize changes across the population since it normalizes the
change for each individual pulsar. However, due to the additional
term in the contrast formula, it also has a larger uncertainty. Width
colours and contrasts are available as supplementary material as
outlined in Table 2.

In order to look for a frequency-dependent effect on W10, we
plot contrasts in pairs of two in Fig. 8. This figure only shows
contrasts of the 4-channel data, but the 8-channel data show a
similar phenomenology. Of the ∼420 pulsars with valid contrast

6β is typically around 0, or the positive and negative β have very similar
absolute values.
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TPA – pulse widths 4257

Figure 5. Profile widths W10 of the frequency-averaged data over Ṗ (left-hand panel) and Ė (right-hand panel). A KDE-plot (2D Gaussian kernel) and scatter
plot in grey show all 762 pulse widths. The OLS fit results are in red, the ODR fit results are shown in blue. BT was used to determine the uncertainties.

Figure 6. The PL indices (left-hand panel), amplitudes (right-hand panel) and their respective 1σ uncertainties as derived from the period-width (W10) relations
in the four (red points) and eight (black points) frequency channels. The 1σ (3σ ) uncertainty range of the frequency-averaged data is indicated with the dark
(light) areas. The values and their uncertainties (Table 3) were derived with the OLS (orange) and the ODR (blue) using bootstrap.

values, almost all are located in the first (crudely about 1/3 of the
population) and third quadrant (about 2/3 of the population). There is
a strong clustering around contrast zero. For all contrast-pairs, there
is a monotonic, seemingly linear rise towards positive values. This
is easiest to see for the largest frequency differences, i.e. the K31,t −
K41,t plot (lower-right in Fig. 8).

The contrast figure shows in condensed (because normalized)
form what is also true for the colours. Taking advantage of the
smaller uncertainties of the colours, we analyse whether each pulsar
indeed shows monotonic behaviour, i.e. whether a negative colour
stays negative in the case of other frequency band combinations.
Table 4 summarizes the number of two-colour combinations that
stay positive, negative, or switch their sign. For the 4-channel
data, for example, there are 6558 combinations of two valid W10-
colour measurements. Considering colour uncertainties of 1.5σ , and
excluding those with one colour being consistent with zero, there
remain 1095 (17 per cent) ‘interesting’ two-colour combinations.
The sign of the colour stayed positive (negative) for each pulsar
in 249 (846) of these two-colour combinations. This corresponds
to 23 per cent positive and 77 per cent negative colours of the
1095 non-zero two-colour combinations. The statistical results in
Table 4 strongly support the notion that a pulsar’s width within
the observed band either increases or decreases with frequency,

but not both. We show an example pulsar of each category
in Fig. 9.

We employ two colours, their uncertainties, and ODR-fits to
determine the slopes describing the monotonic behaviour. We use
the largest width difference as the reference (x-axis) for all relations,
i.e. C41 for the 4-channel data. We checked linear fits that involved
a constant offset, but found the constants to be consistent with zero
within their 3σ uncertainties. Thus, in Table 5 we only report the
results of linear fits through zero. They are also plotted in Fig. 10.
Colours between two adjacent frequency bands (C43, C32) have more
shallow rises than colours with an additional frequency band in
between (C42 and C31). The W10 difference C21 has the second
steepest rise, indicating that most of the profile width change happens
at low frequencies. The order from steepest to most shallow slope
is: C31, C21, C42, C32, and C43. As we discuss in Section 5.2, we
expect some scattered pulse profiles in our sample. Scattered profiles
should appear in the third quadrant. They can influence the result
of our colour fits. While there are pulsars in the third-quadrant
(‘negative-colour’) sample that are not obviously scattered (e.g.
PSR J0738−4042), it cannot be entirely excluded that the negative-
colour sample is dominated by scattered pulsars. Restricting our
fits to colours ≥0, the general trend (larger slope for three sub-band
coverage than for two sub-bands) remains, and PL indices are similar
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4258 B. Posselt et al.

Figure 7. The obliquity (α) distribution of the TPA pulsars in the P −
Ṗ diagram if the W10 measurements of the frequency-averaged data are
combined with the simulation input of JK19 (their fig. 8 that considers α-
decay with age).

Figure 8. The W10-contrast distribution for the 4-channel data. The x-axes
represent the largest possible contrast K41,t (between frequency bands 1 and
4), while the y-axes show 4 out of the 5 remaining other contrasts (not shown:
K21,t). Only TPA pulsars with valid W10 measurements in all the frequency
channels of the respective contrasts are plotted.

(Table 5). However, C21 is no longer an outlier in the general trend.
The order from steepest to most shallow slope is now: C31, C42, C21,
C32, and C43. Width changes are stronger at lower frequencies, even
considering only positive colours.

We explored whether there is a dependence of the contrast on
pulsar parameters. For this, we use the two-sample Kolmogorov–
Smirnov (KS) test that gives a measure whether two samples are
drawn from the same parent distribution. Using the width contrast
between the two frequency bands furthest apart, we divide the sample
of pulsars with valid K41,t values and K41,t-uncertainties <0.5 into
three ad hoc subsamples:

(a) 1.2 × 1033 erg s−1 < Ė (140 pulsars),
(b) 1.1 × 1032 erg s−1 < Ė ≤ 1.21033 erg s−1 (141 pulsars), and
(c) Ė ≤ 1.1 × 1032 erg s−1 (145 pulsars).

We obtain probabilities pKS(s1, s2) that two (s1, s2) of them come
from the same parent contrast distribution (Table 6). The distribution
of K41,t for the three Ė-samples is shown in Fig. 11. For K41,t, the
KS probabilities indicate a difference between the low-Ė and high-
Ė pulsar populations. The KS-test is insensitive to differences at
the wings of the compared distributions.7 Hence, we also employ
the two-sample Anderson–Darling (AD) test to non-parametrically
check whether our Ė-subsamples come from the same distribution
of width contrast values. As Table 6 shows, there is a hint of different
distributions from the AD-test results as well. Since Ė is calculated
from P and Ṗ , we explore the contrast in the P–Ṗ diagram for trends
for the three Ė-subsamples, but do not find anything significant (see
Appendix D for an example).

5 D ISCUSSION

5.1 Frequency-averaged data

Our W10 measurements from TPA observations have a good re-
producibility and consistency over the many individual observing
epochs. As described in Section 4.1, there were only two pulsars
for which changes at the 5σ significance level are seen, but even
then the pulse width differences are <45 per cent, resulting only
in a small relative change. The stability of W10 is an important
premise for the reliability of the inferred pulse-width relations for our
TPA population. W50 results are less stable with 16 pulsars showing
significant changes (Fig. 3), potentially indicating interesting pulsar
emission changes that warrant a closer look in future works.

We derived different slopes for the period-width relationship for
the OLS and the ODR-fits, see Fig. 4. Our OLS-result,

W10 = (14.2 ± 0.4)◦(P/s)−0.29±0.03 (8)

is similar to previously reported results, e.g. these recent ones:

W10 = (15.8 ± 0.6)◦(P/s)−0.28±0.03 (9)

measured at 1.4 GHz by JK19,

W10 = (18.5 ± 0.4)◦(P/s)−0.270±0.001 (10)

measured at 350 MHz by McEwen et al. (2020),

W10 = (16 ± 2)◦(P/s)−0.3±0.4 (11)

measured at 150 MHz by Pilia et al. (2016). These PL-indices are
also consistent with the ∝P−1/3 relationship already reported by Lyne
& Manchester (1988).

It is, however, interesting to consider the striking difference to the
ODR-fit result that appears visually to be a much better representation
of the behaviour of the population density. Due to the non-Gaussian
and changing distributions of widths in the period bins (e.g. Fig. B1),
the OLS-derived pulse-width relationship is neither a good descriptor
of the population trend, nor a good predictor of the expected
width of an individual pulsar. It is important to note that the non-
Gaussian width distributions for small period slices are not indicative
of ‘bad’ data, rather they emphasize that the pulse width is not
depending on the period alone. Higher dimensionality in dependent
variables is projected on the period-width diagram. This is also true

7https://asaip.psu.edu/articles/beware-the-kolmogorov-smirnov-test/
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Table 4. Combination statistics for two colours (W10 differences using two frequency sub-bands). A positive sign means the width gets broader with
increasing frequency, a negative sign indicates broadening of the width with decreasing frequency. Here, Ncomb is the total number of combinations
of two valid colours, σCol indicates the considered uncertainty level for the colour to distinguish significant positive and negative colours from those
that are consistent with zero, N+,−

comb is the number of two-colour combination that are not zero for the chosen σCol level. The numbers N+⇒+
comb ,

N−⇒−
comb , N+⇒−

comb , N−⇒+
comb indicate if the first colour and second colour are both positive, both negative, switch from positive to negative or from

negative to positive. Each colour combination is only considered once. The (rounded) percentages are given with respect to N+,−
comb.

N comb σCol N+,−
comb N+⇒+

comb N−⇒−
comb N+⇒−

comb N−⇒+
comb

4-channel data
6558 1 1758 463 (26 per cent) 1278 (73 per cent) 8 (0.5 per cent) 9 (0.5 per cent)
6558 1.5 1095 249 (23 per cent) 846 (77 per cent) 0 0
6558 3.0 477 75 (16 per cent) 402 (84 per cent) 0 0

8-channel data
126 174 1 26 395 6657 (26 per cent) 19 460 (74 per cent) 181 (0.7 per cent) 97 (0.4 per cent)
126 174 1.5 15 782 3383 (21 per cent) 12 352 (78 per cent) 40 (0.3 per cent) 7 (0.04 per cent)
126 174 3.0 6631 997 (15 per cent) 5634 (85 per cent) 0 0

Figure 9. The frequency-averaged noiseless profile and W10 measurements for PSR J1559−4438 (left two panels) and PSR J0738−4042 (right two panels).
The W10 for four, eight, and the total frequency bands are plotted in red, black, light blue, respectively. For plots of the pulse profiles in individual frequency
channels, see Fig. A1.

Table 5. Results of ODR-fits of two colours (or W10 differences) assuming a linear relation through zero. The third and fourth
columns list the results (slope and number of measurements) if all the valid colour measurements are used. For comparison, slope−

scat
lists the expected value (for negative colours) assuming profile broadening due to scattering with αScat = −4. The sixth and seventh
columns correspond to the results obtained by using colours equal or larger than zero, the last two columns show the results for the
fits if only pulsars with DM <170 cm−3 pc are considered. For 4 frequency sub-bands, all colour combinations with C41 are listed,
for the 8 frequency bands we list an exemplary set of six out of 27 colour combinations with C81.

Colour 1 Colour 2 Slope NPSR Slope−
scat Slope0 + N0+

PSR SlopeDM NDM
PSR

4-channel data
C41 C42 0.432 ± 0.007 422 0.416 0.57 ± 0.02 183 0.54 ± 0.01 280
C41 C43 0.138 ± 0.005 429 0.132 0.17 ± 0.01 181 0.22 ± 0.01 285
C41 C31 0.865 ± 0.007 429 0.868 0.88 ± 0.01 174 0.79 ± 0.01 285
C41 C32 0.302 ± 0.006 420 0.284 0.43 ± 0.01 170 0.30 ± 0.01 279
C41 C21 0.570 ± 0.008 422 0.584 0.48 ± 0.01 171 0.50 ± 0.01 280

8-channel data
C81 C87 0.034 ± 0.002 297 0.040 0.05 ± 0.01 112 0.08 ± 0.01 204
C81 C86 0.080 ± 0.004 313 0.087 0.09 ± 0.01 121 0.15 ± 0.01 214
C81 C85 0.160 ± 0.005 312 0.156 0.22 ± 0.02 121 0.29 ± 0.01 214
C81 C84 0.266 ± 0.008 304 0.261 0.35 ± 0.02 116 0.37 ± 0.02 206
C81 C83 0.418 ± 0.009 309 0.412 0.47 ± 0.02 119 0.52 ± 0.02 209
C81 C82 0.661 ± 0.008 314 0.638 0.76 ± 0.02 124 0.84 ± 0.01 214

for the ODR-fit, whose residuals also do not follow a Gaussian
distribution. However, the linear ODR-fit, mathematically a principal
component analysis in 2D, points the way to identify other physical
properties influencing the pulse width in a similar multidimensional
analysis.

Our ODR-result,

W10 = (11.9 ± 0.4)◦(P/s)−0.63±0.06, (12)

is, however, still subject to a strong positive correlation between
amplitude and PL index, partly reflected in the relatively large 1σ

uncertainties derived from BT. Considering these uncertainties, the
ODR-derived PL index lies within 3σ of the predicted relationship
W ∝ P−1/2 while this is not the case for the OLS-result.

As discussed by Isobe et al. (1990) for linear regression of
astronomical data in general, there is no mathematical basis to
prefer one regression method over another. Rather, it depends on
the analysis goal. If the goal is the prediction of a dependent
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Figure 10. The W10-colour distributions for the 4-channel data. The x-axis
represents the largest possible colour C41 (between frequency bands 1 and 4).
Linear relations (ODR-fits, Table 5) with the other colours are shown on the
y-axis. For clarity, we only show the measured values and their uncertainties
for three of the five relations. Only TPA pulsars with valid W10 measurements
in all the frequency channels of the respective colours are plotted.

Table 6. Probabilities p obtained from the KS and AD tests
that the K41,t values of three Ė-subsamples come from the
same parent distribution. The three Ė-subsamples a (high
Ė), b, and c (low Ė) are defined in the text. (N) Note that we
used the scipy.stats.anderson ksamp implemen-
tation of the AD-test which is capped at a lowest value of
0.1 per cent.

p (a,c) (a,b) (b,c)

pKS (K41,t) 1 × 10−7 4 × 10−6 0.12
pAD (K41,t) <0.001(N) <0.001(N) 0.030

Figure 11. A zoom-in into the contrast K41,t distributions for three spin-
down energy sub-samples based on the 4-channel data. Bin sizes of 1/30 have
been used for the range of the 426 K41,t values (−1.09 to 1.54).

variable from one (assumed to be) independent variable and specific
assumptions8 about the data are satisfied, then Isobe et al. (1990)
recommend the use of the OLS result. If, however, one wants to
resolve underlying functional relations between the variables that
describe, for example, an observed population, then a symmetric
treatment of the variables such as the ODR9 is better suited.

Our QR-result for the LBL-description of the W10 data shows a
slope of −0.28 ± 0.03 (q = 10 per cent), thus it is very similar to
the OLS-fit result (−0.29 ± 0.03). Since both, the QR and OLS,
minimize the differences in W10 versus the best-fitting line, a similar
slope is not that surprising. Our result is, however, quite different to
the one by Skrzypczak et al. (2018) who found slopes of −0.51 ± 0.07
and −0.51 ± 0.05 at 333 MHz and 618 MHz, respectively (values for
their Wall fits). This could be due to their individual measurements
of conal and core components as opposed to our total pulse widths.

Our OLS and ODR fit results agree within uncertainties for
the relation of the pulse widths with Ṗ (or with Ė). However,
the best-fitting results are not aligned with the regions of highest
number densities (blue areas in Fig. 5). We suspect this is due
to the rather asymmetric distribution of points. An example is the
comparison of the two regions with Ṗ ≈ 5 × 10−15 and Ṗ > 10−14

where the number of points below and above the best-fitting line
are very different. The number density contours indicate that it
may be still possible to identify a mathematical description of the
correlation between these – visually almost randomly distributed –
measurements. Since the Ṗ and Ė relations are not the main topic
of this work, we defer a detailed investigation to a future paper, and
caution against the use of our best-fitting results for W10 − Ṗ and
W10 − Ė.

5.1.1 Pulsar evolution and the period-width diagram

Previously discussed physical quantities influencing the pulse width
include the shape and filled fraction of the emission beam, emission
heights, and the geometry of the rotation and magnetic axes and the
line of sight (e.g. Mitra & Rankin 2002; Gupta & Gangadhara 2003;
Weltevrede & Wright 2009; Ravi, Manchester & Hobbs 2010; Wang
et al. 2014). There is observational evidence that the obliquity α

decays with time, leading to an alignment of the spin and magnetic
axes (Tauris & Manchester 1998; Weltevrede & Johnston 2008;
Young et al. 2010). Thus, neutron star evolution represented by the
(ideally true) ages must influence the pulse-width relationships, too.
Evidence for an effect of the α-decay on the period-width diagram
was presented by JK19. In their population synthesis, JK19 used P
as proxy for the poorly known true age and modified the random
distribution α with a cut-off depending on P2. By analysing slices of
the simulated and observed distributions in the period-width diagram,
JK19 were able to corroborate the hypothesis of α-decay, and thus
a specific constraint on pulsar evolution. As we showed in similar
plots in Fig. B1, the TPA data already allows one to probe such
simulations to finer detail, finding for example small deviations for
the TPA pulsars from the JK19-simulated pulsar probability density
function for small P.

The JK19 simulation assumptions, in particular the simple α-
decay model, is also underlying our population-based obliquity

8The critical assumption in our case is whether the true relation between
log W10 and log P is indeed linear.
9Isobe et al. (1990) prefer the OLS bisector regression over ODR because
it produces smaller uncertainties than the ODR. This is, however, less of an
issue for large samples such as ours.
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estimates in Section 4.3. As stated above, these estimates can
be wrong for individual pulsars (see Appendix C for examples).
However, there is a great potential to refine parameters of pulsar
evolution such as the functional shape of α-decay if a statistically
meaningful comparison with independent obliquity estimates (e.g.
fits of observed polarization position angle swings) is connected
with the population synthesis study of the period-width diagram.

5.2 Frequency-dependent data

5.2.1 Period-width relations over frequency

Fig. 6 demonstrates that there is no significant (>3σ ) dependence of
the PL spectral index μ or the amplitude on frequency for the period-
width relation in the four or eight sub-bands of our total 775 MHz
bandwidth. There may be a hint that if the best-fitting value of one
parameter stays constant (μ for the OLS, amplitude for ODR), then
the best-fitting value of the other parameter shows an (insignificant)
trend (decrease of amplitude for OLS, increase of μ for ODR). The
scatter within the >3σ uncertainty region can be explained with the
strong correlation between parameters, the involved uncertainties,
and different numbers of pulsars in the respective frequency channels.

Equation (8) lists our OLS-fit result for the frequency-averaged
data in comparison to equations (9) to (11) representing previous
works at other frequencies. A clear trend for the amplitude with
frequency is difficult to spot in the listed relations due to the
involved uncertainties and the difficulty in considering different
bandwidths. A frequency-dependent scaling, i.e. broadening with
lower frequency, could in principle be expected from frequency-
radius mapping and propagation effects in the magnetosphere.
However, as we show in Section 4.4 and discuss in Section 5.2.2, a
simple frequency dependence is not applicable to all pulsars. There
is clearly a pulsar population where (unscattered) pulse widths get
narrower with lower frequency.

5.2.2 The monotonic change of width with frequency

The analysis of the width colours shows that pulse widths seem
not to switch between an increase and a decrease over frequency in
the considered four sub-bands. A small sample of pulsars shows an
increase of pulse widths with frequency, a larger sample a decrease
with frequency. Similar behaviours have been reported before in
multifrequency pulsar studies. Johnston et al. (2008) found pulse
width broadening with increasing frequency for one third of their
34 pulsars with high S/N. Chen & Wang (2014) reported clear pulse
width broadening with increasing frequency for about 20 per cent
(and narrowing for 54 per cent) of their 150 pulsars. Noutsos et al.
(2015) found pulse width broadening with increasing frequency for
about 25 per cent (and narrowing for 56 per cent) of their 16 pulsars.
Pilia et al. (2016) highlighted several cases of unexpected profile
evolution where the widths broaden with increasing frequency, too.
In contrast to these studies, the much larger TPA data set (at least
factor 4 more pulsars with information on width evolution) has been
obtained at one telescope. This homogeneous data set has enabled us
to look beyond individual pulsars and find a monotonic behaviour of
the width evolution over frequency across the whole population of
non-recycled pulsars (Fig. 10). We can exclude a bias due to the obser-
vational set-up as a cause of this monotonic change (see Appendix E),
and two questions arise (i) What can describe this monotonic change
of width with frequency? and (ii) What is its physical origin?

As illustrated in Section 4.4, the monotonic change of width with
frequency can be described with a linear relation between colours

(Figs 10 and D1, and Table 5). A well-established broadening of the
widths with lower frequencies, i.e. negative colours in Fig. 10, is
expected from interstellar scattering. For the relation between two
colours, one can derive the expected slope that only depends on the
respective frequencies and the scattering spectral index αScat if one
uses a simplistic description of the scattered profile with frequency.
We assumed αScat = −4 based on the results by Oswald et al. (2021).
The expected colour–colour slopes for scattered-broadened pulse
profiles are listed in Table 5 together with our fit results. If all TPA
pulsars with valid colours are considered, we obtain results which
are surprisingly close to the ones expected for scattered pulsars.
However, we emphasize here that for the positive side on the colour–
colour diagram, scattering simply cannot be the underlying reason
since these positive-side profiles get wider with higher frequencies,
the opposite behaviour of what is expected for scattering.

Nevertheless, scattered pulsars in the third quadrant may influence
the exact values of the derived correlations. While we excluded
strongly scattered pulsars from our initial width analysis (Sec-
tion 3.2), we may have missed a few scattered pulsars. In order
to exclude the potential effect of scattered pulsars, we do two further
tests. First, we only consider the positive colours (and those consis-
tent with zero) for our fits, see Table 5 for the results. Secondly, we
investigate the distribution of the DM and exclude all pulsars with DM
≥ 170 cm−3 pc. The results from Fig. 12 and Table 5 show only small
changes in the derived slopes of the linear relations between colours.
Our choice of DM ≥ 170 cm−3 pc was motivated by studies of the
dependence between the scattering time-scale τ scat and DM. Using
the work by Krishnakumar et al. (2015), for example, the majority of
pulsars with such a DM-cut have τ scat(327 MHz)<100 ms. Scaling
with (1381 MHz/327 MHz)αScat , appropriate to our third frequency
channel (for the C41–C43 relation that has the flattest slope in Fig. 12),
gives typical τ scat(1327 MHz)<0.3 ms. Assuming a measurement
sensitivity of 1 deg (3 bins, here with respect to the width measured
in the fourth frequency band because of the colour), implies that
our width measurements in the third channel would typically not be
sensitive to scattering for pulsars with P > 0.107 s. Such a period cut
would only remove 3 (out of 285) pulsars and give nearly identical
fit results for C41–C43 as listed in Table 5. Thus, the measured
width evolution of the DM-selected pulsars should be insensitive to
scattering. For the lower frequencies, similar estimates can be derived
albeit with a lower number of pulsars. The results are similar if eight
frequency sub-bands are employed (Fig. D1, and Table 5). Here, the
change of the slope is more pronounced if one considers only positive
colours or DM-selected pulsars. A factor of about 2 is seen, for
example, for C81−C86. Visually, the deviation of the measurements
from the original slope is also easily apparent for C81−C82 in Fig. D1.
As an additional check, we plotted the difference of the measurements
and the expected value from the scattering relation (using a range of
αScat). These ‘residuals’ showed a monotonic behaviour with negative
slope which is close to zero if high-DM pulsars are included, but
significantly different from zero if we employ our DM-cut. This
also excludes scattering as the sole explanation of the observed
trend. While the exact mathematical description of the change of
pulse width with frequency requires further investigation, the general
monotonic trend is a robust result. Our analysis shows that besides
scattering, there must be at least one other underlying factor for the
monotonic change of pulse width with frequency.

Fig. 11 and the respective KS and AD-tests showed reasonable
hints of width-contrast sample deviations for different Ė sub-groups.
Motivated by this, we employ the two-sample AD-test for the positive
and negative C41 samples to check whether the same distribution
can describe these colour-subsamples with respect to the pulsar
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Figure 12. The effect of DM on the fit results of the width differences for one exemplary colour combination. The left-hand panel shows all the TPA pulsars
with respective valid colour measurements. The DM value for each pulsar is indicated by the colour of the circles. The obtained slope for the relation between
C41−C31 is shown with a red dashed line in the right-hand panel too. This panel restricts to only those pulsars with low DM, and the obtained slope is indicated
with the blue line.

parameters P, Ṗ , Ė, B, age, DM, and W10. For this analysis, we
consider the 1.5σ level of the colour uncertainties, and checked the
result with and without the DM-cut DM ≥ 170 cm−3 pc. Sample
numbers are rather small (of the order of ∼40–100). The derived
pAD-values are all above 0.04, and the null hypothesis cannot be
excluded with these data. Thus, among the tested pulsar parameters
our AD-tests do not identify an underlying factor for the monotonic
width change.

Similar to scattering, propagation effects in the magnetosphere
can only significantly contribute to the width broadening at lower
frequencies (McKinnon 1997), i.e. pulsars in the third quadrant in
the colour–colour diagram may show this effect. The monotonic
broadening of the pulse width at higher frequencies (pulsars in first
quadrant of Fig. 10) is likely not due to this effect.

Pilia et al. (2016) pointed out that for a few of their pulsars with
width broadening at higher frequency, new peaks appeared in the
profile at higher frequencies. Thus, an obvious question is whether
we see a different number of pulse components in the positive-
colour and negative-colour samples. For example, more pulse profile
components could appear at higher frequencies in the positive-colour
sample. We visually checked pulse profiles of the different samples
and did not notice any abnormalities in number of pulse components
or clusters of multiple-component profiles. Thus, we exclude newly
appearing or disappearing pulse components as the sole explanation
for the observed monotonicity of the colours.

This leaves the change of the spectral index, in particular the
change of the spectral indices of individual (not necessarily dis-
cernible) pulse components as an explanation. This possibility was
already investigated by Chen & Wang (2014) on the basis of the
fan beam model. In their interpretation, the frequency dependence of
the pulse width is not caused by emission frequency dependence on
altitude. Rather, the pulse width change is merely a byproduct of an
inhomogeneous broad-band emission spectrum across the emission
region. Evidence for this was, for example, presented recently by
Basu, Mitra & Melikidze (2021), who showed the difference in
spectral index between central and outer components for 21 pulsars.
Here, we conducted a simple simulation to explore the hypothesis of
the spectral index effect independent of the exact emission process.
In particular, we want to see whether all the observed pulse width
changes could be reproduced from two simple assumptions – (i) the

widths of the pulse components get wider with lower frequency (as
observed, e.g. by Thorsett 1991), and (ii) the outer pulse components
have flatter spectra than the inner pulse components (as is often
observed, e.g. Rankin 1983). We generated fake profiles at the same
eight channel frequencies as the data used in this paper. For each
simulated pulsar, we generate a profile at the highest frequency
first. Each profile is made up of five Gaussian components, whose
centroids are positioned randomly within a fixed window of 35◦.
The width of each component, given as the standard deviation of
the Gaussian, is also chosen randomly from a uniform distribution
from 1.75◦ to 12◦, which are representative values from pulsar
data. The amplitudes are chosen randomly between 0 and some
arbitrary maximum value. To generate the remaining seven frequency
channels, we scale the amplitudes and widths of these components
as follows. For the amplitudes, we assign a spectral index depending
on the distance of the component centroid from the fixed pulse phase
that corresponds to the middle of the allowed window. We assign a
spectral index of −2.0 to the central pulse phase, decreasing linearly
to −1.0 at the edges of the window. For comparison, Basu et al.
(2021) show the average difference between spectral indices of outer
and inner components to be ∼−0.7. This qualitatively emulates the
known observational property of central components having steeper
spectra compared to leading and trailing edge components. For the
component widths, we assign a spectral index of −0.1 (wider with
lower frequency). As the data are noiseless, width measurements
are trivial. The frequency dependence can easily be captured by
the difference in width between highest and lowest frequency. We
generated many sets of 1000 pulsars with multifrequency profiles,
and find that, as expected, depending on the relative amplitude and
position of the components at the reference frequency, the majority
of pulsar profiles become narrower at high frequencies compared to
a minority that become broader. Crucially, the simulation results in a
uni-modal distribution of the width difference parameter (i.e. colour),
as we see in our data. The parameters we have used in our simulation
are chosen to demonstrate this qualitative result, and should not be
attributed higher significance.

With respect to the two questions at the beginning of this section,
our simple simulation indicates a possibility to phenomenologically
describe the found monotonic change of the pulse width with
frequency. We emphasize that it is crucial to explain the behaviour
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of pulsars where we see broader widths at higher frequencies.
While for the classically expected behaviour (broadening with lower
frequencies), there can be several contributing factors (propagation
effects in magnetosphere, scattering, different emission heights
following the radius-frequency-mapping scenario), the former width
changes are more challenging to explain. We excluded the influence
of observation sensitivities on the finding of monotonicity, and
excluded the description by scattering as the sole reason, as well as the
explanation of visible emergence of new pulse components. Our tests
for dependence of the width changes on other pulsar properties were
inconclusive. For quantitative constraints regarding the emission
model and thus the physical origin of the monotonicity, individual
pulse components of our TPA-sample need to be investigated with
full polarization information which we defer to a future paper.

6 SU M M A RY

The MeerKAT telescope provided the TPA with an exquisite data
set that enabled us to homogeneously measure pulse-widths for over
1000 pulsars. For pulsars with multiple observations, we verified that
the pulse width at 10 per cent does typically not significantly vary.
The 50 per cent pulse widths indicated 16 pulsars with significant
changes. About half of the ∼760 pulsars with measured W10 in the
frequency-averaged data, also have such measurements in four and
eight frequency sub-bands.

We revisited the period-width diagram and found that

(i) the general trend for the frequency-averaged data, W10 ∝
(P)−0.29 ± 0.03 is consistent with previous estimates if P is used as
the only independent variable for a relation W10 = f(P).

(ii) this period-width relationship is not a good description of the
correlation seen between W10 and P if the population density of our
large data set is considered. An ODR-fit resulted in a much steeper
slope W10 ∝ P−0.63 ± 0.06. This, and the large spread of W10 over any
period-bin indicate that instead of a pure 2D-relation (W10, P) the
pulsar population in the width-period diagram is better described by
a projection of higher dimensionality of variables.

(iii) the population synthesis by JK19 is an example of such
multivariable approach to explain the physical underpinnings of
the period-width diagram. Deriving population-based obliquity es-
timates from their model, we make the argument that independent
obliquity estimates together with the period-width relationship can
be used to constrain pulsar evolution.

Utilizing the W10-measurements in the frequency sub-bands, we
showed that

(i) the period-width relationships in the sub-bands are not sig-
nificantly different in comparison to the result from the frequency-
averaged data.

(ii) by introducing colours (width differences) and contrasts
(width differences normalized by the frequency-averaged measure-
ment) it is possible to derive interesting conclusions about the pulsar
population. We confirm the previous reports, e.g. by Chen & Wang
(2014), that there is a sizeable pulsar population for which the pulse
widths broaden with higher frequencies. This is difficult to explain
with radius-to-frequency mapping in the conal beam model.

(iii) the width change is monotonic if the whole pulsar population
is considered.

(iv) instrumental effects can be excluded as explanation of the
observed monotonicity. Scattering or magnetospheric propagation
alone cannot describe such a relationship, in particular not for
the pulses that broaden with higher frequency. We did not see

any noticeable pulse shape differences in the two pulsar groups
that had either width increasing or decreasing with frequency. A
simple qualitative model considering a spectral index distribution
over several contributing pulse components was able to produce a
uni-modal distribution of the width difference. This indicates that,
independent of the emission process, the spectral index warrants
further studies in connection with the monotonically changing pulse
width of the pulsar population.

The large homogeneous data set of TPA width measurements will
be available as supplementary material and made accessible at the
CDS.
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widths is available on request to the corresponding author.
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Table 1. Full table of the pulse profile widths as measured for the
frequency-averaged data of 1208 TPA pulsars.
Table 2. Lists the descriptions of the columns in the full supplemen-
tary Tables for the 4 channel and 8 channel data.
Table C1. Full table of the population-based obliquity estimates (the
angle a between the magnetic and the rotation axes) for 762 TPA
pulsars.
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APPENDIX A : PULSE PROFILES

Here, we show in Fig. A1 a few representative pulsar examples to
illustrate how their data and the noiseless profiles produced by the
GP are related to our W10 measurements.
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Figure A1. Data and overplotted GP-profiles of six representative TPA pulsars, centred on the maximum of the frequency-averaged profile. Each plot shows the
frequency-averaged profile on the bottom, and eight frequency channels above (shifted by constants indicated with dashed lines). The profiles are normalized
to the peak of the frequency-averaged profile. The dotted lines indicate the 10 per cent of the respective maxima, the yellow lines mark the S/N = 4 level for
each profile. If there are valid W10 measurements (see Section 3.2), these are indicated by the two blue vertical lines. PSRs J1559−4438 and J1305−6455 show
increasing W10, PSRs J0738−4042 and J1843−0000 show decreasing W10 trends for increasing frequency. PSRs J0529−6652 and J1714−1054 are weak TPA
pulsars for which we were able to measure W10 for the frequency-averaged profiles, but not for all eight frequency channels.
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APPENDIX B: W IDTH DISTRIBU TION IN
P E R I O D B I N S

While the density and scatter plots of the period-width diagrams
already indicate a non-Gaussian distribution of the width values,
Fig. B1 shows this behaviour even more clearly. The histograms,

representing width distributions of equal-sized sized samples, show
very different shapes depending on the considered period bin.
The large width spread and the different shapes of these his-
tograms lead to a strong deviation of the OLS-derived best PL
model from the line of highest density in the logarithmic period-
width.

Figure B1. The distribution of log W10 for different log P bins for the frequency-averaged data. 10 quantiles are used to divide the period range in nine samples
of roughly equal size of 85. The log P range is listed on top of each histogram, its 50 per cent quantile as label. The solid and dashed blue lines indicate the
50 per cent, 16 per cent and 84 percentiles of the log W10 distribution. The black line shows the expected distribution for the model by JK19 (their fig. 8).
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APPEN D IX C : O BLIQUITY CONSTRAINTS

Geometry estimates in the literature often rely on relations with
the pulse widths as well. Compiling or deriving a comprehensive
list of truly independent obliquity estimates is beyond the scope
of this paper. Here, we restrict to two checks of our α estimates
in Table C1 with small samples. In Fig. C1, we plot a com-
parison of our population-based estimates with the results from
Rookyard, Weltevrede & Johnston (2015) who fit the observed
polarization position angle swings with the Rotating Vector Model

Table C1. Population-based obliquity estimates (the angle α between the
magnetic and the rotation axes) for 762 TPA pulsars (excerpt). These
estimates use the population synthesis model by JK19 together with the
measured W10 of the frequency-averaged data. See text for details. The
component indicates the major or minor component as in Table 1, i.e. it can
only be 2 if the pulsar is identified as interpulse pulsar. α(Q50) lists the 50
per cent quantile of α, while σ−

α and σ+
α indicate the uncertainties based on

the 16 per cent, 50 per cent, and 84 percentiles. The full table is available as
supplementary material.

PSR component α(Q50) σ−
α σ+

α◦ ◦ ◦

J0034−0721 1 12.94 − 3.93 3.78
J0108−1431 1 18.50 − 5.89 7.48
J0113−7220 1 55.51 − 15.97 15.69
J0151−0635 1 12.84 − 3.83 3.65
J0152−1637 1 41.16 − 11.89 10.71
J0206−4028 1 44.97 − 12.71 11.74
J0211−8159 1 19.82 − 6.21 6.33
J0255−5304 1 51.91 − 15.54 12.84
...

Figure C1. The obliquity parameters (50 per cent quantile of α with
uncertainties corresponding to the 16 per cent and 84 percentiles) for those
TPA pulsars that were also investigated by Rookyard et al. (2015). The blue
points were obtained from our W10 measurements of the frequency-averaged
data, combined with the simulation input of JK19 (their fig. 8). For the four
upper pulsars, we obtained α ≈ 90◦, while for the lower pulsars we plot α and
180◦ − α. The red points indicate the ‘favoured α solutions’ from table 2 of
Rookyard et al. (2015). Note that the ‘allowed solutions’ usually encompass
a much larger range, up to the full 180◦. Rookyard et al. (2015) used the
Rotating Vector Model to derive their geometry constraints.

Figure C2. The obliquity (50 per cent quantile of α with uncertainties
corresponding to the 16 per cent and 84 percentiles) for those TPA pulsars
that are identified as tentative interpulse pulsars. The obliquity values for the
main (blue) and suspected interpulse (orange, not all have W10 measurement)
pulse components were obtained from the respective W10 measurements of
the frequency-averaged data, combined with the simulation input of JK19
(their fig. 8).

(Radhakrishnan & Cooke 1969). About 50 per cent of the ‘favoured
solutions’ from Rookyard et al. (2015) agree within (16 per cent
to 84 per cent quantile) uncertainties with our population-based
estimates. In Fig. C2, we plot those TPA-pulsars that are thought
to have interpulses. Hence, for these pulsars one would expect α ≈
90◦. Our population-based estimates show such α only for five of the
24 pulsars. Interpulse pulsars provide a good illustration that pulse
widths and periods alone are not a sufficient set of parameters to
constrain the viewing geometry.

A P P E N D I X D : C O L O U R SL O P E S A N D
C O N T R A S T SP R E A D

For completeness, we show the W10-colour distributions for the 8-
channel data in Fig. D1.

In Section 4.4, we found for the 4-channel data that the distribution
of K41,t values for three Ė groups shows differences according to the
KS and AD-tests. We checked for, and found no visually obvious
P and Ṗ dependences of the contrast K41,t. However, we noticed
that the high-Ė pulsars may have a larger spread in K41,t than the
other Ė-groups. In Fig. D2, we test this hypothesis and plot the
median and standard deviation of K41,t for the three Ė-groups, and in
addition for another binning with 10 Ė-groups. The three Ė-groups
show a slightly larger spread in K41,t for the high-Ė pulsars, but
the smaller binning reveals that this is mainly due to pulsars with
Ė between 1033 erg s−1 and 1034 erg s−1. Overall, the hint of larger
contrast spread turned out to be not statistically significant.
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Figure D1. The W10-colour distributions for the 8-channel data. The x-axis
represents the largest possible colour C81 (between frequency bands 1 and
8). Linear relations (ODR-fits, Table 5) with an exemplary set of six other
colours are shown on the y-axis. For clarity, we only show the measured
values and their uncertainties for three of the six relations. Only TPA pulsars
with valid W10 measurements in all the frequency channels of the respective
colours are plotted.

Figure D2. The median and spread of the contrast K41,t for different choices
of Ė-subsamples based on the 4-channel data. The three spin-down energy
subsamples (light red boxes and crosses) were used for the KS and AD tests
of Section 4.4. In addition, we show 10 Ė-bins (grey boxes and black points)
that have roughly similar sample size as example of finer Ė-binning.

A P P E N D I X E: EX C L U D I N G A N
OB SERVATIONA L SET-UP BIAS FOR THE
W I D T H B E H AV I O U R

We test whether different sensitivities in the various frequency bands
affect our results on the width difference, in particular the finding

Figure E1. The positive (orange) and negative (blue) W10-colour distribu-
tions over maximum ratio for the 4-channel data. The maximum ratio MR14

is the maximum of the noiseless pulse profile in channel 1 divided by the
respective maximum value in channel 4. The left-hand and right-hand panels
show the sub-samples for colours with the largest and smallest frequency
differences, C41 and C43, respectively.

that for some pulsars there is a broadening of the pulse width
with increasing frequency, while for most other pulsars the pulse
widths broaden with decreasing frequency. We compared the width
distribution over S/N for the lowest (channel 1) and highest frequency
band (channel 4). While the peak of the S/Ns in the high-frequency
band is lower than the S/N-peak in the low-frequency band, the
width distribution does not show any notable differences. Thus, this
comparison does not indicate a frequency-dependent S/N-effect. Our
S/N, however, was estimated using the maximum of the noiseless
profile and the GP-determined noise of the profile. If the noise is
different in each channel (it is), the maximum may be different too.
The maximum, however, is employed to determine the 10 per cent
level to measure the W10. Imagining the same intrinsic Gaussian
profile peaking out of different noise levels, the 10 per cent width may
be measured at different heights of the intrinsically same Gaussian
profile. To test for this sensitivity effect we compare the pulse
maximum ratio distributions of the positive-colour and negative-
colour sample on Fig. E1. We use the maximum ratio between
channel 1 to 4, MR14 = M1/M4. The maximum of the noiseless profile
at the lowest frequency is typically smaller than the one at the highest
frequency.10 The positive-colour sample (W10 at the higher frequency
is larger than the W10 at the lower frequency) and the negative-colour
sample show distinct distributions in Fig. E1. The positive-colour
sample has typically larger MR14 than the negative-colour sample.
One would expect the opposite if the ‘peaking-out-of-different-noise-
levels’-effect was the explanation for the observed monotonicity
of the colours. Therefore, we conclude that observed profile width
changes with frequency are not a bias from the observational set-up,
i.e. they are not due to the sensitivity or noise behaviour of individual
frequency channels.

10Together with the lower S/N of the high frequency band this means that the
noise level is larger for the high frequencies.
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