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Abstract
The Cosmic Microwave Background is characterized by temperature and linear polar-
ization fields. Dipole modulation in the temperature field has been extensively studied
in the context of hemispherical power asymmetry. In this article, we show that a
dipole modulation, and in general, any kind of modulation isn’t allowed in the E and
B modes. This is the main result of this paper. This result explains why no evidence
of modulation in E mode has been found in the literature. On the contrary, the linear
polarization fields Q andU have no such restrictions. We show that modulation under
certain situations can be thought of as localU (1) gauge transformations on the surface
of a sphere. As far as the modulation function is concerned, we show that physical
considerations enforce it to be (i) a spin 0 field and (ii) a scalar under parity. As mask-
ing is a specific type of modulation, our study suggests that a direct masking of E
mode isn’t also possible. Masking in E map can only be applied through Q and U
fields. This means that in principle, leaking of E and B mode powers into each other
is unavoidable.
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1 Introduction

TheCosmicMicrowaveBackground (CMBhereafter) has been a very important probe
to test our cosmological models, thereby improving our understanding of theUniverse.
CMB comprises of the photons that got decoupled out of the cosmic plasma after
the epoch of recombination and have been free streaming since then. This epoch
corresponds to a redshift of z ∼ 1000, i.e., when the universe was only 400,000 years
old.

This primordial radiation is characterized by temperature field T and linear polar-
ization fields Q and U . Although CMB radiation has linear polarization, it doesn’t
have circular polarization component. This is on account of the fact that circular polar-
ization can’t be generated by Thomson scattering [1]. However, some non standard
interactions can generate the same [2–4]. For the purpose of this article, we ignore
circular polarization.

It is known that T remains invariant under the rotation of a local coordinate system,
i.e., it is a spin 0 field, see Fig. 1. On the other hand, the linear combinations Q ± iU
are respectively spin1 ± 2 fields. However, with an appropriate application of the
differential operator ‘eth’ (ð) on Q ± iU , we can obtain E and B modes [1]. These
modes do behave as scalars under this rotation.

One of the founding pillars of modern cosmology is the Cosmological Principle.
According to this principle, the Universe is statistically isotropic and homogeneous
on length scales � Mpc. For the CMB temperature field, this means that the ensemble
average of the 2 point correlation function, viz.,

〈
T (m)T (n)

〉
depends only on the

angle between the two directionsm and n, i.e.,
〈
T (m)T (n)

〉 ∝ m · n. In other words,
the correlation is the same, irrespective of the location of the vectors m and n if the
angle between them remains unchanged.

Prior to WMAP data release and its subsequent analysis in 2003, it was assumed
that CMB radiation satisfies the cosmological principle quite well. The analysis of
the WMAP data revealed a power difference in different hemispheres. This implied a
potential violation of the cosmological principle at 3σ level [5] and later came to be
known as Hemispherical Power Asymmetry. This effect has still persisted in Planck
and WMAP data sets at ∼ 3.0σ level [6–9]. Planck 2018 results [10] are consistent
with these findings. Phenomenologically, it has been studied using a dipolemodulation
model [11–14].

In the multipole space, the cosmological principle implies that all non-diagonal
correlations are zero [15]. This is no longer true in the presence of modulation. For
example, a dipole modulation leads to non diagonal correlations between � and � ± 1
multipoles. In the literature, the presence of these non-diagonal correlations has been
explained on the basis of modification of the primordial power spectrum [16–22].

1 In general, a field � on a sphere S2 has spin s, if under a right handed rotation of the local coordinate
system by an angle α, it transforms as � �→ � ′ = �e−isα .
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Fig. 1 Rotation in the local
coordinate system on the surface
of a sphere. Here XYZ represents
the coordinate axes. Radiation is
coming along the −Z axis
towards an observer at the origin
of the local coordinate system
xyZ

Similar analyses have also been performed for polarization. Aluri and Shafieloo
[23] used Planck 2015 polarization maps and found a power asymmetry over the
range � = 20 − 240 when fitted with a dipole. The direction was found to be broadly
aligned with the CMB dipole. Later however, Ghosh and Jain [24] using pixel based
method found no evidence of the dipolar modulation signal. In order to test the signal,
Planck Team [10] employed two methods but also didn’t find a strong signal of this
asymmetry. Kochappan et. al. [25] used contour Minkowski Tensor and Directional
Statistic and also found no statistical deviation from statistical isotropy in the E mode.
In this paper, we give a mathematical explanation of this null result. This also happens
to be one of the main results of this paper. We show that E mode, in fact, permits
no modulation in general and dipole modulation in particular. Since masking can be
considered as a special type ofmodulation (in a sense to be discussed later), our analysis
suggests direct masking in E mode is also not possible. Our finding is consistent with
the literature where masking in the E maps has been shown to cause problems [10,
26]. Thus the only way of applying masking to E is through Q andU maps. A similar
result is true for B modes as well.

Additionally, it has been well documented that masking of Q and U leads to a
power leakage [10, 27]. Thus we also conclude that, in principle, it is not possible to
avoid leakage of E and B mode powers upon mask application.

The article is structured in the following manner. We begin in Sect. 2 discussing
important mathematical properties of the harmonic coefficients of CMB temperature
and polarization fields. This would be useful in all the subsequent analysis and set-
ting up the notation. This is followed by a precise meaning of modulation and its
ramifications for both linear polarization (Q and U ) and scalar (E and B) modes in
Sect. 3. Different aspects like mean, Gaussianity, transformation under parity, etc., of
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the modulated harmonic coefficients are also discussed. We also discuss some of the
desirable properties that the modulation function should satisfy. After this, in Sect. 4,
we discuss the consequences of the results obtained in this paper on masking. We
conclude in Sect. 5. Additionally, in Appendix A, we provide Table 1 of harmonic
coefficients of the modulating function having pure dipolar, quadrupolar, octupolar,
etc., modulations. These may find applications elsewhere. Notations: (a) Through-
out this article quantities with tilde over them denote modulated quantities (b) unless
otherwise stated, all repeated indices are summed over.

2 Preliminaries

Our results in this paper rest on specific properties of polarization fields’ harmonic
coefficients. So we first perform a careful analysis of this aspect. As was discussed
before, the temperature field T and the linear combinations Q ± iU are respectively
spin 0 and ± 2 fields. The temperature field T , thus admits the following spherical
harmonic decomposition in terms of the spin 0 spherical harmonics Y�m(n).

T (n) =
∑

�m

T�mY�m(n),
∑

�m

≡
∞∑

�=0

�∑

m=−�

(2.1)

On the other hand, the spherical harmonic decomposition of the linear combinations
Q ± iU is expressed as

Q(n) ± iU (n) =
∑

�m

a±2,�m ±2Y�m(n), (2.2)

where ±2Y�m are spin spherical harmonics [1, 28, 29]. Using the orthogonality prop-
erties of spin weighted harmonics, this equation can be inverted

a±2,�m =
∫

(Q ± iU ) ±2Y
∗
�md�. (2.3)

Now, the spin harmonics sY�m satisfy the property that sY�m = 0 when � < |s|
[28–31]. This implies that a±2,�m = 0 when � < 2.

We can also obtain spin 0 fields from the linear combinations Q ± iU by appropri-
ately applying the differential operator ð

ð̄
2(Q + iU ) =

∑

�m

√
(� + 2)!
(� − 2)!a2,�mY�m, (2.4)

ð
2(Q − iU ) =

∑

�m

√
(� + 2)!
(� − 2)!a−2,�mY�m . (2.5)
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Notice that in Eqs. (2.4) and (2.5), although the sum doesn’t contribute for � < 2
(due to negative factorial in the denominator), this doesn’t guarantee that a±2,�m = 0.
Instead, the conclusion is reached on the basis of properties of spin spherical harmonics
±2Y�m . The scalar E and B modes are defined as linear combinations [1] of Eqs. (2.4)
and (2.5)

E = −1

2

[
ð̄
2(Q + iU ) + ð

2(Q − iU )
]
. (2.6)

B = i

2

[
ð̄
2(Q + iU ) − ð

2(Q − iU )
]
. (2.7)

Furthermore, E being a scalar, admits the following harmonic decomposition [1]

E =
∑

�m

√
(� + 2)!
(� − 2)! E�mY�m . (2.8)

At this point, we would like to point out the difference between harmonic expansions
of T and E fields given respectively in Eqs. (2.1) and (2.8). The harmonic coefficients
T�m 
= 0 in general for any given �. On the other hand, E mode harmonic coefficients
E�m are necessarily 0 when � < 2. This can be seen by relating E�m’s with a±2,�m

E�m = −1

2

(
a2,�m + a−2,�m

)
. (2.9)

A similar conclusion holds for B mode harmonic coefficient

B�m = i

2

(
a2,�m − a−2,�m

)
. (2.10)

From this analysis, we conclude that for any physical E (B) field, we must have
E�m = 0 (B�m = 0) when � < 2. This property is true by definition.

3 Modulation analyses

The power asymmetry in CMB temperature field has been studied using the following
dipole modulation [11–14] model

T̃ (n) = T (n)(1 + Aλ · n). (3.1)

In Eq. (3.1), the modulated field T̃ is obtained from the statistically isotopic temper-
ature field T after multiplying it by a dipole modulation term. This modulation is
characterized by the magnitude A and a preferred direction λ that violates statistical
isotropy. This motivates the following definition. For a given field � (real or com-
plex), a modulation is the transformation �(n) �→ �̃(n) = f (n)�(n), where f (n) is
a specific modulating function (real or complex).
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In the purview of this definition, masking can be thought of as a special case of
modulation. Masking is applied to a map in order to remove regions which aren’t a
part of a survey or when these have to be deleted because of various contaminations.
Mask value is usually taken to be zero for a region intended to be removed. But
modulation allows any general angle n ≡ (θ, φ) dependent function f (n) subjected
to the following two physical requirements

• It shouldn’t change the spin of the field�. This implies that themodulation function
f can only have spin 0. This is a consequence of the fact that the total spin of the
product of two fields with spins s1 and s2 is s1 + s2.

• It should transform as a scalar under parity, i.e., n �→ −n. The dipole modulation
in Eq. (3.1) contains two vectors (polar vectors to be precise)n and a fixed direction
λ. Using a dot product of two polar vectors, we can only construct a scalar. Since
dipole modulation is special case of f (n), so we demand that it also transforms as
a scalar under parity.

In the remainder of this section, we first study the modulation in the linear polar-
ization fields Q and U and then in the scalar modes E and B.

3.1 Linear polarization Q and U

It is useful to study modulation directly in spin ±2 fields Q ± iU . This, as we will
see, includes a ‘direct’ modulation in Q and U fields as a special case. Thus we write
the modulation as (a similar equation exists for Q̃ − iŨ but it won’t give us any new
information)

Q̃ + iŨ = (Q + iU ) f . (3.2)

To keep the analysis as general as possible, we take complex modulating function
f = f1 + i f2, with f1 and f2 being real. This can also be written in the form

Q̃ + iŨ = (Q + iU )Rei� (3.3)

From Eq. (3.3), it is clear that a modulation transforms the complex field Q + iU �→
Q̃ + iŨ with the simultaneous application of (a) scaling by R =

√
f 21 + f 22 and (b)

an anticlockwise rotation in the tangent plane by � = tan−1( f2/ f1) at each point
n ∈ S2. It is interesting to note that a similar rotation ensues in Q ± iU on account of
addition of Chern Simons term in the electromagnetic Lagrangian [32]. To gain more
insights, Eq. (3.2) can be written in the following matrix form

(
Q̃
Ũ

)
=

(
f1 − f2
f2 f1

) (
Q
U

)
(3.4)

We can now consider two special cases

• Consider a specific transformation for which the scaling | f | = R = 1. Then the
modulation corresponds to a local U (1) gauge transformation of Q + iU on S2.
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• Now consider the case when modulating field is real, i.e., f2 = 0. Using Eq. (3.4),
we get Q̃ = f1Q and Ũ = f1U which represents a modulation in the individual
fields. Thus the modulation suggested in Eq. (3.2) is more general and includes
direct modulation in Q and U as a special case.

Now we study the consequences of the modulation in Eq. (3.2). We notice that our
formalism generalizes the dipole modulation studies [24, 33, 34] performed in the
context of CMB polarization. For this, it is useful to express Q ± iU in terms of E
and B mode harmonic coefficients. This can be done using Eqs. (2.9) and (2.10) and
we get

Q ± iU = −
∑

�m

(E�m ± i B�m) ±2Y�m (3.5)

We notice that the modulated fields Q̃ ± iŨ are also spin ± 2. This is true since f
must have spin 0 (see last paragraph of Sect. 3). Therefore when we multiply it with
Q ± iU (spin ± 2 fields), we again get spin ± 2. So we can again expand Q̃ ± iŨ in
terms of spin ± 2 spherical harmonics as per Eq. (2.2). Repeating the same steps as
above, the corresponding equation for the modulated fields would be

Q̃ ± iŨ = −
∑

�m

(Ẽ�m ± i B̃�m) ±2Y�m . (3.6)

After some simplifications, the modulated E and B mode harmonic coefficients,
corresponding to the modulation (3.2), are expressed as

Ẽ�m = (−1)m

2

∑

�i mi

f�2m2G−m,m1,m2
�,�1,�2;−2,2,0

[(
E�1m1 + i B�1m1

) + (−1)L
(
E�1m1 − i B�1m1

)]

(3.7)

B̃�m = (−1)m

2i

∑

�i mi

f�2m2G−m,m1,m2
�,�1,�2;−2,2,0

[(
E�1m1 + i B�1m1

) − (−1)L
(
E�1m1 − i B�1m1

)]

(3.8)

In both these equations L = � + �1 + �2 and Gm1,m2,m3
�1,�2,�3;s1,s2,s3 is the generalized Gaunt

symbol, defined as the integral over three spin spherical harmonics

Gm1,m2,m3
�1,�2,�3;s1,s2,s3 =

∫

s1Y�1m1 s2Y�2m2 s3Y�3m3d�

=
√∏3

i=1(2�i + 1)

4π

(
�1 �2 �3
m1 m2 m3

)(
�1 �2 �3

−s1 −s2 −s3

)
(3.9)

We notice the presence of the Wigner 3j symbol

(
� �1 �2
2 −2 0

)
= 0 (3.10)
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in Eqs. (3.7) and (3.8). This symbol guarantees that both Ẽ�m and B̃�m are zero
when � < 2. An alternative way of concluding this is to express the modulated
harmonic coefficients using tensor spherical harmonics [26]. This means that any
given modulation f in Q and U fields gives rise to physically acceptable E and B
fields. These resultsmatchwith the ones existing in the literature [27, 35].Wemust also
point out that Eqs. (3.7) and (3.8) can also be derived using the derivative properties
of ð on spin spherical harmonics in (2.4) and (2.5).

We also notice that the modulation (3.2) intermixes E and B modes. This inter-
mixing is due to modulation (3.2) and is different from the one that arises on account
of gravitational lensing [36]. It is known that the T and E modes are sourced by both
scalar and tensor perturbations whereas the B modes are generated solely due to tensor
perturbations. Thus to detect the primordial B mode generated by tensor perturbations,
in addition to removing the effects due to lensing [37, 38], one in principle, must also
remove the effects due to modulation.

3.1.1 Harmonic coefficients’ behaviour

The spherical harmonic coefficients X�m with X ∈ {T , E, B} satisfy various prop-
erties. For example, it is known that X�m , for a given multipole � with m > 0 are
distributed as multivariate Gaussian [39] with mean 0, i.e.,

〈
X�m

〉 = 0. From Eqs.
(3.7) and (3.8), it is clear that the modulated coefficients still have zero mean, i.e.,〈
Ẽ�m

〉 = 0 and
〈
B̃�m

〉 = 0. Further mod coefficients are also Gaussian distributed [39].
Thus modulation doesn’t change these statistical properties of X�m .

We now discuss the properties of these coefficients under parity. Under parity
transformation, T and E behave as scalar but B on the other hand, behaves as a
pseudo scalar [10, 27, 40, 41]. Further, it was discussed in Sect. 3 that the modulation
function f can only be a scalar. Based on these facts, we can conclude that under
parity

X�m �→ (−1)�X�m, X ∈ {T , f , E} (3.11)

B�m �→ −(−1)�B�m (3.12)

Now using Eqs. (3.11) and (3.12) in Eq. (3.7), the modulated E mode harmonic
coefficient, under parity, transforms in the following manner

Ẽ�m �→ (−1)m

2

∑

�i mi

(−1)L+�1+�2 f�2m2G−m,m1,m2
�,�1,�2;−2,2,0

×
[(
E�1m1 + i B�1m1

) + (−1)L
(
E�1m1 − i B�1m1

)]

But L = � + �1 + �2, so we get Ẽ�m �→ (−1)� Ẽ�m . This is true for B mode as well.
Thus we conclude that under parity, modulated E and B fields transform in the same
manner as unmodulated fields.
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3.1.2 Modulated power spectrum

Cosmological Principle imposes the following conditions on 2 point correlations in
the multipole space

〈
E�mE

∗
�′m′

〉 = δ��′δmm′CEE
� ,

〈
B�mB

∗
�′m′

〉 = δ��′δmm′CBB
� ,

〈
E�mB

∗
�′m′

〉 = 0

(3.13)

i.e., only diagonal correlations are non-zero and the last condition follows if the ensem-
ble average is assumed parity symmetric [27].

However,we get non-diagonal correlations aswell. The general correlation between
the modulated harmonic coefficients can be obtained by using statistical isotropy
conditions (3.13) in Eq. (3.7)

〈
Ẽ�m Ẽ

∗
�′m′

〉 = (−1)m+m′

4

∑

�i mi

f ∗
�4m4

f�2m2G−m,m1,m2
�,�1,�2;−2,2,0G−m′,m1,m2

�,�1,�2;−2,2,0

×
[
CEE

�1
(1 + (−1)L)(1 + (−1)L

′
) + CBB

�1
(1 − (−1)L)(1 − (−1)L

′
)
]

(3.14)

where L = � + �1 + �2 and L ′ = �′ + �1 + �4. It can be seen that the correlation
isn’t zero even when � 
= �′. Physically, this means that the presence of modulation
violates the cosmological principle. For the special case when � = �′ andm = m′, we
get

〈
C̃ EE

�

〉 = 2� + 1

8π

∑

�2,�2

f�2(2�1 + 1)(2�2 + 1)

(
� �1 �2
2 −2 0

)2

×
[
CEE

�1
(1 + (−1)�+�1,�2) + CBB

�1
(1 − (−1)�+�1,�2)

]
(3.15)

where f� = ∑
|m|≤� | f�m |2/(2� + 1). This matches with Ref. [10, 42]. A similar

analysis can be performed for the B mode as well. We also notice that the cross
correlation

〈
Ẽ�m B̃∗

�′m′
〉
isn’t zero in general and becomes zero only when we take

� = �′ and m = m′.

3.2 Scalar modes E and B

Nowwe study the effects of modulation in scalar modes. Themost general modulation
in the E mode is of the following type

Ẽ(n) = E(n) f (n). (3.16)

Since E is real field, here we take f to be real as well. All three fields in Eq. (3.16)
are spin 0 and can be expanded in terms of the usual spherical harmonics Y�m . Using
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orthogonality and product properties of Y�m , we can relate the modulated Ẽ�m coeffi-
cients with the unmodulated ones E�m

Ẽ�m = (−1)m
∑

�i mi

f�1m1 E�2m2

√
(2� + 1)(2�1 + 1)(2�2 + 1)

4π

(
� �1 �2
0 0 0

) (
� �1 �2

−m m1 m2

)
.

(3.17)

This equation expresses the modulated harmonic coefficients Ẽ�m as a linear combi-
nation of the unmodulated ones E�m , weighted appropriately by modulating function
harmonic coefficients f�m . By assumption, the unmodulated E field by itself is phys-
ical which means that E�m = 0 when � < 2 (see Sect. 2).

Now to show that themodulation in Eq. (3.16) is not possible, we calculate a specific
harmonic coefficient Ẽ10 of themodulatedfield,which after some simplifications gives

Ẽ10 =
√

3

4π

∑

�m

f�m(−1)�

⎡

⎣E∗
�−1,m

√
�2 − m2

4�2 − 1
− E∗

�+1,m

√
(� + 1)2 − m2

(2� + 1)(2� + 3)

⎤

⎦ .

(3.18)

It can be seen that since the harmonic coefficient of the modulating field f�m 
= 0 in
general, Ẽ10 can’t be zero either. This implies that no modulation of the form (3.16)
is allowed as it leads to mathematical inconsistencies. This is the main result of this
paper. In particular, dipole modulation isn’t allowed. To see this explicitly, we take
f (n) = 1 + Aλ · n, with A (real) and λ ≡ (�,
) being respectively the magnitude
and direction of the modulation. Using Table 1, the harmonic coefficients are

f�m = √
4πδ�0δm0 + δ�1

4π

3
AY ∗

1m(λ). (3.19)

Using (3.19) in (3.18) and after some simplifications we get

Ẽ10 = A

√
2

5

[

E21 sin� cos
 + E20

√
2

3
cos�

]

. (3.20)

Since in general E21 
= 0 and E20 
= 0, Ẽ10 
= 0 as well. This contradicts the basic
property of the E field that E�m = 0 when � < 2. Thus we conclude that a dipole
modulation in E mode isn’t allowed. This explains the null results pertaining to the
modulation of the E mode [10, 24, 25]. A similar analysis would hold for the B mode
polarization.

3.2.1 Properties of modulation coefficients

Although the impossibility of E modulation (Eq. 3.16) renders the modulated coeffi-
cients (Eq. 3.17) unphysical, it is still worthwhile to compare the properties of these

123



A comprehensive study of modulation effects on CMB... Page 11 of 15 37

harmonic coefficients with those obtained in Sect. 3.1.1. We find that just like Eq.
(3.7), the modulated coefficients in Eq. (3.17) are

• Again Gaussian distributed with zero mean
• Expressed as a linear combinations of E�m and thus have a similar transformation
as that of unmodulated ones under parity

From this we can conclude that merely the presence of these properties isn’t enough to
conclude that Eq. (3.16) is unphysical. Thus the unphysical nature of this modulation
is an independent conclusion.

4 Applications tomasking procedure

In this section, we apply the hitherto obtained results to the masking procedure. As
was discussed before, masking can be considered as a special type of modulation.
Thus we conclude that

• Masking can’t be directly applied to E or B as it will lead to mathematical incon-
sistencies (see Sect. 3.2). This is an auxiliary conclusion of the paper. Although
Ref. [26] suggests an alternative, it leads to problems like enhancement of noise
power [10].

• As the masking of E and B maps can only be performed through Q and U maps,
it will, in principle, lead to intermixing of E and B mode powers.

5 Conclusions and outlook

In this article, we show that no modulation in E mode is possible. This is on account
of the properties of the harmonic coefficients. This explains the null result related to E
mode dipole modulation. No such restrictions are however for Q andU maps.We find
that when the magnitude of the modulating function is unity, the modulation can be
thought of as a local U (1) gauge transformation on S2. We have also studied various
properties of the modulated harmonic coefficients. We find that the aforementioned
conclusion, i.e., the unphysical nature of E mode modulation, can’t be reached just on
the basis of the statistical properties of harmonic coefficients and is thus an independent
conclusion.

Since masking is a special type of modulation, we also conclude that masking in E
maps should only be introduced through Q andU maps. Thismasking, as the literature
sufficiently attests, leads to an intermixing E and B mode powers. Thus we find that
masking will inevitably lead to intermixing of powers.

We have also found that the modulation function can’t be arbitrary. Physics restricts
it to have spin 0 and scalar under parity transformation.

Our results imply that the presence of non-diagonal correlations in the polarization
field, suggested in the literature [17], cannot be attributed to a modulation in the
scalar modes E and B. However our analysis doesn’t rule out the possibility that
such correlations can arise due to modified power spectra based models [16–22] that
may further arise due to reasons like spacetime non-commutativity [18, 43], direction
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Fig. 2 Plot of the modulating function f in different cases. For all these cases, we take A0 = 0. From left
to right, a a linear combination of dipole and quadrupole → Ai = 0.2δ1i + 0.1δ2i , λi = (0, 0, 1)δ1i +
(0, 1, 1)δ2i b a pure quadrupole → Ai = 0.2δ2i , λi = (0, 0, 1)δ2i and (c) a linear combination of
quadrupole and hexadecapole → Ai = 0.09δ2i + 0.1δ4i , λi = (−1, −1, 0)δ2i + (0, 0, 1)δ4i

dependent primordial perturbations [44, 45], etc. It would thus be interesting to study
the direct connections of modified power spectra on field modulation. Any kind of
inflationary model implying a modulation in E and B is ruled out from the start.
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A Spherical harmonic coefficients of themodulating function

Our analysis till this point restricts the function f to only have spin 0 and being scalar
under parity. But in principle it can take any form. In this section, we study specific
forms of the modulating function f . Our choice is motivated by the dipole modulation
model that has been employed to study hemispherical power asymmetry in the T field
of CMB (Eq. 3.1). A similar kind of dipole modulation has been used for Q ± iU
fields [24, 33, 34, 44]. This modulation has only one amplitude A and a direction λ.

In general, we can have different alignments of dipolar, quadrupolar, octupolar,
etc., modulations along different directions λi and with different amplitudes Ai . These
would be proportional to different exponents of λi · n. This motivates the following
modulating function,

f (n) = 1 + A1(λ1 · n) + A2(λ2 · n)2 + . . . =
∞∑

i=0

Ai (cos γi )
i , A0 = 1, Ai ∈ C.

(A.1)
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Table 1 Spherical harmonic coefficients f�m of the modulating function f in some specific cases

i Modulation αi,l f�m

i = 0 Pure monopole δ0�
√
4πδ�0δm0

i = 1 Pure dipole δ1� A1
4π

3
δ�1Y

∗
1m (λ1)

i = 2 Pure quadrupole
δ0� + 2δ2�

3
A2

4π

3
[δ0�Y ∗

00(λ2) + 2
5 δ2�Y

∗
2m (λ2)]

i = 3 Pure octopole
3δ1� + 2δ3�

5
A3

4π

5
[δ1�Y ∗

1m (λ3) + 2
7 δ3�Y

∗
3m (λ3)]

In the table, we have also shown the base change coefficients αi,�

In the above equation, we have defined cos γi = λi ·n. Notice that we have written the
modulating function as a linear combination of pure dipole, quadrupole, etc., terms. In
Fig. 2, we have shown the plots of themodulating function f with various possibilities.

In order to calculate the corresponding modulated coefficients, our objective is to
find out the spherical harmonic coefficients f�m of the modulating function f . For
that, we notice that any power of cos γi can be written as a linear combination of the
Legendre’s polynomialsP�(cos γi )with appropriate coefficients. So we write (no sum
over i on either sides)

(cos γi )
i =

∑

�≥0

αi,�P�(cos γi ). (A.2)

The ‘base change’ coefficients αi,� can be easily found using any table on Legendre’s
polynomials. Using addition theorem of spherical harmonics, we can express the
Legendre’s polynomials in terms of spherical harmonics

P�(cos γi ) = 4π

2� + 1

�∑

m=−�

Y�m(n)Y ∗
�m(λi ). (A.3)

Finally, using Eqs. (A.3) and (A.2) in (A.1), the spherical harmonic coefficients f�m
are found to be

f�m = 4π

2� + 1

∞∑

i=0

Ai αi,� Y
∗
�m(λi ) (A.4)

These harmonic coefficients for some special cases of pure monopole, dipole, etc.,
modulations are given in Table 1.
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