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Abstract. Combining Computer Vision (CV) and Anomaly Detection
(AD), there is a convergence of methodologies using convolutional lay-
ers in AD architectures, which we consider an innovation in the field.
The main goal of this work is to present different Artificial Neural Net-
works (ANN) architectures, applying them to distress detection in road
pavements and comparing the results obtained in each approach. The
experimented methods for AD in images include a binary classifier as a
baseline, an Autoencoder (AE) and a Variational Autoencoder (VAE).
Supervised and unsupervised practises are also compared, proving their
utility in scenarios where there is no labelled data available. Using the
VAE model in a supervised setting, it presents an excellent distinction
between good and bad pavement. When labelled data is not available,
using the AE model and the distribution of similarities of good pavement
reconstructions to calculate the threshold is the best option with accu-
racy and precision above 94%. The development of these models shows
that it is possible to develop an alternative solution to reduce operat-
ing costs compared to expensive commercial systems and to improve the
usability compared to conventional methods of classifying road surfaces.
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1 Introduction

Highways are one of the most important assets in the daily life of modern society,
increasing the economic gains of many activity sectors, citizens quality of life,
and countries’ development, with special impact in urban areas [10].

After the highway construction, the pavement develops distress due to differ-
ent factors, such as meteorological conditions, materials self-deterioration, and
traffic wear. Bad pavement condition impacts the drivers’ comfort, road safety
[4] and increases travel costs. The accident rate is correlated with the pavement
condition, where higher values of roughness and rut depth increase crash rate
[15]. In terms of asset management, accurate distress identification is essential.
In this context, it is imperative to monitor pavements’ condition periodically,
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as cracking, rutting, reveling, potholes, unevenness. This information is used to
deliver condition indicators serving as inputs in road maintenance optimization
models to help to select the best maintenance strategy.

The background and related work are presented in Sections [2| and [3] respec-
tively. The experiments are shown in Section [4 and conclusions in Section

2 Background

2.1 Road Pavements Monitoring

The traditional methods to monitor road pavements include the direct observa-
tion of the road, with manual annotations, which is a rudimentary method. The
data can be stored in paper format, and it needs to be processed afterwards.
Other approaches use complex systems with 3D image capturing and laser
profiling sensors to provide a more detailed report of the pavement condition
[5]. These systems require special equipment and trained operators. The results
provided by these mechanisms are accurate but represent high cost solutions.

2.2 Artificial Neural Networks and Autoencoders

The use of Artificial Neural Networks (ANN) to solve AD problems is attractive
due to the good results they present in other fields. One of the most popular
tasks performed by these models is pattern recognition. For this purpose, it is
given to the network input-output pairs, and then it will try to find a function
that correctly approximates the real relations between them [11].

There are two main components in the Autoencoder (AE) architecture (Fig-
ure : the encoder, that provide a dimension reduction over the input; and the
decoder that makes the reverse process. The input and output in the autoencoder
training process is the same [3].
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(a) Simple bottleneck AE architecture. (b) VAE architecture.

Fig. 1: Autoencoders architectures.

The behaviour of the network consists of reconstructing the original data. In
Figure the original data is represented by x and the reconstructions by y.
During the training process, the AE learns to reconstruct only the normal class
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instances. In this scenario the network overfitting to that class is desirable. When
the network is trained, the anomalies are found by comparing the original and
reconstructed data. It is considered an anomaly if the reconstruction similarity
is low (or the reconstruction error is high), according to a defined threshold. The
threshold is calculated using different methods, depending on data availability.
When a labelled dataset is available it is possible to calculate the threshold in a
supervised way, using an objective function that maximizes the True Positives
Rate (TPR) and minimize the False Positive Rate (FPR): TPR—(1—-FPR) =0
(Figure. In cases where only the Normal class is present to train the models,
the threshold can be inferred by selecting the lower fence of the reconstruction
similarities distribution: ¢ = Q1 — 1.5- IQR (Figure . Since novelties are
poorly reproduced by the models, their reconstruction similarities are lower and
out of that distribution.
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(a) Supervised method (objective func- (b) Unsupervised method (Normal class
tion). distribution).

Fig. 2: Example of threshold calculation methods.

The VAE (Figure behaves similarly to the AE architecture. Using the
same principle of detecting the anomalies through the reconstruction errors, it
differs from the AE in the latent space representation. Instead of using a simple
tensor to code the inputs, this architecture uses a distribution and a sample from
it to reconstruct each data point. Thereby, the reconstructions are not expected
to be so similar since a random sample is performed. However, this approach
has the advantage of grouping similar inputs in the latent space. The z_mean
and z_log variables represent the mean and variance of the latent distribution,
respectively. The Sample is a random selected point from that distribution.

3 Related Work

Different research approaches are being continually explored. One of the most
used strategies is the application of smartphone devices to collect different kinds
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of data that is posteriorly used in data mining processes |13]. The major problems
in those methods are related to difficulties found in the devices sensors. The
sensors are heterogeneous depending on the device brand and model. The GPS
data is not accurate in some cases and depending on the accelerometer sensitivity,
it can detect activities that are not related with the pavement conditions. The
use of inertial sensors is also dependent on some vehicle characteristics like the
suspension system, which introduces even more noise to the data acquisition [6].
Furthermore, anomalies like cracks cannot be detected with accelerometer data
since they don’t interfere in the car stability.

Instead of vibration-based methods, vision-based ones can avoid the men-
tioned problems. This approach has the advantage of providing a visual under-
standing of the observations, that can be used to classify each instance. Sev-
eral approaches using imaging methods present the distinction between different
methods according to the level of detail: presence, detection and measurement
[9]. The presence is the distinction between good and bad pavement, the detection
focus on distinguishing between different types of distresses and the measure-
ment works on a more specific level to identify their severity. The used data can
be 3D images |18] with highly gathering costs or 2D images [17] where budget
cameras can reduce the solutions costs.

4 Expirements and Results

For the present work, the main focus is to detect the presence of distresses in the
pavement, using 2D images to achieve this objective. Similar to the approach
presented by Nan Wang for detecting brain tumor anomalies [16], AE and VAE
models are used in this context to detect distresses.

4.1 Dataset and Preprocessing

The input data used for training the Machine Learning (ML) models is a public
dataset of road pavement images |1|. The set is originally divided into 2 groups:
Non-Crack with pavements images in good condition; and Crack - with images
of cracked pavement.

The images are homogeneous in terms of measurements, having a size of
448x448 pixels with 3 color channels (RGB). The dataset is balanced with a
total size of 400 images, 200 images in each group.

Studying the images it is clear that the Anomaly class (Figure presents
darker values than the Normal cases (Figure [3a)).

The treatment of the images was carried out so the most relevant aspects
for detecting the distresses were highlighted. The transformations that have the
best results are the following: downsize the inputs to 256x256 black and white
images; use of the bilateralFilter since it blurs the image preserving its contours,
as the distresses are evidenced at the same time that the pixels corresponding
to the asphalt are blurred, removing patterns that could create confusion in the
training of the network |14]; and threshold filter since anomalies in general have
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(a) Normal class histograms. (b) Anomaly class histograms.

Fig. 3: Examples of histograms from both classes.

a darker color than the rest of the asphalt, due to differences in light incidence.
Examples of these transformations are presented in Figure[d] where the first and
third rows show the Normal and Anomaly original images, respectively and the
second and fourth rows show the same images after being processed. The used
filters are available in the OpenCV library .

Fig. 4: Examples of the preprocessing step.

This treatment facilitate the work of the ANN in learning the patterns, while
minimizing the computational capacity required, since the number of operations
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to be performed is proportional to the size of the image and the number of color
channels is reduced from 3 (RGB) to 1 (gray-scale). In the processed images,
the distresses stand out clearly. The image set is divided with a proportion of
80/20% for training and testing, respectively.

4.2 Baseline - Binary Classifier

The baseline classifier model is a Convolutional Network, where the inputs are
images with dimensions 256x256x1 (width x height x color channels). The output
variable is a value between 0 and 1 that will represent one of the two classes, with
the division point of the classes being 0.5. The architecture is composed by 4
Conv2D Keras layers (16,32,64 and 64 3x3 filters), interspersed by 3 MaxzPooling
layers (2x2). All the layers except the last use the ReLU activation function. The
last one uses the sigmoid function to give the result in the desired domain - [0,1].

In the class “Anomaly”, 85% of the real cases of distress are identified by
the model. In turn, the model guarantees with a 97% success rate that a case
predicted to be anomalous is in fact corresponding to a pavement image in poor
condition. The prediction capacity of the model in the two classes presents an
accuracy of 91%, which means that in the vast majority of cases the image of
the pavement will be classified correctly (Table .

4.3 AE and VAE models

The AE model reconstructs the good pavement images and it is expected that im-
ages representing bad condition are poorly reproduced. The implemented struc-
ture is as follows: Encoder - 3 Conv2D (16, 64 and 32 3x3 filters) + MazPool-
ing2D layers (2x2 window); Bottleneck - 2 Dense layers (40 and 1024 neurons);
Decoder - 3 Conv2DTranspose (all with 64 3x3 filters) intercalated by 2 Batch-
Normalization layers. The Conv2D layer is the output of the model that returns
an image comparable to the input. The activation functions used in all layers
is the ReLU. The output layer uses the sigmoid function to retrieve the recon-
structed pixel darkness (Figure .

With the supervised threshold, it is possible to correctly predict the test cases.
The unsupervised threshold is not so accurate in the classes division (Table .

In the VAE, the encoder architecture is similar to the AE encoder structure,
with a slight difference. In this case, before the Bottleneck, there are two forked
Dense layers, that represent the mean and standard deviation of the latent
distribution. From this distribution, a sample is acquired using a Lambda layer
that uses a previous specified sampling function.

The output of this layer is the VAE Bottleneck and therefore, the output
of the encoder part. The decoder has the same behaviour of the AE decoder,
building an image similar to the input from the latent representation.

For the training process, a special loss function needs to be defined, using
the sum of two losses: the Kullback—Leibler divergence measure to approximate
two distributions and the MSE to minimize the difference between the original
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and reconstructed pixel values. The Adam optimizer is used with a learning
rate of 0.0005, preventing exploding and vanishing gradients introduced by the
intermediate representation. In this case, the reconstructions (Figure are not
so similar as the AE, since they are not a perfect correspondence to the input.

(a) AE reconstructions. (b) VAE reconstructions.

Fig. 5: Image reconstructions performed by the models.

5 Conclusion

5.1 Discussion

On total, more than 250 experimental models were trained, using different ar-
chitecture and building decisions. Based on the training events, some discussion
questions can be appointed:

1. How are the results so good if the reconstructions do not appear to be simi-
lar to the original images? The important in reconstructions for AD is not
the absolute quality of the reconstructions, but the difference between both
classes. The bigger the difference, the better. Even if the reconstructions are
not similar when looking at the images, the important pixel level similar-
ities are captured by the model, being also reflected when calculating the
similarity between the original and reconstructed images.

2. What were the criteria to select the image preprocessing filters? Initially, a
group of filters were selected to preserve the main characteristics of the pave-
ment and the distresses in the images. From this group, using the classifier
model with a fixed architecture, multiple tests were performed varying only
the different filters combinations and parameters. The select filters are the
ones that lead to the best results.
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3. There are other available datasets containing pavement images. Why aren’t
they used? The selected dataset provides the images in similar settings of
the real use case relative to the preferred camera positioning. Other datasets,
even though with more images, show different perspectives of the pavement,
that are not suitable for this case.

5.2 Conclusions

The main goal of the present study is to prove the possibility of creation of a
low-cost, automated pavement monitoring system, using image data to detect
distresses. Regarding the ANN models, it is also proved that any of the models
are liable to be used, depending on the context and on the importance given to
each metric. In Table [If are shown the overall results in order to compare the
different models and approaches, from a distress detection perspective (recall
and precision for the anomaly class).

Table 1: Pavement models comparison by metric.

Classifier AE VAE
Supervised|Supervised [ Unsupervised|Supervised [ Unsupervised
AUROC 0.91 0.99 1.00
Accuracy 0.91 0.94 0.81 1.00 0.72
Precision 0.97 0.94 1.00 1.00 1.00
Recall 0.85 0.94 0.62 1.00 0.44

The model that performs better in a generic view is the VAE architecture
using the supervised threshold calculation method, which presents a perfect dis-
tinction between both classes. This is the best option to take when there is
training data for both classes. When looking for scenarios where there are no
labelled data available (e.g., when the data is acquired from a road that is known
to be in good conditions d priori), the models to be used are the AE and VAE.
All the presented methodologies are a first approach to solve the problem and
do not represent a fully functional solution. They can be further explored to
acquire even better results.

5.3 Future Work

The present article opens a wide spectrum of future work. Regarding the studied
research topics, the following work directions are proposed:

1. Improve the studied methodologies scores, specially in a unsupervised sce-
nario, where there is no labelled data to train the models. This can be done
exploring the existent AE and VAE models, that use only normal data to
be trained, and modifying the threshold calculation algorithms. Examples of
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alternatives to calculate the threshold is the use of z-scores and the Empiri-
cal Rule, when the SSIM data is a Gaussian distribution, or the Chebyshev’s
Theorem otherwise [12].

. The GAN framework is also pointed as an alternative solution when dealing

with AD. It is suggested the analysis of this approach to detect the presence
of distresses in images [7]. Also, generative models, such as VAE and GAN
architectures, provide a reduced representation of the images. Some charac-
teristics are encoded in that representation as feature vectors. It is proposed
to train similar networks with pavement images to discover feature vectors
that can reflect the pavement conditions spectrum.

Transfer learning refers to the use of pretrained models, applying them to
a different domain, transferring the already learned information [8]. This
is a common practice in CV problems, freezing some convolutional layers
already trained with images and training only a part of the network that
will be specific for that domain [3]. It can also be used in this case, reducing
the training times and eventually improving the results.
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