
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Luís Filipe da Costa Cunha

Entity Recognition
in Archival Descriptions

Dissertation

February 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Luís Filipe da Costa Cunha

Entity Recognition
in Archival Descriptions

Dissertation

Master dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
José Carlos Leite Ramalho

February 2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the
rules and good practices internationally accepted, regarding author copyrights and
related copyrights.

Therefore, the present work can be utilized according to the terms provided in the
license bellow.

If the user needs permission to use the work in conditions not foreseen by the
licensing indicated, the user should contact the author, through the RepositóriUM of
University of Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that
I have not used plagiarism or any form of undue use of information or falsification
of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of
the University of Minho.

Insert name

A C K N O W L E D G E M E N T S

I would like to express gratitude to my supervisor, Professor José Carlos Ramalho,
whose guidance, support, and encouragement have been invaluable throughout
this dissertation. I am extremely grateful for our friendly chats at the end of our
meetings and your support in my academic and personal achievements.

A special thanks to my parents, who always believed in me and provided the
resources to keep pursuing my dreams.

Finally, to Alexandra Mendes and all my friends for always supporting me.

iii

A B S T R A C T

At the moment, there is a vast amount of archival data spread across the Por-
tuguese archives, which keeps information from our ancestors’ times to the present
day. Most of this information was already transcribed to digital format, and the
public can access it through archives’ online repositories. Despite that, some of these
documents are structured with many plain text fields without any annotations, mak-
ing their content analyses difficult. In this thesis, we implemented several Named
Entity Recognition solutions to perform a semantic interpretation of the archival
finding aids by extracting named entities like Person, Place, Date, Profession, and
Organization. These entities translate into crucial information about the context in
which they are inserted. They can be used for several purposes with high confidence
results, such as creating smart browsing tools by using entity linking and record
linking techniques.

In this way, the main challenge of this work was the creation of powerful NER
models capable of producing high confidence results. In order to achieve high result
scores, we annotated several corpora to train our Machine Learning algorithms in the
archival domain. We also used different ML architectures such as MaxEnt, CNNs,
LSTMs, and BERT models. During the model’s validation, we created different
environments to test the effect of the context proximity in the training data.

Finally, during the model’s training, we noticed a lack of available Portuguese
annotated data, limiting the potential of several NLP tasks. In this way, we developed
an intelligent corpus annotator that uses one of our NER models to assist and
accelerate the annotation process.

Keywords: Named Entity Recognition, Archival Finding Aids, Machine Learning,
Deep Learning, BERT, Data Annotation

iv

R E S U M O

De momento, existe uma vasta quantidade de dados arquivísticos espalhados
pelos arquivos portugueses, que guardam informações desde os tempos dos nossos
antepassados até aos dias de hoje. A maior parte desta informação já foi transcrita
para o formato digital e encontra-se disponível ao público através de repositórios
online dos arquivos. Apesar disso, alguns destes documentos estão estruturados
com muitos campos de texto livre, sem quaisquer anotações, o que pode dificultar a
análise do seu conteúdo. Nesta tese, implementamos várias soluções de Reconheci-
mento de Entidades Mencionadas, a fim de se realizar uma interpretação semântica
sobre descrições arquivísticas, extraindo entidades tais como Pessoa, Local, Data,
Profissão e Organização. Estes tipos de entidades traduzem-se em informação crucial
sobre o contexto em que estão inseridas. Com métricas de confiança suficientemente
elevadas, estas entidades podem ser utilizadas para diversos fins, como a criação de
ferramentas de navegação inteligente por meio de técnicas de entity linking e record
linking.

Desta forma, o principal desafio deste trabalho consistiu na criação de poderosos
modelos NER que fossem capazes de produzir resultados de elevada confiança. Para
alcançar tais resultados, anotamos vários datasets para treinar os nossos próprios
algoritmos de Aprendizado de Máquina no contexto arquivístico. Para além disso,
usamos diferentes arquiteturas de ML tais como MaxEnt, CNNs, LSTMs e BERT.
Durante a validação do modelo, criamos diferentes ambientes de teste de modo a
testar o efeito da proximidade de contexto nos dados de treino.

Por fim, durante o treino dos modelos verificamos que existe pouca quantidade de
dados disponíveis anotados em português, o que pode limitar o potencial de várias
tarefas de NLP. Desta forma, desenvolvemos um anotador de datasets inteligente
que utiliza um dos nossos modelos de NER para auxiliar e acelerar o processo de
anotação.

Palavras-Chave: Reconhecimento de Entidades Mencionadas, Descrições Arquiv-
ísticas, Machine Learning, Deep Learning, BERT, Anotação de dados

v

C O N T E N T S

1 introduction 1

1.1 Motivation 2

1.2 Objectives 3

1.3 Document Structure 3

2 state of art 5

2.1 Archival Finding Aids 5

2.2 OAI-PMH 10

2.3 Named Entity Recognition 13

2.4 Active Learning for Named Entity Recognition 14

2.5 OpenNLP 16

2.5.1 Maximum Entropy 16

2.5.2 Features 18

2.5.3 Entropy Maximization 19

2.6 spaCy 20

2.6.1 Transition Based NER 21

2.6.2 Deep Learning framework for NLP 21

2.7 TensorFlow BI-LSTM-CRF 25

2.7.1 Recurrent Neural Network 25

2.7.2 Long Short Term Memory 26

2.7.3 Bidirectional Long Short Term Memory 27

2.7.4 BI-LSTM-CRF 28

2.8 Transformers 29

2.8.1 Transfer Learning 29

2.8.2 Attention Mechanism 31

2.8.3 Generative Pre-Training 34

2.8.4 BERT 35

2.9 Evaluation 37

3 archival finding aids processing 40

3.1 Data Harvest 40

3.2 Data Description 41

3.3 Data Cleaning 42

3.4 Data Annotation 42

3.4.1 Statistical model Approach 43

vi

contents vii

3.4.2 Regex Approach 44

3.4.3 Manual Approach 44

3.5 Data Parse 44

3.5.1 Format Converter 47

3.6 Results 48

3.7 Conclusion 50

4 named entity recognition models 52

4.1 Available Portuguese NER models 52

4.2 Training NER Models 53

4.2.1 OpenNLP 54

4.2.2 spaCy 56

4.2.3 BI-LSMT-CRF 60

4.2.4 BERT 64

4.3 Conclusion 68

5 named entity recognition results 70

5.1 Individual NER model per Corpus 70

5.2 Generalized NER model 72

5.2.1 BERT Model’s Results 74

5.3 Overall Results 77

5.4 Conclusion 81

6 ner@di 83

6.1 Web Platform - NER@DI 83

6.1.1 Architecture 83

6.1.2 Features 85

6.1.3 Interface 86

6.2 Smart Annotator - ARCANO 88

6.2.1 ARCANO Interface 89

7 conclusion 92

7.1 Contributions 94

7.2 Future Work 94

a support material ; listings 103

a.1 "O Século" newspaper archival fond in XML format. 103

a.2 Paróquia do Curral das Freiras archival fond in XML format 106

a.3 ARCANO Sequence Diagram. 108

L I S T O F F I G U R E S

Figure 1 Example of description levels structure. 8

Figure 2 Archival fond of Casa Real (Portugal). 9

Figure 3 News from the newspaper O Século 13

Figure 4 Information and Entropy probabilities. 17

Figure 5 Entropy function subject to restrictions. 20

Figure 6 Transition Based NER. 21

Figure 7 Embed process. 22

Figure 8 Encode process. 23

Figure 9 Attend process. 24

Figure 10 Predict process. 24

Figure 11 Recurrent Neural Network. 26

Figure 12 Long Short Term Memory memory cell. 27

Figure 13 BI-LSTM-CRF. 28

Figure 14 Attention Mechanism. 31

Figure 15 Attention Scores. 32

Figure 16 Self-Attention Complexity. 33

Figure 17 GPT results and directionality. 34

Figure 18 BERT bidirectionally applied to token level task. 36

Figure 19 Named entities distributed by corpus and entity type. 49

Figure 20 Named entities labels’ distribution. 50

Figure 21 OpenNLP event stream tagging. 54

Figure 22 OpenNLP model learning curves. 55

Figure 23 spaCy training workflow. 56

Figure 24 2d spaCy word embeddings distribution. 58

Figure 25 spaCy error gradient of the loss function. 59

Figure 26 spaCy model learning curve. 60

Figure 27 BI-LSTM-CRF Word Embeddings distribution. 63

Figure 28 BI-LSTM-CRF model learning curve. 64

Figure 29 BERT transfer learning. 65

Figure 30 BERT models learning curves. 68

Figure 31 NER results by corpus. 78

Figure 32 NER results by entity label. 81

viii

list of figures ix

Figure 33 NER@DI architecture. 84

Figure 34 NER@DI, NER interface. 86

Figure 35 NER@DI annotated corpora. 87

Figure 36 ARCANO Anotator interface. 89

Figure 37 ARCANO training interface. 90

Figure 38 ARCANO statistics and customization. 91

Figure 39 ARCANO Sequence Diagram. 109

L I S T O F TA B L E S

Table 1 Model confidence example. 15

Table 2 Confusion Matrix. 38

Table 3 Concrete example of the confusion Matrix. 38

Table 4 Number of annotated entities per corpus. 49

Table 5 Individual NER models results. 71

Table 6 Generalized NER models validation results. 73

Table 7 Generalized model results on unseen data. 74

Table 8 Generalized BERT models results. 76

Table 9 Generalized BERT models results on unseen data. 77

Table 10 Overall models validation results. 79

Table 11 Generalized NER models results by entity label. 80

Table 12 ARCANO, number of annotated entities. 89

x

A C R O N Y M S

A

ABM_805 Paróquia do Jardim do Mar.

ABM_807 Paróquia do Curral das Freiras.

ACA Arquivo da Casa do Avelar.

ADAM Adaptive Moment Estimation.

ANTT Arquivo Nacional da Torre do Tombo.

API Application Programming Interface.

B

BERT Bidirectional Encoder Representations from Transformers.

BI-LSTM Bidirectional Long Short-Term Memory.

BILUO Beginning, Inside, LAST, Unit, Outside.

BIO Beginning, Inside, Outside.

C

CNN Convolutional Neural Network.

CRF Conditional Random Field.

CSV Comma-separated values.

D

DGLAB Direção-Geral do Livro, dos Arquivos e das Bibliotecas.

E

ELMO Embeddings from Language Models.

F

xi

Acronyms xii

FAA Familia Araújo de Azevedo.

G

GPT Generative Pre-Training.

GPU Graphics processing unit.

H

HTTP Hypertext Transfer Protocol.

HWCR Handwritten Character Recognition.

I

IFIP International Federation for Information Processing.

IG1 Inquirições de Genere 1.

IG2 Inquirições de Genere 2.

J

JSON JavaScript Object Notation.

L

LSTM Long Short-Term Memory.

M

MAXENT Maximum Entropy.

ML Machine Learning.

MLM Masked Language Modeling.

N

NER Named Entity Recognition.

NLP Natural Language Processing.

O

Acronyms xiii

OAI-PMH Open Archive Initiative Protocol for Metadata Harvesting.

OCR Optical Character Recognition.

R

RNN Recurrent Neural Network.

T

TT Torre do Tombo.

U

UI Instalation Unit.

ULMFIT Universal Language Model Fine-tuning.

X

XML Extensible Markup Language.

XSLT eXtensible Stylesheet Language for Transformation.

1

I N T R O D U C T I O N

Throughout the history of Portugal, there was a need to create an archive where
information about the kingdom was recorded. In 1378, the first known Portuguese
certificate was issued by the institution Torre do Tombo (TT), during the reign of D.
Fernando. Since then, TT has been responsible for creating a national archive where
information about the king, his vassals, administration of the kingdom, overseas
possessions and relations with other kingdoms was recorded. This institution, over
600 years old, was installed in a tower of the castle of Lisbon until 1755, when the
famous Lisbon earthquake occurred on the 1st of November, causing the tower to
collapse. Despite this, the documents were recovered and moved to the Monastery
of São Bento da Saúde. Over time, TT began to perform essential functions, taking on
a fundamental role in the registration of national information (ANTT, 2017).

Besides the monarchy, another entity was responsible for producing records in
antiquity, the clergy. However, in the mid-twentieth century, due to the proclamation
of the Portuguese Republic, several parishes’ books became in possession of the
government. This led to the creation of several archives distributed throughout
the country. That said, with the last century social, economic and technological
evolution, the amount public and private institutions has increased considerably,
generating a colossal amount of archival records.

At the moment, most Portuguese archives have online repositories making their
archival finding aids available to the public in digital format. Thus, in this work,
we harvested the finding aids of these archives using the OAI-PMH protocol and
performed a semantic interpretation of the collected data through the application
of a well-known NLP technique, Named Entity Recognition. In order to do so,
several ML approaches were used to identify and classify entities of interest from
unstructured archival text, with the intent of discovering which method reveals the
best results. For training statistical models capable of performing in the archival
domain, we have gathered training data, which consists of selecting and annotating
archival corpora. Then, we selected the ML algorithms usually associated with
Named Entity Recognition (NER) and have revealed state-of-art results in this task.

1

1.1. Motivation 2

The first algorithm used was Maximum Entropy (Maxent), which maximizes the
entropy of a given model subject to its defined features to make less implicit decisions
as possible. Then we experimented with Deep Learning, starting with Convolutional
and Recurrent Neural Networks. Here, while the CNNs are resource-efficient, the
LSTMs can preserve longer-term dependencies with the cost of higher complexity.
Finally, the latest architecture consists of a relatively recent approach in the scientific
community, which has revolutionized several NLP tasks, the Transformers. This
new approach presents a self-learning technique that can efficiently use the GPUs’
parallel computational power to train models with hundreds of million parameters,
making them have a broader and richer understanding of the language used. After
the models’ training, they were all subjected to validation tests to analyze their
performance, comparing the results of each one.

In the end, we found out that one of the barriers to creating a NER model applied
to a specific context domain is to generate data to train the model. To address this
problem, a smart annotation support tool has been implemented, which aims to use
ML models to speed up and assist the annotation process.

Throughout this project, several tools were generated that allowed to facilitate and
support its development. In order to encourage the investigation of this area of NLP,
all the produced material was made public through the creation of a Web platform,
NER@DI (Cunha and Ramalho, 2021c), including some of the ML models created in
this work and the smart annotator.

1.1 motivation

Due to the need to record national information, several archives emerged across
the whole country, highly increasing the number of documents in Portuguese
archives, even more in recent years. Nowadays, there is a colossal amount of archival
data already available online. According to Direção-Geral do Livro, dos Arquivos e
das Bibliotecas (DGLAB), the digital archive has more than 40 million images and
respective archival finding aids (DGLAB, 2021). However, the search for information
in these documents can become challenging to perform due to their volume and
complexity.

To promote the data search on archival data, we presented a solution that aims
to encourage the search of information in large volumes of archival documentation
using semantic criteria. Suppose the generated ML models can extract entities from
the archival finding aids with high confidence. In that case, the entities extracted

1.2. Objectives 3

could be used to develop intelligent browsing tools that would allow the navigation
between records through the relationship between the extracted entities.

This browsing mechanism would create new possibilities for processing the
archives’ information, enabling new approaches for exploiting the available data
using the relationships between different records which in the present is a complex
operation to perform.

1.2 objectives

The main goals of this dissertation are:

• Generate annotated archival data in order to train the ML models.

• Train and fine-tune several ML models capable of recognizing the required
Named Entities from archival corpora.

• Obtain the high validation F1-score values to use the extracted entities in future
works.

• Compare different ML algorithms to understand which one reveals the best
results for this domain.

• Implement a Web platform to allow the use of the ML models as a service.

1.3 document structure

This dissertation is structured as follows:

• Chapter 1 - Introduction

This chapter introduces the subject of this dissertation, identifying its primary
problem, motivation and objectives.

• Chapter 2 - State of the art

This chapter presents the relevant literature and related work associated with
this dissertation subject. It describes the archival documents structure, different
NER approaches and state-of-art ML algorithms.

• Chapter 3 - Archival Finding Aids Processing

This chapter describes the archival data processing, from data harvesting to
data annotation, generating the ML training data.

1.3. Document Structure 4

• Chapter 4 - Named Entity Recognition Models

This chapter introduces different approaches to training ML algorithms capable
of performing NER using.

• Chapter 5 - Named Entity Recognition Results

This chapter contains the validation results of the NER models.

• Chapter 6 - NER@DI

This chapter presents a Web platform developed to publish the generated NER
models, the intelligent data annotator, and some other tools that were created
along with this dissertation.

• Chapter 7 - Conclusion

This chapter contains this dissertation’s main conclusion, contributions and
future work.

2

S TAT E O F A RT

The main objective of this thesis is the extraction of named entities from Portuguese
archival finding aids with high validation results. Therefore, a research was carried
out on the most viable methods of recognizing entities in natural text.

This chapter discusses several NER approaches that have shown good results
in this field, as well as technologies and other resources that can be crucial to
successfully processing archival documents. It also presents the structure of the
archival data and the technologies needed to access the archives’ online repositories.

2.1 archival finding aids

In this work, we intend to perform Named Entity Recognition in archival data,
more precisely in their descriptions.

Archival Finding Aids, also called archival collection guides or archival descrip-
tions, are documents that describe archival materials. In fact, archival collections
can take enormous dimensions, which can make the search for information in these
documents extremely challenging. By describing the archive’s content, archival find-
ing aids establish administrative, physical and intellectual control over the archives’
holdings, helping the researchers retrieve the information they are looking for much
faster.

In Portugal, guidelines for the archival description have been created that describe
rules for standardizing the archival finding aids. The purpose of these standards is to
create a working tool to be used by the Portuguese archivist community in creating
descriptions of the documentation and its entity producer, thus promoting organiza-
tion, consistency and ensuring that the created descriptions are in accordance with
the associated international standards to this domain. In addition, the adoption of
these guidelines makes it possible to simplify the research or information exchange
process, whether at the national or international level.

These guidelines are divided into three distinct parts:

5

2.1. Archival Finding Aids 6

• Guidelines for descriptions of archival documentation;

• Guidelines for the description of entities holding archival descriptions;

• Guidelines for choosing and building standardized access points.

First, the guidelines for document descriptions consist of creating a solid structure
capable of ensuring the consistency and organization of documents, providing
methods of retrieving, integrating, sharing and exchanging data by organizing
information through levels of description.

Secondly, there are guidelines for describing archival authorities, which are applied
to describe the entities that own or create the archives, for example, individuals,
families or even institutions, adding information to contextualize the environment
in which the archival documents are created.

Finally, there are guidelines for choosing and building standardized access points.
This type of guidance, as its name implies, consists of determining, controlling and
standardizing the method of choosing the access points of the archival documenta-
tion, for example, the names of the entities or places associated with the archival
documents (Rodrigues et al., 2011).

In order to process the archival finding aids, it is essential to understand its
organization as well as to be aware of its structure. Despite the existence of these
standards, they act as guidelines, so it is not always possible to comply with them. It
is not expected that these methods will be strictly followed by files documented 500

years ago. That said, not all organizations have their internal processes structured the
same way, so many of the entities that produce archives adopt their own structures,
creating mechanisms that satisfy their needs.

This can be achieved through the hierarchy system presented in Rodrigues et al.
(2011). In order to create a dynamic mechanism that allows the producing entities to
shape the structure of their archival documents according to their own context, a
hierarchical system based on levels of description is then used.

• Fond - All archival documents of a given entity or organization constitute a
fond;

• Subfond - Corresponds to a subdivision of a fond which can exist independently.
For example, administrative departments or family subdivisions;

• Section - A section corresponds to a subset of a fond or subfond which does not
have a high degree of autonomy. It may represent geographical, chronological,
functional, thematic or a class of a classification plan. (For many archivists, the
concepts of Sub-Fond and Section are equivalent);

2.1. Archival Finding Aids 7

• Subsection - Corresponds to a subdivision of a section;

• Series - A series represents a set of documents, simple (pieces) or compound
(files), which were associated when they were created because they are doc-
uments of a similar nature. Usually, documents belonging to a Series are
associated with a specific function or activity or have a common relationship
between them;

• Subseries - This level corresponds to a subdivision of a series;

• File - Corresponds to a set of documents organized and grouped for use by its
holding entity. Usually, these documents are grouped by some criteria, such as
the subject or associated activity;

• Piece or Item - An item corresponds to the simplest element of this system. This
can contain the data associated with a letter, images or even sound records;

• Group of Fonds - A group of fonds, as the name implies, corresponds to a set
of fonds which are grouped together for some specific purpose, for example,
for archival management;

• Collection - The description level Collection corresponds to a set of documents
that were grouped in an artificial way through a specific criterion. These
documents may belong to different fonds. In addition, a collection can be
generated at different levels of description;

• Installation unit - An installation unit corresponds to a structure capable of
storing and preserving the desired information. For example, books, notebooks,
diskettes, cassettes, databases, etc.

Figure 1 shows a valid example of a structure that an archive can adopt.

2.1. Archival Finding Aids 8

Figure 1: Example of description levels structure.

Analyzing this diagram, it is possible to observe different levels of archival de-
scription that together constitute a hierarchy of the structure of a given archive.
Initially, there is a fond, which is divided into two sections and a subfond. These
sections contain two series, each composed of files that have items. This system is
dynamic, so it is easy to obtain different variations. Each entity that holds an archive
implements a similar system with different levels of description, creating a structure
that suits its context.

2.1. Archival Finding Aids 9

Figure 2: Archival fond of Casa Real (Portugal).

Figure 2 shows the structure of the description levels of the Casa Real archival
belonging to the Arquivo Nacional da Torre do Tombo (ANTT) . As it can be seen, this
fond, that corresponds to the Portuguese royalty, has at least one section, Mordomia-
mor, that represents the people who were part of the royalty, associated with the
palace management and administration territory. That said, there is a subsection of
Mordimia-mor, the Cartório da Nobreza, which is associated with bureaucratic services
of the court. Next, a series of the subsection is presented, Processos de Justificação
de nobreza, corresponding to the nobility justification processes. Finally, there is a
file associated with a singular entity, António José Vaz Velho, where all the nobility
justification processes of this entity are grouped.

2.2. OAI-PMH 10

2.2 oai-pmh

There are hundreds if not thousands of archives spread across the world. These
archives keep records that contain the entire human history, so it is often requested
access to their documents. In order to facilitate data sharing, most archives created
their own online repository to allow access to their records. The online repositories
use the OAI-PMH (Open Archive Initiative Protocol for Metadata Harvesting) proto-
col, ensuring the interoperability of standards, promoting broader and more efficient
dissemination of information within the archival community. This protocol enables
data providers to expose their structured metadata, enabling users to harvest it by
using a set of six verbs invoked within HTTP requests (Lagoze et al., 2002).

• GetRecord - Verb used to retrieve an individual metadata record from a reposi-
tory;

• Identify - Verb used to retrieve information about a repository.

• ListIdentifiers - This verb is an abbreviated form of ListRecords, retrieving only
headers rather than records;

• ListMetadataFormats - Verb used to retrieve the metadata formats available
from a repository;

• ListRecords - Verb is used to harvest records from a repository;

• ListSets - Verb used to retrieve the set structure of a repository.

In Portugal, most archival documents are already in digital format which can be
found on various online repositories such as the Portal dos Arquivos1 or the ANTT 2.
These documents are mapped into files with XML format, as we can see in Listing
A.1, which corresponds to an archival fond related to the censorship experienced
during the Salazar dictatorship in Portugal.

In this fond, we have an Identification Zone for each description unit. This zone
contains metadata about each unit, such as reference code, title, date, description
level, and dimensions. For example:

1 https://portal.arquivos.pt/
2 https://antt.dglab.gov.pt/

2.2. OAI-PMH 11

1 <archdesc level="otherlevel" otherlevel="F">

2 <did>

3 <langmaterial>Português</langmaterial>

4 <physdesc>

5 <dimensions>c. 44.000 u.i, c. de 2500 m.l.; papel, filme</dimensions>

6 </physdesc>

7 <repository>Arquivo Nacional da Torre do Tombo</repository>

8 <unitdate label="UnitDates" type="inclusive" certainty="False/False" normal="1880/1979">

ca. 1880/ca. 1979</unitdate>

9 <unitid identifier="1009215" countrycode="PT" repositorycode="PT-TT">PT/TT/EPJS</unitid>

10 <unittitle type="Atribuído">Empresa Pública Jornal O Século</unittitle>

11 </did>

12 ...

Listing 2.1: Fond description level.

This XML element represents the identification zone of the archival fond, with
reference code "PT/TT/EPJS". This code indicates that this fond belongs to Portugal
(PT), in the Torre do Tombo archive (TT), corresponding to a Portuguese newspaper
of that time, Empresa Pública Jornal O Século (EPJS). In addition, it is also possible
to check the date associated with the fond (ca. 1880 / ca. 1979) as well as its title
and dimensions. That said, following the organization of the document, there is a
section.

1 <c level="otherlevel" otherlevel="SC">

2 <did>

3 <unitid identifier="4490062" countrycode="PT" repositorycode="PT-TT">PT/TT/EPJS/A</

unitid>

4 <unittitle type="Formal">Arquivo da Redação</unittitle>

5 </did>

6 ...

Listing 2.2: Section description level.

This element is contained in the XML element of the archival fond, thus corre-
sponding to a subdivision of it. In this case, this section represents the Arquivo da
Redação, editorial archive in Portuguese, with the reference code "PT/TT/EPJS/A"

making this the section A of the fond. Finally, this section consists of a series, which
in this case represent the censorship cuts of this newspaper, containing installation
units.

1

2 <c level="otherlevel" otherlevel="UI">

3 <did>

4 <langmaterial>Português</langmaterial>

2.2. OAI-PMH 12

5 <physdesc>

6 <dimensions>1 mç. (143 f.); papel</dimensions>

7 </physdesc>

8 <physloc>Empresa Pública Jornal O Século, Cortes de Censura de ’O Século’, cx. 191, mç.

242</physloc>

9 <repository>Arquivo Nacional da Torre do Tombo</repository>

10 <unitdate label="UnitDates" type="inclusive" certainty="True/True" normal="

1959-12-01/1960-02-29">1959-12-01/1960-02-29</unitdate>

11 <unitid identifier="4490285" countrycode="PT" repositorycode="PT-TT">PT/TT/EPJS/A/2/242<

/unitid>

12 <unittitle type="Formal">Cortes de Censura de ’O Século’: maço 242</unittitle>

13 </did>

14 ...

Listing 2.3: Instalation Unit description level.

As can be seen, this Instalation Unit (UI) has reference "PT/TT/EPJS/A/2/242". In
fact, through this reference it is possible to identify each level of description of the
document. Listing 2.3 refers to Installation Unit Maço 242 (UI 242) of the censorship
cuts (Series 2), from the editorial archives (section A) of the newspaper O Século,
belonging to the TT archive, Portugal (fond "PT/TT/EPJS"). In addition, this level of
description contains data stored in images, and its corresponding textual description,
which can be seen in Listing A.1. One of the images that can be found on this UI is
presented in Figure 3.

2.3. Named Entity Recognition 13

Figure 3: Censored news from the newspaper O Século, taken from ANTT online repository.

This image was taken from the newspaper O Século, which was censored by
the famous Lápis Azul, a Portuguese symbol of censorship used in the Salazar
dictatorship. This newspaper tried to publish the escape of Álvaro Cunhal and other
political companions among the dictatorship’s opposition, from Peniche fortress, in
January 1960.

2.3 named entity recognition

One of the objectives of NLP is the classification and extraction of certain entities
in textual documents. It is easy to understand that entities such as people’s names,
organizations, places or dates translate into crucial information about their contexts.
This type of data can be used for various purposes, making this practice very popular.
Therefore, a new NLP subfield rises, Named Entity Recognition.

2.4. Active Learning for Named Entity Recognition 14

In the past, two different approaches were taken to recognize entities in natural
texts. Initially, specific regular expressions were coded to filter various entity types.
In some cases, this mechanism delivered good results, mostly when there was an
in-depth knowledge of the domain in which this method was intended to be applied.
However, this is not always the case. In fact, such an approach was not considered
exceptionally dynamic since it is necessary to rewrite a large part of the code if one
wants to change the domain language. Furthermore, the existence of ambiguity
between entities makes them hard to classify. For example, a person’s name can be
used as the name of a place.

Alternatively, statistical classifiers are used. This method consists of using ML
models to predict whether a specific word sequence represents an entity. This
approach has some advantages over the previous one. For example: one can now
use this solution in different languages without changing much code; The model
can be trained with different parameters and be adjusted to different contexts;
An annotated dataset is generated that can be reused for other purposes; etc. In
fact, today, several already pre-trained ML models are capable of identifying and
classifying various entity types. However, the available models are generic, meaning
that the entity prediction for more specific contexts can return poor results. Initially,
these models were trained in a supervised fashion (Sekine and Ranchhod, 2009),
however, recent research demonstrated that unsupervised methods could be used to
increase the models’ performance.

Despite being much more dynamic than the previous approach, using this type
of model leads to some work for the experimenter. The experimenter must write
down an annotated training dataset to prepare and train the model. Despite being
tedious work, it has a low complexity level and therefore does not require great
specialization (Ingersoll et al., 2013).

2.4 active learning for named entity recognition

In this section, Active Learning applied to NER techniques will be addressed in
order to explore methods of training Machine Learning statistical models.

Active Learning is a topic well known by the research community that aims to
improve the performance of a given model, taking into account how the dataset
used to train the model is chosen. In other words, this approach aims to strategically
select, based on some criteria, the more informative examples from the available
data. The idea is that the ML algorithm learns how to choose the best training data
in order to achieve higher results with fewer annotations. With this selective method,

2.4. Active Learning for Named Entity Recognition 15

the model is expected to perform better than using traditional supervised learning,
which consists of choosing a random set of data.

Thus, it is necessary to determine the most informative set of data for the model
and how it can distinguish it. Active Learning proposes several approaches to do
this, the most common one being uncertainty sampling. For example, Table 1 presents
confidence values of a simulated model trying to find out which label, A, B or C the
tokens Word1 and Word2 belong to.

Label A Label B Label C

Word 1 0.1 0.1 0.8

Word 2 0.5 0.3 0.2

Table 1: Model confidence example.

Analyzing this table, the model has 0.8 of confidence that Word1 corresponds to
label C and 0.1 of confidence that the same word corresponds to labels A and B. The
analysis is similar for the second row of the table, Word 2.

Thus, using the Least Confidence method, the word that describes more information
for the model is Word2 since the model has only 0.5 confidence that this word
corresponds to label A and even less confidence for the other labels. Furthermore,
as the probability is more distributed by the labels, it is considered that the model
has difficulty in classifying the Word2. Choosing this word to be annotated and then
used in training the model increases the likelihood that the model will be able to
classify it in the future.

Another approach referred in Shen et al. (2018) is Representativeness-Based, which
means that the model must learn to choose the information that does not add
redundancy to it. It must look for data that increases its knowledge, allowing it to
classify new problems. Adding repeated information to the model can generate the
phenomenon of data over-fitting that can be avoided following this approach.

Finally, it is interesting to mention one more approach, Entropy sampling or Un-
certainty sampling (Fang et al., 2017). The definition of entropy will be covered in
the sections below, however, the idea behind this method is to choose the data with
the highest entropy, i.e., the data with the greatest uncertainty. At first glance, this
method looks the same as Least Confidence, however, to calculate the entropy of an
instance, all probabilities are taken into account. In this example, it turns out that
the word chosen would also be the Word2.

2.5. OpenNLP 16

2.5 opennlp

One of the tools chosen for this dissertation was Apache OpenNLP, a machine
learning-based toolkit implemented in Java, belonging to Apache. Essentially and
as its name implies, its purpose is the processing of natural language through the
use of ML algorithms. It delivers a wide range of features, such as tokenization,
sentence segmentation, part-of-speech tagging, named entity extraction, chunking,
parsing, and co-reference resolution.

In this thesis, the features associated with NER will be addressed, which depend
on the tokenization task. At this time, Apache OpenNLP provides models for various
tasks in several different languages such as English, Spanish, Danish, etc, however,
it does not provide a pre-trained model of NER for the Portuguese language, so it
will be necessary to train one model from scratch.

To understand how OpenNLP works, it is necessary to investigate what kind of
ML algorithms it uses. In this case, the base algorithm used is Maximum Entropy,
which will be explored in the following sections (OpenNLP, 2017).

2.5.1 Maximum Entropy

The concept of entropy was borrowed from physics (thermodynamics) and applied
to various areas of computer science like the Information Theory or even classifica-
tion algorithms, such as Maximum Entropy where entropy represents the level of
uncertainty.

According to Goodfellow et al. (2016) in the Information Theory, the occurrence of a
given event with a low probability of occurring translates into more information than
the occurrence of an event with a high probability of occurring. On the other hand,
there is Information Entropy, which, in Information Theory corresponds to the measure
of uncertainty, i.e., the average quantity of information required to represent an
event drawn from the probability distribution for a random variable. The entropy
takes a low value when the probability of certainty for some event is high and takes
a high value when all events are equally likely. Figure 4 illustrates these statements.

2.5. OpenNLP 17

Figure 4: Information vs Probability (Left), Entropy vs Probability (Right).

Information entropy is a measure of the lack of structure or detail in the probability
distribution describing your knowledge. - Jaynes, E. T. 1982.

Maximum Entropy Models are statistical models that maximize the entropy of
probabilistic distribution subjected to an N number of constraints. These models
reveal good results when used to model real-world problems considered hard to
model. Usually, they are used to predict high dimensional data, in other words,
when there is a number of possible combinations much greater than the amount of
available data.

The principle behind this algorithm is that the distribution with the most uncer-
tainty compatible with the context domain should be chosen. To do so, it is necessary
to create several features that represent the information known about the domain. In
fact, these features represent restrictions of the model, which help the classification
of the intended target. After generating the features, it is necessary to maximize all
models’ entropy that satisfy these restrictions. By doing so, we are preventing our
model from having features that are not justified by empirical evidence, preserving
as much uncertainty as possible (Manning and Schütze, 1999).

Ignorance is preferable to error and he is less remote from the truth who believes nothing
than he who believes what is wrong. - Thomas Jefeerson (1781).

2.5. OpenNLP 18

In this chapter, the use of this algorithm applied to NER will be addressed, which
will explore the model features as well as the maximization of entropy restricted to
them.

2.5.2 Features

As previously stated, a feature is a way in which known information about the
context is passed to the model as constraints, i.e., evidence or hints that make the
model correctly classify certain specific cases.

Mathematically speaking, it can be represented as a binary function that for some
given x ∈ X, that represents the class of the entities we are trying to predict, and
y ∈ Y, that represents the possible contexts that we are observing, it returns the
corresponding boolean value.

f : X×Y −→ {0, 1}

All features correspond to functions with this signature. That said, each problem
has its own characteristics, which makes it necessary to identify new features when
we are faced with different contexts. We can say that features are context-dependent,
allowing the algorithm to adapt to different problems. The experimenter must
choose the type of information each feature adds to the model. In the function below,
an example of a possible feature is represented.

f (a, b) =


1 if a = Local and checkLocation(b) = true

0 otherwise.

where

checkLocation(b) =


1 if previous word in b is "em" and current word starts

with capital letter.

0 otherwise.

In the Portuguese language, when the token "em" (in) precedes a word that starts
with a capital letter, there is a high probability where that word corresponds to a

2.5. OpenNLP 19

Place entity type (e.g., "em Lisboa", "em Inglaterra"). Therefore, this feature would
help the model to classify Place type entities.

Through this type of constraint, it is possible to restrict the model to our context,
however, it is usually necessary to identify more than one feature, which leads to
the problem of interdependence between them. This can be resolved iteratively
so that the decision to be made, in a given iteration, takes into account previous
decisions. This iterative process is really important on sequence tasks where the
previous output can influence the following ones. For example, a person’s name is a
sequence of words starting with a capital letter. When the model classifies the first
word as a person’s name, there is a high probability that subsequent words starting
with a capital letter also belong to that name. Thus, the model must have the ability
to consider the decisions previously taken when classifying a certain token.

According to Ratnaparkhi (1998), the overlapping feature mechanism is the reason
that makes the Maximum Entropy algorithm distinguish itself from other models.
It makes it possible to add known information into the model and let the created
features overlap to try to predict the best possible outcome.

2.5.3 Entropy Maximization

Following the MaxEnt algorithm, the optimal solution to this classification problem
is the most uncertain distribution subject to the defined constraints. The idea behind
this is to choose the model that makes the fewer implicit assumptions possible. Thus,
after defining all constraints considered relevant to the context domain, the next
step is to maximize the entropy of the model. In order to do so, the function of
Information Entropy is used.

H(X) = −∑ p(a, b) log p(a, b)

The maximum entropy function is a convex function, which means that the value
of the weighted average of two points is greater than the value of the function in
this set of points. Thus, the sum of the entropy function is also convex. A constraint
on this function creates a linear subspace that corresponds to a surface that is also
convex and, therefore, has only a global maximum (Manning, 2003).

2.6. spaCy 20

Figure 5: Entropy function subject to restrictions.

As explained in Berger et al. (1996), in order to maximize the entropy of the model
subject to a limited number of features, we need to solve a constrained optimization
problem. This problem might seem trivial at first glance. In fact, a problem with
low complexity can be solved analytically, however, when the number of constraints
increases and they overlap with each other, it is not possible to find a general solution
analytically. This problem is then solved using Lagrange multipliers by forming a
Lagrangian function. An example of this resolution can be found in Morais (2018).

2.6 spacy

Another tool that was used in this dissertation is spaCy, an open-source library
for advanced natural language processing, belonging to the company Explosion,
founded by the creators of spaCy.

Again, this library offers several features associated with NLP, however, only those
relevant to NER will be addressed. Despite having several similarities to OpenNLP,
spaCy presents a very different approach to entity recognition, Deep Learning. It
is no secret that Neural Networks have unlocked new possibilities in the Machine
Learning context, achieving state-of-the-art results in many fields. This tool provides
several base models of different languages such as Chinese, Danish, Dutch, English,
French, Portuguese, etc. This is an advantage over the previous tool since we have
an available Portuguese model.

2.6. spaCy 21

This software was implemented in the python programming language and pub-
lished under the MIT license. In this section, the approach taken by spaCy regarding
the recognition of entities (spaCy, b) will be presented.

2.6.1 Transition Based NER

Most NER frameworks generally use a tagging system, which in practice translates
into attaching a tag to each word of interest in the document to further classify it.
Instead of using this type of structure, spaCy uses a different mechanism to deal
with this problem, a transition-based approach.

Figure 6: Example of Transition Based sequence applied on NER.

As we can see in Figure 6, this approach is based on transitions between different
states in order to correctly classify the target. The general idea about this system
is that, given some input token, the model has a set of available actions it can take
in order to classify each token, transiting into the possible state configurations. In
the end, the real challenge lies in predicting the actions or transitions to be made to
correctly predict the token’s label. To address this challenge, spaCy presents a Deep
Learning framework spaCy (2017).

2.6.2 Deep Learning framework for NLP

This framework consists of using a statistical model based on Neural Networks
to predict the actions to be taken. To apply this principle to natural text, first, we
have to process the input tokens calculating representations for the words in the
vocabulary. Then, to retain the words’ context, it is necessary to contextualize every
token in the sentence, which in practice means that we have to recalculate the word’s
numeric representation based on the sentence it belongs to. After that, the model
comes up with a summary vector representing all the information needed to help

2.6. spaCy 22

predict the word’s label. With that vector, the model is able to predict the best action
to be taken in order to transit to the next state.

In order to simplify this deep learning framework, it can be split into four different
steps, Embed, Encode, Attend and Predict.

Embed

The first task of this approach is Embed. This task consists of calculating word
embeddings using a word identifier in order to generate vectors for each word in
the document.

The Embed task generates numeric representations of each token of the document,
the word embeddings. In practice, in this stage, multidimensional vectors for each
token are generated to create a numeric vocabulary that the model can reason about.

Figure 7: Embed process.

In fact, the objective of this stage is to generate different representations for words
with different semantic meanings through multidimensional vectors. These vectors
allow using a vector distribution so that words that refer to the same entity will have
similar distribution values. This mechanism provides the model with tools that allow
it to have a richer understanding of the vocabulary. For example, given the word
"student" in the school context, other words such as "study", "book" or "class" are
also likely to be found in the same sequence, because they are all related to the school
context. It is important that the information about the words’ proximity is not lost
when we create our numeric representations in order to teach the model that those
words have some similarity between them. With this embedding mechanism, words
like "student", "pupil" and "finalist" will always be very similar in distribution.

This mechanism makes the model less limited to the annotated text, which trans-
lates into a greater capacity for learning.

Encode

In the Embedding stage, we created numeric representations for individual tokens,
however, the meaning of a word is not always the same and may vary depending on

2.6. spaCy 23

the context where it is inserted. In this way, the Encode task aims to recalculate the
token embeddings, creating context-sensitive vectors.

Figure 8: Encode process.

In order to create context-dependent vectors, we have to recalculate them, taking
into account the sentence where they are inserted. A frequent approach to calculate
contextualized word vectors in the sentence is the use of RNNs Lample et al. (2016)
which uses the whole sentence. However, spaCy’s developers believe that using the
whole sentence to get a word’s context is not the best way to do it. According to
them, calculating the word embedding based on the whole sequence will cause the
model to have difficulties knowing if a specific context should be associated with the
corresponding token. In some cases, this can result in data over-fitting, making the
model sensitive to things it should not. Thus, spaCy approaches this problematic
with CNNs, i.e., with a fixed window of N words for each side of the token, with
the belief that in the vast majority of scenarios, a small window of words is all it
takes to accurately represent the token’s context.

In addition, with this type of Neural Networks it is possible to create a decaying
effect, to define the level of importance that a given context has on the vector of a
word, which is not possible with the previously mentioned method. This makes
this method more dynamic and versatile in associating the context with the words,
according to spaCy developers.

Furthermore, by using CNNs, one can take advantage of parallelism, which is
something that is becoming more and more relevant with the arising of the GPUs
computational power, something that is not possible with RNNs architectures due
to their sequential nature.

Attend

Now that all the word vectors are contextualized, they can be used to help with
the prediction task. The challenge now is to know what information should be taken

2.6. spaCy 24

into account to predict the label of a certain word token. For that, spaCy introduces
the Attend phase.

Figure 9: Attend process.

This phase consists of selecting all the necessary information in order to correctly
classify our target. Given a query vector, the model must come up with relevant
data to associate that token to its correspondent entity type.

In order to do so, spaCy utilizes a feature mechanism that dictates the way the
output vectors are generated. These features are implemented to help the model
find all the vectors that the query vector attends to. With the defined features, the
model should collect all the data needed to classify a certain token. In order to do so,
by default, spaCy take into account the first token in the buffer, the words that are
immediately to the left and right of that word and the last entity previously classified
by the model. These features can be defined arbitrarily, ensuring the dynamism
and versatility of the model. This allows the experimenter to define new features
depending on his own context to fine-tune the model for his domain.

Predict

The last step of this framework consists of the actual prediction of the action that
the model should take, given the summary vector generated before.

Figure 10: Predict process.

2.7. TensorFlow BI-LSTM-CRF 25

After all the words are turned into vectors (Embbed), the vectors are contextualized
within the sequences (Encode) and the feature defined are taken into account,
generating the summary vector (Attend), the system is ready to make the prediction.

In fact, the predict step consists of taking the resulting vector from the Attend stage
and passing it into a simple multi-layer perceptron, which returns the actions proba-
bilities. Then the model validates all possible actions and chooses one according to
the algorithm’s confidence to correctly classify each token of the document.

Finally, this process is iterated through a cycle until the document is finished. It is
important to emphasize that all stages of this framework are pre-computed, i.e., they
occur outside the cycle, so when the model iterates through the document, fewer
computations are needed.

2.7 tensorflow bi-lstm-crf

Lately, Deep Learning has been the most used approach to respond to this NLP
task. Neural Networks have demonstrated several advances in the NLP field,
achieving state-of-the-art results in NER, surpassing previous architectures. In this
way, we used Google’s library TensorFlow to create an ML model and compare it to
the previous tools.

Tensorflow presents several ML features that allow the creation of various Neural
Networks architectures. However, this tool is not only applied to NLP tasks, but to
any field where the use of Deep Learning is intended. Thus, training a NER model
with Tensorflow requires greater knowledge of the entire process involved, from
converting vocabulary into word embeddings to training the neural network capable
of solving sequence tagging problems.

2.7.1 Recurrent Neural Network

One of the first approaches associated with Deep Learning in NLP was to use
Recurrent Neural Networks (RNN) (Graves et al., 2013).

2.7. TensorFlow BI-LSTM-CRF 26

Figure 11: Recurrent Neural Network.

In Deep Learning, the first option that comes to mind when we want to process
sequential tasks is the use of RNNs. In NER, the research community started to
use these Neural Networks as they revealed good results compared to the existing
solutions, making them the standard algorithm for this task. Despite that, RNNs are
also famous for some inconveniences, like the vanishing gradients making long term
dependencies difficult to deal with. Another problem is that, in order to correctly
classify a token’s label, one must consider the word’s neighbourhood before and
after it. RNNs are unidirectional, which means they can only rely on the prior
context of the word, assuming that the model reads the document in linear order. In
order to solve some of these problems, new features were added to this algorithm.

2.7.2 Long Short Term Memory

We can think of a Long Short Term Memory (LSMT) as an RNN capable of
preserving Long Term Dependencies. In fact, in order to solve the RNN’s memory
problem, a memory component was added to it.

2.7. TensorFlow BI-LSTM-CRF 27

Figure 12: Long Short Term Memory memory cell.

This new memory cell keeps a state that is updated across the Neural Network
chain by using input, output and forget gates (Olah, 2015). In short, these gates
are responsible for regulating the data that must be updated at each time-step, the
information that must be passed to the next cell and the information that must be
forgotten, respectively. Using this mechanism, as we keep updating the memory cell,
a notion of context is being created, enforcing the memory capability of an RNN,
thus making it more capable of dealing with the Long Term Dependencies problem.

With this solution, the memory problem was attenuated, however the model
can still only read the document in one direction, which means that the generated
context only refers to the prior words.

2.7.3 Bidirectional Long Short Term Memory

To make the model consider not only the context before the token but also the
context after it, a new architecture was used, a BI-LSTM.

This new approach consists of processing the document in both directions using
two different LSTMs, one for the previous context of the token and another for the
subsequent. As we are using LSTMs, this mechanism is capable of keeping long
term dependencies which means that the resulting vector will now have information
of the whole sentence. In this way, this approach allows the generation of more
robust numeric representations of each token.

Although this approach reveals better results than the use of a simple RNN, it is
important to emphasize that a BI-LSTM has a much higher complexity, making the
model more difficult to train, needing more time and computational resources.

2.7. TensorFlow BI-LSTM-CRF 28

2.7.4 BI-LSTM-CRF

BI-LSTM came to solve several problems of RNNs, obtaining state-of-art results
in several NLP tasks, however, its evolution did not stop there. In fact, in 2015, a
new article was released by Huang et al.Huang et al. (2015), introducing a new
architecture, BI-LSTM-CRF.

Figure 13: Bidirectional Long Short Term Memory Conditional Random Field.

This new model consists of adding a Conditional Random Field(CRF) to a BI-LSTM,
which enables the model to use sentence-level tag information to help correctly
classify the token. Like a BI-LSTM uses past and future features in the prediction
task, the CRF layer uses past and future tags to predict the token tag efficiently. In
other words, this new component receives the LSTM outputs and is in charge of
decoding the best tagging sequence, boosting the tagging accuracy (Ma and Hovy,
2016).

The use of this architecture has already proved itself, demonstrating state-of-art
results in several NLP tasks. In this work, we used the TensorFlow library to
implement this algorithm in order to perform NER in archival finding aids.

2.8. Transformers 29

2.8 transformers

For several years, LSTMs have achieved state-of-the-art results in most tag sequence
modelling, making them the most used algorithm for a wide variety of NLP tasks.
In fact, this deep learning technique has established itself in language modelling,
making Machine Learning models finally good at remembering things. However, in
December 2017, Google published a new article that would be the very beginning of
a new era of NLP, "Attention Is All You Need" (Vaswani et al., 2017) introducing a
new architecture, Transformers.

As we saw in the past, RNNs worked well for NLP, however, due to their sequential
nature, they prevented the use of parallelism efficiently, which severely limits today’s
computational power. In fact, the model could only reason about a word when all
the previous words were already processed. In addition, when present with long
sequences, RNNs presented the Vanishing gradient problem, which was mitigated
with the upgrade to LSTMs, however, this practice considerably increased the
complexity of the problem, acting as a fix and not as a definitive solution.

Thus, Transformers were introduced as a better version of this approach, solving
these problems by using the computational power of GPUs, processing all the
tokens of the sentence in parallel, reducing the sequential computation and creating
possibilities for creating more capable models. Over the last 4 years, we have
witnessed an NLP revolution that has completely changed the way we create and
use NLP models. We can say that this big change was due to two key factors:

• Enabling Transfer Learning in NLP models, pre-training them with unsuper-
vised learning.

• Drastic efficiency increase in the processing of NLP models, thanks to the
Attention mechanism that allows processing large amounts of text in parallel.

2.8.1 Transfer Learning

As the name implies, transfer learning consists of storing knowledge obtained
during the resolution of a problem so that this knowledge can be reused in new
problems. In computer vision, this technique has been widely used over the last
decade, allowing the reuse of pre-trained models on large datasets, such as Ima-
geNET (Russakovsky et al., 2015). This makes it possible to train robust models with
less effort because, with less training data, it is possible to generate results similar or

2.8. Transformers 30

even superior to models trained from scratch that need a higher amount of training
data.

From 2013 to mid-2018, the most common method of training an NLP model
was to use pre-trained word embeddings generated through algorithms such as
word2vec (Mikolov et al., 2013) or Glove (Pennington et al., 2014). This method
greatly impacted the NLP community, allowing ML models to create relationships
between words and calculate their similarity. Despite that, these word embeddings
were used to initialize only the first layer of the neural network, being necessary to
train all remaining layers with training data associated with the intended task.

This method made it difficult to use transfer learning, as it is only possible to
apply the knowledge previously generated in the first layer of the Neural Network.
Sebastian Ruder introduces this problem by calling these word embeddings "shallow
representations that trade expressivity by efficiency", which allows the model to
learn only low-level features about the vocabulary (Ruder, 2018). With this method,
most of the token semantic meaning and contextualization was lost, thus limiting
the performance of the models.

Recent approaches introduced new methods for transferring the model’s knowl-
edge by creating fully pre-trained models. Thus, the knowledge of the model can
be fully reused for different tasks, keeping both low and high-level nuances of the
vocabulary, thus enabling transfer learning in NLP.

Over time, the scientific community continued to explore possibilities with LSTMs,
tweaking them and adding components to them, creating models like LSTM-CNN,
LSTM-CNN-CRF, etc. At the same time, unsupervised learning approaches were
also coming into the scene (Dai and Le, 2015).

In 2018 a new article was released Radford et al. (2017) where an unsupervised
trained LSTM was able to perform sentiment analyses. This model, trained in
amazon reviews, managed to achieve state-of-the-art results in this task, drawing
attention to this learning method. We can say that this was a big step in terms of
applying unsupervised learning techniques on sentence classification, however it
was still focused on only one specific task.

Afterwards, another research that has greatly impacted this field came out, Peters
et al. (2018). Here the authors introduced Embeddings from Language Models
(ELMo), presenting a feature-based approach that generates deep contextualized
word vectors where the words’ representations are functions of all the internal layers
of the model. By taking into account not only the word’s syntax and semantics, but
also their context meaning, the same token would have different representations

2.8. Transformers 31

when used in different contexts. This time, the LSTM was pre-trained on a large
corpus, making it possible to achieve good performances on several NLP tasks.

Then, in Howard and Ruder (2018) the authors presented ULMFiT resulting in
one of the first successful applications of transfer learning on NLP, where they pre-
trained a model with a huge dataset containing more than 100 million words (Merity
et al., 2017). By fine-tuning this pre-trained model, it was reused for different NLP
tasks enabling generalization with only 100 labeled examples. Due to this transfer
learning property, a pre-trained model fine-tuned with 10 times less annotated data
could finally perform as good as a model trained from scracth.

2.8.2 Attention Mechanism

The new transformer architecture has revolutionized token processing. In fact,
with this architecture, it is possible to make use of parallelism processing all tokens
simultaneously, improving the efficiency of this process drastically. But how does
this mechanism work? What is the difference that makes this solution superior to
previous architectures? To answer these questions, let us address the Self Attention
mechanism applied to natural text processing.

This mechanism aims to create new representations from word embeddings,
capable of expressing a greater notion of context. In other words, for each sentence,
it is intended to associate a degree of relevance between a certain token and the
remaining tokens of the phrase. For this, a methodology that makes use of queries
(Q), keys (K) and values (V) vectors was introduced.

Figure 14: Attention Mechanism, taken from Vaswani et al. (2017).

2.8. Transformers 32

In practice, for each Query vector, we perform a dot product between this vector
and all the key vectors, thus generating the attention scores, which represent how
much each token attends to the other tokens. Then, the softmax function is used
to normalize these values between 0 and 1, creating a probabilistic distribution,
where the high values are heightened and the low values are depressed in order
to create weights with a stronger opinion. Finally, in order to calculate the final
output, another dot product is performed between the previously calculated weights
and the Values vectors (Alammar, 2018). This final output consists of an improved
version of the initial word embeddings since this new representation has a notion of
contextualization of each token in the sentence.

In Figure 15 taken from Bahdanau et al. (2015), we can observe the attention scores
of a translation task, where it can be seen which words are attending to what.

Figure 15: Attention Scores.

As can be seen in this example, the order of the words in the English-translated
sentence is different from the sentence translated into the French language. We can
verify that the attention scores correctly represent this change in the order of the
words.

In order to keep track of the words’ position in the sentence, positional information
is added to word embedding before this Self-Attention process. This makes it
possible to process all sentence tokens in parallel, which changes everything.

2.8. Transformers 33

In Transformers, the attention mechanism is performed in the Multi-Head-Attention
layer. This layer consists of using 8 different heads, i.e., 8 self-attention mechanisms
with 8 different Query, Key and Value matrices. In this way, the model can learn 8

different semantic meanings from attention, such as grammar, vocabulary, etc. Once
again, all this can be done in parallel. Currently, with the computational power of
parallelism provided by technological advances in GPUs, calculations such as the
matrix dot product are considered a cheap operation, making this entire mechanism
extremely efficient. This allows training models in much larger amounts of text than
previous architectures.

Complexity Analyses

Figure 16, taken from Vaswani et al. (2017) allows us to compare the self-attention
mechanism complexity with the architectures used previously. Here, n corresponds
to the sequence length, d to the representation dimension, k is the kernel size of
convolutions.

Figure 16: Self-Attention Complexity compared with RNN and CNN.

First, we have the complexity per layer. Self-Attention obtains better numbers
when the dimension of the representations (d) is smaller than the sequence length
(n), which is usually the case. Then there are the sequential operations, which has
always been one of the biggest problems of RNNs. However, Self-Attention has
a constant value when it comes to the amount of minimal sequential operations
required, thus drastically increasing its efficiency. Finally, we have the Maximum
Path length, which is intended to measure the performance of the algorithms in
the management of Long Term Dependencies. As seen before, the dependencies
between words significantly impact several NLP tasks, such as NER, so the models
must efficiently memorize the dependencies between the words. Once again, we
have that Self-Attention is the algorithm that presents the best results in this aspect,
with a constant maximum size.

2.8. Transformers 34

2.8.3 Generative Pre-Training

With the advances in the application of transfer learning in NLP models and
the introduction of transformers, it was a matter of time until a model capable
of using the best of both worlds was created. In June 2018, Radford et al. (2018)
released the first version of the Generative Pre-Training (GPT). This model presents
a semi-supervised approach which consists of using an unsupervised component
for the model pre-training and manual text annotations for the fine-tuning. This
work extended ULMfit and ELMo, with the primary objective of creating a general
model that could transfer its knowledge to a wide range of NLP tasks with little
fine-tuning.

In order to do so, GPT was created based on the Transformer decoder, which uses
a masked-self-attention mechanism. It differs from a normal self-attention in how
the attention scores are calculated. This approach uses a mask to hide the future
context of the token, so the attention scores are calculated based only on the past
context. In practice, the model is pre-trained by predicting the following word in
the sentence in an auto-regressive way. For example, given the sentence "Joseph

likes to run" the model starts with the token Joseph while all the other tokens
are masked. Then, on the second step, it tries to predict the next word but can
only attend to words that have already been generated, in the case, only the token
"Joseph". In the third step, the attention scores are calculated based on both tokens
"Joseph" and "likes" and son on.

Figure 17: GPT NLP tasks results. GPT left-to-right Transformer.

2.8. Transformers 35

As we can see in Figure 17 (Right), the decoder cannot access the information of
both sides of the token, making this model unidirectional. This makes it suitable
for text generation tasks, however, for Named Entity Recognition, it is essential to
consider both future and past contexts so we can say that this model is not optimal
for our task.

Despite this, this GPT model obtained state-of-the-art results in several NLP tasks,
proving that by combining unsupervised learning for pre-training and supervised
learning for fine-tuning, we could create models that can perform a wide range of
tasks with "little adaptation".

In Figure 17 (Left), we can observe the performance in several tasks of two pre-
trained models, LSTM and Transformer. According to Radford et al. (2018), due to
the Self-Attention mechanism, transforms manage to retain Long Term Dependencies
more effectively than an LSTM, which makes the pre-trained model obtain a more
comprehensive knowledge of the language. Thus, the information transferred from
the model’s pre-training has higher quality, having a more significant impact on
the tasks where it is applied. Therefore, the model pre-trained with Transformer
outperformed the LSTM model.

2.8.4 Bidirectional Encoder Representations from Transformers

Right after the launch of the GPT model, a new Transformers based model also
came out, Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019), however, this model was based on the transformer encoder architecture.

An encoder’s main purpose is to create numerical representations that contain the
meaning of the words, contextualized within the sentence, using the self-attention
mechanism. The main difference between the encoder and decoder is that, while the
decoder is unidirectional, the encoder is bidirectional (Figure 18 (Left)). As we saw
in the GPT model, in the pre-training, the model could only attend to the words on
the left to predict the next word in the sentence due to its auto-regressive property.
An encoder uses a different method, Masked Language Modeling (MLM), which
masks a random word in the sentence while letting the model predict the missing
word. By training the model to predict hidden words, it can use both the left and
the right context to make that prediction, thus generating a bidirectional model. In
this way, the generated representations are affected by all the words in the sentence,
creating meaningful representations of the whole sequence.

As stated in Devlin et al. (2019) a model that is restricted to attend only to the
previous words (left to right) can achieve great performance in sentence-level NLP

2.8. Transformers 36

tasks, however, for token level tasks (Figure 18 (Right)), it is important to attend to
both directions. For example, in the token classification task, the context after the
token can be crucial to correctly classify it.

Figure 18: BERT bidirectionally applied to token level task.

BERT model was pre-trained with MLM on the Book Corpus (Zhu et al., 2015)
and English Wikipedia making a total of 3300M words. It is a bidirectional model
that needs low effort for fine-tuning, which outperformed many task-specific ar-
chitectures, obtaining state-of-art results in 11 NLP tasks, both token and sentence
level.

Subword Tokenize

For an ML statistical model to be able to interpret natural text, it is necessary
to transform the text into numerical representations capable of transmitting the
meaning of that text to the machine. These representations are the starting point
for the ML models, so the higher the amount of information contained in these
numerical representations, the better their interpretation will be, conditioning the
performance of the entire ML process.

One of the techniques for creating these representations is tokenization. In NLP,
this technique has been studied and widely used in several areas of token processing,
such as NER. In this case, this technique usually uses a word-based tokenizer, i.e.,
defining a fixed size N for the vocabulary and then associating an id for the N most
frequent words of that vocabulary. This method has shown good results in several

2.9. Evaluation 37

contexts, however, it has several limitations. Due to the fact that the number of
words is limited, ML models have difficulties dealing with out of vocabulary words
or even words that are rarely used. One solution for this problem is to increase the
number of vocabulary words (N), however, this would lead to other problems such
as making the computational model heavier, increasing the number of rare words.

On the other hand, as each distinct word has a different id, similar words have
entirely different meanings, which causes information about the relationship of the
words to be lost during this phase, decreasing the performance of the models.

Thus, in order to solve these limitations and increase the meaning of the numerical
representations, models like BERT use a different technique, sub-word tokenization.

This method aims to decompose rare words into sub-words, keeping the most fre-
quent words intact. In fact, observing a given vocabulary, words like "tokenization"

can be decomposed into two sub-words "token" and "ization". Using a word-
based tokenizer, the words "token" and "tokenization" would have representations
with entirely different meanings, however, with a sub-word tokenizer, by splitting
the word "tokenization" into two sub-words, the model can learn that this word is
composed of sub-words that it already knows. In this case, the model associates the
word tokenization to the most frequent word "token" thus answering the problem
of out-of-vocabulary words and maintaining a vocabulary with a reasonable size
(HuggingFace, 2021).

Models that use this method have increased their accuracy, mainly in the classifi-
cation of unknown words (Sennrich et al., 2016).

2.9 evaluation

When one wants to evaluate the quality of a NER model, it is important to
understand which metrics should be considered, as the words that represent the
named entities correspond to a small minority of the words in a document.

The process of NER can be seen as a problem of binary classification, considering
that a given token belongs or not to a certain type of entity. In this way, a token can
take a negative value if it does not correspond to a named entity or positive value
otherwise. Normally, most of the tokens in a given document correspond to negative
tokens. That said, a confusion matrix can be used, which allows visualization of the
performance of a ML algorithm.

2.9. Evaluation 38

Predicted Negative Predicted Positive

Actual Negative True Negative False Positive

Actual Positive False Negative True Positive

Table 2: Confusion Matrix.

Observing Table 2, each row represents the actual instances of a certain named
entities and the columns represent the instances of the predicted ones. Calculating
metrics for NER based on the total number of tokens can be misleading. Suppose
that one intends to use accuracy to validate a sentence with ten tokens, in which
only one of them corresponds to a named entity that the model did not detect. Table
3 represents this scenario.

Predicted Negative Predicted Positive

Actual Negative 9 0

Actual Positive 1 0

Table 3: Concrete example of the confusion Matrix.

The accuracy metric consists of dividing the sum of True Positives and True
Negatives by the total number of tokens.

Accuracy =
TruePositive + TrueNegative

Total
Thus, the model obtained 90% accuracy, even though no entity was recognized

correctly. In fact, the objective of NER is to find named entities, so being able
to correctly classify tokens that are not entities is useless in this context, despite
obtaining high accuracy. That said, the metric accuracy does not satisfy the needs of
this area of NLP.

So, in order to solve this problem, two different metrics are introduced, precision
and recall. Unlike accuracy, these metrics measure the quality and quantity of
entities found by the model.

Precision represents the relation between True Positive and the sum of True Positive
and False Positive. This represents the percentage of entities that the model correctly
recognized. So to achieve high precision values, the model must be meticulous in
its decision making, marking only tokens as entities when it has a high degree of
certainty. This metric benefits models that implement a careful selective approach
and undermines models that return to many False Positive results.

2.9. Evaluation 39

Precision =
TruePositive

TruePositive + FalsePositive
Finally, recall is a metric used to measure the relation of the number of entities

found and the number of entities that should have been found. To obtain high recall
values, the model must consider uncertain entities to increase the probability of
finding the largest possible number of correct entities.

Recall =
TruePositive

TruePositive + FalseNegative

It is easy to understand that there are specific criteria that allow cheating this
validation system to obtain high values for each of these metrics in separate. Suppose
the model is less flexible and only classifies entities which it is sure about their
class. In that case, it tends to have high precision, however, a low recall as it is likely
that, in order to reduce the risk of classifying wrong entities, there are many False
Negative tokens. The opposite also happens, by using a very flexible system, we get
a high recall value and low precision.

One way to solve this problem is to create a combination of both metrics, which
gives rise to a new metric, the F1-score.

F1 = 2
Precision× Recall
Precision + Recall

This metric is based on a weighted harmonic mean between precision and recall,
representing a balance between both. This means that, for a model to have a good
F1-score, also known as F-measure, it has to obtain high values in both metrics.

Finally, it is important to note that the F-measure alone is insufficient to validate a
statistical model. All these metrics complement each other and should always be
used together to judge the model’s performance (Derczynski, 2016).

3

A R C H I VA L F I N D I N G A I D S P R O C E S S I N G

To train and validate new models capable of recognizing entities in the archival
domain, creating annotated data with the respective named entity labels is necessary.

In fact, for our ML models to be able to learn how to correctly identify the
intended named entities, they need to be trained with numerous data samples. The
more representative the examples used, the greater the scope and generalization
of the models created. Therefore, training data must be generated from archival
context datasets. As we did not find any archival finding aids datasets with already
annotated entities, it was necessary to build our own annotated archival corpora.

In this chapter, we will cover all the processing of this data, from its harvesting
from the archival repositories, data cleaning, annotation and finally, the data parse
in order to generate the annotated corpora that will be used throughout this work.

3.1 data harvest

The first stage of data treatment was data harvesting. This process consisted of
accessing the online repositories of the archives and extracting the intended archival
finding aids.

For this, the OAI-PMH protocol was used. This protocol allows access to the
requested data by using verbs injected in the query string. For example, to extract
archival finding aids from an archival repository, the following verb can be used:
"GetRecord&metadataPrefix=ead&identifier=oai:PT/ABM/:807". This verb allows
us to harvest the archival finding aids of the archival fond with reference code
"PT/ABM/:807" which in this case corresponds to a parish named Paróquia do Curral
das Freiras. This specific archival descriptions are kept in the repository of the Arquivo
Regional e Biblioteca Pública da Madeira. The repositories return an answer in XML
format, containing the metadata regarding the identified fond. An example of the
Paróquia do Curral das Freiras archival finding aids can be seen in Listing A.2

40

3.2. Data Description 41

In addition, we also used an online repository1 that congregates a set of archival
finding aids from several Portuguese archives and serves them via OAI-PMH. This
method was repeated to obtain the archival finding aids used in this dissertation.

3.2 data description

The data used to test the algorithms referred in this dissertation correspond to
datasets from two national archives, the Arquivo Distrital de Braga2 and the Arquivo
Regional e Biblioteca Pública da Madeira3.

Firstly, there is a dataset of a fond that shows a pioneering period in computing
history between 1959 and 1998. This fond (PT/UM-ADB/ASS/IFIP), produced by
the International Federation for Information Processing (IFIP), contains a section
corresponding to the Technical Committee 2, which has a subsection corresponding
to Working Group 2.1. This subsection is composed of several series where different
archival descriptions are organized, for example, correspondences, meeting Dossiers,
news from newspapers, etc.

Secondly, there are two datasets corresponding to a series (PT/UM-ADB/DIO/MAB
/006) from the archival fond Mitra Arquiepiscopal de Braga, which contains genre
inquiries. The archival descriptions in this series contain witnesses’ inquiries to
prove applicants’ affiliation, reputation, good name or "blood purity". One of the
datasets has a very standardized structure, while the other contains many natural
text elements.

Thirdly, there is a historical dataset corresponding to the fond (PT/UM-ADB/FAM/
ACA) of the Arquivo da Casa do Avelar (ACA), which depicts the family history of
Jácome de Vasconcelos, knight and servant of King D. João I. This family settled in
Braga around the years 1396 and 1398 with a total of 19 generational lines, up to
the present time. This fond is composed of subfonds and subsubfonds that contain
records associated with members of this family with a patrimonial, genealogical and
personal domain.

Fourth, there is the dataset of the Familia Araújo de Azevedo fond (FAA), also known
as Arquivo do Conde da Barca. This archive, produced from the year 1489 to the
year 1879 by Araújo de Azevedo’s family, who settled in Ponte da Barca and Arcos
de Valdevez (district of Viana do Castelo) at the end of the 14th century, contains
records predominantly associated with foreign policy and diplomacy across borders.
This fond is composed of several subfonds composed of archival descriptions with

1 http://portal.arquivos.pt:3000/
2 http://pesquisa.adb.uminho.pt
3 https://arquivo-abm.madeira.gov.pt/

3.3. Data Cleaning 42

information from members of the FAA family, such as requirements, letters, royal
ordinances, etc.

Fifth, there is a dataset that characterizes the streets of Braga in the year 1750. This
corpus contains elements that characterize the history, architecture and urbanism of
each artery in the city, which help understand the main lines of its evolution.

Finally, two datasets from the Arquivo Regional e Biblioteca Pública da Madeira were
used which correspond to two archival fonds, more precisely to Paróquia do Jardim
do Mar and Paróquia do Curral das Freiras, both parishes from Madeira archipelago.
These fonds consist of three series each, representing registrations of weddings,
baptisms, and deaths. Each series consists of files that correspond to the year of each
record, and finally, each file has a set of pieces with archival descriptions.

3.3 data cleaning

As we can see in Listing A.2 and in Listing A.1, the XML file retrieved from
the archive repositories contains quite a few elements, describing in detail various
properties of the respective archival documents. It does not make sense to recognize
entities in text attributes that are already completely discriminated, so at this stage,
we selected the elements of the XML tree that contain unstructured text. For example,
fields like scopecontent and unittitle contain text descriptions, where it is possible
to extract entities of interest.

After selecting the intended fields, their content was extracted using regular
expressions, XSLT scripts and python scripts. In the end, plain text datasets with
loose sentences were obtained.

3.4 data annotation

Data annotation consists of adding label tags to tokens in a dataset. In the data
cleaning phase, archival datasets with natural text were generated. In this phase,
the intention was to generate the ML algorithms training data by identifying and
classifying entities of the following type: Names of People, Organizations, Places,
Dates and Professions.

In Ingersoll et al. (2013) two distinct methods for annotating documents were
identified. The first method consists of annotating only one type of entity in each
dataset, creating several versions of the same corpus, annotating only one type of
entity in each one. The second approach is to annotate all entity types in the same
document at once.

3.4. Data Annotation 43

The author argues that the first approach has several strengths, such as the ability
to identify nested entities and greater flexibility in choosing which model we want
to use. In fact, using the first method, the generated annotations may contain tokens
with more than one tag associated with them due to the existence of nested entities.
This allows datasets to retain a greater meaning from these entities. On the other
hand, annotating only one type of entity in each document makes it possible to train
models to identify only that type of entity, which increases its flexibility. A model
with unnecessary information can lead to inefficient use of computational resources.

Despite this, this method introduces some drawbacks. Training a model with more
than one entity makes it learn to disambiguate entities from each other. For example,
given the sequence "José Pacheco LDA", we are dealing with a named entity Orga-
nization, however, a model that does not know Organizations will be tempted to
annotate this entity as Person "José Pacheco". Providing more information to the
model makes it learn more, thus achieving better results. Furthermore, one quickly
realizes that, in a normal case where we want to extract all kinds of entities, training
several models instead of one is much more time-consuming and computationally
expensive. Looking at newer architectures, even fine-tuning a model can take hours,
so repeating this process would drastically increase energy and time consumption.
In addition, by using a single entity model to classify multiple entity labels, we
have to perform an entity merge at the end of the entity recognition, increasing the
complexity of the problem.

That said, we verify that reference datasets such as CoNLL-2003 (Sang and Meul-
der, 2003) or wikigold (Balasuriya et al., 2009) contain more than one annotated
entity. In this way, we decided to annotate all entities in the same document.

With this problem solved, we now move on to the actual annotation process.
Due to the size of the datasets, the annotation process is usually expensive and
time-consuming so, in order to speed up this process, different annotation methods
were used.

3.4.1 Statistical model Approach

The first approach consists of using an ML model trained in generic Portuguese
texts to identify entities in unlabeled text. However, since this model has not been
trained in the archival context, it cannot recognize all the intended entities. A
problem associated with this method is that there are usually many false positives,
which can generate more work for the experimenter. However, the idea is that, as
annotated texts are generated, this text is used to retrain the ML model, increasing

3.5. Data Parse 44

its efficiency and autonomy at each iteration. It is important to note that this
method acts as a support mechanism for the annotation process, and it always needs
validation by the experimenter.

3.4.2 Regex Approach

Another approach used when annotating datasets was the use of regular expres-
sions. This method consists of creating filters and conditions that intercept certain
patterns in the text. Despite allowing the extraction of many entities quickly, this
method is not very flexible, and it is not easy to disambiguate entities. For example,
a person’s name can be contained in an entity of the type Organization or Location,
which is difficult to distinguish with this solution. However, some of the used
archival finding aids contain some patterns in their structure, for example, records
of baptisms, marriages, or, in the simplest case, date-type entities. Thus, although
this method could not identify all document entities, it was used to support the
annotation process, speeding up the annotation of identified patterns and most of
the dates present in the documents.

3.4.3 Manual Approach

Effectively, if the previous methods managed to recognize all entities in the texts,
there was no point in creating the final NER model. In the end, everything boils
down to the experimenter expertise. The experimenter has to create the right regex
rules and feed the ML model with the right annotations to combine all these methods
with the last method, manual annotation. This method implies that a person, who
is knowledgeable of the domain, manually writes down each token of the corpora.
Despite being slow and quite tedious, this method is the one that yields the best
results. In order to facilitate this process, a JavaScript application was created that
allowed selecting and annotating an entity with a simple key-press. In this thesis,
manual annotation was the predominant annotation method due to the variety of
archival contexts. However, it was always assisted by previous methods.

3.5 data parse

After we have all our datasets annotated, these are ready to be used in the ML
model’s training. In this work, different ML toolkits and ML architectures were used,

3.5. Data Parse 45

which use different input formats. Thus, it is necessary to perform a data parse for
each tool.

OpenNLP Format

In order to train an ML statistical model in the Portuguese archival domain,
OpenNLP needs annotations that represent the context in which it will be used
to recognize entities. Thus it is necessary to create data samples in the following
format:

1 <START:Pessoa> Willem van der Poel <END> envia carta ao <START:Profissao> Presidente <END> da <

START:Organizacao> IFIP <END> informando que gostaria de ser dispensado deste mandato, mas

tem orgulho de fazer parte da criação do primeiro relatório sobre a linguagem algorítmica.

Listing 3.1: OpenNLP annotation from the IFIP corpus.

1

2 O autor, <START:Profissao> Coronel <END> , <START:Profissao> Comandante <END> do regimento de

artilharia 3 e Encarregado do <START:Organizacao> Governo <END> interino da Praça de <START:

Local> Elvas <END> , implora a protecção de <START:Pessoa> António de Araújo de Azevedo <

END> para integrar a futura lista de promoções, visto que ultimamente foi preterido três

vezes por oficiais modernos e que até foi recusado pelo <START:Profissao> Marechal <END> <

START:Pessoa> Beresford <END> para integrar a expedição ao <START:Local> Rio Grande <END> .

Listing 3.2: OpenNLP annotation from the Família Araújo de Azevedo corpus.

These annotations correspond to real examples of our document annotations. All
annotated entities are marked by tags <Start:Entity Type> at the beginning and
<END> at the end. It is also interesting to note that the annotations have different
types of entities. This is something that was not supported by OpenNLP release
versions, however, this feature was later added.

Despite this, writing down just two examples is not enough. According to
(OpenNLP, 2011), in order to create a NER model that has satisfactory performance
with the OpenNLP toolkit, close to 15000 annotations are needed.

spaCy Format

Another NLP toolkit used to find entities in archival finding aids is spaCy, which
like OpenNLP, also requires data samples associated with the archival domain.
spaCy accepts new data samples in the following format:

3.5. Data Parse 46

1 ("- Mónica , filha de João de Sousa e Custódia Costa , da freguesia da Sé .", {"entities":[(2,

8, "Pessoa"),(20, 33, "Pessoa"),(36, 50, "Pessoa"),(69, 71, "Local")]}),

2 ("Que fez a Confraria de São Lázaro da cidade de Braga com D. Apolónia Maria Ribeiro .", {"

entities":[(10, 33, "Organizacao"),(47, 52, "Local"),(57, 82, "Pessoa")]}),

3 ("Contém o despacho dado em Lisboa pelo Arcebispo , autenticado com o selo.", {"entities":[(26,

32, "Local"),(38, 47, "Profissao")]}),

Listing 3.3: spaCy annotations from Arquivo da Casa Avelar corpus.

In this case, we have an example of annotations from the archival finding aids of
Arquivo da Casa Avelar archival fond.

Here, a python dictionary format was used to annotate the named entities. This
dictionary keeps all the sequence tokens, followed by an array with the entity labels
and their delimiting spans, registering the beginning and end of each named entity.

BIO Format

In addition to the NLP toolkits mentioned above, in this thesis, other Deep
Learning architectures were created to recognize entities in this domain. To train
these architectures, we used the BIO data format (Beginning, Inside or Outside of
the named entity), a common tagging format for tagging tokens, not only in Named
Entity Recognition but also in several token level NLP tasks.

1 O Ficou O muito O que O que

2 O muito O com O o O pode

3 O contente O o B-Profissao ministro O segurar

4 O por B-Profissao Marechal B-Pessoa António O a

5 O saber B-Pessoa Beresford I-Pessoa de O dignidade

6 O que O e I-Pessoa Araújo O da

7 O o O que I-Pessoa de O nação

8 O dito O ambos I-Pessoa Azevedo O .

9 O embaixador O são O é

10 O tem O da O o

11 O conferenciado O opinião O único

Listing 3.4: BIO annotation from the Família Araújo de Azevedo corpus.

These listings correspond to real annotations taken from our annotated archival
corpus, archival finding aids of Familia Araujo de Azevedo fond. As we can see,
each token is tagged with a label. The label "B-Entity" marks the beginning of
the named entity, followed by the label "I-Entity" tagging the token inside of the
named entity. All the out of entity tokens are tagged with the label "O".

3.5. Data Parse 47

CSV format

Another format widely used in this area is CSV. During the research carried out on
NER models, several architectures were tested, with datasets annotated in different
contexts. Some of these architectures used this format to train their ML models.

1 Sentence #,Word,Tag ,o,O Sentence: 97,Registo,O ,de,I-Pessoa

2 ,Zemanek,I-Pessoa ,pagamento,O ,de,O ,Félix,I-Pessoa

3 ,envia,O ,ao,O ,batismo,O ,de,I-Pessoa

4 ,carta,O ,Dr,O ,n,O ,Sousa,I-Pessoa

5 ,a,O ,Turski,B-Pessoa ,º,O ,Mãe,O

6 ,J,B-Pessoa ,2,O ,Francisca,B-Pessoa

7 ,Carter,I-Pessoa ,Manuel,B-Pessoa ,Pereira,I-Pessoa

8 ,concordando,O ,Pai,O ,da,I-Pessoa

9 ,com,O ,Manuel,B-Pessoa ,Silva,I-Pessoa

Listing 3.5: CSV annotation sample of IFIP and ABM_807 corpora.

Here, the dataset is divided into sentences with the separator "Sentence #,Word,Tag"

where we keep the sentence number, the first token and its corresponding label.
Then, for the rest of the sequence, a label in BIO format is associated with each
token.

3.5.1 Format Converter

As already seen, each of these approaches has a different annotation format,
however, the entities annotated are the same. So in the annotation process, only one
format was used to avoid repetition of work. The chosen format was OpenNLP since
it was the easiest to manually annotate named entities due to its simple structure. In
fact, to annotate an entity in spaCy’s format, we would have to register all the entity
spans, making this process slower. As for the BIO and CSV format, one would have
to tokenize and tag each document token, even the Out of Entity tokens which is
not optimal.

In this way, after having all the data annotated in OpenNLP format, we have to
convert it to BIO, CSV and spaCy formats. In order to do so, we developed three
parsers.

The first one consists of parsing OpenNLP data into spaCy’s format by using
regular expressions to find the annotations and determine the entity label, token
and span. Then, after extracting all the necessary data, we used it to generate a new

3.6. Results 48

dataset in the spaCy data format, containing all the needed information. In this way,
we were now ready to use all our corpora for training spaCy NER models.

As for parsing the data into the BIO format, we have to tokenize all the sentences
into tokens and then tag all the resulting tokens with a BIO label. The way the words
are tokenized can affect the Model results, so, in order to experiment with different
approaches, three tokenizers were used, Keras API tokenizer, spaCy Portuguese
tokenizer and a simple regex tokenizer. After the tokenization process, we mapped
all the entities labels to the new tokenized file. In this way, three versions of the BIO
format were created for each dataset. After testing them in the ML models, spaCy’s
tokenizer showed better results, probably because it is optimized for the Portuguese
language.

As for CSV format, since their structure is very similar to the BIO format files,
we just had to take the BIO annotated datasets and change their structure a bit to
generate the new CSV files.

3.6 results

At the end of the data processing step, eight annotated datasets with five different
entity labels were obtained. Then, the annotated files were parsed into all data
formats. Table 4 shows the amount of annotated entities.

In total, the annotated corpora contain 164478 tokens that make up 6302 phrases.
As for entities, we annotated more than 28 thousand of entities in total. All the
annotated corpus are available to the public in Cunha and Ramalho (2021c).

Although we can annotate a reasonable number of entities to train our models, we
found that our datasets are not balanced in terms of the number of entities per type.
Figure 19 illustrates the number of entities of each type for each dataset (the Curral
das Freiras dataset is not included in the plot since it only has entities of the Person
type).

In fact, datasets like IFIP, IG1 IG2, ABM_807 have a big difference in the number
of entities of each type. The predominant entity type in the archival corpora
corresponds to the Person named entity with a total of 17279 annotated names.
Following that, we have Place and Date named entities with a total of 6604 and
2980 entities identified, respectively. Then with a much lower number, we have
Professions with 978 and Organizations with only 843 annotated named entities.

One of the reasons for this discrepancy is the nature of datasets. In fact, some of
these datasets are quite old, so it is normal not to have many organizations at that

3.6. Results 49

Table 4: Number of annotated entities per corpus.

Corpus Person Place Date
Profession

or Title
Organization Total

IFIP 1503 325 100 40 318 2286

Familia Araújo
de Azevedo

369 450 118 428 94 1459

Arquivo da
Casa Avelar

465 239 141 118 91 1054

Inquirições de
Genere 1

2002 3713 121 0 0 5836

Inquirições de
Genere 2

692 10 54 0 0 756

Jardim do Mar 2393 574 1762 1 2 4732

Curral das Freiras 8729 0 0 0 0 8729

Ruas de Braga 1126 1293 684 391 338 3832

Total 17279 6604 2980 978 843 28684

Figure 19: Named entities distributed by corpus and entity type.

3.7. Conclusion 50

Figure 20: Named entities labels’ distribution.

time. On the other hand, parish datasets only have records of people’s names, dates
and places, causing the discrepancy between entities to increase even more.

Figure 20 allows us to analyze the distribution of the entities types, where we can
see that 60% of the identified entities correspond to peoples’ names, 23% Places,
followed by Dates with 10% and finally Organizations and Professions with a small
fraction of 4% and 3% respectively.

This imbalance in the entity types can lead to the model having difficulties
identifying entities with a smaller number of samples. The implications of this
phenomenon will be analyzed in the following chapters.

3.7 conclusion

In this chapter, we generated our annotated archival corpora composed of 8

different datasets. As we can see in the results Section 3.6, we annotated more than
160 thousand of tokens that contain a total of 28684 named entities. Once annotated,
all datasets were parsed into 4 different formats so they could be used as the ML
models input. With this data, we can advance to the training of ML algorithms in
order to create NER models capable of extracting archival finding aids entities.

3.7. Conclusion 51

To improve the entities distribution balance, it would be interesting to annotate
other datasets with a greater number of organizations and professions in order to
balance the number of entities by type of entity.

It is important to note that creating annotated corpora like this is an important
contribution to the scientific community as they can be reused for purposes besides
NER.

4

N A M E D E N T I T Y R E C O G N I T I O N M O D E L S

In this thesis, we intend to extract information from Portuguese archival finding
aids through the recognition of the following named entities: Pessoa (Person), Orga-
nização (Organization), Local (Place), Profissões ou títulos (Professions or titles) and
Data (Date).

For this, several approaches were tested, where the power of ML is used to
process archival texts. The quickest and simplest way to apply NER to Portuguese
textual data is to use ML-based toolkits specific to this task, which are ready to
be used without the need for complex fine-tuning or high knowledge in the NLP
field. Another approach is the creation of the ML model, with ML libraries such as
Tensorflow and Pytorch, where it is necessary to generate the entire NER process,
from data processing to training and validation of ML models. This chapter will
present the approaches used to train various ML models.

4.1 available portuguese ner models

The first approach consisted of using pre-existing NER models trained in Por-
tuguese textual documents. The models used were trained in two datasets, Second
HAREM Golden Collection and SIGARRA.

HAREM is a NER contest applied to Portuguese text. It had two different events
which took place in 2005 (Santos et al., 2006) and 2008 (Freitas et al., 2010), resulting
into two golden collections. In this dissertation, the second golden collection was
used, which consists of a Portuguese annotated corpus that contains about 147991

words, retrieved from 129 different textual documents, with a total of 7836 manually
annotated entities (Carvalho et al., 2008). The textual content of this corpus has been
collected from several sources such as newspapers, Web pages, emails, expositories
and political and fiction contexts (Santos and Cardoso, 2006). As for entity type,
ten categories have been annotated, Person, Organisation, Time, Place, Works of art,

52

4.2. Training NER Models 53

Event, Abstraction, Thing, Value and Misc. As we can see, there are no Professions
entity types, which can negatively influence the results of the classifications.

The other corpus, SIGARRA (Pires, 2017), corresponds to the information system
of the University of Porto data. This corpus was created to assist the entity-oriented
search engine of the University of Porto, however, an annotated dataset can be used
for several Portuguese language NLP tasks. Its content consists of news from 17

organic units from the University of Porto, where a sample with 905 news was
annotated. The identified entities were Hour, Event, Organization, Course, Person,
Location, Date and Organic Unit. In total, this corpus has a total of 12644 named
entities that were manually annotated.

In Pires (2017) several implementations of NER models trained with these datasets
were created and made available to the public1, which can be used with NLP tools
like OpenNLP, spaCy, NLTK and Stanford-CoreNLP. In this work, we used the
spaCy and OpenNLP NER model implementations and tested these models against
our validation data. Unfortunately, the results obtained did not correspond to the
intended ones. A reason for this could be that, although these models were trained
with Portuguese textual data, they were not trained in the archival context. Another
factor is that most of the entities labels used to train these models do not coincide
with the ones used in our validation data.

4.2 training ner models

Another approach used in this dissertation was to create our own ML models
using our training data. In order to train ML models capable of recognizing archival
context entities, two different approaches were used:

• Creating models from scratch with supervised learning;

• Fine-tuning existing models pre-trained in a huge amount of texts in a self-
supervised fashion.

Training models from scratch consists of initializing the model weights randomly,
which means that all the knowledge that the model will get lies in the training data.
Another approach is to initialize the model with another model’s weights. With this
approach, the model uses the knowledge of previously trained models and fine-tune
that knowledge into a specific classification task. Both approaches require annotated
data to train and validate ML models. The datasets used for this correspond to the

1 https://rdm.inesctec.pt/ro/dataset/cs-2017-006

4.2. Training NER Models 54

annotated data referred in Chapter 3. In this way, we performed a shuffle for each
dataset, and then we split all the annotated corpora, 70% was used for the model’s
training while 30% was reserved for the models’ validation.

4.2.1 OpenNLP

In order to train a MaxEnt model with OpenNLP directed to NER, several steps
are required. First, it is necessary to process the training dataset. After loading the
annotated data into memory, it is necessary to tokenize it, splitting all the document
sequences into tokens. In order to do so, OpenNLP provides pre-trained tokenizer
models optimized for several languages, Portuguese in our case. It is important to
emphasize that the tokenization method used in the training and validation must be
the same so that the model processes the words in the same way. Using different
methods can lead to a decrease in the model performance.

Then, Name Samples are created, consisting of data structures that hold named-
entity spans and tokens, and are later used to create a stream of events in order to
train the model.

Figure 21: OpenNLP event stream tagging.

OpenNLP associates each token with a Start, Continnue or Other tag, which
represents whether a given token corresponds to the beginning, middle, or is not
associated with a named entity, respectively.

With the data processed, we have to define the model features. In this case, we
used the default defined features, which are presented below.

1 AdaptiveFeatureGenerator featureGenerator = new CachedFeatureGenerator(

2 new AdaptiveFeatureGenerator[]{

3 new WindowFeatureGenerator(new TokenFeatureGenerator(), 2, 2),

4 new WindowFeatureGenerator(new TokenClassFeatureGenerator(true), 2, 2),

5 new OutcomePriorFeatureGenerator(),

6 new PreviousMapFeatureGenerator(),

7 new BigramNameFeatureGenerator(),

8 new SentenceFeatureGenerator(true, false),

9 });

Listing 4.1: OpenNLP features.

4.2. Training NER Models 55

These features can have a great impact on the performance of the statistical model,
so they must be defined according to our NER problem.

Firstly we have a WindowFeature in conjunction with a TokenFeature. The Win-
dowFeature tells the model the range of words to the left and right of a token that it
must put focus on. The TokenFeature concerns the token itself, helping the model to
learn the language vocabulary. The combination of both features makes the model
observe the two words on the left and right so that it learns which words usually
appear together, creating a notion of context. After that, WindowFeature is used
with TokenClassFeature. TokenClassFeature refers to the class of a given token, i.e.,
its shape, if it is a numeric token or if it starts with a capital letter, if it contains
special characters, etc. In order to find the word’s class, regular expressions are
used. Again, this feature will be applied to the four words closest to the token due
to the WindowFeature. In addition to these, the PreviousMapFeature feature is also
used, which consists of considering the result of the entity recognition performed
on the last processed words.

OpenNLP provides a set of features that can be used in conjunction with each
other, and it is up to the experimenter to choose the ones that fit his context. The
created features will then help the model predict the correct tag for each token.

After that, we started the training of the model which consists of an iterative
process, so it is necessary to define the number of iterations. It is this iterative
process that allows the feature overlap behavior. By default, this hyper-parameter
has a value of 100, however, we registered the model results with different number
of iterations in order to analyze its behavior.

0 1000 2000 3000 4000
x - iterations

2250

2000

1750

1500

1250

1000

750

500

y
- l

os
s

train loss

0 1000 2000 3000 4000
x - iterations

85.0

85.2

85.4

85.6

85.8

86.0

86.2

86.4

y
- F

1-
Sc

or
e

F1-Score

Figure 22: OpenNLP model learning curves.

4.2. Training NER Models 56

In Figure 22 we have the learning curves of our model. These learning curves
show our model’s training loss and F1-Score (calculated on the evaluation data) by
training iteration. As we can see, the loss absolute value is decreasing indefinitely,
however, the F1-score rises until iteration 120 and then starts dropping, even with
the loss value still decreasing. This means that, after iteration 120, the model starts
over-fitting the data, learning the dataset noise. Thus, our final model was trained
with 120 iterations.

In addition, there is yet another parameter to pay attention to, the cutoff. This
variable corresponds to the minimum number of times a feature must occur in the
model to be considered. In fact, by default, if a feature occurs less than five times, it
will not be considered, which helps to reduce noise in the model. Finally, after the
model is trained, it is converted into a binary file and saved to the disk (Ingersoll
et al., 2013).

4.2.2 spaCy

With the data annotated and parsed into spaCy’s format, we are ready to begin the
NER model training. In Figure 23 we can see the workflow of the training process.

Figure 23: spaCy training workflow.

Initially, the labelled samples are loaded into memory, where the tokenization
process takes place, generating Doc objects. To manage the way annotations are

4.2. Training NER Models 57

stored, spaCy implements a "Gold Parse", which is responsible for storing the textual
documents and their corresponding tags. In order to make the memory usage as
efficient as possible, spaCy implements C-level structures to store the training data.

1

2 doc = Doc(Vocab(), words=["Merecendo", "grande", "destaque", "a", "fuga", "Alvaro", "Cunhal", "e

", "outros", "companheiros"])

3 gold = GoldParse(doc, entities=["O", "O", "O", "O", "O", "B-Pessoa","L-Pessoa", "O", "O","O"])

Listing 4.2: "Gold Parse entities tagging."

Observing Listing 4.2, each token in the Doc object is associated with a tag that
identifies whether the token is a named entity or not. These tags were created using
the BILUO scheme, which allows to classify the tokens and specify their position in
the entity, i.e., if they are at the beginning (Beginning), in the middle (In), at the end
of an entity (Last), if the entity is composed by only one token (Unit) or if the token
does not belong to any entity type (Out) (spaCy, a).

Then we performed a shuffle of the training data and created the data batches.
In fact, several iterations are performed during the training process, where each
iteration influences the next one. By shuffling the data batches, we prevent our
model from gaining dependencies on the samples order.

After that, we used spaCy’s NER pipeline, which allowed us to create our NER
models. In fact, spaCy is equipped with pre-trained word embeddings for multiple
languages. In the case of the Portuguese language, spaCy provides a vocabulary
with about 500 thousand unique vectors trained in datasets such as Rademaker et al.
(2017) and Nothman et al. (2017). The use of pre-trained embeddings makes the
model have a broader knowledge of the vocabulary of the Portuguese language,
managing to extract relationships between the words. Through dense distribution
vectors, the model can calculate the similarity of the words, thus knowing which
words are close to each other in distribution. An example of this can be seen below.

1

2 def most_similar(word, topn=5):

3 ms = nlp.vocab.vectors.most_similar(np.asarray([nlp.vocab.vectors[nlp.vocab.strings[word]]])

, n=topn)

4 return [nlp.vocab.strings[w] for w in ms[0][0]]

5

6 most_similar("rei", 7)

7 #output

8 [’rei’, ’monarca’, ’príncipe’, ’grão-príncipe’, ’príncipe-herdeiro’, ’príncipe-regente’, ’

imperador’]

Listing 4.3: "Gold Parse entities tagging."

4.2. Training NER Models 58

In Listing 4.3 we can see a function that is returning the seven words most similar
to the word "rei" (king). The returning words are "rei", "monarca", "príncipe", "grão-
príncipe", "príncipe-herdeiro" ,"príncipe-regente" and "imperador" which translate to
king, monarch, prince , grand prince, heir prince and emperor, respectively. If we
repeat this process for different context words, we get the distribution presented in
Figure 24.

Figure 24: 2d spaCy word embeddings distribution.

Here we calculated the seven most similar words to the following tokens: rei (king),
tenente (lieutenant), maria and cão (dog). From Figure 24, we can see that similar
words are closer to each other. For example, words like king, lieutenant, prince,
monarch, etc., are very close in the distribution as they are all related to people’
titles, thus sharing semantic meaning. On the other hand, we can also see that most
of the words that relate to "Maria" and "Cão" are also close between them. It is
easy to understand that such a mechanism can help the model extract relationships
between words. In this way, all our spaCy models were initialized with this word
embedding technique.

4.2. Training NER Models 59

Finally, we started the training iterations in order to update the model weights
according to the defined spaCy features so that the model learns how to classify
the desired named entities. Through these iterations, we calculated the error by
comparing the model predictions with the annotated data. However, we do not want
the model to overfit the data by memorizing only the given samples. The idea is
to create a generalized model capable of performing in new similar contexts across
unused data.

In spaCy, this problematic is addressed by using the error gradient of the loss
function. This mechanism makes the model’s input information less accurate, so it
has more difficulties memorizing it.

Figure 25: spaCy error gradient of the loss function.

With this approach, spaCy attenuates the data over-fitting problem by passing
incomplete data to the model, giving it more freedom in its decisions. Furthermore,
this technique is also used to help the model disambiguate words. For example, the
word Sameiro may be pre-annotated as a person’s name, however, this word may
refer to Santuário do Sameiro, a Portuguese sanctuary. Therefore, in this case, the
model must be able to discern this situation through the context in which the word
is inserted. The model must realize what kind of entity a word refers to, based on
the words in its neighbourhood and not only on the annotated samples.

Thus, spaCy let us set up this dropout mechanism as a customizable hyper-
parameter, which prevents the model from being limited to the annotated dataset,
generating space for new entity recognition possibilities, generalizing it to new
contexts (spaCy, c).

4.2. Training NER Models 60

0 20 40 60 80
x - iterations

0

1000

2000

3000

4000

5000

6000

7000
y

- l
os

s
train loss

0 20 40 60 80
x - iterations

86

87

88

89

90

91

y
- F

1-
Sc

or
e

F1-Score

Figure 26: spaCy model learning curve.

Analysing Figure 26 (Left), we can see that the loss of the model decreases over
the performed training iterations, increasing its ability to classify the named entities
in the training data. On Figure 26 (Right), we have the F1-Score that is calculated on
the evaluation data. In fact, the F1-score value increased from iteration 1 to iteration
10, where it peaked. Then is started to decrease even with the loss value getting
lower. We can say that after iteration 10, the model starts to overfit the training
data by learning its noise and putting too much focus on its details. This behaviour
negatively impacts the performance of the model in unseen data. In this way, spaCy
saves the model state of each training iteration in order to select the best model fit at
the end of this process.

4.2.3 BI-LSMT-CRF

Another approach used in this dissertation to recognize archival finding aids
entities is the use of the Tensorflow library to create a BI-LSTM-CRF model. Unlike
the previous tools, Tensorflow is an ML library applied to various ML areas and not
just NLP. Therefore, to train a NER model, we first have to handle the entire data
transformation process.

To do this, initially, we have to load the training data. Once we have the data in
memory, the next step is to convert it into numeric representations so the model can
process them. The ML algorithms do not know how to process Portuguese language
text, so we first generated the model’s vocabulary. In order to do so, we created
lookup tables where the word tokens and labels were mapped to a unique integer id.

4.2. Training NER Models 61

Therefore, two dictionaries were created, one that contains the words (Listing 4.5),
and another with the labels ids (Listing 4.4). Later, this table was used to convert
the numeric representations back to textual words.

1

2 {’Data’: 1, ’Local’: 2, ’O’: 3, ’Organizacao’: 4, ’Pessoa’: 5, ’Profissao’: 6}

Listing 4.4: "Labels dictionary."

1 {’de’: 1, ’Natural’: 13, ’Meringolo’: 9177, ’Adelina’: 9189,

2 ’e’: 2, ’Filiação’: 14, ’Pardo’: 9178, ’Lbânia’: 9190,

3 ’do’: 3, ’distrito’: 15, ’2633’: 9179, ’Rufino’: 9191,

4 ’ou’: 4, ’º’: 16, ’2016’: 9180, ’Espírito’: 9192,

5 ’em’: 5, ’o’: 17, ’Atente’: 9181, ’Prazeres’: 9193,

6 ’a’: 6, ’n’: 18, (...) ’Joanesburgo’: 9182, ’Etelvina’: 9194,

7 ’da’: 7, ’que’: 19, ’Gavela’: 9183, ’1933’: 9195,

8 ’Maria’: 8, ’Registo’: 20, ’Calanga’: 9184, ’1988’: 9196,

9 ’concelho’: 9, ’Manuel’: 21, ’Mambiça’: 9185, ’Jesuína’: 9197,

10 ’país’: 10, ’Pai’: 22, ’Sotero’: 9186, ’Sara’: 9198,

11 ’actual’: 11, ’Mãe’: 23, ’1951’: 9187, ’Libânia’: 9199

12 ’residente’: 12, ’para’: 24, ’Bairros’: 9188, ’terceiras’: 9200}

Listing 4.5: BI-LSTM-CRF words’ dictionary.

As we can see in Listing 4.4, the dictionary of labels is pretty small, as we only
want to classify 6 different labels (including the out of entity label). However, the
dictionary of words represents the vocabulary of our model, i.e., all the words that it
knows, the reason why it usually has a large number of entries. In order to generate
the word dictionary, a word-based tokenizer was used, where an id was associated
only with the most frequent N words.

In fact, in Listing 4.5, the tokens are ordered according to the number of times
they appear in the training dataset. As we can see, the most used words correspond
to conjunctions, prepositions, determinants and pronouns. In addition, we also have
the presence of people’s names "Maria" and "Manuel", names that are widely used
in Portugal, specially in older times. At the end of the list, appear the less frequent
words, such as "Adelina", "Rufino" or even dates that were mentioned a few times.

With the created dictionaries, we can start to create numerical representations of
the text sequences. In Listing 4.6 we have an example of this process

1 O Escritura O datada I-Data 1588 B-Pessoa Maria

2 O de O de O entre I-Pessoa Vaz

3 O venda B-Data 19 B-Pessoa Gonçalo O e

4 O e I-Data de I-Pessoa Pires B-Pessoa André

5 O respectiva I-Data Fevereiro O e I-Pessoa Fernandes

4.2. Training NER Models 62

6 O posse I-Data de O mulher O e

7 (...)

8

9 words = [[2125, 1, 1482, 2, 2126, 695, 426, 1, 165, 1, 560, 1, 2755, 271, 1038, 347, 2, 225, 8,

357, 2, 958, 106, 2, (...), 0, 0, 0, 0, 0], (...)]

10

11 labels = [[3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 3, 5, 5, 3, 3, 5, 5, 3, 5, 5, 3, (...), 0, 0,

0, 0, 0], (...)]

Listing 4.6: "Text sequence encoding."

This listing has an example of sentence processing where we converted the BIO-
format data into an array numerical representation.

With the lookup tables ready for back-conversion, we proceeded to generate the
data batches. All batches must have the same length, however, our sentences are
composed of variable length sequences of tokens. Thus, we defined a maximum
sequence length and applied a masking technique to the batches. As we can see in
Listing 4.6, both the labels and words vectors have zeros at the end. We added them
in order to create vectors of the same size, however, these masking values will be
ignored in the model training. We also truncate sequences that have lengths higher
than our maximum sequence lengths.

After encoding all text sequences into numeric arrays, the next step is to generate
the word embeddings.

4.2. Training NER Models 63

Figure 27: BI-LSTM-CRF Word Embeddings distribution.

These embeddings are dense low-dimensional representations of vocabulary data.
By using more than one dimension, these representations can capture more meaning-
ful information of each token, increasing the model knowledge about the vocabulary.
For example, each dimension can express sentiments, grammatical features, genders,
etc. In order to generate these embeddings, we mapped each token index to a
random initialized dense vector. During the model training, the vectors’ values
will be updated so that words with similar meanings will have similar distribution
values. In Figure 27, taken from Tensorboard, we can see the word embeddings
distribution of the model.

Then, we used the Tensorflow library to implement two LSTMs, one for the
forward context and the other for the backwards context. After that, we applied a
CRF layer to the LSTMs output in order to process the sequence labels. As for the
loss optimizer, we used Adaptive Moment Estimation (Adam), as it helps the model
to converge faster and has revealed very good results in several NLP tasks.

During model training, we created model checkpoints on every 100 training steps.
In addition, the training and evaluation loss were recorded to generate the Learning
Curves of the model.

4.2. Training NER Models 64

Figure 28: BI-LSTM-CRF model learning curve.

Observing Figure 28, the train loss curve (orange) is calculated using the training
dataset and helps us to understand how the model is learning. The evaluation loss
curve (blue) is calculated with the validation dataset and gives us information about
how the model is generalizing.

In this way, we can see that the training curve converges close to the 1200 training
steps. As for the evaluation curve, it drops until approximately 1000 training steps
and then starts rising indefinitely. This indicates that the model has already learned
the training data too well and started over-fitting it. This behaviour makes the
model learn training data errors or noise too closely and prevents the model from
generalizing. In this way, we used the checkpoint model at 1000 training steps for
the NER prediction task.

4.2.4 BERT

Until now, we used approaches that consisted of training NER models from scratch.
Now we will present a different model, BERT, which consists of using pre-trained
models with hundreds of thousands of parameters and leveraging the knowledge
acquired during the pre-train by fine-tuning them on a specific task, in our case,
NER.

Models such as BERT (Devlin et al., 2019) are pre-trained using self-supervised
learning, using a word masking technique, allowing the model to access both the past
and the future context of the token. This mechanism creates a bidirectional model,
an important feature for the token classification task. Since these models are created
with many data, they have large dimensions, reaching billions of parameters, which

4.2. Training NER Models 65

makes their training process resource and time expensive. This process requires a
large number of GPUs, and can take several days or even weeks consuming high
amounts of energy, however, it only has to be performed once due to the model’s
reusability property.

By training models from scratch, we randomly initialise the models’ weights,
which means that the model only learns from the training data. However, with this
fine-tuning approach, we transferred the knowledge of models pre-trained in huge
amounts of textual data. In practice, we used the pre-trained model weights, which
provided the model with a statistical understanding of the language, and then we
fine-tuned it with a task-specific classifier.

Figure 29: BERT transfer learning.

Because of this, in order to make the most of the pre-train model knowledge, we
have to use a BERT model that was pre-trained in a text vocabulary similar to our
training data. Thus, the first step consisted of finding a self-supervised pre-trained
BERT model in a huge quantity of Portuguese textual data. Therefore, we selected
three different candidates from the Hugging Face Hub (Wolf et al., 2020). First,
we have the "bert-base-portuguese-cased" and bert-large-portuguese-cased"

models, with 110M and 330M parameters respectively (Souza et al., 2020). These
models were trained in a Brazilian Portuguese corpus composed of 2.7 billion (Filho
et al., 2019) tokens. Secondly, there is a multilingual model, bert-base-multilingual-
cased (Devlin et al., 2018) with 110M parameters, trained on the largest Wikipedia
texts, making this model capable of processing texts in 104 different languages,
Portuguese included.

4.2. Training NER Models 66

Out of curiosity, at the moment, the largest existing model was created by the
cooperation between Microsoft and Nvidia, published in October 2021, Megatron-
Turing Natural Language Generation (Alvi and Kharya, 2021), a model with 530

billion parameters trained with 4480 A100 80GB GPUs in a set of 15 datasets
consisting of a total of 339 billion tokens.

It is important to note that, by transferring all the pre-trained information to our
model, we are increasing its language knowledge, however, all the errors, noise
or even bias are also transferred. Brown et al. (2020) states that the pre-trained
models can be biased to their training data. In this paper, they analysed the GPT-3
model’s biases towards gender, race, and religion, however, they state that the
model may express other categories of bias. In practice, regarding the religion bias,
this behaviour made the model associate words such as "Islam" with "terrorism".
As for genre bias, the "female" word was usually associated with tokens such as
"naughty" or "beautiful" while the "male" word is associated with the tokens
"large", and "lazy".

Data processing

After selecting our models’ checkpoints, we can start the data loading and trans-
formation process similar to the approach presented in the BI-LSTM-CRF model.
First, we loaded the training and validation data into memory and then, we started
to tokenization process, mapping all the tokens into their corresponding ids in the
pre-trained vocabulary. The training samples must comply with the pre-trained
vocabulary, having the same format and structure, which means that the tokenizer
used for the pre-training must be the same for the fine-tuning.

Transformer-based models usually use sub-word tokenizers, meaning that the
rarest words of the vocabulary are usually split into sub-words.

1 #Original

2 [’Pelo’, ’qual’, ’foram’, ’identificados’, ’os’, ’bachareis’, ’que’, ’seriam’, ’desembargadores’

, ’da’, ’Relação’, ’e’, ’Casa’, ’do’, ’Porto’, ’.’]

3

4 #Tokenized

5 [’[CLS]’, ’Pelo’, ’qual’, ’foram’, ’identificados’, ’os’, ’ba’, ’##char’, ’##ei’, ’##s’, ’que’,

’seriam’, ’desembar’, ’##gadores’, ’da’, ’Rela’, ’##ção’, ’e’, ’Casa’, ’do’, ’Porto’, ’.’, ’

[SEP]’]

Listing 4.7: "Text sequence encoding."

In fact, even if the training data is already tokenized in BIO format, we have to
tokenize it again to create the correct correspondence between the training data and

4.2. Training NER Models 67

the pre-train vocabulary id. In Listing 4.7 we can see that the tokens "bachareis"
and "desembargadores" were divided into smaller sub-tokens. Consequently, since
we changed the sequence vectors lengths by splitting tokens into sub-tokens, we
also have to remap the labels’ vectors to ensure that each token is associated with its
correct label. After that, we had to pad and truncate all the sequences according to
the pre-trained maximum length parameters.

Fine-tunning

With the data processed, we can start fine-tuning the model for the archival context.
In order to do so, we used the Hugging Face library that allows us to fine-tune
several state-of-art NLP models with Keras and Pytorch API.

The fine-tuning process removes the pre-trained model head (last layer) focused
on the masked language objective and replaces it with a new randomly initialized
head. The idea is to create a new classifier specialized in recognizing entities from
archival data, with N outputs, where N is equal to the number of labels.

To fine-tune the model, we only used NVIDIA GEFORCE GTX 1070 Ti GPU.
Because of this, we had to adjust the batch size for the bigger models to avoid
out-of-memory errors. The fine-tuning of each model lasted from 30 minutes to 2

hours. During this process, we logged the training and evaluation loss in order to
generate the model’s learning curves.

In Figure 30 we can see the loss values per epoch of the three generated models,
bert-large-portuguese, bert-base-portuguese and bert-multilingual. In fact, the
models start to overfit between 2 and 4 epochs. In order to retrieve the models with
the highest capacity of generalisation, the Huggingface library keeps several model
checkpoints during the training phase and selects the best one at the end. Only the
best checkpoint will be used for the actual Named Entity Recognition.

4.3. Conclusion 68

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25
bert-large-portuguese

train loss
eval loss

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

bert-base-portuguese
train loss
eval loss

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

bert-multilingual
train loss
eval loss

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

All Models
large train
base train
mLingual train

large eval
base-eval
mLingual eval

x - epoch

y
- l

os
s

Figure 30: BERT models learning curves.

4.3 conclusion

In this chapter, we presented several approaches to generate NER models capable
of recognizing entities in the archival context.

The first approach consisted of selecting available pre-trained models in Por-
tuguese language documents. Despite being a quick and easy way to obtain NER
models, these models were not trained in archival content documents, containing
identified entities of no interest. In the end, the obtained results were underwhelm-
ing.

The second approach consisted of training our own ML models, with the annotated
corpora generated in Chapter 3. Here, 4 different algorithms were used, trained with
different methodologies, from creating models from scratch up to using pre-trained
word embeddings or even self-supervised learning proceeded by fine-tuning. Each

4.3. Conclusion 69

implementation used different techniques in order to try to obtain the best possible
results, which will allow conclusions to be drawn during validation.

Finally, all these models are available to the public via the Cunha and Ramalho
(2021c) and the hugging face hub2.

2 https://huggingface.co/lfcc

5

N A M E D E N T I T Y R E C O G N I T I O N R E S U LT S

In this chapter, we will present the validation results of all models trained in this
thesis. The metrics used to measure NER models’ performance are Recall, Precision
and F1-score since the accuracy metric does not satisfy the needs of this NLP field
(Derczynski, 2016).

The main focus of this work was to create a mechanism that could recognize
entities from archival finding aids with enough confidence. In this way, several
NER models were trained with different data contexts. The closer the context of
training data and the validation data, the better NER results will be, as the model can
rely more on its learning. Thus, in order to test this hypothesis, the first approach
consisted of generating individual models for each dataset.

However, even if we can achieve good results within the same corpus, that is
not really impressive or useful, as one would have to annotate part of the corpus
to extract named entities from it. In this way, the next step was to test the model
generalization. In order to do so, we tested how a single model trained with data
from all datasets would perform, compared to the last approach. Can the merge of
contexts cause the model to get confused? Will it create a more powerful model? In
this step, we intended to test those hypotheses. After this, we tested the generalized
model with unseen data. In fact, the whole point of generating such a model is to
recognize named entities from new data, so it is important to understand how will
the model behave in this environment.

5.1 individual ner model per corpus

The first approach of performing NER in archival data was to create one NER
model for each annotated corpus from the data processing Chapter 3.6, splitting the
data for training and validation, 70% and 30% respectively. In this section, we used
our OpenNLP, spaCy, and Tensorflow models and presented their validation results.

70

5.1. Individual NER model per Corpus 71

Table 5: Individual NER models results.

Train Validation Model Precision(%) Recall(%) F1-Score(%)

IFIP IFIP
OpenNLP 87,08 82,61 84,79

spaCy 88,16 89,90 89,02

TensorFlow 96,12 98,67 97,00

Familia Araújo
de Azevedo

Familia Araújo
de Azevedo

OpenNLP 72,56 72,30 72,43

spaCy 74,41 72,82 74,09

TensorFlow 88,98 87,28 86,32

Arquivo da
Casa Avelar

Arquivo da
Casa Avelar

OpenNLP 80,15 79,85 80,00

spaCy 87,82 87,18 87,50

TensorFlow 89,25 93,25 90,63

Inquirições
de Genere 1

Inquirições
de Genere 1

OpenNLP 99,93 98,87 99,90

spaCy 97,35 95,08 96,20

TensorFlow 100 100 100

Inquirições
de Genere 1

Inquirições
de Genere 2

OpenNLP 63,17 62,17 62,67

spaCy 89,66 85,98 87,78

TensorFlow 98,86 98,95 98,78

Jadim do Mar Jardim do Mar
OpenNLP 100 99,86 99,93

spaCy 100 100 100

TensorFlow 100 100 100

Jardim do Mar Curral das Freiras
OpenNLP 93,37 99,84 96,50

spaCy 99,97 99,90 99,93

TensorFlow 100 100 100

Looking at Table 5, we can conclude that the created NER models were able to
successfully classify most of the intended entities. It appears that in most cases, the
BI-LSTM-CRF model generated with TensorFlow obtains the best results with an
F1-score between 86,32% and 100%, followed by spaCy with an F1-score between
70,09% and 100%, and finally OpenNLP with an F1-score between 62,67 and 100%.
As we can see with these results, the introduction of Deep Learning on NER reveals
significant advances in this field.

It is important to note that only one model was created to validate datasets with
high proximity in the context domain, for example, the Inquirições de Genere 2 and
Curral das Freiras datasets.

5.2. Generalized NER model 72

As we can see, with the OpenNLP model, when using the corpus Inquirições de
Genere 2 to validate the model trained on the Inquirições de Genere 1 dataset, the results
obtained were lower (62,67% F1-score) in comparison to the other tools (87,78% and
98,78% F1-score). In this case, it turns out that deep learning has demonstrated a
greater capacity for transfer learning.

Finally, analyzing Table 5 we see that the FAA dataset is the one in which the
models presented the lowest results. One reason for this could be that it contains
very long sequences. In fact, as previously seen, a Bi-LSTM-CRF is more prepared
to deal with Long Term Dependencies, presenting better results than the other tools
(86.32% F1-score).

5.2 generalized ner model

After obtaining the individual model approach results, an attempt to create a
generalized model with annotations from all datasets was made.

Annotating a fraction of a dataset where this technology is to be applied is not
always practical, so it would be interesting to create a generalized model capable of
adapting to new contexts of similar nature.

In fact, by training a model with data from several contexts, it is able to learn
more features about the language vocabulary. By doing so, we intend to prepare the
model to perform in a wider variety of contexts, which includes text sequences it
has never seen. However, this new approach must not obtain worse results than the
individual models approach due to the models’ degree of generalization.

For this method, the generalized models were trained with 70% of each dataset
to be later validated individually with the remaining 30% of each one. This proce-
dure was firstly tested with OpenNLP, spaCy and our Tensorflow implementation,
obtaining the following results.

5.2. Generalized NER model 73

Table 6: Generalized NER models validation results.

Corpus Model Precision(%) Recall(%) F1-Score(%)

IFIP
OpenNLP 89.43 83.60 86.41

spaCy 86.99 88.71 87.84

TensorFlow 92.84 96.85 94.08

Família Araújo
Azevedo

OpenNLP 81.94 63.67 71.66

spaCy 75.19 76.78 75.98

TensorFlow 78.22 82.47 78.89

Arquivo da
Casa Avelar

OpenNLP 88.84 81.68 85.11

spaCy 87.18 87.18 87.18

TensorFlow 86.83 92.21 87.99

Inquirições
de Genere 1

OpenNLP 99.60 99.53 99.57

spaCy 98.31 96.74 97.52

TensorFlow 100 100 100

Inquirições
de Genere 2

OpenNLP 74.70 65.61 69,80

spaCy 79.96 92.21 87.26

TensorFlow 93.70 98.34 94,82

Jardim do Mar
OpenNLP 99.71 99.71 99.71

spaCy 99.15 100 99.57

TensorFlow 100 99.60 99.72

Curral das Freiras
OpenNLP 93.49 99.69 96.49

spaCy 99.98 99.90 99.94

TensorFlow 100 100 100

As can be seen, the results obtained by this model are similar to the previous
ones, so we can say that the NER performance has not decreased. In this case, the
BI-LSTM-CRF model obtained an average of 93.64% F1-Score, followed by the spaCy
model with 90.76% F1-score and finally the OpenNLP model with an average of
86.96%.

Now, to measure its performance in a different context, we had to test it with
new data. Observing our annotated corpora Table 4, we can see that we did not
used one of the annotated corpus in the models’ training. The corpus in question
corresponds to the Ruas de Braga dataset, which contains brief notes of the city of
Braga streets (the year 1750), with a considerable amount of named entities. We did

5.2. Generalized NER model 74

that to test the performance of the model on an unseen context domain, which is a
crucial objective of this NLP task. In Table 7 we can see the results of this approach.

Table 7: Generalized NER models results on Ruas de Braga corpus.

Corpus Model Precision(%) Recall(%) F1-Score(%)

Ruas de Braga
OpenNLP 73.09 61.09 66.55

spaCy 75.39 62.62 68.42

TensorFlow 50.50 58.80 53.00

Comparing these results to the previous ones, the results obtained in this case are
lower. The best model obtained an F1-score of 68.42.

In fact, in addition to the model not having been trained with any part of this
dataset, it contains a lot of Organization and Profession type entities. As can be
seen in Table 4, the model was trained with few instances of this type, thus their
recognition may prove challenging.

On the other hand, it appears that this time, the model generated with BI-LSTM-
CRF obtained worse results than the other models. One of the reasons for this could
be that this model has a vocabulary restricted to his training data which can lead to
a high amount of out of vocabulary words. In fact, both deep learning approaches
presented in this thesis represent words through word embeddings, however, spaCy
uses pre-trained word embeddings from a Portuguese corpus which makes it have a
much larger vocabulary. On the other hand, in the BI-LSTM-CRF implementation,
we created our own word embeddings during the model’s training, which means
that the model only knows the words contained in its training data. Therefore, while
the spaCy model can assign semantic meaning to words not present in its training
data, the BI-LSTM-CRF will identify such words as unknown words, making it hard
to reason about them. To conclude, we can say that having a larger vocabulary can
become a valuable tool when evaluating corpus with contexts that vary from the
model’s training.

5.2.1 BERT Model’s Results

After testing our individual model approach against the generalized model, we
understood that, in order to achieve this thesis goal, it would be more beneficial to
keep working with generalized models only.

5.2. Generalized NER model 75

In this way, in this subsection, we present the results of our BERT models, which
were fine-tuned and validated with the exact same annotated corpora as the previous
generalized models.

For the sake of simplicity, we abbreviated the models’ name, i.e., we used the name
BERT-large to represent bert-large-portuguese-cased, BERT-base to represent
bert-base-portuguese-cased and BERT-multilingual to represent bert-base-mul

tilingual-case.
Observing Table 8, we find that, in general, the results obtained are satisfactory,

ranging between 69.47% and 100% F1-Score, which is not surprising since there
is great proximity between the training data and validation data, facilitating the
models’ classification task.

We can also see that there is a new model called spaCy-BERT-base. In fact, during
the development of this work, spaCy released its 3.0 version, implementing the new
transformers mechanism. In this way, we used spaCy’s BERT implementation to
compare it with other BERT models. By coincidence, spaCy uses one of the models
already presented in this dissertation for the BERT model pre-train in Portuguese
language, bert-base-portuguese-cased.

It is also verified that the model trained with a higher number of parameters
presents better results. Here BERT-large obtained in average an F1-score of 88,45%
followed by spaCy-BERT-base with 87,942%, BERT-base with 86,75, and BERT-
multilingual with 85,932%. A larger model has a richer and more nuanced under-
standing of language, making it able to generate more accurate semantic interpreta-
tions.

Interestingly, some datasets obtained almost perfect results, close to obtaining an
F1-Score of 100%, which is not usual in NER tasks. In fact, this happens due to the
nature of the datasets in question, i.e., these datasets have a more structured internal
organization and present a low variety of types of entities, facilitating the models’
work.

5.2. Generalized NER model 76

Table 8: Generalized BERT models results.

Corpus Model Precision(%) Recall(%) F1-Score(%)

IFIP

BERT-multilingual 89.67 92.27 90.95

BERT-large 91.06 93.43 92.23

BERT-base 87.80 90.95 89.35

spaCy-BERT-base 88.24 91.00 89.60

Família Araújo
Azevedo

BERT-multilingual 74.17 85.03 79.23

BERT-large 70.09 83.39 76.16

BERT-base 64.27 75.59 69.47

spaCy-BERT-base 80.73 83.51 82.09

Arquivo da
Casa Avelar

BERT-multilingual 84.39 88.27 86.28

BERT-large 84.47 87.47 85.94

BERT-base 79.02 83.11 81.01

spaCy-BERT-base 87.02 90.18 88.57

Inquirições
de Genere 1

BERT-multilingual 99.95 100 99.99

BERT-large 100 100 100

BERT-base 99.95 100 99.98

spaCy-BERT-base 100 100 100

Inquirições
de Genere 2

BERT-multilingual 76.67 98.05 86.05

BERT-large 94.81 98.11 96.43

BERT-base 84.54 98.11 90.82

spaCy-BERT-base 93.77 97.49 95.59

Paróquia do
Jardim do Mar

BERT-multilingual 99.56 99.72 99.64

BERT-large 99.53 99.90 99.71

BERT-base 99.53 99.87 99.70

spaCy-BERT-base 98.87 99.57 99.22

Paróquia do
Curral das Freiras

BERT-multilingual 99.98 99.96 99.96

BERT-large 99.99 99.99 99.99

BERT-base 99.97 99.95 99.96

spaCy-BERT-base 99.98 99.97 99.97

5.3. Overall Results 77

Finally, to see how these models would perform in a new context, we used the
same approach as before. i.e., validated the generalized BERT models with the
annotated corpus Ruas de Braga.

Table 9: Generalized BERT models results on Ruas de Braga corpus.

Corpus Model Precision(%) Recall(%) F1-Score(%)

Ruas de Braga

BERT-base 72.37 73.60 72.98

BERT-large 75.38 74,67 75.03

BERT-multilingual 72.55 63.70 67.84

spaCy-BERT-base 71.18 74.09 72.61

From Table 9 we can see that the validation results with the Ruas de Braga dataset
were lower compared to the other datasets, ranging from 67.84% to 75.03 F1-score.
The BERT-large model was the one that got the best results. However, comparing
this results with Table 7, we can see that the BERT models were able to perform
better with unseen data. Again, the knowledge from the models’ pre-train has
revealed to be an important asset in this scenario.

5.3 overall results

In this section, we will present the overall results of our models, analysing and
comparing their performance by dataset and named entity label.

Firstly in Figure 31 we can compare the models F1-score results against all our
annotated corpora. In this case, we verified that the model created with BERT
architecture obtained an average F1-Score of 90.69%, followed by the BI-LSMT-CRF
with 88.56%, the CNN with 87.96% and finally, the MaxEnt model with an average
F1-Score of 84.41. Despite this, at first glance, we can see that sometimes CNN and
BI-LSTM-CRF models got better results than BERT, however, there is a good reason
for that.

Seven of these datasets were used to train the models, however, as we saw
before, the Ruas de Braga dataset was used only for validation, thus creating a more
challenging environment for entity recognition. Furthermore, this dataset has many
profession-type entities, which is a difficult entity type to classify due to its low
number of occurrences in the training corpora. In this scenario, the transformers
achieve better results compared to the other algorithms. This happens mostly
because the BERT model was trained in huge amounts of text, making it have a
higher knowledge of the vocabulary of the Portuguese language, which becomes a

5.3. Overall Results 78

Figure 31: NER results by corpus.

powerful weapon when processing new documents which the models have never
seen during their training. We can say that BERT models are less dependent on
annotations in order to perform well.

Despite this, the other models continue to be a good alternative when we want to
extract entities from smaller and more concrete contexts. In fact, smaller models can
be used to better understand a specific context by learning the particular context
features with greater detail. They also avoid the noise from the models pre-train.

Then, we decided to merge all the validation data into one dataset in order
to generate the overall F1-scores of each architecture. After that, we used the
generalized models against this validation dataset, which generated the results in
Table 10.

5.3. Overall Results 79

Table 10: Overall models validation results.

Model Precision(%) Recall(%) F1-Score(%)

OpenNLP 86.66 85.66 86.15

spaCy 88.75 92.13 90.41

Tensorflow 88.88 92.99 90.89

BERT-base 91.42 95.03 93.19

BERT-large 93.30 95.80 94.53

BERT-multilingual 89.86 94.85 92.29

spaCy-BERT-base 91.66 93.59 92.61

Analyzing Table 10 we can say that, the models that obtained the best results
were the BERT models with BERT-large achieving an F1-score of 94.53%, followed
by BERT-base with 93.19%, spaCy-BERT-base with 92.61% and BERT-multilingual
with 92.29% F1-score. Then we have the other models, with the BI-LSTM-CRF
achieving an F1-score of 90.98%, spaCy with 90.41% and finally, the worst model
was OpenNLP with an average of 89.15% F1-score.

After that, we calculated the F1-score of each entity label per model, which can
be analyzed in Table 11. From this table, we can observe the Precision, Recall and
F1-score of each entity type per model. In general, we can say that the models
demonstrated less difficulties in recognizing entities such as Person, Place and Date.
As for the remaining entity types, Organization and Profession, the F1-scores are
lower, which means that these entity types are more likely to be poorly classified
by our models. One hypothesis for this could be the unbalance of the entities types
in the annotated corpora, as we have less annotated Organization and Profession
entity labels. In practice, the model has fewer samples of this type to learn how to
correctly classify them, which can negatively impact the results.

5.3. Overall Results 80

Table 11: Generalized NER models results by entity label.

Entity Type Model Precision(%) Recall(%) F1-Score(%)

Organizacao

OpenNLP 72.64 66.96 69.68

spaCy 67.40 79.13 72.80

Tensorflow 76.14 84.81 80.24

BERT-base 63.42 84.46 72.44

BERT-large 68.28 80.31 73.81

BERT-multilingual 60.29 82.35 69.61

spaCy-BERT-base 72.27 74.78 73.50

Pessoa

OpenNLP 90.74 91.40 91.07

spaCy 91.68 97.06 94.30

Tensorflow 99.30 98.16 98.73

BERT-base 92.98 97.20 95.04

BERT-large 96.58 97.43 97.00

BERT-multilingual 89.09 96.69 92.73

spaCy-BERT-base 93.62 96.86 95.21

Local

OpenNLP 89.53 87.89 88.70

spaCy 89.07 89.72 89.40

Tensorflow 90.45 92.31 91.37

BERT-base 93.67 94.87 94.27

BERT-large 92.97 96.89 94.89

BERT-multilingual 93.51 94.90 94.20

spaCy-BERT-base 93.05 93.39 93.22

Profissão

OpenNLP 63.21 53.17 57.76

spaCy 76.19 76.19 76.19

Tensorflow 80.85 69.09 74.71

BERT-base 72.13 74.16 73.13

BERT-large 76.09 78.65 77.35

BERT-multilingual 71.17 76.70 73.83

spaCy-BERT-base 80.91 84.13 82.49

Data

OpenNLP 80.99 83.86 82.40

spaCy 94.05 92.58 93.31

Tensorflow 68.71 91.80 78.60

BERT-base 98.99 98.74 98.87

BERT-large 99.24 99.12 99.18

BERT-multilingual 99.48 99.09 99.29

spaCy-BERT-base 95.67 94.92 95.29

5.4. Conclusion 81

Figure 32: NER results by entity label.

Finally, in Figure 32 we have a plot that displays the models’ F1-score results per
entity type. Here we can analyze and compare the disparity between the entity labels
recognition results per model. In general, the models demonstrated more difficulty
in recognizing Profession and Organization entity types. Beside that, some models
achieved better results in the recognition of specific entity types. For example, the
BI-LSTM-CRF model was the best model in recognizing the Organization entity
type with an F1-score of 80.24%. Additionally, all the BERT models demonstrated
superiority in identifying Date entity labels. On the other hand, we have the
OpenNLP model, which was the model that achieved lower results in almost all
the named entity labels, which makes sense since it was the model that showed the
worst results overall in Table 10.

5.4 conclusion

In the end, we were able to achieve satisfactory results by annotating part of the
datasets we wanted to recognize entities on. In the first approach, where we trained
individual models for each dataset, the results were promising, achieving high F1

scores in most annotated corpora.
Following that, with the creation of the generalized models, we confirmed that by

joining all the training corpora into a single dataset, we could create models that
could perform on a wider variety of contexts, with no noticeable performance loss.

5.4. Conclusion 82

As for the entities recognition in contexts that differ from the model’s training,
in our experiment, we achieved results of 75% F1-score, which is lower than the
other experiments. Here we concluded that models such as BERT, with previous
knowledge from their pre-train, could achieve better results than training from
scratch approaches. In fact, pre-trained models have a much better knowledge of the
vocabulary which means that, with less annotations, they can achieve better results
in the entity recognition.

In order to achieve better results, one could annotate more data associated with
the archival context. Another factor that could improve our models’ performance
would be to improve the entity balancing of our annotated corpora. As for our
models, there are also several improvements we could try. For example, regarding
the BILSTM-CRF model, the addition of pre-trained word embeddings could help
the model correctly process a wider variety of words. The use of this method has
already shown improvements in this field.

As for BERT models, we could train our own BERT model from scratch instead
of using a pre-train model in a different context. The model used in this work
was trained on Brazilian Portuguese data, which is not the ideal solution for our
Portuguese archival context. Since there is a colossal amount of Portuguese archival
information available to the public, it could be used to train a new model with a
greater knowledge of the archival context vocabulary.

6

N E R @ D I

6.1 web platform - ner@di

With the NER models generated, we decided to create a platform in order to make
them available to the public. Thus NER@DI was born, a web platform that provides
several tools that were developed throughout this work, such as the annotated
corpora, parsers to convert datasets into different formats and, of course, the ML
models that make it possible to process archival finding aids, extracting relevant
named entities.

6.1.1 Architecture

This platform was created with the intent of being complemented with new
features in the future. Thus, a micro-service architecture was used, promoting looser
coupling, more flexibility and portability.

83

6.1. Web Platform - NER@DI 84

Figure 33: NER@DI architecture.

At the moment, it has two containers that correspond to the Data API and the API
Gateway.

The API Gateway is implemented with an Nginx web server containing the client
application, developed in Vue.js, a framework that uses reactive interfaces. The use
of an API Gateway pattern makes the client less coupled to the micro-services, i. e.,
it does not need to know the internal structure of the server to communicate with
the application. The use of this pattern means that there are no direct references
between the client and the microservices, so the refactoring or maintenance of these
will not affect the client. On the other hand, if a gateway server was not used, all
microservices would be exposed to the public, which could lead to security issues.

Then, Vue.js was used to create the client application. It has a small learning curve,
so it is fairly approachable, allowing the creation of maintainable interfaces due to
its reusable components mechanism that allows isolating all logic from the views.
To complement this framework, Vuetify was used, which consists of a UI library
that provides several pre-made reactive components.

The second container is the Data API, which is responsible for receiving, processing
and responding to HTTP requests, in this case, associated with the extraction of
entities. For this, a Node.js server was used, complemented by Express.js (n.d) library,
which works like a broker that is responsible for managing the API routes and
delegating the NER processing to the corresponding tools. The Machine Learning
models were implemented with OpenNLP, spaCy and Tensorflow so, to process
NER requests, the Node.js server uses the child_process (Node.js, n.d) library, creating

6.1. Web Platform - NER@DI 85

new processes to execute programs in python and java. When the execution of the
programs finishes, the created processes return the output to the Node.js server,
which is responsible for returning the response to the client in JSON format.

Finally, in order to deploy this platform, each micro-service was wrapped with
a docker container. These containers promote the isolation, scalability, agility and
portability of each micro-service since it is really easy to install a containerized
application in any system that has docker running. At the moment, NER@DI is
hosted on the servers of the University of Minho’s Informatics Department, at Cunha
and Ramalho (2021c).

6.1.2 Features

During this dissertation, several support tools were generated that helped to create
and optimize NER’s ML models. Thus, some of these tools were selected to be
implemented in NER@DI, presenting the following features:

• Performs Named Entity Recognition with three different ML models, pre-
trained in Portuguese archival finding aids.

• Implements sorting and filtering functionality that enables, for example, to sort
entities by label and remove repeated extracted entities.

• Supports text file import in order to process them with ML models and export
the obtained results in CSV and JSON formats.

• Provides tools to parse annotated corpus into different formats, for example,
CSV and BIO.

• Provides download methods to all the annotated corpora making it available
to the public.

• Presents a set of results from previous entity extractions so that it is possible to
verify real case applications of each model in several different corpora.

Thus, NER@DI can be used by various types of users, for example, historians
wishing to extract relevant entities from archival documents or even other developers
or researchers with the intent of reusing the annotated datasets in other contexts.

6.1. Web Platform - NER@DI 86

6.1.3 Interface

In this section, we will present some views of the NER@DI platform. In Figure 34

we can see the results of our spaCy NER model when applied to the Arquivo da Casa
Avelar corpus.

Figure 34: NER@DI, spaCy NER model results on Arquivo da Casa Avelar dataset.

6.1. Web Platform - NER@DI 87

Firstly, we have two cards that allow us to insert natural text or a text file as input
to the NER models. Then, the data is passed to the models, which will identify and
extract the named entities and present their output into the result card.

The results card displays the total number of recognised entities per label. There
is also a table with all the identified named entities and a search text field that we
can use to filter them. In addition, we can sort the entities alphabetically or by entity
label and remove the repeated entities. Then, in the top right corner, we have two
buttons that allow us to export the NER results into JSON and CSV format.

Then, in Figure 35 we have another interface view, where we published our
annotated corpora.

Figure 35: NER@DI annotated corpora.

6.2. Smart Annotator - ARCANO 88

In this view, we have a list of annotated datasets, with a brief description that
corresponds to all the annotated corpora created in this work. In total, NER@DI has
9 annotated datasets.

6.2 smart annotator - arcano

The key to obtaining good results in this subfield is the training data quality. The
closer the context of the training data to the context in which this technology is
intended to be used, the better the results will be. Good training material is not
always available, which creates the need to annotate text. Normally, this activity is
performed manually by an experimenter who is knowledgeable about the domain of
the documents. However, this task can become time-consuming and tedious despite
its low complexity. Thus, the idea of developing an intelligent tool to support text
annotation, ARCANO Cunha and Ramalho (2021c), was born.

This annotator aims to intelligently assist the entire annotation process using ML
models to try to predict named entities of the texts we want to annotate. The idea is
to use a generic model to find entities in a small fraction of the target dataset. Then,
by correcting the entities found, it is intended to teach the model to annotate the
concrete context, iteratively.

The sequence diagram in Figure A.3 illustrates the annotation process flow in
ARCANO .

Initially, the experimenter imports the entire target dataset for it to be annotated.
Then, this dataset is divided into N batches that will be used to train the ML model.
Firstly, the first batch is sent to the server to identify and classify the entities it can
find. Then, the result is sent to the client to be corrected by the experimenter. Now
that we have validated training data, we can use it to refine the ML model. Thus,
the correctly annotated data is sent to the server to train the model as well as the
second batch so that the trained model can extract new entities from it. The more
annotated batches, the higher the amount of training data, making the model learn
how to classify entities even better. This makes the experimenter annotate fewer and
fewer entities manually. The greater the autonomy degree of the model, the lesser
the work of the experimenter. Finally, ARCANO joins all the previously annotated
data into a file, enabling to export the fully annotated dataset.

This tool was used to annotate a corpus from the Arquivo Nacional da Torre do
Tombo, the Arquivo de Oliveira Salazar’s archival finding aids. As we can see in Table
12, in total, 71397 tokens were annotated, making more than 7000 different entities.

6.2. Smart Annotator - ARCANO 89

In the end, the annotation process was considerably easier and faster due to the
intelligent entity recognition system.

Table 12: Annotated entities of Arquivo de Oliveira Salazar corpus.

Corpus Person Place Date
Profession

or Title
Organization Total

Arquivo de
Oliveira Salazar

2641 1807 279 1414 1258 7399

6.2.1 ARCANO Interface

ARCANO’s visual interface was developed to make the named entities annotation
process easy, intuitive, and fast. Figure 36 shows the its main interface.

Figure 36: ARCANO Anotator interface.

6.2. Smart Annotator - ARCANO 90

This figure shows an example of a record from the Arquivo de Salazar finding
aids file, which was automatically annotated by the model and later validated by
the experimenter. To remove a token’s label, we just have to select that token with
the right mouse button. As for annotating a named entity, we need to identify the
token or set of tokens we want to annotate and press the key associated with the
corresponding entity.

Once we have the entire sentence correctly noted, we can either accept this sentence
by pressing the green button or reject this sentence by pressing the red button. These
actions decide whether or not this phrase should be used to re-train the ARCANO’s
ML model.

The style used to highlight the named entities was based on Displacy, a spaCy
library that visually shows the identified entities.

After annotating a set of 100 sentences, we can re-train our model. In Figure 37

we have the interface that allows us to do it.

Figure 37: ARCANO training interface.

In the table represented in this figure, ARCANO lists the annotated data batches
available in memory. Here, we can analyze the number of entities annotated per label,
as well as the total number of entities in each batch. Finally, it allows us to select
the batches that we intend to use to train the model, so it becomes more and more
prepared to recognize entities in our context. In this way, the most representative

6.2. Smart Annotator - ARCANO 91

batches of the dataset should be chosen. With the data batches sectioned, we can
proceed with the model’s training.

Furthermore, ARCANO still has some others features, such as allowing some
customization and showing some statistics, as can be seen in Figure 38.

Figure 38: ARCANO statistics (LEFT) and customization (RIGHT).

On the left, we can see the entity labels distribution of the current data batch. The
entity labels balance can be valuable indicators for selecting the batches we use for
the model training. Finally, on the right, ARCANO lets its users customize the label’s
colours and customize the keyboard keys associated with each label, which are used
in the annotation process in the view corresponding to Figure 36.

7

C O N C L U S I O N

The main goal of this thesis was to create a working tool that was able to recognize
entities from archival finding aids with enough confidence so the extracted entities
could be used in future works. In order to accomplish this, we applied machine
learning techniques to a widely used NLP task, NER.

The archival finding aids used in this thesis contain a very specific context, which
means that available generic NER models may present lower results than intended.
In addition, there is a language barrier, i.e., the amount of Portuguese annotated
data available to train this type of model is limited. Despite this, in this work, we
demonstrated that by training our own models with annotated archival data, it was
possible to obtain satisfactory NER results.

In order to train our own ML models, we started by harvesting all our training
data from Portuguese archives’ online repositories. For this, we used the OAI-
PMH protocol that allowed access to several archival fonds and the harvest of their
corresponding finding aids. With the data collected, we proceeded to annotate
their named entities, generating annotated corpora composed of 8 different archival
datasets, 164478 tokens, and more than 28 thousand annotated entities.

Then we created our NER models with different tools and algorithms to compare
them and select the one that fits our needs. The first introduced tool was OpenNLP,
which uses the MaxEnt algorithm for the NER task. Then, we moved to a Deep
Learning approach, as this method has been showing state-of-art results in several
NLP tasks in the last decade. Here, we created a NER model using spaCy, with
a CNN approach complemented by pre-trained word embeddings. In addition,
we also used Tensorflow, where we implemented a BI-LSTM-CRF model. Finally,
our last approach consisted of using the last trend that has revolutionized several
NLP tasks, in terms of efficiency and results, Transformers, in our case, a BERT
implementation. In this approach, we used large pre-trained models with a Masked
Language Modeling objective and fine-tuned them to our NER task using the
Huggingface library.

92

93

In total, we used 4 different algorithms, training and evaluating several NER
models with each of them to compare their results.

In the models’ validation, we implemented different context environments in order
to test our hypothesis. Here, we wanted to understand the influence that the context
proximity of the training data had on the entity recognition itself. In order to do
so, we tested two different approaches: training individual NER models for each
annotated dataset and creating a single generalized model with data from all the
annotated datasets. We concluded that, for our case, it was more beneficial to use
a generalized model, as it can learn more features about the language vocabulary,
performing better on new context domains.

In the end, we saw that some models performed better than others. In fact,
the BI-LSTM-CRF model, trained without pre-trained word embeddings, achieved
pretty good results on data with a high degree of similarity with its training data.
However, on unseen corpora, it performed poorly. As for BERT models, it is not
a coincidence that the attention mechanism is being adopted in most NLP tasks,
marking an incredible advance on NLP in general. In our experiments, BERT models
also showed some improvements compared to the other tools, mainly when applied
to new contexts domains, which is crucial in the NER task. We want our models
to be able to apply their knowledge in textual documents that they did not see
during their training. In fact, the efficient use of the GPUs’ parallel computational
power has allowed creating bigger and more capable language models providing
the machine with a higher knowledge of the human language.

Overall, our model results were pretty satisfactory, ranging between 86.66% and
94.53% F1-score.

With our experiments, we understood that one important factor that greatly
influences the NER model’s performance is the amount and quality of the annotated
corpora. Generating training data so the models can learn from the annotations can
be a tedious and slow process. In order to attenuate this, we developed an intelligent
annotator that uses ML to support text annotation, ARCANO. This annotator tool
uses one of our ML models to try to find named entities in a new archival corpus.
In order to test this tool, we annotated a new corpus with 71397 tokens identifying a
total of 7399 new named entities. In the end, we concluded that this tool was able to
speed up the annotation process.

Finally, in order to promote future work in this NLP field, we developed a Web
platform that allowed us to share some of the developed tools to the public, such as
the implemented NER models, all the annotated corpora, and ARCANO annotator.

7.1. Contributions 94

7.1 contributions

In this dissertations we able to provide several contributions to the scientific
community, mainly in NER field applied to the Portuguese language:

• Annotated and published a total of 9 Portuguese archival corpora, which can
be used in a wide number of different NLP tasks.

• Demonstrated that we could achieve good NER results in our own data context
domain by training or fine-tuning our own NER models.

• Developed a smart annotator tool that speeds up the annotation process in
order to encourage the community to generate more Portuguese annotated
data, which is something that we lack compared to the English language.

• Developed and deployed a web platform that contains several tools developed
in this work, such as the NER models, the intelligent annotator, all the annotated
corpora, etc.

• Published a paper on SLATE’21 called "NER in Archival Finding Aids" Cunha
and Ramalho (2021a)

• Published a paper on Linked Archives 2021, International Workshop called
"Towards Entity Linking, NER in Archival Finding Aids" Cunha and Ramalho
(2021b)

7.2 future work

Several approaches could be put into practice in order to improve the obtained
results. For example, we could improve our annotated corpora quantity and quality.

In fact, the corpora used to train the models was not annotated by an archival
expert. Some of these documents were written centuries ago, which means that,
even if the used language is the same, Portuguese, it is possible that we were not
able to identify all the named entities due to vocabulary deviations as a consequence
of the language evolution over the years. Because of this, the quality of the annotated
data can be negatively affected.

On the other hand, archival documents represent a wide variety of contexts, from
documents of public administration, private organizations, religious organizations,
etc. In order to create a NER model that can perform in all these different domains,
the ML model would need a higher amount of annotated data samples, generating

7.2. Future Work 95

a more representative training environment. This way, it could learn how to classify
a broader set of context domains.

As for the actual ML models, we have seen that models with some pre-training
achieved better results in unseen data. However, the models used in this work were
pre-trained in generic domains. Thus, there is some room for improvement, as we
could pre-train our models in the archival context, allowing them to learn more
features about the vocabulary used. For example, the BERT model used in this work
was trained on Brazilian Portuguese data, which is not ideal. Since a vast amount
of Portuguese archival information is available to the public, it could be used to
pre-train a new model in an unsupervised fashion. This could provide the model
with greater knowledge of archival context vocabulary.

Although there are already many archival documents in digital format, some of
them have not yet been transcribed, so they are only available as digitized images.
Thus, in order to obtain its content and use it in the model’s training, one could
use computer vision, more precisely, handwritten character recognition (HWCR) or
optical character recognition (OCR).

As for the extracted entities, they could be used for numerous purposes, such as
creating a Knowledge Graph. In order to do so, we could perform an entity linking
task to gather the entities relationships.

Besides that, entity linking could also be performed to make it possible to browse
between different archival documents but related by some entity. It would also be
interesting to use the extracted entities to create toponymic and anthroponomic
indexes to understand the impact this tool could have on browsing archival finding
aids.

B I B L I O G R A P H Y

Jay Alammar. The illustrated transformer, 2018. URL http://jalammar.github.io/

illustrated-transformer. Accessed in 18-07-2021.

Ali Alvi and Paresh Kharya. Using deepspeed and megatron to train megatron-
turing nlg 530b, the world’s largest and most powerful generative language
model, Oct 2021. URL https://www.microsoft.com/en-us/research/blog/

using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-

worlds-largest-and-most-powerful-generative-language-model/. Accessed
in 15/10/2021.

ANTT. História do arquivo nacional da torre do tombo, 2017. URL http:

//antt.dglab.gov.pt/inicio/identificacao-institucional/6-2/. Acedido
a 2020-12-15.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. 2015.

Dominic Balasuriya, Nicky Ringland, Joel Nothman, Tara Murphy, and James R. Cur-
ran. Named entity recognition in wikipedia. 2009. doi: 10.3115/1699765.1699767.

Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A maximum
entropy approach to natural language processing. Computational Linguistics, 1996.
ISSN 08912017.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. volume
2020-December, 2020.

Paula Carvalho, Hugo Gonçalo Oliveira, Diana Santos, Cláudia Freitas, and Cristina
Mota. Segundo HAREM: Modelo geral, novidades e avaliação. 01 2008.

96

http://jalammar.github.io/illustrated-transformer
http://jalammar.github.io/illustrated-transformer
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
http://antt.dglab.gov.pt/inicio/identificacao-institucional/6-2/
http://antt.dglab.gov.pt/inicio/identificacao-institucional/6-2/

BIBLIOGRAPHY 97

Luís Filipe Cunha and José Carlos Ramalho. NER in Archival Finding Aids. In Ri-
cardo Queirós, Mário Pinto, Alberto Simões, Filipe Portela, and Maria João
Pereira, editors, 10th Symposium on Languages, Applications and Technologies
(SLATE 2021), volume 94 of Open Access Series in Informatics (OASIcs), pages
8:1–8:16, Dagstuhl, Germany, 2021a. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN 978-3-95977-202-0. doi: 10.4230/OASIcs.SLATE.2021.8. URL
https://drops.dagstuhl.de/opus/volltexte/2021/14425.

Luís Filipe Cunha and José Carlos Ramalho. Towards entity linking, ner in archival
finding aids. In Carla Teixeira Lopes, Cristina Ribeiro, Franco Niccolucci, Irene
Rodrigues, and Nuno Freire, editors, Proceedings of Linked Archives International
Workshop 2021 co-located with 25th International Conference on Theory and Practice
of Digital Libraries (TPDL 2021), pages 22–29, 2021b. URL http://ceur-ws.org/

Vol-3019/LinkedArchives_2021_paper_12.pdf.

Luís Filipe Cunha and José Carlos Ramalho. Ner@di, 2021c. URL http://

ner.epl.di.uminho.pt/. Accessed in 09-10-2021.

Andrew M. Dai and Quoc V. Le. Semi-supervised sequence learning. volume
2015-January, 2015.

Leon Derczynski. Complementarity, f-score, and nlp evaluation. In Proceedings of
the 10th International Conference on Language Resources and Evaluation, LREC 2016,
2016. ISBN 9782951740891.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-
training of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018. URL http://arxiv.org/abs/1810.04805.

Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. vol-
ume 1, 2019.

DGLAB. Direção geral do livro dos arquivos e das bibliotecas - arquivos, 2021. URL
http://dglab.gov.pt/area-arquivos/. Accessed in 24-09-2020.

Express.js. Express - node.js web application framework, n.d. URL https:

//expressjs.com/. Accessed in 10-04-2021.

Meng Fang, Yuan Li, and Trevor Cohn. Learning how to active learn: A deep
reinforcement learning approach. In EMNLP 2017 - Conference on Empirical

https://drops.dagstuhl.de/opus/volltexte/2021/14425
http://ceur-ws.org/Vol-3019/LinkedArchives_2021_paper_12.pdf
http://ceur-ws.org/Vol-3019/LinkedArchives_2021_paper_12.pdf
http://ner.epl.di.uminho.pt/
http://ner.epl.di.uminho.pt/
http://arxiv.org/abs/1810.04805
http://dglab.gov.pt/area-arquivos/
https://expressjs.com/
https://expressjs.com/

BIBLIOGRAPHY 98

Methods in Natural Language Processing, Proceedings, 2017. ISBN 9781945626838.
doi: 10.18653/v1/d17-1063.

Jorge A. Wagner Filho, Rodrigo Wilkens, Marco Idiart, and Aline Villavicencio. The
brwac corpus: A new open resource for brazilian portuguese. 2019.

Cláudia Freitas, Cristina Mota, Diana Santos, Hugo Gonçalo Oliveira, and Paula
Carvalho. Second HAREM: Advancing the state of the art of named entity
recognition in Portuguese. In Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10), Valletta, Malta, May 2010. European
Language Resources Association (ELRA). URL http://www.lrec-conf.org/

proceedings/lrec2010/pdf/412_Paper.pdf.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning (Adaptive
Computation and Machine Learning series). The MIT Press, nov 2016. ISBN
0262035618. URL https://www.xarg.org/ref/a/0262035618/.

Alex Graves, Abdel Rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, 2013. ISBN 9781479903566.
doi: 10.1109/ICASSP.2013.6638947.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text
classification. volume 1, 2018. doi: 10.18653/v1/p18-1031.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence
tagging, 2015.

HuggingFace. Summary of the tokenizers, 2021. URL https://huggingface.co/

transformers/tokenizer_summary.html. Accessed in 23/08/2021.

Grant S. Ingersoll, Thomas S. Morton, and Andrew L. Farris. Taming text: how to find,
organize, and manipulate it. Manning, Shelter Island, 2013. ISBN 9781933988382.
OCLC: ocn772977853.

Carl Lagoze, Herbert Van de Sompel, Michael Nelson, and Simeon Warner. Open
archives initiative - protocol for metadata harvesting - v.2.0, Jun 2002. URL
https://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. Neural architectures for named entity recognition. In 2016 Con-
ference of the North American Chapter of the Association for Computational Linguistics:

http://www.lrec-conf.org/proceedings/lrec2010/pdf/412_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/412_Paper.pdf
https://www.xarg.org/ref/a/0262035618/
https://huggingface.co/transformers/tokenizer_summary.html
https://huggingface.co/transformers/tokenizer_summary.html
https://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

BIBLIOGRAPHY 99

Human Language Technologies, NAACL HLT 2016 - Proceedings of the Conference,
2016. ISBN 9781941643914. doi: 10.18653/v1/n16-1030.

Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional LSTM-
CNNs-CRF. In 54th Annual Meeting of the Association for Computational Linguistics,
ACL 2016 - Long Papers, 2016. ISBN 9781510827585. doi: 10.18653/v1/p16-1101.

Christopher Manning. Maxentmodels and discriminative estima-
tion, 2003. URL https://web.stanford.edu/class/cs124/lec/

Maximum_Entropy_Classifiers.pdf. Accessed in 22-01-2021.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, Cambridge, Massachusetts, London, England,
1999.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer
sentinel mixture models. 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. 2013.

Mike Morais. Neu 560: Statistical modeling and analysis of neural data:
Lecture 8: Informationtheory and maximum entropy, 2018. URL
http://pillowlab.princeton.edu/teaching/statneuro2018/slides/

notes08_infotheory.pdf. Acedido a 20-10-2020.

Node.js. Node.js v16.4.0 documentation, n.d. URL https://nodejs.org/api/

child_process.html. Accessed in 17-03-2021.

Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, and James R
Curran. Learning multilingual named entity recognition from
wikipedia, Oct 2017. URL https://figshare.com/articles/dataset/

Learning_multilingual_named_entity_recognition_from_Wikipedia/

5462500/1.

Christopher Olah. Understanding lstm networks, August 2015. URL http://

colah.github.io/posts/2015-08-Understanding-LSTMs/. Accessed on March
10, 2021.

Apache OpenNLP. Welcome to apache opennlp, 2017. URL https://

opennlp.apache.org/. Accessed in 18-10-2020.

https://web.stanford.edu/class/cs124/lec/Maximum_Entropy_Classifiers.pdf
https://web.stanford.edu/class/cs124/lec/Maximum_Entropy_Classifiers.pdf
http://pillowlab.princeton.edu/teaching/statneuro2018/slides/notes08_infotheory.pdf
http://pillowlab.princeton.edu/teaching/statneuro2018/slides/notes08_infotheory.pdf
https://nodejs.org/api/child_process.html
https://nodejs.org/api/child_process.html
https://figshare.com/articles/dataset/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500/1
https://figshare.com/articles/dataset/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500/1
https://figshare.com/articles/dataset/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500/1
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://opennlp.apache.org/
https://opennlp.apache.org/

BIBLIOGRAPHY 100

Developers Community OpenNLP. Apache OpenNLP Developer Documentation.pdf.
2011. ISBN 2555680587443.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1162.
URL https://aclanthology.org/D14-1162.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.
volume 1, 2018. doi: 10.18653/v1/n18-1202.

André Ricardo Oliveira Pires. Named entity extraction from portuguese web text.
Master’s thesis, Faculdade de Engenharia da Universidade do Porto, 2017.

Alexandre Rademaker, Fabricio Chalub, Livy Real, Cláudia Freitas, Eckhard Bick,
and Valeria de Paiva. Universal dependencies for portuguese. In Proceedings of the
Fourth International Conference on Dependency Linguistics (Depling), pages 197–206,
Pisa, Italy, September 2017. URL http://aclweb.org/anthology/W17-6523.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews
and discovering sentiment, 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding with unsupervised learning. 2018.

Adwait Ratnaparkhi. Maximum entropy models for natural language ambiguity
resolution. 1998.

Ana Maria Rodrigues, Catarina Guimarães, Francisco Barbedo, Glória Santos, Lucília
Runa, and Pedro Penteado. Orientações para a descrição arquivística, May
2011. URL https://act.fct.pt/wp-content/uploads/2014/05/ODA-3%C2%AA-

vers%C3%A3o.pdf.

Sebastian Ruder. NLP’s ImageNet moment has arrived. https://ruder.io/nlp-

imagenet/, 2018. Accessed in 07-10-2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115, 2015. ISSN 15731405. doi:
10.1007/s11263-015-0816-y.

https://aclanthology.org/D14-1162
http://aclweb.org/anthology/W17-6523
https://act.fct.pt/wp-content/uploads/2014/05/ODA-3%C2%AA-vers%C3%A3o.pdf
https://act.fct.pt/wp-content/uploads/2014/05/ODA-3%C2%AA-vers%C3%A3o.pdf
https://ruder.io/nlp-imagenet/
https://ruder.io/nlp-imagenet/

BIBLIOGRAPHY 101

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared
task. 2003. doi: 10.3115/1119176.1119195.

Diana Santos and Nuno Cardoso. A golden resource for named entity recognition in
portuguese. In Renata Vieira, Paulo Quaresma, Maria das Graças Volpe Nunes,
Nuno J. Mamede, Cláudia Oliveira, and Maria Carmelita Dias, editors, Computa-
tional Processing of the Portuguese Language, pages 69–79, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. ISBN 978-3-540-34046-1.

Diana Santos, Nuno Seco, Nuno Cardoso, and Rui Vilela. HAREM: An advanced
NER evaluation contest for Portuguese. In Proceedings of the Fifth International
Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy, May 2006.
European Language Resources Association (ELRA). URL http://www.lrec-

conf.org/proceedings/lrec2006/pdf/59_pdf.pdf.

Satoshi Sekine and Elisabete Ranchhod. Named Entities: Recognition, classification and
use. John Benjamins Publishing Company, july 2009.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. volume 3, 2016. doi: 10.18653/v1/p16-1162.

Yanyao Shen, Hyokun Yun, Zachary C. Lipton, Yakov Kronrod, and Animashree
Anandkumar. Deep active learning for named entity recognition. In 6th In-
ternational Conference on Learning Representations, ICLR 2018 - Conference Track
Proceedings, 2018.

Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo. BERTimbau: pretrained BERT
models for Brazilian Portuguese. In 9th Brazilian Conference on Intelligent Systems,
BRACIS, Rio Grande do Sul, Brazil, October 20-23 (to appear), 2020.

spaCy. Annotation specifications · spacy api documentation, a. URL https://

spacy.io/api/annotation#biluo.

spaCy. spacy 101: Everything you need to know · spacy usage documentation, b.
URL https://spacy.io/usage/spacy-101. Accessed in 07-01-2021.

spaCy. Training spacy’s statistical models · spacy usage documentation, c. URL
https://spacy.io/usage/training. Accessed in 14-01-2021.

spaCy. Model architecture, 2017. URL https://spacy.io/models. Acedido a 14-01-
2021.

http://www.lrec-conf.org/proceedings/lrec2006/pdf/59_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/59_pdf.pdf
https://spacy.io/api/annotation#biluo
https://spacy.io/api/annotation#biluo
https://spacy.io/usage/spacy-101
https://spacy.io/usage/training
https://spacy.io/models

BIBLIOGRAPHY 102

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. volume
2017-December, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander Rush. Transformers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38–45, Online, October 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL
https://aclanthology.org/2020.emnlp-demos.6.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Anto-
nio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books. In 2015 IEEE
International Conference on Computer Vision (ICCV), pages 19–27, 2015. doi:
10.1109/ICCV.2015.11.

https://aclanthology.org/2020.emnlp-demos.6

A
S U P P O RT M AT E R I A L ; L I S T I N G S

a.1 "o século" newspaper archival fond in xml format.

1 <ead

2 xmlns:xlink="http://www.w3.org/1999/xlink"

3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xmlns="urn:isbn:1-931666-22-9">

6 <eadheader>

7 <eadid url="https://digitarq.arquivos.pt/details?id=1009215"/>

8 <filedesc>

9 <titlestmt>

10 <titleproper/>

11 </titlestmt>

12 </filedesc>

13 <profiledesc>

14 <descrules>ISAD(G): Norma Geral Internacional de Descrição Arquivística: adoptada

pelo Comité de Normas de Descrição, Estocolmo: Suécia, 19-22 de Setembro de 1999. Conselho

Internacional de Arquivos; Trad. Grupo de Trabalho para a Normalização da Descrição em

Arquivo. 2ª ed. Lisboa: IAN/TT, 2004. ISBN: 972-8107-69-2. Também disponível a partir de

http://www.iantt.pt NP 405-1. 1994, Informação e documentação - Referências bibliográficas:

documentos impressos. Lisboa: IPQ. 49 p. Elaborada por Comissão Técnica para Informação e

Documentação / Instituto da Biblioteca Nacional e do Livro. Ed. 1995. Norma harmonizada com

a ISO 690 (1987), termo de homologação DR, III Série, nº 128 de 1994-6-3 NP 405-4. 2002,

Informação e documentação - Referências bibliográficas: documentos electrónicos. Lisboa:

IPQ. 26 p. Elaborada por Comissão Técnica para Informação e Documentação / Instituto da

Biblioteca Nacional e do Livro. Ed. 2003. Norma harmonizada com a ISO 690-2 (1997), termo

de homologação DR, III Série, nº 143 de 2002-7-9 PORTUGAL. Instituto dos Arquivos Nacionais

/ Torre do Tombo - Orientações para a descrição arquivística. Grupo de Trabalho para a

Normalização da Descrição em Arquivo. 1ª versão. Lisboa: IAN/TT, 2006. 124 p..ISBN972

-8107-88-9. Elaboradas no âmbito do Programa para a Normalização da Descrição em Arquivo.</

descrules>

15 </profiledesc>

16 </eadheader>

17 <archdesc level="otherlevel" otherlevel="F">

103

A.1. "O Século" newspaper archival fond in XML format. 104

18 <did>

19 <langmaterial>Português</langmaterial>

20 <physdesc>

21 <dimensions>c. 44.000 u.i, c. de 2500 m.l.; papel, filme</dimensions>

22 </physdesc>

23 <repository>Arquivo Nacional da Torre do Tombo</repository>

24 <unitdate label="UnitDates" type="inclusive" certainty="False/False" normal="

1880/1979">ca. 1880/ca. 1979</unitdate>

25 <unitid identifier="1009215" countrycode="PT" repositorycode="PT-TT">PT/TT/EPJS</

unitid>

26 <unittitle type="Atribuído">Empresa Pública Jornal O Século</unittitle>

27 </did>

28

29 ...

30

31 <dsc>

32 <c level="otherlevel" otherlevel="SC">

33 <did>

34 <unitid identifier="4490062" countrycode="PT" repositorycode="PT-TT">PT/TT/

EPJS/A</unitid>

35 <unittitle type="Formal">Arquivo da Redação</unittitle>

36 </did>

37 <relatedmaterial>

38 <ref xlink:role="parent">1009215</ref>

39 </relatedmaterial>

40 <odd>

41 <p>Registo migrado a partir do sistema CALM em 2008-12-27. CALM:Autor:

Cribeiro</p>

42 </odd>

43

44 ...

45

46 <c level="otherlevel" otherlevel="UI">

47 <did>

48 <langmaterial>Português</langmaterial>

49 <physdesc>

50 <dimensions>1 mç. (143 f.); papel</dimensions>

51 </physdesc>

52 <physloc>Empresa Pública Jornal O Século, Cortes de Censura de ’O Século’, cx. 191,

mç. 242</physloc>

53 <repository>Arquivo Nacional da Torre do Tombo</repository>

54 <unitdate label="UnitDates" type="inclusive" certainty="True/True" normal="

1959-12-01/1960-02-29">1959-12-01/1960-02-29</unitdate>

55 <unitid identifier="4490285" countrycode="PT" repositorycode="PT-TT">PT/TT/EPJS/A

/2/242</unitid>

56 <unittitle type="Formal">Cortes de Censura de ’O Século’: maço 242</unittitle>

57 </did>

A.1. "O Século" newspaper archival fond in XML format. 105

58 <relatedmaterial>

59 <ref xlink:role="parent">4490094</ref>

60 </relatedmaterial>

61 <note>

62 <p>Nota ao elemento de informação “Dimensão e suporte”: Na medida em que a maioria

dos recortes das provas tipográficas apresenta notícias truncadas e fragmentadas,

geralmente restritas aos trechos censurados, não foi possível determinar a quantidade exata

de documentos existentes, razão pela qual fica indicado apenas o total de folhas.</p>

63 </note>

64 <odd>

65 <p>Registo migrado a partir do sistema CALM em 2008-12-27. CALM:Cota Actual:Empresa

Pública Jornal ’O Século’, Cortes de Censura de ?O Século?, cx. 191, mç. 242 e mç. 243CALM:

Dimensão e Suporte:1 cx.</p>

66 </odd>

67 <scopecontent>

68 <p>Contém recortes de provas tipográficas de notícias que foram alteradas ou

suprimidas, previamente à respetiva edição do jornal, por três instâncias da Censura, cujos

carimbos constam habitualmente de cada folha onde foram colados os mencionados recortes, a

saber: "O Século - Redação - Serviço de Censura", "Serviços de Censura - Comissão de

Lisboa" e "Serviços de Censura (sede)".

69

70 ...

71

72 Outros assuntos de relevo, embora mais esparsos, dizem respeito à discussão de

problemas agrícolas na Assembleia da República (15 de dezembro de 1959) e ao apoio à

candidatura de Aquilino Ribeiro para o Prémio Nobel (2 de fevereiro de 1960). Há também

atualização sobre julgamentos de presos políticos ("No Plenário Criminal: dez condenações a

pena maior e três em prisão correcional suspensas por três anos" - réus acusados de

atividades subversivas, do dia 22 de dezembro de 1959), mas merecendo grande destaque a

fuga de Álvaro Cunhal e outros companheiros, numa notícia que é repetida ("Evadiram-se dez

presos políticos da fortaleza de Peniche", dos dias 5 e 6 de janeiro de 1960). Finalmente,

é comunicada alteração no comando da Polícia Internacional e de Defesa do Estado ("O sr.

capitão Neves Graça deixa a direção da PIDE", do dia 25 de fevereiro de 1960).</p>

73 </scopecontent>

74 <dao xlink:linktype="simple" xlink:href="https://digitarq.arquivos.pt/vault/?id=THUMB/

F2C4630AAAFFC6B15B2283B3A835AAE0&a=false"/>

75 </c>

76 </c>

77 </c>

78 </dsc>

79 </archdesc>

80 </ead>

Listing A.1: "O Século" newspaper archival fond in XML format.

A.2. Paróquia do Curral das Freiras archival fond in XML format 106

a.2 paróquia do curral das freiras archival fond in xml format

1 <ead xmlns="urn:isbn:1-931666-22-9" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xlink="

http://www.w3.org/1999/xlink">

2 <eadheader>

3 <eadid url="https://arquivo-abm.madeira.gov.pt/details?id=807" identifier="PT/ABM/PCML02"

countrycode="PT" mainagencycode="PT-ABM">PT/ABM/PCML02</eadid>

4 <filedesc>

5 <titlestmt>

6 <ead:titleproper xmlns:ead="urn:isbn:1-931666-22-9">Paróquia do Curral das Freiras</ead:

titleproper>

7 </titlestmt>

8 </filedesc>

9 </eadheader>

10 <archdesc level="collection"><did><langmaterial><language>por

11 </language></langmaterial><physdesc><dimensions>316 u.i. (312 liv., 4 mf.)</dimensions></

physdesc><repository>Arquivo Regional e Biblioteca Pública da Madeira</repository><unitdate

>1813/1911</unitdate><unittitle>Paróquia do Curral das Freiras</unittitle><unitid>PT/ABM/

PCML02<extptr xlink:type="simple" xlink:href="https://arquivo-abm.madeira.gov.pt/details?id

=807"/>

12 </unitid></did><scopecontent><p>Livros de registo de batismos, casamentos e óbitos.</p>

</scopecontent>

13 <dsc>

14 <c level="series">

15 <did>

16 <physdesc>

17 <dimensions>105 u.i. (104 liv., 1 mf.)</dimensions>

18 </physdesc>

19 <repository>Arquivo Regional e Biblioteca Pública da Madeira</repository>

20 <unitdate>1813/1911</unitdate>

21 <unittitle>Registo de casamentos</unittitle>

22 <unitid>PT/ABM/PCML02/002<extptr xlink:type="simple" xlink:href="https://arquivo-abm.

madeira.gov.pt/details?id=4444"/>

23 </unitid>

24 </did>

25

26 <c level="file">

27 <did>

28 <langmaterial>

29 <language>por

30 </language>

31 </langmaterial>

32 <physdesc>

33 <dimensions>1 liv.: 16 f. num. e rub.</dimensions>

34 </physdesc>

35 <repository>Arquivo Regional e Biblioteca Pública da Madeira</repository>

36 <unitdate>1882/1882</unitdate>

A.2. Paróquia do Curral das Freiras archival fond in XML format 107

37 <unittitle>Livro de registo de casamentos do Curral das Freiras do ano de 1882</

unittitle>

38 <unitid>PT/ABM/PCML02/002/00024<extptr xlink:type="simple" xlink:href="https://arquivo-

abm.madeira.gov.pt/details?id=1010"/>

39 </unitid>

40 </did>

41

42 <c level="item">

43 <did>

44 <langmaterial>

45 <language>por

46 </language>

47 </langmaterial>

48 <physdesc>

49 <dimensions>1 f.</dimensions>

50 </physdesc>

51 <repository>Arquivo Regional e Biblioteca Pública da Madeira</repository>

52 <unitdate>1882/1882</unitdate>

53 <unittitle>Registo de casamento n.º 1: Jesuíno Rodrigues c.c. Justina de Jesus</

unittitle>

54 <unitid>PT/ABM/PCML02/002/00024/000001<extptr xlink:type="simple" xlink:href="https://

arquivo-abm.madeira.gov.pt/details?id=502239"/>

55 </unitid>

56 </did>

57 </c>

58 <c level="item">

59 <did>

60 <langmaterial>

61 <language>por

62 </language>

63 </langmaterial>

64 <physdesc>

65 <dimensions>1 f.</dimensions>

66 </physdesc>

67 <repository>Arquivo Regional e Biblioteca Pública da Madeira</repository>

68 <unitdate>1882/1882</unitdate>

69 <unittitle>Registo de casamento n.º 2: Manuel Rodrigues c.c. Antónia de Jesus</

unittitle>

70 <unitid>PT/ABM/PCML02/002/00024/000002<extptr xlink:type="simple" xlink:href="https://

arquivo-abm.madeira.gov.pt/details?id=502240"/>

71 </unitid>

72 </did>

73 </c>

74 <c level="item">

75 <did>

76 <langmaterial>

77 <language>por

A.3. ARCANO Sequence Diagram. 108

78 </language>

79 </langmaterial>

80 <physdesc>

81 <dimensions>1 f.</dimensions>

82 </physdesc>

83 <repository>Arquivo Regional e Biblioteca Pública da Madeira</repository>

84 <unitdate>1882/1882</unitdate>

85 <unittitle>Registo de casamento n.º 3: António de Canha c.c. Victorina de Jesus</

unittitle>

86 <unitid>PT/ABM/PCML02/002/00024/000003<extptr xlink:type="simple" xlink:href="https://

arquivo-abm.madeira.gov.pt/details?id=502241"/>

87 </unitid>

88 </did>

89 </c>

90 ...

Listing A.2: Paróquia do Curral das Freiras archival fond.

a.3 arcano sequence diagram .

A.3. ARCANO Sequence Diagram. 109

Figure 39: ARCANO Sequence Diagram.

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Document Structure

	2 State of Art
	2.1 Archival Finding Aids
	2.2 OAI-PMH
	2.3 Named Entity Recognition
	2.4 Active Learning for Named Entity Recognition
	2.5 OpenNLP
	2.5.1 Maximum Entropy
	2.5.2 Features
	2.5.3 Entropy Maximization

	2.6 spaCy
	2.6.1 Transition Based NER
	2.6.2 Deep Learning framework for NLP

	2.7 TensorFlow BI-LSTM-CRF
	2.7.1 Recurrent Neural Network
	2.7.2 Long Short Term Memory
	2.7.3 Bidirectional Long Short Term Memory
	2.7.4 BI-LSTM-CRF

	2.8 Transformers
	2.8.1 Transfer Learning
	2.8.2 Attention Mechanism
	2.8.3 Generative Pre-Training
	2.8.4 BERT

	2.9 Evaluation

	3 Archival Finding Aids Processing
	3.1 Data Harvest
	3.2 Data Description
	3.3 Data Cleaning
	3.4 Data Annotation
	3.4.1 Statistical model Approach
	3.4.2 Regex Approach
	3.4.3 Manual Approach

	3.5 Data Parse
	3.5.1 Format Converter

	3.6 Results
	3.7 Conclusion

	4 Named Entity Recognition Models
	4.1 Available Portuguese NER models
	4.2 Training NER Models
	4.2.1 OpenNLP
	4.2.2 spaCy
	4.2.3 BI-LSMT-CRF
	4.2.4 BERT

	4.3 Conclusion

	5 Named Entity Recognition Results
	5.1 Individual NER model per Corpus
	5.2 Generalized NER model
	5.2.1 BERT Model's Results

	5.3 Overall Results
	5.4 Conclusion

	6 NER@DI
	6.1 Web Platform - NER@DI
	6.1.1 Architecture
	6.1.2 Features
	6.1.3 Interface

	6.2 Smart Annotator - ARCANO
	6.2.1 ARCANO Interface

	7 Conclusion
	7.1 Contributions
	7.2 Future Work

	A Support material; Listings
	A.1 "O Século" newspaper archival fond in XML format.
	A.2 Paróquia do Curral das Freiras archival fond in XML format
	A.3 ARCANO Sequence Diagram.

		2022-02-23T23:55:05+0000

