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Adriano Vaz de Carvalho Campinho

Automatic Speech Recognition
for European Portuguese

July 2021



Universidade do Minho
Escola de Engenharia
Departamento de Informática
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A B S T R A C T

The process of Automatic Speech Recognition (ASR) opens doors to a vast amount of possible
improvements in customer experience. The use of this type of technology has increased
significantly in recent years, this change being the result of the recent evolution in ASR
systems. The opportunities to use ASR are vast, covering several areas, such as medical,
industrial, business, among others. We must emphasize the use of these voice recognition
systems in telecommunications companies, namely, in the automation of consumer assistance
operators, allowing the service to be routed to specialized operators automatically through
the detection of matters to be dealt with through recognition of the spoken utterances. In
recent years, we have seen big technological breakthrough in ASR, achieving unprecedented
accuracy results that are comparable to humans. We are also seeing a move from what
is known as the Traditional approach of ASR systems, based on Hidden Markov Models
(HMM), to the newer End-to-End ASR systems that obtain benefits from the use of deep
neural networks (DNNs), large amounts of data and process parallelization.

The literature review showed us that the focus of this previous work was almost exclusively
for the English and Chinese languages, with little effort being made in the development of
other languages, as it is the case with Portuguese. In the research carried out, we did not
find a model for the European Portuguese (EP) dialect that is freely available for general
use. Focused on this problem, this work describes the development of a End-to-End ASR
system for EP. To achieve this goal, a set of procedures was followed that allowed us to
present the concepts, characteristics and all the steps inherent to the construction of these
types of systems. Furthermore, since the transcribed speech needed to accomplish our goal
is very limited for EP, we also describe the process of collecting and formatting data from a
variety of different sources, most of them freely available to the public. To further try and
improve our results, a variety of different data augmentation techniques were implemented
and tested. The obtained models are based on a PyTorch implementation of the Deep Speech
2 model.

Our best model achieved an Word Error Rate (WER) of 40.5%, in our main test corpus,
achieving slightly better results to those obtained by commercial systems on the same data.
Around 150 hours of transcribed EP was collected, so that it can be used to train other ASR
systems or models in different areas of investigation. We gathered a series of interesting
results on the use of different batch size values as well as the improvements provided by
the use of a large variety of data augmentation techniques. Nevertheless, the ASR theme is
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vast and there is still a variety of different methods and interesting concepts that we could
research in order to seek an improvement of the achieved results.

keywords Automatic Speech Recognition, European Portuguese, End-to-End Learning,
Data Collection



R E S U M O

O processo de Reconhecimento Automático de Fala (ASR) abre portas para uma grande
quantidade de melhorias possı́veis na experiência do cliente. A utilização deste tipo de
tecnologia tem aumentado significativamente nos últimos anos, sendo esta alteração o
resultado da evolução recente dos sistemas ASR. As oportunidades de utilização do ASR
são vastas, abrangendo diversas áreas, como médica, industrial, empresarial, entre outras.
É de realçar que a utilização destes sistemas de reconhecimento de voz nas empresas de
telecomunicações, nomeadamente, na automatização dos operadores de atendimento ao
consumidor, permite o encaminhamento automático do serviço para operadores especial-
izados através da detecção de assuntos a tratar através do reconhecimento de voz. Nos
últimos anos, vimos um grande avanço tecnológico em ASR, alcançando resultados de
precisão sem precedentes que são comparáveis aos atingindos por humanos. Por outro lado,
vemos também uma mudança do que é conhecido como a abordagem tradicional, baseados
em modelos de Markov ocultos (HMM), para sistemas mais recentes ponta-a-ponta que
reúnem benefı́cios do uso de redes neurais profundas, em grandes quantidades de dados e
da paralelização de processos.

A revisão da literatura efetuada mostra que o foco do trabalho anterior foi quase que
exclusivamente para as lı́nguas inglesa e chinesa, com pouco esforço no desenvolvimento de
outras lı́nguas, como é o caso do português. Na pesquisa realizada, não encontramos um
modelo para o dialeto português europeu (PE) que se encontre disponı́vel gratuitamente para
uso geral. Focado neste problema, este trabalho descreve o desenvolvimento de um sistema
de ASR ponta-a-ponta para o PE. Para atingir este objetivo, foi seguido um conjunto de
procedimentos que nos permitiram apresentar os conceitos, caracterı́sticas e todas as etapas
inerentes à construção destes tipos de sistemas. Além disso, como a fala transcrita necessária
para cumprir o nosso objetivo é muito limitada para PE, também descrevemos o processo
de coleta e formatação desses dados em uma variedade de fontes diferentes, a maioria
delas disponı́veis gratuitamente ao público. Para tentar melhorar os nossos resultados, uma
variedade de diferentes técnicas de aumento de dados foram implementadas e testadas. Os
modelos obtidos são baseados numa implementação PyTorch do modelo Deep Speech 2.

O nosso melhor modelo obteve uma taxa de erro de palavras (WER) de 40,5% no nosso
corpus de teste principal, obtendo resultados ligeiramente melhores do que aqueles obtidos
por sistemas comerciais sobre os mesmos dados. Foram coletadas cerca de 150 horas de PE
transcritas, que podem ser utilizadas para treinar outros sistemas ou modelos de ASR em
diferentes áreas de investigação. Reunimos uma série de resultados interessantes sobre o
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uso de diferentes valores de batch size, bem como as melhorias fornecidas pelo uso de uma
grande variedade de técnicas de data augmentation. O tema ASR é vasto e ainda existe uma
grande variedade de métodos diferentes e conceitos interessantes que podemos investigar
para melhorar os resultados alcançados.

palavras-chave Reconhecimento Automático de Fala, Português Europeu, Aprendiza-
gem Ponta a Ponta, Recolha de Dados
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I N T R O D U C T I O N

1.1 motivation

Since the emergence of computers, researchers have been looking for ways to make more
intelligent computer systems and improving human-machine communication, one of these
steps involves the process of computers understanding Speech. Not long ago, this type
of technology was only present in science-fiction stories, but today, Automatic Speech
Recognition (ASR) is a reality.

ASR is the process where a machine is able to recognize human speech and produce a
’string output’ of the sentences in its written form. The data can then be used not only to
perform actions but also to obtain information from the user. This process has evolved a
long way from the early days where it was only possible to recognize a small vocabulary
of words in a paused manner and speaker-dependent context, to today’s state-of-the-art
recognition systems that are able to achieve comparable results with human perception. For
humans to be able to communicate with devices in a natural way, it is necessary for the
Speech Recognition models to have good accuracy, low processing time, and depending on
the context it may be necessary to have the ability to recognize different speakers.

In today’s age, many ASR services are available, and these are generally able to achieve fast
and somewhat accurate results for general use cases, but better results can be achieved when
using models specifically designed for a defined task. Many aspects can prove as hindrances
to a Speech Recognition model, that can be, e.g., background noise interference, differences
in accents, dialects, and physiology affecting our speech, differences in vocabulary size and
content, low audio quality and others. All of these can lead to miss recognition of utterances.
Local inference ASR, or also known as offline ASR systems, have also recently gained interest
due to increasing importance on both subjects of cyber-security and online privacy, and for
these reasons a lot of Speech-to-Text engines are becoming open-source. Furthermore, these
open-source projects are also showing significantly good performance and accuracy rates
compared to current Speech-to-Text commercial engines [1].

What we have been watching recently is that the development of these ASR Systems have
been benefited by the quick evolution of techniques like Deep Learning, of the advance
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1.2. Objectives 3

in computing power and the availability of data and information [2]. However, what the
literature shows us is that the focus of these new developments is mainly focused on English
and Chinese languages, possibly largely motivated by being in the top ranking of the most
spoken languages in the world [3]. In the case of other languages with a lower amount of
representation in world communication, like Portuguese, there has not been nearly as much
investment in the development of these types of systems.

Although some efforts have been done to develop Brazilian Portuguese (BP) ASR, in the
literature review developed around this theme, to the best of our knowledge, there is no
model for the European Portuguese (EP) dialect that is freely available for general use.

1.2 objectives

The automatic speech recognition is the task of transcribing a speech audio signal into a
written language. The process of ASR opens the doors to a broad set of possible customer
experience enhancements, especially associated with the dynamics of communication with
customers.

While the history of statistical approaches for automatic speech recognition is long, only a
few very spontaneous projects have used such development on the Portuguese Language.
Focused on this problem, the research question to which this study intends to answer is as
follows: What steps and procedures are involved in creating an ASR system for EP? Based
on this question, which constituted the starting line for the work we propose to develop, the
main objectives of this work are:

• Research and describe ASR systems and how do they work;

• Collect as much possible transcribed speech and develop an ASR model for EP;

• Test multiple methods to improve the accuracy of the system, and compare the obtained
results with available commercial alternatives.

1.3 document structure

This document is organized into eight chapters. Chapter 2 describes, in its essence, what is
speech, and how it works. In addition, it also contains a brief introduction to the current
foundations of modern ASR systems. Chapter 3 is dedicated to describing the application
of speech recognition, an evolutionary perspective of how ASR technologies evolved over
the years. Furthermore, application areas are also characterized in that chapter, as well as
the main parameters involved in this type of system and how their performance can be
evaluated.
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Chapter 4 deals with the structure and paradigms of models used to recognize discourse.
A reflection is done comparing two of the most prevalent paths in this field (i.e., traditional
models and the recent end-to-end models). At the end of the chapter, a general introduction
of the technologies used in the development of our system is present. In Chapter 5, various
methods used to improve ASR models are introduced, which were described in previous
works to be able to both improve accuracy, training time, and to increase the robustness of
the model. These methods were given special attention for their ability to possibly limit the
effects of small amount of collected data.

In Chapter 6, a description of all data collected (and their source) to train the ASR model is
presented. The transcribed speech in English used to train the back-model, the EP transcribed
speech to train our new model, and the EP text data used to create the Language Models are
detailed. Chapter 7 contains a description of the specification of both the Acoustic’s and
Language’s models created, the methodology used during development and the results of
such methods. In addition, the final results are compared with other ASR services.

Finally, in Chapter 8, the conclusions and contributions are summarized and we present a
brief discussion about future work.



2

T H E H U M A N S P E E C H

2.1 human voice

ASR models assume, in their construction, the knowledge of what the human voice is
and how it is produced. This prior knowledge allows us to better understand this speech
production process, which despite being intuitive for us humans, is a quite complex process.

The joint work of three different systems is necessary for our body to produce the sounds
that compose our voice [4], as we can see in Figure 1. These systems can be referred to as
the respiratory system, the phonetic system, and the resonance system, whose distinct roles
are necessary for voice production. It should be noted that these systems’ primary functions
are not the articulation of speech, but breathing, chewing, and smell, among others. It is
necessary to describe these three systems in order to understand their functions and the
organs that constitute them:

RESPIRATORY SYSTEM: Responsible for our breathing, includes our lungs, rib-cage, chest
muscles, diaphragm, and windpipe;

PHONATORY SYSTEM: Responsible for the production of sound, includes our larynx and vocal
cords primarily;

RESONANCE: Responsible for shaping and amplifying the sound produced in the Phonatory
System into vowel and consonant sounds we use to communicate. This includes a
variety of different parts in and around the mouth.

5



2.1. Human Voice 6

Figure 1: Sagittal Section of the Vocal Tract, extracted from [5]

These three systems described above are the physiologically responsible for producing the
sounds in speech, which can be divided into two different types, voiced and voiceless sounds.
When we breathe, our vocal folds are open to allow air to flow from your upper airway into
your trachea and lungs. For voiced sounds (/b/, /j/, /r/, etc.), when we speak, we close
our vocal folds and begin to exhale, causing an increase in pressure that pushes the vocal
folds open. This opening releases the tension and lets the vocal folds close up again. This
continuous opening and closing cycle is what produces the vibrations that are the source
of our voices, these are a series of sound wave frequencies with an average fundamental
frequency of F0. Alternatively, when producing voiceless sounds (/f/, /p/, /s/, etc.), we
keep our vocal folds relaxed even when exhaling, and air passes through unobstructed. If
the air moves very quickly, the turbulence causes a different kind of phonation: whispering
[4]. Both voiced, and voiceless sounds are then amplified and shaped by our Resonance
system, creating articulation and the different sounds we use during communication.

There is a substantial amount of data on the voice fundamental frequency (F0) in speech
[6]. The typical reported values obtained for the frequency of the voice fundamental in
speech vary around 120Hz for men, 210 Hz for women [6], and around 270Hz for children
[7]. However, a higher deviation from the base frequency is typically noticeable in tonal
languages, such as Mandarin [8]. As stated, this value varies from person to person but can
be influenced by multiple factors, most notably studied are age and sex. However, aspects
like type of discourse, mood, and language, as well as the presence of a smoking habit, can
also have deep effects on the value of F0 [9]. But the human voice is not a simple sin wave.
It is a composite waveform containing overtones and harmonic frequencies far above these
ranges. These are responsible for the fact that the spectrum of speech is generally found in
the frequency range from 100-8000Hz.
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(a) Male Voice (b) Female Voice

Figure 2: Effect of Various Levels of Vocal Effort, extracted from [10]

One of the critical aspects that affect how we sound is the vocal effort, meaning the effort
made by the speaker to compensate for the distance between him and the listener(’s) or
surrounding noise and several other factors. Is is evident in the Figure 2 that a higher effort
is associated with a energy moved towards higher frequencies associated with a higher pitch.
Inherently ”screamed” speech sounds different from talking with a calm voice [10]. While
language can be something that groups many people, the voice’s character and sound are
different from person to person.

2.2 phonetics

During pronunciation, we split each word into syllable(s). These are units of pronunciation
having one vowel sound, with or without surrounding consonants, forming the whole or a
part of a word. In simplified terms [11]:

CONSONANTS: Consonants are sounds that are articulated with a complete or partial closure
of the vocal tract. They can be voiced or voiceless and they break up the stream of
vowels and require more precise articulation;

VOWELS: Vowels are voiced sounds that are pronounced without any obstruction in the
vocal tract.

This classification is not perfect since the syllabic function needs to be considered [4]. In
electronics, acoustics, and related fields, the waveform of a signal is the shape of its graph as
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a function of time, independent of its time and magnitude scales and of any displacement in
time. By analyzing these types of representations of a speech waveform (Figure 3), we can
detect some interesting aspects of EP pronunciation:

• Distinguishable gaps of silence between words are not a mandatory occurrence;

• There are regular peaks in volume amplitude;

• Vowels are generally voiced more loudly and have increased duration;

• There is a visible reduction in volume during pronunciation when changing from one
vowel to another.

Figure 3: Waveform Audio of the first line of the epic poem ’Os Lusı́adas’, said by António Fonseca

The Portuguese alphabet is composed of 23 different letters (5 Vowels and 18 Consonants),
and these letters can have different pronunciations depending on their surrounding letters.
Portuguese also makes use of five different diacritics: the ’cedilla’ [ç], acute accent [á, é, ı́, ó,
ú], grave accent [à], circumflex accent [â, ê, ô] and tilde [ã, õ]. Because all these different
letters can have different pronunciations, it is common when studying speech to divide it
into phonemes. These are distinct abstract units of sound used to distinguish one word from
another in a particular language.

To better understand what these are, a Phone is an atomic unit of sound and describe the
physical sound produced when a person speaks or any other sound. In contrast, a phoneme
is an abstract concept, not meant to describe directly the physical essence of the sound. In
sum, many phones can be mapped to single phoneme, represented by a single letter or a
specific sequence of letters in a particular language. Additionally a phoneme is a speech
sound in a given language that, if swapped with another phoneme, could change one word
to another, for example in Portuguese if we replace the /r/ sound in ‘rato’ with the /f/
sound, we reproduce the word ‘fato’. There are around 37 different phonemes in EP [12],
although it was found that this number varies between sources. These different sounds
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can be split into distinct groups: 18 Vowel Sounds (9 Oral Vowels, 5 Nasal Vowels, and 4

Semi-Vowels) and 19 Consonant Sounds [12].
There are multiple representation of Phonemes but 2 of the most commonly used are

IPA and SAMPA. IPA stands for ”International Phonetic Alphabet” and SAMPA stands for
”Speech Assessment Methods Phonetic Alphabet”. Both consist of phonetic alphabets but
SAMPA is a partial encoding of the IPA, with the benefit of being readable in ASCII format.
But as Unicode support for IPA symbols becomes more and more widespread, the necessity
for SAMPA has decreased. The IPA and SAMPA list of the phonemes present in EP is as
described in the following Tables 1, 2, 3, 4.

IPA SAMPA Word Example

[i] [i] vi

[e] [e] vê

[ε] [E] pé

[a] [a] pá

[5] [6] para

[1] [1] de

[O] [O] sol

[o] [o] pôr, sou

[u] [u] tu

Table 1: Oral Vowels Sounds

IPA SAMPA Word Example

[ı̃] [ı̃] sim

[e] [e] pente

[5] [6] romã, banco

[õ] [õ] põe, ponte

[ũ] [ũ] atum

Table 2: Nasal Vowels Sounds
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IPA SAMPA Word Example

[j] [j] pai

[ĵ / j] [j] mãe

[w] [w] pau

[ŵ/w] [w] cão

Table 3: Semi-Vowels Sounds

IPA SAMPA Word Example

[p] [p] pá

[b] [b] bem

[t] [t] tu

[d] [d] dou

[k] [k] cacto

[g] [g] gato

[f] [f] fé

[v] [v] vê

[s] [s] sabe, passo, caça

[z] [z] casa, azar

[S] [S] chave

[Z] [Z] já

[m] [m] mão

[n] [n] não

[ñ] [J] venho

[l] [l] lá

[L] [L] valha

[R] [4] caro

[ö] [R] carro

Table 4: Consonant Sounds
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Portuguese is a pluricentric language, meaning it is a language with several interacting
codified standard forms, often corresponding to different countries. There are notable
differences between EP, BP, and Angolan Portuguese (AP) and all other variants spoken in
different parts of the world. Furthermore, it is essential to note that Portuguese phonology
varies highly between its dialects, even located in the same country, wherein some cases,
speakers of different dialects have difficulties comprehending each other. This can have
severe effects on speech recognition accuracy [13] (the same happens to humans [14]), and for
this reason, this work’s focus, is limited to the generally regarded standard EP pronunciation.

2.3 sound representation

There are multiple ways to represent sound, and these can be more or less useful on the
state of the art Speech Recognition systems.

When looking at the previously shown wave-plots, we have seen that there are apparent
differences between different sounds, but these differences are not as noticeable in some
other cases. These types of visualizations only show us the loudness (represented by the
amplitude) of sound waves changing through time. The bigger the amplitude of the wave,
the more volume at that specific time frame. An amplitude = 0 represents complete silence.

As stated before, the audio signal of a voice is a complex composition of multiple single-
frequency sound waves. But when sound is captured and represented in these wave-plots,
only the resultant amplitudes of adding those multiple waves together is shown, as shown
in Figure 4. These diagrams are not very informative since they only represent loudness over
time. For machine learning purposes, a denser representation differentiating the strength of
the frequencies present in the sound is needed.

Figure 4: Resultant Amplitude of Multiple Waves
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Using Fourier Transform, we can decompose a wave into its constituent signals. Providing
information about what frequencies are present and the magnitude of each one of them in
the signal. Using a Spectrogram, we can have a visual representation of the signal strength
at various frequencies present over a period of time in a particular waveform. Spectrograms
are two-dimensional graphs, where the X-axis represents the time, the Y-axis represents
frequency, and where variations on a color gradient represent the signal strength.

To form a spectrogram, the audio signal is split into small frames with a fixed duration to
which the Discrete Fourier transform is calculated, in this case, a value of 20ms was used as
it is a common value for speech recognition purposes. Although having windows as short
makes us not lose any phoneme (since humans can not speak more than one phoneme in
such a short period of time), it is frequent to have these windows overlap to prevent loss of
frequencies [15]. An overlap of 50% is commonly used for speech recognition so a stride
value (step size) of 10ms was used.

Humans do not perceive frequencies on a linear scale. We are better at detecting differences
in lower frequencies rather than higher frequencies. For example, the difference between
500 and 1000 Hz is much more noticeable to our ears than the difference between 10,000

and 10,500 Hz, even though the distance between the two pairs is equal. In [16], a scale was
proposed where lengths in pitch sounded equally distant to the listener and called it the mel
scale.

Over the years multiple formulas have been suggested for the calculation of this scale but
today y = 2595 ∗ log10(1 + x

700 ) is commonly used [17], and can be seen plotted on Figure 5.

Figure 5: Mel Scale

Because of these differences in frequency perception, it is common in Speech Recognition
to use Mel Spectrograms instead of the standard frequency variety. To do this, we have to
simply convert the values on the y-axis of the spectrogram to the respective values on the
mel scale, and we obtain a Spectogram like the one seen on Figure 6.
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Figure 6: Mel Spectrogram of the first line of the epic poem ’Os Lusı́adas’, said by António Fonseca

When identifying different sounds such as human voice, our ears are more sensitive to
peaks in the signal spectrum. These distinctive, resonant frequency of the acoustic signal
produced by speech or singing are called formants [18] and can be seen on Figure 7. The
information required to distinguish between different vowels can be simply represented by
specifying 2-3 specific frequencies in the spectrum.

Figure 7: Formant present in different Vowel Sounds

These specific frequencies are generally called formants and are usually referred to as
F1-3, with the lowest frequency called F1, the second F2, and the third F3, although the first
two formants are sufficient to identify the sound in most cases. As stated before, the F0

is affected by several factors, including age and gender, this is also true for the remaining
frequencies, and the effect of age and gender. As it is possible to notice on Table 6, there



2.4. Words and Leters 14

is a distinctive difference between the values for the formant frequencies of several vowel
sounds for male, female, and child, respectively.

vowel F1 F2 F3

/ee/

male 270 2290 3010

female 310 2790 3310

child 370 3200 3730

/e/

male 530 1840 2480

female 610 2330 2990

child 690 2610 3570

/ae/

male 660 1720 2410

female 850 2050 2850

child 1030 2320 3320

/ah/

male 730 1090 2440

female 590 1220 2810

child 680 1370 3170

/oo/

male 300 870 2240

female 370 950 2670

child 430 1170 3260

Table 5: Average Formats for different Vowels

Table 6: Average Formats for different Vowels, extracted from [19]

Since we can convert one audio file into an image, we can transform Speech Recognition
into an image classification problem where each image represents a spoken utterance from
left to right as time progresses. We can train a Speech Recognition System to analyze these
images and identify different aspects, like formants, and recognize the different sounds
present in the audio.

2.4 words and leters

For many years, many of these linguistics notions and terms were used when developing
ASR. Most of these concepts, like syllables, vowels, and consonants are ignored by most
successful and state of the art speech recognizers, although these are still useful concepts to
better understand ASR systems [11].

In its core principle, the key focus is finding the most probable word sequence given
the observed audio signals. We want to match the audio signals to words, but due to the
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possible variants in phrases, we want to explore all promising possibilities, that generate a
coherent speech.

In the EP Language, there are thousands of different words. All of them are combinations
of the phonemes that were referred to in the previous tables. At the time of writing, the
Portuguese Dictionary ’Priberam’ has around 133 000 unique entries (and growing number)
that include general vocabulary commonly used in conversations and the most common
terms of the main scientific and technical areas [20]. In Portuguese, there also special cases
where word pairs are homonyms, this happens when 2 or more words are spelled and sound
the same way but have different meanings. But as expected, not all words (as can be seen on
Figure 8), phonemes, or even letters are found as commonly in the Portuguese Language as
others.

Figure 8: Most Common Words of ’Corpus do Português: NOW’

For this reason, the accuracy of certain words can have a much bigger impact on the end
result of the model developed. Previous work on recognition of spontaneous monologues
and dialogues has shown that infrequent words are more likely to be misrecognized [21].
Another important aspect is that the frequency of most words is highly dependant on both
the context and their surrounding words. Because of this, the task of finding the most
probable word sequence given the audio is usually divided into two different tasks:

1. Transform the audio signal into phonemes or other linguistic units that represent
speech;

2. Transform these previous units into the most likely word sequence while making the
phrase grammatically and semantically correct.
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2.5 summary

Speech is a complex process that results from the joint work of three different systems (res-
piratory, phonatory, and resonance system) necessary to produce the sounds that constitute
the voice. While language can be something that groups of people have in common, the
sound and character of the voice is individual from person to person.

The Portuguese alphabet consists of 23 different letters, which can have different pronun-
ciations so it is customary to divide speech into phonemes in order to be able to analyze
it. The fact that the phonology of Portuguese is varied, can have serious effects on the
accuracy of speech recognition led us to consider in this work only the standard European
pronunciation.

There are several ways to represent sound and they can be useful in the latest generation
of speech recognition systems. Since we can convert an audio file into an image, we can
transform speech recognition into an image classification process. The main focus is to
find the most likely word sequence given by the observed audio signals, exploring all the
promising possibilities that generate a coherent speech.



3

S P E E C H R E C O G N I T I O N

3.1 application areas of speech recognition

Speech Recognition is changing the way people interact with technology. For many years, this
type of technology was only imaginable in Sci-Fi movies. Characters like Space Odyssey’s
HAL 9000 Computer, the Star Trek Ship system, and even the iconic R2D2 and C3PO of the
Star Wars Universe, used Speech Recognition to interact with their non-robot counterparts.
In these movies, the use of this type of technology seems to be a thing from a far, far away
future, but it is, in fact, an approaching reality.

In recent years, we have seen an ever-growing number of applications for Speech Recogni-
tion, many of these, surround facilitating interaction for human-machine communication.
Tools like a mouse, keyboard, trackball, and the touch-screen, have been used for years to
fill this purpose, but these methods are not always the most suitable for all occasions.

Oral speech is the natural form of communication between humans and can be, in certain
situations, a more practical method for accessing information and interacting with devices.
We saw the rise of voice recognition technology in our phones. In recent years, we are
bringing it into our homes. Today, businesses in a wide array of sectors are investigating
different ways to integrate it into their technological catalogs.

Digital Personal Assistants

One of the most commonly known uses of this technology is Voice Assistants. A number of
’Tech Giants’ have invested in the development of voice assistants in the last decade, of these,
are examples: Amazon’s Alexa, Apple’s Siri, Microsoft’s Cortana, and Google Assistant.
These are primarily present in our phones and smart speakers and are designed to hear and
interpret our voice and subsequently respond to our questions or execute a specific action.

Microsoft’s 2019 Voice Report, stated that 69% of the respondents have used digital
assistants and expected that 75% of household would have at least one smart speaker by
2020 [22].

17
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These are primarily used for playing music, radio, podcasts, and audio-books, as well as
receiving weather/traffic information, setting alarms and calendar appointments, receiving
news updates, home automation purposes, and making to-do lists. Furthermore, with the
Internet of Things and the ability to connect home appliances, smart lights, thermostats, and
other technologies in cohesive systems, the ability to control these with voice commands can
be very convenient and improve their usability, especially interesting case when providing
support for elderly and/or disabled people.

Office / Industries

As Speech Recognition evolved, the industries are starting to take advantage of this type of
technology. In the workplace, it can, for example, be used to access reports and information,
schedule and record meetings and video conferences, as well as many office applications
also include the ability for dictation. Systems like Nuance’s Dragon [23] are common in this
let users integrate Speech Recognition on their enterprise workflows. Another interesting
approach is the possibility of measuring stress levels in the workplace, a variety of projects
have found success on using machine learning for stress detection [24, 25, 26].

For the business client, having access to a voice assistant that eases their purchase of
products and services, provides them with information, and assist them with simple issues
can both boost their customer loyalty and satisfaction. The use of voice applications by
clients can also create new ways to make a business better understand their clients.

Telecommunications

In today’s day and age, it is common for mobile phones to support voice dialing by name or
number. It is also increasingly common for companies to include automation of operator-
assisted services (for example: call processing systems to automate operator service routing).
TalkDesk [27] is at the time a big example of a provider of these types of services.

Medical

Healthcare is also one of the areas that in recent years has gotten much investment and
success on the use of voice-controlled systems [28, 29, 30, 31]. Similarly to the Office Envi-
ronment, dictation systems (with medical vocabulary) can be bring increased productivity
and better patient care. It can both reduce the time a physician spends writing during the
appointment, allowing for shorter appointments, as well as ensures that all the essential
data is digitally stored and easily accessible to other relevant specialists that are or will be in
the future, concerned with a patient’s health.
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In environments where seconds are crucial, and where hands and eyes are busy like during
medical surgery, immediate access to information via other means can have a significant
impact on both the safety and efficiency of the procedures.

Automotive Market

The automotive industry has been in recent years started to utilize speech recognition as a
core part of the car systems. For years the use of mobile phones while driving posed as one
of the most common causes of car accidents. With the help of SR, texting while on the road
or using a GPS to find their destination can no longer be an obstacle for the drivers.

Apart from Apple’s CarPlay [32] and Google’s Android Auto [33] universal systems, mul-
tiple other car manufacturers have experimented with the integration of speech recognition
in their car systems.

Voice Biometrics

Another interesting recent development that stems from voice recognition technology is
voice biometry. Voice Biometrics systems, allows us to create a digital profile of someone’s
voice and are able to perform authentications (identify a person’s individuality) through
natural voice pattern instead of passwords or other authentication methods [34].

Language Learning and Translation

Learning a different language can be a complex and difficult process from a wide array of
viewpoints. A person needs to understand word order, pronunciation, lexicology, grammar,
along with a host of other linguistic domains.

In recent years, many different language-learning apps/software, like DuoLingo [35], have
started using voice recognition to evaluate their users to help teaching users how to properly
pronounce words in a foreign language. This can be done by comparing a person’s speech
on a sentence to a series of native speaker variants of the same sentence and establishing
whether the two are similar enough to be recognized, or if not, informing the user the
particular aspects of their syntax or pronunciation that need to be revised.

On the other side of the spectrum, Automatic Translation has seen recent success in the
ability to bring down language barriers. Voice recognition-powered translations can provide
us with immediately translated and subtitled video and audio content.

3.2 history of speech recognition

ASR has been an active research area for over 65 years and it has come a long way from its
humble start. In recent years, there has been a heavy investment in this area providing very
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impressive results. ”We’ve seen more progress in this technology in the last 30 months than
we saw in the last 30 years” said Shawn DuBravac in April 2017 [36].

3.2.1 1950s - 1960s

The earliest attempts to devise ASR systems were made in the 1950s and 1960s. While
signal processing and computer technologies were still very primitive, researchers started
experimenting with the ideas of acoustic phonetics.

• 1952 - The first known and documented speech recognition system is released, with
the name ”Audrey”. This system designed by Davis, Biddulph, and Balashek at Bell
Laboratories, was fully analog and able to recognized strings of digits (in English) with
pauses in between them spoken by a single voice. This system had 97-99% accuracy
after being adapter to speaker [37];

• 1956 - Independently, H. F. Olsen and H. Belar from RCA Laboratories developed a
Speech Recognition system capable of recognizing 10 isolated monosyllabic words;

• 1959 - Fry and Denes at the University College in England, built a phoneme recognizer
of four vowels and nine consonants. [38] They achived better phoneme recognition
accuracy for words consisting of two or more phonemes by incorporating statistical
information concerning phoneme sequences in English, marking the first use of
statistical syntax at the phoneme level in ASR;

• 1959 - Forgie and Forgie at MIT Lincoln Laboratories developed a system capable of
recognizing ten vowels embedded in a /b/-vowel-/t/ format in a speaker-independent
manner [39];

• 1960 - Japanese vowel recognition was performed by J.Suzuki and K. Nakata from the
Radio Research Lab in Japan [40];

• 1962 - At the World’s Fair, IBM demonstrated their ”Shoebox” machine. This device
recognized and responded to 16 spoken words, including the ten digits from ”0”
through ”9”. Beyond the digits, this machine was able to recognize words such as
”plus”, ”minus” and ”total” as they were spoken into a microphone, and calculate and
print answers to simple arithmetic problems [41];

• 1962 - Sakai and Foshita from Kioto University built an hardware phoneme recognizer
using a speech segmenter and zero-crossing analysis of different regions of the input
utterance [42];

• 1963 - NEC Laboratories in Japan built a hardware digit recognizer;
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• Martin at RCA Laboratories developed solutions to problems associated with the non-
uniformity of time scales in speech events, improving accuracy by reliably detecting
speech start and end;

• 1968 - Vintsyuk, in the Soviet Union, proposed the use of the now known as Dynamic
Time Warping method for aligning speech utterances, unfortunately his efforts were
largely unknown in other countries until the 1980s [43].

3.2.2 1970s

During this decade, there were significant advances on Speech Recognition and there was
achieved a number of significant milestones.

• 1971-1976: During this years, the Speech Understanding Research (SUR) was created
from the investment of the US Department of Defense and DARPA on the topic of
Speech Recognition. This program developed many similar systems (Hearsay-II [44]
and HWIM - Hear What I Mean [45]) and technologies including the ’Harpy’ Speech
System, capable of recognizing around 1000 words [46];

• 1978 - Sakoe and Chiba at NEC Laboratories in Japan, started to use dynamic program-
ming techniques to solve speech alignment problems. [47]

• Bell Laboratories: Improved on the developments made on the previous decades,
aiming at making speaker-independent ASR systems.

3.2.3 1980s

During the 80s, speech recognition vocabulary went from a few hundred words to several
thousand words and the recognition of connected words started being possible. One of
the breakthroughs came from the use of a statistical method known as the Hidden Markov
Model (HMM) in Speech Recognition. [48]

• 1982 - Time-varying parametric modeling of speech was introduced [49];

• 1986 - IBM released ’Tangora’, the first real-time PC-based large vocabulary isolated
word dictation system [50];

• 1989 - The people at Carnegie Mellon University developed the Sphinx Speech Recog-
nition System, a large-vocabulary speaker independent continuous speech recognition
system. [51] Updated versions of this systems are still in use today.
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3.2.4 1990s

During the 90s, the use of personal computer became more and more common, this propelled
forward Speech Recognition by making more widely used.

• 1990 - Dragon releases DragonDictate, the first commercial speech recognition program
for general-purpose dictation for 30000$. It was a connected word type system,
meaning a pause was need in between (at least a quarter-second), and had a general
vocabulary of 30.000 words plus a more field specific 80.000-word dictionary built in
[52];

• 1990 - Perceptual Linear Predictive (PLP) was introduced. This technique uses three
concepts from the psychophysics of hearing to derive an estimate of the auditory
spectrum: (1) the critical-band spectral resolution, (2) the equal-loudness curve, and (3)
the intensity-loudness power law.

• 1994 - PLP technique was further improved with the introduction of relative spectra
(RASTA) [53];

• 1997 - Dragon releases Dragon ”NaturallySpeaking”, another commercial speech
recognition program this time for continuous speech.

3.2.5 2000s

Apart from the constant improvements and the continuous trivialization of the use of
ASR, during the 2000s many further applications were developed, this include: Speaker
Recognition, Human-Machine Interaction, non-English Speech Recognition and non-native
speech recognition. Moreover, large tech companies started integrating speech recognition
into their products.

• 2002 - Effective Affordable Reusable Speech-to-Text (EARS). The goal of this five-year
project is to significantly advance the state of the art in multi-lingual speech recognition
of both broadcast news and human-to-human conversational speech [54];

• 2002 - Microsoft integrates speech recognition in their Office products;

• 2005 - Global Autonomous Language Exploitation (GALE) that as the objective to
produce a system that is able to automatically take multilingual newscasts, text
documents, and other forms of communication, and make their information available
to human queries [55];
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• 2007 - Google Released GOOG-411, a telephone service that provided a speech-
recognition-based business directory search [56];

• 2008 - Google launches Voice Search app.

3.2.6 Systems - State of the Art

In the last decade, speech recognition became more and more common, as it was quickly
adopted by a vast number of users. Companies like Google, Apple, Microsoft, and Amazon
are strongly investing in SR research and many improvements have been done to speech
processing technologies, not only in improving on the accuracy of previous systems but
recently we have seen on device recognition (ASR done locally on smartphone or IoT device,
without the need to be connected to the Internet).

Although for many years, this area of investigation was dominated by close-source
and proprietary software. There has been a surge of open source projects with growing
communities and large amounts of support around them. Noticeable ones are Kaldi, Mozilla
DeepSpeech, PaddlePaddle DeepSpeech, and Facebook Wav2letter.

These engines are able to achieve accuracy comparable to the current status of commercial
products of ASR systems and personal assistants, are evaluated in terms of accuracy rate, and
performance-based on evaluating runs on multiple machines, of different based architectures,
some of which applying hardware acceleration.

It is also important to refer the move towards leaving Traditional Speech Recognition
Methods to an emerging paradigm in the field of Deep Neural Network (DNN)-based
Speech Recognition.

Kaldi

Kaldi is a open-source ASR toolkit, originally released in 2009 [57]. The code of this toolkit
is written in C++ language and is freely released by the Apache License v2.0. Over the
years it has suffered numerous updates provided by a large community of researchers and
professionals that use and support it. The main goal of Kaldi is to build a software that is
modern, easy to use, flexible enough to extend and update, and powerful at training the
acoustic model [58].

In its beginnings, Kaldi followed a traditional approach of ASR, following the Gaussian
Mixture Model (GMM)-HMM methods, which were, at the time, one of the more con-
ventional ways to build speech recognition models. But over the years, constant updates
changed the way it is structured, adding multiple options of models to its users, including
a DNN model to be used instead of GMM. The later approach using DNNs is found to
achieve a better performance in terms of Word Error Rate (WER) [59].
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Facebook Wav2Leter

Facebook AI Labs, released in 2016 a paper announcing a new model ASR model called
”Wav2letter”. This approach was to be solely based on end-to-end on CNNs, lighter
in terms of computational power and model size, while at the same time, was able to
achieve comparable results to all current state of art ASR models [60], and its architecture is
represented in Figure 9.

Figure 9: Architecture of the wav2letter Model, extracted from [61]

This paper also introduced Auto Segmentation Criterion (ASG), an alternative algorithm
to the more commonly used CTC, that improves upon in 2 ways:

• There is no special indicative blank label;

• Gives the ability to learn the likelihood of transitions between letters.

To do this first step, for repeated letters, ASG includes a ‘2’ for repeated letters, instead
of the blank token. For example in the case of ‘hello’ would become ’hel2o’. By removing
this special token, ASG significantly simplifies the graph that the algorithm must search
when generating alignments, and subsequently improving performance. For the second
point, instead of in each frame, the probability of each letter being normalized with the
probability of the other letters in that frame, ASG contains its own weight matrix that models
possible transitions between each letter. In real language, certain sequences are much more
likely than others. For example in Portuguese, the sequence ’çã’ is more common than ’ço’.
This likelihood of certain combinations of letters, called ‘transitions’, could improve model
accuracy.

Despite Wav2letter effort to run the model with almost any sort of audio input repre-
sentation, their experiments also showed that MFCCs slightly improved the performance
when comparing it with its counterparts, spectrum, however, this gap in performance should
vanish with enough data [60].
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Deep Speech

In 2014, a ASR end-to-end model, by the name of Deep Speech, was announced by Baidu AI
Labs [62]. This state-of-the-art speech recognition system was developed using end-to-end
deep learning and is significantly simpler than traditional ASR systems, relieving the user
of laboriously engineered processing pipelines. Furthermore, it simplified the design by not
needing specific components to model background noise, reverberation, or speaker variation,
but instead directly learns a function that is robust to such effects, producing improvements
over the results presented by traditional models on noisy environments. It does not make
use of a Lexicon/Pronunciation Model (phoneme dictionary), but instead does recognition
based on character and relies on a well-optimized RNN training system that has the ability
to use multiple GPUs, as well the need to obtain a large amount of varied data for training.

Deep Speech acoustic model, which its core is based, on RNN, consists of five layers, first
of which is a TCN, followed by 2 regular feed forwards layers like ANNs, then comes the
Bidirectional Recurrent Layer (BRNN), followed finally by one more non-recurrent output
layer, but this takes account of both forward and backward units coming of the BRNN,
trained finally with CTC, coupled with a simple beam search decoder.

CTC loss function is used to map the variable length audio input to variable length output;
however, in contrast with past attempts to create end-to-end speech recognition models
involving CTC-RNN models that in need for a lexicon, such as a large list of vocab, and
some pre-training using GMM-HMM system, Deep Speech trains this CTCRNN network
from scratch.

3.3 speech recognition parameters

Speech Recognition Systems can be categorized into different groups depending on the
constraints imposed and the nature of the input speech [63].

3.3.1 Structures of Speech

ASR systems can be classified based on the type of utterances it is able to recognize. These
utterances can be composed of a single word, up to a continuous large number of sentences.

ISOLATED WORDS - These types of recognizers require that utterances are very short (1-2
words long) and surrounded by a quiet interval (single utterance at a time). These are
comparatively simpler to implement and tend to have good results since the words are
usually clearly pronounced, although the number of use cases is very limited. This
type of system is mostly used on a ’command and control’ type applications, where
the utterance is recognized from a small pool of commands, and appropriate action is
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done. These systems have a kind of “On/Off” states, requiring that the speaker waits
between utterances;

CONNECTED WORDS - Connected word recognizers are very similar to Isolated Words, the
difference is that these allow separate utterances to be chained together, with a minimal
interval in between them. This allows users user to speak fluent speech consisting of
words from a specified vocabulary, for example, telephone numbers;

CONTINUOUS SPEECH - This type of speech is derived from reading texts (books, newspapers,
news broadcasts) or rehearsed speech. These type of systems must utilize special
methods to determine utterance boundaries allowing users to speak in a semi-natural
way;

SPONTANEOUS SPEECH - In general, Spontaneous Speech is considered the most natural-
sounding and different and more complex than what happens when a text is rehearsed
or simply read. These type of systems need to be able to handle slight stutters, sounds
like ”ums” and ”ahs” while the speaker is thinking, slight mispronunciations, false-
starts and even moments where adjacent words are pronounced together (with no
distinct division in between them).

3.3.2 Speaker Dependence

Every individual has unique voices, due to their distinguishing characteristics such as pitch
and timbre caused by their specific physical body and personality. Speech Recognition sys-
tems can be split into 2 main different groups, speaker-dependent, and speaker-independent.
In the first case, the system is trained to recognize the voice of a single speaker. These are
generally more precise when recognizing utterances made by a specific speaker, but to a
detriment, these are much less accurate for any other speaker. These systems are generally
easier to develop and have better accuracy on there specific purpose but are less tolerant to
changes.

On the other hand, speaker-independent systems are more capable of recognizing utter-
ances made by different users, even if these have not participated in the training part of
the system. For this to happen, speaker-independent systems usually need a much larger
training corpus as well a big variety of speaker in it, making them harder to be created and
in the end usually less accurate although more flexible and tolerant.

It is possible to devise a third group, where the system is developed to adapt its operation
using the best-suited speaker data to recognize the speech and increase accuracy [64, 65].
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3.3.3 Types of Speech Data

The structure of the speech data can vary greatly depending on the ASR system’s purpose.
These structures can differ from simple isolated words to more ’natural’ and spontaneous
multi-user conversations. The less control over the speech material can oppose a challenge
for its own recognition. Some common speech structures in corpus are [66]:

READ ALOUD ISOLATED WORDS - The speaker is usually asked to read aloud a list of words.
This pronunciation can vary greatly from how it would be pronounced in a spontaneous
conversation for a number of reasons: The user is usually much more careful in his
pronunciation, the phenomenon is known as ”spelling pronunciation” is a normal
occurrence, and furthermore, surrounding words can influence pronunciation by
introducing a context (homologous words) or anomalies;

READ ALOUD TEXT FRAGMENTS - More natural speech material can be obtained when asking
the speaker to read entire text fragments. This can vary in length between short
sentences to multiple sentences taken from, for instance, a book;

SEMI-SPONTANEOUS SPEECH - The speakers are tasked to read the number or alpha-numerical
expressions and have freedom on how to pronounce these expressions, telephone
numbers are a prime example for having multiple ways to be read (a string of digits,
strings of numbers containing multiple digits);

SPONTANEOUS SPEECH - Speakers are allowed to freely choose their own words and their own
subject of conversation, this is especially important in a dialogue situation. In order
to keep some control over the speech material, the experimenter can predetermine a
subject for the speaker(s) to talk about; Although a speech situation with two or more
people is more natural than a monologue, overlapping acoustic material may result in
several people speaking simultaneously.

3.3.4 Vocabulary

The size of the vocabulary of a Speech Recognition system largely influences the complexity,
as well as the accuracy of the system. A smaller vocabulary usually means a more accurate
and more easily created system. Vocabulary sizes can vary from Small (e.g., digit only) to
very-large vocabulary up to tens of thousands of words.

Depending on the system, is possible to correctly recognize words that are Out of Vocabu-
lary. These are unknown words that appear in the testing speech but do not appear in the
recognition vocabulary usually being crucial such as names and locations, however, many
speech recognition systems are closed-vocabulary recognizers meaning that they only recog-
nize words in a fixed finite vocabulary, missing recognizing them as in-vocabulary words
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and affecting the recognition accuracy of their surrounding words. This is an interesting
problem because simply increasing the vocabulary size in a recognizer cannot resolve the
problem, several alternative approaches have been proposed [67].

3.4 audio configuration

Audio Encoding and File Format

An audio encoding refers to the way in which audio data is stored and transmitted. It is
important to note that an audio format is not always equivalent to audio encoding. In the
case of the file format .WAV, defines the header format of an audio file, but not the audio
encoding by itself. WAV will often use linear PCM encoding, but we can not assume it until
the header is inspected. In other cases like FLAC, it represents both a file format as well as
an encoding, which can lead to confusion.

In general terms, audio files consist of two parts, a header and the audio data itself. In the
header or metadata section, as the name suggests, ”data that provides information about
other data” is saved. The data stored can vary from the file format, but generally contains
the information about Sample Rate, Bit Depth, Encoding, as well as track information like
Artist, Album, and Genre that is important when dealing with music files.

The second section of the file contains the data of the audio itself, and it can either be
uncompressed or compressed. A compressed audio stream has the benefit of requiring less
space for it to be stored but generally require additional processing to reduce the file size,
and this compression can be either lossless or lossy. Lossless compression can be ’undone’
to restore the digital data to its original format, but in lossy compression, some data is
removed, meaning that such information is lost during compression and affect negatively
the accuracy of the speech recognition.

Mono/Stereo Audio

Mono uses a single audio channel, to represent sound as heard as if it was coming from only
one position. Stereo is the representation of sound using more than one independent audio
channels, usually only used two. This is used to create the impression of sound heard from
various directions, as in natural hearing. Stereo sound has replaced mono almost completely
in most aspects of our life, from the movies and television we watch to the music we hear.
In contrary to this, in speech recognition mono data is the most commonly used, although
there have been studies on the use of stereo training data [68].

It is also possible to use different audio channels for each speaker present on the recording,
this is a common technique used in interviews and telephone data. Because we did not have
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any data in this specific format, all of the stereo data was down-mixed, where both channels
of the stereo stream were mixed into one only stream.

Sample Rates and Bandwidth

In the real world, the sound is characterized as an analog waveform. In digital audio, we
approximate this analog wave by extracting its amplitude at a rate. In digital audio, the
sample rate specifies the number of samples to take from an audio source material per
second. The higher the sample rate, the better we can faithfully represent higher and higher
frequencies, but at the same time increasing the amount of storage needed to store the audio
file.

From the Nyquist-Shannon sampling theorem, the general approach is to sample at least
twice the highest frequency of the sound wave you want to store digitally. The range of
human hearing is around 20-20000 Hz, which means, to digitally represent audio in this
range, a sample rate of at least 40000 times per second is needed, which is part of the reason
why CD audio uses a sample rate of 44100 Hz.

Luckily for us, human speech exists only in a much smaller range from around 85-8000 Hz,
for this reason for Speech Recognition it is common to use a sample rate of 16000 Hz, values
lower may reduce the speech recognition accuracy, and higher levels have no discernible
effect on speech recognition quality.

The model developed was trained with audio with a sample rate of 16000 Hz, any audio
in a different sample rate was re-sampled.

Bit Depth

As previously stated, the sound is characterized as an analog waveform. Bit depth affects
the dynamic range of an audio sample. A higher bit depth allows a better representation
of different audio amplitudes and reduces the signal to noise ratio within audio samples.
Music is commonly provided using 16-bit depth, but a higher value of 24 bits is used in DVD
Audio. For speech recognition, it is common to use 16-bit depth (although some telephone
data usually used 8-bit depth), and any audio sample on a different format, were converted.

3.5 system performance evaluation

Over the past few years, an increasing amount of speech recognition systems have been
developed creating constant competition to decide which one is the best one on the market.
One important aspect is that there are no ’one-size-fits-all’ best models. A model can have
incredible results in clean environments but have relatively bad results in noisy environments.
Also, different models can have different features that are required for a certain project, so
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it is important to identify the use case and requirements for the task in question. One of
the invariable important aspects of the evaluation of Speech Recognition performance is its
accuracy, normally represented by WER. The formula for the calculation of this metric is as
shown in Figure 10.

Figure 10: WER Formula

The WER is derived from the Levenshtein Distance (capitalization is commonly ignored)
working at the word level, it is both valuable when comparing different systems as well
as for evaluating improvements within one system, although it provides no details on the
nature of translation errors and further work is therefore required to identify the source(s)
of error.

Alternatively, we can also apply Levenshtein Distance at a Character and Sentence Level,
producing Character Error Rate (CER) and Sentence Error Rate (SER) respectively. CER
can provide additional information of the error nature and SER can be an important factor
especially when dealing with data input (IDs, Dates, Numbers) where is majorly important to
have the whole sentence transcribed correctly. Examples of WER and CER values achievable
can be seen on the following examples:

Re f : A casa que os Maias vieram habitar em Lisboa

Hyp : A casa que os Maias vieram habitar em Lisboa

WER : 0% CER : 0%

Re f : A casa que os Maias vieram habitar em Lisboa

Hyp : A casa que os Saias vieram tentar em Lisboa

WER : 22% CER : 11%

A number of other characteristics may have an impact on what systems fit better in our
case, aspects like:

TRANSCRIPTION SPEED - The amount of time it takes for a sentence/command to be tran-
scribed can have a big impact on the usability of the system, depending on our
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application. For example, transcription speed is commonly a major factor when SR is
used to control robots in real-time, such as in [69, 70];

ONLINE DECODING - Online Decoding or Streaming, defines the ability for the system to
accept streams of signals in real-time, in contrast with an offline decoding model
which needs the complete audio signal put together for it to be able to process it. For
example, this is a ”must-have” feature when using ASR to help people who are Deaf
or who have hearing loss better comprehend a live show/program.

3.6 summary

Speech recognition, also known as ASR, is a capability that enables a program to process
human speech into a written format. For more than 60 years, researchers have been
developing systems to enable human-machine communication over voice. From the first
machines with only the ability to recognize a reduced number of different words, to modern
deep learning with performances reaching the human levels of recognition, in various
languages, significant milestones have been achieved.

While speech technology had a limited vocabulary in the early days, it is utilized in a wide
number of industries today, such as automotive, technology, and healthcare. Its adoption
has only continued to accelerate in recent years due to advancements in deep learning and
big data [71].

Although all models have the same general purpose, different parameters like Structures
of Speech, Speaker Dependence, Types of Speech, Vocabulary, and Audio configuration
differentiate their specific objective. Depending on our goals, different models can be better
suited for our needs, but generally, model performance is evaluated in both CER and WER.
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S P E E C H R E C O G N I T I O N M O D E L S

4.1 asr system structures

Over more than 60 years of ASR development, many iterations and variations of ASR
systems have been created. In such a large spectrum of time, we were bound to have
different approaches to solve ASR. In this section, we will present the base structure of ASR
models, but, because of all these existing model alternatives, some of these concepts may
not apply completely to every model. The ASR systems architectures are commonly divided
into different sections, as seen on Figure 11.

Figure 11: Traditional Hybrid Models Diagram

PRE-PROCESSING: Take the original audio and use a variety of methods to try to increase its
overall quality, and subsequently increasing the accuracy of the results of the model. It
is also common in modern systems to use a variety of data augmentation techniques,
which will be discussed further on Chapter 6;

FEATURE EXTRACTION: Convert speech (waveform) to some representation. This represen-
tation needs to be reliable for several circumstances of the speech signal, potential
environmental conditions, and speaker variations while retaining the portion that
characterizes the information in the speech signal;

ACOUSTIC MODEL: Used to model the mapping between speech input and feature sequence
(typically a phonemes or letters);

32
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PRONUNCIATION MODEL: Achieve a mapping between the previously achieved features on
the acoustic model to graphemes;

LANGUAGE MODEL: Maps this graphemes into a sequence of fluent words as the final tran-
scription.

4.1.1 Pre-Processing

Pre-processing of speech signals can be considered a crucial step in the development of a
robust and efficient speech or speaker recognition system. [72] Under optimal conditions,
state of the art ASR systems have very high levels of accuracy, but these conditions are not
possible in every situation. A noisy background, a considerable distance between the talker
and microphone, or a echo intense environment are factors that can oppose a challenge
during recognition. In this first step, many techniques can be applied to seek better and
more reliable results, by reducing the effects of some of those not so optimal conditions:

AMBIENT/BACKGROUND NOISE REDUCTION/REMOVAL: In real-world scenarios, the audio data
collected contains not only speech but background present in the recording. ASR
models need to be able to distinguish between speech and ambient noise (wind, cars,
...) to achieve good accuracy. One of the most straightforward methods to reduce the
effects of background noise is to simply remove/reduce it before it is passed on to the
remaining system [73];

SPEECH DETECTION: It is common in real-world scenarios that not all audio data present is
speech. To get better accuracy and improve recognition speed, we want to be able to
detect the presence or absence of speech and differentiates speech from non-speech,
and remove these last sections [64];

ECHO CANCELLATION/DEREVERBERATION: A sound source located a distance from a micro-
phone will have its direct path signal arrive at the microphone and then reflections of
the original signal will be captured. As the distance from the source to the microphone
increases, the signal to reverberation ratio does too, and as a result, the effect of
reverberation will also increase. Various methods can be used to mitigate these effects
on the audio [74];

AUDIO CUT/PACKET LOSS CONCEALMENT : When a voice signal is sent over as VoIP packets
over the internet, the packets may (and likely will) travel different routes. A packet
therefore might arrive very late, be corrupted, or simply can not arrive at all. In VoIP
connections, error-control techniques such as automatic repeat request (ARQ) are not
feasible. PLC is a group of algorithms to reduce the effect of the loss of voice packets
[75];
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AUTOMATIC GAIN CONTROL: In environments where the input speech level is expected to
vary significantly, AGC can be used to keep a constant recording volume regardless
of the input signal level. The gain by which to achieve this constant recording level
is determined by monitoring the voice activity state and the peak levels of the input
signal [76].

Additionally in this section, it is common in the modern system to apply a number of
Data Augmentation Techniques during training, this will be further discussed on Chapter
5. It is also important to note that, depending on the original dataset and purpose of the
system, this pre-processing step can in some cases be skipped.

4.1.2 Feature Extraction

In ASR, Feature Extraction is done by transforming the speech from its waveform to a
relatively and denser representation for later processing and analysis. Doing this we can
illustrate a speech signal by a predetermined number of components of the signal, in a much
smaller format [77]. To extract audio features, it is common to use sliding windows of width
20ms and 10ms apart to parse the audio waveform. For each of these sliding windows, we
extract a frame of audio signals and apply Fourier Transform. These exact first steps were
done to generate the previously shown spectrograms in Chapter 2. Such values are chosen
so we can capture the dynamic frames and the proper context. Then depending on the
method a number of features are extracted. As stated before, the way people sound and
their voice varies between person to person. Because of this it is of special importance to
extract features that will be robust enough to be independent of who the speaker is and to
possible noises present in the environment. Also, like it is commonly done in other Machine
Learning problems, we want extracted features to be independent of others.

There is a number of speech feature extracting methods including: Mel Frequency Cep-
stral Coefficients (MFCC), Linear Prediction Coefficients (LPC), Linear Prediction Cepstral
Coefficients (LPCC), Line Spectral Frequencies (LSF), Discrete Wavelet Transform (DWT)
and Perceptual Linear Prediction (PLP) [77]. Of these, from our research, we found that
the MFCC is possibly the most commonly used, generating a total of 39 different features.
These previously mentioned approaches have been used and tested in a variety of use cases,
and many variations of them have been developed with the intention of creating Feature
Extracting mechanisms that are less susceptible to noise and are faster [77].

A newer approach that appeared with the use of DNN in ASR, and the approach used in
our case, is to not use any of this predefined extraction methods and simply feed the short-
time Fourier transform (STFT) of the signal to the model into a deep convolutional network
at the beginning of the model. These technique used in State of the Art Systems is able to
achieve a better representation of the audio for the purpose of recognition. Alternatively to
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feature extraction, there have also been several attempts to train ASR systems with raw wave
signals [78, 79], and perhaps most notability Facebook’s W2L approach, but the results show
that we are still in a stage where this method produces worst results than what is commonly
used alternatives [61].

4.1.3 Acoustic Model

Acoustic Models can be considered the main part of ASR systems. These models contain
statistical representations of each of the distinct sounds that makes up a word and are used
to represent the relations between audio signal and phonemes or other linguistic units that
make up speech. This model is created from a large dataset of audio recordings and their
corresponding transcripts by using training algorithms to create statistical representations
for each sound in a language. The speech decoder listens for the each distinct sounds spoken
by the user and then returns the closest matching representations of the speech.

Classical Models

As shown in the previous chapter, ASR as been for many years a subject of interest for many
researches. In such a large spectrum of time, we were bound to have different approaches
to solve ASR. At the moment we are living in a ”Deep Learning Era”, where models using
DNNs are achieving unprecedented accuracy but for a many years, GMM and HMM were
the two must-learn technology for speech recognition. Although we now have more and
newer options, where some newer systems are completely free of these approaches, this type
of technologies is not rendered useless and there are multiple hybrid systems that combine
both HMM and Deep Learning.

ASR decoding is mainly composed of two major steps: the mapping and the searching. In
the mapping, we map the acoustic information of an audio frame to a phone. A GMM is
responsible for emitting the probabilities of a phone given the acoustic vectors to an HMM
model, which is responsible for modeling the possible transitions at each time step and
allows the occurrence of multiple pronunciations. Then, we search for the phone sequence
for the optimal word sequence. But this is a complicated process since we have to take into
account alignments of acoustic information to a phonemes and account for multiple paths
that produce the same results.

For over 30 years, the speech recognition area has not seen much improvement [80]. But
in 2012, a major breakthrough is credited to Geoffrey Hinton [81], where it is proposed
to replace the GMM by a DNN, and in doing this, they improved the state-of-the-art
model performance by over 30%. Following recent trends in Deep Learning Applications
for computer vision, where deep models have outperformed traditional machine learning
algorithms, the end-to-end area for speech recognition has been rising in popularity over



4.1. ASR System Structures 36

the years. An end-to-end model is a system where much of the ASR problem pipeline is
replaced by a DNN architecture. With a single model, the parameters and features learned
are solely tuned by the training algorithm to increase the accuracy rate of the system [80].

End-to-End Models

Deep Learning, opens the door for an alignment-free one-to-one mapping which maps an
audio frame to a relatively high-level component, and as before, we can then search for
it. This gives us a head start and bypasses the complicated alignment process. This is
the core concept of the popular paper [CTC], released in 2006, proposing Connectionist
Temporal Classification (CTC). While in early research, the deep network works with
phonemes, now the deep network works with character sequences. This frees us further
from the Lexicon/Pronunciation Model that follows. Since then, the CTC method has been
extensively used in end-to-end speech recognition systems.

The deep network generates a probability distribution for all characters. We no longer
just greedily pick the most likely character in each time step. There are multiple paths that
represent the same word, and we need to sum over them to find the optimal paths. Since
there are possible pauses during the speech, within or between words, we also need to
introduce empty tokens (lets use ’ε’ as an example) to model such behavior.

Given the output ”gaaaεεtεεo”, we then apply the CTC compression rule, and any repeated
characters will be merged into one, and a final step to remove all ’ε’ occurrences from the
final word. This ’ε’ character is also useful in the case of words that contain repeated letters
one after the other, for example the word ’voo’, but the model needs to be able to predict the
’ε’ between the two ’o’ characters. Because we have multiple ways of representing the same
word, for instance [”gεatεo”, ”gaaεaεεtεεo”, ”gaaεεtεεooo”, ”ggεaεεto”,...] all represent
”gato”, to find the most likely word sequence, we need to search and sum the probability of
all different path combinations.

More recently, attention-based recurrent networks have been successfully applied to speech
recognition [82]. Those RNNs are based on the Encoder-Decoder/Sequence to Sequence
(Seq2Seq) architecture, that has been used on a variety of Deep Learning problems. The
encoder is typically an RNN that transforms the input into an intermediate representation.
The decoder, also typically an RNN, uses this representation to output the desired sequences.
The attention mechanism acts by selecting relevant content from the input at every time
step, thus helping the decoder. Our focus on describing the CTC process, is because it is the
method used on our ASR system.
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4.1.4 Lexicon/Pronunciation Model

Pronunciation Models represents the likelihood of a sequence of phonemes (or other linguis-
tic units that make up speech) given the existing words in a language. These provide the
link between the statistical representations in the Acoustic Model and the words present in
the Language Model. This data is typically written by humans (or at least supervised) and it
contains the representation of the pronunciation(s) for all words contained in the training
corpus. The OOV rate represents the percentage of word tokens in the test data that are not
contained in the pronunciation model, this value should be minimal, since each OOV word
may result in errors. Different languages can have a lot of variations in their morphological
richness, this has a significant effect on the size of the constructed model. The same word in
a language may have multiple pronunciations, this can be cause by a number of different
reasons:

• The same word can have multiple pronunciation in different dialects (EP and BP). The
same can happen when dealing with non-native speakers;

• In some languages the surrounding words can highly affect the pronunciation of the
start and end of certain words (in Portuguese: ”... da Água”);

• Linguistic Deviations can be common and how you pronounce certain words can be
common (in Portuguese: ”dezoito”).

This could signify that Pronunciation Model should have multiple pronunciation for
each word, but from our research, large vocabulary systems usually contained only one
pronunciations per word. Adding more pronunciation variants can give more flexibility to
the model, but at the same time, increasing the number of ambiguities and in end, reducing
accuracy. As stated before, in state of the art End-to-End systems, it is possible to skip this
step by outputting character sequences instead of phonemes, and the inferences provided by
this model that helps output words that are well formatted (correctly written), are integrated
in the next step, the Language Model.

4.1.5 Language Model

Language Models represent the likelihood of a sequence of words. By assuming that the
utterance is both grammatically correct and that it ”makes sense”, language models can
provide context and help distinguish between words that sound similar to the previous
steps. This if more easily understood with an example: Lets imagine that our previous
models gave these 2 phrases very similar probability of being the correct utterance spoken
in a certain audio clip:
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”Vou à padaria comprar pão” and ”Vou à padaria comprar cão”

If you know Portuguese, your instincts will tell you that the first phrase is much more
likely the correct one, even if you have not listened to the audio in question, for two reasons:

1. The first phrase is grammatically corrected as opposed to the second one;

2. Given the context, the first phrase is much more likely to exist than the second one.
We usually go to a bakery to buy bread, not dogs.

This simple example shows the type of the decision made by the Language Models, this
being usually built around n-grams. This types of models are commonly generated by
tremendous amounts of text data (in comparison with the amount of audio data used on
the Acoustic Model) and are especially fruitful at improving the system accuracy if they
are trained to deal with narrow subjects (contexts with smaller vocabularies). Although
we can have giant amounts of training audio data for our LM, sequences of words (that
make sense and are grammatically correct) will still not be observed in the training set, and
it is important for this sequences of words to not appear as impossible (0% probability of
existing) just because they were not present in training.

N-gram Language Models

In a lot of natural language processing tasks, a Language Model can be defined as a
probability of a sequence of words, or characters. In the case of words, a LM can be viewed
as a way to observe language grammar.

A n-gram language model is modeled based on specific ’n’ number of words. By parsing
a larger amount of text, we are able to create approximations on the probabilities of the
adjacency of existing words in that text file. In its simplest form, a 2-gram, the probability
of a word is calculated based solely on the probably of it occurring right after the previous
word (this probability is created by observing text data during training).

In this simple case the probability of a phrase is as follows:

P(”O poeta é um f ingidor”) =

P(”O”) ∗ P(”poeta”, ”O”) ∗ P(”é”, ”poeta”) ∗ P(”um”, ”é”) ∗ P(” f ingidor”, ”um”)

Where P(”A”, ”B”) = count(”BA”)/count(”B”)

By increasing the ’n’ value, model takes in consideration the ’n-1’ words that came
previously on the sentence of the word we want to find out. This can provide a significant
increase in accuracy but at the cost of also increasing the size of the model and consequently
the time it takes for us to find the most probable sequence.
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One downside of this basic form of a n-gram LM is that there is a possibility that the
training corpus does not contain every legitimate word combination (this gets worse when
the ’n’ value and the vocabulary is increased). If a valid sentence does not show up in corpus,
it has a probability of zero; however, there are multiple techniques smooth this results, but
these will not be discussed in this work.

Beam Search

In the context of ASR, decoding the most likely output sequence based on a LM would
likely increase the accuracy of the model; however, this involves searching through all
possible output sequences (even the ones that did not appear during training). This creates
an exponential problem with the length of the sequence we observing during search (n-1).
This is perfectly doable with smaller ’n’ values and reduced vocabulary, but quickly turns
impracticable when increasing these numbers, hence there exists less accurate solutions to
this problem, but at the same time much quicker, such as decoding using Greedy or Beam
Search.

In Greedy Search decoding, we only take in consideration the highest scoring element
at each stage, meaning selecting only the highest likely word at each step in the sequence.
As expected this greatly increases speed but can take a toll in model accuracy, possibly
reducing the overall accuracy of the model in general. A more accurate, although slightly
less efficient, alternative algorithm, is called Beam Searching, as seen on Figure 12.

In Beam Search decoding, we take in consideration an expanding k most possible next
steps. When ’k’ = 1, beam search decoder acts in the exact same way as the greedy
counterpart; however when increasing ’k’, at the cost of a small increase in time, accuracy
can be largely improved.

Figure 12: Beam Search Using K=2 and N=3
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In this last example, each node corresponds to a word, and we are able to find that the 2

most likely sequences are ’DAA’ and ’DAD’. With these, we are then able choose of the two,
the one with the most probability of occurring.

4.2 classical models vs end-to-end models

As stated before, during a long period of time, the classical SR approach HMM-GMM was the
best method for the development of ASR systems. However, each of these models that created
the system, are trained independently with different objectives. For this reason, errors that
occur in each component may have very negative impacts on another subsequent component.
But researchers started evaluating that each of the previous described components, could
possibly work more effectively with the use of one single neural network, and that is the
principal motivation for creating a process where train is done in the entire model as one
component itself. These are called end-to-end models, and envelop multiple components in
the pipeline discussed above.

The HMM-GMM previously used in acoustic models, are replaced by a single neural
network that output characters instead of phonemes, removing the need for a pronunciation
model, of this are common the CTC and Seq2Seq methods. Feature Extraction can also be
done by this unique model, by having convolutional neural networks at the beginning of
the model, creating a good representation of the audio signal provided to the system. One
example of this type of system is the one used in this work, namely the deepspeech.pytorch
[83].
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M O D E L P R E PA R AT I O N

5.1 data augmentation

Deep Learning has in recent years gotten remarkably good results in a multitude of tasks,
from Computer Vision [84] to Natural Language Processing [85]. But these recent advances
have been largely attributed to the quantity and diversity of data gathered [86].

When training machine learning models, we are in reality tuning different parameters
such that the model can map an input (in our case an audio file) to an output (in our case a
string of the transcription). If we are using a Deep Learning Model to perform a complex
task, a lot of parameters need to be tuned and a proportionally big amount of examples
need to be shown to the model to achieve good performance. But unfortunately, many
application domains where large data-sets are crucial for good performance, do not have
access to substantial amounts of data, like it is in our case.

Data augmentation is a strategy that enables practitioners to significantly increase the
diversity of data available for training models, without actually collecting new data [86].
One of the key subjects where these types of techniques have been studied and developed
for many years, and one of the easiest to help us understand these concepts, is Computer
Vision.

Figure 13: Original Image
extracted from [87]

From the original image in Figure 13, different augmentation techniques can be applied
such as Noise Injection, Hue/Saturation Changes, Cropping + Padding, Flipping, Rotating,

41
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Blurring, Dropout of Regions, and Change of Perspective. By applying one or more of these
techniques, we can generate a multitude of new unique, and distinct images. These new
data with minor alterations of the original can vastly increase the dataset size and diversity,
as can be seen on Figure 14.

Figure 14: Examples Results of Different Augmentations applied to the Original Image, extracted
from [87]

In the case of speech recognition, augmentation traditionally involves deforming the audio
waveform used for training in some fashion or adding background noise [88]. The use of this
new enhanced data can improve the robustness of the model by making it more ’invariant’ to
certain conditions like illumination or rotation. Using these type of techniques is especially
useful when our training data has a limited set of different conditions and the application
data can have a variety of other conditions. Data Augmentation techniques can also be
useful if we have large amounts of data. Generalizing our training data can help reduce the
number of irrelevant patterns, resolving the class imbalance problems in classification tasks,
and increasing the overall performance.

Data augmentation is performed before the data is fed into the model, but two different
options of when to apply these techniques are available:

PRE-PROCESSED AUGMENTATION: In this method, all necessary transformations are done be-
fore the ’training’ of the model commences, meaning the dataset size is increased
by a factor equal to the number of transformations applied to the data. This type of
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augmentation is normally done on small datasets, where storing such amounts of
augmented data leads are possible;

REAL-TIME AUGMENTATION: In this method, the original training data stays the same, but for
every mini-batch during training, the data is augmented using the different techniques.
This keeps the dataset at the same size but increases the model training time since time
is needed to apply all the different techniques to the data. This type of augmentation is
normally done on a large dataset where it would be impossible to store all augmented
data.

Due to the large amount of space needed to store our dataset and the impossibility to store
more large amounts of data in our machine, all augmentation techniques used were done
using the second method. Because of this choice, it is important to take into consideration
the impact of time and resources of each augmentation technique when applied to our data.
For this work, a number of ’simple’ and ’computationally cheap’ methods were tested, and
more expensive techniques such as Audio Restoration were deemed unreasonable for the
conditions of this project.

5.1.1 Noise Injection

In the case of Speech Recognition, it is common for the publicly available dataset to contain
only data that is clear of noise. Furthermore, the task of recognizing speech in a noisy
environment is considerably more difficult than in a clean environment. If we combined
these two facts together when applying these models using real data, the accuracy of the
results is greatly reduced.

To help mitigate this issue, in noise injection, background noise is intentionally and
randomly added into the training data, as can be seen on Figure 15, with the purpose of
increase the overall robustness to interference.

Figure 15: Noise Injection Example
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The first step is to create a pool of different noises that can later be used for augmentation.
In our case 3 different subgroups were created. The first pool of six different samples of
noise was extracted from [89], corresponding to a set of different ’Colors of Noise’:

WHITE NOISE : White noise is a signal, named by analogy to white light, with a flat frequency
spectrum when plotted as a linear function of frequency (e.g., in Hz). In other words,
the signal has equal power in any band of a given bandwidth (power spectral density)
when the bandwidth is measured in Hz;

PINK NOISE : The frequency spectrum of pink noise is linear in logarithmic scale; it has
equal power in bands that are proportionally wide;

BROWN NOISE : Noise with a power density which decreases 6 dB per octave with increasing
frequency (frequency density proportional to 1/f2̂ over a frequency range excluding
zero;

BLUE NOISE : Blue noise’s power density increases 3 dB per octave with increasing frequency
(density proportional to f) over a finite frequency range;

VIOLET NOISE : Violet noise’s power density increases 6 dB per octave with increasing
frequency (density proportional to f2̂) over a finite frequency range;

GREY NOISE : Grey noise is random white noise subjected to a psycho-acoustic equal loud-
ness curve (such as an inverted A-weighting curve) over a given range of frequencies,
giving the listener the perception that it is equally loud at all frequencies. This is
in contrast to standard white noise which has equal strength over a linear scale of
frequencies but is not perceived as being equally loud due to biases in the human
equal-loudness contour.

The second pool of noises was extracted from multiple YouTube videos of ambient noise.
These videos ranged from simulated rain noises, coffee/store noises, street/city noises, etc.,
in total this pool totaled 6 hours of audio. A third and last pool containing four different
samples of noise collected from real telecommunications at NOS was also created.

Noise Injection was implemented by randomly inserting noise iteratively in utterances on
each epoch of training. Three parameters affect the operation of said method, ’noise prob’
(probability of noise to be inserted on a certain audio clip), ’noise min’ (minimum amount
volume of noise), and ’noise max’ (maximum amount volume of noise). These last 2 values
are relative to the volume of the original clip. This was done dynamically because of the
restrictions on our corpus size on our machine as opposed to the more common method of
creating different copies of the corpus with different variations of noise and joining them
together.
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Multiple experiments were done to confirm that the introduction of noise during the
training approach works well for the model and can provide substantial performance
improvement for speech recognition [90, 91, 92, 93, 94].

5.1.2 Speed Perturbation

Speed Perturbation is a method that consists of changing the speed of the audio signal,
producing different versions of the original audio with slightly different tempo and pitch.
This technique has a low implementation cost, making it very easy to adopt and experiment
with.

The application of this method creates an audio clip that can sound unnatural compared to
the original clip where it was applied. When the speed of the signal is reduced (α<1), there
is a shift in the signal energy from the high frequencies towards the lower frequencies. The
opposite can be said when the speed of the signal is increased (α>1). It is important to refer
that this method is a combination of two other methods, these being Tempo Perturbation
(TP) and the other Vocal Tract Length Perturbation (VTLP).

In TP, we simply shift the tempo of said audio. This changes the duration of the signal
which also affects the number of frames in the utterances while maintaining the original
pitch of the sound. VTLP changes the pitch of the clip and tries to emulate how different
humans would say the same utterance while maintaining the speed of the clip.

The unnatural sounding utterances of SP could be resolved by using either of the other
methods described, however in practice, this does not seem to cause a problem as shown in
[95]. Furthermore, although speed perturbation emulates VTLP + TP, following the same
paper it was found that the addition of TP to VTLP to the data was actually detrimental to
the results and that individually each of these two perturbances had worst results than SP.

Following these results, it was decided to simply use TP and it was implemented by
randomly choosing a warping factor from the range [0.85, 1.15], it was then applied iteratively
to every utterance in each epoch of training using the speed function of the Sox audio
manipulation tool. This was done because of the restrictions on our corpus size on our
machine as opposed to creating multiple copies of the corpus with different warping factors
and joining them together. A test using a clean subset of our corpus was done to confirm
the improvements provided by this method.

5.1.3 Volume Perturbation

It is common that in a well-curated audio corpus, the variance in audio volume is minimal,
but when dealing with real data, this is not always the case.



5.1. Data Augmentation 46

Volume Perturbation is a method that consists of changing the amplitude of the audio
signal, producing different versions of the original audio with slightly different volumes.
This technique has a low implementation cost, making it very easy to adopt and experiment
with. Volume Perturbation was implemented by randomly choosing a scaling factor from the
range [0.5, 1.5], it was then applied iteratively to each utterance for each epoch of training
using the speed function of the Sox audio manipulation tool. This was done because of the
restrictions on our corpus size on our machine as opposed to creating different copies of the
corpus with different scaling factors and joining them together. A test using a clean subset
of our corpus was done to confirm the improvements provided by this method.

5.1.4 Mixed Bandwith Training

The quality of the audio fed to the recognition models can have serious effects on their
accuracy, where higher quality data usually equates to better results. For this reason, it is
common for audio corpus used in speech recognition to contain better quality audio than
what would be commonly encountered with real-life data.

One of the important factors to evaluate the audio quality is the bandwidth of the
audio clip. These are usually split into 2 different categories, narrow-band and wide-band.
Currently, there are many devices and equipment that receive both narrow-band and wide-
band speech for ASR-based applications. In conventional approaches, different acoustic
models are built to handle narrow and wide-band speech separately since their sampling
frequencies are different (8 kHz vs 16 kHz). However, it is not very economical or efficient
to collect large amounts of training data for each of the tasks. A simple solution is to
down-sample the wide-band speech and treat it similar to that of the narrow-band [96].
However, wide-band has information that is useful to detect certain phonemes and is lost
with down-sampling [97, 98]. Moreover, models built on narrow-band tends to perform
worse on the wide-band speech [97, 96].

Since all of our training data was wide-band speech, Mixed Bandwidth Training was
implemented by randomly down-sampling utterance with a change of 33%, during training
the model. The files were down-sampled during each epoch of training and to do this, the
Sox audio manipulation tool was used. The model is then trained with the mixture of both
narrow-band and wide-band audio. A test using a clean subset of our corpus was done to
confirm the improvements provided by this method.

5.1.5 SpecAugment

In the modern ASR models, the audio waveform is encoded as a dense visual representation,
such as a spectrogram, before being input as training data for the network.
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Augmentation of training data is normally applied to the waveform audio before it
is converted into the spectrogram, this is the case of all the methods previously listed.
SpecAugment was a method introduced by Google Brain [88], that investigated the approach
of augmenting the spectrogram itself, rather than the waveform data ’by treating it as a
visual problem rather than an audio one’ [99]. This method does not require additional data
and although simple, it has shown to be surprisingly effective in improving the performance
of ASR networks.

SpecAugment reshapes the spectrogram by warping it in the time direction, masking
blocks of consecutive frequency channels, and masking blocks of utterances in time. These
augmentations have been shown to help the network to be robust against deformations in
the time direction, partial loss of frequency information, and partial loss of small segments of
speech of the input, these last ones is particularly interesting when dealing with phone/VOIP
conversation data.

Figure 16: Spec Augment Process, extracted from [88]

The log mel spectrogram is augmented by warping in the time direction, and masking
(multiple) blocks of consecutive time steps (vertical masks) and mel frequency channels
(horizontal masks), like it can be seen on Figure 16. The masked portion of the spectrogram
is displayed in purple for emphasis [88].

Seannaren’s [83] implementation of SpecAugment algorithm was used do this project, and
a test using a clean subset of our corpus was done to confirm the improvements provided
by this method.

5.1.6 Audio Encoding and Codecs Simulation

Audio encoding and file formats both refer to the manner in which audio data is stored and
transmitted, although these refer to different aspects of configuration.

The audio file format refers to the file format used to store digital audio data on a
computer, commonly used formats are for example ’.mp3’ or ’.wav’. These files can be split
The data can be a raw bit stream in an audio coding format, but it is usually embedded in a
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container format or an audio data format with defined storage layer. This audio file formats
can be divided into 3 different types:

UNCOMPRESSED AUDIO FORMAT: In this type of audio formats, the audio is completely un-
altered from its original state. It goes without saying that uncompressed files are quite
large taking large amounts of disk space. One of the most common uncompressed
audio format is WAV;

LOSSLESS COMPRESSED AUDIO FORMAT: A lossless compressed audio format stores data in less
space without losing any information and the original uncompressed data can be
recreated from the compressed version; In this type of format, many methods are used
to be able to store the data in less space, most notably the ability for these formats
to store silence using almost no space. The FLAC format is probably the best-known
example of lossless compression. Development in lossless compression formats aims
to reduce processing time while maintaining a good compression ratio;

LOSSY COMPRESSED AUDIO FORMAT: Lossy audio format enables even greater reductions in
file size by removing some of the audio information and simplifying the data. This,
of course, results in a reduction in audio quality, but a variety of techniques are used,
mainly by exploiting psychoacoustics, to remove the parts of the sound that have the
least effect on perceived quality, and to minimize the amount of audible noise added
during the process; The popular MP3 format is probably the best-known example of
lossy compression. Most formats offer a range of degrees of compression, generally
measured in bit rate. The lower the rate, the smaller the file and the more significant
the quality loss.

The conversion from a lossy audio format to a lossless does not miraculously recover
data loss because of the choice of format. Additionally, when using audio for ASR, we are
not always sure of what formats the audio had been stores previously, and if any previous
conversion of formats caused any loss or alteration in information stored. Distorting audio
during training to simulate effects of format distortion has proven to improve results
provided by such models [100]. Additionally, we can also convert the commonly .WAV files
stored with ”16-Bit PCM” used in ASR models, to other codecs, most notably G.711 and
G.722 that are commonly used in Voip and Telephone Calls. This can be used to simulate
this type of data, by simply transforming any other type of files, into these formats.

5.2 transfer learning

Humans have an inherent ability to transfer knowledge across tasks. What we acquire as
knowledge while learning about one task, and instead of learning everything from scratch,
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when we attempt to learn new aspects or topics, we transfer and leverage our knowledge
from what we have learned in the past [101].

In conventional machine learning, models are developed to solve a specific task, and it
would be necessary to completely rebuild them from scratch when the task changes even
slightly. This aspect is especially important to consider in the context of deep learning when
most models need lots of data to solve complex problems, and getting vast amounts of
labeled data for supervised models can be difficult, considering the time and effort it takes
to both gather and label all the data points. Furthermore, it is common for deep learning
models to be very specialized in a particular domain or even a specific task. While these
might be lead to really high accuracy and beating all benchmarks, it would be only on very
specific data-sets and end up suffering a significant loss in performance when used in a new
task that would still be similar to the one it was trained for.

This forms the motivation to investigate transfer learning, which tries to leverage the
knowledge (features, weights, etc.), gained from previously trained models and use it to
solve new problems and even mitigate problems like having low amounts of data for the
newer task, as shown on Figure 17.

Transfer learning should enable us to utilize knowledge from previously learned tasks
and apply them to newer, related ones. If we have significantly more data for task T1, we
may utilize its learning, and generalize this knowledge (features, weights) for task T2 (which
has significantly less data). In our specific case of ASR, certain low-level concepts, what is
voice vs noise and pauses, possibly some common sounds/phonemes and letters between
languages, can be shared across tasks, and thus enable us to achieve better and faster results.

Figure 17: Transfer Learning Diagram

There are different transfer learning strategies and techniques, which can be applied based
on the domain, the model type used, the task at hand, and the availability of data. Deep
learning models are representative of what is also known as inductive learning. The objective
of inductive-learning algorithms is to infer a mapping from a set of training examples. For
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instance, in cases of classification, the model learns a mapping between input features and
class labels. Deep learning systems and models are layered architectures that learn different
features at different layers (hierarchical representations of layered features). These layers are
then connected to the last layer to achieve the final output. The key idea is to leverage the
pre-trained model’s weighted layers to extract features during training with new data for
the new task.

The more straightforward method of using this knowledge is called freezing. The idea is
to just simply copy the pre-trained model’s weighted layers to extract features but not to
update the weights of the model’s layers during training, and attach it to a newer final layer
built for the new task, as seen in Figure 18.

Figure 18: Freeze Transfer Learning Diagram

A more involved technique, called fine-tuning, where we do not just simply replace the
final layer, but we also selectively retrain some or even possibly all the previous layers
inherited by the base model, shown in Figure 19. As discussed earlier, the initial layers have
been seen to capture generic features, while the later ones focus more on the specific task
at hand. Using this insight, we may freeze (fix weights) certain layers while retraining, or
fine-tune the rest of them to suit our needs. In this case, we utilize the knowledge in terms
of the overall architecture of the network and use its states as the starting point for our
retraining step. This, in turn, helps us achieve better performance with less training time.
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Figure 19: Fine Tuning Transfer Learning Diagram

Luckily for us, many of the state-of-the-art deep learning architectures used in ASR are
open source, and we additionally are able to download pre-trained models that are usually
shared in the form of the millions of parameters/weights the model achieved while being
trained to a stable state. These can help solve complex real-world problems with several
constraints, tackle problems like having little or almost no labeled data availability and
improve the obtained results by transferring knowledge from one model to another based
on domains and tasks. It is important to note that, although TL can help us create better
models, there are also cases when transfer learning can lead to a drop in performance. For
example, in cases where the source task is not sufficiently related to the target task, or if the
transfer method could not leverage the relationship between the source and target tasks. For
this reason, we will test the difference in performance in models with and without transfer
learning in Chapter 7.
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D ATA A N D M E T H O D O L O G Y

6.1 data

This section describes all data used during the realization of this project, as well as the
projects from they were retrieved and the steps done to transform said data into the format
used for training. The majority of the data is publicly available online, and is split between
two languages, English and Portuguese.

A larger and publicly available English dataset was used on the pre-trained back-model
and a smaller and newly created EP corpus was used in the development of the new model
for the Portuguese Language.

6.1.1 English Voice Datasets

A total of 4 different English Datasets were used in the training of the back-model. The
chosen are all well known and generally considered benchmarks for speech recognition
tasks, these are: Librispeech [102], Tedlium v2 [103], VoxForge [104] and Common Voice
[105]. As stated, all these distinct datasets were concatenated to form a much bigger corpus
and then used to develop the base English model for our project.

LibriSpeech

The LibriSpeech is a corpus of approximately 1000 hours of 16kHz read English speech,
prepared by Vassil Panayotov with the assistance of Daniel Povey, and it was publicly
released in 2015 [102]. The data is derived from recordings of audio books from the LibriVox
project [106] that have been segmented and time-aligned. At the time of writing, this corpus
is considered a very significant public available data-sets for the English language.

The LibriSpeech dataset is divided into 3 main parts. A ’train’ set used for training model,
a ’dev’ set to be used for validation, and a ’test’ for testing the accuracy of the model. The
’training’ dataset is divided into 3 different volumes, with approximate size 100, 360, and
500 hours respectively. All 3 subsets were used in training, totaling approximately 960 hours

52
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of transcribed speech. The ’development’ set is divided into 2 volumes, a ’clean’ and ’other’
set, containing respectively the lowest and the highest WER evaluated by the authors in a
state-of-the-art model at the time. Both were volumes were used for validation of the model.
Finally, the ’test’ set is also divided into 2 volumes, a ’clean’ and ’other’ set, divided in
the same matter as the ’dev’ set, and both were used for testing the model accuracy. The
different sub-set of data present in this corpus can be seen in Table 7.

Subset Hours Per-Speaker Minutes Num. Female Spks Num. Male Spks

train-clean-100 100.6 25 125 126

train-clean-360 363.6 25 439 482

train-other-500 496.7 30 564 602

dev-clean 5.4 8 20 20

dev-other 5.3 10 16 17

test-clean 5.4 8 20 20

test-other 5.1 10 17 16

Table 7: LibriSpeech Data Split

TED-LIUM v2

The ’TED-LIUM Release 2’ dataset consists of a enhanced version of the original TedLium
dataset [107].

The corpus consists of 207 hours of english talks (141h male / 66h female) and their
transcriptions, all available on the TED website. It contains data from 1242 talks, from a total
of 1495 diferent speakers, containing a total of 2.6M words. It is divided into 3 smaller sets,
train, dev, and test, containing 1514, 8, and 11 talks respectively.

Voxforge

VoxForge is an open multi-language speech project initiated in 2006. It was set up to collect
transcribed speech in multiple languages (17 at the moment) for use with Free and Open
Source Speech Recognition Engines, and it uses crowdsourcing for data collection. All the
files are submitted by users and made available under the GPL License and then ’compiled’
into acoustic models.

It contains around 120 hours of speech submitted from close to 3000 different speakers,
and it is available in 8 kHz and 16 kHz sample rate. All data is available in project website
grouped by submission and no validation set or test set is defined at the time of writing.



6.1. Data 54

Common Voice

The Common Voice is an open, multi-language dataset of transcribed speech intended
for speech technology research and development [105]. Similarly to Voxforge, this project
employs crowdsourcing for data collection as well as for data validation.

As of the time of writing, it contains a total of 7,226 recorded hours (where 5,671h have
been validated) split between 54 different languages, making it one of the largest audio
corpus in the public domain for Speech Recognition. In the English Language, it contains
around 1500h of validated transcribed speech from around 61,000 different users, split into 3

smaller sets, train, dev and test.

6.1.2 Portuguese Voice Datasets

In the creation of an ASR, many hours of transcribed speech are needed to achieve good
results. Unfortunately, there is not nearly as much available open data for the Portuguese
Language compared to English. It is also common for these corpus to not distinguish
between different Portuguese dialects. Because of these two reasons, a corpus of transcribed
audio was created by combining multiple online resources with attention to filtering out any
other dialect that is not EP.

VoxForge

As previously said, VoxForge is a multi-language speech project that aims to collecting
transcribed speech in a variety of different languages with the use of crowd-sourcing. In
Portuguese, there are a total of 407 submissions from users, but unfortunately VoxForge
makes no distinction between the different Portuguese Accents. For this reason, audio clips
from all different user’s submission were carefully heard and classified in one of two groups,
either EP or not. In the set a total of 384 submissions in BP and 23 in EP are present adding
up to a total of around 250 minutes of speech, 236 minutes in Brazilian/Other Portuguese
Dialects and only 14 minutes in EP.

Because of the aim of this project, we will be focusing only on the EP partition being the
dialect we are working for. The distribution of the submissions by Age and Gender can be
seen on Table 8.

Age / Gender Male Female

Teen 5 0

Adult 14 4

Table 8: LibiSpeech Data Distribution
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Each submission file manly consists of small collection of audio files (utterances spoken
by the same user) and a file containing all transcriptions and the corresponding path for the
audio recording. Each submission was extracted and the format was simply adapted to fit
the one used by ASR tools. Because of the reduced size of this corpus, no validation and test
split were done, and all data was used for training the models.

Librivox + Gutenberg

A corpus created from both Librivox and Gutenberg projects, was at the beginning of being
created, in a reproduction of what was previously done in the creation of the LibriSpeech
corpus, but this time for EP.

The creation of this corpus represents a lot of hours since after listening for each segment,
downloading each separate file (audio and text), pre-processing is done on the audio
segments and text files to remove all metadata present. After having both files prepared,
forced alignments are used to split them into segments and syncing each text file to the
corresponding audio file. The last step, and most time consuming, is validating and fine-
tuning each sentence end and start time stamps since the automated syncing does not always
produce ’perfect’ results. Because of this long and time-consuming process, the creation
of this corpus was postponed to a later date and unfortunately was never finished for this
project.

Common Voice

As said before, the Common Voice is an open-source, multi-language dataset of voices, and
at the time of writing it containing at the time of writing 48 hours of validated speech in
Portuguese.

Similarly to the VoxForge project, the corpus makes no differentiation between European,
Brazilian, or any other dialects of Portuguese Language. The same initial treatment was
done to this corpus: segments of all 715 different users with verified audio were listened
to, and only submissions from users with seemingly EP accent were used. In the end, only
audio from 64 users were used for a total of 2 hours of validated transcribed speech were
produced. The corpus pre-defined 3 smaller sets ’train’, ’dev’ and ’test’ and this partitions
were kept defining 3 sets with 535, 611 and 376 utterances, respectively.

Fala Bracarense

The ’Fala Bracarense’ is a corpus of approximately 80 hours (80 interviews with about 1

hour each) at 16kHz, where both the interviewer and interviewee talk in EP, and as the same
states, with more of a Braga’s accent.
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The subjects of the interviews were varied that allowed the production of diverse form-
s/structures and the use of pragmatic and discursive mechanisms. The project had the aim
to achieve the necessary representativeness of individuals belonging to different parameters
of Gender, Age, and Education Level (in years) in the city of Braga. The interviews were
transcribed according to semi orthographic rules. The Age, Education Level and Gender of
the interviewees are described on Table 9.

Education Level / Age / (M/F) 25 26-59 60-75 75+

0-3 0/0 1/1 1/3 2/3

4-9 3/3 3/3 3/3 3/3

10-12 3/3 3/3 3/3 0/3

Degree 3/3 3/3 3/3 3/3

Table 9: Fala Bracarense’s Age, Education Level and Gender of Interviewees

There is no information about the Age or Education Level of any of the interviewers,
although it was possible to extract from the metadata that all interviews were female and
did a certain amount of interviews as presented on Table 10.

’IC’ ’JV’ ’CS’ ’MA’ Unknown

Num. Of Interviews 19 25 20 14 2

Table 10: FalaBracarense Interviewers

The corpus is publicly available at [108], where for each interview there is a .wav audio
file containing the complete interview and a .exb file with metadata and the timestamped
transcription of the interview. Using these timestamps, the complete interviews were split
into audio and text files representing only one sentence each, complying with the formatted
used by the ASR tools. Since the transcription of this corpus did not conform with the
transcription of the others, some alterations had to be done to the text. These alterations
mostly concern the removing of the ’•’ symbols that represent silence and ’((risos))’ that
represented laughter as well as removing all punctuation and converting all lowercase
characters into their corresponding uppercase character.

RTP Play Corpus

By accessing the RTP Play platform [109], we were able to gather a very sizable amount of
subtitled audio from different television shows from the Portuguese public broadcasting
corporation. A script was created to fulfill the following steps:
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1. We firstly gathered all IDs and URLs corresponding to TV Shows available on the plat-
form, by parsing the ’https://www.rtp.pt/play/programas’ web-page, using Beautiful
Soup [110];

2. For each of the available series, we gathered a complete list of all existent seasons and
corresponding episodes, using Selenium [111];

3. By consulting every episode ID, we were able to make a list of episodes in each season
that contained subtitles (via a .vtt file);

4. Every episode of every TV show available that contained subtitles was download and
their audio was promptly extracted and converted to .wav files and the latter were
paired with the corresponding .vtt files;

5. The list of series was filtered, since some of the TV Shows were not in EP (majority in
English), these were deleted from the set;

6. Because some of the .vtt files extracted were empty or contained formatting errors,
these were deleted (with their corresponding audio file pair).

After this process, we achieved a large corpus audio data and their transcription. A final
step was done, using the timestamps and transcriptions present on the subtitle file, to split
the audio and text files into smaller ones, each corresponding to one utterance present in the
audio.

8

0 0 : 0 0 : 2 1 . 4 0 0 −−> 0 0 : 0 0 : 2 4 . 3 1 9

Uma camareira
que acha que sabe mais do que eu .

9

0 0 : 0 0 : 2 4 . 5 6 0 −−> 0 0 : 0 0 : 2 6 . 5 9 9

E um cozinhe i ro
que j á nasceu queimado .

Listing 6.1: Excerpt of one .vtt file used

This whole process, initially created a very big corpus containing around 1387 hours of
raw audio, split between 150 shows and a total of 2883 episodes. But unfortunately for us,
not all data could be used for 2 main reasons:

1. A very sizable part of the data, contained transcription errors and/or miss-alignment
captions;
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2. Since we are dealing with subtitled audio from TV shows, and not carefully transcribed
audio for the purpose of ASR, many alterations to what was really said in the audio
files, were done in the transcription. It is common throughout the corpus the use of
synonyms and omitting words for improved clarity on the subtitles, but at the same
time, contaminating the quality of this data for use in ASR.

As stated before, the episodes were split into smaller clips based on their subtitle times-
tamps, and for every available episode a number of clips were listened to. The series were
then classified, and split into 3 different sets with processed data, based on their transcription
accuracy: A ’perfect set’ with around 15 hours of audio with accurate transcriptions; A
’good set’ with around 55 hours of audio containing some small transcription errors or small
misalignment problems; And lastly, a ’bad set’ with all remaining audio containing very
noticeable miss-alignment issues and deep transcription errors.

Unfortunately, it was not possible, in the time frame of this project, to guarantee the
complete accuracy of each transcription in either set, and for this reason, no validation or
test set were created from this corpus.

NOS Calls

The NOS Calls corpus, is a small set of hand transcribed audio totaling 2 hours of customer
service calls from NOS. A total of 10 hours of audio were provided by NOS with the purpose
of testing the model accuracy for telephone data.

One majorly important aspect that is distinctive from all previously described corpus, is
that this data from NOS Calls was originally .mp3 files limited at 8000 Hz and 64.0 kb/s,
making it of considerably worse quality than any other corpus used during this project, and
as discussed before, this usually reflects on lower performance results.

The original 10 hours of raw audio were carefully listened to, all audio parts that could
be used in identifying any person talking were removed (by silencing the respective audio
frames) and frames only containing noise or music were removed. Finally, the files were
split into smaller utterances using pydubs’s silence detection [112]. This processing pipe
produced a total of 2 hours of transformed audio clips (ranging from 1 to 5 seconds) that
were listened to and carefully transcribed.

Unfortunately, even after anonymizing all the data, we were not authorized to use this
data on the Google’s Colab Platform and, because of time restrictions and not having much
hope in getting good results with such low quality audio, this data ended up not being used
for training and testing the models.
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6.1.3 Portuguese Text Datasets

CETEM Público

The CETEMPúblico (Corpus de Extractos de Textos Electrónicos MCT/Público) is a corpus of
approximately 180 million words in EP, created by the Project ’Processamento computacional
do português’, in a protocol between the Portuguese Ministry of Science and Technology
(MCT) and the Portuguese journal ’PÚBLICO’ in April of 2000. The corpus is divided in
different extracts that correspond to different articles, and each of these is then split in
a number of tags. The number of these different tags present on the whole document is
described Table 11.

This corpus is intended primarily for all those who develop programs that process
the Portuguese language, and who consequently need raw material for their work. The
overwhelming majority of CETEM Publico’s text is in EP, although there are some texts by
Brazilian and African authors [113].

Structure Number

Extracts <ext> 1504258

Paragraphs <p> 2571735

Phrase <s> 7082094

Titles <t> 655059

Authors <a> 247392

Elements of list <li> 80060

Table 11: CETEM Público 1.7 Structure, extracted from [113]

The latest version (v1.7 from 18 of September of 2001) was used to train language models.
All tags were removed from the corpus, and each of this elements and phrases were split
into different lines to comply with the format used to train the language model.

NOS Verbatium

The NOS Verbatium corpus is a small set of text data extracted from 15 different data-sets
with a variety of subjects. This different sets contain information with a variety of subjects,
from user complaints to service status reports, that are used to measure user happiness with
the services provided.

The columns of each set were individually analyzed and the ones useful for our project,
were extracted and concatenated into a single text file, producing a total of 4400 lines, each
representing a phrase. This data provided by NOS is specially interesting because it was full
of examples where telecommunications specific terms were present.
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6.2 methodology

SeanNarens’s deepspeech.pytorch [83] implementation of Deep Speech 2, as well as most
notorious modern ASR frameworks let us use GPU’s power to greatly reduce the training
time of acoustic models. Since we did not have access to local machines equipped with
powerfull GPUs for machine learning purposes, the possibility of renting machines on
services like AWS or Azure was studied, but, after investigating, we concluded that these
types of services were too expensive for the development of this project. We decided to
use Google’s Colab Platform to do all model creation steps. This platform gives users free
access to modern GPUs, with some restriction. This choice exhibited some advantages and
disadvantages:

• With the use of GPUs, we greatly increase the model’s training speed, to what could
be considered as reasonable time;

• Although each user is limited to one only instance with GPU access, and each of
this sessions is limited to one GPU, by using multiple accounts we were able to train
multiple models at the same time;

• Each of these sessions are limited to roughly 10 hours for each day, and since for every
new session, the framework needed to be installed, and all training data transferred to
be locally stored on the machine, this equated to less training time per day that was
preferable;

• Sessions with access to GPUs, are severely limited in storage space (75GB in total).
For this reason several steps were taken to ensure the least use storage space possible,
and more importantly we were not able to use all training data available and every
augmentation step was done in real-time.

Because of this choice to use Google’s Colab Platform, we were given machines with a
variety of configurations, but on all instances where training time was evaluated, it was
assured that a machine with the following specifications was used:

• 2 Cores of Intel(R) Xeon(R) CPU @ 2.20GHz [Family 6, Model 79];

• 15GB RAM;

• Nvidia Tesla P100 GPU;

• 75GB of Storage.

The files containing the full configuration that was used to created these models (with
exception to the first test where batch size was changed) are presented in appendix A.1 and
the file containing the test configuration is presented in appendix A.2.
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6.2.1 Acoustic Model

The model created is based on Seannaren’s implementation of Deep Speech 2 [83] and Figure
20 illustrates the model’s architecture.

Figure 20: Architecture of Models Used

In the beginning, audio stored in a ’.wav’ format is possibly augmented during training
and fed into the system that creates a visual representation (spectrogram) of the data stored.
This representation is then fed into the first layer of the neural network, and for each instance
of time, a total of 161 of features are used. To get the complete value of features used for a
audio file, we need to multiply this number by the number of windows used to represent
the audio in the spectrogram.

The first 6 layers of the network are 2 sets of a Convolutional Layer, Batch Normalization
Layer and a Hardtanh Layer, and are part of what is referred in deepspeech.pytorch as a
MaskConv. These first layers are used by the model to store the important features of the
audio, in the same way we could extract them in other models using, for example, MFCC.

In each of these sets, the first layer is a spatial convolution, commonly found in image-
related Deep Learning tasks, used for features extraction. These, over the training, are
tuned to release redundant information found in the spectrogram and take into account the
important information. Each convolution layer is followed by a batch normalization layer
used for a faster convergence during training and a final Hardtanh activation layer.

After these 2 sets of layers, the output is then fed to a stack of 5 LSTM bidirectional RNNs,
where batch normalization is also applied. After the bidirectional recurrent layers, one fully
connected layer is employed to generate the scores over the label set, and in the last CTC
layer we calculate the probability distributions over the labels with a softmax layer. At each
time-step, the softmax layer predicts a label, with this label being either a label from the set
of character used or the blank token.



6.2. Methodology 62

Finally, the predicted transcription is decoded from the sequences given according to
the probability distributions. One important aspect is that the created model does not
contain any digits or punctuation marks in the label set. To accommodate the used data to
not contain these types of characters, all numbers where transformed into the their word
notation, and all forms of punctuation where removed from the text.

Transfer Learning

For transfer learning, a pre-trained model provided by github’s user ’altavatarindia’ [114],
trained on the previously described English data, was used as the back-model, and it was
able to achieve the results presented on Table 12.

Dataset WER CER

Librispeech clean 11.0 % 3.6 %

Librispeech other 28.0 % 11.7 %

Ted 26.8 % 9.1 %

Commonvoice 16.0 % 7.0 %

Table 12: Pre-Trained Model Results, extracted from [114]

Following the results found on [115] that demonstrated that fine-tuning a pre-trained
English ASR model with new BP data, provided better results than freezing or training the
model from scratch. We chose to use the existing implementation of fine-tuning present on
deepspeech.pytorch [83] to train a model, and compare its performance to a model trained
from scratch. A modification to the code was done, since the already existing implementation
did not take into account our need to change the model’s output label set to a broader
group that contained all characters used in EP (the previously used labels for english + [ç,
á, é, ı́, ó, ú, à, â, ê, ô, ã, õ]). To do this, the final layer, that originally contained 29 features,
was replaced by a layer containing all the 41 outputs needed, where the already known
labels kept their weights and the newer introduced characters started with a random weight
distribution.

6.2.2 Language Model

Two different language models were created using kenlm language model [116]. One bigger
model using the data present in CETEMPúblico, and another smaller model using data
only present in NOS Verbatium Corpus. Both of these models were created at a max order
value of 3 (meaning these models contain a 1-Gram, 2-Gram and 3-Gram representation
of the data), and as a final step, to improve performance, both models were filtered to
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remove entries that would never be queried (based on our data) and transformed in their
binary representation. Unfortunately, the smaller model was never used during the project,
because it was created to improve the performance of the NOS’s test data. The performance
improvements of using CETEMPúblico Language Model is going to be tested in Chapter 7.

CETEMPúblico Language Model

Using the data from CETEMPúblico a language model was created. To reduce the size of the
model, we restricted the saved n-grams by filtering instances that appeared a small amount
of times, in this case, all 2-grams and 3-grams that were found in the data less than 3 and
10 times, respectively. The CETEMPúblico Language Model dimensions is presented in the
following Table 13.

N-Gram Number of Values

n = 1 759385

n = 2 2809791

n = 3 1526187

Table 13: Dimensions of CETEMPúblico Language Model

NOS Verbatium Language Model

Using the data from NOS Verbatim a language model was created. To reduce the size of the
model, we restricted the saved n-grams by filtering instances that appeared a small amount
of times, in this case, all 2-grams and 3-grams that were found in the data less than 3 and
5 times, respectively. The NOS Verbatim Language Model dimensions is presented in the
following Table 14.

N-Gram Number of Values

n = 1 11030

n = 2 27971

n = 3 26785

Table 14: Dimensions of NOS Verbatim Language Model

6.3 validation structure

In the next chapter, we will present the results of the models created. The evaluation of
said models will be presented in terms of WER and CER, as these are very common metrics
for evaluating ASR systems [117]. These metrics were already presented in Chapter 3. We
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will additionally refer to the model’s training time when comparing models using different
augmentation techniques. The validation will be split into two different sections, ’Initial
Validation’ and ’Final Validation’:

INITIAL VALIDATION: Initial testing models to test the effect of batch size and data augmenta-
tions techniques previously described on Chapter 5. These models were created using
only the ”Fala Bracarense” Dataset;

FINAL VALIDATION: Final models created to test the effect of all data augmentations tech-
niques and the language model created. These models were created using all data
available and the tests include results of the two ’Test Sets’ created, one with data from
’Fala Bracarense’ Dataset and another with ’Common Voice’ Dataset.

A final step is done comparing the results of the final model created with the performance
of two Speech Recognition Services using the test sets.
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VA L I D AT I O N A N D P E R F O R M A N C E E X P E R I M E N T S

7.1 initial validation

In this section, we will present preliminary results done as ’proof of concept’ for evaluating
training techniques described in the previous chapter. All of these preliminary experiments
were done using only the ’Fala Bracarense’ dataset which, as stated before, contains around
80 hours of data. This corpus was split in 2 parts, 80% for training and 20% for validation,
and no test corpus was used to determine system performance on ’unseen’ data.

7.1.1 Batch Size

When talking about machine learning, the batch size defines the number of samples that
will be propagated through the network. For instance, when we have a total of 550 training
samples, and set the batch size variable equal to 100. The algorithm takes the first 100

samples (from 1st to 100th) from the training dataset and trains the network, changing
the weights once completed. Next, it takes the second 100 samples (from 101st to 200th)
and repeats the process. This procedure is repeated until we have propagated all samples
through of the network, and at the end of this procedure, a epoch of training is concluded.

A higher batch size usually equates to a faster training speed but can also significantly
reduce the final model accuracy. A validation to verify such impacts was done, and produced
the results presented in Figure 21. The experiment consisted of 4 models with different
batch size values, trained in equivalent machines for roughly the same amount of time. The
values used during training were 64, 32, 16, 8. The WER and CER achieved in this validation
are described in Table 15.

65
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(a) WER (b) CER

Figure 21: Batch Size Effect on Accuracy and Training Speed

Batch Size Epoch Reached WER CER

64 21 70.4% 30.9%

32 19 68.5% 29.6%

16 15 67.3% 29.4%

8 12 67.2% 29.4%

Table 15: Batch Size Variation Results

Using batch size of 32 proved to be a good compromise between speed and the resulting
accuracy, and subsequently was the value used for all remaining validation tests. To better
improve our changes of having good results in the creation of the model, the final sections
of experiments were done using batch size of 16.

7.1.2 Noise Injection

For Noise Injection, snippets of audio containing noise were mixed with audio during
training. To inject noise in the data, noise snippets were mixed at a probability of 0.4 and
with a volume of 0.0-0.4 relative to the volume of the original audio file. The noise snippets
used for simulation come from a collection of sample noises and YouTube of simulated and
real-life noises from videos. Since all noise audio files were of greater length than any of
the data present during training, as previously described, smaller clips were audio were
extracted from noise files with the same duration as the training clip and with a random
start position.

It is important to note that the grand majority of the training data used in this section had
no considerable noise. The small part that had noise consisted only of small interjections



7.1. Initial Validation 67

(’hmm’, ’mm-hmm’, etc.) by either member of the interview, while the other person was
talking.

Training with Noise Injection increased the training time of each epoch by an average of
8%. Our experiments show that Noise Injection provided no improvements over the model
with no augmentation, achieving 68.4% WER and 30.4% CER, an increase of 3.4% and 5.5%
respectively, as seen in Figure 22.

(a) WER (b) CER

Figure 22: Noise Injection

This was a disappointing result as we expected that, although only a very small amount
of noise was present in the data, the use of Noise Injection would provide improvements in
accuracy, but this was not the case.

7.1.3 SpecAugmentation

As per definition of SpecAugment, the augmentation policy consists of warping the features,
masking blocks of frequency channels, and masking blocks of time steps. A implementation
developed by [83] was used based on the method developed by Google [99].

Training with Spec Augmentation increased the training time of each epoch by an average
of 0.7%. Our experiment shows that Spec Augmentation provided improvements over the
model with no augmentation, achieving 64.0% WER and 27.3% CER, an increase of 4.0%
and 5.5% respectively, as seen in Figure 23.
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(a) WER (b) CER

Figure 23: Spec Augmentation Results

As expected, Spec Augmentation provided better results, but also showed an interesting
phenomenon. In the first few epochs the base model had better performance, but after epoch
15 the roles were reversed. We think this was probably caused by the increase in difficulty
created by Spec Augmentation. By ’hiding’ certain information to the model, it can make
the task of Speech Recognition relatively harder, creating worst performance of the model in
the first few epochs. After a few epochs, the model ’learns’ how to work better with fewer
data providing better accuracy.

7.1.4 Speed Perturbation

In Speed Perturbation, small changes, either slight increases or decreases, are applied to the
pitch of the audio signal during training. The training with Speed Perturbation increased
the training time of each epoch by an average of 4%. Our experiment shows that Tempo
Perturbation provided improvements over the model with no augmentation, achieving 62.5%
WER and 26.8% CER, an decrease of 6.1% and 7.2%, respectively, as seen in Figure 24.
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(a) WER (b) CER

Figure 24: Tempo Perturbation

7.1.5 Volume Perturbation

In Volume Perturbation, small changes, either slight increases or decreases, are applied to the
strength of the audio signal during training. Training with Volume Perturbation increased
the training time of each epoch by an average of 1.5%. Our experiment shows that Tempo
Perturbation provided improvements over the model with no augmentation, achieving 65.8%
WER and 28.4% CER, an improvement of 1.2% and 1.7% respectively, as seen in Figure 25.

(a) WER (b) CER

Figure 25: Volume Perturbation

7.1.6 Mixed-Bandwidth Training

In Mixed-Bandwidth Training, files of multiple bandwidth are used during training. As
stated before all our data was recorded in either 16 kHz (grand majority) or 8 kHz and, as
so, were the only considered during training. All data present in the ’Fala Bracarense’ set is
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sampled at 16 kHz, with a probability of 0.3, training utterances were down-sampled to 8

kHz. Because our Feature Extraction is configured to operate at 16 kHz, the waveform was
then up-sampled back to 16 kHz before fed into the model.

Training with Mixed-Bandwidth increased the training time of each epoch by an average
of 2%. Our experiments show that the effectiveness of Mixed-Bandwidth Training achieved
62.5% WER and 26.8% CER reduction over a system trained with no augmentation, an
increase of 6.1% and 7.2%, respectively, as seen in Figure 26.

(a) WER (b) CER

Figure 26: Mixed-Bandwidth Training

Like the previous augmentation technique, using narrow-band audio (in this case, down-
sampled wide-band speech) in speech recognition removes part of the information provided
to the model maintaining the task of Speech Recognition. For this, the task can be consid-
erably harder, initially achieving worst results that the base model where only wide-band
audio was used during training. But making it so that with more training, the model
achieves better results when recognizing wide-band speech.

7.1.7 Audio Encoding and Codecs Simulation

To simulate a variety of audio encodings and codecs before transmission to the recognition
system, we encode and decode each waveform with a randomly selected encoding or codecs,
focusing on commonly used in telephone speech. For this validation the following encodings
for wav files were used: Signed-Integer, U-Law and A-Law; as well as the mp3, mp4 codecs.
Note that the training data we use may already be encoded in arbitrary ways before we
obtain it, in which case it is decoded and then re-encoded with the selected codec.

The training with Audio Encoding and Codecs Simulation increased the training time
of each epoch by an average of 4%. Our experiments show that the effectiveness of Audio
Encoding and Codecs Simulation achieved 62.5% WER and 26.7% CER reduction over a
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system trained with no augmentation, an improvement of 5.4% and 7.2% respectively, as
seen in Figure 27.

(a) WER (b) CER

Figure 27: Audio Encoding Simulation

7.1.8 Conclusions

These initial preliminary validations ended up being extremely useful, both in finding a good
set of values for batch size to use during training of the remaining models, and provided
some interesting results of the use of data augmentation techniques, as seen on Table 16.

Technique WER CER

Base Model 66.1% 28.8%

Noise Injection Model 68.4% (+3.4%) 30.4% (+5.5%)

SpecAugmentation Model 64.0% (-4.0%) 27.3% (-5.5%)

Tempo Perturbation Model 61.8% (-6.5%) 26.6% (-7.6%)

Volume Perturbation Model 65.8% (-1.2%) 28.4% (-1.7%)

Mixed-Bandwidth Training Model 62.5% (-6.1%) 26.8% (-7.8%)

Audio Encoding and Codecs Simulation Model 62.5% (-5.4%) 26.7% (-7.2%)

Table 16: Data Augmentation Results

While not increasing the training time by a significant amount, all of the augmentation
techniques, with the exception of Noise Injection, provided in the end a model with greater
accuracy than our base model. With these results in mind, we will continue to our final
validation.
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7.2 final validation

In this section, we present the results from training the final models, which were trained
using all available data described in Chapter 6.

The corpus was split into training, validation, and testing subsets, as follows:

1. ’Fala Bracarense’ corpus was randomly split in 3 parts, 70% for training, 20% for
validation and 10% for testing;

2. ’Comon Voice’ corpus was filtered to only contain EP data, and the original partitions
of the data were kept;

3. ’Voxforge’ corpus was filtered to only contain EP data, and, because of the reduced
size, it was decided to split it in 2 parts, 80% for training, 20% for validation.

4. ’RTP Play’ corpus was used solely for training since there were slight inaccuracies in
the translated speech;

5. ’Nos Calls’ corpus was not used in this model.

7.2.1 Transfer Learning

As stated before, we experimented with Transfer Learning techniques by using a pre-trained
English model as our ’base’ neural network. Due to the increased size of the Portuguese
character set, we added the remaining needed nodes to the last layer of the base-model
(with random weights) and tuned the entire model for the Portuguese dataset using all
previously discussed augmentation techniques. Our experiments show that the effectiveness
of the Transfer Learning achieves 74.2% WER and 31.2% CER after training for 15 epochs in
comparison with 83.8% WER and 41.9% for the model trained from scratch, which represents
an improvement of 11.4% and 25.4%, respectively, while bearing no noticeable difference in
training time, as seen on Figure 28.
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(a) WER (b) CER

Figure 28: Results from Transfer Learning from English Back Model

7.2.2 Data Augmentation

For the last two models, we decided to keep using Transfer Learning, since the results
on the previous evaluation were very promising, and decided to compare the accuracy
resulting from a model trained using all augmentation techniques during training versus
none. Our experiments show that both options resulted in very similar results, with the ”No
augmentation” model achieving 61.4% WER and 25.9% CER after training for 30 epochs in
comparison with 64.3% WER and 26.8% achieved by the model trained using all previously
described augmentation, as seen in Figure 29.

(a) WER (b) CER

Figure 29: Complete Data Augmentation Results

The results of these models when using the test subsets for Fala Bracarense and Common
Voice Corpus are presented in Table 17.
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No Augmentation All Augmentations

Fala Bracarese Test 61.0% 64.7%

Common Voice Test 72.4% 74.9%

Table 17: WER Results of Test Set with Data Augmentation

Since the ’No Augmentation’ model provided slightly better results, both in terms of CER
and WER, than the ’All Augmentation’ variant, all remaining tests were done only on the
prior model.

7.2.3 Language Model

As referred before, a language model can greatly improve the results provided by an ASR
system, and to test this hypothesis we present the results of using the created ”CETEMPub-
lico” language model paired with the ’No Augmentation’ model of the previous section. Our
experiments show that the vast effectiveness of Language Models made an improvement of
24.7% and 40.7% on the ’Fala Bracarense Test’ and the ’Common Voice Test’, respectively, as
seen in Table 18.

Base Model With Language Model

Fala Bracarense Test 61.0% 40.5%

Common Voice Test 72.4% 56.3%

Table 18: WER Results of Test Set with Language Model

7.3 comparison with other services

To further evaluate our developments, we decide to make a comparison of our WER results
with the output of two different online ASR Services, namely Google’s Speech Recognition
and Facebook’s Wit.Ai. The results of the said comparison are presented in Table 19.

Base Model Google Facebook

Fala Bracarense Test 40.5% 45.6% 67.7%

Common Voice Test 56.3% 12.3% 30.3%

Table 19: Comparison of our model with Commercial Alternatives
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This comparison provided interesting insights:

1. Our model performed slightly better than Google’s and significantly better in the ’Fala
Bracarense Test’, but performed significantly worse in the ’Common Voice Test’;

2. Google’s ASR achieved better performance than Facebook’s offer in both test datasets;

3. Both commercial alternatives achieved better performance on the ’Common Voice Test’
than in the ’Fala Bracarense Test’.



8

C O N C L U S I O N A N D F U T U R E W O R K

8.1 conclusion

ASR opens the door to a wide range of possible improvements in the customer experience.
The use of speech recognition is increasing every day and this is currently one of the main
methods of interactions between users and their electronic devices. The use of this type of
technology has increased significantly in recent years, and this change being the result of
the recent evolution in ASR systems. In this dissertation we firstly covered what is phonetics
and speech, and how we can represent them. Although very intuitive for us, speech is in
reality a very interesting and complex process, that involves different parts of the human
body.

The main objective of this dissertation was the construction of an ASR system for the EP
language. To do this we based our approach on deepspeech.pytorch, which is a derivation
from Deep Speech 2 [118], a state-of-the-art end-to-end system. We introduced ASR systems
and how they are generally structured with the recent split between Traditional (HMM-GMM
based) and new End-to-End Models (DNN-based) models. Neural networks with a large
number of layers, or simply Deep Learning, have in recent years become one of the most
studied way of creating ASR systems, this trend can be traced by the evolution of DNN
algorithms, as well as the recent increase in power of recent hardware (primarily GPUs) and
the availability of data.

Although there is a recent improvement in ASR accuracy, there are many factors that
make implementing these systems a challenge. One simple factor is that ASR is not a simple
binary classification problem, as we are not simply expecting a ’yes’ or ’no’, 1 or 0 response
from the model. The correct output is a series of words that precisely represent what is said
in a certain utterance, from thousands of words presents in the ever increasing vocabulary
that exist in the EP language. A second aspect is the low amounts of data readily available
for the EP. Any type of Neural Network problem, especially DNN implementations, are
deeply restricted in performance by the data used in training, both in terms of the size
and the quality. Over the length of project, we did our best to gather large amounts of

76
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data from a variety of different sources/projects, but all data combined is still a small
fraction compared to what is commonly available in the English Language, and extremely
small when comparing to the amount of transcribed speech hours used on state-of-the-art
commercial ASR systems. To try to minimize this problem we also introduced transfer
learning and showed that training these types of models largely benefited from a properly
initialization of the weights (provided by a back-model trained in large amounts of data).
Nonetheless the data collected can be used in a variety future projects regarding human
voice, including a future iteration of this project.

We also tested a variety of batch sizes to find a good compromise in terms of training
speech and the accuracy achieved by our models and a total of 6 different data augmentation
techniques were tested during the creation of our model, 5 of them when implemented
individually provided better accuracy on our validation data. Also, we showed the vast
improvements that a Language Model provided to our ASR acoustic model’s accuracy,
reducing the WER in our primary test set by approximately 25%.

Given a relative short training time, our best model achieved an WER of 40.05% in our
most prominent test set, with this result being slightly better when comparing to the values
achieved using commercial services; however, we have a long way until we achieve results
similar to those of commercial systems in other corpus.

8.2 future work

After everything that was done and described in this dissertation, there is still a lot of work
to be done. Since we based the model in the base transfer learning methods, we have not
stressed our topology by adding convolutional or hidden layers. Additionally, our parameter
optimization was very limited to different batch size values. We also didn’t explore other
kinds of RNN structures (e.g., GRU) or different kinds of input features (e.g., Raw Audio,
MFCC, PLP, LPC).

Increasing our training data is also highly recommended as state-of-the-art models are
trained with thousands of hours of transcribed speech. An increase in the amount of data
could lead to significant improvements in the model accuracy. Furthermore, we did not
investigate adding punctuation, accents, and hyphens to our softmax layer, which could
disambiguate some Portuguese words, and output a more accurate representation of what
is said in utterances. One of the more interesting points that we regret not having done is
creating a base BP dataset and training a back model using this data and later applying
transfer-learning techniques to a EP model variant. In addition, it would be interesting to
investigate what are the more error-prone phonemes, characters and words.

Furthermore, the created models could be trained for longer periods of time, and with it
possibly reaching slightly improved accuracy results. It would be also interesting to compare
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the accuracy achieved in this model with a different classical ASR approach. Moreover,
as encoder-decoder based models with attention mechanisms are raising in popularity in
the area for end-to-end solutions, and this includes speech recognition, it would be very
interesting to compare performance with these type of models.
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A
A P P E N D I C E S

a.1 base training configuration (train config .py)

from da t a c l a s s e s import datac l a s s , f i e l d

from typing import Any , L i s t

from deepspeech ˙pytorch . enums import Distr ibutedBackend , SpectrogramWindow ,

RNNType

from omegaconf import MISSING

de f a u l t s = [

–”optim” : ” sgd” ˝ ,

–”model” : ” b i d i r e c t i o n a l ” ˝ ,

–” checkpo int ing ” : ” f i l e ”˝

]

@datac lass

c l a s s Tra in ingConf ig :

no˙cuda : bool = Fal se # Enable CPU only t r a i n i n g

f i n e tune : bool = False # Fine - tune the model from checkpoint ”

cont inue ˙ f rom ”

seed : i n t = 123456 # Seed f o r gene ra to r s

d i s t ˙ backend : Distr ibutedBackend = Distr ibutedBackend . nc c l # I f us ing

d i s t r i bu t i on , the backend to be used

epochs : i n t = 50 # Number o f Train ing Epochs

@datac lass

c l a s s SpectConf ig :

s amp l e ˙ r a t e : i n t = 16000 # The sample ra t e f o r the data/model f e a t u r e s

window˙s ize : f l o a t = .02 # Window s i z e f o r spectrogram genera t i on ( seconds

)

window˙s t r ide : f l o a t = .01 # Window s t r i d e f o r spectrogram genera t i on (

seconds )

window : SpectrogramWindow = SpectrogramWindow . hamming # Window type f o r

spectrogram genera t i on

87
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@datac lass

c l a s s AugmentationConfig :

speed ˙vo lume ˙per turb : bool = False # Use random tempo and gain

pe r tu rba t i on s .

spec˙augment : bool = False # Use s imple s p e c t r a l augmentation on mel

spectograms .

n o i s e ˙ d i r : s t r = ’ . / no i s e ’ # Direc tory to i n j e c t no i s e i n to audio . I f

de fau l t , no i s e I n j e c t not added

no i s e ˙ p r ob : f l o a t = 0 .4 # Probab i l i t y o f no i s e being added per sample

no i s e ˙min : f l o a t = 0 .0 # Minimum no i s e l e v e l to sample from . ( 1 . 0 means

a l l no i se , not o r i g i n a l s i g n a l )

noise ˙max : f l o a t = 0 .5 # Maximum no i s e l e v e l s to sample from . Maximum 1.0

@datac lass

c l a s s DataConfig :

t r a i n ˙man i f e s t : s t r = ’ data/ t r a i n . csv ’

v a l ˙man i f e s t : s t r = ’ data/ va l i d a t e . csv ’

b a t c h ˙ s i z e : i n t = 16 # Batch s i z e f o r t r a i n i n g

num˙workers : i n t = 4 # Number o f workers used in data - l oad ing

l a b e l s ˙ p a t h : s t r = ’ l a b e l s . j son ’ # Contains tokens f o r model output

spec t : SpectConf ig = SpectConf ig ( )

augmentation : AugmentationConfig = AugmentationConfig ( )

@datac lass

c l a s s B iD i r e c t i ona lCon f i g :

rnn ˙ type : RNNType = RNNType . lstm # Type o f RNN to use in model

h i dd en ˙ s i z e : i n t = 1024 # Hidden s i z e o f RNN Layer

h i dd en ˙ l a y e r s : i n t = 5 # Number o f RNN l ay e r s

@datac lass

c l a s s Un iDi r ec t i ona lCon f i g ( B iD i r e c t i ona lCon f i g ) :

l ookahead ˙ context : i n t = 20 # The lookahead context f o r convo lut ion a f t e r

RNN l ay e r s

@datac lass

c l a s s OptimConfig :

l e a r n i n g ˙ r a t e : f l o a t = 3e -4 # I n i t i a l Learning Rate

l e a r n i n g ˙ ann e a l : f l o a t = 1 .1 # Annealing app l i ed to l e a rn i ng ra t e a f t e r

each epoch

weight ˙decay : f l o a t = 1e -5 # I n i t i a l Weight Decay

max˙norm : f l o a t = 400 # Norm cu t o f f to prevent exp l o s i on o f g r ad i en t s

@datac lass

c l a s s SGDConfig ( OptimConfig ) :

momentum : f l o a t = 0 .9
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@datac lass

c l a s s AdamConfig ( OptimConfig ) :

eps : f l o a t = 1e -8 # Adam eps

betas : tup l e = ( 0 . 9 , 0 . 999 ) # Adam betas

@datac lass

c l a s s CheckpointConfig :

cont inue ˙ f rom : s t r = ’ ’ # Continue t r a i n i n g from checkpoint model

checkpo int : bool = True # Enables epoch checkpo int sav ing o f model

c h e c k p o i n t ˙ p e r ˙ i t e r a t i o n : i n t = 0 # Save checkpo int per N number o f

i t e r a t i o n s . Defau l t i s d i s ab l ed

s av e ˙ n ˙ r e c en t ˙mode l s : i n t = 10 # Max number o f checkpo int s to save , d e l e t e

o l d e r checkpo int s

bes t ˙va l ˙mode l ˙name : s t r = ’ d e ep sp e e ch ˙ f i n a l . pth ’ # Name to save best

va l i da t ed model with in the save f o l d e r

l o ad ˙ au to ˙ ch e ckpo in t : bool = False # Automatica l ly load the l a t e s t

checkpo int from save f o l d e r

@datac lass

c l a s s Fi l eCheckpo intConf ig ( CheckpointConfig ) :

s a v e ˙ f o l d e r : s t r = ’ models / ’ # Locat ion to save checkpo int models

@datac lass

c l a s s GCSCheckpointConfig ( CheckpointConfig ) :

g c s ˙bucke t : s t r = MISSING # Bucket to s t o r e model checkpo int s e . g bucket -

name

g c s ˙ s a v e ˙ f o l d e r : s t r = MISSING # Folder to s t o r e model checkpo int s in

bucket e . g models /

l o c a l ˙ s a v e ˙ f i l e : s t r = ’ . / l o c a l ˙ c h e c kp o i n t . pth ’ # Place to s t o r e temp f i l e

on d i sk

@datac lass

c l a s s V i sua l i z a t i onCon f i g :

id : s t r = ’ DeepSpeech t r a i n i n g ’ # Name to use when v i s u a l i z i n g / s t o r i n g the

run

visdom : bool = False # Turn on visdom graphing

tensorboard : bool = False # Turn on Tensorboard graphing

l o g ˙ d i r : s t r = ’ v i s u a l i z e / d e ep sp e e ch ˙ f i n a l ’ # Locat ion o f Tensorboard log

log ˙params : bool = False # Log parameter va lue s and g rad i en t s

@datac lass

c l a s s ApexConfig :

o p t ˙ l e v e l : s t r = ’O1 ’ # Apex opt imiza t i on l e v e l , check https : // nv id ia .

g ithub . i o /apex/amp . html f o r more in fo rmat ion

l o s s ˙ s c a l e : i n t = 1 # Loss s c a l i n g used by Apex . Defau l t i s 1 due to warp -

c t c not support ing s c a l i n g o f g r ad i en t s
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@datac lass

c l a s s DeepSpeechConfig :

d e f a u l t s : L i s t [Any ] = f i e l d ( d e f a u l t ˙ f a c t o r y=lambda : d e f a u l t s )

optim : Any = MISSING

model : Any = MISSING

checkpo int ing : Any = MISSING

t r a i n i n g : Tra in ingConf ig = Train ingConf ig ( )

data : DataConfig = DataConfig ( )

augmentation : AugmentationConfig = AugmentationConfig ( )

apex : ApexConfig = ApexConfig ( )

v i s u a l i z a t i o n : V i sua l i z a t i onCon f i g = Vi sua l i z a t i onCon f i g ( )

a.2 base inference configuration (inference config .py)

from da t a c l a s s e s import da t a c l a s s

from deepspeech ˙pytorch . enums import DecoderType

@datac lass

c l a s s LMConfig :

decoder ˙ type : DecoderType = DecoderType . greedy

lm˙path : s t r = ’ /lm/cp . bin ’ # Path to an ( op t i ona l ) kenlm language model

f o r use with beam search ( req “ ’d with t r i e )

top ˙paths : i n t = 1 # Number o f beams to re turn

alpha : f l o a t = 0 .0 # Language model weight

beta : f l o a t = 0 .0 # Language model word bonus ( a l l words )

c u t o f f ˙ t o p ˙ n : i n t = 40 # Cuto f f ˙ t op ˙ n cha ra c t e r s with h i ghe s t probs in

vocabulary w i l l be used in beam search

cu t o f f ˙ p r ob : f l o a t = 1 .0 # Cutof f p r obab i l i t y in pruning , d e f au l t 1 . 0 , no

pruning .

beam˙width : i n t = 10 # Beam width to use

lm˙workers : i n t = 4 # Number o f LM pro c e s s e s to use

@datac lass

c l a s s ModelConfig :

u s e ˙ h a l f : bool = True # Use ha l f p r e c i s i o n . This i s recommended when us ing

mixed - p r e c i s i o n at t r a i n i n g time

cuda : bool = True

model ˙path : s t r = ’ ’

@datac lass

c l a s s In f e r enceCon f i g :

lm : LMConfig = LMConfig ( )
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model : ModelConfig = ModelConfig ( )

@datac lass

c l a s s Transcr ibeConf ig ( In f e r enceCon f i g ) :

aud io ˙path : s t r = ’ ’ # Audio f i l e to p r ed i c t on

o f f s e t s : bool = False # Returns time o f f s e t in fo rmat ion

@datac lass

c l a s s EvalConfig ( In f e r enc eCon f i g ) :

t e s t ˙man i f e s t : s t r = ’ ’ # Path to va l i d a t i o n mani f e s t csv

verbose : bool = True # Print out decoded output and e r r o r o f each sample

save ˙output : s t r = ’ ’ # Saves output o f model from t e s t to t h i s f i l e ˙ p a t h

b a t c h ˙ s i z e : i n t = 20 # Batch s i z e f o r t e s t i n g

num˙workers : i n t = 4

@datac lass

c l a s s ServerConf ig ( In f e r enc eCon f i g ) :

host : s t r = ’ 0 . 0 . 0 . 0 ’

port : i n t = 8888


