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Abstract Finite mixtures of regression models with random effects are a very
flexible statistical tool to model data, as these models allow to model the het-
erogeneity of the population and to account for multiple correlated observa-
tions from the same individual at the same time. The selection of the number
of components for these models has been a long-standing challenging problem
in statistics. However, the majority of the existent methods for the estimation
of the number of components are not robust and, therefore, are quite sensitive
to outliers. In this article we study a robust estimation of the number of com-
ponents for mixtures of regression models with random effects, investigating
the performance of trimmed information and classification criteria compar-
atively to the performance of the traditional information and classification
criteria. The simulation study and a real-world application showcase the su-
periority of the trimmed information and classification criteria in the presence
of contaminated data.
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1 Introduction

Mixture models have been extensively studied in the modelling and analysis
of data from a heterogeneous population, in other words, a population divided
into subpopulations present in unknown proportions. Within the context of
mixtures of regression models, mixtures of regression models with random
effects can be applied to the most variety of subjects, since they allow the ex-
plaination of correlations between observations of the same individual, through
the incorporation of random effects, and, at the same time, to model the un-
observed heterogeneity between the distinct individuals.

In the literature there are several examples of application of mixture mod-
els for the statistical modelling of different phenomena, assuming particular
relevance in the areas of astronomy, biology, marketing, economics, medicine,
among others (see Frühwirth-Schnatter 2006; Celeux et al. 2005 and Young
and Hunter 2015). A comprehensive review of finite mixture models can be
found in McLachlan and Peel (2000).

The estimation of the number of components is one of the most important
problems in the context of mixture models because the statistical inference
about the resulting model is highly sensitive to the value of the number of
components (see Kasahara and Shimotsu 2015). For maximum likelihood esti-
mation of finite mixture models, information and classification criteria present
one of the simplest ways to estimate the number of components, which made
their use quite popular. Depraetere and Vandebroek (2014) study different in-
formation and classification criteria, carrying out a large simulation study for
mixtures of regression models and they verify that the performance of these
criteria depends greatly on the model, concluding that there is not a single
criterion that works well for all the simulated scenarios. Hui et al. (2015) study
the behaviour of information criteria for order selection in finite mixture mod-
els, based on either the observed or the complete likelihood and propose a new
order consistent criteria based on the observed likelihood, the AICmix. The
authors show in their simulation study the poor finite-sample performance
of the complete likelihood criteria, while showing the strong performance of
BIC and their AICmix criterion. McLachlan and Rathnayake (2014) review
various methods that have been proposed to select the number of components
in a Gaussian mixture model, mainly focusing in information and classifica-
tion criteria and in resampling approaches as the likelihood ratio test. Celeux
et al. (2019) focus on the Bayesian solutions to the different interpretations
of selecting the correct number of components for mixture models, reviewing
well-known methods such as the reversible jump Markov Chain Monte Carlo
(MCMC) to more recent ideas. Cappozzo et al. (2019) study a robust ap-
proach to model-based classification, introducing a robust modification to the
Model-Based Classification framework, by employing impartial trimming and
constraints. The authors propose a robust information criterion and under-
line the benefits of their method in real and simulated data. Li et al. (2016)
study the use of trimmed information criteria to robustly estimate the number
of components in mixtures of linear regressions, concluding that these crite-
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Robust order selection of mixtures of regression models with random effects 3

ria are robust and not sensitive to outliers in comparison to the traditional
criteria.

With this article, we intend to extend the work of Li et al. (2016) for
mixtures of regression models with random effects. For that, we focus on order
selection by using different information and classification criteria, both in their
traditional version and in their robust version, to determine the number of
components for finite mixtures of regression models with random effects. A
simulation study and a real data application demonstrate that the two versions
of the criteria perform similarly when there are no outliers present but the
robust criteria perform much better than the traditional criteria in the presence
of outliers.

The remainder of the paper is organized as follows. In Section 2 we present
an overview of mixtures of regression models with random effects. In Section
3 we give an introduction of two versions of a series of information and classi-
fication criteria for order selection. In Section 4 we provide a simulation study
to compare the performance of both versions of the different criteria in the
selection of the number of components for mixtures of regression models with
random effects. In Section 5 we use a real-world application to demonstrate
the effectiveness of the robust criteria. A discussion section ends the paper.

2 Finite mixtures of regression models with random effects

We assume that I is the number of individuals in the study, where we observe
each individual ni times. It is also assumed that the population is heteroge-
neous and can be divided into m somewhat homogeneous subpopulations. For
each individual i, that is, for i = 1, ..., I, Zi is a latent variable varying from
1, ...,m with probabilities π1, ..., πm, respectively. In short, Zi is an unobserved
variable representing the subpopulation to which the individual i belongs, such
that P (Zi = j) = πj for j = 1, ...,m. However, in the estimation of the pa-
rameters using the EM algorithm (Dempster et al. 1977), it is convenient to
use a m-dimensional vector Zi instead of using the latent variable Zi, where
the j -th element of Zi, Zij , is defined as being equal to one or zero, whether
the individual belongs, or not, to subpopulation j.

Given Zi = j, the response variable yi ∈ Rni follows a linear mixed model

yi = Xiβj +Uibij + εij , (1)

where Xi ∈ Rni×p and Ui ∈ Rni×q are, respectively, the fixed and random-
effects covariate matrix, βj ∈ Rp and bij ∈ Rq are, respectively, a fixed and
random-effects vector, and εij ∈ Rni is the random error vector.

We also consider that bij and εij are independent, for i = 1, ..., I and
j = 1, ...,m, and that bij ∼ Nq(0,Ψj) and εij ∼ Nni(0,Λij). In this study we
assume that Λij = σ2

j Ini .
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4 Lúısa Novais, Susana Faria

Therefore, the conditional distribution of yi given Xi, Ui and θ without
observing Zi can be written as

f(yi |Xi,Ui,θ) =

m∑
j=1

πjNni(Xiβj ,UiΨjU
T
i + σ2

j Ini), (2)

for i = 1, ..., I, where πj is the mixing proportion for j = 1, ...,m with
0 ≤ πj ≤ 1 and

∑m
j=1 πj = 1, and θ is the parameter vector. In this case

we have that θ = (π,β,Ψ ,σ2), where π = (π1, ..., πm), β = (β1, ...,βm),
Ψ = (vech(Ψ1), ..., vech(Ψm)), where vech(.) is the half-vectorization function
giving the lower triangular portion of a symmetric matrix in form of a vector,
and σ2 = (σ2

1 , ..., σ
2
m).

Nonetheless, for mixture models maximizing the log-likelihood function
can be very complex, since the log-likelihood function is unbounded, produc-
ing situations where the maximum likelihood estimator may not exist, at least
in a global way. To solve this problem iterative methods are commonly used,
in particular the EM algorithm of Dempster et al. (1977), which consists in an
iterative calculation of the expectation and maximization of the complete log-
likelihood function. For finite mixtures of linear mixed models, Grün (2008)
describes the estimation procedure with the EM algorithm and outlines an
alternative version of the EM algorithm where only the component member-
ship is treated as missing data, as opposed to the traditional EM algorithm
where both the component membership and the random effects are treated as
missing data.

3 Information and classification criteria for order selection

Due to its simplicity, the most common parametric methods to select the num-
ber of components of a mixture model consist of using information or classi-
fication criteria. In order to accomplish that, mixture models with different
numbers of components are fitted to the data and the number of components
that corresponds to the smallest value of each information or classification cri-
terion is selected. Information criteria are based on penalizing the logarithm
of the likelihood function, also known as the observed log-likelihood function,
which can be written as

l(θ) =

I∑
i=1

ln

{ m∑
j=1

πjNni(Xiβj ,UiΨjU
T
i + σ2

j Ini)

}
, (3)

while classification criteria are based on penalizing the complete log-likelihood
function, also called classification log-likelihood function, which can be written
as

lc(θ) =

I∑
i=1

m∑
j=1

ln

{(
πjNni(yi;Xiβj +Uibij , σ

2
j Ini)Nq(bij ; 0,Ψj)

)Zij}
. (4)
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Robust order selection of mixtures of regression models with random effects 5

In this study, we use the following information criteria: Akaike Informa-
tion Criterion (AIC ) (Akaike 1974), Bayesian Information Criterion (BIC )
(Schwarz 1978), which are the two most widely used information criteria,
the consistent version of the Akaike Information Criterion (CAIC ) (Bozdo-
gan 1987), Hannan-Quinn Information Criterion (HQIC ) (Hannan and Quinn
1979), which is also consistent, Kullback Information Criterion (KIC ) (Ca-
vanaugh 1999), Akaike Information Criterion 4 (AIC4 ) (Bhansali and Down-
ham 1977), which consists of increasing the penalty of the AIC from 2k to
4k, Adjusted Bayesian Information Criterion (aBIC ) (Sclove 1987), Corrected
Akaike Information Criterion (AICc) (Hurvich and Tsai 1989), Corrected Kull-
back Information Criterion (KICc) (Cavanaugh 2004), which are, respectively,
alternatives to BIC, AIC and to KIC for small samples, Minimum Descrip-
tion Length Criterion 2 (MDL2 ) (Liang et al. 1992) and Minimum Description
Length Criterion 5 (MDL5 ) (Liang et al. 1992), which consist of multiplying
the penalty term of BIC by 2 and 5, respectively. The following classification
criteria are also used: Classification Likelihood Criterion (CLC ) (Biernacki
and Govaert 1997), Approximate Weight of Evidence Criterion (AWE ) (Ban-
field and Raftery 1993), which can be similar to BIC when the components are
well separated, Normalized Entropy Criterion (NEC ) (Celeux and Soromenho
1996), which uses the entropy directly, and the large sample BIC approxima-
tion to ICL (ICL-BIC ) (Biernacki et al. 2000), which the authors found that
it presents very similar results to their ICL criterion.

More details on these criteria can be found in Novais and Faria (2021).

3.1 Trimmed information and classification criteria

Since the maximum likelihood estimation is sensitive to outliers, the informa-
tion and classification criteria stated in the previous section may be influenced
by outliers. As a result, the presence of a single outlier may cause changes in
the estimated number of components (Li et al. 2016). Thus, in this section we
propose to use a robust version of those information and classification criteria,
based on trimmed maximum likelihood estimates.

Assuming that α×100% of the observations consist in outliers, the trimmed
maximum likelihood estimate (TLE) for mixture models, proposed by Neykov
et al. (2007) and Müller and Neykov (2003), uses only (1− α)× 100% of the
observations to fit the model, removing the remaining ones, that is,
maxIα maxθ

∑
i∈Iα ln(f(yi |Xi,Ui,θ)) where Iα is the set of all the bI(1−α)c-

subsets of {1, ..., I} and f(yi | Xi,Ui,θ) is defined in (2) (see Li et al. 2016
and Yu et al. 2020 for details on the TLE).

Hence, the robust version of the information and classification criteria
stated in Section 3 can be found on Table 1, where k is the number of param-
eters to be estimated, n is the number of observations, θ̂t = (π̂t, β̂t, Ψ̂t, σ̂

2
t )

is the trimmed maximum likelihood estimate and l(θ̂t) and lc(θ̂t) are, respec-
tively, the maximum value of the observed and complete log-likelihood function
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6 Lúısa Novais, Susana Faria

for the estimated mixture model. For TCLC and TNEC, ẑij can be written as

ẑij = E(Zij | θ = θ̂,y) =
π̂jNni(yi;Xiβ̂j ,UiΨ̂jU

T
i + σ̂2

j Ini)∑m
j=1 π̂jNni(yi;Xiβ̂j ,UiΨ̂jUT

i + σ̂2
j Ini)

. (5)

For TNEC, l(1) is the maximized log-likelihood function for the 1-component
mixture model. Since this criterion is not set for m = 1, as Biernacki et al.
(1999) do, we consider that TNEC takes the value 1 for these cases.

Table 1 Robust information and classification criteria

Trimmed information criteria
Criteria Formula

TAIC −2l(θ̂t) + 2k

TBIC −2l(θ̂t) + k ln(n)

TCAIC −2l(θ̂t) + k(ln(n) + 1)

THQIC −2l(θ̂t) + 2k ln(ln(n))

TKIC −2l(θ̂t) + 3k

TAIC4 −2l(θ̂t) + 4k

TaBIC −2l(θ̂t) + k ln
(

n+2
24

)
TAICc TAIC +

2k(k+1)
n−k−1

TKICc −2l(θ̂t) + n ln
(

n
n−k+1

)
+

n((n−k+1)(2k+1)−2)
(n−k−1)(n−k+1)

TMDL2 −2l(θ̂t) + 2k ln(n)

TMDL5 −2l(θ̂t) + 5k ln(n)
Trimmed classification criteria

Criteria Formula

TCLC −2l(θ̂t) − 2
∑m

j=1

∑I
i=1(ẑij)t ln((ẑij)t)

TAWE TCLC + 2k
(

3
2

+ ln(n)
)

TNEC
−

∑m
j=1

∑I
i=1(ẑij)t ln((ẑij)t)

l(θ̂t)−l(1)(θ̂t)

TICL-BIC TCLC + k ln(n)

The fact that all the possible
(

I
bI(1−α)c

)
partitions of the data have to be

fitted by the maximum likelihood estimate (MLE) makes the procedure com-
putationally very expensive. The FAST-TLE algorithm (Neykov and Müller
2003 and Neykov et al. 2007) was proposed in order to avoid adjusting all par-
titions. The FAST-TLE algorithm involves repeated iterations of a two-step
procedure - a trial step followed by a refinement step, allowing an approximate
solution of the TLE, and being computationally much less demanding, espe-
cially for large samples. In the trial step a subsample is randomly selected from
the data sample and then the model is fitted to that subsample in order to get
a trial maximum likelihood estimate. In the refinement step, the cases with
the smallest log-likelihoods based on the current estimate are found, starting
with the trial maximum likelihood estimator as the initial estimator, and then
followed by fitting the model to these cases in order to obtain an improved fit,
which has larger trimmed likelihood than the original model fit (see Neykov
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Robust order selection of mixtures of regression models with random effects 7

et al. 2007 and Yu et al. 2020 for more details). Although there is no guar-
antee that the estimate will be a global maximum, it will always be a good
approximation.

The choice of the trimming proportion α plays an important role for the
TLE and should be predetermined. Thus, if α is too large, the TLE will lose
much efficiency and, on the other hand, if α is too small and the percentage
of outliers is bigger than α the TLE will fail (Yu et al. 2020).

3.2 FAST-TLE algorithm

Li et al. (2016) enunciate the FAST-TLE algorithm adapted to the calculation
of robust information criteria. Considering that the authors only apply the
algorithm to mixtures of regression models, some changes were made to the
algorithm in order to allow the computation of the robust classification criteria
and to improve its computational performance in the application to mixtures
of regression models with random effects.

Therefore, for a given data set, for a given maximum number of components
(max(ma)), for a given number of initial values (v), and for a given trimming
proportion (α), the new version of the FAST-TLE algorithm adapted to the
calculation of the information and classification criteria in mixtures of regres-
sion models with random effects consists of the following steps:
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8 Lúısa Novais, Susana Faria

For i = 1, ..., maximum number of components (max(ma)):
For j = 1, ..., number of initial values (v):

Find an initial value for θ, denoted by θ̂0;
While the change of l(θ̂), in absolute value, is greater than a certain

value:
For a given estimate θ̂, calculate each of the terms of the sum of
l(θ̂), corresponding to each individual, and sort the terms in
descending order;

Select the subsample corresponding to the individuals of the first
bn(1− α)c sorted terms of the sum of l(θ̂);

Update the estimate of θ using the subsample;
Save in a vector the value obtained for l(θ̂) and the respective value

of EN(ẑ) = −
∑m
j=1

∑I
i=1 ẑij ln(ẑij);

Select the largest of the l(θ̂), denoted by l(θ̂t), and the correspondent
value of EN(ẑ), denoted by EN(ẑt);

Calculate the robust information and classification criteria.

The initial value of θ, θ̂0, can be found by fitting a mixture model to any
random subsample of dimension d, where d is greater than the number of
parameters to be estimated (Li et al. 2016).

4 Simulation study

In this section, we use a simulation study to assess the performance of the
proposed robust version for the information and classification criteria, stated in
Table 1, in the presence of outliers. In order to do so, we study the efficiency of
different information and classification criteria, both in their traditional form
and in their robust version, in the determination of the number of components
of mixtures of regression models with random effects.

To develop the simulation study, and also for the real-world application,
we used the statistical software R (R Development Core Team 2018).

4.1 Design of the simulation study

The design of the simulation study is the following:

– Number of replicates (ni): 4 and 8;
– Number of fixed-effects covariates (p): 1 and 4. The rows of the covariates
Xi ∈ Rni×p are independently generated from Np(0, I);

– Fixed-effects vector (βj):
β1 = (3)T , β2 = (−3)T and β3 = (0)T for p = 1;
β1 = (3, 3, 0, 0)T , β2 = (0, 0, 1, 1)T and β3 = (1, 1,−1,−1)T for p = 4;

– Real number of components (m): 2 and 3;
– Fitted number of components (ma): 1, 2, 3 and 4;
– Mixing proportions (π):
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Robust order selection of mixtures of regression models with random effects 9

π = (0.6, 0.4) for m = 2;
π = (0.4, 0.4, 0.2) for m = 3;

– Trimming proportion (α): 10 %;
– Sample size (I): 100;
– Initial subsample size (d): 80;
– Number of random-effects covariates (q): 2. The rows of Ui ∈ Rni×2 are

independently generated from N2(0, I);
– The random-effects and error distributions:

Scenario I: bij ∼ N2(0,Ψj), where Ψj =

[
1 0.5

0.5 1

]
, and εij ∼ Nni(0, 4I);

Scenario II: bij ∼ 0.95N2(0,Ψj)+0.05N2(0, 25I), where Ψj =

[
1 0.5

0.5 1

]
,

and εij ∼ 0.95Nni(0, I) + 0.05Nni(0, 25I);
– Number of initial values (v): 15;
– Stopping criterion of the while loop in the FAST-TLE algorithm: The loop

ends when the change of l(θ̂), in absolute value, is smaller or equal to 10−2;
– Number of simulations (S): 200.

It should be noted that for a real number of components equal to m, the
first m βj were used for each case, that is, β1, ...,βm.

For the trimming proportion we chose α = 10% since for Scenario II we
considered a contaminated Normal distribution with a level of contamination
of 5% for both the distribution of the random effects and the distribution
of the random errors. Therefore, if none of the contaminations coincide in the
same individual, the percentage of the sample that is contaminated is, at most,
10%.

In order to be able to fit each of the mixture models we used the EM
algorithm with 50 random initializations, thus avoiding convergence to a local
maximum, and for each case we selected the mixture with the highest value of
the log-likelihood function. As a stopping criterion, the algorithm was stopped
when, in a given iteration, the difference between the log-likelihood of a given
iteration and the previous one was smaller than 10−6.

The simulation process for the traditional information and classification
criteria is as follows:

1. Generate a data set of I individuals with ni replicates from a mixture of
m components, obtaining a data set with size I × ni;

2. Fit 1 to 4-component mixtures to the generated data;
3. Calculate the information and classification criteria for each of the mixtures

obtained;
4. Select the mixture that provides the smallest value for each information

and classification criterion;
5. Repeat the previous steps S times;
6. Calculate the proportions for the fitted models with ma components.

It should also be mentioned that a similar simulation process is found in
Novais and Faria (2021), where the authors studied the problem of determining
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10 Lúısa Novais, Susana Faria

the number of components in mixtures of linear mixed models using some of
these criteria but without the presence of outliers.

The simulation process for the robust information criteria is as follows:

1. Generate a data set of I individuals with ni replicates from a mixture of
m components, obtaining a data set with size I × ni;

2. Use the FAST-TLE algorithm as described in Section 4.1;
3. Select the mixture that provides the lowest value for each robust informa-

tion and classification criterion;
4. Repeat the previous steps S times;
5. Calculate the proportions for the fitted models with ma components.

4.2 Simulation results

Table 2 Proportions for the fitted models with ma components from a 2-component mix-
ture of linear mixed models for both versions of the information and classification criteria
(ni = 4, bij ∼ N2(0,Ψj) and εij ∼ N4(0, 4I))

I 100 I 100
p 1 4 p 1 4
ma 1 2 3 1 2 3 ma 1 2 3 1 2 3
AIC - 0.93 0.07 - 0.66 0.34 TAIC - 0.86 0.14 - 0.53 0.47
BIC - 1 - - 1 - TBIC - 1 - - 1 -
CAIC - 1 - - 1 - TCAIC - 1 - - 1 -
HQIC - 1 - - 0.99 0.01 THQIC - 0.99 0.01 - 0.98 0.02
KIC - 1 - - 0.96 0.04 TKIC - 0.99 0.01 - 0.93 0.07
AIC4 - 1 - - 1 - TAIC4 - 0.99 0.01 - 1 -
aBIC - 1 - - 0.94 0.06 TaBIC - 0.98 0.02 - 0.89 0.11
AICc - 0.97 0.03 - 0.84 0.16 TAICc - 0.89 0.11 - 0.64 0.36
KICc - 1 - - 0.98 0.02 TKICc - 0.99 0.01 - 0.96 0.04
MDL2 - 1 - 0.02 0.98 - TMDL2 - 1 - 0.20 0.80 -
MDL5 - 1 - 1 - - TMDL5 0.11 0.89 - 1 - -
CLC - 0.98 0.02 0.08 0.78 0.14 TCLC - 0.85 0.15 0.04 0.65 0.31
AWE - 1 - 0.98 0.02 - TAWE 0.03 0.97 - 0.96 0.04 -
NEC - 0.99 0.01 0.04 0.86 0.10 TNEC - 0.92 0.08 - 0.76 0.24

ICL-BIC - 1 - 0.41 0.59 - TICL-BIC - 1 - 0.38 0.62 -

Tables 2 to 9 give the proportions for the fitted models withma components
that each information and classification criterion, both in its traditional and
robust version, estimates a number of components of 200 samples simulated
under different data sets configurations.

As expected, it can be seen that different simulated scenarios influence the
performance of the information and classification criteria, in the selection of
the number of components. Thus, for both versions of the criteria, it can be
seen that when the number of components and the number of fixed-effects
covariates increase, the performance of all the information and classification
criteria decreases, while the increase in the number of replicates improves the
performance of these criteria.

Starting by analysing the 2-component mixture models, Tables 2 to 5,
the first conclusion to be drawn is that for Scenario I (no contamination) it
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Table 3 Proportions for the fitted models with ma components from a 2-component mix-
ture of linear mixed models for both versions of the information and classification criteria
(ni = 4, bij ∼ 0.95N2(0,Ψj) + 0.05N2(0, 25I) and εij ∼ 0.95N4(0, I) + 0.05N4(0, 25I))

I 100 I 100
p 1 4 p 1 4
ma 1 2 3 1 2 3 ma 1 2 3 1 2 3
AIC - 0.01 0.99 - 0.01 0.99 TAIC - 0.61 0.39 - 0.29 0.71
BIC - 0.04 0.96 - 0.07 0.93 TBIC - 0.99 0.01 - 0.97 0.03
CAIC - 0.05 0.95 - 0.13 0.87 TCAIC - 0.99 0.01 - 0.97 0.03
HQIC - 0.03 0.97 - 0.02 0.98 THQIC - 0.95 0.05 - 0.92 0.08
KIC - 0.02 0.98 - 0.01 0.99 TKIC - 0.88 0.12 - 0.84 0.16
AIC4 - 0.03 0.97 - 0.02 0.98 TAIC4 - 0.97 0.03 - 0.93 0.07
aBIC - 0.01 0.99 - 0.01 0.99 TaBIC - 0.86 0.14 - 0.84 0.16
AICc - 0.01 0.99 - 0.01 0.99 TAICc - 0.67 0.33 - 0.34 0.66
KICc - 0.02 0.98 - 0.01 0.99 TKICc - 0.90 0.10 - 0.86 0.14
MDL2 - 0.24 0.76 - 0.45 0.55 TMDL2 - 1 - - 1 -
MDL5 - 0.86 0.14 0.53 0.47 - TMDL5 - 1 - 0.05 0.95 -
CLC - 0.07 0.93 - 0.03 0.97 TCLC - 0.81 0.19 - 0.53 0.47
AWE - 0.41 0.59 - 0.63 0.37 TAWE - 1 - - 1 -
NEC - 0.58 0.42 - 0.28 0.72 TNEC - 0.96 0.04 - 0.81 0.19

ICL-BIC - 0.17 0.83 - 0.20 0.80 TICL-BIC - 0.99 0.01 - 1 -

Table 4 Proportions for the fitted models with ma components from a 2-component mix-
ture of linear mixed models for both versions of the information and classification criteria
(ni = 8, bij ∼ N2(0,Ψj) and εij ∼ N8(0, 4I))

I 100 I 100
p 1 4 p 1 4
ma 1 2 3 1 2 3 ma 1 2 3 1 2 3
AIC - 0.90 0.10 - 0.83 0.17 TAIC - 0.87 0.13 - 0.76 0.24
BIC - 1 - - 1 - TBIC - 1 - - 1 -
CAIC - 1 - - 1 - TCAIC - 1 - - 1 -
HQIC - 1 - - 1 - THQIC - 0.99 0.01 - 1 -
KIC - 0.99 0.01 - 0.97 0.03 TKIC - 0.98 0.02 - 0.99 0.01
AIC4 - 1 - - 1 - TAIC4 - 1 - - 1 -
aBIC - 1 - - 0.98 0.02 TaBIC - 0.99 0.01 - 1 -
AICc - 0.91 0.09 - 0.87 0.13 TAICc - 0.89 0.11 - 0.83 0.17
KICc - 0.99 0.01 - 0.98 0.02 TKICc - 0.99 0.01 - 1 -
MDL2 - 1 - - 1 - TMDL2 - 1 - - 1 -
MDL5 - 1 - - 1 - TMDL5 - 1 - 0.14 0.86 -
CLC - 0.97 0.03 - 0.89 0.11 TCLC - 0.89 0.11 - 0.80 0.20
AWE - 1 - - 1 - TAWE - 1 - - 1 -
NEC - 0.99 0.01 - 0.93 0.07 TNEC - 0.98 0.02 - 0.94 0.06

ICL-BIC - 1 - - 1 - TICL-BIC - 1 - - 1 -

can be found that both versions of the information and classification criteria
yield similar results (Tables 2 and 4). AIC, AICc, CLC, MDL2 and MDL5
decrease their performance in the robust version, especially with the increase
in the number of fixed-effects covariates. The remaining criteria present small
differences from one version to the other.

On the other hand, as expected, the two versions of the information and
classification criteria present quite different results in the presence of contam-
inated samples (Tables 3 and 5). For these cases, all the criteria overestimate
the number of components, estimating it to be 3, with high proportions of
overestimation, with the exception of MDL5, AWE and NEC for some of the
simulated scenarios. Thus, in the presence of contamination, the proportion of
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Table 5 Proportions for the fitted models with ma components from a 2-component mix-
ture of linear mixed models for both versions of the information and classification criteria
(ni = 8, bij ∼ 0.95N2(0,Ψj) + 0.05N2(0, 25I) and εij ∼ 0.95N8(0, I) + 0.05N8(0, 25I))

I 100 I 100
p 1 4 p 1 4
ma 1 2 3 1 2 3 ma 1 2 3 1 2 3
AIC - 0.03 0.97 - 0.02 0.98 TAIC - 0.61 0.39 - 0.39 0.61
BIC - 0.05 0.95 - 0.03 0.97 TBIC - 0.95 0.05 - 0.99 0.01
CAIC - 0.05 0.95 - 0.04 0.96 TCAIC - 0.97 0.03 - 1 -
HQIC - 0.03 0.97 - 0.03 0.97 THQIC - 0.87 0.13 - 0.92 0.08
KIC - 0.03 0.97 - 0.02 0.98 TKIC - 0.83 0.17 - 0.87 0.13
AIC4 - 0.03 0.97 - 0.03 0.97 TAIC4 - 0.89 0.11 - 0.94 0.06
aBIC - 0.03 0.97 - 0.03 0.97 TaBIC - 0.88 0.12 - 0.89 0.11
AICc - 0.03 0.97 - 0.02 0.98 TAICc - 0.66 0.34 - 0.46 0.54
KICc - 0.03 0.97 - 0.02 0.98 TKICc - 0.84 0.16 - 0.89 0.11
MDL2 - 0.07 0.93 - 0.08 0.92 TMDL2 - 0.99 0.01 - 1 -
MDL5 - 0.26 0.74 - 0.49 0.51 TMDL5 - 1 - - 1 -
CLC - 0.04 0.96 - 0.03 0.97 TCLC - 0.84 0.16 - 0.69 0.31
AWE - 0.10 0.90 - 0.11 0.89 TAWE - 0.99 0.01 - 1 -
NEC - 0.80 0.20 - 0.40 0.60 TNEC - 1 - - 0.91 0.09

ICL-BIC - 0.05 0.95 - 0.04 0.96 TICL-BIC - 0.98 0.02 - 1 -

Table 6 Proportions for the fitted models with ma components from a 3-component mix-
ture of linear mixed models for both versions of the information and classification criteria
(ni = 4, bij ∼ N2(0,Ψj) and εij ∼ N4(0, 4I))

I 100 I 100
p 1 4 p 1 4
ma 1 2 3 4 1 2 3 4 ma 1 2 3 4 1 2 3 4
AIC - 0.11 0.83 0.06 - 0.07 0.66 0.27 TAIC - 0.22 0.66 0.12 - 0.04 0.29 0.67
BIC - 0.87 0.13 - - 0.97 0.03 - TBIC - 0.97 0.03 - - 0.98 0.02 -
CAIC - 0.95 0.05 - - 0.99 0.01 - TCAIC - 0.99 0.01 - 0.02 0.98 - -
HQIC - 0.43 0.57 - - 0.52 0.45 0.03 THQIC - 0.67 0.33 - - 0.52 0.44 0.04
KIC - 0.30 0.70 - - 0.34 0.62 0.04 TKIC - 0.46 0.53 0.01 - 0.32 0.52 0.16
AIC4 - 0.53 0.47 - - 0.65 0.34 0.01 TAIC4 - 0.77 0.23 - - 0.74 0.24 0.02
aBIC - 0.27 0.73 - - 0.30 0.63 0.07 TaBIC - 0.42 0.58 0.01 - 0.28 0.56 0.16
AICc - 0.14 0.85 0.01 - 0.13 0.70 0.17 TAICc - 0.28 0.65 0.07 - 0.14 0.54 0.32
KICc - 0.34 0.66 - - 0.44 0.53 0.03 TKICc - 0.58 0.42 - - 0.40 0.54 0.06
MDL2 - 1 - - 0.49 0.51 - - TMDL2 - 1 - - 0.74 0.26 - -
MDL5 0.38 0.62 - - 1 - - - TMDL5 0.74 0.26 - - 1 - - -
CLC 0.03 0.96 0.01 - 0.76 0.21 0.02 0.01 TCLC 0.03 0.92 0.03 0.02 0.54 0.16 0.12 0.18
AWE 0.51 0.49 - - 1 - - - TAWE 0.50 0.50 - - 1 - - -
NEC 0.03 0.97 - - 0.73 0.24 0.02 0.01 TNEC 0.03 0.95 0.01 0.01 0.44 0.24 0.12 0.20

ICL-BIC 0.13 0.87 - - 0.98 0.02 - - TICL-BIC 0.16 0.84 - - 0.94 0.06 - -

times that the traditional version of each information and classification crite-
rion correctly estimates the number of components is very low. As expected,
the highest rates of success relate to the criteria most likely to underestimate
the number of components while, on the contrary, the criteria with the greatest
tendency to overestimate are those that present the worst results (AIC and
AICc). However, all robust information and classification criteria correctly es-
timate the number of components for all scenarios, with the exception of AIC
and AICc when the number of fixed effects covariates is equal to 4. Although
they have significantly improved their performance compared to their usual
version, these two criteria continue to overestimate the number of components.
All the other robust criteria correctly estimate the number of components, do-
ing so with rates of success above 80 % for the great majority of scenarios.
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Table 7 Proportions for the fitted models with ma components from a 3-component mix-
ture of linear mixed models for both versions of the information and classification criteria
(ni = 4, bij ∼ 0.95N2(0,Ψj) + 0.05N2(0, 25I) and εij ∼ 0.95N4(0, I) + 0.05N4(0, 25I))

I 100 I 100
p 1 4 p 1 4
ma 1 2 3 4 1 2 3 4 ma 1 2 3 4 1 2 3 4
AIC - - 0.08 0.92 - - 0.04 0.96 TAIC - - 0.79 0.21 - - 0.37 0.63
BIC - - 0.17 0.83 - 0.01 0.32 0.67 TBIC - 0.02 0.98 - - 0.10 0.90 -
CAIC - - 0.21 0.79 - 0.08 0.40 0.52 TCAIC - 0.03 0.97 - - 0.20 0.80 -
HQIC - - 0.13 0.87 - - 0.15 0.85 THQIC - - 0.98 0.02 - - 0.98 0.02
KIC - - 0.11 0.89 - - 0.12 0.88 TKIC - - 0.96 0.04 - - 0.84 0.16
AIC4 - - 0.14 0.86 - - 0.16 0.84 TAIC4 - - 0.99 0.01 - - 0.98 0.02
aBIC - - 0.11 0.89 - - 0.11 0.89 TaBIC - - 0.96 0.04 - - 0.78 0.22
AICc - - 0.09 0.91 - - 0.07 0.93 TAICc - - 0.83 0.17 - - 0.50 0.50
KICc - - 0.11 0.89 - - 0.15 0.85 TKICc - - 0.97 0.03 - - 0.96 0.04
MDL2 - 0.03 0.57 0.40 0.01 0.64 0.32 0.03 TMDL2 - 0.28 0.72 - - 0.80 0.20 -
MDL5 0.01 0.94 0.05 - 0.97 0.03 - - TMDL5 - 1 - - 0.92 0.08 - -
CLC - - 0.12 0.88 - 0.02 0.13 0.85 TCLC - 0.06 0.74 0.20 - - 0.32 0.58
AWE - 0.67 0.20 0.13 0.69 0.29 0.02 - TAWE - 0.82 0.18 - 0.28 0.70 0.02 -
NEC - 0.49 0.11 0.40 - 0.24 0.11 0.65 TNEC - 0.84 0.12 0.04 - 0.36 0.32 0.32

ICL-BIC - 0.06 0.17 0.77 0.05 0.23 0.18 0.54 TICL-BIC - 0.30 0.70 - - 0.30 0.68 0.02

Table 8 Proportions for the fitted models with ma components from a 3-component mix-
ture of linear mixed models for both versions of the information and classification criteria
(ni = 8, bij ∼ N2(0,Ψj) and εij ∼ N8(0, 4I))

I 100 I 100
p 1 4 p 1 4
ma 1 2 3 4 1 2 3 4 ma 1 2 3 4 1 2 3 4
AIC - - 0.93 0.07 - - 0.87 0.13 TAIC - 0.01 0.92 0.07 - 0.01 0.78 0.21
BIC - 0.04 0.96 - - 0.08 0.92 - TBIC - 0.30 0.70 - - 0.43 0.57 -
CAIC - 0.05 0.95 - - 0.13 0.87 - TCAIC - 0.41 0.59 - - 0.58 0.42 -
HQIC - - 1 - - - 1 - THQIC - 0.05 0.95 - - 0.09 0.91 -
KIC - - 0.99 0.01 - - 0.98 0.02 TKIC - 0.05 0.94 0.01 - 0.03 0.97 -
AIC4 - - 1 - - - 1 - TAIC4 - 0.05 0.95 - - 0.11 0.89 -
aBIC - - 0.99 0.01 - - 1 - TaBIC - 0.05 0.95 - - 0.04 0.96 -
AICc - - 0.97 0.03 - - 0.92 0.08 TAICc - 0.01 0.93 0.06 - 0.01 0.86 0.13
KICc - - 0.99 0.01 - - 0.99 0.01 TKICc - 0.05 0.95 - - 0.04 0.96 -
MDL2 - 0.47 0.53 - - 0.83 0.17 - TMDL2 - 0.72 0.28 - - 0.97 0.03 -
MDL5 - 1 - - 0.65 0.35 - - TMDL5 - 1 - - 0.78 0.22 - -
CLC - 0.65 0.34 0.01 - 0.23 0.70 0.07 TCLC - 0.83 0.15 0.02 - 0.35 0.53 0.12
AWE - 1 - - 0.26 0.72 0.02 - TAWE - 1 - - 0.21 0.79 - -
NEC - 1 - - - 0.65 0.32 0.03 TNEC - 1 - - - 0.80 0.16 0.04

ICL-BIC - 0.88 0.12 - 0.03 0.58 0.39 - TICL-BIC - 1 - - 0.01 0.78 0.21 -

Regarding the analysis of 3-component mixture models, Tables 6 to 9,
it appears that, as in the simulation study of Novais and Faria (2021), the
performance of both the information and classification criteria is worse when
compared to their performance for the 2-component mixture models, that
is, the proportion of times that these criteria correctly estimate the number
of components is lower than the same proportion for 2-component mixture
models, regardless of the version used.

Starting by analysing the cases in which there is no contamination, Tables
6 and 8, it can be verified once again that both versions of the generality of
the criteria produce similar results. However, the performance of the robust
version of some criteria decreases, especially with the increase in the number
of fixed-effects covariates and for a lower number of replicates, as is the case
of the criteria AIC, AICc, MDL2 and MDL5 and, on some occasions, for
most of the classification criteria, BIC and CAIC. In particular, as with the
2-component mixture models, the robust version of AIC and AICc denotes
an even more marked trend towards overestimating the number of compo-
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Table 9 Proportions for the fitted models with ma components from a 3-component mix-
ture of linear mixed models for both versions of the information and classification criteria
(ni = 8, bij ∼ 0.95N2(0,Ψj) + 0.05N2(0, 25I) and εij ∼ 0.95N8(0, I) + 0.05N8(0, 25I))

I 100 I 100
p 1 4 p 1 4
ma 1 2 3 4 1 2 3 4 ma 1 2 3 4 1 2 3 4
AIC - - 0.02 0.98 - - - 1 TAIC - - 0.66 0.34 - - 0.50 0.50
BIC - - 0.04 0.96 - - 0.06 0.94 TBIC - - 0.98 0.02 - - 1 -
CAIC - - 0.05 0.95 - - 0.09 0.91 TCAIC - - 0.98 0.02 - - 1 -
HQIC - - 0.02 0.98 - - 0.03 0.97 THQIC - - 0.86 0.14 - - 0.93 0.07
KIC - - 0.02 0.98 - - 0.01 0.99 TKIC - - 0.81 0.19 - - 0.79 0.21
AIC4 - - 0.02 0.98 - - 0.03 0.97 TAIC4 - - 0.88 0.12 - - 0.93 0.07
aBIC - - 0.02 0.98 - - 0.02 0.98 TaBIC - - 0.86 0.14 - - 0.90 0.10
AICc - - 0.02 0.98 - - - 1 TAICc - - 0.66 0.34 - - 0.57 0.43
KICc - - 0.02 0.98 - - 0.02 0.98 TKICc - - 0.82 0.18 - - 0.84 0.16
MDL2 - - 0.09 0.91 - - 0.16 0.84 TMDL2 - - 1 - - - 1 -
MDL5 - 0.03 0.59 0.38 - 0.56 0.42 0.02 TMDL5 - 0.12 0.88 - - 0.52 0.48 -
CLC - - 0.04 0.96 - - 0.04 0.96 TCLC - - 0.82 0.18 - - 0.68 0.32
AWE - 0.01 0.09 0.90 - - 0.20 0.80 TAWE - 0.01 0.99 - - 0.01 0.99 -
NEC - 0.36 0.64 - - 0.13 0.08 0.79 TNEC - 0.46 0.52 0.02 - 0.29 0.57 0.14

ICL-BIC - 0.01 0.06 0.93 - - 0.08 0.92 TICL-BIC - - 1 - - - 0.98 0.02

nents, something particularly notorious with the increase in the number of
fixed-effects covariates. The remaining criteria, on the other hand, show low
proportion fluctuations from one version to another.

In the presence of contamination, Tables 7 and 9, the two versions of the
information and classification criteria show very different results. For contam-
inated samples, all criteria in their usual version overestimate the number of
components as being 4, with very high overestimation proportions, with the
exception of MDL2, MDL5, AWE and NEC for some of the scenarios. For
these scenarios, these criteria underestimate the number of components even
in the presence of contamination, something that is not surprising given that
they are criteria with a notorious trend to underestimate the number of com-
ponents, as demonstrated in Novais and Faria (2021). On the other hand, in
their robust version, all criteria correctly estimate the number of components,
with the main exceptions being MDL5 and, to a lesser extent, MDL2, AWE
and NEC, which still continue to underestimate the number of components
in some of the scenarios and, on the opposite direction, AIC and AICc, con-
tinue to overestimate the number of components in their robust version for
a large part of the scenarios, particularly for models with a greater number
of fixed-effects covariates. As such, in the presence of contamination, the pro-
portion of times that each criterion in its usual version effectively determines
the number of components is extremely reduced while, on the other hand, in
their robust version the information and classification criteria are capable of
detecting the number of components correctly for the great majority of the
studied scenarios, with rates of success above 80 % for most of the criteria.

In conclusion, the robust information and classification criteria produce
similar results to the traditional information criteria when there is no contam-
ination but present significantly better results in the presence of contamina-
tion. However, one of the main drawbacks of the robust information criteria
is their computational time since the FAST-TLE algorithm is very demand-
ing. Therefore, if there is no contamination it does not compensate to use the
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robust information and classification criteria given the computational effort
required and the similarities in the results obtained for the two versions of the
criteria. Contrastingly, in the presence of contamination, the computational
effort is clearly compensated in the results, much better than the results of
the traditional information and classification criteria.

5 Real-world application

In this section we compare the performance of the two versions of different
information and classification criteria in a real-world application, the ”Peni-
cillinC” data set. The data set can be loaded into the software R from the
package ”robustlmm” of Koller (2016) with the command
source(system.file(”doc/Penicillin.R”, package = ”robustlmm”)). The original
data set can be found in the package ”lme4” of Bates et al. (2007) as the
”Penicillin” data set. However, to emphasize the effect of his robust method,
Koller (2016) slightly modified the data set in order to contain contaminated
data and called it the ”PenicillinC” data set.

As first reported by Davies and Goldsmith (1972) for the original data
set, the goal is to assess the variability between samples of penicillin by the B.
subtilis method. In this test method a bulk-inoculated nutrient agar medium is
poured into a Petri dish of approximately 90 mm. diameter, known as a plate.
When the medium has set, six small hollow cylinders or pots (about 4 mm.
in diameter) are cemented onto the surface at equally spaced intervals. A few
drops of the penicillin solutions to be compared are placed in the respective
cylinders, and the whole plate is placed in an incubator for a given time.
Penicillin diuses from the pots into the agar, and this produces a clear circular
zone of inhibition of growth of the organisms, which can be readily measured.
The diameter of the zone is related in a known way to the concentration of
penicillin in the solution.

Thus, this data set contains 144 observations, where we consider the di-
ameter as the response variable, a variable varying from 15.20mm to 27mm
with a mean of 22.77mm, and we have two types of crossed random effects:
the sample with 6 levels and the plate with 24 levels. In the data set of Koller
(2016) there is also a fourth variable, called contaminated, indicating whether
or not an observation has been modified. Out of the 144 observations, 7 of
them were changed, which means that for this data set we have almost 5% of
outliers.

Since the number of components is unknown, it has to be determined. In
order to determine it, we fit mixtures of regression models with random effects
with a number of components varying from 1 to 4, that is, for m = 1, ..., 4,
and we use the information and classification criteria of Section 3 to identify
the most suitable mixture.

Table 10 shows the information and classification criteria for each of the
mixtures and in bold is the mixture selected by each criterion. We see that the
majority of the information and classification criteria select the 2-component
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Table 10 Information and classification criteria for the 4 mixtures of regression models
with random effects

Number of components
1 2 3 4

AIC 645.84 632.95 640.95 648.95
BIC 654.75 653.74 673.62 693.50
CAIC 657.75 660.74 684.62 708.50
HQIC 649.46 641.40 654.22 667.05
KIC 648.84 639.95 651.95 663.95
AIC4 651.84 646.95 662.95 678.95
aBIC 645.25 631.59 638.81 646.03
AICc 646.01 633.77 642.95 652.70
KICc 649.04 640.94 654.39 668.54
MDL2 669.66 688.53 728.29 768.04
MDL5 714.39 792.89 892.29 991.69
CLC 639.84 618.95 797.52 918.99
AWE 678.66 709.53 939.85 1113.08
NEC 1.00 1.01 × 10−8 8.55 14.36

ICL-BIC 654.75 653.74 852.18 993.53

mixture, while only 4 of the criteria select the 1-component mixture, that is,
a linear mixed model. In Novais and Faria (2021) these 4 criteria tended to
underestimate the number of components, so it is not surprising that these
criteria simply select the linear mixed model.

It is important to note that the 2-component mixture chosen by the ma-
jority of the criteria consists in one component containing 138 out of the 144
observations, in which 137 of them are the original observations and the re-
maining one is an outlier, and the other component contains 6 observations
and the 6 of them are outliers. This fact is not surprising since, as already
stated, the information and classification criteria are not robust to outliers, so
the presence of outliers may cause the number of components to change by
generating, at least, an additional component for the outliers.

Thus, to prove the effectiveness of the robust criteria, we calculate the
robust information and classification criteria, as showed in Table 11. In order
to accomplish it, and since we know that we have almost 5% of outliers, we
use a trimming proportion of 5%, that is, α = 5%.

It can be seen that, as expected, all the robust criteria select the 1-component
mixture, the linear mixed model, thus corroborating the simulation study in
the sense that, when the sample is contaminated, the robust criteria, calcu-
lated using the FAST-TLE algorithm, are capable of determining the correct
number of components, unlike the traditional criteria.

Since we know that almost 5% of the sample consists of outliers we used a
trimming proportion of 5%, but sometimes we do not know the percentage of
outliers beforehand, so further analysis of the data is needed in order to select
the most suitable trimming proportion.

To illustrate the important role of the trimming proportion, in Table 12
we present the same robust information and classification criteria, but using
3% instead of 5% as the trimming proportion.
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Table 11 Robust information and classification criteria for the 4 mixtures of regression
models with random effects, for α = 5%

Number of components
1 2 3 4

TAIC 586.36 594.36 602.36 610.36
TBIC 595.27 615.15 635.03 654.91
TCAIC 598.27 622.15 646.03 669.91
THQIC 589.98 602.81 615.63 628.46
TKIC 589.36 601.36 613.36 625.36
TAIC4 592.36 608.36 624.36 640.36
TaBIC 585.77 593.00 600.22 607.44
TAICc 586.53 595.18 604.36 614.11
TKICc 589.56 602.35 615.80 629.94
TMDL2 610.18 649.94 689.69 729.45
TMDL5 654.91 754.30 853.70 953.09
TCLC 580.36 769.91 876.51 933.61
TAWE 619.18 860.49 1018.84 1127.70
TNEC 1.00 9.94 × 106 1.63 × 108 3.33 × 107

TICL-BIC 595.27 804.70 931.18 1008.16

Table 12 Robust information and classification criteria for the 4 mixtures of regression
models with random effects, for α = 3%

Number of components
1 2 3 4

TAIC 619.40 614.17 622.17 630.18
TBIC 628.31 634.96 654.84 674.72
TCAIC 631.31 641.96 665.84 689.72
THQIC 623.02 622.62 635.45 648.28
TKIC 622.40 621.17 633.17 645.18
TAIC4 625.40 628.17 644.17 660.18
TaBIC 618.82 612.81 620.04 627.26
TAICc 619.58 615.00 624.17 633.93
TKICc 622.60 622.17 635.61 649.76
TMDL2 643.22 669.75 709.51 749.27
TMDL5 687.95 774.12 873.51 972.91
TCLC 613.40 600.18 789.05 883.17
TAWE 652.22 690.76 931.38 1077.26
TNEC 1.00 2.76 × 10−4 14.28 21.39

TICL-BIC 628.31 634.97 843.71 957.72

As it can be seen on Table 12, for a trimming proportion of 3%, 8 out of
the 15 criteria chose the 2-component mixture, while just 7 of these criteria
still chose the linear mixed model even for a mixing proportion smaller than
the proportion of outliers. However, the majority of these criteria are known to
underestimate the number of components. Thus, comparing Table 11 to Table
12, the magnitude of the role played by the trimming proportion becomes clear,
so the value of α must be chosen with care, that is, after a careful analysis of
the data.
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6 Conclusions

In this article, we investigated the performance of two different versions of a
variety of information and classification criteria, the traditional version and
a robust version, in the selection of the number of components of mixtures
of regression models with random effects through a simulation study and a
real-world application.

In the simulation study it was evident that both versions of the informa-
tion and classification criteria perform similarly when there are no outliers.
However, in the presence of outliers the robust information and classification
criteria show a better performance since these methods correctly estimate the
number of components for the majority of the scenarios. In other words, the
presence of outliers does not seem to affect the performance of these crite-
ria. On the other hand, the traditional information and classification criteria
overestimate the number of components for almost every scenario containing
outliers. In the same direction, the real-world application corroborated the con-
clusions drawn from the simulation study and demonstrated the importance
of an adequate choice for the trimming proportion.

Regarding the choice for the trimming proportion, it is important to note
that without a proper choice of the trimming proportion, a correct identifica-
tion of the outliers may not happen. For instance, if the trimming proportion
to use is too large, part of the observations will be incorrectly identified as
outliers and, thus, will also be trimmed along with the real outliers. As such,
in order to distinguish these observations from the outliers, an inspection of
the FAST-TLE posterior weights may be needed, which will lead to an even
more challenging computational effort. However, the technological advances of
the recent years, namely in terms of processor power and memory, mean that
nowadays one is able to afford it.

Novais and Faria (2021) demonstrated that aBIC, KIC and KICc showed
to be the most reliable criteria in the estimation of the number of components
of mixtures of linear mixed models. In this work, it can be seen that these
criteria also produce good results in their robust version in the presence of
contaminated data, so their use is recommended in any scenario.

Therefore, determining the correct number of components in a mixture
model is not an easy question, even more so in the presence of outliers, and
different scenarios clearly influence the performance of the information and
classification criteria. Despite the challenging computational performance of
the FAST-TLE algorithm, which can be very demanding and, as such, may
constitute a drawback to its use without an adequate computer, the superiority
of the robust information and classification criteria was clear when the data is
contaminated, so their use is always recommended in the presence of outliers.
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