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Abstract: Due to a point cloud’s sparse nature, a sparse convolution block design is necessary to
deal with its particularities. Mechanisms adopted in computer vision have recently explored the
advantages of data processing in more energy-efficient hardware, such as the FPGA, as a response to
the need to run these algorithms on resource-constrained edge devices. However, implementing it in
hardware has not been properly explored, resulting in a small number of studies aimed at analyzing
the potential of sparse convolutions and their efficiency on resource-constrained hardware platforms.
This article presents the design of a customizable hardware block for the voting convolution. We
carried out an in-depth analysis to determine under which conditions the use of the voting scheme is
justified instead of dense convolutions. The proposed hardware design achieves an energy consump-
tion about 8.7 times lower than similar works in the literature by ignoring unnecessary arithmetic
operations with null weights and leveraging data dependency. Access to data memory was also
reduced to the minimum necessary, leading to improvements of around 55% in processing time. To
evaluate both the performance and applicability of the proposed solution, the voting convolution
was integrated into the well-known PointPillars model, where it achieves improvements between
23.05% and 80.44% without a significant effect on detection performance.

Keywords: deep learning; field-programmable gate array (FPGA); sparsity; voting convolution;
3D object detection models

1. Introduction

The characteristics of the data collected from a LiDAR sensor, such as the amount of
data (1.3–3 million) together with its sparse and unstructured nature [1], make the adoption
of traditional convolutions, to process 3D data, a very time-consuming and inefficient
task [2,3]. To try to counter this problem, novel and more computationally efficient solutions
have emerged with faster mechanisms [4]. These solutions aimed at taking advantage of
the data sparsity to speed up the convolution operation by reducing the number of points
processed, thus decreasing the computational time and resources allocated.

A few works have been published to handle the sparsity by focusing the computational
power on the relevant information from the input data [5–7]. One of the approaches found
in the literature is known as the voting scheme-based convolution [6]. The authors proved
that this convolution is mathematically equivalent to the traditional one and is able to
optimize the processing of sparse data.

Given the success of Convolutional Neural Networks (CNNs) in complex tasks such
as object recognition [2], variants have emerged for 3D data processing, however, the
sparse and unstructured nature of the point cloud has forced the literature to increase the
complexity of 3D models [1], making their implementation in edge devices unfeasible [3].
On the other hand, with the need for distributed computing in critical applications, such as
autonomous vehicles [8], the availability of platforms capable of executing and accelerating
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CNNs is essential to enable their real-time execution. Considering the Programmable
Gate Arrays (FPGAs) as a technology with the potential to deploy deep learning-based
models [9], there is a need for an investigation focused on flexible solutions and their
efficient design and implementation in hardware.

This article presents a hardware architecture for the voting scheme-based convolution.
The proposed architecture design allows the configuration of parameters such as kernel
size, padding, and stride, enabling its integration in any 3D object detection model. This
is the first research exploring and proposing a design for the voting scheme-based con-
volution in hardware, extended with the integration of optimization mechanisms to the
base operation. The implemented architecture is able to take advantage of spatially close
values in the feature map and the presence of null weights. In both scenarios, it is possible
to optimize the pipeline processing, either by reducing the communication with the output
memory or by discarding unnecessary calculations. The Results section presents the voting
convolution performance according to several metrics and the impacts of each proposed
optimization mechanism are also shown. With the proposed position management of
non-null output values, it is possible to fulfill the voting requirements and cascade multiple
voting convolution blocks for consecutive sparse data processing.

This article is structured as follows: Section 2 presents a brief overview of sparse
mechanisms and CNN accelerator frameworks. In Section 3, the architecture design of the
Voting Block is presented, with a detailed description of the pipeline approach and the
integrated techniques aimed at optimizing the processing under specific conditions. The
results obtained in both validation and performance tests, together with the integration
with the PointPillars model, are presented in Section 4. Lastly, the conclusions of the
proposed architecture are summarized in Section 5.

2. Related Works

With the increasing integration of 3D sensors in perception systems, such as in au-
tonomous vehicles, deep learning-based models are forced to deal with the sparsity of the
data collected by these sensors. While targetting edge devices for real-time applications,
energy efficiency and computation speed requirements for inference can be difficult to
fulfill, and even more so when the mechanisms adopted are not the most efficient. As
the convolution is the main operation of a CNN, the research community has been fo-
cused on finding better alternatives to the traditional one, still widely adopted by deep
learning-based models. In the last few years, several mechanisms optimized for sparse
data processing have been presented in the literature [5,7]. Sparse convolutions aim at
reducing the computational cost by ignoring the input data without relevant information,
thus directing the processing only to the meaningful data.

Due to the huge data flow involved in convolution layers of CNNs, the paradigm
has been changing with the migration of computing from servers to platforms known
as edge devices [10]. Although edge devices have fewer resources, they are closer to the
scene where the action takes place, avoiding latency in communication, thus reducing
susceptibility to failures. This trend has opened up space for hardware accelerators as a
solution capable of satisfying the requirements of a real-time application [9]. The reduced
development time and the substantial evolution of both the technology and development
tools have led FPGAs to be one of the most used accelerator platforms.

A lot of work on FPGA-based CNN implementations has been introduced in the
literature [11,12], taking advantage of the hardware flexibility and performance to meet
real-time application requirements. VITIS AI [13], currently supported by Xilinx, has a Deep
Learning Processor Unit (DPU)-based acceleration together with an extensive integration
with tools and libraries optimized to implement neural networks in hardware. Similar
to Core Deep Learning (CDL) [14], it supports the main CNN operations and has direct
compatibility with several popular CNNs such as ResNet [15] and YOLO [16], with ready-
to-use solutions. However, these accelerators do not cover all deep learning operations, in
particular sparse convolutions, such as submanifold and voting.
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Despite the existence of complete solutions both in the literature and market to imple-
ment custom CNNs in hardware [17], the sparsity found in 3D data prevents accelerators
from efficiently processing the data and consequently achieve better performance. To ad-
dress this problem, Eyeriss [18] stores the compressed activations in DRAM, saving energy
by gating operations with null activations. The null activations are detected using multiple
scalar Processing Elements (PEs) in a row-stationary data flow scheme. Cnvlutin [19] also
stores the activation in a compressed form, however, computation cycles involving null
activations are discarded to improve performance. While [18,19] are both able to drop
accesses for weights on internal buffers when multiplications with null activations are de-
tected, Cambricon.X [20] exploits sparsity by skipping operations with null weights. In [20],
non-null weights define which activations are read from the input channels, however, is
not able to detect and discard operations with null activations.

While hardware accelerator architectures for dense models prove to be inefficient for
sparse CNN models, novel architectures have been designed to improve the performance
of convolutions on sparse data [21,22]. The authors of [21] convert the spatial convolution
operation to a set of matrix-vector multiplications, which in turn requires intensive memory
accesses for reading the input data. To sequence the access to input data, the approach
in [22] follows an element-matrix multiplication, however, the irregularity introduced by
sparsity causes imbalanced loads on the allocated processing elements.

To address these challenges, we propose the first hardware architecture for the voting
scheme-based convolution presented in [6]. Moreover, hardware optimization mechanisms
are also integrated in the proposed architecture to take advantage of our architecture
specifications and further reduce the time spent on matrix multiplications. This type of
convolution, explored only by Dominic Zeng Wang and Ingmar Posner in [5,6], directs
the processing only to feature map regions with relevant information, avoiding the sliding
window approach over the entire data adopted by dense convolutions, thus saving the
execution time of unnecessary calculations. The voting weight values are obtained by
flipping the convolutional weight axis along each dimension and the voting filter only
needs to be applied at each non-null location to return the same result.

Therefore, this work contributes to the current state of the art by proposing and
implementing: (1) hardware architecture for the voting convolution with configurable filter
size, stride, and padding parameters; (2) use of operations with stride to significantly reduce
data transfer and save computation cycles; (3) use of null weights to skip computation
cycles; (4) a technique to reduce the processing time through data dependency found in
spatially close non-null values from the feature map.

3. Design and Implementation

This section presents the hardware architecture design for the voting convolution,
as well as optimization techniques to improve processing time. Figure 1 illustrates the
architecture of the Voting Block, highlighting the communication with the memories outside
the block. A total of five memories can be distinguished, with the main emphasis on the ones
used to read and store the non-null value positions in the feature maps. Unlike traditional
convolutions, the voting convolution requires information regarding the position of the
values to be processed, usually available in models that perform a 2D projection of the 3D
data, such as PointPillars [23] and SECOND [24]. This same information is also registered
together with the output data, enabling more than one Voting Block to be instantiated.

Within the block, two functional units are distinguished, the Control Unit and the
Processing Unit, which are responsible for managing all the data flow and the operations
to be made, respectively. As will be further detailed, the Processing Unit was designed to
perform two operations simultaneously. This operation mode is supported by a selector,
which allows the use of the Output Feature Map (OFM) memory second port either for
enabling the double write operation or for reading data. When the Control Unit sets
the second port for the read operation, the selector works as a direct wire to feed the
multiplexer. The second input port of the multiplexer is connected to the Control Unit,
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which is in charge of evaluating, for each iteration, if the data required for processing are
saved in the double FIFO. The double FIFO is used to save each iteration result and optimize
the processing of input values with data dependency by reducing the communication with
the output memory.

Figure 1. Voting Block architecture.

3.1. Processing Unit
3.1.1. Four-Stage Sequential Convolution

Figure 2 presents how the voting scheme-based convolution works. For a filter size
of three, nine multiplications must be performed between the input value and the filter
weights. The result of each multiplication must be added to the value already stored in the
corresponding output position. After all operations have been performed, the results must
be written back into the output memory.

The Voting Block Processing Unit can then be represented as a set of DSPs, proportional
to the filter size used, where multiplications and additions are performed simultaneously.
For the example illustrated, the input is a 6 × 6 Feature Map (FM) with only one non-null
value and the convolution operation is performed with stride of 1. Assuming a filter size
of 3 × 3, nine Digital Signal Processors (DSPs) would be responsible for multiplying the
input value by one of the voting weights and also perform the sum with the value coming
from the output memory. Thereby, each one of the DSPs will have its weight and partial
sum value specifically associated. However, they all share the same input value where the
convolution will be applied.
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Figure 2. Voting convolution mechanism (first approach).

3.1.2. Pipeline-Based Double Computing

According to voting requirements, read and write operations to the output memory are
required for each input value to be processed. One of the solutions that allows simultaneous
read and write in the same memory is the Dual Port Block Ram. This memory block is
composed of two ports, both able to operate as read or write. Given this feature, we
propose a pipeline processing to increase performance, as shown in Figure 3, by reducing
the number of clock cycles needed to complete the convolution.

The processing of two consecutively positioned non-null values in the input memory
shares certain positions in the output memory. For the first convolution, the Z0–Z8 positions
are read from the output memory and after all operations, and the P0–P8 values are written
in the same positions. For the processing of D1, some output memory positions are shared
with those read for D0 processing. Namely, the positions identified with values P1, P2, P4,
P5, P7, and P8. These positions correspond simultaneously to the output of D0 processing
and to the input of D1 processing.

Given this scenario, there is a possibility of leveraging the data dependency and
sharing data directly between different iterations. This data sharing can be done through
a FIFO, represented in Figure 1, which stores each iteration output. In the case of data
dependency, part of the required data is already inside the block so there is no need to
communicate with the output memory.

In the example shown in Figure 4, although six values are reused from the last convo-
lution, only two calculations are performed simultaneously. In practice, the six calculations
could be parallelized inside the Processing Unit, however, only two values can be stored
in the output memory at a time, which makes it useless to parallelize more than two
calculations.

In the detailed example, it is possible to obtain a reduction of three clock cycles
compared to the normal voting convolution presented in Figure 3. Output values stored
temporarily at the end of each pipeline are replaced each time a new input value is com-
pletely processed.

With the integration of the technique illustrated in Figure 4, in certain pipeline itera-
tions, a maximum of two calculations are performed simultaneously. Evolving from the
approach shown in Figure 2, the Voting Block Processing Unit is now composed of only two
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DSPs, as detailed in Figure 5. Each DSP needs to be configured to perform multiplication
and addition operations, thus enabling the integration of the data reuse technique.

Figure 3. Pipeline processing with data dependency on spatially close values.

Figure 4. Processing Unit iterations example.

Figure 5. Processing Unit design architecture.
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3.1.3. Weight-Based Optimization

According to the equation presented in Figure 6, Z is the value read from the output
memory at position (x, y), and P the value that will be written in the output memory at
the same position. When the weight value (W) is null, the equation can be simplified to
P = Z, meaning that the value stored in the output position before processing a given input
value will be the same after the process finishes.

With x being the number of non-null values, y the filter size, and z the number of
null weights in a given filter, the number of clock cycles required to complete the voting
convolution can be roughly represented by Equation (1). The equation only reflects the clock
cycle reduction considering the presence of null weights, however, as will be described
later, other factors also influence the voting convolution performance.

clock_cycles = x ∗ (y2 − z). (1)

Each time a null weight is found, the multiplication between D and zero can be simply
ignored. To reduce unnecessary operations, the block Control Unit should identify these
occurrences and remove from the pipeline the iterations with a null weight value. Null
weights are initially stored in the data structure weight buffer represented in Figure 1 so
the Control Unit can manage which calculations should be cut from the pipeline. In the
example illustrated in Figure 6, the presence of two null weights allows two iterations to be
removed which reduces processing by two clock cycles.

Figure 6. Null weight optimization.

3.1.4. Data Quantization

In resource-limited, high-performance, and low-latency scenarios, data quantization
is required to compress the model according to the memory available in the target board
and to enhance power efficiency and performance in terms of inference time. In situations
where the network is running on a platform with low resource limitations, the data are
usually a 32-bit floating point. To enable the hardware to process the data and reduce
hardware design complexity, data quantization is adopted. Targeting an integration in a
model that operates with floating-point numbers, input data need to be quantized before
participating in the Processing Unit internal operations. In our design, the Xilinx Floating-
Point Operator IP is used to perform this quantization. The quantization level can be
customized individually for the weights and the feature map values.
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According to the configuration made by the user, the Voting Block controller config-
ures the Processing Unit so the DSPs operate correctly according to the input value format.
After the DSPs perform the calculations, the result is converted to floating point, before
being written to memory. All conversions must be performed if the Voting Block is isolated,
however, if the block is integrated into a hardware CNN, only the first one should do the
input quantization. Figure 7 illustrates where the Xilinx Floating-Point Operator IP is con-
nected within the Voting Block to perform the quantization of feature map values, weights,
and output partial values. As they are three distinct values, three IPs are instantiated and
connected to the inputs of the two DSPs. Counting with the dequantization of the output
values from the DSPs, a total of seven Floating-Point Operator IPs are used inside the
processing unit as both DSPs share the same input value D.

Figure 7. Processing Unit I/O quantization.

3.2. Control Unit
3.2.1. Output Reference Generation

One of the defined voting requirements is the position where the non-null values
are located in the feature map and their amount. No module was designed to calcu-
late/extract the position of non-null input values (only output values). Instead, this is one
of the voting requirements. As mentioned before, this information is usually available
in models that operate with 2D projections of volumetric structures representative of the
point cloud [23,24]. However, to build a processing chain using the Voting Block, each
one must register the non-null value positions at the output. It is essential to extend the
block functionalities to register each output value together with the corresponding position
stored in memory. Furthermore, the number of values stored in the output memory must
be counted to inform the next block of how many iterations are needed to complete the
convolution. With this information, each block will have all the necessary data to perform
voting scheme-based convolutions.

Figure 8 presents an example of processing two values, D0 and D1, accessed from
the positions stored in the input reference memory. The scheme helps to describe the
consecutive processing by a single filter and the order of values that are written to output
memory along with their positions. In this particular case, D0 and D1 are spatially close,
meaning that some output positions will be shared, which requires extra management to
avoid replicated positions in the output reference memory.

The management of the output positions is performed using a FIFO, targeting data
dependency of spatially close values. The FIFO size is proportional to the filter size,
regardless of the feature map size as there is only data dependence on spatially close
values. Each time a new value is written to the output memory, the control unit needs to
check if its position is already stored in the FIFO. If not, its position is stored in the output
reference memory and the FIFO. At the same time, the number of output non-null values is
incremented. However, if the position is registered in the FIFO then it is already flagged as
having a non-null output value.
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Figure 8. Voting Block output reference management.

3.2.2. User Configuration

Although the customization level of the block allows only a few modifications to be
implemented on top of the voting scheme-based convolution mechanism, the parameter
values are important to correctly configure the desired convolution. Initially, the user
should specify both the filter and the Input Feature Map sizes used in the convolution.
According to the voting requirements, the filter must have an odd size so that a central
position is used as a reference to apply the filter in a certain region.

Along with these parameters, the user must also specify both padding and stride
values. Padding and stride are two common parameters in convolutions, however, only
two value options are provided for each, as they cover the vast majority of the requirements
found in convolutions. For all positions to be read and their values processed, it is critical
to inform the Voting Block how many values there are in the input to be processed. If no
value is specified, the block will set as default the total number of values in the feature
map. Although this ensures that the convolution will be performed correctly, processing all
feature map values removes all the efficiency of voting convolution.

Regarding the data quantization, the user should specify how many bits must be
allocated for the integer and fractional parts individually for a better control over the
data resolution.

4. Results

To validate the Voting Block, a set of tests were built, which were further divided
into three major categories. The first category corresponds to the group of tests aiming
to logically validate the block operation, using small feature maps. The second category
intends to evaluate the block performance under multiple conditions. Finally, the Voting
Block was integrated in the PointPillars model as a case study, where the sparse data
processing in certain layers was analyzed. From the results, it was possible to differentiate
the potential of the voting scheme-based convolution compared to traditional solutions, in
real case scenarios.

4.1. Functional Validation

The validation performed on the Voting Block at an early stage has simple characteris-
tics and is aimed at testing whether the block hardware implementation is operating as
intended. For the first validation test, a convolution between a 151 × 151 Input Feature
Map (IFM) and a 3 × 3 filter was specified. Regarding the first test, Table 1 refers to the
resource consumption report from Vivado for the Zynq Z-7010 board. As a result, the
utilization of both LUTs and FFs is 13.43% and 12.55%, respectively. As for the energy
consumption, the total on-chip power reported was approximately 0.2 Watts.
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Table 1. Voting Block consumption results obtained from the Vivado Report Utilization tool.

Resource Utilization Available Utilization

LUT 2364 17,600 13.43
FF 4416 35,200 12.55

BRAM 1 60 1.67
DSP 2 80 2.50

Compared to other hardware convolution implementations, the voting convolution has
a low consumption of both area and power. The approach followed in [25], for an efficient
convolution implementation inspired by [26], presents a total consumption of 10,832 LUTs
and the number of DSPs is proportional to the filter size multiplied by the number of
allocated processing elements. The declared total power consumption is 1.739 Watts for
just one convolution, being almost 8.7 times higher than the consumption required by the
Voting Block. As a reference, work [26] made a comparison of energy consumption against
an energy-efficient reconfigurable accelerator for deep convolutional neural networks called
Eyeriss [27]. Given four distinct network configurations, the one in [26] proved to be the
most energy-efficient due to its optimized Broadcast, Stay, and Migration (BSM) data flow
for input, weight, and output data, respectively.

Figure 9 presents the convolution result between an image of a car and the Gaussian
blur filter. Despite the voting scheme-based convolution being only suitable for sparse
data processing, the final result of any convolution should always be the same as using
a traditional convolution mechanism. Since an image is a dense data representation, the
time consumed by the Voting Block to complete the convolution is very long and even
longer than the time that a traditional convolution would take. Nonetheless, the output
image indicates that the convolution was performed correctly. The output image size is
also correct since the padding and stride were both specified with values zero and one,
respectively.

Figure 9. Voting convolution with a Gaussian blur filter.

4.2. Sparsity Effect

The number of non-null values in the input feature map affects the data sparsity level,
which can vary from zero to one, according to Equation (2).

sparsity(A) = 1 − count_nonzero(A)

total_elements_o f _(A)
. (2)

While zero sparsity indicates that all the input values are non-null, a sparsity with
value one means that all the values are null. To evaluate the Voting Block performance in
processing sparse data, several conditions should be created for the block to be subject to
different levels of sparsity.

For a 512 × 512 feature map (total of 262,144 values) with sparsity levels between 80%
and 100%, different performance tests were carried out to evaluate the processing time
evolution according to the sparsity level variation. From Figure 10, the higher processing
time registered for the Voting Block was around 4600 microseconds while the lower one
was 390 (when ignoring the test with sparsity level of one, since a 100% level of sparsity
means that all values are null and no time is consumed to process the data). The orange
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line on the graph represents the time taken by a traditional convolution, which, as can be
seen, is always the same, regardless of the sparsity level.

During the various tests, the dense convolution implemented in [25] was used as a
reference. Equation (3) presents an approximation of the processing time of the traditional
convolution implemented in [25] according to the size of the input feature map (considering
both IFM_channels and OFM_channels equal to one). Although the authors focus on an
energy-efficient solution, processing parallelism mechanisms were integrated into the
module architecture and will also be addressed in comparison with the voting.

[DenseConv] processing_time (s) ≈ IFM_width ∗ IFM_height
clock_rate

. (3)

The intersection point between the two lines is positioned around the 89% sparsity, cor-
responding to a processing time of about 2600 microseconds. For sparsity levels above 89%,
the Voting Block is faster than the traditional convolution. In the tests performed, a clock of
100 MHz was defined, which is equivalent to 10 nanoseconds per clock cycle. The Y-axis
represents the processing time related to each measurement, specified in microseconds.

Figure 10. Processing time variation with increasing sparsity.

4.3. Concentration Metric

The dispersion level of non-null values in the input feature map together with the
sparsity level has an impact on the processing time obtained by the Voting Block. While
sparsity refers to the number of values that need to be processed, the dispersion level is
related to the proximity of these values in the feature map. Although the sparsity level
is equal for both cases presented in Table 2, the processing time obtained can be quite
different. Since values spatially close in the feature map belong to the same region, data
can be shared during the convolution, using the technique described in Figures 3 and 4.

The impact of the proposed data reuse technique is presented in Table 2. It is noted
that the improvement in processing time can be more than 30% when all the non-null
values are spatially close in the input feature map. The processing time improvements in
the table reflect the effect of the data reuse technique when the concentration of values
is maximum.



Sensors 2022, 22, 2943 12 of 18

Table 2. Value concentration effect on processing time.

Sparsity (%)
Processing Time (µs)

Improvement (%)
Concentration (0%) Concentration (100%)

80 4622 3507 24.1
82 4270 3227 24.4
84 3932 2946 25.1
86 3367 2506 25.6
88 2800 2079 25.8
90 2500 1845 26.2
92 1905 1393 26.9
94 1412 1026 27.3
96 1085 773 28.8
98 392 272 30.6
100 0 0 0.0

4.4. Null-Weight Processing Optimization

In Section 3.1.3, it was described that the pipeline processing mechanism can be
optimized by removing the instructions associated with the filter null weights. From that,
one more set of performance tests were carried out to evaluate how the processing time can
be optimized. For each test, a 3 × 3 filter was used, and the values of the nine weights were
manipulated to verify the influence of the number of null weights on the execution time.

Figure 11 shows that null weights also have a good impact on the processing time
regardless of the sparsity level of the input data. For instance, although the gray line
registers higher processing times than the traditional convolution (black line), it becomes
faster when the number of null weights is greater than five.

Figure 11. Null weight effect on processing time.

4.5. Strided Operation Boost

The level of customization provided to the user enables both the specification of the
padding and stride. While introducing padding into the voting scheme-based convolution
is a simple operation, the integration of stride into a sparse convolution is the subject of
study and promotes another set of performance tests on the Voting Block. The two value
options (1 and 2) that the user is able to specify for the stride parameter cover most of
the scenarios and interesting performance differences can be identified from the executed
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tests. Table 3 presents, for each stride value and sparsity level, the measurements of both
processing time and number of non-null output values generated.

Table 3. Strided voting convolution performance test.

Input Sparsity (%)
Stride = 1 Stride = 2

Time (µs) Output Values Output
Sparsity (%) Time (µs) Output Values Output

Sparsity (%)

80 3507 53,372 79.6 1378 12,845 80.4
82 3227 48,082 81.6 1266 11,665 82.2
84 2946 42,782 83.7 1156 10,420 84.1
86 2506 37,472 85.7 989 9043 86.2
88 2079 32,181 87.7 881 7667 88.3
90 1845 26,870 89.8 714 6488 90.1
92 1393 21,580 91.8 585 5046 92.3
94 1026 16,232 93.8 441 3932 94.0
96 773 10,905 95.8 285 2490 96.2
98 272 5515 97.9 121 1245 98.1

100 0 0 100 0 0 100

The most important aspect is the difference in processing time between the operation
with a stride of one and a stride of two. The presented results indicate that, when the
convolution is performed using a stride of two, the processing time consumed by the Voting
Block is greatly reduced. This difference can be justified by the fact that, while with a stride
of one all the input feature map regions (where the non-null values are located) need to
be convolved with the filter, with a stride of two, some rows and columns are "discarded".
As a result of fewer values having to be read and written to output memory, the pipeline
processing can be optimized and the time required to complete the convolution is reduced.

Evolving from Equation (1), and without considering the optimization mechanism
targeting spatially close values, the processing time using voting convolution can be roughly
represented by Equation (4).

[VotingConv] processing_time (s) ≈ x ∗ (y2 − z)
stride ∗ clock_rate

. (4)

4.6. PointPillars

To extend the validation of the Voting Block hardware implementation, the PointPillars
model was chosen as a case study to analyze the advantages of the voting scheme-based
convolution. Besides being a state-of-the-art model in 3D object detection, the model meets
the requirements for the Voting Block integration. As one of the critical requirements is
the position of the non-null values in the feature map, that information can be accessed
through the data structure that composes the Pillar Index from the PFN stage. Furthermore,
the point cloud representation in a pseudo-image ensures high levels of sparsity for 2D
data processing, which is ideal for evaluating the performance of a sparse convolution.

Considering that the PFN output data have high levels of sparsity, it is also relevant
to analyze the sparsity evolution across the convolutional layers of each Backbone block.
Since the number of null and non-null values presented in each feature map depends on
the frame being processed at the moment, a frame with the highest possible number of
non-null values was purposely chosen as a reference. The characteristics of the selected
frame are presented in Table 4. According to the PointPillars model specification, for each
one of the 64 output channels from the PFN stage, the number of non-null values can vary
between 2 k and 12 k. Assuming the worst case (12 k non-null values in each channel),
768,000 values are used in total.
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Following the performance tests presented in Figure 10, sparsity levels below 89% do
not favor the use of the voting convolution, therefore only the first layer of block 1, in a
first iteration, is a good candidate for voting-based convolutions.

Table 4. Sparsity level of Backbone layers.

Non-Null Values Null Values Sparsity

PFN 768,000 16,009,216 0.95

Block1

Conv0 293,601 1,803,551 0.86
Conv1 440,402 1,656,750 0.79
Conv2 734,003 1,363,149 0.65
Conv3 775,946 1,321,206 0.63

Block2 256,901 267,387 0.51
Block3 138,936 123,208 0.47

To prepare the data for the different sparsity level scenarios, several frames were
selected from the Kitti dataset [28]. Figure 12 presents the frames’ representation in a
black-and-white format to better distinguish the amount of null values in each one. The
non-null values are represented with white pixels while the null values are represented
with black ones. From each pseudo-image, it is possible to recognize the captured scene
and the substantial difference in the number of values that need to be processed between
the feature map with the highest Figure 12a and lowest Figure 12f sparsity level. Through
the visual aspect of the images, it is possible to verify that greater sparsity levels are related
to scenes with few objects and narrow roads which are present in both urban and rural
areas. On the other hand, the level of data sparsity also depends on the characteristics of
the 3D sensor such as range and angular resolution.

(a) (b) (c)

(d) (e) (f)

Figure 12. Test frames with different sparsity levels. (a) ≈2 k values, sparsity = 0.992. (b) ≈4 k values,
sparsity = 0.984. (c) ≈6 k values, sparsity = 0.977. (d) ≈8 k values, sparsity = 0.969. (e) ≈10 k values,
sparsity = 0.961. (f) ≈12 k values, sparsity = 0.954.

Considering the range of non-null values for each of the 64 feature maps from the PFN,
several tests were carried out to evaluate the Voting Block performance when processing
only one of the feature maps. The blue line in Figure 13 presents the time consumption
results of the Voting Block processing. As the range of non-null output values from the
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PFN stage for each feature map is between 2 k and 12 k, the extreme points of the blue line
are identified as best- and worst-case scenarios, respectively.

Taking into account that the size of the feature maps from the PFN is 512 × 512,
the dense convolution implemented in the convolutional module always consumes the
same time (2621 µs) regardless of the feature maps sparsity level. Given the possibility
of integrating parallelism in the dense convolution through the use of several processing
elements, the gray arrows show the level of parallelism required for the processing to
be as fast as the one in the Voting Block. Assuming a clock of 100 MHz, in the best-case
scenario, the Voting Block only consumes 69 µs, meaning that the dense convolution needs
to allocate at least 38 PEs for the processing times to be approximately equal. Since, for the
worst case, the Voting Block consumes more time, only eight PEs are required to decrease
the processing time from 2621 µs to 341 µs.

Figure 13. Voting processing time for the selected frames Figure 12.

Considering the layers where the sparsity level favors the use of the voting scheme-
based convolution, and considering the concentration level of the non-null values in the
frames presented in Figure 12, the integration in the first three layers of block 1 was carried
out, assuming a 200 MHz clock on the board. In each test, the time consumed by the dense
convolution and the Voting Block processing the feature maps associated with these layers
was measured. Regarding the dense convolution, the parallelism was set to maximum
per filter to improve performance, using all available DSPs. The results are presented
in Table 5, where the worst-case scenario was assumed, with each feature map from the
PFN stage containing a total of 12k non-null values to process. In addition, the hardware
processing time was compared with the software version, whose runtimes were measured
on a desktop with an Intel i7 CPU and a 1080ti GPU.

The processing time improvements for the Voting Block, with the two opposite cases
represented in the last column, are only positive for the first two layers, since the sparsity
level decreasing across the layers increases the time consumed. As a result, compared with
the software version, in the third layer of block 1 no improvement is verified since the
time to process is 10.9% longer. On the other hand, a big improvement can be seen in the
first layer of block 1, with the Voting Block being 80.44% faster. This great improvement is
achieved due to the level of sparsity being higher in the first layer, and also because it is a
strided operation, which helps the voting to achieve substantially lower execution times, as
referenced in Table 3.



Sensors 2022, 22, 2943 16 of 18

Table 5. Processing time comparison between SW version, dense convolution, and Voting Block.

Software Dense Convolution Voting Block

Time (µs) Time (µs) Improvement (%) Time (µs) Improvement (%)

B1-Conv0 874 654 25.18 171 80.44
B1-Conv1 321 262 18.32 247 23.05
B1-Conv2 321 262 18.32 356 −10.90

Compared to the detections obtained in the software version, in the hybrid version,
the scores are a little higher for certain situations, resulting in false-positive detections for
the same score threshold value. Therefore, the score threshold was increased to remove
additional incorrect detections, resulting in similar detections for both versions. The
detection scores for both software and hybrid versions are detailed in Table 6, and visually
complemented by Figure 14. The difference in the detection score values are related to the
information loss from the quantization and dequantization processes in hardware, however,
the results prove that the integration of the voting convolution does not compromise the
object detection.

Table 6. Detection scores of both software and hybrid versions.

Version
Frame Objects

1 2 3 4 5 6

Software (Figure 14a) 0.954 0.906 0.847 0.839 0.692 0.609
Hybrid (Figure 14b) 0.921 0.881 0.844 0.823 0.774 -

(a) (b)

Figure 14. Comparison of detection between software-only and hybrid versions. (a) Detections
with the software version (score threshold = 0.5). (b) Detections with the hybrid version (score
threshold = 0.75).

5. Conclusions

Although 3D object detection models generally adopt traditional/dense convolution
operations for data processing, the sparse and unstructured nature of point clouds requires
the use of optimized mechanisms for more efficient processing. This article presents the
hardware implementation of a sparse convolution named voting scheme-based convolution.

The proposed configurable hardware architecture allows the use of voting in different
CNN layers through customizing stride, padding, and kernel size parameters. Moreover, it
is able to take advantage of the spatial proximity between non-null values in the feature
map and the presence of null weights to increase processing performance up to 30%. From
tests performed under different sparsity levels, the Voting Block proved to be faster than
the dense convolution at processing a 512 × 512 feature map with sparsity levels greater
than 89%. Increasing the sparsity of the input data translates into an almost linear reduction
in processing time without the need to allocate more resources.

From the integration with the PointPillars model, the performance of the Voting Block
was measured for the first three layers of the Backbone stage. The results obtained regarding
the processing time proved the advantage of using the voting convolution instead of a
traditional one in both the Conv0 and Conv1 layers, with improvements of 80.44% and
23.05%, respectively, without compromising the model detection results. While voting
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proved to be more efficient in time, energy efficiency was also achieved with a consumption
8.7 times lower compared to a similar convolutional module from the literature.

Future work will focus on the integration of both dense and voting scheme-based
convolutions in the same hardware module. As proven by this article, both convolutions
have their potential, however, they should be used under different conditions.
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