Nonparametric estimation of the distribution
of gap times for recurrent events

Abstract

In many longitudinal studies, information is collected on the times of
different kinds of events. Some of these studies involve repeated events,
where a subject or sample unit may experience a well-defined event
several times throughout their history. Such events are called recurrent
events. In this paper, we introduce nonparametric methods for estimat-
ing the marginal and joint distribution functions for recurrent event data.
New estimators are introduced and their extensions to several gap times
are also given. Nonparametric inference conditional on current or past
covariate measures is also considered. We study by simulation the behav-
ior of the proposed estimators in finite samples, considering two or three
gap times. Our proposed methods are applied to the study of (multiple)
recurrence times in patients with bladder tumors. Software in the form
of an R package, called survivalREC, has been developed, implementing
all methods.

Keywords: Censoring, Gap times, Kaplan-Meier, Multiple events, Recurrent
events

1 Introduction

In many longitudinal studies, subjects can experience recurrent events [9].
This type of data has been frequently observed in medical research, engi-
neering, the economy, and sociology. In medical research, recurrent events
could be multiple occurrences of hospitalization for a group of patients, mul-
tiple recurrence episodes in cancer studies, recurrent upper respiratory and
ear infections, repeated heart attacks, or multiple relapses from remission for
leukemia patients [7, 28, 43]. The analysis of such data can be focused on time-
between-events (gap times) or time-to-event models. In time-to-event models,
the events of concern usually represent different states in the disease process
(e.g., alive and disease-free, alive with disease, and dead) and they are modeled
through their intensity functions [2, 17, 22]. In these models, the estimation
of these quantities is essential for long-term survival prognosis. For instance,
in cancer studies, one could consider the time to recurrence and the time to
death for recurrent patients as the gap times. Under this setting, many other
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medical contexts can be found in the literature, such as asthma, HIV/AIDS,
heart disease, dementia, Alzheimer’s disease, etc. Though the proposed meth-
ods can be used in both settings, in this paper, we consider that the events
are of the same nature and focus on time-between-events. This line of research
has received much attention recently. Among others, they were investigated
by [6, 8, 15, 24, 27, 35, 36, 40] whose interest was focused on the estimation
of the bivariate distribution of the gap times. In other cases, the interest was
more focused on the distribution of the gap times, such as the estimation of
the joint gap times, the gap time survival functions, or the conditional survival
function of the gap times [20, 21]. Among others, these issues were investi-
gated by [14, 29, 30, 32, 34, 38, 41, 42]. These approaches are focused on a
pair of gap times corresponding to two consecutive events, and the extension
to cope with a vector of k£ gap times may not be obvious. Furthermore, the
proposed methods do not account for the influence of covariates. In addition,
the implementation of several of the aforementioned methods will be diffi-
cult in practice due to the lack of user friendly software. The present paper
aims to fill this gap. We consider the nonparametric estimation of the multi-
variate distribution functions of the gap times under univariate random right
censoring conditionally (or not) on current or past covariate measures. New
estimators for K > 2 gap times are introduced and their performances and lim-
itations are discussed. One set of estimators considers a subsampling approach
- which we term landmark [37] - where a selection is made of the data con-
sisting of subjects occupying a given state at a particular time. Alternative
weighted cumulative hazard estimators are also proposed. The idea is to use
an adaptation of the nonparametric estimator presented by [41] which is con-
structed using the cumulative hazard of the total time given a first time but
where each observation has been weighted using the information of the first
duration. The proposed methods can also be used to obtain conditional prob-
abilities such as those provided in the plots shown in section 4 that provide
useful interpretation. We also introduce a feasible estimation method for the
multivariate distribution function, conditionally on covariate measures. The
proposed method follows the ideas of [19] in which the authors use kernel
weights and the principle of ‘inverse probability of censoring weighting’ (IPCW)
(to estimate these quantities conditionally on a continuous covariate. Finally,
a tutorial for analyzing such types of data using an R package in which all
methods are implemented.

It is worth mentioning that there are several modelling techniques for ana-
lyzing the effect of covariates in recurrent time-to-event data. To that end,
extensions of the proportional hazards model, such as the Andersen and Gill
model (AG) [3], the Prentice, Williams, and Peterson (PWP) model [31], and
Wei, Lin, and Weissfeld (WLW) [43], have been proposed for analyzing recur-
rent event data. An overview of these methods can be seen in the paper by [1]
and they are outside the scope of this paper.

This article is organized as follows. The next section presents the notation
and introduces the estimators. The finite sample properties of the estimators
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are studied by simulation in Section 3. In Section 4 we give a brief overview of
the survivalREC R package developed by the authors. We illustrate how these
methods can be used for data exploration by applying them to a data set on
bladder cancer. Main conclusions and discussion are reported in Section 5.

2 Estimators

2.1 Notation

In the context of recurrent event data, each individual may go through a well-
defined event several times in his history. Assume that each study subject can
potentially experience K consecutive events at times 77 < Ty < ... < Tk,
which are measured from the start of the follow-up. We are primarily interested
in the gap times Y7 =Ty, Yo :=To — T4, ..., Y =T —Ty—1, k = 2,.... K.
Then, T, = Y7 + ... + Y} is the time to the kth event, Tk is the total time
and (Y7,Ys,...,Yk) is a vector of gap times of successive events, which we
assume to be observed subjected to (univariate) random right-censoring. Let C
be the right-censoring variable, assumed to be independent of (11,75, ..., Tk ).
Because of this, the observed data consists of ()717;, ---7371(@, Aty Agi), 1 <
1 < mn, which are n independent replications of (}71, ...,?K, Ay, ..., Ag), where
Yi = ViAC, Ay = I(Y, <C), Yy = Yy ACy, Ay = (Yo < Cy) with
Cy = (C — Y1)I(Y7 < C) the censoring variable of the second gap time and
)7]6 =Y ACy, Ay = I(Yk < Ck) with C), = (O—Yk_l)I(Yk_l < O) Obviously,
A = 1 implies A1 = ... = Ap_1 = 1. Define also fk = T A C. Here and
thereafter, a A b = min(a,b) and I(-) is the indicator function.

Let F} denote the distribution function of the kth event time 7T} and F}
denote the distribution function of the kth gap time Y. Due to the indepen-
dence assumption between C' and (77, ..., Tk ), the marginal distribution of the
kth event time can be consistently estimated by the Kaplan-Meier estimator
based on the (Tx,Ak)’s. Note that, since the variables T} < Tp < ... < Tk
are recorded successively and are subject to censoring, we only observe the kth
gap time if all previous failure times are uncensored. In practice this will imply
that for £ > 1, Y3 and Cj will be in general dependent, which will make dif-
ficult the estimation of the marginal distribution of the kth gap time, as well
as the estimation to the joint distribution function Fy_ x(y1,...,yx) = P(Y1 <

Y1y eeey Yk < yk:)

2.2 Estimators for the bivariate distribution function

In this section we will present different approaches for estimating the bivari-
ate distribution function of (Y7,Y3), Fia(y1,42) = P(Y1 < y1,Ys < y9). The
generalization to K > 2 gap times will be given in a later section.

3
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2.2.1 Inverse probability of censoring weighted estimators

In the absence of censoring, the bivariate distribution function can be empiri-
cally estimated by Fia(y1,y2) = % Z?:l I(Y1; < 1,Y2; < y2). To handle right
censoring, inverse probability of censoring weighting (IPCW) can be used (see,
for example, [24] for further details).

The idea of IPCW was used by [15] to introduce an estimator for the bivariate
distribution function. Their estimator is based on the relation P(Y; < y1,Ys <
y2) = P(Y1 < y1) — P(Y1 < 11,Ys > ya) where the first quantity in the
right-hand side of the equation can be consistently estimated using the Kaplan-
Meier estimator [13] of the distribution function of the first event time T (i.e.,
based on the pairs (fu, A1;)’s) which we denote by ﬁl. The idea to estimate
the second term follows from the following relation E[I(Y; < y1,Ys > yo)] =

B[S Yoo u) (O>Thtys)) E[il(?lgglypyﬂ]. From this, it follows that

G(T1+y2) G(T1+y2)
= = 1« I(f/li < y1, Yo > Y2)
LIN )
12 (Y1, y2) = Fi(y) — — =~ = (1)
n ; G(Y1i + v2)

where G stands for the Kaplan-Meier estimator of the censoring distribution
which is computed using the (T%;,1 — Ag;)’s.

Later, [35] proposes an alternative estimator which is defined in terms of
multivariate ‘Kaplan-Meier integrals’ with respect to the marginal distribution
of T5. The idea behind their estimators is to weight the bivariate data using
the Kaplan-Meier estimator of T5 as shown below.

n
FiM(y1,11) = Z Wil (Yi; <y, Yo < yo). (2)
i=1
where W; is the Kaplan-Meier weight attached to TVQ,L‘ when estimating the
marginal distribution of T from (T5;, Ag;)’s (equal to minus the jump at Ts;
of the Kaplan-Meier estimator of survival of the total time; see [35] for more
details).

Estimator (2) (labeled as KMW) can also be expressed using IPCW (see [35])
being somehow related (although not equal) to that proposed by [15]. The two
estimators labeled by KMW and LIN deal with right censoring using an appro-
priate reweighting of the chosen summands, and the differences between them
are somewhat subtle. The KMW estimator only puts mass on observations that
are completely uncensored, whereas Lin’s estimator puts mass on observa-
tions that were uncensored till a given time. In practice, this means that LIN
estimator will show estimated curves with more jump points. The estimates
produced via the KMW estimator produce a valid bivariate distribution since it
does guarantee that the bivariate distribution function is monotone. In con-
trast, the specific reweighting of the data that is used in Lin’s estimator does
not ensure this property. Their estimators do not attach positive mass to each
pair of recorded gap times, which may lead to problems of interpretation. A
proper estimator for the bivariate distribution function could be obtained by
keeping the estimator constant until it starts decreasing again. However, this
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approach provides a downward-biased estimator. These features can be seen
in our application section. The two estimators are consistent whenever y; + 92
is smaller than the upper bound of the support of the censoring time.

2.2.2 Estimators based on conditional probabilities

In this section, we propose estimators for the bivariate distribution function
that consider the relation P(Y1 < thQ < yg) = P(}/g < y2|Y1 < yl)P(Yl <
y1), where the second term in the right-hand side of the equation can be
estimated using the Kaplan-Meier product-limit estimator of the distribution
function of the first event time. Two different estimation methods are proposed
below to estimate the first term on the right-hand side of the equation shown
above.

A simple estimator for the bivariate distribution function considers that
the first term can be estimated using a subsampling approach. This approach,
which we also term as landmarking [39], is obtained by considering specific
subsamples or portions of the data at hand. In this case, for estimating the
conditional probability P(Ys < yo|Ti < y1), the analysis is restricted to those
individuals with a first gap time (equivalently, the first event time) less or equal

to y1. To formalize things, let ny be the cardinal of S = {z : }N/M < yl}. Then,

ni
F™(yolyy <) = > W I(Vay < ). (3)
i=1
where Wi(yl) are the Kaplan-Meier weights of the distribution of T, computed
from the subsample S.

Any of the estimators proposed above (LIN, KMW and LDM) may reveal some
problems in the right tail where uncensored observations are scarce. Below, we
propose an estimator that may deal more efficiently with those situations. The
proposed estimator is constructed using the cumulative hazard of the total
time given a first time but where each observation has been weighted using the
information of the first duration. This estimator (WCH - weighted cumulative
hazard) follows the ideas by [41] in which a product-limit estimator for the
second gap time is used:

FS(y1,y2) = F5*(ya|Ys < y1) Fi (1) (4)
where Fi(y;) is the Kaplan-Meier estimator and Fy¥H(ys|V; < y1) = 1 —
Hv§y2(1 — Ay, v, <y, (dv)) for which

A iz
Ay Y <y1 (d'l)) = ni = .
e Y IV < y17Y21 >, Ah =1)/G(Y1; +v)

One interesting topic in the analysis of recurrent event data is the estima-
tion of the marginal distribution of the gap times (F}(y) = P(Y; < y)). The

5
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problem of estimating these functions has not been discussed explicitly in the
literature, giving the impression that the Kaplan-Meier estimator is still the
estimator of choice. This is not true for j > 1. Indeed, since T, and C5 are
expected to be dependent, the Kaplan-Meier estimator of F3 based on the
(}722-, Ay;)’s will be in general inconsistent. An estimator for the marginal dis-
tribution of the second gap time can be obtained from proposed estimators of
the bivariate distribution function since F3 (y) = P(Ys < y) = Fi2(400,y). To
estimate this quantity, we suggest using the WCH, where the corresponding esti-
mator is a simple adaptation of F3"". An alternative approach would be using
the KMW method, F3¥%(y) = S WiI(Ya; < y) where W; are the Kaplan-
Meier weights attached to T> when estimating the marginal distribution of
Ts.

2.3 Extension to the general case of K gap times

In this section we extend the results (estimators) proposed in Section 2.2 to
the case of K gap times.

Let (Y1,Y5, ..., Yk) denote a vector of K ordered gap times and let Fy. g
denote the joint distribution function of (Y7,Ys,...,Yk). The estimator pro-
posed by [35] can easily be extended to provide a valid estimator for the joint
distribution function of (Y7, Y, ..., Yi). Their estimator is given by

n
Af.WK(ylv e YK) = ZWiI(Yli <y, Y <yk) (5)
i=1
where W; is the Kaplan-Meier weight attached to TVKZ» when estimating the
marginal distribution of Tk from (Tk;, Ak;)’s.

Lin’s estimator [15] can be easily extended to the general case of K gap
times. Since P(Yi < Y1, ,YK < yK) = P(Yi < Y1, "-,YK,1 < nyl)_P(Yl <
Y1, Y1 < Yyk-1,YK > yK), an obvious estimator for the second term is
given by

lzn:l(?ligyla"'af/(K—l)i <yr_1,Yi > Yx) (©)
n
i=1

@K(T(K—l)i +YK)

where G & stands for the Kaplan-Meier estimator of the censoring distribution
based on the (Tk;,1 — Ag;)’s. The first term can be estimated recursively
using the same approach.

The extension of the landmark estimator (LDM) to K gap times is a

consequence of Bayes’ theorem,

F\fDMK(ylvvyK) = ﬁK(yK | Yl < ylv"'vnyl < nyl) X
XﬁK—l(yK—l | Vi <y1,.., Yo <yr_9) X - X ﬁQ(yz | Y < yl)ﬁl(yl)
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where ﬁj(y\Yl < y1,...,Y;-1 < y;j_1) is estimated using the Kaplan-
Meier estimator based on (Tj,A;)’s restricted to those individuals in
S= {Z 1Y < Yi, - '71/}—1 < yj—l}

The extension of the weighted cumulative hazard estimator (WCH) to K gap
times follows from the following relation,

PYi<wy, Yo <yx)=(1—-PYrx >yx|Y1 < w1, -, Y1 < yr-1))
XxP(Y1 <wyi, - Y1 <Yk-1),

where the first term in the right-hand side of the equation is esti-
mated using P (Yx >yx[Y1i <w1, V-1 <yk-1) = 1 — [[,o, (1 -
KYK|Y1§y1,..A7YK_1§yK_1 (dv)) and the second term in the right-hand side of the
equation is estimated recursively using the ideas explained in Section 2.2.

2.4 Estimators conditionally on current or past covariate
measures

In this section, we will explain how we may introduce nonparametric estimators
for the conditional distribution function, Fis(y1,y2 | X). In particular, we are
interested in estimating these functions for any time y; and y», but conditional
on a given continuous covariate X that could either be a baseline covariate
or a current covariate that is observed for an individual during the follow-up.
Discrete covariates can also be included by splitting the sample for each level of
the covariate and repeating the procedures described in the previous sections
for each subsample.

To account for covariate effects, one standard method is to consider esti-
mators based on Cox’s model [10], with the corresponding baseline hazard
function estimated by the Breslow’s method [5]. Flexible nonparametric effects
of the covariates on the bivariate distribution function, as those shown in our
example of application, can be obtained using an alternative approach which
introduces local smoothing by means of kernel weights based on local constant
(Nadaraya-Watson) regression [25]. The proposed method is introduced in a
regression setup based on the inverse probability of censoring weighting.

Assume that we have two consecutive gap times (Y7,Y2) and that X
denotes a continuous covariate. Then, the estimation of these functions
can be performed via estimating general conditional expectation of type
Ep(Y1,Y3) | X = x], where ¢ is a general function defined over Y7 and Y3. For
instance, in our setting, for the bivariate distribution function, ¢, ,(¥1,Y2) =
I(Y1 < u,Y; < v) while for the bivariate survival function ¢, ,(Y1,Y2) =
I(Y1 > u,Ys > v).

In the absence of censoring, to estimate these quantities nonparametrically,
we may use kernel smoothing techniques by calculating a local average of the
¢ (Y1,Ys), that is, as follows:

7
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Ele(M1,Y2)|X = 2] =Y W(w, Xi, h)g (Yii, Yai)

i=1
where W (z, X4, h) is a weight function which corresponds to the Nadaraya-
Watson estimator as follows:

k((z — Xi)/h)
i k(@ —X;)/h)
where k is a known probability density function (the kernel function) and h is
the bandwidth.

To handle right censoring, inverse probability of censoring weighting can
be used. Since,

W(l’,Xi, h) =

E[I(Yi <u,Y; <v)] = B [I(Vi < u, V2 < 0)A/Gx (T2)|X]
where G x denotes the conditional survival function of the censoring time C

given the covariate X, that is, Gx—,(¢t) = P(C > t|X = z) which may be
estimated using Beran’s estimator [4],

=] {1 — Wiz, Xi, h) ] (7)
fzqiﬁt,Azz',:O Zj:l I(TQj z TQi)W(m’ Xj’ h)
where W (z, X;, h) are the Nadaraya-Watson weights.
Based on this, we propose the following nonparametric estimator of the
conditional bivariate distribution function:

n

Fuo(yr,yo| X =2) =Y Wilw, Xi,h)

i=1

1(3711' <y, Yy < y2)No;
G (To;)

(8)

where G% stands for an estimator of the conditional distribution C' | X, for
example Beran’s estimator (of the censoring survival function) based on the
(Yh‘, 1-— Ah‘, XZ‘)’S.

Though these methods can be extended to a vector of covariates using
multivariate kernels and a generalization of Beran’s estimator, some problems
arise with the generalization to higher dimensions.

3 Simulation studies

In this section, we compare by simulations the estimators introduced in Section
2. We consider two simulated scenarios, the first scenario aims to compare
the estimators introduced in Section 2.2. More specifically, estimators for the
bivariate distribution function (Fi2(y1,y2)) labeled as LIN, KMW, WCH and LDM.
The second scenario aims to compare the extensions of the same estimators
for three gap times.
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3.1 Scenario 1: two gap times

Simulating data in longitudinal recurrent survival data requires the joint mod-
eling of two or more random variables [18]. Copulas provide a useful method for
deriving joint distributions given the marginal distributions, especially when
the variables are non-normal as in the case of time-to-event variables [33].

For the first scenario, we consider the Fairlie-Gumbel-Morgenstern (FGM)
system of bivariate distribution with a joint cumulative distribution function
of the form:

Fia(y1,y2) = Fi(y1) Fo(y2) 1 + 0 {1 — FA(y1)} {1 — Fa(y2)}]

where F; and F5 are the marginal cumulatives which follow a standard expo-
nential and where |§| < 1 controls the amount of dependency between the two
gap times. It has been shown that in this setting, the correlation of the FGM
varies between 0 (independent gap times) for § = 0 and 0.25 for 6 = 1. The
FGM was also used in the papers by [15] and [24].

The follow-up time C' was chosen to be uniformly distributed between 0
and an upper limit. In practice, this limit controls the amount of censored
observations. An independent uniform censoring time C' ~ U[0, 4] resulted in
25% of censoring on the first gap time Y7, and in 46% of censoring on the second
gap time Y3, for those individuals with § = 1. A second model with C' ~ U0, 3]
increases these censoring levels to 32% and about 60%, respectively. In each
simulation, 1000 samples were generated, each with sample sizes of n = 100
and n = 250.

Table 1 reports the true values of Fia(y1,y2) where y; and yo take values
0.2231, 0.5108,0,9163 and 1.6094 corresponding to marginal survival probabil-
ities of 0.8, 0.6, 0.4 and 0.2. At each time point (y1,y2) we computed the mean
squared errors for the four estimators. Table 2 reports these values for model
C ~ U0, 3] with a sample size of n = 250 and correlated gap times (6 = 1).
Our results show that all estimators perform quite well, with reasonable low
values for the mean square error. All estimators obtained low values for the
bias (not shown) and a worst performance in the right tail (i.e., higher values
of y1 and y2) where the censoring effects are stronger. Though not shown here,
the results for different sample sizes and different censoring percentages reveal
that an increase in the sample size results in smaller variance and therefore a
smaller mean square error. Besides, by increasing the censoring percentage, the
standard deviation achieved larger values. The standard deviation (and conse-
quently the mean square error) increased with y; and with yo. All these facts
were expected. The performance of the four estimators for the bivariate distri-
bution function is dominated by the variability of the estimators, with a small
advantage for the weighted cumulative hazard estimator and the estimator
based on Kaplan-Meier weights, labeled as WCH and KMW, respectively.

9
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Table 1 True values of the Fairlie-Gumbel-Morgenstern distribution for two dependent
gap times with exponential marginal distribution functions with rate parameter 1.

Y1

0,2231 0,5108 0,9163 1,6094

0,2231 0.0656 0.1184 0.1584 0.1856

y2 0,5108 0.1184 0.2176 0.2976 0.3584
0,9163 0.1584 0.2976 0.4176  0.5184
1,6094 0.1856 0.3584 0.5184 0.6656

Table 2 Mean square errors (x100) for the estimators of the bivariate distribution
function. Gap times generated from Gumbel’s bivariate distribution function, with
censoring times generated from model U|0, 3] and a sample size of n = 250.

KMW estimator Y1

0,2231 0,5108 0,9163 1,6094
0,2231  0,0278 0,0447 0,0603 0,0699
y2 05108 0,0467 0,0803 0,1073 0,1316
0,9163 0,0659 0,1049 0,1382 0,1807
1,6094 0,0814 0,1364 0,1744  0,2981

Lin’s estimator
0,2231 0,5108 0,9163 1,6094
0,2231 0,0330 0,0497 0,0628 0,0659
y2 0,5108 0,0531 0,0895 0,1145 0,1272
0,9163 0,0741 0,1216 0,1608 0,1959
1,6094 0,1057 0,1679 0,2358  0,4443

LDM estimator
0,2231 0,5108 0,9163 1,6094
0,2231 0,0280 0,0445 0,0580 0,0627
y2 0,5108 0,0527 0,0847 0,1068 0,1222
0,9163 0,0833 0,1356 0,1611 0,1977
1,6094 0,1030 0,1930 0,2505 0,4453

WCH estimator
0,2231 0,5108 0,9163 11,6094
0,2231 0,0281 0,0444 0,0575 0,0621
ya 0,5108 0,0465 0,0781 0,1003 0,1125
0,9163 0,0653 0,1018 0,1321 0,1555
1,6094 0,0810 0,1328 0,1665 0,2409

3.2 Scenario 2: three gap times

In the second scenario, we consider two Archimedean copulas to generate
data for a model with three recurrent events (leading to three consecutive
gap times): the multivariate Clayton copula and the multivariate Frank cop-
ula [26]. In the first setting, the successive gap times (Y7, Y3, Y3) are simulated
according to the the trivariate Clayton copula. The trivariate Clayton copula
is given by C(y1,v2,y3) = [0, 4~ — 2]/, a € [~1,00[\0. We consider
the Clayton copula with exponential margins with rate parameter 1 and o = 2.
The follow-up time was subjected to right censoring, C, according to uniform
models U [0,3] and U [0, 6]. The first model results in 32% of censoring on the
first gap time Y7, 55% of censoring on the second gap time Y5 and 68% of cen-
soring on the third gap time Y3. The second model decreases these censoring



Nonparametric estimation of the distribution of gap times for recurrent events

levels to 17%, 32% and about 46%, respectively. Because of space limitation,
we only present the results for the first model.

In a third setting, the successive gap times (Y7, Y3, Y3) are simulated accord-
ing to the the trivariate Frank copula. The trivariate Frank copula is given by
Cly1,y2,y3) = —Lin[1+ %} with @ € R\ 0. We consider the Frank
copula with exponential margins with rate parameter 1 and o = 2. Again,
censoring was generated according to uniform models U [0, 3] and U [0, 2]. The
first model results in 25% of censoring on the first gap time Y7, 50% of cen-
soring on the second gap time Y5 and 68% of censoring on the third gap time
Y3. The second model increases these censoring levels to 43%, 69% and about
80%, respectively.

The true values of Fia3(y1,y2,ys3) are reported in Tables 3 and 4. Tables
5 to 12 report the mean square error and standard deviations for the four
estimators. All four methods have worst performance in the right tail, where
the censoring effects are stronger. Results shown in Table 11 suggest that the
WCH estimator leads to better results for estimating the trivariate distribution
Fi23(y1, Y2, y3) for higher values of y; while neither one seems to be uniformly
the best for estimating this quantity for small of mid valued of y;. In these
cases, the KMW estimator seems to be a good alternative. The WCH estimator
is among the four alternative methods the one that deals more efficiently at
points for which y;, y2 and y3 are higher.

For the second scenario (Frank copula), we show in Figure 1 the boxplots of
the estimates of the trivariate probabilities for eight different points (x,y, z),
corresponding to combinations of the percentiles 20%, 40%, 60% and 80%
of the marginal distributions of the gap times. Results are based on 1000
Monte Carlo replicates for the four estimators, with a sample size of n = 250.
The plots shown in this figure were obtained for the censoring level of C' ~
UJ0, 3]. The boxplots shown in this figure reveal some results which agree with
our findings reported in the previous scenario (Clayton copula). From these
plots, it can be seen that all methods have small biases and confirm the good
performance of the proposed estimators. The KMW and WCH methods are
the methods with less bias and variability.

11
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Table 3 True values of the trivariate distribution of the gap times for the Clayton copula.

y1 =0,2231 Y3

0,2231 0,5108 0,9163 1,6094
0,2231 0,1170 0,1358 0,1403  0,1420
y2 05108 0,1358 0,1678 0,1767  0,1802
0,163 0,1403 0,1767 0,1871 0,1912
1,6094 0,1420 0,1802 0,1912 0,1956
y1 = 0,5108
0,2231 0,5108 0,9163 1,6094
0,2231 0,1358 0,1678 0,1767 0,1802
y2 05108 0,1678 0,2443 0,2744  0,2879
0,9163 0,1767 0,2744 0,3193  0,3412
1,6094 0,1802 0,2879 0,3412  0,3682
y1 = 0,9163
0,2231 0,5108 0,9163 1,6094
0,2231 0,1403 0,1767 0,1871 0,1912
yo 05108 0,1767 0,2744 0,3193  0,3412
0,9163 0,1871 0,3193 0,3974  0,4420
1,6094 0,1912 0,3412 0,4420  0,5062
y1 = 1,6094
0,2231 0,5108 0,9163 1,6094
0,2231 0,1420 0,1802 0,1912  0,1956
y2 05108 0,1802 0,2879 0,3412  0,3682
0,9163 0,1912 0,3412 0,4420 0,5062
1,6094 0,1956 0,3682 0,5052 0,6100

Table 4 True values of the trivariate distribution of the gap times for the Frank copula.

y1 = 0,2231 Y3

0,2231 0,5108 0,9163 1,6094
0,2231 0.0246 0,0417 0,0536  0,0617
y2 0,5108 0.0417 0,0718 0,0930 0,1077
0,9163 0,0536 0,0930 0,1212 0,1411
1,6094 0,0617 0,1077 0,1411  0,1649
y1 = 0,5108
0,2231 0,5108 0,9163 1,6094
0,2231 0.0417 0,0718 0,0930 0,1077
y2 05108 00718 0,1264 0,1666 0,1956
0,9163 0,0930 0,1666 0,2229  0,2645
1,6094 0,1077 0,1956 0,2645 0,3166
y1 = 0,9163
0,2231 0,5108 0,9163  1,6094
0,2231 0.0536  0,0930 0,1212 0,1411
y2 0,5108 0.0930 0,1666 0,2229  0,2645
0,9163 0,1212 0,2229 0,3048 0,3683
1,6094 0,1411 0,1645 0,3683 0,4524
y1 = 1,6094
0,2231 0,5108 0,9163 1,6094
0,2231  0.0617 0,1077 0,1411  0,1649
y2 05108 0.1077 0,1956 0,2645 0,3166
0,9163 0,1411 0,2645 0,3683 0,4524
1,6094 0,1649 0,3166 0,4524  0,5697
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Table 5 Mean square error (x100) for the KMW estimator. Trivariate Clayton copula
with censoring times generated from model U[0,3] and a sample size of n = 250.

y1 = 0.2231 Y3

0.2231 0.5108 0.9163 1.6094
0.2231  0.0442 0.0509 0.0576  0.0592
y2 0.5108 0.0491 0.0632 0.0700 0.0712
0.9163 0.0516 0.0664 0.0758 0.0824
1.6094 0.0625 0.0600 0.0737  0.0819
y1 = 0.5108
0.2231 0.5108 0.9163 1.6004
0.2231 0.0513 0.0687 0.0693  0.0697
y2 0.5108 0.0602 0.0992 0.1120 0.1198
0.0163 0.0698 0.1094 0.1317 0.1504
1.6094 0.0752 0.1158 0.1564 0.1781
y1 = 0.9163
0.2231 0.5108 0.9163 1.6094
0.2231 0.0571 0.0735 0.0739  0.0753
y2 0.5108 0.0632 0.1068 0.1080 0.1530
0.9163 0.0770 0.1324 0.1636  0.2454
1.6094 0.0787 0.1454 0.2472  0.4863
y1 = 1.6094
0.2231 0.5108 0.9163 1.6004
0.2231  0.0579 0.0763 0.0768  0.0842
y2 0.5108 0.0704 0.1152 0.1510  0.1809
0.0163 0.0711 0.1676 0.2316 0.3974
1.6094 0.0795 0.1841 0.4675  0.9039

Table 6 Standard deviation for the KMW estimator. Trivariate Clayton copula with
censoring times generated from model U[0,3] and a sample size of n = 250.

y1 = 0.2231 Y3

0.2231 0.5108 0.9163 1.6094
0.2231 0.0210 0.0226 0.0240 0.0243
y2 0.5108 0.0222 0.0251 0.0265 0.0267
0.9163 0.0227 0.0258 0.0272  0.0287
1.6094 0.0250 0.0263 0.0275 0.0286
y1 = 0.5108
0.2231 0.5108 0.9163 1.6094
0.2231 0.0227 0.0263  0.0262 0.0264
y2 0.5108 0.0245 0.0315 0.0335 0.0346
0.9163 0.0264 0.0331 0.0363 0.0387
1.6094 0.0274 0.0339 0.0396 0.0421
y1 = 0.9163
0.2231 0.5108 0.9163 1.6094
0.2231 0.0239 0.0270 0.0272 0.0274
y2  0.5108 0.0251 0.0327 0.0328 0.0390
0.9163 0.0277 0.0364 0.0403 0.0496
1.6094 0.0281 0.0382 0.0498 0.0684
y1 = 1.6094
0.2231 0.5108 0.9163 1.6094
0.2231 0.0241 0.0276 0.0277  0.0291
y2 0.5108 0.0266 0.0338 0.0389 0.0425
0.9163 0.0267 0.0410 0.0481 0.0621
1.6094 0.0282 0.0429 0.0667 0.0774
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Table 7 Mean square error (x100) for the Lin’s estimator. Trivariate Clayton copula with
censoring times generated from model U[0,3] and a sample size of n = 250.

y1 = 0.2231 Y3

0.2231 0.5108 0.9163 1.6094
0.2231 0.0434 0.0485 0.0563 0.0621
y2 0.5108 0.0544 0.0751 0.0948  0.1055
0.9163 0.0685 0.0866 0.1316 0.1981
1.6094 0.0864 0.1203 0.2168  0.6677
y1 = 0.5108
0.2231 0.5108 0.9163 1.6004
0.2231  0.0487 0.0605 0.0595 0.0675
y2 0.5108 0.0648 0.1070 0.1032  0.1348
0.9163 0.0817 0.1114 0.1693  0.3179
1.6094 0.1018 0.1752 0.3643 1.0826
y1 = 0.9163
0.2231 0.5108 0.9163 1.6094
0.2231 0.0545 0.0658 0.0662 0.0607
y2 0.5108 0.0676 0.1096 0.1209 0.1623
0.9163 0.0836 0.1217 0.1793  0.5178
1.6094 0.0902 0.2006 0.4194 1.3850
y1 = 1.6094
0.2231 0.5108 0.9163 1.6004
0.2231  0.0536  0.0620 0.0753  0.0740
y2 0.5108 0.0701 0.1008 0.1555 0.1703
0.0163 0.0846 0.1596 0.2834  0.2950
1.6094 0.0980 0.2279  0.3990  1.0970

Table 8 Standard deviation for the Lin’s estimator. Trivariate Clayton copula with
censoring times generated from model U[0,3] and a sample size of n = 250.

y1 = 0.2231 Y3

0.2231 0.5108 0.9163 1.6094
0.2231 0.0208 0.0220 0.0237  0.0249
y2 0.5108 0.0233 0.0274 0.0308 0.0325
0.9163 0.0261 0.0294 0.0363 0.0446
1.6094 0.0294 0.0359 0.0465 0.0760
y1 = 0.5108
0.2231 0.5108 0.9163 1.6094
0.2231 0.0221 0.0245 0.0244 0.0260
y2 0.5108 0.0254 0.0327 0.0322 0.0367
0.9163 0.0286 0.0334 0.0412 0.0564
1.6094 0.0319 0.0418 0.0604 0.0913
y1 = 0.9163
0.2231 0.5108 0.9163 1.6094
0.2231 0.0234 0.0257 0.0257 0.0246
y2  0.5108 0.0260 0.0331 0.0348 0.0403
0.9163 0.0289 0.0349 0.0423 0.0717
1.6094 0.0301 0.0448 0.0645 0.0921
y1 = 1.6094
0.2231 0.5108 0.9163 1.6094
0.2231 0.0232 0.0249 0.0275 0.0272
y2 0.5108 0.0265 0.0317 0.0393 0.0413
0.9163 0.0291 0.0400 0.0530 0.0506
1.6094 0.0313 0.0478 0.0603 0.0687
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Table 9 Mean square error (x100) for the LDM estimator. Trivariate Clayton copula
with censoring times generated from model U[0,3] and a sample size of n = 250.

y1 = 0.2231 Y3

0.2231 0.5108 0.9163 1.6094
0.2231  0.0471 0.0523 0.0552 0.0644
y2 0.5108 0.0994 0.0975 0.0992  0.0968
0.9163 0.2795 0.2457 0.1777 0.1533
1.6094 0.5425 0.4548 0.3341  0.2402
y1 = 0.5108
0.2231 0.5108 0.9163 1.6004
0.2231  0.0500 0.0622 0.0658 0.0722
y2 0.5108 0.0728 0.1101 0.1252  0.1440
0.9163 0.1919 0.2109 0.2390  0.2585
1.6094 0.6387 0.5895 0.6354  0.5870
y1 = 0.9163
0.2231 0.5108 0.9163 1.6094
0.2231 0.0561 0.0666 0.0684 0.0685
y2 0.5108 0.0712 0.1067 0.1297  0.1666
0.9163 0.1315 0.1464 0.2198  0.3296
1.6094 0.6115 0.4615 0.6247 1.0611
y1 = 1.6094
0.2231 0.5108 0.9163 1.6004
0.2231 0.0538 0.0668 0.0789  0.0755
y2 0.5108 0.0680 0.1054 0.1454 0.1616
0.9163 0.1133  0.1492  0.1967 0.4431
1.6094 05136 0.3332 0.6386  1.9065

Table 10 Standard deviation for the LDM estimator. Trivariate Clayton copula with
censoring times generated from model U[0,3] and a sample size of n = 250.

y1 = 0.2231 Y3

0.2231 0.5108 0.9163 1.6094
0.2231 0.0215 0.0224 0.0233 0.0253
y2 0.5108 0.0235 0.0252 0.0269 0.0281
0.9163 0.0249 0.0241 0.0264 0.0270
1.6094 0.0239 0.0236 0.0236 0.0273
y1 = 0.5108
0.2231 0.5108 0.9163 1.6094
0.2231 0.0223 0.0248 0.0255 0.0268
y2 0.5108 0.0264 0.0322 0.0341 0.0355
0.9163 0.0332 0.0346 0.0395 0.0417
1.6094 0.0358 0.0404 0.0466 0.0484
y1 = 0.9163
0.2231 0.5108 0.9163 1.6094
0.2231 0.0237 0.0258 0.0262 0.0262
y2 0.5108 0.0265 0.0326 0.0359 0.0404
0.9163 0.0336 0.0345 0.0422 0.0525
1.6094 0.0426 0.0499 0.0580 0.0681
y1 = 1.6094
0.2231 0.5108 0.9163 1.6094
0.2231 0.0232 0.0258 0.0281 0.0274
y2  0.5108 0.0259 0.0324 0.0376 0.0390
0.9163 0.0327 0.0373 0.0424 0.0567
1.6094 0.0482 0.0490 0.0627 0.0799
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Table 11 Mean square error (x100) for the WCH estimator. Trivariate Clayton copula
with censoring times generated from model U[0,3] and a sample size of n = 250.

y1 = 0.2231 Y3

0.2231 0.5108 0.9163 1.6094
0.2231 0.0424 0.0465 0.0514  0.0580
y2 0.5108 0.0500 0.0598 0.0696 0.0757
0.9163 0.0559 0.0618 0.0764  0.0832
1.6094 0.0575 0.0687 0.0734  0.0990
y1 = 0.5108
0.2231 0.5108 0.9163 1.6004
0.2231  0.0479 0.0587 0.0587  0.0652
y2 0.5108 0.0633 0.0932 0.0951 0.1025
0.9163 0.0701 0.0966 0.1247  0.1432
1.6094 0.0741 0.1143  0.1738  0.2062
y1 = 0.9163
0.2231 0.5108 0.9163 1.6094
0.2231 0.0542 0.0642 0.0644 0.0618
y2 0.5108 0.0646 0.0969 0.1126 0.1252
0.9163 0.0697 0.0960 0.1396 0.1795
1.6094 0.0700 0.1364 0.2146  0.3473
y1 = 1.6094
0.2231 0.5108 0.9163 1.6004
0.2231  0.0522 0.0620 0.0698  0.0694
y2 0.5108 0.0640 0.0953 0.1259 0.1234
0.0163 0.0724 0.1240 0.1531  0.2427
1.6094 0.0739 0.1433  0.2479  0.4994

Table 12 Standard deviation for the WCH estimator. Trivariate Clayton copula with
censoring times generated from model U[0,3] and a sample size of n = 250.

y1 = 0.2231 Y3

0.2231 0.5108 0.9163 1.6094
0.2231 0.0206 0.0216  0.0227 0.0241
y2 0.5108 0.0224 0.0245 0.0264 0.0275
0.9163 0.0237 0.0248 0.0276  0.0289
1.6094 0.0240 0.0262 0.0271 0.0314
y1 = 0.5108
0.2231 0.5108 0.9163 1.6094
0.2231 0.0219 0.0242 0.0242 0.0255
y2  0.5108 0.0252 0.0305 0.0309 0.0320
0.9163 0.0264 0.0311 0.0353 0.0379
1.6094 0.0272 0.0337 0.0417  0.0447
y1 = 0.9163
0.2231 0.5108 0.9163 1.6094
0.2231 0.0233 0.0253 0.0254  0.0249
y2 0.5108 0.0254 0.0311 0.0336 0.0354
0.9163 0.0264 0.0309 0.0372 0.0424
1.6094 0.0265 0.0370 0.0464 0.0570
y1 = 1.6094
0.2231 0.5108 0.9163 1.6094
0.2231 0.0228 0.0249 0.0264 0.0263
y2  0.5108 0.0253 0.0309 0.0352 0.0351
0.9163 0.0269 0.0351 0.0391 0.0493
1.6094 0.0272 0.0378 0.0498 0.0690
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4 survivalREC structure and functionality

To provide biomedical researchers with an easy-to-use tool for obtaining esti-
mates and corresponding plots of the multivariate distributions in recurrent
event data, we developed an R package called survivalREC. This software
enables users to implement all nonparametric estimators discussed in Section
2, including the estimators conditionally on current or past covariates. The
package, available at the CRAN repository at https://cran.r-project.org/web/
packages/survivalREC/ comprises 15 functions, which are summarized in
Table 13. Briefly, there are two main types of functionalities: (i) to estimate
bivariate distribution functions in recurrent events with the KMWdf, LDMdf,
LINdf, WCHAf and IPCWdf functions; and (ii) the corresponding extension for
the estimation with three gap times with KMW3df, LDM3df, LIN3df and WCH3df.
Plots for each method are also displayed using a “multidf” object, which can
be obtained through the multidf function. Finally, the remaining auxiliary
functions, Beran, KM, KMW and NWW, are included inside the previous functions.

Table 13 Summary of functions in the survivalREC package.

Function Description

multidf Create a multidf object.

KMwdf Estimation of the bivariate distribution function based
on Kaplan-Meier Weights.

LDMAf Estimation of the bivariate distribution function based
on landmarking.

LINdf Estimation of the bivariate distribution function using
Lin’s estimator.

WCHAf Estimation of the bivariate distribution function based
on the Weighted Cumulative Hazard estimator (WCH).

KMW3df Estimation of distribution with three gap times.
Method based on Kaplan-Meier Weights.

LDM3df Estimation of distribution with three gap times.
Method based on landmarking.

LIN3df Estimation of distribution with three gap times.
Method based on the extension the Lin’s estimator.

WCH3df Estimation of distribution with three gap times.

Method based on the extension of the Weighted cumu-
lative hazard estimator (WCH).

IPCWdf Estimation of the bivariate distribution function based
on the Inverse Probability of Censoring Weighting
estimator (IPCW).

plot.multidf Plot for an object of class multidf.

Beran Computes the conditional survival probability of the
response, given the covariate under random censoring.

KM Computes the Kaplan-Meier product-limit of survival.

KMW Returns a vector with the Kaplan-Meier weights.

NWW Returns a vector with the Nadaraya-Watson weights.
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4.1 Application to Bladder Cancer Study Data

Bladder cancer is one of the most common genitourinary malignant disease
being more common in men than in women. Prognosis of this disease is, in
most cases, related to risk factors that include smoking, family history, frequent
bladder infections, and exposure to certain chemicals. Another significant prog-
nostic factor for these patients’ overall survival is the presence of a recurrence.
In fact, bladder cancer is a disease with a high percentage of patients who have
superficial tumors, which tend to recur, but which are generally not fatal.

The bladder cancer study data set [7] includes 118 patients that entered the
study with superficial bladder tumors. Tumors were removed transurethrally
and patients were assigned to one of three treatments (placebo, pyridoxine, or
thiotepa) and followed until the end of the study. The time period under con-
sideration is over four years since the entry of the first subject (48 months).
Many of these patients had multiple recurrences of tumors during the study,
and new tumors were removed at each visit. The time between tumor recur-
rence and death or censoring was recorded for each patient. The maximum
observed number of recurrences is 9.

In this subsection, we will use data on the 85 subjects with nonzero follow-
up who were assigned to either thiotepa or placebo, with respective sizes of
47 and 38. Summary statistics for the two treatments are given in Table 14.
Among the 85 patients, 47 relapsed at least once, among these, 29 had a second
recurrence, 22 had a third recurrence and 14 had four or more recurrences
(16.5%). Thus, in our study only the first three recurrence times 77, T» and
T3 (or the corresponding gap times Y7, Y5 and Y3) are considered. Data sets
considering two, three and four recurrences are available in the survivalREC
package. To illustrate our methods we will use data with only the first three
recurrences for any patient. Bellow, is an excerpt of the data.frame with one
row per individual.

> library(survivalREC)
> data("bladder4state")

> head(bladder4state)

id y1 d1 y2 d2 y3 d3 rx size
111 0 0 0 0 0 1 3
2 2 4 0 0 0 0 0 1 1
3 3 7 0 0 0 0 0 1 1
4 410 0 0 0 O O 1 1
5 5 6 1 4 0 0 0 1 1
6 614 0 0 0 O O 1 1

> dim(bladder4state)
[1] 85 9
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The movement among the recurrent events is given by the variables y; and
d;, with i = {1,--- ,4}, which represent, respectively, the four gap times and
their corresponding censoring indicators (1 for an event and 0 for censoring).
The other three variables are the patient id (“id”), the type of treatment (“rx”,
1 = placebo and 2 = thiotepa), and the size (c¢m) of the largest initial tumour
(“size”).

Table 14 Recurrent experiences for placebo and thiotepa groups in Stage I bladder
cancer clinical trial.

Recurrences
Treatment 0 1 2 3 4 5 >5
Placebo 18 10 4 6 2 4 3
Thiotepa 20 8 3 2 2 2 1

One important goal of these studies is to evaluate the effect on future prog-
nosis of a locoregional recurrence (LR), since it is well known that the increased
risk after a recurrence decreases significantly with increasing time since LR. In
bladder cancer studies, a LR is called an early recurrence if the cancer comes
back 6 to 12 months after treatment, and a late recurrence otherwise. The
curves depicted in the first row of Figure 2 show the results for the four pro-
posed methods for the bivariate distribution function (Fiz(z,y)) when z = 6
or x = 12 are fixed. With the exception of the LIN estimator, all the remain-
ing three methods shown in these plots report roughly the same estimates. In
fact, a specific issue with the LIN estimator is visible at the top-right of these
two figures, because the displayed curves are not monotonically decreasing in
y. This is a consequence of the specific reweighting of the data that is used
in this approach, which may lead to problems of interpretation at the right
tail of the distribution. The remaining plots in Figure 2 (second and third
rows) are intended to demonstrate the behavior of the four different methods
for estimating the trivariate distribution (Fis5(z,y, z) when different values of
x, y, and z are used). The analysis of these plots revealed that, besides the
LIN method, the LDM method also has the drawback of occasionally providing
estimated curves that are clearly non-monotone for the trivariate distribution
function and, therefore, their practical use could be less recommended. The
WCH method and the method based on the Kaplan-Meier weights (KMW) both
show plausible curves.

The WCH method provides a nice approach that can be used to estimate
the conditional distribution function of the second gap time (time to second
recurrence) conditional on the first gap time (time to the first recurrence). The
plot shown in Figure 3 depicts the estimates of P(Y2 < y|¥; < 12) and P(Y; <
y|Y1 > 12) using the WCH method. The estimated curves reveal that patients
with a late recurrence (after 12 months) have a reduced risk of developing a
second recurrence.
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In what follows, we explain how to use the survivalREC package to get
estimates and plots for the bivariate distribution and for the distribution func-
tions with three gap times. For illustration purposes, we will consider the WCH
method, and the first (top left) and last (bottom right) plots shown in Figure
2. First, to get the corresponding plots for the bivariate distribution func-
tion we need to transform the original data set into a “multidf” format class.
This can be done using the multidf function that has as arguments timel,
time, eventl and status. These arguments correspond to the soujorn time in
the initial state and the global time, as well as their corresponding censoring
indicator variables.

> b3state<-multidf (gapl=bladder4state$yl, eventl=bladder4dstate$dl,
gap2=bladder4state$y2,status=bladderdstate$d2,
size=bladder4state$size)

> class(b3state)

[1] "multidf"

To obtain the nonparamentric estimates for bivariate distribution, we have
the functions KMWdf, LDMdf, LINdf and WCHAf.

As an example, suppose we are interested in obtaining the estimates for
Fis(z = 6,y = 20) for the method WCH. The input codes for this case are the
following:

> WCHAf (b3state, x=6, y=20)
[1] 0.2078159

It is also possible to show the estimated curves of the bivariate distribution
function given a specific value for the first gap time. This can be done through
the plot function for “multidf” objects. The following input codes show how
to obtain the graphic for method WCH in which the first gap time (¢1) takes
value 6.

> plot(x=b3state, t1=6, method="WCH", type = "s", ylab=’Prob.’,
ylim=c(0,.4), xlab="F12(x=6,y)’)
> legend("bottomright" , legend=c("WCH"), col=c("Black"), lty=1,
cex=0.8)

The procedures to extend the estimation to three gap times are quite similar
to the bivariate case. First, we must create a new object using the multidf
function, called for this example, b4dstate. As we can see, the b4dstate object
gives us the cumulative gap times timel, time2 and time, as well as, the
corresponding censoring indicators (eventl, event2 and status). Finally, to
obtain estimates, the WCH3df function can be used by adding a new parameter,
z, to the third gap time.
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Fig. 2 Estimates of the bivariate (first row) and trivariate (second and third rows) distri-
bution using the four proposed methods. Bladder recurrence cancer data.

5 Conclusions and final remarks

There have been several contributions to the estimation of the marginal and
joint distributions in the context of recurrent events. The methods based on
the inverse probability of censoring weights introduced by [15] and the method
based on Kaplan-Meier weights [35] are among the best ones for estimating
the bivariate distribution function.
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Fig. 3 Estimates of the distribution of the second gap time (time to second recurrence)
conditional on the time to the first recurrence. Estimated curves based on the WCH approach.
Bladder recurrence cancer data.

In this paper, we introduce new nonparametric methods for the estimation
of these quantities. Simulations show that most of the proposed estimators
for the bivariate distribution function are virtually unbiased. The extension of
these methods to several gap times is also discussed.

To provide biomedical researchers with an easy-to-use tool, we have also
developed the survivalREC package, which is available at the CRAN repos-
itory, which enables one to implement all proposed methods. Details on the
usage of its functions and main functionalities are also introduced in the paper
through an illustrative example of the analysis of recurrence events in a bladder
cancer study.

Another issue of practical interest that is studied in this paper is the esti-
mation of these quantities conditionally on current or past covariate measures.
A feasible nonparametric solution to this problem is proposed. The proposed
method is based on local smoothing by the means of kernel weights that are
either based on a local constant (i.e., Nadaraya-Watson) or a local linear
regression.
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