
On Local Convergence of Stochastic Global
Optimization Algorithms?

Eligius M. T. Hendrix1[0000−0003−1572−1436] and Ana Maria A. C.
Rocha2[0000−0001−8679−2886]

1 Computer Architecture, Universidad de Málaga, 29080 Málaga, Spain
eligius@uma.es

2 ALGORITMI Center, University of Minho, 4710-057 Braga, Portugal
arocha@dps.uminho.pt

Abstract. In engineering optimization with continuous variables, the
use of Stochastic Global Optimization (SGO) algorithms is popular due
to the easy availability of codes. All algorithms have a global and lo-
cal search character, where the global behaviour tries to avoid getting
trapped in local optima and the local behaviour intends to reach the low-
est objective function values. As the algorithm parameter set includes a
final convergence criterion, the algorithm might be running for a while
around a reached minimum point. Our question deals with the local
search behaviour after the algorithm reached the final stage. How fast
do practical SGO algorithms actually converge to the minimum point?
To investigate this question, we run implementations of well known SGO
algorithms in a final local phase stage.

Keywords: Stochastic Global Optimization; Evolutionary algorithms;
Convergence; Nonlinear optimization

1 Introduction

In many engineering applications [6], we consider a black-box global optimization
problem

f∗ = min
x∈X

f(x), (1)

where f(x) is a continuous function and X ⊂ Rn is a feasible region. The idea of
the black-box optimization is that function evaluations imply running an external
(black-box) routine that may take minutes or hours to provide the evaluated
objective function value. In engineering applications, often the question is to
obtain a good, but not necessarily optimal solution within a day, several days,
or a week.

The choice of engineers for solution algorithms is often driven by ease of avail-
ability and the attractiveness of the intuitive behaviour. Therefore, Stochastic

? This paper has been supported by The Spanish Ministry (RTI2018-095993-B-I00) in
part financed by the European Regional Development Fund (ERDF) and by FCT –
Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/00319/2020.

2 Hendrix and Rocha

Global Optimization (SGO) algorithms based on evolutionary equivalences have
been most popular over the last decades. According to the generic description
of [13], a new iterate to be evaluated is generated according to:

xk+1 = Alg(xk, xk−1, . . . , x0, ξ), (2)

where ξ is a pseudo-random variable and index k is the iteration counter. De-
scription (2) represents the idea that a next point xk+1 is generated based on
the information in all former points xk, xk−1, . . . , x0 and a random effect ξ based
on generated pseudo-random numbers.

If the algorithm behaves well, it might converge to a global optimum solution
or even several of them. In our investigation, we focus on the situation where an
algorithm converges to one of the global minimum points x∗ ∈ argminx∈X f(x)
which is interior with respect to the feasible region. In fact, it is better to switch
to a nonlinear optimization algorithm from the iterate or one of the population
points in that case. However, as the user is not always aware that the algorithms
reached the final stage, it may continue for a while up to reaching a predefined
stopping criterion.

In nonlinear optimization, the concept of convergence speed is well defined,
see e.g., [3]. It deals with the convergence limit of the series xk. Let x0, x1, . . . , xk, . . .
converge to point x∗. The largest number α for which

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖α

= β <∞ (3)

gives the order of convergence, whereas β is called the convergence factor. In
this terminology, the special instances are

– linear convergence with α = 1 and β < 1
– quadratic convergence with α = 2 and 0 < β < 1
– superlinear convergence: 1 < α < 2 and β < 1, i.e. β = 0 if α = 1 in (3).

How is this limit behaviour for SGO algorithms? First of all, we are dealing
with (pseudo-)random iterates that may or not behave in a Markovian way in
the limit situation. Second, many SGO algorithms are population algorithms
as sketched in the generic Algorithm 1. This means that stopping criteria in

Algorithm 1 GPOP(X, f,N)

Generate set P = {p1, . . . , pN} of N random points in X and evaluate
repeat

Generate a set of trial points X based on P and evaluate
Replace P by a selection of points from P ∪ X

until (stopping criterion)

limit (when no maximum number of evaluations is set) may be based on the

Convergence of SGO 3

convergence of the distance in the population (swarm) maxp,q∈P ‖p− q‖, or the
function value maxp,q∈P |f(p)−f(q)|. The first criterion is not appropriate when
the population clusters around several minimum points. In [5], the convergence
behaviour of Controlled Random Search (CRS) is studied also for the case where
we have convergence to several minimum points.

In this study, we focus on the behaviour of six SGO algorithms for conver-
gence to one minimum point of a smooth function. This facilitates considering
the limit situation as the behaviour over a convex quadratic function

f(x) = f(x∗) +
1

2
xTH(x∗)x, (4)

where H(x∗) is the Hessian in the minimum point x∗.
According to [5], the speed of convergence of a SGO algorithm is determined

by the so-called success rate

Sk := P

(
f(xk+1) < max

p∈P
f(p)

)
, (5)

as the probability that the next generated iterate is better than the worst func-
tion value in the population. Our research question is how Sk is behaving when
practically used population SGO algorithms solve problem (4). Specifically

1. Are the algorithms going to behave in a stationary way, i.e. is Sk converging?
2. How do the algorithms compare with respect to convergence speed on the

same Hessian?
3. How do the algorithms behave for varying dimension and condition number

of the Hessian H(x∗) and are algorithms sensitive to rotation, i.e. does their
behaviour depend on the eigenvectors?

The latter is related to the roundness of the ellipsoidal level sets of function (4).
To investigate these questions, in Section 2, we describe the experimental

design of instances that vary in dimension and condition number of the Hessian.
Section 3 provides pseudo-code for each investigated algorithm and presents its
convergence behaviour. Section 4 summarizes our findings.

2 Experimental Setting

In order to measure the convergence, we focus on the worst function value in the
population Pk at iteration k

fworstk := max
p∈Pk

f(p)

and measure the success rate as the number of points in the population, that
are better than the worst value of the last population Pk−1:

Sk :=
1

N

∑
p∈Pk

(f(p) < fworstk−1), (6)

4 Hendrix and Rocha

where N is the population size. The starting population P0 consists of a uniform
random sample over the level set defined by P0 := {x ∈ Rn|xTHx ≤ 1}. The
same starting population is used over different SGO algorithms. The population
algorithms have different moments to update the population. CRS [11] updates
the population after every iteration (function evaluation), i.e. |X | = 1. It decides
to replace the worst point in the population or not. In an algorithm based on
swarms, the population is updated after all points in the population have been
moved, i.e. |X | = N . For the latter type of algorithms, we will update the
measured success rate after replacement of the population.

The condition number and eigenvectors of the Hessian H allow us to vary
the ellipsoidal shape of the initial population and the experimental setting. We
are going to use 7 instances as depicted in Table 1, where the dimension n of the
problem and the roundness of the level set are varied. The latter is related to the
condition number of the Hessian which is the ratio of the largest and smallest
eigenvalue in our context, [3].

For the two dimensional cases, we consider 3 instances of the Hessian; the
identity matrix In, the Hessian of the Trid3 quadratic function HTn, which is
said to be difficult for population algorithms and a skewed matrix HS in two

dimensional space: HT2 :=

(
2 −1
−1 2

)
and HS :=

(
101 −99
−99 101

)
. Moreover, we

also extend the identity matrix and Trid function to dimension n = 2, 5, 10. In
general, we inspect the development of the indicators up to complete conver-
gence, i.e. the final population is practically one point, or at most up to 1000×n
function evaluations. We use the same seed for the generated pseudo-random
numbers for all experiments with a long run instead of repeating the run sev-
eral times. This implies that the starting population P0 is the same for each
algorithm.

Table 1: Experimental setting varying the Hessian in the minimum point
Hessian I2 I5 I10 HS HT2 HT5 HT10

n 2 5 10 2 2 5 10
cond nr 1 1 1 100 3 13.92 48.37

3 Evaluation of Algorithms

We investigate the behaviour of a total of six stochastic population algorithms.
In the sequel, we leave out the iteration counter k from their pseudo-code de-
scription.

3 https://www.sfu.ca/~ssurjano/trid.html

https://www.sfu.ca/~ssurjano/trid.html

Convergence of SGO 5

3.1 Controlled Random Search

Price [11] introduced CRS in 1979. It has been widely used and also modified into
many variants by himself and other researchers. Investigation of the algorithm
shows mainly numerical results. Algorithm 2 describes the initial scheme. It
generates points in a Nelder-Mead-way on randomly selected points from the
current population.

Algorithm 2 CRS(f,X,N)

Generate and evaluate a set P of N random points uniformly on X
repeat

Find the worst point q in the population P, q ← argmaxp∈P f(p)
fworst ← f(q)
select at random a subset {y0, . . . , yn} from P
x← 2

n

∑n
i=1 yi − y0 and evaluate f(x)

if (f(x) < fworst)
Replace, in P, point q by x

until (stopping criterion)

In later versions, the number of parents n+ 1 is a parameter m of the algo-
rithm. A so-called secondary trial point, which is a convex combination of the
parent points is generated when the first type of points does not lead to sufficient
improvement. In that version, a rule keeps track of the success rate.

Table 2: Order of magnitude reached function value for the worst point in the
population fworst after 1000n evaluations and average success rate S for CRS

Hessian I2 I5 I10 HS HT2 HT5 HT10

dim n 2 5 10 2 2 5 10
pop N 50 50 100 50 50 50 100
fworst 10−11 10−10 10−8 10−9 10−9 10−10 10−7

S 0.47 0.43 0.47 0.47 0.47 0.43 0.47

We run the algorithm over all test instances. The population size isN = 50 for
n ≤ 5 and 10n otherwise. Figure 1 gives insight in the course of the algorithm for
the Trid function in dimension n = 2. In all dimensions the algorithm practically
converges to the minimum point. In dimension n = 2 after 500 evaluations and
in dimension n = 10 after 3000 iterations, the maximum value of the population
reaches a value of about 0. The average success rate is S = 0.469 for both cases
HT10 and I10, as illustrated in Fig. 2. This is no coincidence. The specific be-
haviour if CRS is that the generation mechanism with the same (pseudo) random
numbers is the same if dimension and population size N is fixed independent of
the shape of the Hessian. This means, for n = 2, the same average success rate is

6 Hendrix and Rocha

Convergence SGO

SUMMARY

CRS
I am using the favorite structure of reporting of Ana

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

initial population

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

200 iterations

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

400 iterations

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

final population after 2000 iterations

Fig. 1: Population development of CRS for the Trid Hessian HT2, N = 50.

reached for I2, HT2 and HS , i.e. S = 0.466. In 5-dimensional space, for both HT5

and I5, the reached value fworst after 5000 iterations is about fworst≈ 10−10,
but the average success rate is exactly the same, i.e. S = 0.430.

What we learn from this experiment is that the local search behaviour of
CRS is independent of the Hessian in the minimum point and that the average
success rate, although varying, does not reveal a trend during the iterations.
Moreover, it is quite independent of the dimension n and population size N .
Of course the speed of convergence goes down with the population size N as
analyzed in [5]. We expect this constant behaviour to be quite unique among
the stochastic population algorithms.

3.2 Uniform Covering by Probabilistic Rejection

An alternative for CRS which focuses on only generating points around global
minimum points to get a uniform cover of the lower level set is called Uniform
Covering by Probabilistic Rejection (UCPR) introduced in 1994, [9]. The method
has mainly been developed to be able to cover a level set S(f∗ + δ) which
represents a confidence region in nonlinear parameter estimation. The idea is to
cover with a sample of points P as if they are from a uniform distribution or
with a so-called Raspberry set R := {x ∈ X | ∃p ∈ P, ‖x − p‖ ≤ c × r}, where
r is a small radius following the idea of the average nearest neighbor distance

Convergence of SGO 7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

success rate
fworst

Fig. 2: Development of CRS for the Trid Hessian HT10. In orange the reached
function value of the worst point in the population and in blue the success rate.

for approximating the inverse of the average density of points over S and c a
parameter, see Algorithm 3. We will use a value of c = 1.3 in the experiments
as suggested in [4].

Algorithm 3 UCPR(f,X,N, c)

Generate and evaluate a set P, of N random points uniformly on X
repeat

Find the worst point q in the population P, q ← argmaxp∈P f(p)
fworst← f(q)
determine the average inter-point distance r in P
Raspberry set R := {x ∈ X | ∃p ∈ P, ‖x− p‖ ≤ c× r}
Generate and evaluate x from a uniform distribution over R
if (f(x) <fworst)

Replace, in P, point q by x
until (stopping criterion)

Like CRS, the UCPR algorithm has a theoretical fixed success rate with
respect to spherical functions that does not depend on level fworst= maxp∈P f(p)
that has been reached. The success rate goes down with increasing dimension,
as the probability mass goes to the boundary of the level set if dimension n
increases. Therefore, more of the Raspberry set sticks out. Moreover, it suffers
more from highly skewed Hessians, i.e. the condition number differs from 1.

We are going to measure these effects running the algorithm for the 7 in-
stances in Table 1 using the same population size as for CRS. First, the devel-
opment of the population for the highest condition number case HS is sketched
in Fig. 3. One can observe a fast convergence and the aim to cover all the level
set with the population.

8 Hendrix and Rocha UCPR
On H_S

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

initial population

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

200 iterations

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

400 iterations

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

final population after 2000 iterations

Fig. 3: Population development of UCPR on Hessian HS .

The results for the 7 instances in Table 3 show us that UCPR has a strong
local search behaviour, but in contrast to CRS, the success rate is going down
with the dimension. Moreover, we can observe, that the behaviour is far more
affected by the condition number. Actually, for the 2-dimensional cases, the
algorithm converges too fast to a non-optimal point. For the largest cases, it
seems not to have reached the optimum after 10,000 evaluations, due to a low
success rate. Probably the algorithm requires a better tuning of the parameter c
to the dimension n. In the presented theory, this should be correct automatically
due to the nearest neighbour distance concept. Figure 4 depicts the relatively
constant behaviour of the success rate for the Trid instance HT5.

Table 3: Order of magnitude reached function value for the worst point in the
population fworst after 1000n evaluations and average success rate S for UCPR

Hessian I2 I5 I10 HS HT2 HT5 HT10

dim n 2 5 10 2 2 5 10
pop N 50 50 100 50 50 50 100
fworst 10−2 10−8 0.40 10−4 0.01 10−8 0.14

S 0.94 0.41 0.05 0.92 0.93 0.40 0.09

Convergence of SGO 9

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

success rate
fworst

Fig. 4: Development of UCPR for the Trid Hessian HT5. In orange the reached
function value of the worst point in the population and in blue the success rate.

3.3 Genetic Algorithm

Although evolutionary algorithms existed before, Genetic Algorithms (GA) be-
came known after the appearance of the book by Holland in 1975 [7] followed
by many other works such as [2]. The generic population algorithm generates at
each iteration a set of trial points based on a terminology from biology and na-
ture: evolution, genotype, natural selection, reproduction, recombination, chro-
mosomes etc. For instance, the average inter-point distance in a population is
called diversity. The basic concepts as depicted in Algorithm 4 are the following

– the objective function is transformed into a fitness value,
– the points in the population are called individuals,
– points of the population are selected for making new trial points: parent

selection for generating offspring,
– candidate points are generated by combining selected points: crossover,
– candidate points are varied randomly to become trial points: mutation,
– new population is composed from selecting from old and new points.

Algorithm 4 GA(f,X,N,M)

Generate and evaluate a set P, of N random points uniformly on X
repeat

Parent selection: select points used for generating candidates
Crossover: create M candidates from selected points
Mutation: vary candidates towards M trial points (offspring)
Selection: create a new population out of P and the M trials

until (stopping criterion)

The fitness F (x) of a point giving its objective function value f(x) to be mini-
mized can be taken via a linear transformation using extreme values maxp∈P f(p)

10 Hendrix and Rocha

and minp∈P f(p). A higher fitness provides a higher probability to be selected as

a parent. The probability for selecting point p ∈ P is often taken as F (p)∑
q∈P F (q) .

Parameters of the algorithm deal with choices on: fitness transformation, the way
of probabilistic selection, the number of parents, etc. We used the ga function
from matlab2018b® implementation with the default values for the parameters
to measure the convergence. Actually, we found that we have to include bounds
to the search space in a box (bounds on the variables) around the initial popula-
tion P0 in order to have convergence of the complete population. The observed
convergence values can be found in Table 4.

In earlier experiments, we were surprised to observe that using smaller pop-
ulation size, it appeared possible that duplicates of the same points appeared
in the population. Probably therefore, every now and then a refreshment of the
population takes place, as can be observed very well for the higher dimensional
cases in Fig. 5. It may be clear that the algorithm, in contrast to CRS and
UCPR, also accepts points that are worse in the population. Basically, the be-
haviour means that up to a stopping criterion is reached, GA keeps on a global
search behaviour, even when the population settled around the minimum point.
This can be observed very well for the HT10 case in Fig. 5, where the population
converged after evaluation 8000 and then diverged again towards the total search
space. There is no notable distinction with respect to the condition number of
the Hessian.

Table 4: Order of magnitude reached function value fworst for the worst point
in the population after 1000n evaluations and average success rate S for GA

Hessian I2 I5 I10 HS HT2 HT5 HT10

dim n 2 5 10 2 2 5 10
pop N 50 50 200 50 50 50 200
fworst 10−5 10−5 0.05 10−4 10−6 10−6 11.04

S 0.98 0.98 0.99 0.98 0.93 0.97 0.97

3.4 Particle Swarm Algorithm

Kennedy and Eberhart in 1995 [8], came up with an algorithm with a terminology
of “swarm intelligence” and “cognitive consistency”. In each iteration of the
algorithm, each member (particle) of the population P, called swarm, is modified
and evaluated. The traditional nonlinear programming modification by direction
and step size is termed “velocity”. Instead of considering P as a set, one better
thinks of a list of elements, pj , j = 1, . . . , N . So we will use the index j for the
particle. Besides its position pj , also the best point zj found by pj is stored.
A matrix of modifications (velocities) [v1, . . . , vN] is updated at each iteration
containing random effects. The velocity vj is based on points pj , zj and the
best point found so far xb = argminj f(zj) in the complete swarm. In the next

Convergence of SGO 11

Hessian based on Trid, HT10 Identity matrix I10

Fig. 5: Behaviour of GA for n = 10. In orange the reached function value fworst
of the worst point in the population and in blue the success rate.

iteration, simply pj ← pj + vj as sketched in Algorithm 5. We will use the
notation D(x) for a diagonal matrix with the elements of x on the diagonal.

Algorithm 5 PSO(f,X,N, ω)

Generate and evaluate a set P, of N random points uniformly on X
Z ← P; vj ← 0, j = 1, . . . , N
repeat

xb ← argminz∈Z f(z), fb ← f(xb)
for (j = 1 to N) do

generate vectors r and u uniformly over [0, 1]n

vj ← ωvj + 2D(r)(zj − pj) + 2D(u)(xb − pj)
pj ← pj + vj ; evaluate f(pj)
if (f(pj) < f(zj))

zj ← pj
until (stopping criterion)

To study its convergence behaviour, we used the particleswarm function
from matlab2018b® with its default parameter values. Like for GA, we also
put bounds on the search space around the initial population P0 to avoid the
swarm to go far away from the initial population. We were surprised by a far
stronger local search behaviour of the swarm towards the minimum point than
the GA algorithm. Very small values were reached. This effect is not directly clear
from the pseudo-code description in Algorithm 5. The question with respect to
the condition number, is very relevant for the PSO algorithm, as we can observe
in Fig. 6. The geometric mechanism of generating new points is not insensitive
to scaling of the swarm. First of all, we were surprised by the strange acceptance
of worse points for I10 after about 2400 iterations. This is not a random effect,
i.e. we repeated the same run with many random numbers and observed the

12 Hendrix and Rocha

Table 5: Order of magnitude reached function value fworst of the worst point in
the population after 1000n evaluations and average success rate S for PSO

Hessian I2 I5 I10 HS HT2 HT5 HT10

dim n 2 5 10 2 2 5 10
pop N 20 50 100 20 20 50 100
fworst 10−20 10−12 10−6 10−9 10−24 10−10 3.25

S 0.97 0.98 0.98 0.97 0.97 0.98 0.98

same bubble in the graph, corresponding to a diversity action. More impressive
is the behaviour with respect to instance HT10. It seems the swarm keeps on
expanding cyclically hindering a clear convergence like for instance I10.

Hessian based on Trid, HT10 Identity matrix I10

Fig. 6: Behaviour of PSO for dimension n = 10. In orange the reached function
value of the worst point in the population and in blue the success rate.

3.5 Differential Evolution

The algorithm, published by Storn and Price in 1997 [12], has a big impact on
application in engineering environments. Probably its schedule is very attractive
due to its simplicity. For each point p in the population, a trial point is created
based on three other points in the population using a so-called differential weight
β, which we will draw uniformly from a box. Each component i is replaced with
a certain so-called crossover probability γ. If the new trial point is better, then
individual p is replaced by the trial point.

This means that like in CRS and UCPR, only better points are allowed in the
new population. Like in these algorithms, when the population P is caught by a
basin around a minimum, no global search in other regions is done. One can find
an analysis of the non-convergence from some specific populations in [10]. This

Convergence of SGO 13

Algorithm 6 DE(f,X,N, γ, [B,B])

Generate and evaluate a set P, of N random points uniformly on X
repeat

for (p ∈ P) do
draw three points (a, b, c) randomly from P
pick component j uniformly from {1, . . . , n}
generate β uniformly over [B,B]n

trial point x← p and set component xj ← aj + βj(bj − cj)
for the other components (i 6= j) do

with probability γ set component xi ← ai + βi(bi − ci)
if (f(x) < f(p))

p← x
until (stopping criterion)

is in contrast to the Genetic algorithm we have seen and the Particle Swarm
algorithm. In a Markovian sense, the basin around the minimum works as an
attraction state set. This means that we expect a strong local search behaviour
of the algorithm.

Table 6: Order of magnitude reached function value fworst for the worst point
in the population after k = 1000n evaluations and average success rate S for DE

Hessian I2 I5 I10 HS HT2 HT5 HT10

dim n 2 5 10 2 2 5 10
pop N 20 50 100 20 20 50 100
fworst 10−23 10−9 10−4 10−5 10−17 0.04 0.61

S 0.99 0.99 0.99 0.96 0.98 0.98 0.99

A description of the used experimental variant4 is depicted in Algorithm 6.
The population size was taken as N = min(10n, 100), the crossover probability
was taken as γ = 0.2 and the differential weight is taken from the interval
[B,B] = [0.2, 0.8].

The strong local search behaviour after the population reaches a minimum
point can be observed in Table 6. From the reproduction mechanism, it is
more clear than for the PSO or GA algorithms that the process is thought of
component-wise. This means that the population does not automatically adapt
to the shape of the level set. We can observe this effect very well in Fig. 7.
For the high condition number instance HT10, the algorithm does not find im-
provements easily for the worst point in the population for a long time. For the
instance I10 with spherical level sets, the probability of finding better points is
relatively constant.

4 Taken from https://yarpiz.com/231/ypea107-differential-evolution.

https://yarpiz.com/231/ypea107-differential-evolution

14 Hendrix and Rocha

Hessian based on Trid, HT10 Identity matrix I10

Fig. 7: Behaviour of DE for dimension n = 10. In orange the reached function
value of the worst point in the population and in blue the success rate.

3.6 Firefly Algorithm

The Firefly algorithm (FA) was introduced by Yang in 2008 [14], as a variant
of the PSO algorithm based on nature inspired mechanisms. Each point in the
population is moved towards all better points having a so-called higher lightness
in the population adding a random mutation. Then all individuals are evaluated
again.

Algorithm 7 FA(f,X,N, α, β, γ)

Generate a set P of N random points uniformly on X
repeat

Evaluate and rank f(p) for all p ∈ P
for all (p ∈ P) do

for all (q ∈ P with f(q) ≤ f(p)) do
generate a pseudo random number ε from the Normal distribution

p← p+ βe−γ‖p−q‖
2

+ αε
until (stopping criterion)

For the experiments, we used the matlab code that Yang published in [14]
with parameter values α = 0.25 (randomness), β = 0.20 (attraction parame-
ter) and γ = 1 (absorption coefficient). These last two parameters are used in
the exponential function for calculating the attractiveness between fireflies. The
implementation requires bounds on the variables in order to use a good scal-
ing. However, we found that for the instances we use this is not relevant due
to the way the initial population is taken uniformly over the level set with a
function value of 1. Actually, the algorithm can easily be extended to deal with
constrained problems, [1].

Convergence of SGO 15

Table 7: Order of magnitude reached function value fworst of the worst point in
the population after 1000n evaluations and average success rate S for FA

Hessian I2 I5 I10 HS HT2 HT5 HT10

dim n 2 5 10 2 2 5 10
pop N 20 50 100 20 20 50 100
fworst 10−7 10−4 0.20 10−6 10−7 10−4 0.32

S 0.98 0.99 0.99 0.97 0.98 0.98 0.99

In contrast to the particle swarm algorithm, no moves are based on the best
point in the population. Basically, the population focuses towards the center of
the population with only additional random effects. Therefore, we expect the
algorithm like UCPR to shape better along the level set of the function. This
effect can be observed in Fig. 8, where the algorithm seems not affected by
the condition number of the Hessian. We observe however, that for the high
dimensional cases the population initially deviates from the initial level set. As
depicted in Table 7, it has a strong convergence to the minimum point.

Hessian based on Trid, HT10 Identity matrix I10

Fig. 8: Behaviour of FA for dimension n = 10. In orange the reached function
value of the worst point in the population and in blue the success rate.

4 Conclusions

We investigated the convergence behavior towards a minimum point of 6 pop-
ulation metaheuristics when the initial population starts around the point. We
varied the dimension and condition number of the Hessian in the minimum point.
The algorithms CRS, UCPR and DE only accept better points within the new
population, whereas GA, PSO and FA keep a global search behavior. For GA,

16 Hendrix and Rocha

this is due to periodic refreshment of the population. We found that GA and
PSO require a bounding around the initial population in order not to diverge.

CRS appears completely insensitive to the shape of the Hessian and converges
strongly to one point, whereas UCPR and DE are far more sensitive and for the
highest condition number converge much slower. The FA algorithm converges
slow for all cases, whereas the GA and PSO do not converge well when the level
sets around the minimum are not round.

References

1. Costa, M.F.P., Francisco, R.B., Rocha, A.M.A.C., Fernandes, E.M.G.P.: Theo-
retical and practical convergence of a self-adaptive penalty algorithm for con-
strained global optimization. Journal of Optimization Theory and Applications
174, 875–893 (2017)

2. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York
(1991)

3. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press,
New York (1981)

4. Hendrix, E.M.T., Klepper, O.: On uniform covering, adaptive random search and
raspberries. Journal of Global Optimization 18, 143–163 (2000)

5. Hendrix, E.M.T., Ortigosa, P., Garcia, I.: On success rates for controlled random
search. Journal of Global Optimization 21, 239–263 (2001)

6. Hendrix, E.M.T., Tóth, B.G..: Introduction to Nonlinear and Global Optimization.
Springer, New York (2010)

7. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor (1975)

8. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of
IEEE International Conference on Neural Networks, pp. 1942–1948. Piscataway,
NJ (1995)

9. Klepper, O., Hendrix, E.M.T.: A comparison of algorithms for global characteri-
zation of confidence regions for nonlinear models. Environmental Toxicology and
Chemistry 13(12), 1887–1899 (1994)

10. Locatelli, M., Vasile, M.: (Non) convergence results for the differential evolution
method. Optimization Letters 9(3), 413–423 (2014)

11. Price, W.: A controlled random search procedure for global optimization. The
Computer Journal 20, 367–370 (1979)

12. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization 11(4),
341–359 (1997)

13. Törn, A., Žilinskas, A.: Global Optimization, Lecture Notes in Computer Science,
vol. 350. Springer, Berlin (1989)

14. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Lunivers Press (2008)

	On Local Convergence of Stochastic Global Optimization Algorithms
	Introduction
	Experimental Setting
	Evaluation of Algorithms
	Controlled Random Search
	Uniform Covering by Probabilistic Rejection
	Genetic Algorithm
	Particle Swarm Algorithm
	Differential Evolution
	Firefly Algorithm

	Conclusions

