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Abstract The inference in multi-state models is traditionally performed under a Markov
assumption that claims that past and future of the process are independent given the present
state. This assumption has an important role in the estimation of the transition probabilities.
When the multi-state model is Markovian, the Aalen-Johansen estimator gives consistent
estimators of the transition probabilities but this is no longer the case when the process is
non-Markovian. Usually, this assumption is checked including covariates depending on the
history. Since the landmark methods of the transition probabilities are free of the Markov
assumption, they can also be used to introduce such tests by measuring their discrepancy
to Markovian estimators. In this paper, we introduce tests for the Markov assumption and
compare them with the usual approach based on the analysis of covariates depending on his-
tory through simulations. The methods are also compared with more recent and competitive
approaches. Three real data examples are included for illustration of the proposed methods.

Keywords Censoring ·Markov assumption ·Multi-state models · Transition probabilities

1 Introduction

Multi-state models are the most suitable models for the description of complex longitudi-
nal survival data involving several events of interest (Andersen et al., 1993 [1]; Hougaard
2000 [2]; Meira-Machado et al., 2009 [3]; Meira-Machado and Sestelo, 2019 [4]). A multi-
state model is a model for a stochastic process, which is characterized by a finite number
of states and the possible transitions among them. In general, the multi-state analysis deals
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with inference for transition intensities and transition probabilities. The inference for tran-
sition intensities often includes regression analysis which usually involves the modeling of
each transition intensity separately. A popular choice is to model each transition intensity
using a proportional hazards model assuming the process to be Markovian. This assump-
tion claims that given the present state, the future evolution of the process is independent
of the states previously visited and the transition times among them; in other words, the
history of the process is summarized by the state occupied at time t. However, it has been
quoted that the Markov assumption is violated in some applications (Andersen (2000, 2002)
[5][6]). In such cases, if interest is on multi-state regression, one alternative approach is to
use a semi-Markov model in which the future of the process does not depend on the current
time but rather on the duration in the current state. Semi-Markov models are also called
“clock reset” models, because each time the patient enters a new state, time is reset to 0.
The Markov assumption also allows the construction of simple estimators for the transition
probabilities, since individuals with different past histories become comparable (Aalen and
Johansen, 1978 [7]). Unfortunately, when this assumption is violated, the use of the so-called
Aalen-Johansen estimators for transition probabilities can induce bias, and thus may not be
recommended. Substitute estimators for the Aalen-Johansen estimator for a non-Markov
process were introduced for the first time by Meira-Machado et al. (2006) [8]. These au-
thors showed that their estimators may behave more efficiently (lower mean squared errors)
than the Aalen-Johansen when the Markov assumption does not hold. Allignol et al. (2014)
[9] used a competing risks process (which is Markov) to introduce a related non-Markov es-
timator. Both Meira-Machado et al. (2006) [8] and Allignol et al. (2014) [9] proposals have
the drawback of requiring that the support of the censoring distribution contains the support
of the lifetime distribution, an assumption that is unlikely to hold in most medical applica-
tions. This line of work has been recently revisited by de Uña-Álvarez and Meira-Machado
(2015) [11] who propose estimators based on subsampling, also referred to as landmark-
ing, which are consistent regardless the Markov condition and the referred assumption on
the censoring support. Putter and Spitoni (2018) [12] recover the work by de Uña-Álvarez
and Meira-Machado (2015) [11] to propose alternative non-Markovian estimation methods
which are based on the landmark methodology combined with the Aalen-Johansen estimate
of the state occupation probabilities derived from the same subsamples. The ideas of sub-
sampling were also used by Titman (2015) [10] who extended and improved the estimator
proposed by Allignol et al. (2014) [9].

To perform inference for transition intensities or for the transition probabilities it is es-
sential to check if the Markov assumption is tenable. This assumption is usually checked
by including covariates depending on the history (Kay, 1986 [13]; Andersen et al. 2000,
2002 [5][6]). For the progressive illness-death model, for example, the Markov assumption
is particularly relevant for modeling death transition after disease and consequently to assess
whether this transition rate is affected by the time in the previous state. Alternative meth-
ods, based on a local Kendall’s tau, measuring the future-past association along time, were
proposed by Rodrı́guez-Girondo and de Uña-Álvarez (2012, 2016) [14][15]. These methods
can be used for three-state progressive and illness-death models but the extension of these
tests to general multi-state models is not straightforward and thus, flexible methods that may
be used in general models are required. A very recent work by Titman and Putter (2020) [16]
considers new approaches to check this assumption. In one of these approaches a general
test is developed by considering summaries from families of log-rank statistics where pa-
tients are grouped by the state occupied at different times. Chiou et al. (2018) [17] also
considered an equivalent problem for testing Markoviaty (in the progressive illness-model)
but involving tests for dependent truncation.
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The organization of this paper is as follows. The following section provides an intro-
duction to the methodological background and introduces tests for checking the markov
assumption. In Section 3, we evaluate the performance of the proposed methods and com-
pare them with competive methods through simulations studies. In Section 4, the use of
the proposed methods is illustrated by the analysis of an illness-death model describing the
disease process of breast and colon cancer patients. Liver cirrhosis data is used to illustrate
the application of the proposed methods to more general models. Main conclusions and
discussion are reported in Section 5.

2 Multi-state models

A multi-state model is a model for a time continuous stochastic process (X(t), t ∈ [0,∞)),
taking values in the state space S = 1, . . . ,K, with K finite, and fulfilling some sim-
plification assumptions. This multi-state process is fully characterized through transition
probabilities between states h and j, that we express by phj(s, t|Hs−) = P (X(t) =
j|X(s) = h,Hs−), for h, j ∈ S and s < t, where Hs− denotes the history of the multi-
state process up to s. In particular, the history of the process has the information of the
different transitions that occur to an individual over time, as well as the time at which these
transitions take place. The process is also characterized through the transition intensities
λhj(t|Ht−) = lim∆t→0 P (X(t+∆t) = j|X(t) = h,Ht−)/∆t which can be considered
as a generalization of the hazard function in survival analysis. The cumulative transition
intensities are defined as Λhj (t) =

∫ t
0
λhj(u)du, with Λhh(t) = −

∑
j 6=h Λhj(t) the

(h, h)th diagonal element of the K ×K matrix Λ (t). Similarly, define the K ×K matrix
P(s, t) with the (h, j)th element phj(s, t).

When the multi-state process is Markov, the transition intensities simplifies to λhj(t) =
lim∆t→0 P (X(t+∆t) = j|X(t) = h)/∆t and the transition probabilities to phj(s, t) =
P (X(t) = j|X(s) = h). In particular this means that under the Markov assumption,
P (X(t) = j|X(s) = h,X(u) = y) = P (X(t) = j|X(s) = h) for any 0 ≤ u < s
and y ∈ S, and thus, that the future of the process after time s depends only on the state
occupied at time s, not on the arrival time to that state or on the states previously visited.

For Markovian processes, the transition probability matrix P(s, t) can be recovered from
the transition intensities through product integration (Aalen and Johansen, 1978 [7]):

P(s, t) =
∏

s<u≤t

(I + dΛ(u))

where I is the K×K identity matrix, and where the cumulative transition intensities can be
estimated by the Nelson-Aalen estimator (Andersen et al., 1993 [1])

Λ̂hj(t) =

∫ t

0

Nhj(t)

Yh(t)
,

whereNhj(t) is the number of observed direct transitions from state h to state j up to time t
and Yh(t) is the number of individuals under observation in State h just before time t. Then,
the Aalen-Johansen estimator takes the form

P̂ (s, t) =
∏

s<u≤t

(
I + dΛ̂(u)

)
For simple models like the illness-death model, we can give explicit expressions for the

elements of P̂ (s, t). Expressions for general models are not possible.
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1. Disease-free  2. Diseased

3. Dead

Fig. 1 The progressive illness-death model.

2.1 The progressive illness-death model

Without loss of generality and for the purpose of simplicity, from this point on, we will con-
sider the progressive illness-death model depicted in Figure 1. This model is encountered in
many medical studies for describing the progression of patients undergoing a given illness,
particularly in cancer studies such as for our two real data examples. Many time-to-event
data sets from medical studies with multiple end points can also be reduced to this generic
structure. In this model, individuals are at risk of death in each transient state (states 1 and 2).
The illness-death model is not necessarily Markovian, since the prognosis for an individual
in the intermediate state may be influenced by the subject specific arrival time.

The progressive illness-death model is characterized by three transition intensities: the
disease intensity λ12(t), the mortality intensity without the disease λ13(t) and the mortality
intensity among the diseased individuals, λ23(t, t12). The later transition intensity may de-
pend on t12, the time of the disease occurrence in the illness-death process: λ23(t, t12) =
lim∆t→0 P (X(t +∆t) = 3|X(t) = 2, T12 = t12)/∆t where T12 represent the potential
transition times from State 1 to State 2. The process is called Markov if λ23(t, t12) is inde-
pendent of t12, otherwise it is called semi-Markov (i.e., future evolution not only depends
on the current state, but also on the entry time into that same state).

In the particular case of the progressive illness-death model the transition probabilities
can be obtained from the transition intensities as follows (Beyersmann, Schumacher and
Allignol, 2012)[18]

p11(s, t) = exp
(
−
∫ t
s
(λ12(u) + λ13(u)) du

)
p22(s, t | t12) = exp

(
−
∫ t
s
λ23(u, t12)du

)
p12(s, t) =

∫ t
s
p11(s, u−)λ12(u)p22(u, t | u)du.

Here, p22(s, t | t12) denotes the transition probability p22 conditionally on a particular entry
time t12. If the process is Markov, h23(t, t12) = h23(t) and p22(s, t | t12) = p22(s, t).
The two other transition probabilities p13(s, t) and p23(s, t) can be estimated from the two
obvious relations that exist in the progressive illness-death model: p11(s, t) + p12(s, t) +
p13(s, t) = 1 and p22(s, t) + p23(s, t) = 1.

The Aalen-Johansen estimator is the standard nonparametric estimator of the transi-
tion probabilities for Markov processes. Explicit formulae of the Aalen-Johansen estimator
(Aalen and Johansen (1978) [7]) for the illness-death model are given are given by the fol-
lowing expressions:
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p̂ AJ
11 (s, t) =

∏
s<ti≤t

(
1− dN1(ti)/Y1(ti)

)
,

p̂ AJ
22 (s, t) =

∏
s<ti≤t

(
1− dN23(ti)/Y2(ti)

)
,

and

p̂ AJ
12 (s, t) =

∑
s<ti≤t

p̂ AJ
11 (s, t−i )

dN12(ti)

Y1(ti)
p̂ AJ
22 (ti, t)

Where dN1(ti) = dN12(ti) + dN13(ti) for the total number of transitions out of state
0 and let Y1(ti) and Y2(ti) be the number of healthy (i.e. in state 1) and diseased (i.e. in
state 2) individuals, respectively, just prior to time ti. Since p̂ AJ

11 (s, t) and p̂ AJ
22 (s, t) are

Kaplan-Meier estimators, their variance may be estimated by Greenwood’s formula. The
expression for the variance of p̂ AJ

12 (s, t) can be found in (Borgan, 2005) [19].
When the multi-state model is Markovian, the Aalen-Johansen estimator gives con-

sistent estimators of the transition probabilities. This estimator may also be used to con-
sistently estimate occupation probabilities for non-Markov multi-state models (Datta and
Satten, 2001 [20]). When the process is not Markovian, the Aalen-Johansen estimator of
the transition probabilities may introduce some bias and therefore they may be inappropri-
ate. Estimators that do not rely on the Markov assumption were first introduced by Meira-
Machado et al. (2006) [8]. The proposed estimators were defined in terms of multivariate
Kaplan-Meier integrals, and proven to be more efficient than the Aalen-Johansen estimators
in case of strong violation of the Markov assumption. Since then, there has been several con-
tributions on the topic but two recent papers stand out. The first paper, by de Uña-Álvarez
and Meira-Machado (2015) [11], uses the ideia of subsampling, also referred to as landmark-
ing (Van Houwelingen, 2007) [21], which is based on (differences between) Kaplan-Meier
estimators derived from a subset of the data consisting of all subjects observed to be in the
given state at the given time. To be specific, in the illness-death model, given the time point
s, to estimate p1j(s, t) for j = 1, 2, 3 the landmark analysis is restricted to the individuals
observed in State 1 at time s; whereas, to estimate p2j(s, t), j = 2, 3, the landmark analysis
proceeds from the sample restricted to the individuals observed in State 2 at time s. The
non-Markov illness-death model is characterized by the joint distribution of (Z, T ), where
Z is the sojourn time in the initial state 1 and T is the total survival time. Under censoring,
only the censored versions of Z and T , along with their corresponding censoring indica-
tors, are available. Define Z̃ = min(Z,C) and T̃ = min(T,C), where C is the potential
censoring time, which is assumed to be independent of (Z, T ). For the illness-death model,
we may then formally introduce the landmark estimators introduced by de Uña-Álvarez and
Meira-Machado (2015) [11] as follows

p̂ LM
11 (s, t) = Ŝ

KM(s)
0 (t), p̂ LM

22 (s, t) = ŜKM[s](t)

p̂ LM
12 (s, t) = ŜKM(s)(t)− ŜKM(s)

0 (t), p̂ LM
23 (s, t) = 1− ŜKM[s](t)

p̂ LM
13 (s, t) = 1− ŜKM(s)(t)

where ŜKM(s)
0 and ŜKM(s) are the Kaplan-Meier estimators for the distributions of Z and

T , respectively, but computed from the subsample S1 =
{
i : Z̃i > s

}
; whereas ŜKM[s]
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is the Kaplan-Meier estimator of the distribution of T but computed from the subsample

S2 =
{
i : Z̃i ≤ s < T̃i

}
.

The subsampling approach combined with the Aalen-Johansen estimate of the state oc-
cupation probabilities was later used by Putter and Spitoni (2018) [12] to introduce the
termed Landmark Aalen-Johansen estimator. The landmark Aalen-Johansen estimators of
the transition probabilities may then be introduced as

p LMAJ
hj (s, t) = π̂LM(s)

∏
s<u≤t

(
I + dΛ̂LM(u)

)
with π̂LM(s) a 1 ×K vector with π̂LM(s) = 1 for the jth element, and other values equal
to 0. Here, the estimator of the cumulative transition intensities, Λ̂LM, is Nelson-Aalen es-
timator computed on a landmark data set which selects subjects observed to be in State h
at time s (Putter and Spitoni, 2018) [12]. Though the two landmark methods (abbreviated
by LM and LMAJ) do not rely on the Markov condition, they usually lead to estimators with
higher variability. Since the Aalen-Johansen reports a smaller variance in estimation, this
approach should be preferred over non-Markovian estimators when one is confident of the
Markov assumption.

From now on we will use the abbreviation AJ for the Aalen- Johansen estimator, LM for
the LandMark estimator proposed by de Uña-Álvarez and Meira-Machado (2015) [11], and
LMAJ for the LandMark Aalen-Johansen estimator proposed by Putter and Spitoni (2018)
[12].

It is worth mentioning that, in the progressive illness-death model, the results of the three
estimators of the transition probability p11(s, t) are equal. Minor differences are appreciated
when comparing the LM and LMAJ estimators for the remaining transition probabilities.

2.2 Tests for the Markov assumption

Traditionally, the Markov condition is verified by modeling particular transition intensities
on aspects of the history of the process using a proportional hazard model (Kay, 1986) [13].
In the progressive illness-death model, for example, we can examine whether the time spent
in the initial state is important on the transition from the disease state (the intermediate
state) to death (the absorbing state) or not. For doing that, let λ23(t) denote the hazard
function of T for those individuals going from State 2 to State 3, and let Z denote the
sojourn time in State 1. Fitting a Cox model λ23(t | Z) = λ23,0(t) exp(βZ), where λ23,0
is the baseline hazard and β a regression parameter, we now need to test the null hypothesis,
H0 : β = 0, against the general alternative, H1 : β 6= 0. This would assess if the transition
rate from the disease state into death is unaffected by the time spent in the initial state. It is
worth to remember that the semiparametric Cox proportional hazard model is based on the
assumption of proportional hazards and that it assumes a linear effect on the hazard for the
covariate. Both may fail in practice, and consequently this approach may be unable to detect
the lack of Markovianity.

Since the landmark methods (LM) for estimating the transition probabilities proposed
by de Uña-Álvarez and Meira-Machado (2015) [11], and (LMAJ) by Putter and Spitoni
(2018) [12] are free of the Markov assumption, they can also be used to introduce local tests
for Markovianity by measuring their discrepancy to Markovian Aalen-Johansen estimators
(AJ), for a fixed value s > 0. Though the two landmark methods behave similarly, the
LMAJ can be used in general multi-state models which can be considered an advantage.
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These ideas were recently used by Titman and Putter (2020) [16] to introduce tests based
on summaries from families of log-rank statistics where patients are grouped by the state
occupied at a given (landmark) time.

In this paper we also introduce a local test based on the areas under the two curves, AUC,
(i.e., the curves of the estimated transition probabilities) that can be used for a general multi-
state model. We propose the use of the following test statistic based on direct nonparamet-

ric estimates of the transition probabilities, U =
∫ τ
s

(
p̂ LMAJ
hj (s, u)− p̂ AJ

hj (s, u)
)
du,

where τ is the upper bound of the support of T . The test statistic can be seen as the differ-
ence between the areas under the estimated transition probability curve for the non-markov
LMAJ estimator and the AJ estimator. Intuitively, the test statistics should be close to zero
if the process is Markov. The Markov assumption becomes less likely as the test statistic
get further away from zero in either direction. Because of censoring, both estimators (LMAJ
and AJ) may reveal high variability in the right tail which may inflate the test statistic. In
addition to this issue, since landmarking is based on reduced data, the maximum point for
which the LMAJ transition probability estimate is strictly defined may be lower than the
maximum point for AJ. To overcome these problems, we suggest that in the computation of
U one should use the minimum between the upper bound for which LMAJ is defined and
the 90% percentile of the total time for the upper limit in the integral that defines the test
statistic. In the progressive illness-death model, besides the transition probability p̂23(s, t),
also p̂12(s, t) can be used to test the Markov assumption. For general multi-state models,
one can use transitions depending on history (i.e., phj(s, t) depending on subject specific
arrival time at state h > 1). In fact, if the goal is to decide which estimator is the most
appropriate to use to estimate a specific transition probability phj(s, t), then the test statistic
should be the one based on that same transition probability.

Note that if the null hypothesis of Markovianity holds, the value of U should be close
to zero. To approximate the distributions of the test statistic, bootstrap methods with a large
number of resamples, M , are used. We generate M bootstrap samples and for each sam-
ple calculate the test statistic U?. Then, according to large sample asymptotic distribution
theory, when M , the number of replicates goes to infinity, we have the following statistic
distributed approximately as a standard normal distribution with a mean of 0 and variance
of 1: V = (U−0)/σ?(U?) ∼ N(0, 1). The null hypothesis will be rejected if V > v(1−α/2)
or V < v(α/2), where v(α/2) and v(1−α/2) denote the α/2 and 1 − α/2 percentiles, re-
spectively, of a normal distribution with a mean of 0 and variance of 1.

In this paper we also propose a global test which can be achieved by combining the re-
sults obtained from local tests over different times. The testing procedure used here involves
the following steps:

Step 1: Using the original sample of the illness-death model, obtain the percentiles 5, 10,
20, 30 and 40 of the sojourn time in State 1. For general multi-state models, we recommend
the use of the same percentiles of the subject specific arrival time at the corresponding state.

Step 2: For each of the values s obtained in Step 1, obtain the probability values for the
local method as explained before.

Step 3: Obtain the mean of the probability values for each closest pairs; i.e., the mean
of the probability values of the following pairs of percentiles: (5, 10), (10, 20), (20, 30) and
(30, 40).

Step 4: Get the minimum between the four probability values obtained in Step 3.
Step 1 considers a global test based on local tests computed at low percentiles of subject

specific arrival times at the corresponding state. This is based on our experience that the
failure of Markovianity often occurs for small transition times. Besides the hypothesis tests
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proposed above, in Section 4 we also propose graphical local tests that can be used to check
the Markov assumption in the illness-death model as well as for more complex multi-state
models, possibly with reversible transition between states. These graphical tests can be used
to validate the default values proposed in Step 1 or to propose alternative values for which
a discrepancy between the two methods (LMAJ and AJ) is more evident. The procedure de-
scribed in Step 3 can be used to ensure that there is a discrepancy between the two estimated
curves in a large range of time values.

To provide the biomedical researchers with an easy-to-use tool to compute the proposed
methods, we are currently developing an R package which will be available at the CRAN
repository. The package will allow users to choose different percentiles for the sojourn time
in State 1 (Step 1). A preliminary version of this library will be provided upon request.

3 Simulation study

In this section we report results from simulation studies, where the aim is to compare the
finite sample performance of the proposed methods to test the Markov assumption in a pro-
gressive illness-death model. Due to computing time issues the simulations shown here only
address this model. However, an application of the proposed methods to a more complex
multi-state model is presented in Section 4 from a real data set. To simulate the data in
the progressive illness-death model, we assume that all individuals are in the initial state
(State 1) at time t = 0, and that these individuals may follow two possible paths: pass-
ing through the intermediate state (State 2), at some specific time; or going directly to the
absorbing state (State 3). Transition times for those leaving the initial state are generated
from the cause-specific hazards given by λ12(t) = 0.29/(t+ 1) and λ13(t) = 0.024 × t,
where t > 0 denotes the time since the start point. To study the Markov assumption, three
different scenarios are considered corresponding to different hazards that are used to gen-
erate death times for individuals passing through the intermediate state: λ123(t) = 0.05,
λ223(t) = 0.25× (t12 +1)−0.8 and λ323(t) = 0.04× log(t+1), where t12 is the transition
time to the intermediate event. The first scenario is Markov since the hazard is independent
of time, whereas the second is semi-Markov and the third is non-Markov. Censoring times
were generated from uniform distributions. Two samples size were considered for each sce-
nario (n = 250 and n = 500).

We also consider a fourth scenario in which the traditional test, based on the Cox pro-
portional hazard model may fail. In this scenario, the transition times are generated from the
following cause-specific hazards given by λ12(t) = 1/(2− t), λ13(t) = 2/(3− 2t) for
0 ≤ t < 2 and 0 ≤ t < 1.5, respectively. To generate death times for individuals passing
through the intermediate state we consider λ23(t) = exp (−(t12 − 1)2). This simulated
scenario is the same as that described in Rodrı́guez-Girondo and Uña-Álvarez (2016)[15].
Note that this scenario is non-Markov because of the dependence on the transition time to the
intermediate state but in this case a misspecification of the Cox model is expected because
of the shape of the hazard λ23(t) with a parabolic influence of the predictor.

Table 1 reports the rejection proportions of the proposed tests for the first three scenarios
with sample sizes n = 250 and n = 500. Random censoring was simulated using uniform
distributions U [0, 60] and U [0, 30]. The first censoring distribution led to medium censor-
ing percentages (between 41% and 47%) whereas these percentages increase in the second
censoring distribution (between 45% and 62%). Four tests are considered in this table: (i)
local test based on the area under the transition probabilities p̂12(s, t) and p̂23(s, t), denoted
by AUC(s); (ii) local test proposed by Titman and Putter (2020) [16], based on the log-rank,
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Table 1 Rejection proportions for nominal level of 5% of the local tests for fixed values s = 1, s = 2,
s = 4, s = 6 and s = 8 (AUC(s) and LR(s)). Rejection proportions for the global tests (AUC and Cox) are
also included. Censoring times uniformly distributed between 0 and 30, and between 0 and 60.

Global
Scenario Trans. Prob. n C Method 1 2 4 6 8 AUC / LR Cox

Markov p̂12(s, t) 250 U[0, 30] AUC(s) 0.055 0.055 0.064 0.073 0.062 0.073 0.046
500 U[0, 30] AUC(s) 0.066 0.057 0.069 0.072 0.076 0.057 0.045

p̂23(s, t) 250 U[0, 30] LR(s) 0.051 0.047 0.054 0.051 0.056 0.043 0.046
500 U[0, 30] LR(s) 0.036 0.048 0.054 0.052 0.057 0.052 0.045

p̂23(s, t) 250 U[0, 30] AUC(s) 0.055 0.043 0.049 0.046 0.033 0.076 0.046
500 U[0, 30] AUC(s) 0.060 0.052 0.061 0.065 0.055 0.056 0.045

Semi-Markov p̂12(s, t) 250 U[0, 30] AUC(s) 0.765 0.762 0.611 0.437 0.286 0.845 0.757
500 U[0, 30] AUC(s) 0.964 0.961 0.881 0.701 0.530 0.992 0.977

p̂23(s, t) 250 U[0, 30] LR(s) 0.872 0.891 0.739 0.520 0.296 0.960 0.757
500 U[0, 30] LR(s) 0.996 0.999 0.976 0.862 0.635 1.000 0.977

p̂23(s, t) 250 U[0, 30] AUC(s) 0.759 0.744 0.536 0.316 0.131 0.862 0.757
500 U[0, 30] AUC(s) 0.967 0.955 0.855 0.648 0.449 0.993 0.977

non-Markov p̂12(s, t) 250 U[0, 30] AUC(s) 0.172 0.284 0.308 0.292 0.258 0.354 0.382
500 U[0, 30] AUC(s) 0.336 0.458 0.508 0.502 0.468 0.602 0.701

p̂23(s, t) 250 U[0, 30] LR(s) 0.225 0.268 0.267 0.241 0.191 0.414 0.382
500 U[0, 30] LR(s) 0.369 0.464 0.515 0.479 0.384 0.696 0.701

p̂23(s, t) 250 U[0, 30] AUC(s) 0.172 0.240 0.226 0.176 0.114 0.302 0.382
500 U[0, 30] AUC(s) 0.348 0.452 0.474 0.420 0.332 0.574 0.701

Markov p̂12(s, t) 250 U[0, 60] AUC(s) 0.048 0.038 0.048 0.050 0.072 0.066 0.058
500 U[0, 60] AUC(s) 0.052 0.052 0.050 0.042 0.070 0.062 0.038

p̂23(s, t) 250 U[0, 60] LR(s) 0.055 0.055 0.061 0.053 0.054 0.043 0.058
500 U[0, 60] LR(s) 0.064 0.067 0.053 0.054 0.052 0.046 0.038

p̂23(s, t) 250 U[0, 60] AUC(s) 0.048 0.036 0.042 0.044 0.068 0.062 0.058
500 U[0, 60] AUC(s) 0.050 0.054 0.050 0.032 0.068 0.062 0.038

Semi-Markov p̂12(s, t) 250 U[0, 60] AUC(s) 0.918 0.946 0.84 0.736 0.600 0.980 0.926
500 U[0, 60] AUC(s) 0.998 1.000 0.982 0.940 0.876 1.000 0.940

p̂23(s, t) 250 U[0, 60] LR(s) 0.961 0.970 0.943 0.847 0.708 0.998 0.926
500 U[0, 60] LR(s) 1.000 1.000 0.999 0.999 0.961 1.000 0.940

p̂23(s, t) 250 U[0, 60] AUC(s) 0.918 0.928 0.812 0.664 0.490 0.982 0.926
500 U[0, 60] AUC(s) 0.996 1.000 0.982 0.942 0.848 1.000 0.940

non-Markov p̂12(s, t) 250 U[0, 60] AUC(s) 0.282 0.382 0.442 0.410 0.382 0.504 0.368
500 U[0, 60] AUC(s) 0.474 0.652 0.724 0.724 0.656 0.754 0.692

p̂23(s, t) 250 U[0, 60] LR(s) 0.260 0.341 0.431 0.412 0.376 0.546 0.368
500 U[0, 60] LR(s) 0.504 0.650 0.739 0.711 0.663 0.861 0.692

p̂23(s, t) 250 U[0, 60] AUC(s) 0.276 0.344 0.404 0.330 0.288 0.472 0.368
500 U[0, 60] AUC(s) 0.506 0.648 0.692 0.704 0.656 0.758 0.692

for the transition probability p̂23(s, t), denoted by LR(s); (iii) global test based on the area
under the transition probabilities (AUC) or the global test base on the log-rank statistics
(LR) (Titman and Putter (2020) [16]); (iv) global test based on the Cox model (Cox). The
global test LR is based on the mean value of the log-rank statistics as described in Titman
and Putter (2020) [16]. The local tests were evaluated at five fixed values s = 1, s = 2,
s = 4, s = 6 and s = 8. Results in this table were obtained by the empirical rejection
proportions from 1000 trials at the significant level of 0.05.

Results show that, for the semi-Markov and non-Markov scenarios, the power of the tests
is higher for lower censoring percentages, increasing with the sample size. The bootstrap test
based on the areas under the curves (of the transition probabilities) (AUC) and the local test
based on log-rank statistics both reveal their capacity to identify the differences between
curves in the semi-Markov scenario showing higher rejection probabilities for lower values
of s. Note that in this scenario, departures between the two curves (obtained from AJ and
LMAJmethods) are expected to decrease as the difference t−s increase. In non-Markov sce-
nario, departures between the two curves (obtained for the transition probabilities p̂12(s, t)
and p̂23(s, t) from AJ and LMAJ methods) denote a great improvement when considering a
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sample size of n = 500, but with rejection probabilities below 0.50 for all s, with the excep-
tion for censoring uniform distribution U [0, 60]. Both local tests also obtain low rejection
proportions (near the nominal level of 5%) when the data is generated from a Markov sce-
nario. Note that we expect rejection proportions about 0.05 in this case. The results based
on the log-rank statistic also confirm the good accuracy of this method in agreement with
the conclusions shown in Titman and Putter (2020) [16]. In general for all scenarios, sample
sizes and censoring distributions, results between the log-rank test and the local AUC test
are quite similar being able to distinguish the inequality between AJ and LMAJ curves in
semi-Markov and non-Markov scenarios, while providing low rejection proportions when
the process is indeed Markovian. When comparing the results for the two local tests based
on different transition probabilities, p̂12(s, t) and p̂23(s, t), it can be seen that they provide
similar values but slightly higher when based on the computation of the transition proba-
bility p̂12(s, t). This behavior may be explained by the number of observations from which
the transition probability is computed, those in State 1 at time s for p̂12(s, t), and those in
State 2 at the same time for p̂23(s, t). For completeness purposes, Table 1 also show the
results from the three global tests. These global tests present satisfactory results in all sce-
narios, reporting rejection proportions of about 5% for the Markov scenario, and high levels
of rejection proportions for the semi-Markov and non-Markov scenarios. These results are
in accordance with those obtained using a local test based on the area under the curves of the
estimated transition probabilities. As expected, in general, the performance of the proposed
methods is improved for scenarios with less censoring percentages (i.e., for censoring times
following an uniform distribution U [0, 60]). This improvement is not so obvious for the
method based in the Cox model. We can also notice that the global log-rank and the AUC
global tests behave similarly in all cases. Some of these patterns, for censoring uniform
distribution U [0, 30], can be clearly seen in Figure 2.

Table 2 reports the rejection proportions of the four proposed tests for the fourth sce-
nario, non-Markovian with an hazard with a quadratic predictor. Random censoring was
simulated from uniform distributions U [0, τG] for τG equal to 8.1 and 4.6. The model with
τG = 8.1 results in 12% censoring on the first gap time and in 24% for the total time. The
model with τG = 4.6 increases these censoring levels to 20% and about 40%, respectively.
In this case, the global method based on the Cox proportional model has a bad performance
which can be explained by failure of the linear specification of the Cox model. It can also
be seen that the power of this test does not increase substantially with the sample size, as it
happens in semi-Markov and non-Markov scenarios shown in Table 1. Results shown in Ta-
ble 2, reveal that the tests (local and global) based on the area under the curves have a good
performance, revealing reasonable levels of rejection proportions of Markovianity. It can be
seen that the power of these tests increase with the sample size. Results in terms of power
performance for non-Markovian scenario, hazard with a quadratic predictor are shown in
Figure 3. The plots show the rejection probabilities for the transition probability p̂23(s, t)
as a function of s. Simulation results also confirm the similarity of the local and global tests
between the log-rank and the AUC test for both scenarios.

Rodrı́guez-Girondo and Uña-Álvarez (2016)[15] also introduced methods for checking
the Markov assumption for the progressive illness-death model. The performance of their
methods was studied through simulation studies. Among the methods for simulating data,
their model 2 is the one that we aim to reproduce in our scenario 4, making some com-
parisons possible. As in their case, our simulations reveal the inability of the Cox model
to identify the failure of the Markovianity with proportion rejections varying between 5%
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Fig. 2 Rejection probabilities for testing the null hypothesis of the Markov condition for the three tests
for nominal level 5%. Markov, semi-Markov and non-Markov scenarios (upper, middle, and lower panels,
respectively), for n = 250 and n = 500 (left and right panels, respectively). Results for the transition
probability p̂23(s, t). Censoring times uniformly distributed between 0 and 30.

and 10%. As in our case, the methods proposed in Rodrı́guez-Girondo and Alvarez (2016)
revealed an increased power of the global tests as the sample size increases and with a de-
crease in the censoring percentage. Among the proposed tests, the wCn method, based on
the local Kendall’s tau τi, appears to be the one with better accuracy to distinguish the non-
markovianity of the process either for subjects who pass directly from State 1 to State 2 or
for those that have passed through the intermediate state. Comparing the results of the AUC
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Table 2 Rejection proportions for nominal level of 5% of the local tests for fixed values s = 0.2, s = 0.6,
s = 1, s = 1.2, s = 1.4 and s = 1.6 (AUC(s) and LR(s)). Rejection proportions for the global tests (AUC,
LR and Cox) are also included. Non-Markovian scenario, hazard with a quadratic predictor.

Global
Scenario Trans. Prob. n Method 0.2 0.6 1 1.4 1.6 AUC/LR Cox

Non-Markov p̂12(s, t) 250 AUC(s) 0.270 0.260 0.042 0.186 0.256 0.360 0.074
quadratic 500 AUC(s) 0.492 0.504 0.094 0.278 0.468 0.708 0.094

predictor p̂23(s, t) 250 LR(s) 0.348 0.283 0.053 0.169 0.264 0.439 0.074
500 LR(s) 0.638 0.542 0.065 0.299 0.489 0.815 0.094

C ∼ U[0, 8.1] p̂23(s, t) 250 AUC(s) 0.324 0.314 0.064 0.128 0.162 0.430 0.074
500 AUC(s) 0.538 0.532 0.010 0.228 0.376 0.742 0.094

Non-Markov p̂12(s, t) 250 AUC(s) 0.250 0.276 0.072 0.092 0.186 0.410 0.092
quadratic 500 AUC(s) 0.422 0.455 0.112 0.122 0.256 0.638 0.107

predictor p̂23(s, t) 250 LR(s) 0.294 0.257 0.063 0.115 0.161 0.305 0.092
500 LR(s) 0.535 0.449 0.059 0.172 0.287 0.647 0.107

C ∼ U[0, 4.6] p̂23(s, t) 250 AUC(s) 0.238 0.294 0.080 0.062 0.098 0.420 0.092
500 AUC(s) 0.416 0.430 0.114 0.094 0.168 0.642 0.107
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Fig. 3 Rejection probabilities for testing the null hypothesis of the non-Markov condition for the three tests
for nominal level 5%. Non-Markovian scenario, hazard with a quadratic predictor. Results based on different
censoring percentages (C ∼ U [0, 8.1] - upper, C ∼ U [0, 4.6] - bottom), for n = 250 and n = 500 (left
and right panels, respectively). Results for the transition probability p̂23(s, t).

global test, reported in our Table 2, to the proposed wCn method, namely for individuals
that experienced a transition through the intermediate state, we can observe higher rejection
proportions for the AUC test for all samples sizes (n=250 and n=500) and censoring pa-
rameters (4.6 and 8.1). It is worth remember that the extension of the methods proposed in
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[15] to general models is not straightforward, while our methods (based on the AUC) can be
applied to general multi-state models as illustrated in our third real data example.

4 Real data analysis

In this section we illustrate the proposed methods using data from three clinical trial studies.
We first use data from a colon cancer study from a large clinical trial on Duke’s stage III
patients (Moertel et al., 1995) [22], the second one is from a clinical trial on breast cancer
and the last one from a data set of liver cirrhosis patients subjected to a prednisome treatment
(Andersen et al., 1993) [1].

Surgical resection is the best treatment option for cancer patients and the most powerful
tool for assessing prognosis following potentially curative surgery. In a large percentage of
the patients with such cancers, the diagnosis is made at a sufficiently early stage when all
apparent disease tissue can be surgically removed. Unfortunately, some of these patients
have residual cancer, which leads to recurrence of the disease and death (in some cases).
Cancer patients who have experienced a recurrence are known to be at a substantially higher
risk of mortality. Usually, this mortality is higher in cases of early recurrences. The effect
of a recurrence in a survival model is traditionally studied using extensions of the Cox
proportional hazards model (Cox, 1972 [23]; Genser and Wernecke, 2005 [24]). Multi-state
models can also be successfully used to model such data (Pérez-Ocón et al., 2001 [25];
Putter et al., 2007 [26]; Meira-Machado et al., 2009 [3]; Meira-Machado, 2016 [27]; Meira-
Machado e Sestelo, 2019 [4]). In both real data examples from cancer studies, data can be
viewed as arising from a progressive illness-death model with states ‘Alive and disease-free’,
‘Alive with Recurrence’ and ‘Dead’. Below, the Markov assumption is carefully analyzed
comparing the proposed methods with the traditional approach.

4.1 Colon cancer study

In this study, 929 patients affected by colon cancer were followed from the date of a curative
surgery for colorectal cancer until censoring or death from colon cancer. From this total, 468
developed a recurrence and among these 414 died; 38 patients died without recurrence. The
rest of the patients (423) remained alive and disease-free up to the end of the follow-up.

Figure 4 reports estimated transition probabilities for fixed values of s = 365, 730, 1095
and 1460 days (1, 2, 3 and 4 years, respectively), along time, for the transition probabilities
p̂12(s, t) (left hand side) and p̂23(s, t) (right hand side). As expected, these plots reveal
that the landmark estimators (LM and LMAJ) have more variability than the Aalen-Johansen
estimator (AJ). This is a obvious consequence of the subsampling approach which will be
more evident for some specific values of s and higher values of t. Plots shown in the top of
the figure (for s equal to one year) show departures between the two Markov-free estimators
(LM and LMAJ) and the Aalen-Johansen estimator (AJ). Note that for the mortality transition
from State 2 to State 3 the two (Markov-free) landmark estimators are equivalent. Deviations
from the two approaches (Markovian and Markov-free), as those shown for s equal to one
year, may be explained by the failure of the Markov assumption. On the other hand, the
corresponding plots for the remaining values of s show that all methods behave quite similar.

Plots shown in the first row of Figure 5 compare the Aalen-Johansen estimator (AJ)
and the landmark non-Markovian estimator (LMAJ) for p12(s = 365, t), p13(s = 365, t)
and p23(s = 365, t). A small deviation can be seen in these plots with respect to the



14 Gustavo Soutinho, Luı́s Meira-Machado

Table 3 Probability values of the local test for several fixed values of s (measured in days). Rejection pro-
portions for the global tests also included. Colon cancer data.

Global
Trans. Prob. Method 90 180 365 730 1095 1460 AUC / LR Cox
p̂12(s, t) AUC(s) 0.012 0.007 0.002 0.154 0.135 0.857 0.014 0.154
p̂23(s, t) LR(s) 0.006 0.026 0.036 0.685 0.981 0.509 0.018 0.154

AUC(s) 0.003 0.004 0.003 0.155 0.118 0.714 0.013 0.154

straight line y = x. The plot on the second row presents the estimated transition proba-
bilities p̂23(s = 365, t) from the landmark Aalen-Johansen estimator with 95% pointwise
confidence limits (black lines) and Aalen-Johansen estimator (red line), revealing some dis-
crepancies between the two approaches in the estimation of this transition probability. These
plots provide a graphical test of the Markov assumption which reveal some evidence on the
lack of Markovianity of the underlying process beyond one year after surgery.

For further illustration, in Figure 6 we display the discrepancy between the Aalen-
Johansen estimator (Markovian) and the landmark non-Markovian estimator (LMAJ), for
p12(s, t) and p22(s, t), for s = 365, s = 730, s = 1095 and s = 1460, measured through
Dhj = p̂ AJ

hj (s, t) − p̂ LMAJ
hj (s, t), h = 1, 2, j = h + 1. The 95% pointwise confidence

limits were obtained using simple bootstrap. This plot reveals clear differences between the
two methods in large intervals for s = 365. The differences are observed by the deviation
of the plot with respect to the straight line y = 0, from which one gets some evidence on
the lack of Markovianity of the underlying process beyond one year after surgery. On the
other hand the plots depicted for other values of s do not reveal evidence against the Markov
assumption. In summary, these plots show that there is some evidence, at least for s = 365,
that the application of the Aalen-Johansen method is not recommended here, due to possi-
ble biases. They also reveal a possible failure of the Markov assumption. It is worth mention
that deviations of the plots with respect to the straight line y = 0 in the right tail (higher
values of t) should not be overvalued since they often occur due to the limited number of
individuals at these times. Note that the findings observed in Figure 5 are not in agreement
with the results obtained through the ‘global’ test for Markovianity based on the Cox model
(using time to recurrence as a time-dependent covariate). This test reported a coefficient of
negative sign for the recurrence time, according to an increased risk of death shortly after
relapse (P-value = 0.154) revealing no evidence against the Markov model for the colon
data.

Results reported in Table 3 are in agree with those obtained from the graphical inspection
shown in Figure 6, revealing a failure of the Markov assumption only for non-null lower
values of s. They show that, the test based on the difference of the area under the two curves
lead to a probability value of 0.002 and 0.003, respectively for p̂12(s, t) and p̂23(s, t), for
s = 365. Low probability values (less than 5%) were also obtained for s = 90 and s = 180
too. The global test we propose (based on the areas under the transition probabilities) are
also in agreement with our findings, reporting a probability value lower than 0.014 against
the Markov condition. The local tests based on the log-rank statistic also confirmed small
probability values mainly for s up to 365. Either the AUC and the log-rank global tests
confirm the failure of the Markovianity of the process.

Often multi-state models include covariates and it may be the omission of covariate
effects that induces apparent non-Markovianity. The methods proposed in this paper can
also deal with this problem since discrete covariates can be included in the estimation of
the transition probabilities phj(s, t) by splitting the sample for each level of the covariate
and repeating the described procedures for each subsample. As shown in Table 4 treat-



Methods for checking the Markov condition in multi-state survival data 15

Table 4 Probability values of the local test for s = 365 days by treatment for AUC local test. Rejection
proportions for the test based on the Cox model also included. Colon cancer data.

Trans. Prob. Treatment Method s=365 Cox
Obs 0.0002

p̂12(s, t) Lev AUC(s) 0.7192
Lev+5FU 0.1116

Obs 0.0008 0.062
p̂23(s, t) Lev AUC(s) 0.3013 0.401

Lev+5FU 0.1562 0.712

ment (Obs(ervation), Lev(amisole), Lev(amisole)+5-FU) revealed a strong effect on the
2→3 transition intensities and a greater effect on 1→ 2. Results reported in Table 4 also
show that the test for Markovianity based on the Cox model reported a p value of 0.062
(regression coefficient: -0.000528) for the Observation group.

4.2 Breast cancer data

In this section we use data from the second trial in which a total of 720 women with primary
node positive breast cancer is recruited in the period between July 1984 and December 1989.
The data which was also used by Sauerbrei and Royston (1999) [28] considers 686 patients
who had complete data for the two event times (time to recurrence and time to death). In
this study, patients were followed from the date of breast cancer diagnosis until censoring
or dying from breast cancer. From the total of 686 women, 299 developed a recurrence and
171 died.

As for the analysis of the colon cancer data, we start to present on Figure 7 the estimated
transition probabilities for fixed values of s = 365, 730, 1095 and 1460 days, along time,
for the transition probabilities p̂12(s, t) (left hand side) and p̂23(s, t) (right hand side). In
this case, differences between the estimated curves of the Aalen-Johansen (AJ) and the
Landmark estimator (LMAJ) are not evident. The discrepancy of the two estimators with
the 95% pointwise confidence limits is also displayed in Figure 8 for Dhj = p̂ AJ

hj (s, t)−
p̂ LMAJ
hj (s, t), h = 1, 2, j = h+1. In this case, there are no clear evidences of a deviance of

the plot with respect to the straight line y = 0, at least in large intervals. In summary, these
plots do not show evidence against the use of the Aalen-Johansen estimator and therefore,
against the Markov assumption. These findings are in agree with the results obtained through
the three ‘global’ tests for Markovianity in Table 5. The test based on the Cox model which
reported a coefficient of negative sign for the recurrence time, according to an increased risk
of death shortly after relapse (P-value = 0.121) revealing no evidence against the Markov
model for the breast cancer data. Higher probability values were obtained from the global
test based on the area under the transition probabilities and log-rank statistics. The two local
tests confirm this fact too.

Table 5 Probability values of the local test for several fixed values of s (measured in days). Rejection pro-
portions for the global tests also included. Breast cancer data.

Global
Trans. Prob. Method 180 365 730 1095 1460 AUC / LR Cox
p̂12(s, t) AUC(s) 0.543 0.306 0.232 0.247 0.241 0.230 0.121
p̂23(s, t) LR(s) 0.926 0.647 0.246 0.163 0.922 0.580 0.121

AUC(s) 0.955 0.603 0.269 0.428 0.577 0.280 0.121
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4.3 Liver cirrhosis data

In this section we consider a data set of liver cirrhosis patients who were included in a ran-
domized clinical trial at several hospitals in Copenhagen between 1962 and 1974. The study
aimed to evaluate whether a treatment based on prednisone prolongs survival for patients
with cirrhosis [1]. Let State 1 correspond to ‘normal prothrombin level’, State 2 to ‘low
(or abnormal) prothrombin level’, and the State 3 to ‘dead’. The movement of the patients
among these three states can be modeled through the reversible multi-state model shown in
Figure 9. From the total of 488 patients with liver cirrhosis initially enrolled in the study,
292 ended up to died, from which 104 experienced a direct transition from State 1 to the
absorbing state, and in 188 patients an abnormal prothrombin level was detected at any
time. There were also 314 patients that had movements from abnormal prothrombin levels
towards normal levels and 274 from the normal prothrombin level to the intermediate state.
Most transition times are below 1460 days, with a maximum of 4892 days.

Following the same procedure of the previous real data set analysis, we started compar-
ing the estimated curves of the LMAJ and the AJ estimators for the transitions probabilities
p̂12(s, t), p̂21(s, t) and p̂23(s, t), for fixed values of s= 180, 365, 730 and 1095 days, with
the purpose to identify a possible failure of the Markov assumption. These times were cho-
sen to cover the first years of the study corresponding to the most cases with transitions.
In fact, after 4 years for all transitions the number of individuals decrease with potential
consequences for the estimates under the landmark approach as referred previously in case
of small size samples. The plots with the estimated curves at those points are shown in
Figure 10. Plots shown in the first column reveal some departures between LMAJ and AJ
estimators of p12(s, t), but only for lower values of s. The deviation between the two esti-
mators seem to be more evident when comparing the estimated curves of p21(s, t) (second
column), while this is not so evident when comparing the estimated curves of the transi-
tion probability p23(s, t) (third column). As referred above, apparent deviation between the
two estimated curves, at least at some lowers values of s, may due to the lack of Markov
condition.

The discrepancy of the two estimators, computed usingDhj = p̂ AJ
hj (s, t)−p̂ LMAJ

hj (s, t)
with the 95% pointwise confidence limits is also displayed in Figure 11. Some of these plots
reveal some evidence of a deviance of the plot with respect to the straight line y = 0, re-
vealing a possible failure of the Markov condition. Some of these findings are in agreement
with the results reported in Table 6, which shows the rejection proportions, for p̂12(s, t),
p̂21(s, t) and p̂23(s, t) of the proposed tests for checking the Markov assumption. Results
were obtained by the empirical rejection proportions from 250 trials at the significant level
of 0.05. Interestingly, the proposed local test was able to detect a failure of the Markov con-
dition for s = 365 for the mortality transition of patients with abnormal prothrombin level.
For the remaining time points of s, the test obtained lower rejection probabilities which are
in agreement with the results obtained in all global tests. For the transition from State 1 to
State 2, the proposed local test only reveal the failure of the Markov condition for s = 180.
For the transition 2 to 1, besides s = 180, the local test also revealed a failure of the Markov
condition for s = 365. These evidences (of failure of the Markov condition) for these two
transitions are confirmed by the results of the proposed global test based on the AUC and
the test based on the Cox model.
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Table 6 Probability values of the local test for several fixed values of s (measured in days). Rejection pro-
portions for the global tests also included. Liver cirrhosis data.

Global
Trans. Prob. Method 180 365 730 1095 1460 AUC / LR Cox
p̂12(s, t) AUC(s) 0.002 0.158 0.134 0.639 0.793 <0.001 0.002
p̂21(s, t) AUC(s) <0.001 <0.001 0.156 0.253 0.237 0.001 <0.001
p̂23(s, t) LR(s) 0.699 0.336 0.594 0.641 0.034 0.298 0.999
p̂23(s, t) AUC(s) 0.317 0.030 0.677 0.367 0.195 0.258 0.999

5 Discussion

The Markov assumption is commonly used to analyze multi-state survival data. Therefore,
goodness-of-fit tests for the Markov assumption are crucial in these models. Traditionally,
this assumption is tested including covariates depending on the history on the modeling pro-
cess. The comparison between estimated transition probabilities is the basis to introduce two
formal local tests for the Markov assumption. The new methods are based on measuring the
discrepancy of the Aalen-Johansen estimator which gives consistent estimators in Markov
processes, and recent approaches that do not rely on this assumption. A log-rank test is used
on specific transitions to check if the Markov assumption holds. A second method is pro-
posed in this paper in which the test statistic is based on the difference of the areas under the
two curves. We note that alternative test statistics could also have been considered such as
those based on the absolute differences or squared differences between the Aalen-Johansen
and the landmark estimators that would lead to a kolmogorov smirnov or a Cramer-von
Mises-type test statistic, respectively.

Simulation results reveals that the two methods perform similarly revealing high power
to detect a failure of the Markov condition. The simulation results and the results obtained
through real medical data analysis suggest that the second approach may be a good alterna-
tive to the existing methods. The use of the graphical local tests based on the discrepancy
between estimated curves of the transition probabilities, proposed here, are recommended
to confirm the conclusions obtained from the application of this formal local test. In gen-
eral, the two curves may cross at mid time points when the process is indeed Markovian
(and the two curves are similar). If the process is not Markovian, then it is expected that
the two curves only cross at earlier time points or at higher time points (at the right tail).
Nevertheless, it is wise to start the analysis with a graphical test in particular to identify
possible situations in which the process is indeed not Markovian and the two curves cross at
mid time points. In such cases the usage of a different test statistics (e.g. based on a squared
difference) should be also analyzed in future research investigation.

The use of local tests is recommended whenever the interest is focused on the estimation
of the transition probabilities and, in particular, to decide which estimator is the most appro-
priate to use: the Aalen-Johansen estimator or a robust estimator. The use of the proposed
local test is advised for each transition probability phj(s, t) (h > 1), and the use of the ro-
bust Markov-free estimator when faced of evidences against Markovianity. This procedure
may be followed for a general multi-state model.

A global test, such as the test proposed here, might be preferable in regression purposes.
To this end, a common simplifying strategy is to decouple the whole process into various sur-
vival models, by fitting separate intensities to all permitted transitions using semi-parametric
Cox proportional hazard regression models, while making appropriate adjustments to the
risk set. The most common models are characterized through one of the two model as-
sumptions that can be made about the dependence of the transition intensities and time. The
transition intensities may be modeled using separated Cox models assuming the process to
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be Markovian (also known as the clock forward modeling approach). When the test rejects
the Markov assumption, a possible alternative is to use a semi-Markov Cox model in which
the future of the process does not depend on the current time but rather on the duration in
the current state. Both models can be easily implemented using standard software such as
the R packages survidm or mstate. To decide the appropriate modeling approach, the
global test should be used to all transitions depending on history.

The global test proposed is obtained through the combination of the results from local
tests over different times. Simulation results show that the proposed global test may be much
more powerful than the standard parametric method based on the proportional hazard spec-
ification which relies on a prior model specification that may fail in practice. The proposed
methods can be used in general multi-state models.

Discrete covariates can be included in the proposed methods by splitting the sample for
each level of the covariate and repeating the described procedures for each subsample. To
account for the effect of continuous covariates, one can consider estimators of the transi-
tion probabilities conditional on covariates. One standard method is to consider estimators
based on a Cox’s model fitted marginally to each type of transitions, with the corresponding
baseline hazard function estimated by the Breslow’s method.

We implemented all the proposed methods in R. The code in the form of an R package
is available from the authors upon request.

Acknowledgements This research was financed by Portuguese Funds through FCT - “Fundação para a
Ciência e a Tecnologia”, within the research grants PTDC/MAT-STA/28248/2017 and PD/BD/142887/2018.

Conflict of Interest
The authors have declared no conflict of interest. (or please state any conflicts of interest)

References

1. Andersen, P.K. and Borgan, O. and Gill, R.D. and Keiding, N. (1993). Statistical Models Based on
Counting Processes. Springer-Verlag, New York.

2. Hougaard, P. (2000). Analysis of multivariate survival data. Springer-Verlag, New York.
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Fig. 4 Estimates of the transition probabilities for the Aalen-Johansen (AJ) and Markov-free estimators
(landmark and landmark Aalen-Johansen), for s equal to 1, 2, 3 and 4 years since entry in study. Colon
cancer data. Transition probabilities of p̂12(s, t) (Left column) and p̂23(s, t) (Right column).



Methods for checking the Markov condition in multi-state survival data 21

●●
●●
●●●
●●

●●●
●
●●●
●●
●●●
●●
●●●
●●

●●●●●
●●●
●●
●●
●●
●●●●●
●
●●
●●●●●●●
●●●●●
●●
●●●
●●

●●
●●
●●●●
●●●●
●●●●●
●●
●●●
●●
●●●
●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●
●●●
●●●●●
●●●●●
●●●
●●●●
●●●●●●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●
●●

●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●
●●●●●●●
●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●
●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●●
●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●
●●
●●●●●●●●●●●●●●●●

●
●

●●
●

●●
●

●

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

p12

LMAJ estimator

A
J 

es
tim

at
or

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●
●●●●●●
●●●●●
●●●●●●●●
●●●●
●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●
●●●●●
●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●
●●
●●●

●●●
●

●

0.0 0.2 0.4 0.6 0.8
0.

0
0.

2
0.

4
0.

6
0.

8

p13

LMAJ estimator

A
J 

es
tim

at
or

●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●
●●●●
●●●●●
●●●●
●●●●
●●●●●●●●
●●●●
●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

p23

LMAJ estimator

A
J 

es
tim

at
or

500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
23

Fig. 5 Graphical test for the Markov condition, s = 365 (First row). Transition probabilities of p̂23(s =
365, t) from the landmark Aalen-Johansen estimator with 95% pointwise confidence limits (black lines) and
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Fig. 6 Local graphical test for the Markov condition, for s equal to 1, 2, 3 and 4 years since entry in study. Test
based on the discrepancy between the Aalen-Johansen estimator (Markovian) and the Markov-free estimator
(LM). Colon cancer data.
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Fig. 7 Estimates of the transition probabilities for the Aalen-Johansen (AJ) and Markov-free estimators
(landmark and landmark Aalen-Johansen), for s equal to 1, 2, 3 and 4 years since entry in study. Breast
cancer data.
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Fig. 8 Local graphical test for the Markov condition, for s equal to 1, 2, 3 and 4 years since entry in study. Test
based on the discrepancy between the Aalen-Johansen estimator (Markovian) and the Markov-free estimator
(LM). Breast cancer data.
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Fig. 9 The reversible illness-death model for patients with liver cirrhosis.
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Fig. 10 Estimates of the transition probabilities for the Aalen-Johansen (AJ) and Markov-free estimators
(landmark Aalen-Johansen), for some s equal to 180, 365, 730 and 1095 days since entry in study. Liver
cirrhosis data.
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Fig. 11 Local graphical test for the Markov condition, for s equal to 180, 365, 730 and 1095 days since
entry in study since entry in study. Test based on the discrepancy between the Aalen-Johansen estimator
(Markovian) and the Markov-free estimator (LMAJ). Liver cirrhosis data.
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