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ABSTRACT

This dissertationwas carried out atUtilmédica - ProdutosMedicosHospitalares, Ldawhich
was born on June 9, 2004, as a result of the perception of gaps in the market for the supply of
medical - hospital products and equipment to health professionals. One of their main goals is
to provide healthcare professionals with the best solutions for the noble mission of ensuring
the welfare of us all.

Due to this vision and consequent growth, the company’s working methods also need to
grow. Therefore, the company wanted to find a solution to the growing quotation requests
by the various messaging platforms in which they are present. Starting from this problem, a
system was developed that identifies the products contained in a given message and sends
an automatic quotation reply.

This system was named Rissa and to develop it, it was necessary to analyse the content of
previous email messages, in order to develop a NLP model that could identify the entities
present in future email messages. In addition to this, Rissa also contains a search system that
filters only the products available from the company.
Rissa had to integrate into an existing infrastructure without impacting the company’s op-

eration. This integration had to deal not only with external services, but also with internal
services and privacy policies.
In the end, this system was implemented in the company in a real work situation to obtain

production results.

Keywords: Email, Natural languageprocessing, Named-entity recognition, Languagemod-
els, Database text search, Application development, Rissa
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RE SUMO

Esta dissertação realizou-se na empresa Utilmédica - Produtos Medicos Hospitalares, Lda
que nasceu a 9 de Junho de 2004, como resultado da perceção de lacunas no mercado para o
fornecimento de produtos e equipamentos médicos - hospitalares aos profissionais de saúde.
Um dos seus principais objetivos é fornecer aos profissionais de saúde as melhores soluções
para a nobre missão de garantir o bem-estar de todos nós.

Devido a esta visão e consequentemente ao crescimento, osmétodos de trabalhoda empresa
também precisam de crescer. Por isso a empresa gostava de encontrar uma solução para o
crescente pedido de orçamentos pelas várias plataformas demensagens. Partindo deste prob-
lema, foi desenvolvido um sistema que identifica os produtos contidos numa determinada
mensagem e envia uma resposta automática de orçamento.

Este sistema foi apelidado de Rissa e para o desenvolver foi necessário analisar o conteúdo
das mensagens de email anteriores de modo a desenvolver um modelo de NLP que fosse
capaz de identificar as entidades nas mensagens de email futuras. Para além disto, Rissa
contém um sistema de pesquisa de modo a filtrar apenas os produtos disponibilizados pela
empresa.
Rissa teve de se integrar numa infraestrutura já existente sem afetar o funcionamento da

empresa. Esta integração teve de lidar não só com os serviços externos, mas também com
serviços e políticas de privacidade internas.
No final, este sistema foi implementado na empresa numa situação de trabalho real para

se obter resultados de produção.

Palavras-chave: Email, Processamento de linguagemnatural, Reconhecimento de entidade
mencionada, Modelos de linguagem, Pesquisa de texto na base de dados, Desenvolvimento
de aplicação, Rissa
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I N TRODUCT ION

The need to automate repetitive tasks in businesses has always been essential on many
levels. For this reason, studying and understanding the tools and technologies available, in
particular, the request for quotations/budgets by textual ways has been increasing due to the
emergence and promotion of multiple messaging platforms. There is thus the need to follow
this growth more automatically.

In this sense, this dissertation was carried out in a business context, where a company
presented the problem of the possibility of the automation of the process of responding to
requests for quotes, since such automation represents gains for the company, freeing up time
for employees to perform other tasks and possibly increasing the conversion of sales, due to
a faster responses.

This problem, at first sight, seems simple because it involves usual communication meth-
ods, however the approach to the problemwill focus on the textual content of thesemessages,
therefore it will be necessary to recourse to NLP technology.

Every day, the company receives several quotation requests. These requests come from
different platforms, namely the sales team emails, the website contact form, and instant mes-
saging platforms. Each employee handles this request at their discretion. This process is
many times the same because some clients order almost the same products and even give
out the reference of the products they want to buy, while others order the products by name,
many times not even using the correct name for them.

1.1 OB J E C T I V E S AND GOAL S

The main goal of this dissertation is to solve this problem by carefully analysing it and
formulate a solution. With that in mind, we will start by analysing several messages and all
the platforms involved. Analyse the content of the messages and try to automate the process
of response by finding the right technology for this case.

This dissertation will research for state of the art products to see if none solve the main
problem at hand, and having none foundwill focus on developing a system that can respond
automatically to the quotation requests.

By the end of this work, a solution that solves the company’s problem will be presented
and deployed in the real world, in order to ascertain it’s precision in the generated response.

2
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1.2 DOCUMENT STRUCTURE

Besides this introductory chapter, this dissertation is organized in the following chapters:

• Chapter 2 presents possiblemarket solutions and themain researchmade into themain
problem area.

• Chapter 3 describes the main problem parts it’s challenges, along with the system’s
architecture.

• Chapter 4 displays the steps taken to develop the system proposed in Chapter 4.

• Chapter 5 presents the results obtained from using the system in a real world scenario.

• Chapter 6 ends this dissertation by reflecting on the overall work and future improve-
ments.
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STATE OF THE ART

Written messages are a part of everyday life for businesses and individuals alike. This
Chapter will begin by discussing the context in which the need for this project appears and
give an overview about the fundamental features in it. Wewill also research similar solutions,
present them and explain what they miss to be a viable solution to this problem.

As no immediate market solution presents itself as having all the minimum requirements
for the project, this chapter will also discuss some state of the art solutions and technologies
for each of the main parts of the project.

2.1 BACKGROUND

As a company grows, so do it’s needs to automate specific tasks of it’s daily routine. In this
particular case, many costumers send quoting requests for several catalogue products. These
requests for quotes come from several sources, but mainly in the form of formal email.

The employees in charge of handling the incoming emails need to read them and proceed
to understand what is being referred by the sender. This process can be an easy task since
many costumers already send the products they want, referenced with the name or product
number. After that, they need to look up the products described and prepare a quotation to
send back to the client. Following the quotation confirmation, it is then sent back as a reply
to the customer, and a new internal process begins.
This project focus will be in the incoming email requests, their automated processing and

quotation generation. Also, since the time this process takes is an essential factor, the quota-
tion generation phase may also be automated as to decrease the overall time to send back a
response.

An essential factor to be taken into account for the project is that the majority of the email
content is written in Portuguese being the language that will have a greater focus.

Having the overall project described, it is necessary to find a solution that can handle the
incoming email requests and parse them. A process that involves finding the meaning of the
message content and then search for it in an internal database, drafting a response, confirm
it and send it back to the customer.

4
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2.2 AVA I LAB L E SOLUT IONS

There aremanymarket solutions throughout theWorldWideWeb (WWW); in this section,
we will give an overview of some of then, presenting their current abilities and limitations.

2.2.1 Mailparser.io

Mailparser [82] is a Software as a Service (SaaS) company that provides a product capable
of parsing incoming email and in return, respond with structured data.
The creation of Mailparser follows the discovery, by the company’s founder Moritz Dau-

singer, of the global need for automating the workflow of inbound emails. In the following
36 months of operation Mailparser grew quickly leading to several acquisition offers, and by
2017 Mailparser was acquired by SureSwift Capital.
This product allows the creation of custom email parser rules, giving the ability to process

and tailor the data as needed. A rule is typically a series of steps where it manipulates the
email content and filters out the content not needed until only the crucial data remains.

Another feature is their integrations with several other services and export capabilities,
allowing them to move the resulting data with ease.

Figure 1: Example of extraction features [82].

This service has many pricing tiers, and from their pricing page, it is possible to conclude
that the prices vary from 39 $ to 299 $ per month with the possibility of contact for more
significant email handling volume.

2.2.2 Email Parser by Zapier

Zapier’s Email Parser [81] is a tool to copy text out of emails to pass the extracted text to
another tool allowing for better integration between different tools.
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Email parsing and text extraction with Zapier is only the first step as Zapier as over 1500
integrationswith other services,making it one of the platforms foundwith the higher number
of integrations.

Figure 2: Teach the Parser how to read email [81].

This service is easy to use, and an employee could be tasked with setting it up, as shown
in Figure 2. However, it is only designed to parse text from emails, and may fail at copying
text if the email formatting changes frequently, as usually is the case with user-generated
messages.

This tool from Zapier is free to use, and they also offer a free plan (0 $), however, from
their pricing page their prices go up to 599 $ per month when billed annually. Since Zapier
does not only handle email, their tiers are measured in the number of tasks per month and
not email volume.

2.2.3 Email Parser by FrozenFrog Software

Email Parser [83] is a tool developed by FrozenFrog Software with the purpose of extract-
ing data from incoming emails, thus automating the user’s workflow.
As with other services, the primary purpose of this tool is to handle incoming emails by

parsing them with a set of pre-defined rules by the user. The rules can be simple, as simple
filters, filtering by address or message content, or they can be more complex using script
actions in which an user can run a program with the help from their Software development
kit (SDK) being limited to the programming language C# [21].
Besides parsing email, it is also possible to configure this tool to send automated responses

defined by user email templates.
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Figure 3: Processing email example with the tool Email Parser by FrozenFrog Software [83].

The Email Parser by FrozenFrog Software has two pricing modes, a license key as a one-
time payment with one year of free updates and an unlimited number of emails. In this
option, emails are processed on-premises, meaning in the user’s computer. Another pricing
option is Email Parser Online in which the user’s configurations are uploaded to the cloud,
and the software is then run there without the need for dedicated computer infrastructure
on-premises. This service has the cost of 79.95$, one-time payment, or 9$ per month with the
option to cancel at any time.

2.2.4 Parseur

Parseur [79] is an email parsing solution, that aims at keeping a simple point and click ap-
proach. Parseurmain purpose is to be used to create aworkflow and automate text extraction
from emails and then send the parsed data to applications via their integrations.
Besides email, Parseur can handle the parsing of attachments, documents, spreadsheets,

and PDFs.
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Figure 4: Example of data captured by a Parseur template for Zillow [79].

This service has many pricing tiers, with several benefits and credits to use in the platform.
Each document process spends one credit. From their pricing page, it is possible to conclude
that the prices vary from 0 €(very limited) to 249 €per month with the possibility of contact
for more significant document handling volume.

2.2.5 Summary and problem division

From the research above, it is possible to conclude that this kind of services are generally
more focused for the office employeewith their emphasis on ease of use and their integrations
with several other business tools.
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The focus is also on the actively parsing of well-defined email templates, as they all need a
set of rules to be pre-defined when searching for important data, making it difficult to extract
information on unstructured emails.
In order to cater to all of the requirements of this project, these services would need much

time invested in research of their capabilities even further and in integrating the needed busi-
ness tools with them.

Mailparser.io Email Parser by Zapier Email Parser by FrozenFrog Software Parseur Custom Solution

Setup Rule based Template based
Point & Click Rule based Template based

Point & Click Automatic

Post processing Yes via multi-step Zap Yes Yes Yes
Integrations Yes Yes (Zapier) Yes Yes Yes (custom)
Retention Policy Yes No Yes (on premises) Yes Yes (on premises)
Internal database search No No No No Yes
Email draft generation No No Yes (send to drafts email folder) No Yes
Automatic Response No Yes (with integrations) Yes No Yes
Support Yes Online documentation Yes (39.95 $ per hour) Yes Yes (on premises)
GDPR Compliance Yes Unknown Unknown Yes Yes (company police)

Table 1: Comparison between available solutions

For the above reasons represented in Table 1, it was concluded that a custom approach
would be the wisest and the strategy to follow.

During this research and the assessment of business requirements with the company, it
was possible to divide de problem in four high level parts:

• Process the incoming emails;

• Extract the relevant information from each email;

• Create the quote document;

• Send the quote document.

Having the relevant parts of the main problem, the research proceeds into each one.

2.3 EMA I L

As said earlier, the type of incoming messages to handle will be email messages; as such,
a greater understanding of this method of exchanging messages is needed.
Email is a method that permits to write, send and receive messages through electronic

communication systems, in other words, it is a method of exchanging messages between
people using electronic devices.
The invention of this communication method is credited to Ray Tomlinson [85] in 1972.

Early email systems required the sender and the recipient to both be online at the same time.
However, modern email systems are based on a store-and-forward model, having the benefit
of neither the users nor their computers to be online simultaneously as they now only need to
connect briefly to a mail server or a webmail interface for as long as it takes to send or receive
messages or to download it.
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2.3.1 Operation

Email can be used in several ways, however a typical sequence of events when a sender
transmits a message using a Mail User Agent (MUA) addressed to the email address of one
recipient, can be illustrated by the following Figure 5.

Figure 5: Illustration of the participants in an email message exchange [86].

2.3.2 Message format

The basic Internet message format used for email, is, at the time of this writing, defined by
Request for Comments (RFC) 5322 [36], with encoding of non-American Standard Code for
Information Interchange (ASCII) data and multimedia content attachments being defined
in RFC 2045 through RFC 2049 [16, 17, 13, 14, 15], collectively called Multipurpose Internet
Mail Extensions (MIME).
There are several message header fields, but for this use case wewill only focus on the From

and Subject fields.
In this use case, the message body and its content will be the most crucial part of the entire

message.
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2.4 NATURAL LANGUAGE PROCE S S ING

Natural Language Processing is a theoretically motivated range of computational
techniques for analysing and representing naturally occurring texts at one ormore
levels of linguistic analysis for the purpose of achieving human like language pro-
cessing for a range of tasks or applications. [80]

—Elizabeth D. Liddy

While the full lineage ofNatural Language Processing (NLP) does depend on several other
disciplines, NLP strives for human-like performance, it is then appropriate to consider it an
Artificial Intelligence (AI) discipline [80].

For a range of tasks or applications NLP is not usually considered a goal in and of itself,
except perhaps for AI researchers. For others, NLP is the means for accomplishing a particu-
lar task or process, being particular examples of this Information Retrieval (IR) systems that
utilize NLP, Machine Translation (MT) and many others [80].

2.4.1 Named-entity recognition/Part-of-speech

For our particular case, as with many NLP problems, we have two subtasks that we will
focus the most for this section of work, being NER and Part-of-speech (POS).

The NER is used to identify different entities in unstructured text and categorize them
into pre-defined categories. Normally the NER subtask is divided in two distinct problems,
the detection of names and their classification into their respectively category [26]. Figure 6
shows the identified entities and their respectively categories using the tool spaCy [75].

As exhibited in the name, POS is the process of classifying words into their parts of speech
and labelling them accordingly. An example of the finalized process is represented in Figure
7.

These two subtasks are key elements in both information extraction systems and in syn-
tactical analysis, respectively [41].

Figure 6: Generated markup for named entities from spaCy [75].
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Figure 7: Generated markup for part-of-speech from spaCy [75].

2.4.2 Traditional

During many years, the majority of methods used to study NLP problems employed shal-
low machine learning models and time-consuming, hand-crafted features [61]. However,
this leads to problems such as the curse of dimensionality, while learning joint probability
functions of language models, since linguistic information was represented with sparse rep-
resentations (high-dimensional features).
This problem was the motivation behind distributed representations of words existing in

low-dimensional space [25] compared to traditional machine learning models like Support-
vector machine (SVM) [9] or logistic regression [23].

2.4.3 Distributed representations

One important characteristic of a word is the company it keeps. According to the distri-
butional hypothesis [2], words that occur in similar contexts (with the same neighbouring
words), tend to possess similar meanings.

These vectors try to capture the characteristics of the neighbours of a word. The main
advantage of distributional vectors is that they capture the similarity between words as illus-
trated by Figure 8.
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Figure 8: An illustration of distributional vectors of food, eat and laptop [57].

Word embeddings

Typically, word embeddings are pre-trained on a task where the objective is to predict a
word based on its context. The basic idea is to store the same contextual information in a
low-dimensional vector, but now each word is represented by a N-dimensional vector, where
N is a relatively small number (typically between 50 and 1000).
This type of approach was first presented in 2003 by Bengio et al. [25], and can be seen in

Figure 9. In their approach, the authors proposed a neural language model which learned
distributed representations for words.

Figure 9: Neural Language Model. 𝐶(𝑖) is the 𝑖𝑡ℎ word embedding [66].

Word embeddings are also able to capture syntactic and semantic information, a feature
by itself useful; however, this approach is also useful for tasks such as POS tagging and NER,
intra-word morphological and shape information retrieval [46].
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Word2vec

In 2013, word embeddings were revolutionized by Mikolov et al. [43] who proposed both
the Continuous Bag of Words (CBOW) and skip-gram models being considered the pioneer
of word embeddings in mainstream deep learning [69].
On the one hand CBOW (Figure 10) is a neural approach to construct word embeddings,

and the objective is to compute the conditional probability of a target word given the context
words in a given window size.

Figure 10: The Continuous bag-of-word model [43].

On the other hand, the skip-grammodel (Figure 11) does the opposite of the CBOWmodel
by predicting the surrounding context words given the central target word.
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Figure 11: The skip-gram model [43].

For both of these models, in an unsupervised setting, the word embedding dimension is
determined by the accuracy of prediction. As the embedding dimension increases, the ac-
curacy of prediction also increases until it converges at some point in time, which then is
considered the optimal embedding dimension as it is the shortest dimension without com-
promising accuracy.

Having in common the use of a single word, both these models have one limitation for
individual word embeddings which translates in their inability to represent phrases, where
the combination of two or more words do not represent the combination of meanings of
individual words [42].

GloVe

Global Vectors for Word Representation (GloVe) is another commonly used method of
obtaining pre-trained embeddings using an unsupervised learning algorithm for obtaining
vector representations for words [47].

As with Word2vec 2.4.3, GloVe relies on interpretability of the embedding vectors and the
frequency of co-occurrence of words [48]. As such an association between Word2vec 2.4.3
and GloVe is often formed, however they have important differences.

For GloVe, the frequency of co-occurrence of words is a piece of central information that
guides the learning. Also, instead of using skip-gram or CBOW models, GloVe minimizes
the difference between the product of word embeddings and the log of the probability of
co-occurrence using Stochastic Gradient Descent (SGD) [48].
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It is possible to summarize GloVe as a count-based word embedding approach that learns
an optimized, lower-dimensional version of a co-occurrence matrix.

Character embeddings

As previously stated, word embeddings are able to capture morphological information.
However, it is possible to also analyse the individual characters in order to have more robust
methods of extracting morphological information from words and select which features are
most important for the task at hand.
Building natural language understanding systems at the character level has attracted re-

searchers attention, such as the work provided by Kim, et all [51] where they introduce a
neural languagemodel that uses only character-level inputs, as represented in Figure 12. This
model outperforms baseline models that utilize word embeddings in the input layer while
utilizing fewer parameters.

Figure 12: Architecture language model applied to an example sentence [51].
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On more morphologically rich languages, such as Portuguese, better results are reported
in certain NLP tasks. Santos and Guimarães [52] applied character-level representations,
along with word embeddings for NER, achieving state-of-the-art results in Portuguese and
Spanish corpora. This model was based on the CharWNN neural network [46](Figure 13)
that produces local features around each character of theword and then combines themusing
a max operation to create a fixed-sized character-level embedding of the word.

Figure 13: Convolutional approach to character-level feature extraction [46].

2.4.4 Neural networks language models

Besides feed-forward neural networks and the related Word Embeddings(2.4.3), other to-
pologies and architectures of Artificial Neural Networks (ANNs) [6] where tried.
One of those other networkswere RecurrentNeuralNetworks (RNNs), introduced in 1990,

RNNs [7] form a directed graph along a temporal sequence, allowing previous outputs to be
used as inputs while having hidden states.
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For language modelling, specifically for speech recognition, in 2010 a new RNN (Figure
14) language model was introduced having at the time improved upon state of the art results
by 18% in reduction of word error rate on the Wall Street Journal task, although at the cost of
much higher computational complexity when training [38].

Figure 14: Recurrent Neural Network based Language Model [38].

RNNs with long dependencies were still thought to be difficult to train, until 2013, where
Sutskever [44] presented a new variant of the Hessian-free (HF) optimizer for tasks that
have long-range temporal dependencies and also a scheme to describe the randomparameter
initialization, for tasks that have long-term dependencies.
Traditional RNNs [7] have some problems as high computational complexity and also suf-

fer from both the vanishing and exploding gradient problem. The vanishing and exploding
gradient problem happen because it is difficult to capture long term dependencies because
of multiplicative gradient that can be exponentially decreasing, for the vanishing problem or
increasing, for the exploding problem, with respect to the number of layers. In some cases,
the vanishingly small gradient, makes the network take a long time to train or may com-
pletely stop the neural network from further training. On other cases the exploding weight
recurring value make the networks value’s oscillate without learning any meaningful repres-
entation. For this reason RNNwere replaced by Long Short-TermMemory network (LSTM)
[18] which proved more resilient to the vanishing and exploding gradient problem.

LSTM (Figure 15) share the same architecture as RNN, however as a way to solve the van-
ishing gradient problem the classical LSTM introduced the Constant Error Carousel (CEC).
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The classical LSTM block was composed of a cell, an input gate, an output gate [18] and a
forget gate, that was later introduced in 1999 [19].

While the introduction of CEC solved the vanishing gradient problem, LSTM did not solve
the exploding gradient problem for the RNN architecture [49].

Figure 15: Long Short-Term Memory network [84].

2.4.5 Transformer model

Within the year 2017, NLP saw the beginning of a new type of models with the publication
of Attention Is All You Need [60]. In this work, a specific type of attention based network is
introduced, called the Transformer.
Themechanism of attention in amodel was not a new idea, having been used by Bahdanau

et al. [54] where the authors propose an encoder–decoder architecture with the caveat of in-
stead of using a fixed-length vector, the model automatically (soft-)searches for the relevant
parts to predict the target word. The proposed model uses attention in the decoder part to
alleviate the encoder from having to encode a fixed-length vector with all the source inform-
ation, effectively spreading the information throughout the sequence of annotations, that are
later selected by the decoder.
Similar to RNN(2.4.4), the Transformer model (Figure 16) handles it’s data in sequence,

however no particular order is necessary when inputting it. With this capability, the Trans-
former model can train faster and, as such, with more data using parallelization.
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Figure 16: The Transformer model architecture [60].

Although classic pre-trained word embeddings (2.4.3) have been shown to be of great use
for downstream NLP tasks [48, 42], the Transformer model led to our current state in NLP.
In the sections underneath, we will show some models that are descendants of the Trans-

former model and have a Portuguese or a multilingual version.

Bidirectional Encoder Representations from Transformers (BERT)

Introduced in 2018, BERT [68]was designed to pre-train deep bidirectional representations
from unlabelled text by jointly conditioning on both left and right context in all layers.
BERT is conceptually similar to Word2Vec and GloVe, however BERT instead forms differ-

ent word vectors for different contexts of the same word.
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Previous models, such as ELMo [64] that uses a feature-based strategy, a technique that in-
cludes the pre-trained representations as additional features, orOpenAIGPT [65]which uses
a fine-tuning based approach, that can be trained on downstream tasks by simply fine-tuning
all pre-trained parameters, both share the same objective function during pre-training. This
models also use an unidirectional languagemodels to learn general language representations
which limits the choice of architectures used during pre-training and limits the pre-trained
representations. BERT improves the fine-tuning based approach by alleviating the unidirec-
tionality constraint by using a Masked Language Model (MLM) [1] pre-training objective.
The MLM works by randomly masking some of the input tokens, and the model objective is
to predict the original word from the context only.

BERT argues that bidirectionality is crucial in neural networks as it allows the information
to flow forwards and backwards as the model trains, which leads to better model perform-
ance.

This makes BERT a deeply bidirectional unsupervised model that can be fine-tuned with
just one additional output layer, of labelled data, to create models for several downstream
NLP tasks (Figure 17), including for our case, NER.

Figure 17: Overall pre-training and fine-tuning procedures for BERT [68].

DistilBERT

DistilBERT [76] is a distilled version of BERT with the purpose of exploring and creating
smaller models that are easier to use in more compute constrained environments.
First introduced by Bucila et al. [29] and generalized by Hinton et al. [50], DistilBERT

explores Model Compression and Knowledge Distillation of a Neural Network, respectively.
This distillation is used to compress a larger model, the teacher, into a smaller model model,
the student. The smaller model, the student, is trained to reproduce the behaviour of the
larger model, the teacher. Because of this analogy, knowledge distillation is also referred as
the teacher-student learning.
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The presented DistilBERT, has the same architecture as BERT, however the token-type em-
beddings and the pooler were removed and the number of layers cut by half. With a smaller
model, a reduction of 40%, it was expected that DistilBERT was less performing than BERT,
but with more than 95% of the performance retained on the General Language Understand-
ing Evaluation (GLUE) benchmark [72] and 60% faster when inferring.
When comparing with BERT, the smaller size, almost equal performance and faster in-

ference of DistilBERT may represent, for our case, an opportunity to reduce costs and still
maintain acceptable results.

XLM

Although BERT has a multilingual model that was trained on 104 languages it wasn’t op-
timized for multilingual models. Most of the vocabulary used to train the multilingual ver-
sion wasn’t shared between languages and therefore the shared knowledge was limited. As
such the monolingual versions for English and Chinese are more likely to perform better for
fine-tuning in downstream tasks.

XLM [71] extend the generative pretraining for English natural language understanding
approach, used by BERT and others, to multiple languages and shows the effectiveness of
cross-lingual pretraining.

In order to overcome the limitation of the shared vocabulary between languages, XLM
instead of using word or characters as the input of the model, it uses Byte Pair Encoding
(BPE) [56], to split the input into the most common sub-words across all languages, thus
increasing the shared vocabulary between languages.

BPE can be described as a data compression technique that iteratively replaces the most
frequent pair of symbols with a single unused symbol. BPE’s algorithm in each input finds
and merges the most frequent pair of symbols to create a new symbol. Before the next iter-
ation, the new symbol replaces all the occurrences of the selected pair. The algorithm runs
for a predetermined number of iterations where the most that a sequence of symbols can be
merged is up to a word.

XLM samples sentences according to a multinomial distribution to reduce bias towards
high-resource languages while preventing words of low-resource languages from being split
at the character level by increasing the number of tokens associated with them.

XLM also uses the MLM objective and introduces the Translation Language Modeling
(TLM) [71] for improving cross-lingual pretraining. The MLM objective is similar to the
approach taken in BERT, but instead of pairs of sentences, XLM uses text streams of an ar-
bitrary number of sentences, while also sub-sampling the frequent outputs according to a
multinomial distribution, whose weights are proportional to the square root of their inver-
ted frequencies. The TLM objective is in itself an extension of MLM, where rather than using
monolingual text streams, XLM concatenate parallel sentences, randomly masking words in
both the source and target sentences. This allows XLM to use the context from one language
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to predict themaskedwords in the other language, as shown for English and French in Figure
18.

Both the MLM and TLM objectives are illustrated in Figure 18.

Figure 18: Comparison of a single language modelling (MLM) similar to BERT, and the XLM dual-
language modelling (TLM) [71].

XLM-R

XLM-R [73], a cross-lingual language model that closely follows the XLM [71] approach,
only having minor changes to improve performance at a larger scale. One of this changes is
the removal of language embeddings, allowing the model to better deal with code switching.
In XLM-R, the Transformermodel used is also trainedwith themultilingualMLMobjective

where streams of text are sampled for each language themodel trained to predict the masked
tokens in the input.

Instead of using the same corpus to train as XLM, XLM-R builds a new corpus from Com-
monCrawl data in 100 different languages.
For the downstream task of NER, XLM-R slightly outperforms the multilingual version of

BERT albeit at the cost of a bigger model size and more training time.

Pooled Contextualized Embeddings

Not being a direct descendant of the Transformer model, Pooled Contextualized Embed-
dings [67] differs in the approach by using character embeddings as opposed to word em-
beddings.
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The approach presented (Figure 19) addresses the common issue with character embed-
dings, where a rare word, one that hasn’t appeared in the corpus used to generate the word
embeddings, can be misclassified in downstream tasks such as NER. To resolve the issue,
the model dynamically aggregates contextualized embeddings of each unique word as they
appear in the corpus. A pooling operation is then used to distil a global word representa-
tion from all the unique words as a new word embedding. This process is made over the
processing of the dataset and changes as the same word appears in other places.

Figure 19: Example of the pooled Contextualized embedding generation [67].

With the new model, the authors achieved state-of-the-art scores for CONLL-03 NER in
English and, surprisingly, in German. This model is particularly interesting for our case be-
cause it was tested for the task of NER.

2.5 S E L EC T ED MODEL S

In this Chapter, several models were contemplated making it clear which models should
be used for our particular task. The models that are going to be compared are:

• BERT;

• DistilBERT;

• XLM;

• XLM-R;

• Pooled Contextualized Embeddings, also known as, Pooled Flair Embeddings.

All of this models, with the exception of the Pooled Contextualized Embeddings, are based
on the principles of the Transformer model.
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THE PROBLEM AND I T S CHALLENGES

During the Chapter 2 we have exploredwhat is the current state of the art for the identified
high level problem parts:

• Process the incoming emails;

• Extract the relevant information from each email;

• Create the quote document;

• Send the quote document.

In this Chapter 3, we will examine with more detail each sub problem and decide, where
possible at this time, the best overall technological solution.

During this Chapter we will also present the system architecture within which it will be
possible to observe where all parts are represented and how they fit together.

3.1 SMTP S ERVER

A SimpleMail Transfer Protocol (SMTP) serverwill be needed to be used as per the illustra-
tion in Figure 5. The SMTP is a communication protocol, specifically for email transmission,
being first defined as an internet standard in RFC 821 [4] and later expanded and clarified in
RFC 5321 [35].

At this point, it was relevant to understand how was the current email system working in
the company. It was gathered that the current address for quotations requests was an email
alias created on the mail server.

Due to way the SMTP works and the current implementation of email services at the com-
pany it will not be possible to replace the current SMTP server with our implementation. In
order to overcome this problem, several options were available, such as the creation of an-
other email address and add it to the list of aliases of the current quotation email address, as
per the RFC 5321 [35]. Another option would be to setup a SMTP relay server, with authen-
tication as to not be exploited by bad agents, where this server would then pipe the inbound
emails to our service. One example of a software capable of this feature would be Exim [10].

25
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Also per the illustration in Figure 5, a SMTP server is needed to send a response, in this case
the quotation, back to the original sender, the customer. This can also be done in severalways,
following the RFC 821 [4] it is possible to use the SMTP server from our implementation, the
current one from the company or even using a service for this kind of transactional email 1.
Using an external service to send the response email has the benefit of decreasing the odds

of the email being labelled as spam and protects sender reputation.

3.2 IN FORMAT ION EXTRACT ION

With the objective of extracting relevant information from the incoming email messages,
the question that needs to be answer is what is the relevant information to extract from these
email messages. The selected relevant information will then need to be translated into tags
or labels to be used in the task of NER.
In order to train the models researched in Chapter 2 for the downstream task of NER the

previously received quotation email messages will be needed. These email messages will
also need to be tagged to create a dataset to train the models and evaluate them in order to
choose, the best model for this specific problem.
Also in Chapter 2 the language models that presented the best results and behaviour for

our purposes were:

• Bidirectional Encoder Representations from Transformers (BERT);

• DistilBERT;

• Cross-lingual Language Model (XLM);

• XLM-R;

• Pooled Flair Embeddings.

Each of the selected models may have several variants, for example, the BERT model has
a cased and uncased version as well as a base and large model, so the relevant variants must
also be included in the testing.
During an inquiry to the company with the intent of better understanding the problem,

one of the conclusions was that one of the most relevant information to retrieve is what or
which products are present in the email message. It is important to note that the products
present in the email messages may or may not be available to buy from the company. This
raises an important issue to address, how to search the current available products within the
company.

1 https://postmarkapp.com/transactional-email
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3.3 QUOTE DOCUMENT

After finding and extracting the relevant information from one email message it is neces-
sary to check if the product exists in the current products database.
When first approaching this issue, it might look simple, just use the company’s database

and perform a query to find the product in question. However it will not be possible to
access the company’s database, so the solution might be to create an ingress endpoint for the
product information and store it on the service’s own database.
The quote document will also need to be generated from the information found after the

search. This document is currently generated by an employee on the company’s Enterprise
resource planning (ERP) in the form of a PDF.

3.3.1 Database search

Having come to the conclusion that a database will be needed to store and search the
products information, further research went into this topic.

The search resulted in two similar solutions, Apache Solr [28] and Elasticsearch [39]. Both
solutions are based upon the free and open-source search engine software library Apache
Lucene [20] and include a full-text search engine with an HTTP web interface and schema
free JavaScript Object Notation (JSON) [58] documents.
Due to sharing the same underlying search engine, both Apache Solr and Elasticsearch

have a similar high level way of working. They work by creating an index of documents, in
this case, an index of products, where the schema of this documents would be the relevant
parts used when searching for a product.
In the end, the choice between this two search engines came down to what was easier

for the company to maintain. The company already uses Amazon Web Services (AWS) and
for maintainability and billing reasons prefers, where possible, to use services provided by
them. AWS provides a fully managed service for Elasticsearch 2 and although Elasticsearch
is currently changing it’s license agreement 3, AWS still provides backing and support. The
managed Elasticsearch service from AWSwas, for these reasons, chosen as the search engine
to use.

3.4 PROPOS ED APPROACH - R I S SA

Having a deeper understanding of all the requirements and a general approach on what
technologies to use to achieve the desired functionalities, it is necessary to devise a system
that encapsulates all of them.

2 https://aws.amazon.com/elasticsearch-service/
3 https://www.elastic.co/blog/licensing-change
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3.4.1 System architecture

As with most good projects, this systemwill also have a code name. The name chosen was
Rissa, from the Genus of the kittiwake, a sea bird closely related with the seagull.

Following the previous Sections in this Chapter, it is now possible to illustrate the high
level parts of the system in Figure 20, where the components between the dotted lines are the
one’s belonging to Rissa and the others, are the external components, either present on the
company’s premises or provided by AWS.

Figure 20: High level view of the system.

Starting from the services outside of Rissa, it will need a service program, represented by
the Products data component, that exports the products information from the company’s data-
base server and uploads it directly to either the Elasticsearch service from AWS, represented
by the Search Engine component, or to Rissa. As to maintain a more unified process, it was
decided that the upload would occur to Rissa’ Products Processing component. This decision
allows for the transparent change of the Elasticsearch service to another search service, thus
removing the need to change the program more frequently. An important fact, since this
will be deployed inside the company’s network or even to the database server where main-
tenance costs are higher. This program will be ran within a predefined temporal routine as
to not disrupt normal business hours functionality. This is not the ideal case as the products
information will always be delayed in relation to the company’s database server, a limitation
imposed by not allowing outside access.
One other outside service will be the Elasticsearch service, the Search Engine, provided by

AWS. This service is fully managed and, as such, no deploy besides asking for an instance
is necessary. The information to index from each product to the Elasticsearch will be the
product’s name, it’s manufacturer code for search purposes and it’s price for later use in the
quote document generation.

The last outside service will be the outbound SMTP server, represented by the Email Egress
component, as this was the best choice to ensure better email deliverability to the client. The



3.4. Proposed approach - Rissa 29

service chosen will be the Amazon Simple Email Service (SES) 4, also provided by AWS for
the same reasons that led to the decision of the Elasticsearch managed service, in Section
3.3.1.

Getting to the Rissa application, and starting from the Products Processing component, it
will be necessary to consume and process the uploaded data from the Products data compon-
ent to then uploaded to the Search Engine component. For this part, a generic HTTP Applica-
tion Programming Interface (API) will be created, simply as the ingress point delegating to
another module the construction of the upload data to the Search Engine component, as per
the Elasticsearch requirements.
Following the client’s flow, the email message will first be received by the inbound SMTP

server, represented by the Email Ingress component. This component is part of Rissa instead
of being another external service, because it will allow for a finer control over the incoming
email.

After being received by the inbound SMTP server, the Email Processing component will
extract all the necessary information. This component, later renamed as the information ex-
tractionmodule, will be composed by the email parser, responsible to extract and pre-process
the email’s body content and the NER model that will tag the received text, in order to ex-
tract the relevant product information. The NER model will be inside it’s own module as to
be easier to change the model as the state of the art in the field of NLP advances. The inform-
ation extract module will also be separated because, as was said earlier, although the focus
will only be in email messages, it should be possible to grow Rissa to support more message
services should the company desire.

The information extraction module will also be responsible for the search in the Search En-
gine component and, getting any tangible result, send the found products information to the
next component. This behaviour makes this module the only other one to depend directly
from the Elasticsearch API, more concretely it’s query system which making it the most vul-
nerable to outside changes.

Finally getting to the Quote Document Generator component, responsible to receive all the
found products information and generating the quote document as a response to the client.
This module depends on the SES, and an abstraction should be made for easier service pro-
vider change.

Having described all the high level components of Figure 20, it’s possible to observe Figure
21, a visual representation of the whole system’s architecture.

4 https://aws.amazon.com/ses/
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Figure 21: System Architecture.

3.4.2 Application technologies

Besides the functional requirements of Rissa, it should also be relatively easy to deploy,
pointing in the direction of self contained compiled programming language. The gap, in the
deployment, of interpreted or compiled programming languages has been decreasing due to
the development of virtualisation and containerization technologies.

The programming language chosen for the development of Rissa was the Elixir [40] pro-
gramming languagedue to it’s functional, fault-tolerant and scalable capabilities. Elixir achieves
fault-tolerance and scalability by leveraging the same runtime as the Erlang [5] programming
language, the Erlang Virtual Machine (BEAM). By sharing the same runtime with Erlang,
Elixir can use Erlang’s code without any runtime cost, effectively taking advantage of the
existing ecosystem.
For the development of Rissa, Elixir will be useful for the implementation of the inbound

SMTP server, where it’s shared nothing concurrent programming via message passing, also
known as the Actor model [3, 24], will allow for scalability if necessary. This is particular
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important because the handling of email is asynchronous and as such is more important to
handle all the incoming messages than it is to have the lowest possible email response time.
Only one other component needs to be decided, the program that exports the products

information from the company’s database server and uploads it’s information to Rissa. Al-
though this component looks simple, it has some nuances that it will have to address. This
programwill be executedwithin a temporal interval, it’s execution time should be reasonable
as to not interfere with normal operation of the company’s database. This leads to prefer lan-
guages that don’t depend on a virtual machine during execution. Getting more specific on
the company’s database server, it was gathered that the environment is Windows Server [32]
and the database is Microsoft Structured Query Language (SQL) Server [31]. With this in-
formations, the pool of available programming languages to choose from decreases, since it’s
preferable to have a programming languages that executes natively in the environment and
has native drivers for the database.
The programming language chosen was the Go [37] programming language because it

provides all the necessary requirements and is even possible to cross compile 5 Go from other
environments thus removing the need to haveWindows Server present during development.

5 https://github.com/golang/go/wiki/WindowsCrossCompiling
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DEVELOPMENT

In Chapter 3, we presented the system architecture and what technologies ... be used
This Chapter will explore what data is available, the important content of such data and

the steps we will take to go from the raw data to a more usable format. Using this data we
will find the best model for our task.

We will also develop the proposed solution, having, at the end, a system that tackles the
proposed challenges.

4.1 DATAS E T

The dataset was made available, as several eml files. In this file format, each file contains
one email in plain text in MIME format and all it’s contents including attachments.
Each email present in the dataset was filtered beforehand by an employee, and was classi-

fied as a quotation request.
In order to process this files we use the Ruby [11] programming language with a mail

library [33].
As the eml format is not well defined it is possible, in some cases, to have in one file the

first email and then some or even all responses, where as in other cases the first email and
the responses are in their individual files normally following the format MSGID for the first
email and MSGID-PART for the subsequent, where the MSGID is an identifier for the email and
PART is the number corresponding to next sequence.
After getting the general sense of the format of the data, and some of it’s caveats, the next

step was to start exploring concretely about it. The dataset is composed of 18650 email mes-
sages, of which 4190 are first contacts, that is, they are more likely are the initial quotation
request, and as such will be where wewill focus our attention. The time period of the dataset
is of 324 days, taking place from 2019-11-06 to 2020-09-25.
In order to support the dissertation, it was also relevant to inspect how many quotation

requests were resolved in the first reply. A request is regarded as resolved when no further
exchange of emails occur in a conversation. To do this analysis we grouped the number of
exchanged emails, between the employee and the client, by the number of times it occurred.
Figure 22 (note the logarithmic scale in the axis of ordinates) helps to visualize this inform-

ation, and also shows that most of the interactions are resolved within the first reply. Getting

32
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the concrete values observed in Table 3 shows that 70.29% of quotation requests were re-
solved in the first reply supporting the assumption that this first interaction has potential
and benefit to be automated.

Figure 22: Exchanged emails in a conversation and it’s occurrence.

The values in Table 3 do not add up to 100% because 734 emails do not have a reply. Upon
further manual inspection and talks with the company, these emails were ignored because
of their content. In their majority they were quotation requests for personal protective equip-
ment due to the COVID-19 and SARS-CoV-2 pandemic.

4.1.1 Preprocessing

Having identified the emails that were most likely to have been resolved in the first reply,
the next step was to separate the body content from the rest of the email fields. This prepro-
cessing involved a two part process, each with it’s sub steps.
Firstly the body content was extracted as raw text, effectively removing all the other email

fields. In order to have more compatibility with future tools, all the text was converted from
it’s original encoding to Unicode Transformation Format –8-bit (UTF-8) [77]. With the help
of another Ruby library,Nokogiri [34], HypertextMarkup Language (HTML) content present
in the body was converted to text and replaced.
Secondly all whitespaces characters were addressed as some emails presented several car-

riage return characters which were removed. All horizontal tabulations were substituted for
spaces. Ruby already has built-in regular expressions to handle this cases in the Regexp class,
called POSIX bracket expressions that are similar to character classes but match any character
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in the Unicode Nd category, for our case, UTF-8. As such it is possible to apply them to our
email body text, as seen in Listing 1.

1 def squish(email_body)

2 email_body.gsub(/[[:space:]]+/, " ").strip

3 end

Listing 1: Substitute all occurrences of one or more whitespaces for a common space.

To summarize, the HTML content present in the body was converted to text and the occur-
rences of one or more whitespaces were substituted by the most common space character in
UTF-8 (U+0020).

After this process all the resulting lines of text corresponding to each processed email were
written to a file for the next steps. Having effectively created a new dataset from the original,
the decision to use the simple format of a message per line, will prove itself useful as it facil-
itates the use of this new dataset in other tools.

4.1.2 Manual entity tagging

Having the newdataset, it is nownecessary to annotate the emails in order to have a dataset
for the models to train. In order to annotate the dataset, a key ingredient is missing, the entit-
ies that are important to identify. In other words, which is the relevant information present
in the text that we want to extract.

To choose the most relevant information to identify and retrieve from the text, a deeper un-
derstanding of the dataset was needed. To gain more of this understanding, several emails
were selected from the dataset and were read. This process also involved the company em-
ployees since, they have domain knowledge and helped validate or dismiss the assumptions
made during the analysis. After some iterations it was settled on four entities:

• SKU: The internal or manufacturer code;

• Product: The name of the product;

• Brand: The brand name of the product;

• Quantity: The quantity of each product.

Having successfully identified the entities to use, the most manual labour inspection part
follows, manually tagging each occurrence of each entity in each email text piece. The last
part of the previous sentence, shows the iterative nature of the process, and hints at the pos-
sibility of increased automation.
Due to nature of this process a new tool had to be introduced. After some research, doccano

[63], and open source text annotation tool, was chosen for several of it’s features namely a
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simple user interface, the possibility to interact with the system via an API that is Represent-
ational State Transfer (REST) [22] and easy to setup development environment.
Earlier it was hinted that the manual tagging process could use more automation. Instead

of tagging all the messages upfront, it is possible to split them in several slices. Each slice, in
our case contains 100 email messages.
The tagging process is illustrated in Figure 23, where for the first time, when amodel is not

available, the right side of the Figure is followed. In the right side the messages are uploaded
to doccano and manually tagged being then exported to train the first model iteration. All
the next iterations follow the left side, where firstly the messages are tagged with the current
model and later corrected before being exported, just like in the right side, to train the next
model iteration. The𝑚𝑜𝑑𝑒𝑙𝑖−1 is comparedwith the𝑚𝑜𝑑𝑒𝑙𝑖, where 𝑖 is the current iteration, and
the best performing model is kept. This process continues until no more slices are available.
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Figure 23: Illustration representing the tagging-training-correct flow.

The approach represented in Figure 23 can be faster or slower than the full manual ap-
proach (i.e. only using the right side of Figure 23), depending on the number of human re-
sources manually tagging the messages and the available compute power to train the model.
The advantage of the presented approach is that after each slice it is possible to analyse in

which cases the model is failing and change the tagging accordingly. For example, for this
particular case, many costumers write the name of the product with the name of the brand.
This makes it more difficult to identify whether to tag the with the label Product or the label
Brand. In this case, when in doubt, it was chosen to favour the label Product has it was the
one that showed more promising results.
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As only some of the selected model presented in Chapter 2 could be used during this
process, due to limitations of the computational resources, to use in the context of Machine
Learning (ML), only one model was used. The DistilBERT 2.4.5 model was chosen for it’s
fast training time trait and for being based on BERT 2.4.5. In the future, and after the best
base model was chosen, the DistilBERT model will be substituted by it in order to inspect it
in between training slices and to improve it.
After some iterations of the process, more emailswere discarded due to being in a language

different than Portuguese as, for the time being, the only language to support is Portuguese.
However this raised a concern about how to handle emails in other languages. Due to the
experimental nature of the project and the vast majority of the emails being in Portuguese,
this was pushed to a future feature.
In the end, 1008 emails messages were completely tagged with the result presented in Fig-

ure 24. This value is around a forth of the initial value and took 11 process iterations to
achieve.
In Figure 24 it is possible to visualize the impact of the earlier decision to give more pre-

valence to the Product tag instead of the Brand tag. This sample is also in line with the initial
assumption that the most referred tags that refer to a product are the name (Product tag) and
it’s synonymous or manufacturer code (SKU tag).

Figure 24: Occurrence of NER tags.

To conclude this Section, the manual tagging of text is still a time-consuming process, nev-
ertheless it was possible to introduce a system to help speed up the process and at the same
time inspect the performance between training slices.
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4.2 TRA IN ING MODEL S

During the tagging process and in order to use the DistilBERT model, it was needed to
write the code that trained and applied the model to the next slice. For the sake of simplicity
and code reuse, instead of implementing DistilBERT, the flair [62] library was chosen due
to it’s simple API. In the case of Transformer models, flair uses HuggingFace’s Transformers
[78] which also provides an easyway to tap into a greater ecosystem of NLP libraries, such as
TensorFlow [53] and PyTorch [55]. Both these libraries are implemented or provide bindings
for Python [8] and as such the training part was written in Python.

Since many models use the CoNLL-2003 Shared Task [27] as a performance metric, the
CoNLL-2003 format for the tagged text is a popular choice for the input. With this in mind,
the dataset exported from doccano was convert to the CoNLL-2003 format.
As each chosen model is going to be tested with several options, several configuration files

(Listing 2) were created, each configuration file representing a model and it’s options. The
Python code abstracts each configuration file into an Experiment dataclass that represents it
and an ExperimentRunner class that runs and saves the experiment for later analysis.

1 {

2 "description": "DistilBERT base cased with First Subword Pooling and

Ç Scalar Mix",

3 "embeddings": ["distilbert-base-multilingual-cased"],

4 "layers": [0,1,2,3,4,5,6],

5 "batch_size": 16,

6 "hidden_size": 256,

7 "max_epochs": 500,

8 "embeddings_storage_mode": "gpu",

9 "pooling_operation": "first",

10 "use_crf": true,

11 "use_scalar_mix": true,

12 "train_with_dev": false

13 }

Listing 2: Example of DistilBERT configuration file.

The models that are going to be trained and compared are:

• XLM model trained with Masked Language Model (MLM);

• BERT Base Cased with First Subword Pooling and Scalar Mix;

• BERT Large Cased with First Subword Pooling and Scalar Mix;
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• Stacked Portuguese Word Embeddings with forward and backward Pooled Flair Em-
beddings;

• XLM-R Large with First and Last Subword Pooling and Scalar Mix;

• DistilBERT Base Cased with First Subword Pooling and Scalar Mix.

With the exception of the Pooled Flair Embeddings (Section 2.4.5), all other models are
based on the principles of the Transformermodel (Section 2.4.5) and also have the advantage
of being multilingual capable.

4.2.1 Model results

During the training, the Brand label, due to it’s small number of occurrences, was not being
learned satisfactorily and was removed for the final training.
In order to have a better reference, the models were executed three times. A new random

seed was generated for each execution, but the same seed as maintained for all the models
during training for that particular execution.

The results can be seen in Table 2where the Stacked PortugueseWord Embeddings with forward
and backward Pooled Flair Embeddings model has the advantage over the rest in the Product
and Quantity labels and the BERT Large Cased with First Subword Pooling and Scalar Mix has
advantage in the SKU label.

Product Quantity SKU
XLMmodel trained with MLM (Masked Language Modeling) 61.08 30.55 68.85
BERT Base Cased with First Subword Pooling and Scalar Mix 37.44 31.64 65.34
BERT Large Cased with First Subword Pooling and Scalar Mix 56.11 43.7 72.99

Stacked Portuguese Word Embeddings with forward and backward Pooled Flair Embeddings 74.34 55.71 64.91
XLM-R Large with First and Last Subword Pooling and Scalar Mix 44.04 17.54 71.02
DistilBERT Base Cased with First Subword Pooling and Scalar Mix 42.84 28.31 64.3

Table 2: The mean 𝐹1 score of every model for each chosen label.

Due to the prevalence of the Product label, as seen on Figure 24, it was chosen to use the
Stacked Portuguese Word Embeddings with forward and backward Pooled Flair Embeddingsmodel.

4.3 R I S SA

Having found the most important part of the system, the model that is going to be used
for the taks of NER, the focus now switches over to the development of the system described
in Section 3.4.1.
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4.3.1 Product information ingress

Starting from the ingress of the product information, an HTTP API was created to handle
the incoming collection. This single endpoint receives the entire products collection, because
the total data transmitted is small, coming in under 5Megabyte (MB). If the transmitted data
were to be much larger, another protocol should be used instead of HTTP. As the data is not
big, using HTTP facilitates the development and future maintenance of the project.
The endpoint fromRissa is expecting aHTTP POST request with the body content as JSON

[59] as exemplified in Listing 3.

1 {

2 "products": [

3 {

4 "internal_name": "Produto da MarcaA",

5 "sku": "MA-0001",

6 "price": 100

7 },

8 {

9 "internal_name": "Produto da MarcaB",

10 "sku": "MB-0001",

11 "price": 100

12 }

13 ]

14 }

Listing 3: Example of the body HTTP request to Rissa.

Since in JSON the only available datatypes for numbers are either an integer or a floating
point and due to the way floating point precision works, as defined in IEEE 754 [70], it was
chosen to receive the price as an integer to avoid precision and rounding errors. This however,
comes at the cost of not being able to represent more precision beyond cents or even more
currencies besides the default chosen, the euro. To put things into perspective there are, as
of Unicode Common Locale Data Repository (CLDR) version 38 [74], at least 59 currencies
that don’t use two decimal digits.
In order to protect Rissa from the rest of the internet an authentication system as imple-

mented. This system involved the creation of an API secret key. Rissa would then return to
all requests made, to this endpoint, without the presence or a valid secret key the HTTP error
401 - Unauthorized. As to not hardcode this secret key into the code, the introduction of
a database besides Elasticsearch was needed. Since besides storing the secret keys, no other
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requirement existed, for this reason, the database chosen was PostgreSQL [12] due to it’s
familiarity and availability in AWS 1.
Having another database, specially one that features ACID transactions, the initial envi-

sioned behaviour was altered to take advantage of this feature. When the request is made,
all products are processed in a create or update fashion. As each product already features an
unique internal code, this code is leveraged to create a new entry in the database if the code
does not already exists, or to update an already existent entry with the incoming informa-
tions.
Both the secret API keys and the products entries are managed through Ecto [45], a library

that provides data mapping from entries and/or queries to Elixir structs and also a Domain-
specific Language (DSL) to write database queries.

1 defmodule Rissa.Shop.Product do

2 use Ecto.Schema

3

4 @primary_key {:id, :binary_id, autogenerate: true}

5 @foreign_key_type :binary_id

6 schema "products" do

7 field :internal_name, :string

8 field :sku, :string

9 field :price, :integer

10

11 field :inserted_at, :utc_datetime

12 field :updated_at, :utc_datetime

13 end

14 end

Listing 4: Representation of the products schema using Ecto.

After receiving the request, the products information is saved to PostgreSQL through the
process described in Listing 4 and submitted to the Elasticsearch server through it’s API. As
to not block the client making the request, after the products are saved to PostgreSQL, the
server responds with HTTP code 201 - Created, terminating the interaction. Only after the
request is completed, is the information submitted (Listing 5) to Elasticsearch, improving the
overall reliability of the exportation process.

1 https://aws.amazon.com/rds/postgresql/
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1 {

2 "internal_name": "Produto da MarcaA",

3 "sku": "MA-0001"

4 }

Listing 5: Information indexed for each product in Elasticsearch.

In order to disrupt as little as possible the ability of Rissa to respond to email quote requests,
a zero downtime index rebuilding processwas implemented. To achieve this functionality, an
alias index was created, with the name rissa_products. This index is an alias to the current
index that follow the naming convention rissa_products_timestamp, where timestamp is
the, local to the server Rissa is on, Unix Epoch time when the index started building. When
a new index is finished building, the index alias changes from the current index to the newly
created index and marks the old index for deletion. As such, in reality no index rebuilding
occurs, only creation and deletion. This is also why no advantage is taken from the state
provided by the updated_at field from each product entry in PostgreSQL.
Getting to the program that makes the requests and runs in the company’s server, a data-

base user and credentials were provided. A database view was also created, in order to min-
imize the tables that the user could access. To further ensure the security of the process, this
user only has read permissions to the created view.

4.3.2 Inbound SMTP server

The implementation of the inbound SMTP server is a perfect example of the ability to lever-
age the Erlang ecosystem. The library that is going to be used is gen_smtp 2 which handles
all the overhead of the protocol.
In Rissa it is only necessary to implement the feature behaviour gen_smtp_server_session

of the library and pass the email data to the next module, as described in Listing 6.

1 defmodule Mail.SMTPServer do

2 @behaviour :gen_smtp_server_session

3 # ...

4 def handle_DATA(from, to, data, state) do

5 Mail.Receive.receive_message(from, to, data)

6 {:ok, UUID.uuid5(:dns, @domain_name, :default), state}

7 end

8 # ...

9 end

2 https://github.com/gen-smtp/gen_smtp
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Listing 6: Implementation of the handle_DATA/4 callback from the behaviour
gen_smtp_server_session.

Each request made to the inbound SMTP server is handled by a different BEAM process
and is therefore isolated from and concurrent to the other processes.

4.3.3 Information extraction

When the information extraction module receives the email, it’s preprocessing will be sim-
ilar to preprocessing in Section 4.1 of the eml files. All whitespaces will be replaced with a
single UTF-8 space and the possible HTML content replace with it’s plain text equivalent.
The preprocessed text is sent to the NER model for it to extract the relevant entities. The

model that was chosen in Section 4.2.1 runs in a separate Python process and not on the
BEAM. As such, a way to communicate from the BEAM to and from the Python process was
needed. The BEAM provides several kinds of interoperability to achieve this functionality,
being the main ones Ports, C Nodes or Native Implemented Functions (NIFs). The safest inter-
operability is through Ports because Ports prevent the BEAM from crashing due to an error
from the Port, in contrast to, for example, NIFs, where if the NIF code crashes, it also crashes
the BEAM.
The Elixir module Rissa.Ner is responsible for spawning and managing the Python pro-

cess. It does it with the help of erlexec 3 which implements a manager of Operating System
(OS) processes, an important aspect to prevent the occurrence of orphan processes.

Rissa communicates with the model process through Standard Input (STDIN) and Stand-
ard Output (STDOUT). It sends to the STDIN of the model process a string containing the
message and reads it’s STDOUT in the form of JSON for easier processing. A minimal viable
example is presented in Listing 7.

1 model = SequenceTagger.load(path)

2 model.eval()

3

4 def extract_entities(message):

5 sentence = Sentence(message)

6 model.predict(sentence)

7

8 entities = []

9 for entity in sentence.to_dict(tag_type='ner')['entities']:

10 labels = []

11 for label in entity['labels']:

3 http://saleyn.github.io/erlexec/
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12 labels.append({

13 'label': label.value,

14 'score': round(label.score, 2)

15 })

16

17 entities.append({'text': entity['text'], 'labels': labels})

18

19 return entities

20

21

22 for line in fileinput.input():

23 print(json.dumps(extract_entities(line.rstrip())), flush=True)

Listing 7: Excerpt from the Python file that extract entities.

The module Rissa.Ner implements the GenServer behaviour (Listing 8) and is started in
the beginning of the application. Ideally a Rissa.Ner GenServer would be started for each
request, however only a single one is started, due to the high requirements of the NERmodel,
both in term of Random Access Memory (RAM) usage and time to load.

1 defmodule Rissa.Ner

2 use GenServer

3 # ...

4 @impl true

5 def init(_state) do

6 state = :exec.run("python lib/ner/extract_ner.py", [:stdin, :stdout, :

Ç monitor])

7 {:ok, state}

8 end

9 # ...

10 end

Listing 8: Function init/1 for the Rissa.Ner GenServer.

For all the reasons stated above, the Rissa.Ner module will probably be the greatest bot-
tleneck during execution.
After decoding the received JSON, the matches are sorted accordingly to their score and

extracted to be searched on the Elasticsearch server.
An example of the query used to search is presented in Listing 12. It works by querying the

Elasticsearch index for either the product internal name or it’s internal code. As the search
is simultaneous, in the case of the internal name, the query searches both for the exact name
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match or tries to match other internal names, through fuzziness, with an error tolerance up
until two characters. For the internal code, only exact matches are taken into consideration.
The returned results are ordered by the score attributed by Elasticsearch.

Finally the collection of products resulted from the email message is passed to the quote
document generation module where the quote document is created and sent to the client.
This process is made by the receive_message function of the module Mail.Receive and is
represented in Listing 9

1 defmodule Mail.Receive do

2 # ...

3 def receive_message(from, _to, data) do

4 Mail.Parsers.RFC2822.parse(data).body

5 |> String.replace(~r/[[:space:]]+/, " ")

6 |> Html.replace()

7 |> (&Rissa.Ner.extract_ner(Rissa.Ner, &1)).()

8 |> Jason.decode!()

9 |> Enum.map(&tuple_text_label/1)

10 |> Enum.map(&search_product/1)

11 |> Enum.reduce([], &reduce_products/2)

12 |> Email.products_quote(from)

13 end

14 # ...

15 end

Listing 9: Email message flow from after being received to before being sent.

4.3.4 Quote document generation

The quote document is sent as a PDF file, however due to the legal norms involved in
creating and certifying the document, it would not be possible to implement the same func-
tionality. Instead, Rissa will send a text email as a response, just to prove that the concept is
feasible. In the future, it will only be needed to change the function that constructs the email
to one that attaches the PDF document, as seen in Listing 10.
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1 defmodule Rissa.Email do

2 # ...

3 def products_quote(products, to) do

4 base_email()

5 |> to(to)

6 |> subject(opts().subject)

7 |> put_header("Reply-To", opts().reply_to)

8 # |> put_attachment(create_quote_pdf(products))

9 |> render(:products_quote, products: products)

10 end

11 # ...

12 end

Listing 10: Quote email response construction function with the option to also add a PDF file.

In Section 4.3.1 it was referred that the price of each product was being stored as an integer.
In order to represent the price to the client, some formatting needed to be done. Firstly we
used a library 4 that provided arbitrary precision decimal arithmetic to add back the precision
by dividing by 100. Secondly and following the CLDR format, a library 5 that implemented
it was used as to output a usable string, as can be observed in Listing 11.

1 defmodule RissaWeb.EmailView do

2 use RissaWeb, :view

3

4 def humanize_money(product) do

5 product.price

6 |> Decimal.div(100)

7 |> Rissa.Cldr.Number.to_string(locale: "pt-pt", currency: "EUR")

8 end

9 end

Listing 11: Convert the integer product price to a human friendly string.

4.3.5 Benchmarks

Having developed all the components of Rissa, it is nowpossible to evaluate the hypothesis
raised in Section 4.3.3 and identify the biggest run time bottleneck.

4 https://github.com/ericmj/decimal
5 https://github.com/elixir-cldr/cldr
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The function present in Listing 9 was decomposed in three subparts, the pre-process, the
extract_ner and the search part. All these subparts were run with the same initial inputs
and the same warm up and execution time parameters. In order to remove network latencies
from the searchpart, this benchmarkwas runwith the PostgreSQL andElasticsearch services
in the same machine.
A graphical representation, presented in Figure 25, of the benchmark confirms the hypo-

thesis. The benchmark also reveals that the only non concurrent part, the extract_ner of the
system take on average 0.88 seconds to complete. This information is relevant, as it allows for
an estimate of the throughput of the system, i.e. the throughput of handle email messages
per time period.

Figure 25: Run time of the three main parts of the function present in listing 9.

4.4 SUMMARY

During this Chapter the dataset provided was explored and processed until the informa-
tion was fit for the model training. A text tagging system was also created, in order to help
the process of labelling the email data. After the labelling of the data, several models with
different options were trained and as a culmination, the best model, for our case, was found.

All the different parts of the proposed solution were addressed and developed and, in the
end, the system developed closely resembles the proposed system architecture.
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CASE STUDY

5.1 EX P ER IMENTAL S E TUP

Following the same trend as the other services, Rissa was deployed in an Amazon EC2
instance. In order to chose the most appropriate instance for the work load, measurements
had to be taken.

The adjacent NER model of the Rissa.Ner module was profiled in terms of it’s memory
usage and the results can be seen in Figure 26.

Themodel, takes on average less than 20 seconds to load and requires 10 GibiByte (GiB) of
memory at peak time before stabilising at 4.68GiB after theGarbageCollection (GC) process.

Figure 26: Model memory usage per second, during initialization time.

After both this results and the results presented in Section 4.3.5, it was confirmed that the
module Rissa.Ner is the greatest bottleneck both during execution and load time.

48
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Giving this minimum requirements, the instance chosen was the t3.xlarge with 4 Virtual
Central Processing Unit (vCPU) and 16 GiB of RAM. This instance was chosen instead of
the smaller and cheaper t3.largewith 2 vCPU and 8 GiB of RAM, because it presents a better
price/performance relation 1.
Having decided on the instance it is now possible to stress test the system in order to estab-

lish it’s capacity. To help with this task, the tool Postal [30] was used. This test was executed
during 60 minutes and it’s results are presented in Figure 27. The system averages 108 pro-
cessed emails per minute, confirming the earlier results presented in Figure 25.

Figure 27: Processed email messages per minute.

5.2 R E SULT S

Having the system deployed, an alias email address was given to Rissa in order for it to
receive the same email messages as the quotes email address. This setup ran during 30 days,
as to have a real insight into the operation and results of the proposed solution.
During the time that Rissa ran, it received 548 email messages and all the email responses

were logged to be analysed. The employees email responses were also obtained, in order to
compare then to Rissa’s results.
Following the same analysis made in Section 4.1, only the email messages that were re-

solved in the first reply were taken into consideration, leaving 372 email messages to analyse.

1 https://calculator.aws
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Instead of labelling the remaining email messages, only the response was taken into ac-
count in order to collect what products were present in the quote document sent as a re-
sponse.
After associating the products with each corresponding email message, the employees’

responses were compared with those of Rissa. Rissa achieved 8.6% of full accuracy, mean-
ing that 32 responses were the same as those sent by the employees, and 20.97% of partial
accuracy, meaning that 78 responses had one or more correct products present but not all.
Upon recreating the sending of the emailmessages and inspecting both the results from the

NERmodel and the subsequent search, the reasons for the above results became clear. Some
products references are not being labelled by the NER model, as expected by it’s 𝐹1 score,
but the search is where the main problem is occurring. The product chosen by Elasticsearch
most of the time is not the correct one because many of the labelled text that is being sent to
search, doesn’t provide enough context.
Although the search didn’t provide good results, it made a great job of eliminating the false

positives that it received from the NER model.

5.3 D I S CU S S ION

A more detailed analysis of the answers given by Rissa in relation to those given by the
employees revealed a discrepancy in the answers for the same type of product, i.e. Rissa
gives a similar answer for a product to that given by the employees. To better understand
this difference in answers, an interview was conducted in the company where the difference
in criteria in the decision to choose a product was perceived. In addition to the information
made available to Rissa, employees have access to internal information about repeated cus-
tomers, such as purchase history and also more volatile information such as internal stock
availability and availability of stock from the manufacturer.

From this knowledge it was possible to arrive at a hypothesis of why the discrepancy in
responses between Rissa and the employees occurred.

Having the opportunity to test the system in the real world and with real information was
immensely helpful as it allowed to show what parts of the system were up to the task and
what parts need improvement.

The developed and deployed system works without disturbances or visible impact to both
the internal and external company’s Information Technology (IT) infrastructures.
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CONCLUS ION

6.1 CONCLUS IONS

The work described in this dissertation took place in Utilmédica, a medical and hospital
products business company. This dissertation, attempts and almost completely succeeds in
solving a real world problem of the company. The problem presented by the company was if
it was possible to automatically answer to quotation email requests.

This dissertation started by searching for market tools that could solve the problem and
didn’t found such tool. Having not identified a viablemarket solution, we start by identifying
the main parts of the problem and proceed to research what is the current state of the art for
each relevant one.
After getting a better understanding of what is currently possible to achieve in each de-

termined field, the work proceeds to a deeper analyses of the problem and it’s challenges. It
is during this phase that most decisions regarding the overall design of the system start to
occur culminating in the presentation of the system’s architecture and the technologies that
used to develop it.
Having the systemdeveloped, it was deployed during a period of time to better understand

it’s behaviour in real situations. During this period, several benchmarks were also performed
and the system’s limits tested.
The extraction of useful data from unstructured text is still a difficult task to do but the

implementation of Rissa shows that it is possible to implement a system that uses state of the
art NLP research work in a real world situation.
In this sense, it is possible to conclude that the work developed and presented through this

dissertation is applicable in the context of this company, in such a way that it can improve the
efficiency of the email quotation response process.

6.2 FUTURE WORK

During the research and the development of the system, several possible improvements
emerged.

51
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Although the main language presented in the messages was Portuguese, a minority of the
messageswere in other languages. Themodel thatwas chosenwas the onlymodel thatwasn’t
multilingual. To be able to extract NER from other languages either the model is changed to
one that offers multilingual support, or it is necessary to detect first the language and then
use a different model for each language.
Since the greatest bottleneck in the capacity to process messages in Rissa is the model,

when necessary, more model processes could be executed, at the expense of more memory
used, to further increase Rissa’s overall throughput
The focus of this work was on handling email, but Rissa is sufficiently modular to be easier

used with other messaging services.
By changing Rissa’s NERmodel to anothermodel that has been trained on another dataset,

it is possible to use the rest of the system, in other companies from other areas, to do similar
work.
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A
SUPPORT MATER IAL

Exchanged emails in a conversation Occurrence Percentage
1 2945 70.29%
2 80 1.91%
3 280 6.68%
4 10 0.24%
5 57 1.36%
6 8 0.19%
7 18 0.43%
8 4 0.10%
9 13 0.31%
10 2 0.05%
11 12 0.29%
12 4 0.10%
13 2 0.05%
14 1 0.02%
15 3 0.07%
16 2 0.05%
18 2 0.05%
19 2 0.05%
20 2 0.05%
21 2 0.05%
22 3 0.07%
23 1 0.02%
29 2 0.05%
40 1 0.02%

Table 3: Exchanged emails in a conversation and it’s corresponding occurrence accompanied with the
occurrence percent value.
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1 {

2 "explain": true,

3 "query": {

4 "bool": {

5 "must": {

6 "bool": {

7 "should": [

8 {

9 "dis_max": {

10 "queries": [

11 {

12 "match": {

13 "internal_name": {

14 "analyzer": "standard",

15 "boost": 10,

16 "operator": "and",

17 "query": "Máscaras MarcaA"

18 }

19 }

20 },

21 {

22 "match": {

23 "internal_name": {

24 "analyzer": "standard",

25 "boost": 1,

26 "fuzziness": 2,

27 "fuzzy_transpositions": true,

28 "max_expansions": 20,

29 "operator": "and",

30 "prefix_length": 0,

31 "query": "Máscaras MarcaA"

32 }

33 }

34 }

35 ]

36 }

37 },

38 {

39 "dis_max": {

40 "queries": [
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41 {

42 "match": {

43 "sku": {

44 "analyzer": "keyword",

45 "boost": 10,

46 "operator": "and",

47 "query": "Máscaras MarcaA"

48 }

49 }

50 }

51 ]

52 }

53 }

54 ]

55 }

56 }

57 }

58 },

59 "size": 1,

60 "timeout": "15s"

61 }

Listing 12: Elasticsearch query example for text Máscaras MarcaA.


	1 Introduction
	1.1 Objectives and goals
	1.2 Document structure

	2 State of the art
	2.1 Background
	2.2 Available solutions
	2.2.1 Mailparser.io
	2.2.2 Email Parser by Zapier
	2.2.3 Email Parser by FrozenFrog Software
	2.2.4 Parseur
	2.2.5 Summary and problem division

	2.3 Email
	2.3.1 Operation
	2.3.2 Message format

	2.4 Natural Language Processing
	2.4.1 Named-entity recognition/Part-of-speech
	2.4.2 Traditional
	2.4.3 Distributed representations
	2.4.4 Neural networks language models
	2.4.5 Transformer model

	2.5 Selected models

	3 The problem and its challenges
	3.1 SMTP server
	3.2 Information extraction
	3.3 Quote document
	3.3.1 Database search

	3.4 Proposed approach - Rissa
	3.4.1 System architecture
	3.4.2 Application technologies


	4 Development
	4.1 Dataset
	4.1.1 Preprocessing
	4.1.2 Manual entity tagging

	4.2 Training models
	4.2.1 Model results

	4.3 Rissa
	4.3.1 Product information ingress
	4.3.2 Inbound SMTP server
	4.3.3 Information extraction
	4.3.4 Quote document generation
	4.3.5 Benchmarks

	4.4 Summary

	5 Case Study
	5.1 Experimental setup
	5.2 Results
	5.3 Discussion

	6 Conclusion
	6.1 Conclusions
	6.2 Future work

	Glossary
	Acronyms
	A Support material

