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A B S T R A C T

Currently, Advanced Driver Assistance Systems (ADAS) have been gradually increasing their
presence in everyday life, thanks in part to its ability to recognize several distinct types
of objects in the road, namely, traffic signs. These systems employ Convolutional Neural
Networks (CNNs), a type of classification algorithms that relies on an enormous amount of
data in order to be effective. Current traffic sign datasets suffer from a scarcity of samples
due to the necessity of compiling and labeling them manually. Such task is highly resource
and time consuming. Thus, researches resort to other mechanisms to deal with this problem,
such as increasing the architectural complexity of the neural networks or performing data
augmentation.

This work addresses the data shortage issue by exploring the feasibility of developing a
synthetic dataset. Such set would not require gathering and labelling manually thousands
of real word traffic sign images, requiring only easily collectable information and no human
intervention.

The only data required is a set of templates for each sign given that a particular sign may
have more than one template. This is required to cope with outdated pictograms that are
still present in streets and roads.

We apply several colour and geometric processing methods to the templates aiming to
achieve a look similar to real signs, from the CNN point of view. One of such methods is
the usage of Perlin noise to both simulate shadows and avoid the clean and homogeneous
look that templates have.

Two use cases for synthetic data usage are presented: considering the synthetic dataset
as a standalone training set, and merging synthetic data with real samples when real data
is available. The first option provided results that not only clearly surpass any previous
attempt on using synthetic data for traffic sign recognition, but are also encouragingly
placing the accuracies obtained close to state-of-the-art results, with much simpler networks.
The second approach provided results on three distinct test datasets that consistently beat
state-of-the-art results, either in accuracy or in simplicity of the network.

Keywords: Synthetic data, Traffic sign recognition, Convolutional neural networks, Eu-
ropean traffic signs
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R E S U M O

Atualmente, Sistemas Avançados de Assistência ao Condutor têm vindo a aumentar grad-
ualmente a sua presença no quotidiano graças, em parte, à sua capacidade de reconhecer
vários objetos distintos na estrada, nomeadamente, sinais de trânsito. Estes sistemas em-
pregam Redes Neuronais Convolucionais (CNNs), um tipo de algoritmos de classificação
que dependem de uma enorme quantidade de dados de forma a serem eficientes.

Os conjuntos de dados de sinais de trânsito atuais sofrem de escassez de amostras devido
à necessidade de as compilar e rotular manualmente. Tal tarefa consome imenso tempo
e recursos. Por conseguinte, investigadores recorrem a outros mecanismos para serem
capazes de lidar com esse problema, tais como, aumentar a complexidade arquitetural das
redes neuronais ou efetuar data augmentation.

Desta forma, este trabalho aborda a questão da escassez de dados, explorando a viabil-
idade do desenvolvimento de um conjunto de dados sintéticos. Tal conjunto não exigiria
recolher e rotular manualmente milhares de imagens de sinais de trânsito, necessitando
apenas de informação facilmente recolhida sem intervenção humana.

Os únicos dados necessários são um conjunto de modelos para cada sinal uma vez que
um sinal particular pode apresentar mais que um modelo. Tal é necessário para lidar com
pictogramas desatualizados que ainda se encontram nas ruas e estradas.

Aplicamos vários métodos de processamento de cor e geometria aos templates visando
obter uma aparência semelhante a sinais reais, do ponto de vista da CNN. Um desses
métodos é a utilização do ruı́do de Perlin para simular sombras e evitar a aparência limpa
e homogênea que os modelos apresentam.

Dois casos de uso com dados sintéticos são apresentados: considerar o conjunto de dados
sintético como um conjunto de treino independente, e unir dados sintéticos com amostras
reais sempre que estas estiverem disponı́veis. A primeira opção forneceu resultados que,
não apenas superam claramente qualquer tentativa anterior de usar dados sintéticos para
reconhecimento de sinais de trânsito, como também colocam as precisões obtidas próximas
dos resultados do estado da arte, com redes muito mais simples. A segunda abordagem
forneceu resultados em três conjuntos de dados de teste distintos que superam consistente-
mente os resultados do estado da arte, tanto na precisão quanto na simplicidade da rede.

Palavras-Chave: Dados sintéticos, Reconhecimento de sinais de trânsito, Redes neuronais
convolucionais, Sinais de trânsito europeus
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I N T R O D U C T I O N

It is of crucial importance for autonomous vehicles to be able to recognize and classify ve-
hicles, pedestrians, road marks, and traffic signs among other objects in the public highway
accurately, as it is imperative to ensure the safety of all road traffic intervenients.

In this work we address the recognition of traffic signs. This chapter aims to introduce the
domain of traffic sign recognition and its motivation, with particular focus on the training
sets.

1.1 contextualization

Due to Graphical Processing Units (GPU) advancements in recent years, previous techniques
used to classify traffic signs such as traditional computer vision methods have been replaced
by deep learning classifiers. In particular, the domain of traffic sign recognition resorts
mainly to CNN based architectures.

Typically, to be able to train CNNs, in the context of traffic sign recognition, a high volume
of samples is necessary. However, the number of samples is not the only criterion to define
a training set. The environmental diversity, the time of day, atmospheric conditions, and
camera viewpoints, are all factors that influence the ability of a neural network to properly
recognize traffic signs.

In this context, collecting a truly representative dataset becomes a time and resource
consuming task. For instance, traffic signs that exist only in highways require long journeys
to get collected. Other traffic signs only appear in rural areas. And, this is only considering
the location influence. When all factors are taken into account, the process of building a
truly representative dataset of real images is not to be taken lightly.

Furthermore, all tests reported on the existing datasets assume perfect scenarios, i.e. that
the network will only be asked to classify an image containing a traffic sign that belongs
to one of the classes that are included in the training set. This is far from a real scenario
where a neural network may be asked to classify images that are not even traffic signs.

1
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Considering only traffic signs, unless the training set contains a large set of classes, the
CNN is most likely to perform poorly on a real scenario where a multitude of different
traffic signs are present.

To aggravate things further, it must be taken into account that a training set build with
collected signs from a country will not be optimal when used to train a network to classify
traffic signs from a different country. Small differences in letter fonts and pictograms are
sufficient to decrease significantly the accuracy of a CNN.

1.2 motivation

As mentioned before, collecting real traffic sign images can be an expensive and time con-
suming task. Furthermore, the datasets should not be reused across different countries at
the risk of a poor accuracy.

The motivation of this work derives from these issues. The solutions found so far ad-
dress the accuracy problem from the network perspective. Complex architectures, includ-
ing STNs and Inception modules, have been able to achieve considerable accuracies when
asked to classify a sign from a class that is included in the training set.

What is proposed in this work is to address the issues pertaining to the datasets. The
approach is to explore the construction of a dataset based only on synthetic data, thereby
eliminating the above mentioned issues. The number of classes is no longer a limitation,
and neither is it necessary to collect real images of traffic signs, some of which may require
long journeys to be able to gather a significant number of samples. Furthermore, concep-
tually, it makes sense to consider atmospheric conditions, time of day, and craft multiple
scenarios that are hard to encounter in real life in meaningful numbers, sufficient to train
CNNs.

When real data is already available, synthetic data can be used to complement the train-
ing set, providing a hard to obtain diversity when considering only real samples, thereby
potentially increasing the overall classification accuracy.

1.3 aim of the work

The goal of this work is to explore the assembly of a synthetic traffic sign image dataset
suitable for training a CNN for real traffic sign recognition.

The only input required must be the set of templates that define the classes of the traffic
signs included in such a training set. Most of these can be collected from a number of
sources in the internet. Note that for a particular class, there may be more than one template.
This is because the same class may have different pictograms displayed in the streets. This
occurs with the introduction of new pictograms, or text fonts for particular classes. Old



1.4. Document structure 3

signs are not removed so several versions may coexist. In order to maximise the probability
of having high accuracy for both new and old versions, all versions should be part of the
template set.

For each template, a background is applied. Once again this can be a synthetic or a
real scenario. Afterwards, several color and geometric modifications are applied to the
resulting image. Perlin noise is also used with a dual purpose: on the one hand it allows
the simulation of shadows from tree leaves, and, in the other, it simulates the wear of
materials exposed to an open environment.

To compare the potential of such a dataset, tests are performed against state-of-the-art
reports on existing European traffic sign repositories, considering two usage scenarios: the
synthetic dataset as a standalone training set, or merged with a real-world training set.

1.4 document structure

The remaining of the dissertation is divided into the following chapters:

• Chapter 2 reviews previous studies regarding existing traffic sign datasets, widely
used data augmentation techniques, and some of the employed synthetization ap-
proaches for data generation, not directed exclusively at traffic signs;

• Chapter 3 explores the different included approaches in the generation of synthetic
traffic signs;

• Chapter 4 presents the contribution of each technique in the generating process as-
sessing each individual technique as the final synthetic data generation pipeline in
the above mentioned usage scenarios;

• Chapter 5 presents the conclusions regarding the usage of synthetic data in training
sets, providing prospects for future work.
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S TAT E O F T H E A RT

Over the past few years, several studies have been conducted on the subject of traffic sign
classification involving datasets from various countries. As stated before, the adopted ap-
proach consists in the use of convolutional neural networks, a machine-learning based set of
algorithms that has achieved fruitful results and have been widely adopted for both object
detection and recognition, namely for traffic signs.

This chapter focuses on existing European traffic sign repositories and the CNN architec-
tures reported in the research literature trained with these datasets.

Ultimately, it also reports on research relating to synthetic datasets.

2.1 traffic sign datasets

Only for a few countries samples of traffic signs have been collected and labelled, and
released as a public dataset. The volume and quality of samples varies greatly across
countries. This section will provide a brief overview of some of the largest European traffic
sign classification datasets. For the purpose of this work, only classification data sets above
5000 samples are considered. However, smaller datasets do exist, such as the Swedish Traffic
Signs (STS) dataset which has just a total of 3488 traffic signs obtained from a 20000-frame
video (Larsson and Felsberg, 2011).

2.1.1 Germany

The GTSRB dataset is Europe’s largest publicly available set of traffic signs, consisting of
51839 samples divided by 43 classes. An example of each class can be seen in Figure 1.

The traffic signs were extracted from a 1-second video sequences by Stallkamp et al.
(2012). The entire dataset is divided between the training set, consisting of 39209 images,
and the test set, consisting of 12630 images. The dataset samples are not necessarily square
with resolutions ranging from 25 × 25 to 232 × 266 pixels with each sample containing
approximately 10% of margin around the traffic sign. The distribution of the dataset is
shown in Figure 2 with the red dashed line representing the mean sample count per class.

4



2.1. Traffic Sign Datasets 5

Figure 1.: Examples for each of the 43 classes of the German dataset. The classes are labeled from
left-to-right and top-to-bottom.
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Figure 2.: Traffic sign samples frequency by class of the GTSRB dataset.

The dataset is clearly unbalanced, i.e. there are classes with a much higher sample count
than others. This issue is recurrent in the other datasets covered in this section as well.

2.1.2 Italy

The DITS data set possesses a total of 9254 traffic signs distributed by 59 classes captured
by Youssef et al. (2016) in challenging conditions such as night-time, fog conditions, and
complex urban environments. An example of each class from the Italian data set is shown
in Figure 3.

The data set is split in training set, consisting in 8048 samples, and test set, consisting
in 1206 samples. From the 59 classes, 11 do not contain any sample in the test set. The
samples resolution ranges from 19× 20 to 321× 348 pixels. The distribution of the data set
is shown at Figure 4, also unbalanced like other datasets.
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Figure 3.: Examples for each of the 59 classes of the Italian dataset. The classes are labeled from
left-to-right and top-to-bottom.
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Figure 4.: Traffic signs samples frequency by class of the DITS dataset.
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Figure 5.: Examples for each of the 62 classes of the Belgian data set. The classes are labeled from
left-to-right and top-to-bottom.

2.1.3 Belgium

The BTSC dataset contains a total of 7095 traffic sign samples divided by 62 distinct classes
that were collected and processed by Timofte et al. (2009). An example of each class from
the Belgian dataset is shown in Figure 5.

The entire data set is split in training set, consisting in 4575 samples, and testing set,
consisting in 2520 samples. The resolution of the samples varies, ranging from 22× 21 to
674× 527 pixels. In a similar fashion to the GTSRB, the Belgian data set samples contains
a border of 10% around the traffic sign of, at least, 5 pixels. On average, the BTSC data
set contains 3 samples per each traffic sign as seen by different viewpoints at 3 different
time moments (Mathias et al., 2013). In order to improve diversity, the samples have been
extracted from an average of 15 video tracks per class. However, some classes have more
examples in the test set than in the training set, and 9 classes do not contain a single
example in the test set. The distribution of the entire dataset is shown at Figure 5 where it
is possible to observe that it is also unbalanced, similarly to all other data sets.

2.1.4 Croatia

The rMASTIF dataset has a total of 5828 traffic sign samples divided by 31 classes (Šegvic
et al., 2010). An example of the dataset can be seen in Figure 7. Each class has at least
12 distinct tracks and each track has 4 examples. The data set is split in training and test
sets, consisting in 4044 and 1784 samples, respectively. The samples resolution ranges from
17× 16 to 185× 159 pixels. Each sample has an additional margin of around 10% similarly
to other datasets.

Once again, the data set distribution is not uniform as shown in Figure 8.
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Figure 6.: Traffic signs samples frequency by class of the BTSC dataset.

Figure 7.: Examples for each of the 31 classes of the Croatian dataset. The classes are labeled from
left-to-right and top-to-bottom.
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Figure 8.: Traffic signs samples frequency by class of the rMASTIF dataset.

Table 1.: Individual CNN architecture used for classification of the GTSRB dataset by Cireşan et al.
(2012) with a total of 1.1 million parameters. Table reproduced from Stallkamp et al. (2012).

Layer Type Kernel Output Shape Parameters

0 Input 48× 48× 3
1 Convolution 7× 7 42× 42× 100 14800
2 Max Pooling 2× 2 21× 21× 100
3 Convolution 4× 4 18× 18× 150 240150
4 Max Pooling 2× 2 9× 9× 150
5 Convolution 4× 4 6× 6× 250 600250
6 Max Pooling 2× 2 3× 3× 250
7 Fully Connected 128 288128
8 Fully Connected 43 5547

2.2 traffic sign classification

In 2011, Cireşan et al. (2012) won the the International Joint Conference on Neural Networks
(IJCNN) competition held by Stallkamp et al. (2012), achieving, at the time, a state-of-the-art
accuracy of 99.46% for the GTSRB dataset. They accomplished this result employing a Deep
Neural Network (DNN) in a form of a committee of 25 CNNs, which they referred to as a
Multi-column Deep Neural Network (MCDNN). Each individual CNN consists in a succession
of convolutional and max-pooling layers as shown in Table 1.

Their solution also includes dynamic preprocessing per epoch before feeding the sam-
ples to the classification CNNs. In the preprocessing phase, the images are cropped to
the respective Region of Interest (ROI), excluding its margins, resized to 48× 48 pixels, and
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Figure 9.: Example of Inception module for traffic sign classification. Adapted from Haloi (2015).

randomly distorted in a stochastic manner, meaning that each sample suffers a distinct
distortion each epoch. Finally, before training a CNN, the data also undergoes a normal-
ization process which includes four image adjustment methods such as contrast stretching,
histogram equalization, adaptative histogram, and contrast normalization. When the vali-
dation error reaches 0, the training process concludes for that CNN. The final predictions
are obtained by averaging individual predictions of each CNN. Each CNN takes approxi-
mately 25 epochs to train.

In 2015, Haloi (2015) was able to achieve a state-of-the-art performance of 99.81% on the
GTSRB dataset using a CNN consisting in sequential STN layers along with a modified
version of GoogLeNet, which in turn is based on an Inception architecture (Szegedy et al.,
2014).

That is, to be able to cope with traffic signs deformations such as blurring, translations,
rotations, or skewing, the STN acts as a transformation invariant (Jaderberg et al., 2015).
Another appealing property of spatial transformers is that it can be inserted into an exist-
ing CNN due to the fact the parameters of the transformations are also learned by back-
propagation algorithms. In addition, in order to increase the robustness of the CNN, the
modified version of GoogLeNet allows a more precise traffic sign classification even under
deformations due to the fact the Inception layer allows its internal layers to choose which
filter size considers more relevant to learn the required features. For instance, one of the
Inception modules used can be seen in Figure 9. Thus, the Inception module, instead of
having just a single convolution layer, has a composition of convolutional or max-pooling
layers in width while the more traditional approach just employs convolutions in depth.

Hence, an Inception module can infer which internal layer is more beneficial for the
architecture and global accuracy. After processing all the layers, the Inception module
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Table 2.: Simplified version of the Haloi (2015) architecture for the GTSRB dataset classification with
approximately 10.5 million parameters. The STN and Inception modules definitions have
been omitted for illustration purposes.

Layer Type Kernel/Stride Output Shape Parameters ×103

0 Input 128× 128× 3
1 STN1 3000
2 Convolution 5× 5/2 64× 64× 64 1.6
3 Max Pooling 3× 3/2 32× 32× 64
4 STN2 891
5 Convolution 3× 3/1 32× 32× 192 110
6 Max Pooling 3× 3/2 16× 16× 192
7 STN3 1000
8 Inception 16× 16× 288 206
9 STN3 1000
10 Inception 16× 16× 480 436
11 Max Pooling 3× 3/2 8× 8× 480
12 Inception 8× 8× 512 395
13 Inception 8× 8× 512 467
14 Inception 8× 8× 512 546
15 Inception 8× 8× 528 624
16 Inception 8× 8× 832 880
17 Max Pooling 3× 3/2 4× 4× 832
18 Inception 4× 4× 832 965
19 Inception 4× 4× 1024 1200
20 Average Pooling 4× 4/1 1× 1× 1024
21 Dropout 1× 1× 1024
22 Fully Connected 43 44

concatenates the result and proceeds for the next layer. Due to the nature of this module, it
increases the computational demands and increases the architectural complexity. However,
it allows a much more flexible CNN architectural definition.

Regarding the training phase, all traffic signs were resized to 128× 128 using cubic in-
terpolation. As optimization algorithm, Stochastic Gradient Descent (SGD) with momentum
was applied along with a batch size of 20 samples. The fully connected layer suffered a
dropout of 40%, being the only dropout layer employed in the entire architecture. Finally,
as for the activation function, they used Parametric Rectied Linear Unit (PReLU) instead of
Rectified Linear Unit (ReLU), as they noticed an increase in performance using PReLU.

The weights are not randomly initialized, the MSRA method was preferred which was
proven useful for PReLU activation unit based networks (He et al., 2015). Their architecture
had a total of 10.5 million parameters while Cireşan et al. (2012) had approximately 90
million parameters. Thus, reducing the computational cost. An adapted and simplified
version is shown in Table 2.
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In 2015, Jurišić et al. (2015) achieved an accuracy of 98.17± 0.22% on the BTSC dataset
and 99.53± 0.10% on the rMASTIF dataset using the same CNN architecture, which they
named OneCNN. Their model was based on the CNN used by Cireşan et al. (2012). They
included width branches (also named scales) of convolutional layers in order to create a
multi-scale architecture in a similar approach to the work of Sermanet and LeCun (2011).
A simplified representation of the OneCNN architecture is shown in Figure 10.

After each convolution layer, a fully connected layer is added. Later, the output of each
scale is concatenated and combined into a fully connected layer. Their architecture aimed
to avoid the use of multiple networks in a committee or in an ensemble manner while
approaching state-of-the-art results with a single CNN. As activation function, ReLU was
applied after the fully connected layers. Finally, SGD was used as optimization algorithm
and Smooth approximation of maximum (Softmax) as loss function. The training set suffered
data augmentation in form of pixel intensity histogram equalization. For each sample, a
padding of 10% was added on top of the annotated ROI and resized to 53× 53 pixels. Later,
a random crop of 48× 48 pixels was applied to each training sample.

In 2016, with the publication of the DITS dataset, Youssef et al. (2016) achieved an accu-
racy of 97.20% using a simple architecture consisting in only 2 convolutional layers followed
by pooling layers. Similarly, only 1 fully connected layer is used alongside Softmax. The
samples are resized to 28× 28 pixels. Data augmentation is also used in form of jittering
and 3 geometric operations such as rotations, scales and translations. The maximum values
for rotations is [15, 15], for translations is [−4, 4], and as for scaling a factor of [0.8, 1.2] is
used. The augmented data set is 4 times larger than the original.

In 2017, Arcos-Garcı́a et al. (2018) accomplished a performance of 99.71% on the GTSRB
dataset and 98.87% on the BTSC dataset. Their architecture consists in a single CNN that
combines convolutional layers and 3 STNs modules. Similarly to the previous work of
(Cireşan et al., 2012), these layers perform explicit geometric transformations on feature
maps, removing progressively background detail and geometric noise. From the various
architecture they tested, the best consisted of convolutional, sub-sampling, and 3 spatial
transformers layers while the worst did not include any STN module. This was due to
CNNs being particularly sensible to scales and rotations.

Finally, this architecture has a total of 14.6 million parameters while achieving the maxi-
mum accuracy with 21 epochs in the GTSRB dataset. The best result was obtained with the
SGD without momentum as the loss function optimizer.

In 2018, the performance on the BTSC was improved by Saha et al. (2018) achieving a
state-of-the-art accuracy of 99.17%. The result was achieved through the application of a
CNN with dilated convolutions (Yu and Koltun, 2015) as shown in Table 3. The samples
were resized to 56× 56 pixels and batches of 32 samples fed to the CNN. The best result
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Figure 10.: Architecture devised by Jurišić et al. (2015) for traffic sign classification. The pooling
layers have a stride of 2. Simplified representation from original work.
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Table 3.: The CNN architecture used for the BTSC dataset classification by Saha et al. (2018). The
number of parameters is 6.256 million. Table reproduced from original work.

Layer name Output Size Kernel Operation

Conv1 56× 56× 64 1× 1, 64, stride = 1
Conv2a,b 6× 56× 64 D64 × 2
Pool1 28× 28× 64 3× 3 Max Pool, stride = 2
Conv2c 28× 28× 64 D64 × 1
Conv3a 28× 28× 128 D128 × 1
Pool2 14× 14× 128 3× 3 Max Pool, stride = 2
Conv4a 14× 14× 256 D256 × 1
Pool3 7× 7× 256 3× 3 Max Pool, stride = 2
Conv4b 7× 7× 256 D256 × 1
AvgPool 1× 1× 256 7× 7
Dense1 512 Fully Connected
Dense2 Number of Classes Fully Connected + Softmax

was achieved in 30 epochs. The total number or parameters of the architecture is 6.256
million.

2.3 data augmentation

Neural networks are heavily reliant on data to be effective. Usually, when data is scarce
there is a tendency for overfitting to occur. Hence, overfitting occurs when there is too
much reliance on the training data, and, as a result, a poor performance is obtained in un-
seen data. However, it is still possible to extract useful information with limited volume of
samples by adding new data derived from the original dataset in the form of data augmen-
tation. Therefore, increasing not only the diversity of the data but also the generalization
capabilities of the neural network.

Data augmentation can be made a priori, and then using the fixed resulting dataset to
train the network. A more promising approach is dynamic data augmentation, where new
data is generated in each epoch. In this later case the network does not see the same
samples twice, therefore being forced to cope with a larger set of circumstances.

In this section we present the most common data augmentation methods, based on color
and geometric operations applied to each sample.

2.3.1 Geometric transformations

Geometric transformations consists of using a combination of affine transformations to
manipulate the training data (Perez and Wang, 2017). Both the original image and the
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(a) Original (b) Horizontal flip (c) Rotation of −15◦

(d) Translation of
10× 10 pixels

(e) Center crop of
20%

(f) Horizontal shear
of 15 pixels

Figure 11.: Geometric data augmentation examples for class 34 of the GTSRB dataset.

augmented can be fed to the neural network, thus, increasing the volume of data in the
same amount as the original for each transformation. Data augmentation has been shown
to be a promising approach to increase the accuracy of object classification tasks. Neverthe-
less, some image transformations are unsafe depending in the domain they are being ap-
plied. The safety property refers to its likelihood of preserving the label post-transformation
(Shorten and Khoshgoftaar, 2019).

Flip

Images can be flipped in the horizontally axis, in the vertically axis, or in both. Horizontal
flipping is most commonly adopted due to the nature of traffic sign pictograms. This
operation does not preserve the label post-transformation for all classes as shown in Figure
11b. In some cases, a valid traffic sign is still obtained, and labelling may be changed
accordingly.

Rotation

Images can also be rotated with limited angles to ensure the preservation of a valid sign.
Thus, considering traffic signs, rotating it by finer angles is preferable. An example of a
rotation is shown in Figure 11c. Rotations are required due to the angle of the camera look
direction with the direction to the sign, as well as in cases where, due to wind or vandalism,
the sign itself is no longer perpendicular to the street.
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Translation

Image translation consists in moving the image along the x-axis and y-axis in order to avoid
positional bias in the data. This operation forces the CNN to search features along the entire
sample frame. The remaining space can be filled with either a constant color, such as white
or black, or with random noise. Spatial dimension of the augmented samples is preserved
by inserting padding. An example of a translation is shown in Figure 11d. The requirement
for the translation operation is derived from the method employed to crop the traffic signs
to the bounding box, i.e. when using automated methods to detect and crop traffic signs,
such as You Only Look Once (YOLO) (Redmon and Farhadi, 2018), the resulting image does
not necessarily contains a centered traffic sign.

Crop

This operation consists in cropping a central patch from the original image and then re-
size the patch to the original image size. Additionally, besides central cropping, random
cropping can also be used. The difference between random cropping and image translation
lays in the input size reduction. While cropping will undoubtedly reduce the size of the
input, translating will preserve the original spatial dimensions of the image. An example
of cropping is shown in Figure 11e. Cropping in this sense is similar to scaling up. This
operation is required for reasons similar to those pointed in the translation case.

Shear

Image shearing, also known as skewing, is an affine transformation that distorts the image
plane displacing each point in a fixed direction. When shearing horizontally, the y-axis
coordinates of each point are fixed meaning that a rectangle becomes a parallelogram, and
a circle becomes an ellipse. Under shear, the area of the image is the same as the original
(Figure 11f). This operation benefit generalisation due to the distortion on the traffic sign
captured images.

2.3.2 Color transformations

A widely adopted color augmentation technique consists of color jittering (Shijie et al.,
2017). Color jittering can be performed by adjusting the brightness, contrast, saturation,
or hue of an image using random factors as shown in Figure 12. Other common color
transformations consists in converting to the image to grayscale or apply gamma correction
Wang et al. (2017).
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(a) Original (b) Brightness (c) Contrast

(d) Saturation (e) Hue

Figure 12.: Color jittering examples of class 34 from GTSRB dataset. Hue jittered with a factor of 0.5
while the remaining color operations used a factor of 2.

These transformations aim at increasing the diversity of lighting situations, thereby poten-
tially increasing the generalisation ability for unseen signs captured under different lighting
conditions and camera exposures.

In other particular domains, other color augmentation techniques are also applied, such
as color casting, which consists in tinting the sample with a particular color (Galdran et al.,
2017), or vignetting, which consists in darkening the periphery of the sample compared to
the image center (DBL, 2015).

2.3.3 Random erasing

Besides essentials geometric and color data augmentation, other complementary techniques
have also been used. For instance, random erasing aims to improve the robustness of
the neural network to noise and occlusions (Zhong et al., 2017). Usually, the collected
training samples exhibit a limited number of object occlusions. In the worst case, when all
training samples are clearly visible, the accuracy of the CNN may drop significantly when
partially occluded test samples are classified. Therefore, a critical influencing factor on the
generalization capability of the neural network is object occlusion.

In order to address the occlusion problem and, consequentially, improve the generaliza-
tion ability of the neural network, random erasing is applied to the original samples. This
process consists in simulating object occlusion by applying to the original samples rectan-
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Figure 13.: Random erasing applied to class 11 of the GTSRB dataset.

gle regions of arbitrary size and position. The pixels values within the selected region are
re-assigned with random values, which can be viewed as adding block noise to the sample.

Due to the fact the position and area of occlusion can be randomly chosen, several occlu-
sion levels can be generated. In a similar fashion to random cropping, random erasing also
incurs in information lost during augmentation. However, due to the fact only part of the
object is occluded, the object structure is preserved. An example of random erasing applied
to traffic signs can be seen in Figure 13.

Also, random erasing is similar to dropout at the image level by blocking part of the
image with a defined probability. This way, decreasing the possibility of overfitting. In
other words, like other types of data augmentation, random erasing is also acts as an
explicit form of regularization.

In order to assess the performance of this approach, Zhong et al. (2017) applied random
erasing to the CIFAR-10, CIFAR-100, and Fashion-MNIST datasets with several different
neural network topology. Each test consisted in 5 runs. The baseline result was compared
to the data set using new data erasing to each training iteration. They obtained a reasonable
improvement on object detection. In CIFAR-10, CIFAR-100, and Fashion-MNIST they were
able to improve the accuracy by 0.72%, 0.76, and 0.36% using a Wide Residual Network
(ResNet) architecture, respectively.

2.4 synthetic data

The efficiency of the CNNs relies heavily on data. Therefore, a large amount of accurately
labeled data is required. The data should be as representative as possible, covering a large
number of possible scenarios. Therefore, a network that trains in high quality data will
more likely exhibit high accuracy in unseen data. However, in particular domains, such as
in traffic sign recognition, collecting the needed data is not an easy task.

As mentioned before, in an attempt to overcome this problem, data augmentation is
commonly applied to the training data, increasing the original number and diversity of
samples. However, the increased data is derived from the original set and will always be
conditioned by the original samples. Although data augmentation has proven to be an
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Figure 14.: Sample scenes of the office, living room and kitchen models used for rendering of the
synthetic dataset. Source: Lee and Moloney (2017).

efficient method for improving the robustness of neural networks, it fails to succeed when
the unseen samples fall far from the range present in the training set. Therefore, it is often
necessary to reproduce the samples in different circumstances from those in which they
were collected as in the context of traffic signs.

An alternative approach that derives from the scarcity of samples is data synthetisation.
Synthetic data can not only augment real data but also simulate data under specific condi-
tions that are not easily found in real data. That is, synthetise traffic signs under distinct
conditions such as occlusions, reflections, vandalism, aging, noise, weather patterns, or
time of day.

A synthetic data driven approach has been at least partly successful in other domains.
For instance, Lee and Moloney (2017) crafted a complex synthetic dataset for training and
evaluation of stereo vision algorithms. Stereo vision is a way of extracting the 3D structure
of a scene using at least two images of that same scene, ensuring that each one is acquired
from a different viewpoint in space. For this domain, a CNN model was trained with
synthetic data (Figure 14) and compared the accuracy against real world data in order to
assess the validity of their approach as a mean to train neural networks. They found that
the accuracy drop induced with the use of synthetic data was low in comparison with real
world data. Nonetheless, they assessed that the synthetic data was modeling, albeit not
completely, the parameters of the real world data. They concluded it was a viable method
for training models within real world application.
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Figure 15.: Display query and label of a synthesized PCB. Source: Li et al. (2019).

In other domains, synthetic data was able to actually surpass the usage of real world
data. For instance, Jiang et al. (2019) proposed an automatic infrared spaceborne ship
detection approach relying solely in synthetic generated data. Infrared images allows all-
weather detection capability which is important for both military and civil applications. The
detection module was based on CNNs. Their approach consisted in converting optical ship
samples from Google Earth into infrared ship samples as synthetic training data. In order
to generate synthetic infrared training images, they designed an image generator to convert
the style of Google Earth optical images into the style of infrared’s. This is a domain where
actual training data of infrared spaceborne ships is very difficult to obtain. Their method
was able to surpass some of previous results based in Histogram of Oriented Gradients (HOG)
features and transfer learning, achieving a precision of 94.50%.

Other domain of great importance is the detection of several components on PCBs in
order for the 3C industry (Computer, Communication and Consumer Electronic) manufac-
turing companies to achieve quality control and an intelligent assembly by robots. The
quantity of electronic components on PCBs is high, and consisting in different shapes. It is
very difficult to collect real photos of PCBs containing most electronic components to build
a training dataset. Besides, identifying all device categories for labeling requires a lot of
knowledge and time. Therefore, Li et al. (2019) proposed an improved detection algorithm
based on YOLO, which uses real and synthetic PCBs pictures as a joint training dataset.
In order to produce synthetic PCBs, they used Altium Designer, a PCB designer software
that provides a component search engine which accesses a huge number of manufacturers
and electronic components. The synthesization of a PCB can be seen in Figure 15. Their
approach was able to achieve a mean average precision of 93.07%.

Furthermore, research showed that it is not always ideal to simulate all the realistic fea-
tures found in the environment of the object of interest. For instance, Tremblay et al. (2018)
employed domain randomization, in which the parameters of the simulator, such as light-
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Figure 16.: Domain randomization for object detection. Synthetic objects are rendered on top of
a random background along with random geometric shapes (next to the background
images) in a scene with random lighting from random viewpoints. Source: Tremblay
et al. (2018).

ing and object textures, are randomized in non-realistic ways. In other words, domain
randomization intentionally abandons photo-realism by randomly perturbing the environ-
ment in order to force the neural network to learn the essential features of the object to be
detected, as exemplified in Figure 16.

To evaluate their approach they used the KITTI dataset Geiger et al. (2012b) as a real-
world test set with three different state-of-the-art object detectors: Faster R-CNN (Ren et al.,
2015), R-FCN (Dai et al., 2016), and SSD Liu et al. (2015). The detectors were trained in both
domain randomized data and in the Virtual KITTI (VKITTI) dataset (Geiger et al., 2012a).
From the three employed detectors, R-FCN and SSD provided best results with domain
randomized data.

2.4.1 Traffic sign detection

A synthetic data approach has already been explored in conjunction with neural networks
in traffic sign detection which consists in detecting the position and bounding box of a
traffic sign in a street picture. The detected traffic sign is later classified. This section only
addresses traffic sign detection.

In order to avoid the time and effort consuming task of hand labelling traffic signs, synthe-
sized data was used for road signs detection tasks by Møgelmose et al. (2012), Greenhalgh
and Mirmehdi (2012), and Hanel et al. (2018).

In 2012, Møgelmose et al. (2012) generated synthetic training images templates in an
attempt to substitute real-world training data for traffic sign machine-learning based detec-
tion systems. In order to simulate the traffic sign real characteristics, several transforma-
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tions are applied, such as hue variations, lighting variations, rotations, real backgrounds,
Gaussian blur, Gaussian noise, and occlusions. In their study, the real-world data per-
formed significantly better than the synthetic data. They noticed that providing more
synthetic training data did improve the detector accuracy, but even more than a double
increase of training data does not make the synthetic data perform comparably to the real-
word data. They concluded that there is no substitute for real world images in the context
of traffic sign detection.

However, Greenhalgh and Mirmehdi (2012) generated training data from synthetic tem-
plates of traffic sign images, avoiding the use of real footage road signs as training data.
Their detector was trained in fully synthesized data. Randomized geometric distortions,
randomized brightness, contrast, noise, blurring, and pixelation were applied to the Ger-
man templates. A total of 1200 synthetic traffic signs were generated for each class. They
benchmark both the synthetic data as well as the real data on a linear Support Vector Machine
(SVM) classifier. Using the GTSRB test set, the classifier that was trained on the synthetic
data resulted in an accuracy of 85.70% while the classifier that was trained on real-world
images resulted in an accuracy of 85.90%. They concluded that the synthetic data set pro-
duced results comparable to the data set real-world samples.

2.4.2 Traffic sign classification

A synthetic data approach can be found applied in traffic sign classification tasks as well.
In 2018, Stergiou et al. (2018) proposed the use of synthetic training data which was based
in traffic sign templates. The goal was to overcome the problems of existing traffic sign
datasets, which are only subject to specific sets of traffic signs found explicitly in specific
countries.

They processed 50 distinct templates resulting in 50 classes of British traffic signs. As
for the background, 1000 samples of British roads in several scenes were used. Half of the
backgrounds are examples of urban areas and roads, while the other half is depicted in
rural environments. The synthesized traffic signs are created to simulate different lighting
conditions with the intent of closely simulate real-world scenarios. Part of the normaliza-
tion process, non-local means denoising is applied to the images, blurring them. Also,
20 distinct affine transformations were applied in conjunction with rotations, scaling, and
translations. The final data set was constructed with 4 brightness variations generating a to-
tal of 2388397 samples divided by 50 classes. From the total of synthetic images generated,
only 3400 were retrieved for each class totaling in 170000 training images.

To evaluate their approach they use a single CNN architecture which consists of 6 con-
volutional layers with zero padding. The architecture is shown in Table 4. They used
Exponential Linear Unit (ELU) as activation function (Clevert et al., 2015) which was applied
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Table 4.: The CNN architecture used for traffic sign classification with synthetic data by Stergiou
et al. (2018) with a total number of parameters of 2676306.

Layer Type Kernel Output Shape Parameters

0 Input 48× 48× 3
1 Convolution 3× 3 48× 48× 32 896
2 Batch Normalization 48× 48× 32 128
3 Convolution 3× 3 48× 48× 32 9248
4 Batch Normalization 48× 48× 32 128
5 Max Pooling 2× 2 24× 24× 32
6 Dropout 24× 24× 32
7 Convolution 3× 3 24× 24× 64 18496
8 Batch Normalization 24× 24× 64 256
9 Convolution 3× 3 24× 24× 64 36928
10 Batch Normalization 24× 24× 64 256
11 Max Pooling 2× 2 12× 12× 64
12 Dropout 12× 12× 64
13 Convolution 3× 3 12× 12× 128 73856
14 Batch Normalization 12× 12× 128 512
15 Convolution 3× 3 12× 12× 128 147584
16 Batch Normalization 12× 12× 128 512
17 Max Pooling 2× 2 6× 6× 128
18 Dropout 6× 6× 128
19 Fully Connected 512 2359808
20 Batch Normalization 512 2048
21 Fully Connected 50 25650

to the output of every convolutional layer. In addition, the dropout was also inserted in
the architecture in form of regularization method. The rate of the dropout is 20% in the
convolution phase, 50% after the fully connected layer. Finally, they were able to obtain a
peak accuracy of 92.20%. However, they do not mention the data set used for evaluation
neither the test conditions.

2.5 summary

Traffic sign classification research is an ongoing process. There is, clearly, still room for
improvement. Currently, CNN based classifiers are the preferred approach to recognize
traffic signs and were able, in fact, of bringing impressive results but still imperfect.

In the domain of ADAS, every imperfection must be addressed to ensure the safety of
all public road actors. Thus, CNN architectures can become incrementally complex in an
attempt to improve the state-of-the-art in traffic signs recognition. It is crucial to note that



2.5. Summary 24

the necessity of increasing the architectural complexity of the neural networks stems from
the scarcity of traffic sign samples and, therefore, the need to compensate for the lack of it.

For instance, distinct approaches were used for the GTSRB dataset that ranged from
employing a committee of several CNNs (Cireşan et al., 2012) to, in spite of keeping just a
single architecture, inserting various Inception and STN modules (Haloi, 2015).

It was possible to notice in Section 2.1 that the datasets have clear differences between
them. Those differences ranges from the total number of classes and its selection, and
between the pictograms of equivalent classes. It is common for each country to employ its
own pictograms even in equal classes based in the Vienna Convention on Road Signs and
Signals.

To reach the required level of training data quality, a high volume of traffic signs has to
be collected. It is, however, a task that requires a lot of human effort, time, and resources.
For instance, the biggest European data set has roughly 39000 training samples while, even
tough it can be considered a reasonable amount, the second largest has only approximately
8000 training images. The difficulty of creating an abundant data set ultimately influences
the accuracy of the CNNs, given that they are highly sensitive to input data differences,
even if slight. For that same reason, non acquired features of unseen training data tends to
be poorly classified.

A commonly adopted approach to address the low data volume problem is based on
augmention of the the original samples. Data augmentation may be able to improve the
accuracy, to an extent, by increasing the volume and diversity of the training data. This
approach has limitations, however, due to the high dependency on the original samples.

Hence, a different approach to circumventing the scarcity of training samples is based
on data synthesization. That is, to produce a synthetic set of road signs based only in
templates, similar to those found in the real-world. Unlike real traffic signs datasets, a
synthetic dataset does not rely on actual data. Certain classes of traffic signs are, in fact,
very abundant in the real world while others are less frequent. In particular, road signs
that are more common in cities and a lot less in villages, and vice versa. For this reason,
capturing certain classes can be hard. This class-level representativity problem is not found
in synthetic data as all classes are treated uniformly and the number of samples generated
is conceptually unlimited. Ultimately, any class can be added to the set by simply providing
the corresponding templates.

A synthetic data approach is heavily domain dependent. In traffic sign classification, the
usage of synthetic training data is highly scarce. In other domains it was proven a successful
method but far from effortless. Due to the nature of image synthetization, it is crucial to
understand the necessary geometric and color transformations so that the synthetic traffic
signs samples resembles real-world data. Recent results with synthetic data, while far from
state-of-the-art results with real data, are, nonetheless, encouraging.



3

T R A F F I C S I G N S Y N T H E T I S AT I O N T E C H N I Q U E S

Synthetise traffic signs is a complex process. This chapter aims to review the distinct ap-
proaches employed in this work for data synthesization. Those are divided in geometric
transformations, color transformations, and transformations aiming to disturb the traffic
sign in form of noise or blur.

This incremental process consists in approximate the synthetic traffic signs to real-world
samples taking into account the necessity of generalization capabilities. In order to develop
an accurate synthetic dataset it is crucial to understand and reproduce the essential features
of real-world samples which may not be present in the synthetically generated images. As
such, incorrectly predicted real traffic signs are interpreted continually in order to under-
stand which traces they could contain that the synthetic data was not able to reproduce.

It is essential to evaluate the developed approach against real-world traffic sign datasets
and assess its effectiveness. The main dataset used for testing throughout this work is
the GTSRB dataset as it is the largest European set publicly available. If the developed
technique is sufficiently generic, it should be able to be applied to several distinct traffic
sign datasets of another countries.

3.1 synthetic resources

A synthetic sample is the composition of a foreground and a background. The foregrounds
are computed based on sign templates. Each class consists in, at least, one template. More
than one template may be required when there are different pictograms in use for the same
traffic sign. Backgrounds may be obtained from real images or also created synthetically, as
explored in this section.

3.1.1 Templates

Handcrafting a synthetic traffic sign dataset requires the respective class templates. As men-
tioned before, the German dataset was chosen to evaluate the effectiveness of the different

25
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Figure 17.: Templates used for the GTSRB synthetic data set representing each class labeled from
left-to-right and top-to-bottom. Source: Wikipedia (2019).

transformations applied to the synthetic samples. The main foregrounds for each class em-
ployed in the template-based synthetic dataset are shown in Figure 17. These templates
were collected from Wikipedia (2019) corresponding to the original 43 classes of the GTSRB
dataset.

Some classes of the German dataset have more than one type of traffic sign pictogram as
shown in Figure 18:

• Class 1, the speed limit of 30 km/h, has three distinct templates with different fonts
and text (Figure 18a);

• Classes 3 and 5, the speed limits of 60 km/h and 80 km/h, respectively, have two
slightly different fonts (Figure 18b);

• Class 25, men at work, can be seen with two different pictograms styles (Figure 18c);

• Classes 35 and 38, directional arrows, have slightly different pictograms and hue in
comparison to old versions found in the road (Figure 18d).

• Class 40, the roundabout vertical sign, is installed in two different orientations which
represent a rotation too large to be considered as data augmentation (Figure 18e).

The acquired templates are in Scalable Vector Graphics (SVG) format providing a trans-
parency mask. Originally, The templates had a thin black line on the border of the sign that
had to be removed as it is not part of real signs.

3.1.2 Backgrounds

Backgrounds are also an essential in building synthetic images. As such, both real and
synthetic backgrounds were evaluated, ensuring identical test conditions.

Backgrounds from street views

The usage of real backgrounds in synthetic samples is found in the work contribution of
other authors (Møgelmose et al., 2012; Stergiou et al., 2018). Images of street scenarios
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(a) Class 1

(b) Classes 3 and 5

(c) Class 25

(d) Classes 35 and 38

(e) Class 40

Figure 18.: Templates added to complete German traffic sign dataset classes. The leftmost sign of
each class is the main template.



3.1. Synthetic Resources 28

(a) Class 9 (b) Class 33 (c) Class 0

Figure 19.: Examples of synthetic templates with real backgrounds for the German, Belgium, and
Croatian datasets, respectively. Samples with a resolution of 32× 32 pixels.

from Google Street Views were used as real backgrounds. The street samples are negative
backgrounds meaning that traffic signs are not present in the image. The backgrounds are
segmented in squares generating a higher volume of samples.

For each synthetic traffic sign sample, the background was selected randomly from the
loaded set. In Figure 19 is shown an example of synthetic samples with actual backgrounds
for the GTSRB, BTSC, and rMASTIF datasets, respectively.

Using real backgrounds seemed a promising approach, as there would be a close back-
ground match with real images. However, this approach was not able to capture all the
diversity of situations that could be found in the GTSRB dataset, or created an uneven set
of background types.

Due to the fact the entire street sample was segmented in several backgrounds, these
contained a large amount of sky backgrounds (Figure 19b) as well as a high prevalence of
greenish colors (Figure 19a) derived from vegetation.

Tests performed with these backgrounds hinted that the uneven background distribution
was affecting the accuracy of CNNs trained with synthetic data and tested on the GTSRB
test dataset. It was noticed that the neural network was not being able to recognize a few
traffic signs in optimal visibility conditions whose background contained color and shapes
not found in the training synthetic dataset. This was confirmed by replacing manually the
background of some misclassified samples with known backgrounds. In most cases, the
change in background was enough for the sample to be correctly classified as Figure 20

suggests.

Synthetic Backgrounds

In order to improve the classification of traffic signs it is crucial to distinguish them from
its background. In other words, ignore the background details entirely by forcing the CNN
to focus only on features present on traffic signs.

Two distinct approaches were employed to synthesize backgrounds as shown in Figure
21. The first approach is the simplest and consists in coloring each background with a
random color (Figure 21a). A second approach consists in coloring the background with
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Figure 20.: Test traffic signs (on the top) correctly classified only after altering the background (on
the bottom).

(a) Solid color (b) Pixelated

Figure 21.: Synthetic background examples of class 13 from the German dataset with a resolution of
32× 32 pixels.

random pixels (Figure 21b). The aim was to force the neural network to understand that
the background is noise and that it should be discarded. The background dimensions are
calculated based in the traffic sign resolution and given margin as Equation 1 evidences.

background size = sign size/(−2 ∗margin + 1) (1)

From these two approaches, using a background with a random color for each pixel
presented the worst accuracy. Furthermore, using solid backgrounds increased the overall
accuracy slightly in comparison to real backgrounds as reported in Section 4.3. Hence, the
synthetic dataset backgrounds consists in randomly colored squares for every sample.

3.2 geometric transformations

Real-world traffic sign samples are not perfectly shaped. Those can be seen with different
scales both regarding the total occupied frame area and the overall traffic sign resolution.

Collected samples from roads and streets contains, commonly, traffic signs in different
scales, shifted both horizontally and vertically, and slight rotations in both directions. There-
fore, those essential transformations are performed to the templates.

After being loaded, the templates are resized to random resolutions drawn from a contin-
uous interval. Each synthetic sample will contain a traffic sign with a different resolution



3.2. Geometric Transformations 30

(a) Class 8

(b) Class 28

Figure 22.: Pictogram quality differences depending in the order of resize and rotation for 32× 32
pixels traffic signs. The middle sign is rotated after resized while the rightmost sign is
rotated first.

from that of the input template. The background dimensions are calculated after resizing
the template. This way, increasing variability even further.

Every sign is shifted freely in the x-axis and y-axis respecting an imposed translation
margin. The translation occurs when pasting the resized traffic sign onto the background.
This constraint was to ensure that the template remained inside the sample frame and, sim-
ilar to real samples, that the translations are around the center. Very aggressive translations,
those which touch the edge of the frame sample, for example, are problematic for the CNN
to handle. Extreme translations are also uncommon in real-world traffic signs samples as
well.

Finally, the traffic signs undergoes random rotations in a given range. The rotation is
performed before resizing the template. Rotating in small resolutions creates defects in the
pictogram as the Figure 22 evidences. Smaller resolutions than those of the figure, magnify
the pictogram deformation. Note that the interpolation algorithm is the same in both cases.

These three operations constitute the essential geometric transformations and are able
to achieve 91% of accuracy by themselves on the GTSRB dataset alongside synthetic back-
grounds of randomized dimensions (Section 4.4 presents a more detailed report on the
implementation and results).

3.2.1 Shear

Recently, the work of Stergiou et al. (2018) accomplished an accuracy of 92.20% with purely
synthetized traffic signs. Note that, at the time, this was the state-of-the-art result. An
important reference in this work was the use of 20 fixed, and distinct, affine transformations



3.2. Geometric Transformations 31

(a) Original template

(b) Horizontal shear (c) Vertical shear

Figure 23.: Horizontal and vertical shear applied to template of class 25 from the GTSRB dataset.

in form of shearing in an attempt of recreating different viewpoints for the same traffic sign
template.

Instead of 20 fixed transformations, we generate a random shear transformation for each
target traffic sign sample. The shear can be performed both horizontally or vertically. An
example of shear performed onto a template is shown in Figure 23.

First, three points are chosen such as those in Figure 23a. In the case of horizontal shear,
a quantity x is added or subtracted to the x-axis meaning that the traffic sign can be tilted
to the left or to the right (Figure 23b). Thus, x is determined as Equation 2 suggests. This
way, we ensure that any input template resolution is admitted. In the case of vertical shear,
the operation is analogous to that of horizontal shear but with a quantity y (Figure 23c)
regarding the height.

Let {u ∈ R : 0.03 ≤ u ≤ 0.10}, x′ = x + width ∗ u (2)

Note that horizontal shear and vertical shear are never performed in the same sample,
just one of the two, arbitrarily. This is due to the fact that performing both could have the
undesirable effect of rotate the traffic sign as seen in Figure 24. Inverting the order of the
operations produces the same result.
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(a) Original template (b) Vertical shear (c) Horizontal shear

Figure 24.: Resulting rotation by applying vertical shear followed by horizontal shear to class 11
template of the GTSRB dataset.

(a) Original (b) Adjusted

Figure 25.: Manually perspective adjusted test sample from class 25 of the GTSRB dataset.

3.2.2 Perspective

Although most traffic signs face the camera in a frontal manner, a few collected samples
can be observed in distorted perspective views. This can be due to strong winds, even
vandalism, or the proximity of the camera to the traffic sign.

For instance, in class 25 of the GTSRB dataset is possible to observe an example of such
perspective deformation in Figure 25. This particular sample (Figure 25a) was initially in-
correctly classified. However, after performing a manual perspective adjustment it became
successfully recognized (Figure 25b), hinting that the perspective transform could be the
cause for the initial misclassification.

This occurrence affects other datasets as well, namely the BTSC and DITS datasets. In the
BTSC dataset, some of the perspective distorted traffic sign samples are correctly classified
without resorting to synthesization of such transformations. Some of those samples are
shown in Figure 26. Note that since these images are not squared, when resized to the final
square size of 32× 32 pixels, the perspective effect is somewhat attenuated.

In other instances, the samples are not correctly classified, in particular if the distortion
is greater, as shown in Figure 27.
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Figure 26.: Correctly classified perspective distorted samples from classes 2, 8, and 18 of the BTSC
dataset, respectively.

Figure 27.: Misclassified perspective distorted samples from classes 32 and 47 of the BTSC dataset.

Although with less frequency than in the BTSC dataset, both the classes 37 and 45 of the
DITS dataset contains samples positioned in a lateral perspective manner (Figure 28). As for
the rMASTIF dataset, no sample was incorrectly classified due to perspective distortions.

Therefore, in order to improve the recognition of perspective distorted samples, a per-
spective adjustment was performed as shown in Figure 29.

The perspective transform operation is applied in just one step. For demonstration pur-
poses, however, it is shown as a separate operation for each chosen vertex. Thus, firstly,
a point is chosen randomly from the set of four points coinciding with the vertices of the
image. In this case, the bottom-left vertex was chosen as shown in Figure 29a. In order to
complete the operation, two points are necessary. For this reason, the second point is al-
ways the clockwise neighbor of the first. Having the two points, the next operation consists
determine the resulting points of the transformation.

For each point, a random factor in the range [5, 15]% is multiplied by the width, in the
case of the x-coordinate (Equation 3), or by the height, in the case of the y-coordinate. Then,
the determined value is added or subtracted, depending on the point, to the respective

Figure 28.: Lateral perspective distorted traffic signs of classes 37 and 45 of the DITS dataset.
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(a) Original template

(b) Perspective applied to point A (c) Perspective applied to point B

Figure 29.: Perspective transformation applied to the template of class 25 from the GTSRB dataset.
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Figure 30.: Examples of different generated viewpoints of class 25 template from GTSRB dataset.

coordinate. The remaining two opposite points undergo the operation in the opposite
direction, widening further the perspective.

Let {u ∈ R : 0.05 ≤ u ≤ 0.15}, x′ = x + width ∗ u (3)

For example, if the image size is 600× 600 pixels and the factor is 10% for both the x-
coordinate and y-coordinate, the initial point in Figure 29b becomes (60, 540). The process
is repeated for the second point in Figure 29c.

Due to the fact that any point can be chosen alongside random factors per coordinate,
this approach generates a high volume of traffic signs in different viewpoints (Figure 30).

3.3 color transformations

Real-world traffic sign samples have different intensities of brightness between them, whether
by direct sunlight exposure or when placed in the shade. Actual signs also undergo slight
changes in hue and saturation caused by external factors such as, for example, weather
phenomena or camera sensor quality.

This should be taken into account when producing synthetic traffic signs. By default, the
templates used in the synthesization process are highly saturated and bright. On the other
hand, real samples are present in harsh conditions such as low light exposure, or worn out
due to prolonged exposure to the natural environment.

3.3.1 Hue and saturation jitter

By adjusting the hue and the saturation we can increase the range of admissible traffic sign
colors in the produced dataset. While jittering the hue increases the traffic sign color range,
as seen in Figure 31, jittering the saturation is able to simulate worn out or damaged signs,
as seen in Figure 32. Note that both hue and saturation jitter can be applied to the same
sample amplifying the range of colors that the CNN is able to see.
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Figure 31.: Admissible hue variations for classes 17 and 36 of the GTSRB dataset. The middle sign
represents the original template.

Figure 32.: Admissible saturation variations for classes 17 and 36 of the GTSRB dataset. The middle
sign represents the original template.

3.3.2 Brightness distribution

Actual data contains valuable information for its synthetic replication. Among the many
properties that can be extracted, luminosity is one of them. Instead of jittering the bright-
ness, a different approach was to base the brightness values to be used on synthetic data on
real-world data. This approach requires determining how they are distributed among the
traffic sign samples. Therefore, the initial step was to calculate the brightness of an image.
The computation follows the standard definition of the Luma equation which is used in
most digital cameras (Rec. 601) as seen in Equation 4.

Y′601 = 0.299R′ + 0.587G′ + 0.114B′ (4)

The Luma is calculated for each pixel of the image. The resulting image brightness is the
mean of the individual previous calculations.

An optimization was performed after noticing that the brightness value of the image,
using the previous method, was very close to that of calculate the mean of the pixels from
the value component after converting the image to HSV color space. This last method



3.3. Color Transformations 37

Table 5.: Fitted Johnson distribution parameters of the German, Belgian, and Croatian datasets
brightness.

Parameter

Dataset γ δ ξ λ

GTSRB 0.747 0.907 7.099 259.904
BTSC 0.727 1.694 2.893 298.639
rMASTIF 0.664 1.194 20.527 248.357

was preferable since it is slightly faster to calculate, which translated into a faster synthetic
dataset generation time.

In order to reproduce the brightness of the real traffic sign samples it is necessary to
determine the distribution of the entire data set. Hence, the next step is to calculate the
brightness distribution of diverse traffic sign datasets. For this purpose, the German, the
Belgian, and the Croatian datasets were used since they have a higher number of samples
than other smaller and, therefore, less representative data sets.

Therefore, to assess which distribution fits the dataset best, the Kolmogorov–Smirnov test
(K-S test) is performed. The K-S test is used to test whether two samples are drawn from
identical distributions. Thus, for the goodness of fit test, several distributions are tested
and ordered by discrepancy from the best fit to worse fit. The parameters of the best fit
distribution are used to generate the new brightness values for each synthetic sample in the
dataset generation process.

After running the K-S test in all available samples from the three datasets it was found
that the Johnson distribution with bounded values was able to fitted them correctly. The his-
togram plot of the distributions for each country are represented in Figure 33 with the same
scale. The parameters of the distributions are presented in Table 5. For any distribution
value x: ξ ≤ x ≤ ξ + λ.

The brightness of the traffic signs varies from sample to sample within the data set itself
which increases the recognition effort by the neural network. From the three represented
datasets, the German has a higher volume of darkened samples in comparison to the re-
maining two. The Johnson distribution was initially proposed as a transformation of the
normal distribution. In fact, it is possible to visualize a mean brightness value for each data
set.

To test the potential benefit of using this information, the samples of the synthetic dataset
were adjusted to the Johnson distribution with the parameters determined for the GTSRB
dataset, and a CNN trained with this synthetic dataset was tested against the GTSRB test
set.

To adjust the brightness it is necessary to first generate values that conform the deter-
mined distribution. Thus, each synthetic sample will have the traffic sign adjusted in the
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(b) Belgium
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(c) Croatia

Figure 33.: Brightness frequency for the German, Belgian, and Croatian datasets. The curve repre-
sents the Johnson fitted distribution. The brightness is normalized between [0, 255] with
both ends representing a black and white image, respectively
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Figure 34.: Brightness adjusted synthetic samples of class 7 from the GTSRB dataset.

final step of the operations pipeline. The background is kept untouched as its an invariant.
Changing the background brightness proved to be an unsuccessful strategy given that we
are hindering the sign recognition task. In addition, we want to ensure a discrepancy in
brightness and color between background and the traffic sign.

Having the new brightness value, the next step consists in calculate the brightness of
the traffic sign template. Then, the brightness ratio is determined by dividing the new
brightness value by the traffic sign brightness. Finally, each position of the value component
of the HSV color space of the traffic sign template is multiplied by the ratio. The only
constraint is to make sure the values never exceed 255 since the brightness ranges from 0
to 255. The end result can be seen in Figure 34.

3.4 template disturbances

The traffic sign templates are, by default, very clean and homogeneous exhibiting a total
absence of any type of color disturbance. From this stems a necessity of increasing the
graphic fidelity in order to resemble real-world sign samples. The disturbances applied to
templates are in form of blur and noise.

3.4.1 Motion blur

Due to the fact that traffic signs are extracted from video clips and usually collected on a
moving car, some samples contain blur introduced by the motion of the camera, namely,
samples that are closer to the car. This artifact usually occurs along the direction of the
camera movement.

The blur is found only in one direction in a wide range of samples with different levels of
aggressiveness. In Figure 35 the test samples can be seen with slight blur from the leftmost
sign to an increasingly more noticeable motion blur.

Therefore, motion blur was introduced in the synthetic samples in order to mimic this
defect as seen in Figure 36.
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Figure 35.: Examples of GTSRB test samples with a high presence of motion blur.

Figure 36.: Examples of synthetic samples with recreated motion blur.

3.4.2 Confetti noise

A large portion of the small samples of the GTSRB dataset have abrupt pixel color devia-
tions between adjacent pixels. The most affected classes are speed limits whose numeric
text is commonly pixelated in very small samples (Figure 37). Some of these samples affect
the overall accuracy.

A first attempt to improve the classification of small samples, due to these defects, was
introducing Gaussian noise (more details in Section 4.7.2). However, the visual resulting
effect proved to be difficult for the CNN to deal with. Therefore, another algorithm was
developed that focused in small samples. The algorithm simulates an impulsive noise
which is resistant to resizing. This noise, confetti noise, modifies the value of the pixels
in a random fashion while being only projected to small samples. The algorithm needs an
image with a resolution higher than the target image size as input. Afterwards, instead of
a pixel noise, a rectangle is applied with a random color with a probability into the original
template. Each window is applied with a fixed minimum spacing to avoid an uneven noise
and overlapping rectangles. Finally, the template is resized to the desired resolution.

Figure 37.: Examples of noisy traffic sign samples of classes 0, 1, 2, 3, and 4 from the GTSRB dataset,
as presented.
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(a) Original tem-
plate

(b) Noise before re-
size

(c) Noise after re-
size

Figure 38.: Confetti noise applied to class 5 of the GTSRB dataset.

Figure 39.: Comparison of confetti noised template of class 5 (at the left) and an actual traffic sign
from the GTSRB test set (at the right).

An example of how the algorithm affect the templates can be seen in Figure 38. A com-
parison with an actual traffic sign sample and a noised synthetic sample can be observed
in 39.

3.4.3 Perlin noise

The synthesized traffic signs do not include any shade or color intensity variation within
the same color whereas natural samples are highly heterogeneous, consisting of differences
produced by an uneven light exposure, color fade, or noise. In order to simulate variations
of color shade found in natural traffic signs, Perlin noise was added to the templates.

The process of applying Perlin noise onto the template consists in alpha compositing
with a ratio of 60% for the template and 40% for the noise for each generated synthetic
traffic sign. This ratio emphasizes the characteristics of the traffic sign relative to the Perlin
noise sample. The noise is applied to all samples.

Since this type of gradient noise is computational expensive, it is not viable to generate a
new Perlin noise sample for each traffic sign while being able to finish the generation of the
synthetic data in useful time. Therefore, a sample with a resolution of 2048× 2048 pixels is
created once at the beginning of the process, as seen in Figure 40.

To apply noise to a template, a window of the noise image is extracted with 512× 512
pixels which is later resized to the template resolution. The position of the extracted sample
from the noise is random in order to increase variability. Figure 41 shows examples of Perlin
noise applied to different templates.
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Figure 40.: Generated Perlin noise sample with 2048× 2048 pixels and a randomly extracted sample
of 512× 512 pixels to be applied to templates.

Figure 41.: Perlin noise sample applied to classes 1, 36, and 41 from the GTSRB dataset.

Note that the intensity of the noise is also influenced by the brightness when its adjust-
ment occurs. For instance, increasing the brightness does attenuate the noise in already
bright areas as Figure 42 evidences.

Introducing Perlin noise proved to be a successful decision which is then complemented
with brightness adjustment to increase even further the diversity of the dataset.

Shadows

In order to simulate the effect of shadows produced by tree leaves, vegetation, or buildings
found in real traffic sign samples, synthetic shadows based in Perlin noise were introduced
in the dataset.

To create a shadow pattern, the Perlin noise sample alpha channel is altered to just two
values, meaning that consists in fully transparent zones and fully opaque zones. Then,
the opacity of the extracted shadow sample is reduced. Finally, before being pasted to the
template, the shadow is resized for the target resolution.

Figure 42.: Perlin noise sample applied to class 1 of the GTSRB dataset followed by a brightness
increase.
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Figure 43.: Perlin shadow sample applied to classes 10 and 14 of the GTSRB dataset.

To be able to create a variety of shadows, different windows are extracted from the pro-
cessed Perlin noise sample with a resolution of 512× 512 pixel. Therefore, each shadowed
synthetic sample has a different shadow pattern. The final effect can be seen in Figure 43.
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E X P E R I M E N T S A N A LY S I S A N D R E S U LT S

This chapter reports on the extensive testing performed during this thesis in order to de-
vise a pipeline of transformations and data augmentation required to successfully craft a
synthetic dataset that achieves a state-of-the-art performance on several levels.

Initially, in section 4.1 the neural network architectures used throughout this thesis are
detailed.

Prior to digging in the work related to the synthetic dataset, a cross-test with datasets
from three countries is presented in Section 4.2. This test aims to demonstrate the practical
requirement to develop datasets specific for each country.

The remaining sections deal with the construction and testing of the synthetic dataset.
The tests are performed cumulatively, i.e., each section provides a dataset to be tested in
the next section.

First, the issue of selecting the backgrounds is discussed and tested in Section 4.3. Geo-
metric transformations are presented next. First, the basic operations: translation, rotation,
and scale are introduced (Section 4.4), allowing to define a control dataset that will allow
the impact assessment of each operation introduced afterwards. Then shear and perspective
transform (Section 4.5) are introduced.

Color transformation is addressed in Section 4.6, assessing the impact of hue and satura-
tion jittering, and brightness adjustment.

To close the gap between synthetic and real data, the following two sections explore and
assess methods to increase the similarity between synthetic and real samples. In Section 4.7
noise is introduced, and Section 4.8 deals with the simulation of occlusion and shadows.

The crafting of the final synthetic dataset is presented in Section 4.9, and the results
achieved are detailed in Section 4.10.

Regarding the tests, for each, a set of three runs was performed, and the average and
standard deviation accuracy are presented.

44
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4.1 neural network architectures

In order to evaluate the performance of the synthetic dataset and employed techniques, two
different network architectures were devised. The first CNN architecture is simpler in order
to train in useful time but does not produce state-of-the-art results (Section 4.1.1). It is a
topology aimed for a fast training time while still being able to produce satisfactory results.

In contrast, the second architecture (Section 4.1.2) is close to state-of-the-art approaches,
allowing to evaluate the full potential of synthetic data. This network requires a far longer
time to train, hence it will only be used in the final tests.

Both architectures have a low number of parameters when compared to the state-of-the-
art approaches reported in Section 2.2. The purpose of having a low number of parameters
is twofold. First we demonstrate that even with a low number of parameters it is possible to
achieve state-of-the-art results, while having a network that is far simpler than those used
to obtain current state-of-the-art accuracies. Second, the number of parameters has a direct
influence on the applicability of such networks in embedded and mobile systems.

4.1.1 Fast training

As said before, in order to be able to perform exhaustive tests on the techniques employed
in the synthesis process, it is necessary to design a CNN architecture with a low training
time. It is also necessary to achieve a reasonable performance, otherwise, the results will
not be reliable.

As such, the CNN architecture consists of only 3 convolutional layers with only a single
fully connected layer. In order to provide a degree of generalization and avoid overfitting,
dropout layers were added as a regularization mechanism. In addition, max-pooling was
also added in order to reduce the dimensionality of the input representation.

The CNN architecture is shown in Table 6. Some parameters have been omitted. The
dropout rate is 15% for all convolutional layers and 40% for the fully connected layer. Fi-
nally, all the layers use ReLU as activation function except the last, where Softmax is applied.
The total number of parameters is 1559211. This architecture is based on the work of Novais
and Fernandes (2017).

Finally, in order to evaluate the performance of the architecture, the GTSRB dataset is
used for benchmark purposes. For this test, the conventional partition of the GTSRB was
used consisting in 39209 samples for training and the remaining 12630 samples for testing.
The samples were resized to 32× 32 pixels and kept in RGB color mode. No data augmen-
tation was applied. The samples were not cropped to the ROI. A batch size of 128 images
was used. A set of 10 runs was performed in order to assess the average accuracy and
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Table 6.: Fast training CNN architecture used for synthetic data training. The total number of pa-
rameters is 1559211.

Layer Type Kernel Output Shape Parameters

Input 32× 32× 3
Convolution 5× 5 28× 28× 64 4864
Convolution 5× 5 24× 24× 128 204928
Max Pooling 2× 2 12× 12× 128
Dropout 12× 12× 128
Convolution 5× 5 8× 8× 256 819456
Max Pooling 2× 2 4× 4× 256
Dropout 4× 4× 256
Fully Connected 128 524416
Dropout 128
Fully Connected 43 5547

standard deviation of the architecture which achieved 98.25± 0.17%. From the total of runs
performed, the best result was 98.50%.

4.1.2 Improved

The improved architecture is more complex and includes a STN, a module that can be
inserted into a standard CNN architecture to provide spatial transformations increasing
spatial invariance. This allows affine transformations such as cropping, translating, rotat-
ing, scaling, and skewing the samples dynamically in execution time in a non-supervised
manner improving the robustness of the architecture to geometric sample variation (Jader-
berg et al., 2015).

However, when training with the synthetic dataset this module is not used as it proved
to have a negative impact in the accuracy levels obtained. Nevertheless, as the best perfor-
mance obtained when training with the GTSRB training set is obtained with the STN, and
to provide a fair comparison, we report the results with the STN when considering this
training set.

The network is based on the architecture found in the GitHub repository Hiranandani
(2018) with some adaptations that proved successful when training the synthetic dataset
and did not affect negatively the training process with the GTSRB dataset.

The architecture is presented in Table 7. The main difference regarding the original
architecture is the use of 5× 5 kernels in every convolutional layer, as opposed to 3× 3
kernels in the last two convolutional layers as in the original work.

This architecture is able to deliver an average accuracy of 99.70% (12592/12630) on the
GTSRB data set which is close to the state-of-the-art accuracy of 99.81%. Dynamic data
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Table 7.: Best neural network with a total of 2736943 trainable parameters.

Layer Type Output Shape Parameters

Input 32× 32× 3
Convolution 28× 28× 100 7600
Batch Normalization 28× 28× 100 200
Dropout 28× 28× 100
Convolution 24× 24× 150 375150
Max Pooling 12× 12× 150
Batch Normalization 12× 12× 150 300
Dropout 12× 12× 150
Convolution 8× 8× 250 937750
Max Pooling 4× 4× 250
Batch Normalization 4× 4× 250 500
Dropout 4× 4× 250
Fully Connected 350 1400350
Fully Connected 43 15093

augmentation in form of geometric and color transformations is used during training. The
data augmentation operations applied can be seen in more detail in Section 4.10.1.

4.2 cross test between european datasets

Considering a particular dataset, real traffic signs are usually collected in the same con-
ditions for both the training and testing sets. Unintentionally, all the samples may have
similar features due to the fact they are collected by the same camera(s), in the same day, or
in geographically close areas. For instance, the weather influences greatly as the samples
brightness varies depending on the sunlight exposure. In fact, depending on the time of the
day, the samples may have a great predisposition to shadows or even contain none. Another
factor to take in account is the fact that, in the GTSRB dataset, the samples are extracted
from video tracks of, usually, 1 second. That is, the same traffic sign does appear several
times but with different scales, orientations, perspectives, or camera exposure conditions.

A cross test was performed between the German, Belgian and Croatian datasets. The
improved CNN architecture was trained with the training set of a specific country but
evaluated against the test set of the other countries. Two different approaches were used
such as maintaining only the equal classes, and admitting not only equal but also classes
with slight pictogram differences. For example, in Figure 44 are shown examples of small
differences that are admitted (Figure 44b) and just equal classes (Figure 44a). All the classes
that were considered equal and similar for testing purposes are detailed in Appendix Table
A.1.
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(a) Equal class

(b) Similar classes

Figure 44.: Examples of classes from the German, Belgian, and Croatian datasets, respectively, con-
sidered equal and similar.

Table 8.: Resulting accuracy (%) of cross evaluating the test set between European countries re-
stricted to only equal classes.

Evaluated test set

Country Germany Belgium Croatia

Germany 99.70 98.28 99.93
Belgium 92.13 98.57 80.15
Croatia 95.57 98.72 99.20

For each country, three models were trained with different random seeds. The results
presented are an average of the correct predictions obtained with the three models.

In Table 8 is reported a test with just equal classes where is possible to observe that
the accuracy decreases in almost every test set from other countries. The German training
set sustains the best average decreased accuracy between the different countries while the
CNNs trained with the Belgium dataset shows the poorest performance on the Croatian
test set.

When admitting test sets from other countries with, not only equal, but also classes with
small differences in pictograms as well, the accuracy decreases even further as presented in
Table 9. For instance, the Belgium dataset suffers a decrease of approximately 36% when it
is being tested on the Croatian test set.
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Table 9.: Resulting accuracy (%) of cross evaluating the test set between European countries admit-
ting equal and classes with small differences.

Evaluated test set

Country Germany Belgium Croatia

Germany 99.70 98.20 98.49
Belgium 74.34 98.57 62.70
Croatia 89.91 76.57 99.20

This is an indicator that the data sets are unprepared for other countries due to the lower
sample count and lack of diversity. Even considering the German dataset, which is by far
the largest, it is also clearly visible a decrease in accuracy.

Note that this test should not be seen as a comparison between datasets. Further testing
would be required to be able to do so. Nonetheless, there seems to be a correlation between
the number of training samples and the accuracy achieved in foreign test sets. Another
issue that could impact the results is the number of classes. The Belgian dataset has far
more classes than the other two sets, which could overburden the network, and make it
more susceptible to class confusion when faced with foreign datasets.

These tests show the need for a training set for each country, contemplating each coun-
tries pictograms, fonts and font size, among other variations.

4.3 backgrounds

The background is an essential part of the synthetic sample. Three different type of back-
grounds were tested. Real backgrounds, extracted from street views samples, are loaded in
64× 64 pixels and resized for the target resolution to be composed with the template. An
amount of around 38000 real backgrounds were segmented from 600 street views samples.
The remaining two types of backgrounds are synthetic. An advantage of using synthetic
backgrounds consists in the fact that it is costless to create any desired amount. The two
approaches consisted in generating a solid colored or per pixel colored background.

For this test, the templates just undergo simple geometric transformations such as scales,
translations, and rotations. Using solid colored backgrounds revealed to be the best ap-
proach with a difference of around 1% in accuracy in comparison to using street views
samples as shown in Table 10. The worst approach was using a background in noise for-
mat. Thus, all synthetic samples are generated with solid colored synthetic backgrounds.



4.4. Simple Geometric Transformations 50

Table 10.: Accuracy for different types of traffic sign backgrounds composed with templates and
simple geometric transformations.

Background Accuracy (%)

Street views 89.90± 0.68
Solid color 91.01± 0.58
Pixelated 82.72± 1.06

Figure 45.: Small resolution traffic sign examples from the GTSRB test set.

4.4 simple geometric transformations

The traffic signs present in real-world training samples contains varying scales which alters
the free space in the frame depending on its resolution.

This section presents tests that consists in simple geometric transformations applied to
the traffic sign templates. The templates are resized, translated, and rotated. This repro-
duces the geometric relation between the traffic sign and the canvas found in real images.

The input template resolution has no impact in the final result. The template is resized
randomly from 12× 12 to 48× 48 pixels. In this context, traffic signs in the range [12× 12,
17 × 17] pixels are considered small or low resolution, and those with resolution in the
range [18× 18, 48× 48] pixels are considered large or high resolution.

The margin level also varies randomly. For example, considering low resolution signs
these tend to have slightly larger margins, similar to some real samples. A few examples
are shown in Figure 45. The background size is the sign dimension plus the margins.

Also, it is relevant to note that the smallest traffic signs of the GTSRB dataset have a
resolution of 15× 15 pixels. However, due to the fact that templates do not have noise, blur,
or any type of artifacts by default, in comparison to an actual traffic signs, templates have
more defined and clear features. Reducing its resolution improves the visual similarities to
small real traffic signs.

High resolution traffic signs have margins in the range [7, 21]% while smaller traffic signs
have margins in the range [20, 25]%. The ratio of high resolution traffic signs to the total
amount of samples per class is 80%. The remaining samples are smaller traffic signs. The
dataset is balanced with a total of 2000 synthesized samples per class.

Without performing any other transformation, that is, keeping the traffic signs centered,
the resulting average accuracy was 85.20± 0.02%.
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Figure 46.: Examples of traffic signs from the GTSRB dataset correctly classified after inserting rota-
tions.

The next step added translations to every sample in a random manner. A limit was
imposed to prevent the sign from exiting the sample. This limit is 15% lateral space of the
entire frame for larger traffic signs and 20% for smaller ones. The traffic sign can translate
freely in the admissible space. The accuracy improved, as expected, to 90.43± 0.61%.

The source code for scales and translations can be seen in Appendix B.1.
Finally, rotations were performed centered on the center of the sign on 70% of all traffic

signs. A total of 30% was kept at 0◦. The rotations are performed uniformly in the range
[−15, 15]◦. The accuracy did improve, albeit slightly, achieving an average of 91.01± 0.58%.

An example of traffic signs that were incorrectly classified prior to the insertion of rota-
tions can be seen seen in Figure 46.

The implementation details of rotations can be seen in Appendix B.2.

4.5 further geometric transformations

Common transformations are already performed to the templates such as scales, transla-
tions and rotations. In addition, other geometric transformations are also applied to the
templates consisting in shear and perspective transformations.

4.5.1 Shear

Traffic sign shear is applied to 60% of the samples either horizontally or vertically. Shear
in form of shrinking is not performed, only stretching. A random factor in the range
[3, 10]% is multiplied to each one of the three chosen points to perform the calculation.
A low factor of, for example, 3% performs a subtle shear while a high factor exhibits a
noticeable distortion. After adding this transformation alongside the simple geometric
transformations the accuracy improved to 91.93± 0.26%.

In the GTSRB dataset most skewed samples have a subtle distortion to human eyes. How-
ever, for the CNN even subtle shear can have impact in the classification performance. Some
of the samples which were incorrectly classified prior to adding shear are shown in Figure
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Figure 47.: Traffic signs from the GTSRB dataset correctly classified after performing shear.

Figure 48.: Traffic signs from the GTSRB dataset after performing shear correction manually for
demonstration purposes.

47. In the right traffic sign, the shear is more visible in comparison to the traffic sign of the
left.

Performing shear correction manually, the difference is more noticeable as shown in
Figure 48. In the left traffic sign, the speed limit of 100 km/h, an horizontal is performed
while in the right traffic sign, no entry for vehicular traffic, a vertical shear is performed
instead.

The implementation details of the shear transformation can be seen in Appendix B.3.

4.5.2 Perspective

A perspective transformation is performed to 60% of the samples. This implies that some
of the images that suffered shear may also suffer from perspective transformation.

This transformation was able to achieve an accuracy of 91.38± 0.25%, just an increase of
0.37% with respect to only adding simple geometric transformations. Note, however, that
there are very few real samples that can benefit from this transformation.

The synthesisation method must be as generic as possible. The perspective transforma-
tion method addresses mainly aggressive viewpoints distortions.

Even tough perspective transforms may not contribute as much in the German dataset
due to the lack of this type of deformations present in its training set, in other datasets it
has a clear impact. For instance, in the Belgian dataset some traffic signs suffers aggressive
viewpoint distortions. Some of this traffic signs can be correctly classified after inserting
perspective transform. In Figure 49 is shown examples of traffic signs that are incorrectly
classified in absence of perspective transformations inserted in the synthetic traffic sign
dataset.
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Figure 49.: Examples of viewpoint distorted traffic signs from the BTSC dataset correctly classified
after performing perspective transform.

Figure 50.: Examples of traffic signs from the GTSRB dataset correctly classified after jittering the
hue and saturation.

The implementation details can be seen in Appendix B.4.

4.6 color transformations

By default, templates exhibit limited hue and saturation diversity. Experiments carried out
in the domain of color transformations consisted in color jitter and brightness adjust in
form of its value replacement. While jittering hue and saturation aims to simulate aging
and faded signs, encompassing a larger range of colors, the brightness adjustment goal is
to alter the traffic sign to simulate different light exposures.

4.6.1 Hue and saturation jitter

The hue and saturation are performed separately with a probability of 80%. That is, they
are not necessarily applied to the same sample. The hue can be adjusted in the range
[−12, 20]◦ assuming a color wheel of 360◦. The saturation can be reduced or increased by
an uniformly generated factor in the range of [0.4, 2]. A factor of 2 will double the saturation
while a factor of 0.4 will reduce the saturation of the template by 60%.

Jittering the image color alongside performing geometric transformations was very suc-
cessful achieving an accuracy of 92.41± 0.34%. In Figure 50 is possible to see traffic signs
which were not being correctly classified with only geometric transformations and the cor-
responding templates.

The entire source code for color jittering is shown in Appendix B.5.
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Figure 51.: Examples of traffic signs from the GTSRB dataset correctly classified after adjusting the
brightness.

4.6.2 Brightness jitter

The templates are bright, as expected, while real-world samples present a variety of bright-
ness values. The brightness was adjusted accordingly to generated values that follows a
bounded Johnson distribution from the GTSRB dataset with the same parameters of Table
5. Due to the fact the brightness is in the range [0, 255], values higher than 255 are truncated.

Changing the templates brightness by randomly generated values following a distri-
bution and performing, also, geometric transformations was a very successful approach
achieving 95.01± 0.56%.

Finally, instead of using a distribution from real-world samples, a uniform distribution
was employed instead. The generated brightness values were in the range [7, 255] based in
the bound values of the previous distribution. The accuracy improved slightly, achieving
95.12± 0.59%. Note, however, that this difference can not be deemed significant with only
three runs.

Due to the fact the German brightness distribution has an emphasis on darker samples,
which are more difficult to classify, the brightness values are generated using that approach.
Note, however, that the background is not affected by the brightness replacement method,
meaning that the brightness value of the entire final synthetic sample is not equivalent to
that generated from the distribution.

It is easy to spot test samples that benefit from this approach, namely, highly dark sam-
ples. In Figure 51 are shown some dark samples that are now correctly classified.

Finally, joining color jitter, brightness adjustment, and keeping previously defined geo-
metric transformations was able to improve the accuracy, reaching 96.42± 0.35%.

The implementation details are presented in Appendix B.6.

4.7 template disturbances

This section presents further approaches applied to templates in order to noise them with
the intent of closing the gap between synthetic traffic sign and real-world samples.
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Figure 52.: Examples of traffic signs from the GTSRB dataset correctly classified after applying mo-
tion blur.

4.7.1 Motion blur

In order to improve blurred traffic sign recognition, horizontal motion blur is applied to 30%
of all traffic signs with high resolutions above and equal to 18× 18 pixels on top of previous
geometric and color transformations. The motion blur kernel is uniformly generated in the
range of [2× 2, 5× 5] pixels. Blurring is very aggressive to small traffic signs, even with
a low kernel, so this transformation was not applied to those samples below the referred
resolution.

Performing motion blur was able to improve the recognition rate achieving an accuracy
of 96.85± 0.16%. Although the improvement in accuracy seems low, this transformation
was successful as shown in Figure 52.

The source code for the motion blur routine is detailed in Appendix B.7.

4.7.2 Confetti noise

Initially, Gaussian noise was inserted in the synthesization process with the intention of
improving low resolution traffic sign classification. A few small samples exhibits artifacts
in form of pixel color deviation in relation to their neighbor pixel colors. This samples were
being incorrectly classified.

It was possible to assess that the real noise that this type of samples presents were being
an obstacle to the CNN as other, even smaller, samples were being correctly classified.

The noise was added to 50% of the small samples, with a kernel size of 3× 3 pixels. The
previous transformations were kept, that is, geometric, color, and motion blur transforma-
tions. However, the accuracy decreased slightly. It is possible to notice that Gaussian noise
is very noticeable in the image pictogram in some cases (Figure 53).

As an alternative, confetti noise was developed. Confetti noise is less aggressive than
Gaussian noise and blends easier with the template decreasing the abrupt color deviance
in the traffic sign pictogram.

The confetti noise was also applied to half of the small samples. The noise function has
three parameters. The kernel size ratio is, by default, 3% of the original template height
and width. For instance, for a template with a dimension of 512× 512 pixels, the kernel has



4.7. Template Disturbances 56

Figure 53.: Visual differences between Gaussian noise (left sample) and confetti noise (right sample)
applied to class 42 from the GTSRB dataset.

Figure 54.: Examples of traffic signs from the GTSRB dataset correctly classified after applying con-
fetti noise. Samples from classes 1 and 5, respectively.

a dimension of 16× 16 pixels. The second parameter is the probability of applying noise
using the kernel area which by default is 3%. Finally, the last parameter is the minimum
spacing between kernels which is 1.5% the template height and width.

Even tough the accuracy did not show a clear increase, maintaining an accuracy of 96.90±
0.02%, it did, in fact, improved the classification of a few, very specific cases as shown in
Figure 54. As it is possible to confirm, the samples exhibit a high level of noise deforming
the pictogram. Notice that these samples were not classified correctly in any of previous
runs.

The source code for the confetti noise generation routine is detailed in Appendix B.8.

4.7.3 Perlin noise

Perlin noise was added to the templates in order to improve their texture. Templates do not
contain any type of pixel color variation within the same hue. In fact, even when jittering
the hue of the traffic sign, the resulting color is still uniform.

The process of applying Perlin noise to the templates consists in alpha blending with
α = 0.60 in order to highlight the template in comparison to the Perlin texture. As men-
tioned before, due to hardware limitations, a sample of Perlin noise of 2048× 2048 pixels is
generated in the beginning of the synthesization process and for each template, a window
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Figure 55.: Examples of traffic signs from the GTSRB dataset that benefited from Perlin noise inser-
tion.

of 512× 512 pixels is extracted with random position. The Perlin noise parameters are as
follows: 6 octaves, a persistence of 0.5, and a lacunarity of 2.0.

Adding Perlin noise was able to achieve an accuracy of 98.15± 0.16%. The best best result
obtained was 98.42%.

There are traffic sign samples that clearly benefited from Perlin noise as shown in Figure
40. Usually traffic signs with texture irregularities due to dirt, fading, or simply uneven
light exposure.

The implementation details can be found in Appendix B.9.

4.8 occlusions and shadows

Real traffic sign samples are susceptible to both occlusions and strong shadows. In an
attempt to reproduce these phenomena, random erasing is studied as a mean to simulate
occlusions; and Perlin noise based shadows are crafted in order to cope with this problem.

4.8.1 Random erasing

This technique aims to improve occlusions and vandalism invariance, by selecting a rectan-
gle region in the traffic sign sample and erasing its pixels with random values.

Random erasing was applied to 70% of the traffic sign samples with dimensions higher
and equal than 18× 18 pixels. Only a block was erased per sample.

This approach, however, did not seem to improve the accuracy when testing on the
GTSRB dataset. The resulting accuracy was 98.13± 0.18%. Complicated occluded traffic
signs continued being incorrectly classified, e.g., two commonly cases are shown in Figure
56.

The application of this technique requires further study both on the shape and dimen-
sions of the area to be ”erased” as well as the erasing pattern.

The implementation details can be found in Appendix B.10.
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Figure 56.: Incorrectly classified traffic sign from classes 13 and 25 of the GTSRB dataset due to a
presence of strong occlusions.

Figure 57.: Misclassified traffic sign from class 27 of the GTSRB dataset due to a presence of a strong
shadow.

4.8.2 Shadows

Observing traffic sign samples can be noticed that shadows are highly present. A large
portion of samples that exhibits light shadows are correctly classified. However, in some
signs this effect is too large for the CNN to cope, as seen in Figure 57. In this particular
case, the entire track is misclassified.

The synthetic shadows are Perlin based. The noise is converted to a 4 channel image.
Resorting to the alpha channel, the intensity of the noise is altered for just two values.
Pixels with an alpha value higher than a defined threshold of 120 have that same value
set to 255, that is, fully opaque. The remaining pixels are replaced with 0, that is, fully
transparent. For each sample, a factor in the range [0.50, 0.75] is multiplied by the alpha
channel in order to create variable transparency. Finally, the shadow is pasted onto the the
traffic sign. Shadows were applied to a third of the samples of high resolution.

Inserting shadows as described above decreased the accuracy to 97.98± 0.18%. This could
be due to the percentage of samples being too high, or the Perlin noise parameterization.
Further study is required to decide whether this transformation is useful in the context of
the generation of a synthetic dataset.

The implementation details can be found in Appendix B.11.

4.9 synthesisation pipeline

Based on the previous sections a set of transformations was selected based on their impact
on performance. The transformations that contribute to the synthesization process are
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Figure 58.: Generated synthetic traffic sign sample for each class of the GTSRB dataset. The classes
are labeled from left-to-right and top-to-bottom.

Table 11.: Average accuracy for the the combined transformations of the synthesization pipeline.

Techniques Accuracy (%)

Simple geometric transformations 91.01± 0.58
Further geometric transformations 91.93± 0.26
Color jitter 92.42± 0.34
Brightness adjust 96.42± 0.35
Motion blur 96.85± 0.16
Confetti noise 96.90± 0.02
Perlin noise 98.15± 0.16

combined in Table 11. A diagram representing the pipeline of transformations with the
probabilities for each stage is presented in Figure 59.

Finally, in Figure 58 is shown an example of a generated synthetic traffic sign sample for
each class of the GTSRB dataset.

The implementation of the full pipeline can be found in Appendix B.12.

4.10 final training procedure and results

To evaluate the full potential of synthetic data against real-world data, the more complex
architecture is used in this section. This section covers training related aspects as the dy-
namic data augmentation (Section 4.10.1), and usage scenarios for a synthetic dataset with
the final results presented (Section 4.10.2).
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Figure 59.: Synthetic traffic sign generation pipeline.
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4.10.1 Dynamic data augmentation

Besides upgrading the CNN topology for the most complex, close to state-of-the-art results
architecture, dynamic data augmentation in form of geometric transformations and color
jittering were applied to the already created synthetic dataset. Dynamic data augmentation
has the advantage of being generated per epoch meaning that the neural network is seeing
new data and, therefore, being force to cope with new features. By feeding new data per
epoch, the neural network is forced to learn more representative features.

Therefore, nine different types of data augmentation are applied to each sample of the
original set representing an increase in 9 times the volume of samples per epoch. Due to the
fact the synthetic data set consists in 2000 samples per class or a total of 86000 samples, the
CNN is trained with a set of 774000 samples. From those samples, only 86000 are repeated
each epoch since they represent the original synthetic dataset. The new volume of samples
increases immensely the training time.

Finally, both the geometric transformations and color jittering have their parameters ran-
domized each time new data is created. The geometric transformations that consists in
affine transformations kept the center invariant. The transformations are made up of:

• Small rotations with a maximum of 5◦ to each direction;

• Shear in the range of [−2, 2] pixels composed with rotations;

• Translations in a range of [−3, 3] pixels, also composed with rotations;

• Center cropping of 28× 28 pixels.

The color transformations consists in jittering. The brightness, saturation, and contrast can
be increased or decreased in the range of [0, 3] times the original value while the hue can
be jittered 0.4 times the original value.

It is important to notice that due to the fact the number of transformations and its pa-
rameters is high, the neural network will not be able to perform so well in the training
set. However, the overwhelming quantity of new data per epoch is actually beneficial as it
improves the invariance to, for instance, aggressive colors or geometric deformities.

Full source code for the data augmentation can be found in Appendix B.13.

4.10.2 Usage scenarios and final results

The synthetic dataset can be used as a standalone dataset. When tested with templates for
the GTSRB achieved an accuracy of 99.406%, or 12555/12630 samples correctly classified.
This clearly surpasses the current state-of-the-art of 92.20% (Stergiou et al., 2018) regarding
synthetic datasets. The value is close to what is achievable with the same network with
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Table 12.: Best resulting accuracy (%) of training the German, Belgium, and Croatian datasets with
synthetic data and evaluated them with the corresponding real-world test set.

Source Architecture GTSRB BTSC rMASTIF

Real
State-of-the-art

99.81
Haloi (2015)

99.17
Saha et al. (2018)

99.53
Jurišić et al. (2015)

Fast training 98.50 98.33 98.26
Improved 99.70 98.61 99.33

Synthetic
Fast training 98.42 97.82 98.43
Improved 99.41 98.96 98.88

real data, 99.70, or 12592/12630 samples correctly classified. Therefore, in total absence
of actual traffic sign samples, the synthetic approach is capable of delivering satisfactory
results.

We also assess the performance of synthetic data extending the tests to the Belgian and
Croatian datasets. The following accuracies refer to the best run on both the fast training
and the improved neural networks. The state-of-the-art accuracy is also mentioned for
direct comparison. The accuracy is round to two decimal places. The summary results can
be seen in Table 12.

The exact accuracy for the Belgian test set is 2494/2520 and for the Croatian test set is
1764/1784 with the improved network. Note that the results for the mentioned datasets
may not embrace all possible templates. The generation parameters were the same for each
dataset.

Another usage scenario is when there is real data available and the synthetic data is used
as a complement to the training set, i.e. the creation of a mixed training set. To evaluate this
scenario a merge of the train set of the GTSRB with the synthesised data was performed.
The real-world traffic sign dataset was balanced to a minimum of 2000 samples per class,
resorting to data augmentation in form of geometric transformations. On the other hand,
the synthetic portion of the dataset consists in 2000 samples per class. Thus, the final
dataset has a volume of 170856 samples. On top of that, dynamic data augmentation is also
performed resulting in an 8 fold increase of the data. This approach matches the state-of-
the-art accuracy of 99.809%, or 12606/12630, presented in Haloi (2015). Our results can be
seen in Table 13.

Note that this result is achieved with a network with a much smaller number of parame-
ters. While Haloi (2015) uses a network with 10.5 million parameters, the network used to
achieve our result has less than 2.8 million which is clearly a considerable simpler network.

Finally, this approach was extended for the Belgian and Croatian datasets as seen in
Tables 14 and 15. As in the previous case, the datasets were also balanced in the same
proportion before merging with synthetic data. For both these datasets, the state-of-the-art
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Table 13.: State-of-the-art classification results for the GTSRB dataset.

Dataset Literature Architecture Parameters ×106 Correct /12630 Acc (%)

Real
Cireşan et al. (2012) 25 CNNs committee 1.1 p/ CNN 12562 99.46
Arcos-Garcı́a et al. (2018) 3 STNs 14.6 12594 99.71
Haloi (2015) 4 STNs, 9 Inception 10.5 12606 99.81

Merged Ours Single CNN 2.7 12606 99.81

Table 14.: State-of-the-art classification results for the BTSC dataset.

Dataset Literature Architecture Parameters ×106 Correct /2520 Acc (%)

Real
Arcos-Garcı́a et al. (2018) 3 STNs 14.6 2492 98.87

Saha et al. (2018)
Single CNN w/ dilated
convolutions

6.3 2499 99.17

Merged Ours Single CNN 2.7 2509 99.56

results reported in Section 2.2 were surpassed. Furthermore, the number of parameters in
our network is again clearly inferior to the previous reports in these datasets. Although
we do not have the number of parameters for the network used in Jurišić et al. (2015), our
network is far simpler, both regarding the input shape (32× 32 versus 48× 48), as well as
not containing branches, and the number of fully connected layers.

As conclusion it is clear that synthetic signs are a promising approach to create traffic
sign training sets, both as standalone, or as a complement when real data is available.

Table 15.: State-of-the-art classification results for the rMASTIF dataset.

Dataset Literature Architecture Parameters ×106 Correct /1784 Acc (%)

Real Jurišić et al. (2015) Multi-scale CNN − − 99.53
Merged Ours Single CNN 2.7 1784 100
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C O N C L U S I O N

Extensive research has been done on traffic sign classification. With a few exceptions, the
usage of real samples prevails in the range of the works discussed in Section 2.2 whose
main focus is based mostly on the architecture of the neural networks. Although data
augmentation is commonly used, no effort is clearly visible to explore the particularities of
the traffic sign recognition problem.

The few works focusing on synthetic data show that crafting a successful dataset is not
a trivial task. In practice, there are several pictograms for each traffic sign in use, and
collecting them was not simple due to the language barrier and absence of less frequent
pictograms. However, this is not a real problem for the automotive industry, and national
road traffic agencies.

The main challenge relates to creating synthetic samples that are sufficiently similar to
real ones so that the network can successfully classify real samples. In the proposed syn-
thesisation pipeline, besides the traditional color and geometric operations performed on
data augmentation, we introduced Perlin Noise to increase the ”realism” of the synthetic
samples. Furthermore, we account for shadows and motion blur which are not found in
previous works.

After synthesising the training set, we proposed two usage scenarios: using the synthetic
dataset as a standalone training set, or, when real data is available, perform a merge of the
real and synthetic training sets.

While our tests show that there is still room for improvement, we were able to achieve
results close to the state-of-the-art with a synthetic standalone training set on three different
national test sets.

When considering the merging of real and synthetic data we surpassed state-of-the-art
results, with the major advantage of achieving these results with a much simpler architec-
ture.

In summary, creating synthetic datasets is an approach worth exploring since it can al-
low the creation of datasets without having to collect and label thousands of samples of
real traffic signs. Furthermore, synthetic datasets deal much better with the issue of new
pictograms being released for the same signs, or even new traffic signs, as in this case get-
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ting a significant amount of data is not feasible until a large number of signs is placed on
the streets.

On the other hand, when merged with real training sets, the synthetic dataset can be seen
as a procedure for data augmentation that is more successful than current approaches, as
demonstrated by our state-of-the-art results, and with simpler architectures.

Yet, we believe that the full potential of synthetic training sets is still unreached. There
is clear room for improvement and we hope to pursue this work further to enhance the
synthesisation pipeline.

5.1 future work

In order to further improve the synthetic dataset we propose a deeper study of the transfor-
mations which were not successful in our first approach. Shadows simulation and random
erasing are two examples that require further study.

Exploring further transformations to simulate night time, rain, snow, and fog are also
required if these datasets are ever to be used in real scenarios.

Finally, exploring a usage scenario that was not covered in this thesis: ensembles of
networks. These can be ensembles with pure synthetic data or both real and synthetic data.
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A
TA B L E S

a.1 cross test between european datasets

The classes considered equal and similar between the German, Belgian, and Croatian
datasets, for cross testing purposes, are detailed in Table 16.

71



A.1. Cross Test Between European Datasets 72

Table 16.: Classes considered equal and slightly different from German, Belgium, and Croatian traf-
fic sign datasets.

Considered Germany Belgium Croatia

Equal

12 61 16
13 19 14
14 21 15
15 28
17 22
18 0
23 9
26 11
31 12
38 26

14 8
41 23

Similar

1 17
2 19
3 20
4 21
9 31 22
11 17 1
16 25
19 3 4
20 4 5
21 5 6
22 0
24 16
25 10
35 34
36 36
40 37
41 27

6 7
38 24
39 25
45 29



B
R O U T I N E S I M P L E M E N TAT I O N D E TA I L S

b.1 scale , translate , and add background

Code for template scale, translation, and the process of adding a background, see Section
4.4.

# all necessary imports

import datetime

import glob

import multiprocessing as mp

import os

import re

from random import randint , uniform , random

import cv2

import noise

import numpy as np

import skimage

from PIL import Image , ImageEnhance

from scipy import stats

# paste a foreground to a background

def paste(foreground , background , position =(0, 0)):

output = Image.fromarray(background)

input = Image.fromarray(foreground)

output.paste(input , position , mask=input)

return np.asarray(output)

def add_background(traffic_sign , shape =(18, 48), margin_range =(0.07 , 0.21),

t_margin =0.15 , gtsrb_brightness=True , random_erasing_prob =0.0):

# resize the traffic sign template

s = randint(shape[0], shape [1])

h, w = s, s

image = cv2.resize(traffic_sign , (h, w), interpolation=cv2.INTER_AREA)

# generate new brightness value
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if gtsrb_brightness:

brightness = stats.johnsonsb.rvs (0.746678 , 0.9066458 , 7.098753 ,

259.904883)

else:

brightness = uniform(7, 255)

image = replace_brightness(image , brightness)

# define the background shape

margin = uniform(margin_range [0], margin_range [1])

height , width = round(h / (- 2 * margin + 1)), round(w / (- 2 * margin +

1))

# create background with previous calculated dimensions

background = np.zeros ((height , width , 3), np.uint8)

background [:] = tuple (( randint(0, 255), randint(0, 255), randint(0, 255)))

# calculate the new position to translate the traffic sign

if (1 - (h / height)) / 2 < t_margin or (1 - (w / width)) / 2 < t_margin:

y = round (( height - h) / 2)

x = round ((width - w) / 2)

else:

y = randint(round(height * t_margin), round(height - height * t_margin

- h))

x = randint(round(width * t_margin), round(width - width * t_margin -

h))

# paste the traffic sign into the background

output = paste(image , background , (y, x))

# perform random erasing

return random_erasing(output , t_margin) if random () < random_erasing_prob

else output

b.2 rotation

Code for template rotation, see Section 4.4.

def rotate(traffic_sign , angle):

h, w = traffic_sign.shape [:2]

M = cv2.getRotationMatrix2D ((h / 2, w / 2), randint(0, angle * 2) - angle ,

1)

return cv2.warpAffine(traffic_sign , M, (h, w))
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b.3 shear transformation

Code for shear transformation, see Section 4.5.1.

def shear_transformation(traffic_sign , factor =(0.03 , 0.10)):

h, w = traffic_sign.shape [:2]

# source points of the transformation

src = np.float32 ([[0, 0], [w, 0], [w, h]])

operation = randint(0, 3)

u1 = uniform(factor [0], factor [1])

u2 = uniform(factor [0], factor [1])

# horizontal shear

if operation == 0:

dst = np.float32 ([[w * u1 , 0], [w + w * u1 , 0], [w - w * u2 , h ]])

elif operation == 1:

dst = np.float32 ([[- w * u1 , 0], [w - w * u1 , 0], [w + w * u2 , h]])

# vertical shear

elif operation == 2:

dst = np.float32 ([[0, h * u1], [w, - h * u2], [w, h - h * u2]])

else:

dst = np.float32 ([[0, - h * u1], [w, + h * u2], [w, h + h * u2]])

M = cv2.getAffineTransform(src , dst)

return cv2.warpAffine(traffic_sign , M, (w, h))

b.4 perspective transformation

Code for perspective transformation, see Section 4.5.2.

def perspective_transformation(template , full=True):

y, x = template.shape [:2]

src = np.float32 ([[0, 0], [x, 0], [x, y], [0, y]])

# source transformation vertices

h = [0, 0, 0, 0]

w = [0, 0, 0, 0]

# choose a random point

v = randint(0, 3)
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if v == 0 or v == 2:

mult = [-1, 1]

else:

mult = [1, -1]

for i in range(0, 2):

# determine new y-coordinate

h[(v + i) % 4] = round(y * uniform (0.05 , 0.15))

# determine new x-coordinate

w[(v + i) % 4] = round(x * uniform (0.05 , 0.15))

# transforms opposite vertices

if full:

h[(v + 3 - i) % 4] = mult [1] * h[(v + i) % 4]

w[(v + 3 - i) % 4] = mult [0] * w[(v + i) % 4]

dst = np.float32 ([[w[0], h[0]], [x - w[1], h[1]], [x - w[2], y - h[2]], [w

[3], y - h[3]]])

M = cv2.getPerspectiveTransform(src , dst)

return cv2.warpPerspective(template , M, (x, y))

b.5 color jitter

Code for color jitter, see Section 4.6.1.

# brightness is not jittered by default

def hsv_jitter(image , hue=(-12, 20), saturation =(0.4, 2), brightness =(0.5, 1),

probs =(0.8 , 0.8, 0)):

# jitter hue with input probability

if random () < probs [0]:

# the input hue is in the range [0, 360] while OpenCV uses 180 degrees

shift = uniform(0, hue[1] / 2 - hue[0] / 2) + hue[0] / 2

hsv = cv2.cvtColor(image , cv2.COLOR_BGR2HSV)

hsv[..., 0] = (hsv[..., 0] + shift) % 180

hue_shifted = cv2.cvtColor(cv2.cvtColor(hsv , cv2.COLOR_HSV2BGR), cv2.

COLOR_BGR2BGRA)

# preserve original alpha channel

hue_shifted [:, :, 3] = image[:, :, 3]

image = hue_shifted

# jitter saturation

if random () < probs [1]:

enhanced = ImageEnhance.Color(Image.fromarray(cv2.cvtColor(image , cv2.

COLOR_BGRA2RGBA))).enhance(uniform(saturation [0], saturation [1]))

image = cv2.cvtColor(np.asarray(enhanced), cv2.COLOR_BGRA2RGBA)
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if random () < probs [2]:

enhanced = ImageEnhance.Brightness(Image.fromarray(cv2.cvtColor(image ,

cv2.COLOR_BGRA2RGBA))).enhance(uniform(brightness [0], brightness

[1]))

image = cv2.cvtColor(np.asarray(enhanced), cv2.COLOR_BGRA2RGBA)

return image

b.6 replace brightness

Code for template brightness replacement, see Section 4.6.2.

def get_image_brightness(image):

hsv_image = cv2.cvtColor(image , cv2.COLOR_BGR2HSV)

h, s, v = cv2.split(hsv_image)

return np.mean(v)

def replace_brightness(image , brightness):

old_brightness = get_image_brightness(image)

ratio = brightness / old_brightness

# convert image to hsv color space and extract the value channel

hsv = cv2.cvtColor(image , cv2.COLOR_BGR2HSV)

h, s, v = cv2.split(hsv)

for i in range(image.shape [0]):

for j in range(image.shape [1]):

b = round(v[i][j] * ratio)

# replace brightness and avoid overflow

v[i][j] = b if b < 255 else 255

output = cv2.cvtColor(cv2.cvtColor(cv2.merge ((h, s, v)), cv2.COLOR_HSV2BGR

), cv2.COLOR_BGR2BGRA)

# keep original alpha channel

output[:, :, 3] = image[:, :, 3]

return output

b.7 motion blur

Code for motion blur, see Section 4.7.1.
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def motion_blur(image , size):

kernel_motion_blur = np.zeros((size , size))

kernel_motion_blur[int((size - 1) / 2), :] = np.ones(size)

kernel_motion_blur /= size

return cv2.filter2D(image , -1, kernel_motion_blur)

b.8 confetti noise

Code for confetti noise creation, see Section 4.7.2.

def confetti_noise(image , kernel =(0.03 , 0.03), probability =0.03, spacing

=0.015):

h, w = image.shape [:2]

kh, kw = round(kernel [0] * h), round(kernel [1] * w)

s = round(spacing * min(kernel [0], kernel [1]))

y, x = 0, 0

for i in range(h - kh):

if y > 0:

y -= 1

continue

for j in range(w - kw):

if x > 0:

x -= 1

continue

if random () <= probability:

# insert colored block

image[i: i + kh , j: j + kw , :3] = randint(0, 255), randint(0,

255), randint(0, 255)

y, x = kh + s, kw + s

return image

b.9 perlin noise

Code for Perlin noise creation and application, see Section 4.7.3.

# create Perlin noise sample

def perlin_noise(shape =(2048 , 2048), octaves =6):

matrix = np.zeros(shape)

for i in range(shape [0]):
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for j in range(shape [1]):

matrix[i][j] = noise.pnoise2(i / 100, j / 100, octaves=octaves ,

persistence =0.5, lacunarity =2.0)

# normalize Perlin noise from range [-1, 1] to [0, 255]

return cv2.cvtColor(np.uint8(np.round(np.interp(matrix , (matrix.min(),

matrix.max()), (0, 255)))), cv2.COLOR_GRAY2BGR)

# extract an arbitrarily positioned sample from an image with a given shape

def extract_from(image , shape =(512, 512)):

h, w = image.shape [:2]

y = randint(0, h - shape [0])

x = randint(0, w - shape [1])

return image[y: y + shape [0], x: x + shape [1]]

def add_perlin_noise(traffic_sign , perlin_noise , alpha =0.6):

y, x = traffic_sign.shape [:2]

mask = cv2.inRange(traffic_sign , (0, 0, 0, 255), (255, 255, 255, 255))

perlin = cv2.resize(extract_from(perlin_noise), (x, y), interpolation=cv2.

INTER_AREA)

dst = np.zeros((y, x, 3), np.uint8)

cv2.addWeighted(cv2.cvtColor(traffic_sign , cv2.COLOR_BGRA2BGR), alpha ,

perlin , 1 - alpha , 0, dst)

dst = cv2.cvtColor(dst , cv2.COLOR_BGR2BGRA)

traffic_sign[mask > 0] = dst[mask > 0]

return traffic_sign

b.10 random erasing

Code for random erasing, see Section 4.8.1.

# the margin ensures the erased block is applied to the sign

def random_erasing(image , margin =0.1):

position = randint(0, 2)

# factors for square shape

if position == 0:

hr = (0.1, 0.25)

wr = (0.1, 0.25)

# factors for horizontal rectangle

elif position == 1:

hr = (0.1, 0.15)

wr = (0.15, 0.4)

# factors for vertical rectangle

else:

hr = (0.15, 0.4)
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wr = (0.1, 0.15)

hratio = uniform(hr[0], hr[1])

wratio = uniform(wr[0], wr[1])

height , width = image.shape [:2]

# dimensions of erased area

h, w = round(hratio * height), round(wratio * width)

# position to be erased

y = randint(round(height * margin), round(( height - h) * (1 - margin)))

x = randint(round(width * margin), round(( width - w) * (1 - margin)))

# erase with noise

image[y: y + h, x: x + w, :3] = (np.random.rand(h, w, 3) * 255).astype(np.

uint8) #randint(0, 255), randint(0, 255), randint(0, 255)

return image

b.11 add shadow

Code for shadow creation and application onto templates, see Section 4.8.2.

# generate a shadow from a Perlin noise sample

def shadow_from_pnoise(perlin_noise):

h, w = perlin_noise.shape [:2]

# add alpha channel

perlin_shadow = cv2.cvtColor(perlin_noise , cv2.COLOR_BGR2BGRA)

for i in range(h):

for j in range(w):

# the Perlin noise is in 3 channel grayscale

if perlin_shadow[i][j][0] > 120:

# transparent

perlin_shadow[i][j] = [255, 255, 255, 0]

else:

# opaque

perlin_shadow[i][j] = [0, 0, 0, 255]

return perlin_shadow

# add shadow to an image from an already processed Perlin noise sample

def add_shadow(image , perlin_shadow):

h, w = image.shape [:2]

shadow = cv2.cvtColor(extract_from(perlin_shadow), cv2.COLOR_BGR2BGRA)

# reduce transparency to simulate a shadow

shadow[:,:, 3] = shadow[:,:, 3] * uniform (0.50, 0.75)
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shadow = cv2.resize(shadow , (h, w), interpolation=cv2.INTER_AREA)

return paste(shadow , image)

b.12 operations pipeline

Code for the full pipeline, see Section 4.9.

# load templates from given path

def load_templates(path):

num_classes = 0

for template in os.listdir(f’{path}’):

match = re.match(’[0 -9]+(_0)?.png’, template)

if match:

num_classes += 1

templates = []

for i in range(num_classes):

template = cv2.imread(f’{path }/{i}.png’, cv2.IMREAD_UNCHANGED)

if template is not None:

templates.append ([ template ])

else:

templates.append ([cv2.imread(image , cv2.IMREAD_UNCHANGED) for

image in sorted(glob.glob(f’{path }/{i}_[0 -9]*. png’))])

return templates

# return a template from the given set

def choose_template(templates):

n = len(templates)

if n > 1 and random () < 0.3:

return templates[randint(1, n - 1) if n > 2 else 1]

else:

return templates [0]

# pipeline

def gen(classes , templates , n_per_class , output_path , perlin_noise):

for class_id in classes:

# process high resolution samples

for i in range(round(n_per_class * 0.8)):

template = choose_template(templates[class_id ])

template = hsv_jitter(template)

if random () < 0.7:

template = rotate(template , 15)
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if random () < 0.6:

template = perspective_transformation(template)

if random () < 0.6:

template = shear_transformation(template)

template = add_perlin_noise(template , perlin_noise)

template = add_background(template , (18, 48), (0.07 , 0.21), 0.15)

if random () < 0.3:

template = motion_blur(template , randint(2, 5))

cv2.imwrite(f’{output_path }/{ format(class_id , "05d")}/{i}.png’,

template , [cv2.IMWRITE_PNG_COMPRESSION , 0])

# process small samples

for i in range(round(n_per_class * 0.2)):

template = choose_template(templates[class_id ])

template = hsv_jitter(template)

if random () < 0.7:

template = rotate(template , 15)

if random () < 0.6:

template = perspective_transformation(template)

if random () < 0.6:

template = shear_transformation(template)

template = add_perlin_noise(template , perlin_noise)

if random () < 0.5:

template = confetti_noise(template)

template = add_background(template , (12, 17), (0.20 , 0.25), 0.20)

cv2.imwrite(f’{output_path }/{ format(class_id , "05d")}/{i + round(

n_per_class * 0.8)}.png’, template , [cv2.

IMWRITE_PNG_COMPRESSION , 0])

if __name__ == ’__main__ ’:

templates_path = ’C:/ templates_path ’

output_path = ’C:/ synthetic_dataset_path ’

n_per_class = 2000

# optimization for faster generation time

num_proc = 4
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templates = load_templates(templates_path)

num_classes = len(templates)

# create dataset directory and respective class subfolders

os.makedirs(output_path)

[os.makedirs(os.path.join(output_path , format(class_id , "05d"))) for

class_id in range(num_classes)]

# generate the Perlin noise sample

perlin_noise = perlin_noise ((2048 , 2048))

processes = [mp.Process(target=gen , args=( range(round(i * (num_classes /

num_proc)), round ((i + 1) * (num_classes / num_proc))), templates ,

n_per_class , output_path , perlin_noise)) for i in range(num_proc)]

for process in processes:

process.start()

for process in processes:

process.join()

b.13 data augmentation

Code for the dynamic data augmentation, see Section 4.10.1.

import torchvision.transforms as transforms

# resize all images to (32, 32) and normalize them to mean = 0 and standard -

deviation = 1 based on statistics collected from the training set

data_transforms = transforms.Compose ([

transforms.Resize ((32, 32)),

transforms.ToTensor (),

transforms.Normalize ((0.3337 , 0.3064 , 0.3171) , (0.2672 , 0.2564 , 0.2629))

])

# resize , normalize , and jitter image brightness

data_jitter_brightness = transforms.Compose ([

transforms.Resize ((32, 32)),

transforms.ColorJitter(brightness =2),

transforms.ToTensor (),

transforms.Normalize ((0.3337 , 0.3064 , 0.3171) , (0.2672 , 0.2564 , 0.2629))

])
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# resize , normalize , and jitter image saturation

data_jitter_saturation = transforms.Compose ([

transforms.Resize ((32, 32)),

transforms.ColorJitter(saturation =2),

transforms.ToTensor (),

transforms.Normalize ((0.3337 , 0.3064 , 0.3171) , (0.2672 , 0.2564 , 0.2629))

])

# resize , normalize , and jitter image contrast

data_jitter_contrast = transforms.Compose ([

transforms.Resize ((32, 32)),

transforms.ColorJitter(contrast =2),

transforms.ToTensor (),

transforms.Normalize ((0.3337 , 0.3064 , 0.3171) , (0.2672 , 0.2564 , 0.2629))

])

# resize , normalize , and jitter image hues

data_jitter_hue = transforms.Compose ([

transforms.Resize ((32, 32)),

transforms.ColorJitter(hue =0.4),

transforms.ToTensor (),

transforms.Normalize ((0.3337 , 0.3064 , 0.3171) , (0.2672 , 0.2564 , 0.2629))

])

# resize , normalize , and rotate image

data_rotate = transforms.Compose ([

transforms.Resize ((32, 32)),

transforms.RandomRotation (5),

transforms.ToTensor (),

transforms.Normalize ((0.3337 , 0.3064 , 0.3171) , (0.2672 , 0.2564 , 0.2629))

])

# resize , normalize , and shear image

data_shear = transforms.Compose ([

transforms.Resize ((32, 32)),

transforms.RandomAffine(degrees=5, shear =2),

transforms.ToTensor (),

transforms.Normalize ((0.3337 , 0.3064 , 0.3171) , (0.2672 , 0.2564 , 0.2629))

])

# resize , normalize , and translate image

data_translate = transforms.Compose ([

transforms.Resize ((32, 32)),

transforms.RandomAffine(degrees = 5,translate =(0.1 ,0.1)),

transforms.ToTensor (),

transforms.Normalize ((0.3337 , 0.3064 , 0.3171) , (0.2672 , 0.2564 , 0.2629))

])
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# resize , normalize , and crop image

data_center = transforms.Compose ([

transforms.Resize ((36, 36)),

transforms.CenterCrop (32),

transforms.ToTensor (),

transforms.Normalize ((0.3337 , 0.3064 , 0.3171) , (0.2672 , 0.2564 , 0.2629))

])

import torch

# load training set and apply data augmentation

train_loader = torch.utils.data.DataLoader(

torch.utils.data.ConcatDataset ([

datasets.ImageFolder(path , transform=data_transforms),

datasets.ImageFolder(path , transform=data_jitter_brightness),

datasets.ImageFolder(path , transform=data_jitter_hue),

datasets.ImageFolder(path , transform=data_jitter_contrast),

datasets.ImageFolder(path , transform=data_jitter_saturation),

datasets.ImageFolder(path , transform=data_translate),

datasets.ImageFolder(path , transform=data_rotate),

datasets.ImageFolder(path , transform=data_center),

datasets.ImageFolder(path , transform=data_shear)]),

batch_size=args.batch_size , shuffle=True ,

num_workers =4, pin_memory=use_gpu)
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