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Abstract: When constructing a deep learning model for recognizing violence inside a vehicle, it is
crucial to consider several aspects. One aspect is the computational limitations, and the other is the
deep learning model architecture chosen. Nevertheless, to choose the best deep learning model, it
is necessary to test and evaluate the model against adversarial attacks. This paper presented three
different architecture models for violence recognition inside a vehicle. These model architectures
were evaluated based on adversarial attacks and interpretability methods. An analysis of the model’s
convergence was conducted, followed by adversarial robustness for each model and a sanity-check
based on interpretability analysis. It compared a standard evaluation for training and testing data
samples with the adversarial attacks techniques. These two levels of analysis are essential to verify
model weakness and sensibility regarding the complete video and in a frame-by-frame way.

Keywords: violence recognition; action recognition; deep learning; in-car recognition

1. Introduction

Violence recognition is a sub-area of human action recognition that can be divided
between internal and external environments [1]. This is a crucial distinction, as the issues
and problems to be addressed in these two types of environments are quite different. For
example, it is generally not feasible to include the audio signal in outdoor surveillance, but
it can be included indoors. Internal surveillance, where the capture and adequate audio
signal filtering is straightforward, can help obtain better results [2]. These audio and video
signals can go through a multimodal fusion process to increase the success rate [3].

When studying the recognition of violence, the most common data are related to the
video. Nevertheless, recent studies also include audio since microphones can easily pick
up audio, being very powerful sensors that capture context and human behaviour [2].
However, the recognition of violence through audio is highly susceptible to significant
fluctuations in the accuracy, depending on the acoustic environment in which it is inserted.
Therefore, it is necessary to have a good audio representation to perform the audio-based
violence classification.

Some computational complexity is required when we try to detect violence that
manifests itself across space and time: space refers to the amount of memory used to
store data during and after an algorithm runs; time refers to the number of processing
instructions performed by a computer [4,5]. In addition to the computational complexity,
a temporal restriction corresponds to the processing that exceeds the deadline foreseen
in real-time [6,7]. According to these restrictions, the hardware must be considered part
of the detection model. Therefore, we have to detect and recognise violence with really
short deadlines considering real-time surveillance. Since the sensor data are from inside the
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vehicle, the hardware installed is not very powerful, so the only parameter to be changed is
the computational complexity.

An in-car surveillance system has two interlinked restrictions to consider in this
article. The first is data protection, and the second is that as much surveillance as possible
should be automatic so that only an event that calls an operator is triggered if violence is
recognized [2]. This means that processing must be carried out inside the vehicle, without
data storage and in real-time. Furthermore, the hardware should not be expensive enough
to be worth stealing. This imposes several hardware constraints that can be summarized as
surveillance must be optimized for as little computational complexity as possible [1].

Deep neural networks have achieved tremendous success; however, these models can
be vulnerable. In this way, models can be easily fooled with small, inconspicuous changes.
These elaborate inputs, also known as adversarial examples, posed a significant challenge
for researchers to build secure and robust models for security-sensitive applications [8].

Since Szegedy [9], the existence of adversarial examples in deep models have been
studied, and many efforts have been made to improve the models’ resistance against such
attacks. Examples of these attacks are opponent training [8], gradient regularization [8]
and data pre-processing [8]. Still, it is difficult to build a robust and adversarial model. The
model must have an appropriate defence and, in addition to dealing with various types
of attacks, it must also avoid using “external” factors, such as gradient mask or blurred
gradients [8], to build a false sense of security.

1.1. Main Contributions

This paper results from a cooperation between the University of Minho and the Bosch
Group. The cooperation aims to a violence detection surveillance system to be used inside
vehicles, especially on car-pooling services, (e.g., Uber, Lynx, etc.). For such a task for
the video signal, several architectures were evaluated, and those that presented the best
performance are X3D, C2D, and I3D [10]. Given the proposed models are presenting good
performance, the surveillance intuition says that the next step is to test them against security
threats. That is the context for this paper.

Notice that the main contribution is the application context. The result of X3D, C2D
and I3D as well their security limitations are already known, but in a lato sense [11]. On
the other hand, few papers are focusing in-vehicle surveillance (perhaps due to the novelty
of the field), as can be observed by the lack of suitable public data-sets [12]. Surveillance,
being a sensitive issue, cannot be discussed “in general” but in strict terms. This paper’s
objective is to assess strictly how does X3D, C2D and I3D applied to in-vehicle surveillance
behaves on adversarial attacks and discusses how reliable such a solution is to be used as
violence detection on car-pooling services. This paper contribution is, to the best of the
author’s knowledge, this is first one to perform the frame and video level evaluation to
in-car violence recognition models.

Violence can be triggered by several sources, from emotion-driven to malicious action.
The scenario for this paper focuses on malicious actions. An adversarial enters into a shared
car using a signal jammer (for a reference, visit https://www.jammerall.com/ access at 5
December 2021) that adds noise to the video signal while the malicious action takes place.
The research question that arises is: does the proposed architectures are robust enough for
coping with such attack?

Building a robust model adversarial has to effectively and reasonably assess the
opposing robustness of deep models. A practical assessment procedure helps investigators
understand the different defence methods. The most used and evaluated current methods
are FGSM [13], PGD [14], and C&W attacks [15].

1.2. Organization

Being an extended version of the paper [10], the aim is to present the weakness of
in-car violence recognition models, which is based on the paper [10]. The research objective
is to evaluate the weakness of deep learning models for violence detection inside the vehicle.

https://www.jammerall.com/
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The research is currently at an early stage when explorations are being undergone, and
feasibility is being evaluated.

The remainder of this paper is structured as follows: In Section 2, the main works are
related to the theoretical foundations. Section 3 presents an analysis of the dataset and
architectures. In Section 4, we describe the results and discussion. Section 5 presents the
conclusions and future works.

2. Theoretical Foundations
2.1. Adversarial Attacks

Although the deep learning models have achieved expressive results in the most
varied domains [16], even getting better performance than the human being in specific
tasks [17]. The work of advatk has shown that these models have intriguing properties that
go against our intuition. These works showed that the models fail drastically if we add an
almost imperceptible amount of noise to the human eye in an image.

Examples of these attacks are opponent training [8], gradient regularization [8] and
data pre-processing [8]. Still, it is difficult to build a robust and adversarial model. The
model must have an appropriate defence and, in addition to dealing with various types
of attacks, it must also avoid using “external” factors, such as gradient mask or blurred
gradients [8], to build a false sense of security.

2.1.1. Adversarial Training

Inkawhich et al. [18] proposed the Fast Gradient Sign Method (FGSM) for generating ad-
versarial attacks. FGSM consists of calculating the gradient of the error function concerning
the input vector and then obtaining the signs (direction) of each dimension of the gradient
vector. The author [19] argue that the direction of the gradient is more important than the
specific point of the gradient because the space in which the input vector is contained is not
composed of adversary attack subregions. Other variations of the FGSM are also present
in the literature, such as the R-FGSM [20] and Step-LL [21]. Equation (1) presents a cost
function for adversarial training based on the FGSM. Given a standard error function (J)
and the input vector x, it gets the final error based on the sum of two steps: (1) calculates the
error based on the original input vector (J(θ, x, y)); and (2) error based on FGSM opponent
attack (J(θ, x + εsign(∇x J(θ, x, y))).

J′(θ, x, y) = αJ(θ, x, y) + (1− α)J(θ, x + εsign(∇x J(θ, x, y))) (1)

Madry et al. [14] carried out a study on opposing attacks from a min−max view in
order to be precise about which attack class they try to recognize and, consequently, defend.
Equation (2) presents the formulation min−max. The max part of this formulation aims to
find an adversary noise that produces a high value of the error function L when added to the
input vector. The term o min aims to find the model parameters that minimize the L error
function, thus making the model robust to max− attack. From this analysis, the authors
proposed the Projected Gradient Descent (PGD) method, which they call the first-order
universal attack, that is, the most difficult attack using only first-order information.

min
θ

p(θ), where p(θ) = E
(x,y)∈D

[max
δ∈S

L(θ, x + δ, y)] (2)

Although the PGD method achieves good results, it is computationally expensive
because it needs to calculate the function’s gradient several times. In an effort to mitigate
this restriction, Ref. [22] proposed the method Free Adversarial Training (FAT). The main
contribution of the FAT method is to reuse the computed function gradient when the model
performs the gradient descent in the optimization step. However, with just one step of
the gradient calculation, they cannot build an attack that causes an error as high as PGD.
To minimize this negative point, the authors propose to train the same input batch for m
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times. In this way, the model will be robust to more than one attack version for the same
input vector.

2.1.2. Interpretability Methods

Deconvolution [23] is the pioneering work in obtaining the interpretations of a deep
learning model following a top-down approach. It can be seen as a traditional convolutional
neural network using the same components (filters, pooling), but in reverse order. Decon-
volution [23] is almost equivalent to calculating the gradient of the output of an arbitrary
neuron concerning the input vector (Vanilla Gradient); the subtle difference is that when the
signal is back-propagated through an ReLU function, it sets to zero each negative value
of the previous gradient. Following a more formal approach, the Vanilla Gradient [24,25]
method was proposed. This method obtains a heatmap containing the degree of importance
of each position of the input vector x. Given a position i of a layer f , the absolute value
of the gradient ∂ fi

∂x is calculated to obtain the importance of each position of x. The Guided
Backpropagation [26] method combines the Deconvolution and Vanilla Gradient methods,
setting to zero the values in the positions where the gradients or the forward positions of
the respective layer are negative.

There are other computationally more complex interpretation methods, such as Grad-
Cam [27], Guided GradCam [27], Integrated Gradients [28], Blur Integrated Gradients [29],
Deep Lift [30], Kernel Shap [31], among others. However, due to computational limitations,
we will only focus on these gradient-based ones more directly.

2.2. Architectures
2.2.1. X3D

The X3D (Expand 3D) architecture requires low computational power for its processing.
This way allows us to have the precision to perform violence recognition with computers
without great computational powers. Furthermore, the X3D architecture extends a small
2D imaging architecture towards a Spatio-temporal architecture by extending several
potential axes. It develops the idea of adding axes (inflation as in I3D) and applying them
in different steps. Progressively expands a 2D network from the axes: time, frequency,
space, width, bottleneck and depth, resulting in architecture to extend from 2D space to
the field of 3D spacetime. The architecture describes a basic set of extension operations
used to sequentially extend X2D from a short spatial network to X3D, a spatiotemporal
network, implementing the following operations on the temporal, spatial, width and depth
dimension [11].

2.2.2. C2D

A Two-Dimensional Convolutional Neural Network (C2D) [32] is a structure com-
posed of two steps: (1) learning parameters; and (2) classification. The first step is to
reduce an initial two- or three-dimensional structure to a one-dimensional structure to
be passed to a neural classifier. Roughly speaking, if such reduction is made directly,

as:
[

1 0 0
0 1 0

]
=>|100010| the spatial dependence of pixels is eventually lost. To avoid this,

the alternative explored by CNN is convolutions interspersed by pooling. The second step
consists of a classification process as it is traditionally done through neural networks. In
this sense, CNN is suitable for processing images and sound (two-dimensional structures)
and movies (sequences of two-dimensional structures). So we have a model based on
convolutional networks and pooling layers. This model is finished with two full-connected
layers and the Softmax function.

2.2.3. I3D

When adding a dimension in a C2D architecture (e.g., k × k), it becomes a C3D archi-
tecture (e.g., t × k × k) [33]. The recognition of actions is sought through spatiotemporal
analysis by adding one more axis (inflated) in 2D convolutional networks aiming to treat
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time. Inflate is not a simple C3D, but a C2D, usually pre-trained, whose grains are extended
into a 3D shape. Growing up is as simple as adding dimension. Usually, temporal [34]
adds an extra dimension to all filters and kernels of a 2D convolutional model. I3D stands
for a two-flow inflated 3D convolution network [33]. Therefore, I3D is a composite of a
C2D inflated with optical flow information [33,34].

3. Materials and Methods

The dataset is the cornerstone of this paper. Incar violence recognition is a challenging
task. The violence phenomenon can be manifested in various ways. For example, it can
be fast or slow, it may not have violent movement but has violent tools, it can be only
a threat and not the physical violence itself, and other situations. Due to its difficulty
level, preprocessing is a major step in the process because it can help the model focus on
the violence signals. Thus, we have used several preprocessing functions, such as spatial
sampling, temporal sampling, random horizontal flip, and normalization.

Since it was impossible to find a public data set focused on in-vehicle surveillance,
one was generated specifically for this project. In short, the dataset is composed of 640 clips
scattered for 20 scenarios and 16 pairs of actors. Some clips are enriched with objects such
as a gun and a hairbrush. For details refer to [35].

A breadth exploration on neural networks architectures for computer vision focused
on action recognition revealed that X3D, C2D and I3D present good performance when
applied for in-vehicle violence detection [36]. These architectures also comply with the
constraint of meeting real-time evaluation working on inexpensive hardware. After training
various models and evaluating them with the test set, we configure all the systems in the
car to test which model is the best in the real scenario. This testing step is one of the most
important in the project. We could discover that the model has many false positives and is
highly sensitive. Next, in order to solve this problem, we discuss options to discover what
the issue is. Then, we discovered that training the models with the entire video was not a
good decision because a violent video also has splits that do not have violence. Therefore,
we decided to cut all violent videos in slices of 5 s and keep only the slices that have violent
situations. In order to keep only the slices with violent behaviour, we re-watch all the
slices and keep only the violent ones. After cutting all videos, we retrained all models with
the new dataset, and the result was not highly sensitive and more accurate model in the
deployed scenario.

The training is based on ten pairs of actors, validated on three and tested on the last
three. Pre-processing was undertaken using spatial sampling, temporal sampling, random
horizontal flip and normalization. After model stabilization and selection, a test set was
generated modified by FGSM, PGD and CW and submitted for the X3D, C2D and I3D
models to verify how assess their robustness.

4. Results and Discussion
4.1. Models Convergence

Visualizing the model loss behaviour for epoch is important to verify if the model
is learning or is blocked in a local minimum. Thus, this subsection presents the model
convergence during the training step. All the models were trained during 200 epochs, using
the Adam optimizer with a learning rate 0.001 and batch size of 16 videos. Figures 1 and 2
shows the training loss and accuracy for each epoch, respectively.

From Figure 1 we can see that the X3D model has the most stable convergence,
decreasing the loss by tiny steps. However, although the C2D and the I3D models achieved
the lower loss in the first epochs, they did not present the lowest loss in the final epochs.
Similar behaviour can be seen in Figure 2 with the accuracy metric.

After training all models during 200 epochs, we selected the epoch with a lower loss
value in the training set and evaluated it in the test set for each model. As the data set is
unbalanced, we have employed the weighted f-measure metric in the test set evaluation.
Table 1 shows the test results obtained. The X3D architecture achieves the best results, and
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although the C2D achieve close loss training to the I3D, it achieves lower f-measure in the
test set.

Figure 1. Visualizing the model convergence by computing the training loss for each epoch. The
x-axis represents the epoch and the y-axis represents the respective cross-entropy training loss.

Figure 2. Visualizing the model convergence by computing the training accuracy for each epoch. The
x-axis represents the epoch and the y-axis represents the respective training accuracy.
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Table 1. Results on the test set. This table presents the f-measure value for each model evaluated in
the test set. The column architecture represent the model evaluated while the f-measure represents
the results obtained.

Architecture F-Measure Data Split

X3D 78, 02 Test
C2D 65, 44 Test
I3D 72, 36 Test

4.2. Adversarial Robustness

In the last subsection, we have made the model evaluation through the cross-entropy
loss, accuracy, and f-measure metrics with the train and test set. Nevertheless, this standard
evaluation only measures how the model predicts the training and testing data samples
correctly; thus, a simple evaluation as the in-car violence signal can be presented in different
ways. For example, it can be a fast or slow violence movement. The scene can be dark
or lighter, only one or two people are moving, is necessary to employ a more in-depth
analysis of the in-car violence recognition models. Thus, in this work, we have applied two
well-known adversarial attack techniques to evaluate how sensible to adversarial attacks
the in-car models FGSM and PGD.

The adversarial attack adds (imperceptible) noise to the input signal. Since the video
is composed of a sequence of frames, we have made two levels of adversarial robustness
evaluation: (i) video level and (ii) frame level. The first level consists of adding noise to
all video frames, while in the second one, we add noise only to a single frame. These two
levels of analysis are essential to verify the model weakness and sensibility regarding the
complete video and in a frame-by-frame way.

4.2.1. Video-Level

In this analysis, we add adversarial noise to each frame of the input feature; thus, all
the video signal has adversarial, as represented in Figure 3. In this example, the adversarial
noise in the image (b) was obtained from the FGSM. However, it can be obtained from any
other adversarial attack method. This level of analysis is essential to verify how adversarial
robust is the in-car violence models regarding all the videos.

Figure 3. Video level adversarial attack. In this figure, we show how we can obtain the video level
adversarial attack. (a) Shows a sequence of the input frames, (b) presents the adversarial noise
obtained from the FGSM, and (c) shows the complete video adversarial attack resultant after add
adversarial noise on each input frame.

The standard evaluation has shown that the X3D model presented better results on the
test set. Differently from these results, Table 2 has shown that the I3D model achieved better
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results on the adversarial robustness with the video-level signal. This result reinforces the
necessity to evaluate the model with other approaches different from the standard. Thus,
the researchers can have different evaluation scenarios and infer the model weakness.

Table 2. Video-level results. The column metric means which one was used to compute the result
and the adversarial attack column means which method was used to compute the attack. Each row
represents an experimentation scenario.

Architecture Metric Value Adversarial Attack

X3D F1 0, 0 FGSM
X3D F1 0, 0 PGD
C2D F1 3, 86 FGSM
C2D F1 4, 89 PGD
I3D F1 45, 89 FGSM
I3D F1 0, 0 PGD

X3D Accuracy 0, 0 FGSM
X3D Accuracy 0, 0 PGD
C2D Accuracy 22, 73 FGSM
C2D Accuracy 0, 0 PGD
I3D Accuracy 35, 40 FGSM
I3D Accuracy 9, 56 PGD

4.2.2. Frame-Level

During the frame-level analysis, we chose a single frame in the input video and added
adversarial noise on it, as illustrated in Figure 4. This example represents the process of
adding FGSM adversarial noise on the fifth frame of the input video. This level of analysis
is vital to verify if the model is adversarial robust to noise on a single frame.

Figure 4. Frame-level adversarial attack. This example shows how we can compute the frame-level
adversarial attack. The (a) represents the input video, (b) the frame adversarial noise, and (c) the
frame-level adversarial attack. In this example, we only add adversarial noise on the fifth frame.

Table 3 presents the results obtained in the frame-level analysis. The most adversarial
robust model in a frame-level scenario was the I3D model, thus confirming that it is the
most adversarial robust model between the ones evaluated. In addition, the X3D presented
interesting results since it has close results to the I3D, but at the video level have lousy
performance.

In addition to what we already have discussed, it is essential to highlight that the
results presented in Tables 2 and 3 have shown that all models have a drawback in the
evaluation metrics when we add adversarial noise (even frame or video level). This fact is
important because when we deploy in-car violence recognition models in production, some
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situations can happen, sometimes the camera point of view of even the camera resolution
changes, so evaluating the model sensitivity is very important before deploying these
models.

Table 3. Frame-level results. This table presents the f-measure value for each model evaluated in
the test set. The column architecture represent the model evaluated while the value represents the
f-measure results obtained.

Architecture Metric Value Frame Adversarial
Attack

X3D F1 64, 04 4 FGSM
X3D F1 53, 97 4 PGD
X3D F1 65, 04 9 FGSM
X3D F1 56, 85 9 PGD
C2D F1 33, 86 3 FGSM
C2D F1 29, 13 3 PGD
C2D F1 28, 81 6 FGSM
C2D F1 26, 72 6 PGD
I3D F1 66, 66 3 FGSM
I3D F1 62, 91 3 PGD
I3D F1 65, 80 6 FGSM
I3D F1 62, 87 6 PGD

4.3. Sanity-Check Based on Interpretability

Interpretability methods produce attribution maps in the input space, meaning that
each input feature is essential to the model prediction. Moreover, we can use these methods
to perform sanity checks on the model’s outputs, thus inferring the model’s sensitivity to
the input feature. In addition, we can also use interpretability methods to debug models
prediction.

Video signal is composed of temporal and spatial information, and we can use the
frame sequence as the temporal line and the spatial subregions of each frame as the spatial
information. This section will perform sanity checks of the video signal based on the
model interpretability from these signals. The sanity check consists of (1) erasing the most
important temporal information and (2) erasing the most important spatial information.
These sanity tests allow us to verify how sensitive is the model regarding input feature
changes. This analysis is motivated by the work presented in [36]. It is different from
randomly erased subregions or frames because it uses interpretability methods to choose
the most crucial frame or subregion. In the following, we present the results obtained.

4.3.1. Temporal Analysis

Figure 5 shows how we perform the sanity-check of the temporal information. First
we feed the model ( f ) with the original video v, then we obtain its prediction ( f (v)) and
compute which frame is the most important to f (v). After obtaining the most important
frame, we erased it information with 0 value yielding a new video v

′
. Then, we fed the

model with v
′

to verify its new outputs f (v
′
).

Table 4 present the temporal analysis on the test set and was constructed based on the
three architectures model: X3D, C3D, and I3D. The baseline column raw is the f-measure
presented in Table 1. We have applied four different methods: Saliency, Deconvolution, In-
putxGradient, and Guided Backpropagation. We can observe that the X3D model presented
better results on the four methods, thus being the most robust method in the temporal
scenario. Still, I3D has also competitive results.
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Figure 5. Temporal analysis. This example shows an example of the temporal analysis. Each row
show the frame occlude though each interpretability method used.

Table 4. Results of the temporal analysis on the test set. This table presents the f-measure value for
each model evaluated in the test set based on the sanity-check analysis. The column architecture
represent the model evaluated while the saliency, deconvolution, input × gradient, and guided back-
propagation represents the results obtained from the sanity check with the respective interpretability
method. The column raw is the baseline results.

Architecture Raw Saliency Deconvolution Input × Gradient Guided Backpropagation

X3D 78, 02 56, 14 52, 29 51, 28 50, 85
C2D 65, 44 44, 07 26, 66 23, 58 23, 41
I3D 72, 36 52, 29 52, 10 51, 29 50, 29

4.3.2. Spatial Analysis

The spatial analysis is performed in a similar way as the temporal analysis. The
difference is that we compute the most important subregion within the most crucial frame.
The size of the subregion is a parameter to this analysis. In this experiment, we chose
40 × 40 as it is representative compared to the full size of each frame (224 × 224). In future
work, we intended to analyse the impact of this parameter in the analysis. Figure 6 shows
an input sample about how we performed this analysis, besides Table 5 presents the results
obtained.

Table 5 presented the spatial analysis with the three architectures model: X3D, C3D,
and I3D. It was also applied in the same way in four different methods: Saliency, Deconvo-
lution, Input × Gradient, and Guided Backpropagation. We can observe that X3D and I3D
models presented better results in four methods.

Table 5. Results of the spatial analysis on the test set. As in Table 4, this table presents the f-measure
value for each model evaluated in the test set based on the sanity-check analysis. The meaning of
each column is the same as in Table 4, except that here is the spatial sanity check.

Architecture Raw Saliency Deconvolution Input × Gradient Guided Backpropagation

X3D 78, 02 77, 84 52, 29 52, 20 52, 10
C2D 65, 44 33, 88 06, 21 11, 98 08, 48
I3D 72, 36 60, 07 52, 29 52, 05 51, 79
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Figure 6. Spatial analysis. This example shows an example of the spatial analysis. Each row show
the subregion occlude though each interpretability method used.

Based on the temporal and spatial analysis, we can observe that the two models, X3D
and I3D, have better sanity-check results based on interpretability, thus showing that they
are more robust than the C2D model.

In terms of qualitative analysis Figure 6 shows an interesting phenomenon, it shows
that the model is not using the correct information to perform its prediction, while an
actor is using a weapon to threaten another actor, the model focuses on the actor’s hand
instead of the violent object in the scene. This weakness is not restricted to in-car violence
recognition models, and it is an active area of research in deep learning named Right for
the right reasons [37].

5. Conclusions

This paper presents three models for in-car violence recognition and evaluates these
models based on adversarial attacks and interpretability methods. So, we begin to present
adversarial attack and interpretability methods and architectures models. Then, we describe
the dataset, beginning to explain the dataset recording, the violence and non-violent
scenarios, the dataset pre-processing, and the final dataset used. In addition, we have
presented the three prominent architectures used in the study. In the analysis, we have
begun to analyse the model’s convergence, followed by adversarial robustness on video and
frame level for each model. Finally, we analysed the sanity check based on interpretability,
conducting temporal and spatial analysis.

The analysis shows that the I3D model is the most adversarial robust, while the X3D
model presented better results in the original data distribution and the sanity checks. In
addition, the qualitative discussion regarding the model interpretability shows that the
models can be inferred correctly based on the wrong information. Thus, this work shows
that although the in-car violence recognition models present good results in the test set,
they still have room for improvement in their robustness. In future work, we intend to
employ the right for the right reasons methods during the training to make the models
infer correctly based on the right signal.
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