
Citation: Sousa, D.A.; Gaspar, R.;

Ferreira, C.J.O.; Baltazar, F.;

Rodrigues, L.R.; Silva, B.F.B. In Vitro

CRISPR/Cas9 Transfection and

Gene-Editing Mediated by

Multivalent Cationic Liposome–DNA

Complexes. Pharmaceutics 2022, 14,

1087. https://doi.org/10.3390/

pharmaceutics14051087

Academic Editor: Simon C. W.

Richardson

Received: 21 March 2022

Accepted: 17 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

In Vitro CRISPR/Cas9 Transfection and Gene-Editing Mediated
by Multivalent Cationic Liposome–DNA Complexes
Diana A. Sousa 1,2,3, Ricardo Gaspar 2 , Celso J. O. Ferreira 2,4 , Fátima Baltazar 5,6 , Ligia R. Rodrigues 1,3,*
and Bruno F. B. Silva 2,*

1 CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
diana.sousa@ceb.uminho.pt

2 INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal;
ricardo.gaspar@inl.int (R.G.); celso.ferreira@inl.int (C.J.O.F.)

3 LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
4 CF-UM-UP, Department of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
5 Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho,

4710-057 Braga, Portugal; fbaltazar@med.uminho.pt
6 ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
* Correspondence: lrmr@deb.uminho.pt (L.R.R.); bruno.silva@inl.int (B.F.B.S.)

Abstract: Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated
nuclease 9 (Cas9) gene-editing offers exciting new therapeutic possibilities for disease treatment with
a genetic etiology such as cancer, cardiovascular, neuronal, and immune disorders. However, its
clinical translation is being hampered by the lack of safe, versatile, and effective nonviral delivery
systems. Herein we report on the preparation and application of two cationic liposome–DNA
systems (i.e., lipoplexes) for CRISPR/Cas9 gene delivery. For that purpose, two types of cationic
lipids are used (DOTAP, monovalent, and MVL5, multivalent with +5e nominal charge), along
with three types of helper lipids (DOPC, DOPE, and monoolein (GMO)). We demonstrated that
plasmids encoding Cas9 and single-guide RNA (sgRNA), which are typically hard to transfect due
to their large size (>9 kb), can be successfully transfected into HEK 293T cells via MVL5-based
lipoplexes. In contrast, DOTAP-based lipoplexes resulted in very low transfection rates. MVL5-
based lipoplexes presented the ability to escape from lysosomes, which may explain the superior
transfection efficiency. Regarding gene editing, MVL5-based lipoplexes achieved promising GFP
knockout levels, reaching rates of knockout superior to 35% for charge ratios (+/−) of 10. Despite the
knockout efficiency being comparable to that of Lipofectamine 3000® commercial reagent, the non-
specific gene knockout is more pronounced in MVL5-based formulations, probably resulting from
the considerable cytotoxicity of these formulations. Altogether, these results show that multivalent
lipid-based lipoplexes are promising CRISPR/Cas9 plasmid delivery vehicles, which by further
optimization and functionalization may become suitable in vivo delivery systems.

Keywords: CRISPR; Cas9; gene knockout; CL-DNA; lipoplex; plasmid; gene delivery; multivalent
cationic lipids; MVL5

1. Introduction

The discovery of clustered regularly interspaced short palindromic repeats (CRISPR)
and CRISPR-associated nuclease 9 (Cas9) has opened new possibilities to knockout or
repair genes, revolutionizing the concept of gene therapy and promoting new exciting
therapeutic possibilities [1,2]. CRISPR/Cas9 is a two-component system composed of
Cas9, an RNA-guided endonuclease capable of cleaving double-stranded DNA, and a
20-nucleotide target-specific sequence specified by single-guide RNA (sgRNA), which
directs the Cas9 to a target site for DNA cleavage. The cleavages can be repaired by the
nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathways [3,4].
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The NHEJ is associated with variable sizes of insertions or deletions (indels) that interrupt
the expression of target genes by the frame shift occurring in the coding regions. This
typically causes gene disruption and knockout. In contrast, gene knock-in and precise gene
corrections can be achieved by HDR using a donor DNA template [5]. These features make
the CRISPR/Cas9 system an exciting therapeutic possibility for treating, preventing, or
curing a wide range of diseases [6].

Despite this obvious promise, delivery of CRISPR/Cas9 is one of the major technical
concerns limiting the therapeutic application of this technology [7]. This system can be
delivered in the form of a DNA plasmid encoding both the Cas9 protein and sgRNA [8], or
it may be delivered in the form of Cas9 mRNA [9,10] or native Cas9 protein [11], in which
both cases the sgRNA needs to be co-delivered as well. Viral vectors, such as lentiviral
vectors, adenoviral vectors, and adeno-associated virus (AAV) vectors have been used
most often for the delivery of Cas9/sgRNA-encoded plasmids for CRISPR therapeutics,
showing excellent gene transfection efficiency (TE). However, viral expression results in
immunogenic responses, long-term expression, and off-target effects [12,13]. Moreover, a
large fraction of the human population has pre-existing immunity to AAV, making them
ineligible for AAV-based therapies [14]. Therefore, a panel of nonviral vectors is being
developed to address the limitations of viral-based vectors and improve genome editing
for both in vitro and in vivo applications [8,10,15,16].

Cationic liposomes (CLs) are among the most promising vectors for delivering nucleic
acids to cells, including DNA plasmids, mRNA, and siRNA [17–26]. Their cationic charge
mediates strong electrostatic interactions with the negative charges of nucleic acids, giv-
ing rise to the formation of CL-NA complexes (often called lipoplexes) [23,25–27]. These
complexes adopt internal nanostructures of lamellar, hexagonal or cubic bicontinuous sym-
metry, with lipid membranes embedding the nucleic acids [24,25,28–31]. By manipulation
of the cationic-to-anionic charge ratio, CR (+/−), between liposomes and nucleic acids, as
well as adjusting the lipid membrane charge density [32,33], level of PEGylation [34,35],
and inclusion of stimuli-responsive or targeting functionalization [36–42], these particles
can be made highly efficient. While the efficiency is still not at the level of viral methods,
these particles are generally safer, less immunogenic, and simpler to manufacture on larger
scales. A related type of lipid nanodelivery system, using ionizable lipids that are cationic
only at lower pH [22,43,44], is the base of current mRNA vaccines being used worldwide for
COVID-19 prevention [45,46]. In a landmark recent result, an early-stage clinical trial has
shown that ionizable lipid nanoparticles encapsulating mRNA-encoded Cas9 and sgRNA
targeting the transthyretin amyloidosis gene led to a marked decrease of the misfolded
protein in blood, opening excellent prospects for future treatments [47].

Besides the recent excitement of RNA-based approaches, co-delivery of two compo-
nents with significantly different sizes such as Cas9 mRNA (4.5 kb) and sgRNA (0.1 kb), is
still challenging [16]. Plasmid DNA, on the other hand, can be engineered to encode both
the Cas9 gene and the sgRNA within one plasmid, making it simpler to deliver. However,
the large size of Cas9/sgRNA plasmids (9–19 kb) may hinder its effective and efficient
intracellular transfection [48–50].

In recent years, multivalent cationic lipids have been proposed as a promising strategy
to boost the TE of lipid-DNA complexes [33,51–54]. The use of multivalent cationic lipids
(e.g., DOSPA [51] and MVL5 [55]) instead of monovalent ones allows for reaching higher
lipid membrane charge densities, which mediate favorable interactions with anionic cell
and endosomal membranes, leading to higher transfection [52]. Simultaneously, lipids
with a higher valence allow reducing the number of used cationic lipid molecules, which
enables a reduction in cytotoxicity, and at the same time allows the inclusion of larger
amounts of helper lipids in the membranes, which can also lead to enhanced transfection
and gene silencing. Lipoplexes composed of MVL5 and different helper lipids, including
monoolein (GMO), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol,
were shown to have superior TE compared to monovalent cationic lipid formulations, with
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MVL5/GMO complexes also showing superior performance in the presence of serum and
in harder-to-transfect human cell lines [53].

In this work, we aimed to study the suitability of multivalent cationic lipid-DNA
complexes for delivery and transfection of CRISPR/Cas9 DNA plasmids to in vitro human
cells (HEK 293T) and the resulting gene knockout. MVL5, a pentavalent cationic lipid,
introduced by Ewert and Safinya in 2002 [55], is now commercially available and was
chosen as the multivalent lipid. Besides the charge of the liposome membrane, also its
elastic properties and propensity to form non-bilayer structures are thought to be important
in facilitating the fusion of lipoplexes with the endosomal membrane and improving trans-
fection [43,56,57]. Hence, three different helper lipids, DOPC, GMO, and 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine (DOPE), were used in addition to MVL5, to produce four
different binary lipid formulations (MVL5:DOPC 50:50, MVL5:GMO 50:50, MVL5:DOPE
50:50, and MVL5:DOPE 75:25). While all resulting lipid–DNA complexes are expected to
show a lamellar-type nanostructure for the used compositions [33,57], the DOPE and GMO
lipids have a higher propensity to form inverted lipid phases, such as reverse hexagonal
and, in the case of GMO, also bicontinuous cubic phases [56–58]. Hence, by combining
a highly-charged lipid with three lipids with different propensities to form non-bilayer
structures, we hope to identify a regime of suitable transfection efficiency for the large plas-
mids containing the Cas9 and sgRNA sequences. For comparison purposes, we used also
analogous formulations using the monovalent 2,3-Dioleyloxypropyltrimethylammonium
chloride (DOTAP) lipid, which is one of the most used lipids in transfection, as well as the
commercial Lipofectamine 3000®.

To measure the TE of the CRISPR/Cas9 plasmid, the plasmid that fuses the reporter
green fluorescence protein (GFP) gene and the Cas9 expression cassette (pSpCas9(BB)-2A-
GFP (PX458)) was used to facilitate the detection of Cas9 expression in the transfected
cells (Figure 1a). Moreover, a Cas9 expression plasmid containing a sgRNA to target the
GFP gene (PX459-sgRNA-GFP) was constructed (Figure 1b) to evaluate the gene knockout
efficiency, being the knockout efficiency determined by the loss of GFP signal. To account
for the loss of GFP signal caused by toxicity or non-specific knockout, the PX459 empty
vector was also used as a control.
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Figure 1. The experimental approach to study Cas9/sgRNA plasmid transfection and gene knockout.
(a) A plasmid encoding both Cas9 and GFP cassettes is encapsulated into multivalent cationic lipid
lipoplexes and administered to HEK 293T cells in vitro. The emergence of a green fluorescence
signal in the cells, which indirectly indicates Cas9 expression, is detected by flow cytometry and
fluorescence microscopy. (b) To measure CRISPR-mediated gene knockout, HEK 293T cells stably
expressing GFP are used. A Cas9 expression plasmid containing a sgRNA to target the GFP gene
(PX459-sgRNA-GFP) is designed. The depletion of fluorescence signal associated with GFP knockout
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is detected by flow cytometry and fluorescence microscopy. To distinguish between CRISPR-mediated
GFP knockout and non-specific GFP reduction (e.g., caused by cytotoxicity), a similar plasmid
without the sgRNA targeting sequence is used. U6: U6 promoter; sgRNA: contains a target sequence;
CMV: CMV promoter, Cas9: Cas9 expression cassette; 2A: 2A self-cleaving peptide; GFP: GFP
selection marker; Puro: Puromycin selection marker.

2. Materials and Methods
2.1. Reagents and Materials

Plasmids pSpCas9(BB)-2A-Puro (PX459) V2.0 (Addgene plasmid #62988) and pSpCas9(BB)-
2A-GFP (PX458) (Addgene plasmid #48138) were a gift from Feng Zhang [59]. Endotoxin-
free plasmids were extracted using ZymoPURE II Plasmid Maxiprep Kit from Zymo
Research. Lipofectamine™3000, Texas-Red DHPE, and LysoSensor Green DND-189 were
purchased from ThermoFisher Scientific. 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) and paraformaldehyde and dimethyl sulfoxide (DMSO) were
purchased from Sigma. 4′,6-diamidino-2-phenylindole (DAPI) was purchased from Biotium.
All cell culture reagents were purchased from Biochrom. Venor™ GeM Mycoplasma
Detection Kit was purchased from Merck. The gene target sequences were synthesized by
Alfagene. Lipids MVL5, DOTAP, DOPC, and DOPE were purchased from Avanti Polar
Lipids (USA). GMO was purchased from Nu-Chek Prep (Elysian, MN, USA). All lipids
were used as received. F-Luc-GFP lentivirus was purchased from Capital Biosciences.

2.2. Liposome Preparation

Liposomes were prepared with different lipid compositions and membrane charge
densities (σM). To achieve this, cationic DOTAP or MVL5 (Figure 2a) were mixed with
different helper lipids DOPC, DOPE, or GMO at different molar fractions. Lipid stocks dis-
solved in chloroform were mixed in the desired ratios. For cellular uptake and intracellular
distribution studies, liposomes included also 0.1 mol% of total lipid of Texas-Red-DHPE.
The resulting mixture was dried using a constant nitrogen gas stream and then placed in
a vacuum overnight. The lipid film was resuspended in ultrapure nuclease-free Milli-Q
water. The suspensions were vortexed and sonicated using a tip sonicator for 1 min, with
10% amplitude and 50% duty cycle using a Branson Digital Sonifier 250 Model.

2.3. Lipoplex Preparation and Characterization

For lipoplex formation, equal volumes of liposomes and DNA solutions were mixed
to the desired concentration. Lipoplexes were prepared with a cationic-to-anionic CR (+/−)
of 3 and 10. The CR (+/−) is calculated as the total number of positive charges (from
the number and valence of DOTAP or MVL5 molecules) divided by the total number of
negative charges (from the number and valence of DNA molecules). The nominal charge of
+5e was assumed for MVL5, although experimental data at near-physiological conditions
indicate that the average charge is closer to +4.5e [33]. The resulting mixtures were promptly
vortexed for 30 s and left at least 30 min under stirring conditions. The formed complexes
were stored at 4 ◦C. The sizes and zeta potential of the liposome solutions were determined
with Dynamic Light Scattering (DLS), using an SZ-100 device from Horiba, measuring
scattering at a detection angle of 173◦. The autocorrelation (AC) function is fitted using the
cumulants method, which provides the diffusion coefficient of the particles and respective
polydispersity index (PDI) [60]. In some cases, samples showed AC curves evidencing two
size populations. In such cases, the AC curves were fitted with a biexponential decay model,
providing the diffusion coefficient of both populations. The particle size (hydrodynamic
diameter) is then obtained through the Stokes-Einstein relation. Each sample was measured
for three runs of 60 s.

The stability of the MVL5-based lipoplexes was assessed by DLS measurements of
the hydrodynamic diameter of the multivalent CL-DNA complexes incubated with cell-
cultured medium (DMEM) at 37 ◦C for 24 h.
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Figure 2. Chemical structure of monovalent cationic lipid DOTAP and multivalent cationic lipid
MVL5 (a). Biophysical characterization of monovalent (DOTAP), and multivalent (MVL5) lipoplexes
incorporating the PX458 plasmid at CR (+/−) 3 (b–d) and CR (+/−) 10 (e). The average size and zeta
potential of DOTAP and MVL5-based lipoplexes were measured in ultrapure nuclease-free Milli-Q
water. Data represent at least three independent experiments and are presented as the mean ± SD.
Formulations marked with an asterisk showed bimodal distributions fitted with a biexponential
decay model. (f) DLS measurements of the hydrodynamic diameter of the MVL5-based lipoplexes
incubated with DMEM at 37 ◦C. Formulations marked with “*” were fitted with a biexponential
decay model.

2.4. Cell Culture

The human embryonic kidney (HEK) 293T (ATCC CRL-3216) cell line and HEK
293T cell line with stable GFP expression were cultured in Dulbecco’s minimal essential
medium (DMEM), supplemented with 10% heat-inactivated fetal bovine serum (FBS) and
1% penicillin-streptomycin. Cells were grown in polystyrene tissue culture flasks in a
humidified atmosphere of 5% CO2 and 37 ◦C and subcultured using 0.25% Trypsin-EDTA
solution. Mycoplasma testing by PCR was carried out routinely using Venor™ GeM
Mycoplasma Detection Kit.

HEK293T stably expressing GFP (HEK293T-GFP) cell line was generated by trans-
duction with F-Luc-GFP lentivirus in which GFP was expressed under the puromycin
resistance marker. The infection was carried out at a multiplicity of infection (MOI) of
10 in a complete medium supplemented with 5 µg/mL of Polybrene. Stably transduced
cells were selected by adding 2 µg/mL of Puromycin, and the selection was conducted for
14 days.
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2.5. In Vitro Transfection and Gene Expression Analysis

To evaluate in vitro transfection, HEK 293T cells were transfected with the pSpCas9(BB)-
2A-GFP (PX458) plasmid, which contains both Cas9/sgRNA and GFP expression cassettes.
Cells were plated at a density of 2 × 105 cells/well in a 6-well plate and grown to approxi-
mately 60–70% confluency before transfection. All CL-DNA complexes, containing 1 or
2 µg of PX458, were diluted to a final volume of 1 mL in DMEM medium (in absence of
serum) and transferred onto cells. Then, 4 h post-transfection, the complexes were removed,
and the medium was replaced by a complete DMEM medium for an additional 48 h of
incubation. Lipofectamine®3000-DNA complexes were used as a positive control according
to the manufacturer’s instructions. GFP gene expression was measured on an EC800 Flow
Cytometry Analyzer (Sony Biotechnology Inc., San Jose, CA, USA) by counting at least
20,000 events. Analysis of data was performed on the FlowJo 10.8.0 software to calculate
the percentage of GFP-positive cells. In addition to flow cytometry, GFP-expressing cells
were also visualized by fluorescence microscopy. For this, cells transfected beforehand were
fixed with 4% paraformaldehyde for 40 min at room temperature, followed by counter-
staining with DAPI for 15 min at room temperature. Cells were observed in a fluorescence
microscope [OLYMPUS BX51] incorporated with a high-sensitivity camera Olympus DP71
at 10×magnification. Images were analyzed by ImageJ (Version 1.51q, National Insitutes
of Health, Bethesda, MD, USA).

2.6. In Vitro Cytotoxicity Assay

The colorimetric MTT assay was used to evaluate the effect of CL-DNA complexes
incorporating Cas9/sgRNA plasmid on cell viability. Then, 1 × 104 HEK 293T cells were
plated on 96-well culture plates and incubated overnight. Then, cells were incubated with
CL-DNA complexes containing 0.1 µg DNA per well for 4 h. After incubation, the CL-DNA
complex solution was replaced by DMEM complete medium. Cell viability was measured
after 48 h by adding to each well 0.5 mg/mL of MTT and incubating for 4 h at 37 ◦C. The
blue formazan crystals formed by viable cells were dissolved in DMSO, and their optical
density was assessed at a wavelength of 570 nm in a microplate reader (Cytation 3, BioTek,
Winooski, VT, USA).

2.7. Cellular Uptake and Intracellular Distribution

To observe cellular uptake and intracellular distribution of cationic liposomes incorpo-
rating CRISPR/Cas9 DNA plasmids, monovalent and multivalent cationic liposomes at
CR (+/−) 3 were prepared using Texas-Red-labelled liposomes, as described above. The
CL-DNA complexes were formulated with CRISPR/DNA plasmid (PX458) and added to
HEK 293T cells previously seeded on coverslips in a 24-well plate (5 × 104 cells/well) at
a final concentration of 2 µg/mL of DNA. The transfected cells were incubated for 4 h at
37 ◦C, and then 1 µM of LysoSensor Green DND-189 was added to each sample to label
lysosomes and sustained for 30 min at 37 ◦C. Next, the medium was removed, and the
coverslips were observed using a 60× and 100× oil immersion objective in a fluorescence
microscope [OLYMPUS BX51] incorporated with a high-sensitivity camera Olympus DP71.
Images were analyzed by ImageJ software.

2.8. GFP Gene Disruption Assay

A single-guide RNA (sgRNA) was selected to target GFP sequence (sgRNA-GFP:
GGGCACGGGCAGCTTGCCGG). The sgRNA was inserted into the BbSI sites of pSpCas9(BB)-
2A-Puro (PX459) plasmid. The multivalent CL-DNA complexes were formed incorporating
2 µg of PX459-sgRNA-GFP (Figure 1b), and then transferred onto HEK 293T-GFP cells,
seeded beforehand on a 6-well plate at 2 × 105 cells/well. Cells were exposed to CL-
DNA complexes for 4 h in a free-serum medium, and then the CL-DNA complex solution
was replaced by DMEM complete medium. The unmodified PX459 plasmid was used
as a negative control, and Lipofectamine®3000-DNA complexes were used as a positive
control in GFP gene disruption. GFP knockout was assessed 72 h after transfection by the
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percentage of GFP-negative cells, evaluated using EC800 Flow Cytometry Analyzer (Sony
Biotechnology Inc., San Jose, CA, USA). A total of 15,000 events were counted.

2.9. Statistical Analysis

Data were expressed as mean ± standard deviation (SD) of at least two independent
experiments. One-way ANOVA with Dunnett’s multiple comparisons test and two-way
ANOVA with Sidak’s multiple comparisons test were performed using GraphPad Prism
8.3.0 (GraphPad Software, Inc., San Diego, CA, USA) to identify differences among multiple
groups, considering a significance level of 95%.

3. Results and Discussion
3.1. Lipoplex Size and Zeta Potential

Figure 2b,c shows the average particle sizes of the different formulations used. For the
DOTAP/helper lipid mixtures two molar ratios were used, 80:20 and 30:70, respectively.
Most particles have sizes between 85–120 nm, with the exception of the molar ratio of 80:20
in the DOTAP/GMO mixture, which shows a bimodal distribution in all three replicas (a
population of particles with a size of 73 ± 1 nm, which represents most of the particles
and is shown on the figure, plus a small population of >20 µm aggregates). Regarding the
MVL5 formulations, the cationic to neutral lipid molar ratio was 50:50, with the additional
formulation of MVL5/DOPE at 75:25. In contrast to DOTAP, the MVL5 formulations have
more distinct sizes among themselves. The 50:50 MVL5/DOPE particles are the largest,
with sizes of 149 ± 11 nm. The 75:25 MVL5:DOPE showed the smallest sizes (76 ± 14 nm),
although one of the replicas exhibited a slight amount of a second population with >20 µm
particles. The MVL5/GMO particles, such as the ones in DOTAP/GMO 80:20, indicated the
presence of two populations in two of the replicas, with the dominant population (shown in
the figure) with a size of 81 ± 13 nm, and a small population of >20 µm particles (Table S1).

The zeta potential of the CL-DNA complexes was also assessed. Both DOTAP and
MVL5-based lipoplex formulations are positively charged (Figure 2d,e), with the DOTAP-
based formulations exhibiting larger zeta potential values. The DOTAP/DOPC mixtures
exhibited the highest potential, corresponding to 82 ± 6 mV and 81 ± 3 mV for the
molar ratio of 30:70 and 80:20, respectively. Regarding the MVL5-based lipoplexes, all
formulations showed similar values of potential (around 40–50 mV), except for the 75:25
MVL5:DOPE mixture, which displayed the lowest value (26.5 ± 9.1 mV).

The stability of the multivalent lipoplexes was evaluated by incubating these with
a cell culture medium (DMEM) at 37 ◦C. Figure 3f shows the hydrodynamic diameter
of the CL-DNA complexes prior to the medium addition (T0 no medium) and after the
dilution in DMEM at three time points (0, 4, and 24 h). The hydrodynamic diameter of the
DOPC and GMO complexes showed a small increase in size immediately after the medium
change, and a moderate increase during the following 24 h. This indicates suitable colloidal
stability of these CRISPR delivery systems. In contrast, the MVL5/DOPE formulations
increased their size to more than twice already at T0 and continued to increase over time
until strong aggregation was observed, making it not possible to measure their size at the
24 h time point.

3.2. In Vitro Transfection

To evaluate the in vitro transfection, HEK 293T cells were exposed for 4 h to mono-
valent or multivalent CL-DNA complexes encapsulating the Cas9/sgRNA-GFP plasmid
(PX458). This plasmid design facilitates the detection of positively transfected cells through
the expression of GFP (Figure 1a). The number of GFP-positive cells was determined after
48 h of incubation by flow cytometry. Lipofectamine 3000, the most potent commercially
available in vitro transfection reagent, was chosen as the positive control. Figure 3a shows
the percentage of GFP-expressing cells after treatment with monovalent lipoplexes with
CR (+/−) fixed at three and different cationic to neutral lipid ratios (30:70 and 80:20). This
CR (+/−) of three was found to be optimal for transfection of mouse L-cells with monova-
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lent cationic lipid lipoplexes [61]. However, HEK 293T cells treated with DOTAP-based
lipoplexes at a final DNA concentration of 2 µg/mL showed a very low percentage of
GFP-positive cells in comparison to the commercial transfection reagent (p < 0.0001). Even
though HEK 293T cells are not particularly easy to transfect with monovalent cationic
lipoplexes, we were expecting a measurable improvement with the 80:20 lipoplexes, as
evidenced by transfection with luciferase reporter genes [62]. This lack of improvement sug-
gests that the larger size of the Cas9 plasmid, which is almost twice the size of the luciferase
reporter genes, makes it harder to transfect cells efficiently, and demonstrates that these
formulations are not able to improve gene delivery for CRISPR/Cas9-based applications.
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Figure 3. in vitro transfection and cytotoxicity in HEK 293T cells transfected with the Cas9/sgRNA-
GFP plasmid (PX458). The percentage of GFP-positive cells was measured by flow cytometry. The
data are expressed as the mean ± SD (n = 3). (a) Transfection efficiency of DOTAP-based lipoplexes at
CR (+/−) 3. One-way ANOVA indicates statistically significant differences within the group assessed
by Dunnett’s multiple comparisons test and denoted as follows: **** p ≤ 0.0001. (b,c) Transfection
efficiency of MVL5-based lipoplexes at a CR (+/−) of 3 and 10, respectively. (d) Fluorescence
microscopy images of HEK 293T cells transfected with 2 µg/mL of PX458 plasmid via multivalent
CL-DNA complexes. Scale bars correspond to 100 µm. (e,f) Cytotoxicity profile of monovalent
(DOTAP) and multivalent (MVL5) lipoplexes, respectively, as evaluated by the MTT assay. HEK 293T
cells were transfected with lipoplexes containing 0.1 µg of PX458. Untreated cells were used as a
negative control (100% viable cells). The dashed line corresponds to 70% of cell viability. Data are
expressed as the mean ± SD (n = 3). Two-way ANOVA indicates statistically significant differences
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within the group assessed by Sidak’s multiple comparisons test and denoted as follows: **** p <
0.0001, *** p < 0.001, ** p < 0.01, * p < 0.1, and ns p > 0.05.

In stark contrast, the MVL5-based lipoplexes (Figure 3b,c and Figure S1) showed
meaningful levels of transfection for all the tested formulations, reaching values such as
those with lipofectamine in some cases. This may be caused by the significantly higher
lipid membrane charge density of the multivalent complexes, which has been suggested
to facilitate the escape of the lipoplexes to the cytosol through the fusion of the lipid and
endosomal membranes [32].

Interestingly, the increase of DNA concentration from 1 to 2 µg/mL produced a strong
increase in the TE, especially at CR (+/−) of 3. Increasing the CR (+/−) from 3 to 10
also improved the TE, but this effect was much more visible for the 1 µg/mL CL-DNA
complexes. For the 2 µg/mL CL-DNA solutions, the increase in CR (+/−) produced a
milder improvement in the TE. The milder improvement at CR (+/−) 10 may be the result
of a much higher concentration of cationic lipid in the cells, which may, in turn, result in
some additional cytotoxicity that hampers the TE, as discussed below.

Regarding the type of neutral lipid used, the MVL5-based formulations exhibited
similar transfection efficiencies under the same conditions, which may be an indication that
the interactions of these complexes with cells, and ensuing TE, are dominated by the strong
charge emanating from the multivalent cationic lipids, and that the type of neutral lipid,
whereas it is more fusogenic or not, plays a weaker role. This is not entirely surprising,
since these lipoplex compositions are expected to have similar internal structures of the
multilamellar type, hence, favoring similar mechanisms of interaction with cells.

In addition to the flow cytometry results, transfection by MVL5 lipoplexes at 2 µg/mL
DNA was also analyzed by fluorescence microscopy imaging (Figure 3d). Such results show
bright green fluorescence signals resulting from GFP-expressing cells, being more evident
for CR (+/−) 10 lipoplexes and corroborating the flow cytometry results. Both flow cytom-
etry and fluorescence microscopy data demonstrate that multivalent CL-DNA complexes
at CR (+/−) 10 are effective vectors for plasmid-based CRISPR/Cas9 systems in vitro,
encouraging further investigation in its potential translation for in vivo applications.

While the two-component lipid formulations based on DOTAP were shown to have a
poor performance, recent studies have successfully demonstrated the delivery of CRISPR/Cas9
systems using more complex DOTAP-based lipoplexes [63–65]. For instance, Hosseini et al. [64]
showed that the DOTAP/DOPE/Chol-Polyethylene Glycol system can successfully trans-
fect the Cas9/sgRNA plasmid into HEK 293 cells stably expressing GFP, leading to a GFP
gene knockout of 39%. This achievement may be partly explained by the incorporation of
cholesterol, which is known to improve the TE in monovalent CL-DNA complexes [66]
and some studies have demonstrated its important role in intracellular trafficking [67–69].
In the present work, we showed that replacing DOTAP with MVL5 in simple two-lipid
formulations leads to a pronounced improvement in the transfection of Cas9/sgRNA
plasmids. By further optimization of the multivalent cationic lipid formulations, i.e., by
adjusting the DNA concentration and CR (+/−), as well as incorporating additional lipids
such as cholesterol, these formulations may become highly efficient and compete with
viral-delivery methods.

3.3. Cytotoxicity of Monovalent and Multivalent CL-DNA Complexes

The evaluation of cell viability impact is particularly relevant for the development of
safe and effective gene delivery systems because cytotoxicity influences the transfection rate
efficiency. Cytotoxicity of CL-DNA complexes was assessed using the standard colorimetric
MTT assay. HEK 293T cells were transfected by CL-DNA complexes for 48 h, and untreated
cells were used as a positive control and normalized to 100% cell viability. According
to ISO 10993-5, no cytotoxic effect is considered in cell viability for values greater than
70%. As shown in Figure 3e, monovalent CL-DNA complexes at CR (+/−) 3 demonstrated
biosafety, except for 80:20 and 30:70 DOTAP/GMO formulations, which exhibited a survival
rate of 67.9 ± 6.6% and 48.1 ± 4.5%, respectively. Regarding the complexes at CR (+/−) of
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10, there was a significant decrease of cell viability for nearly all the formulations compared
to those at lower CR (+/−) after 48 h of transfection. The 80:20 DOTAP/DOPC and 30:70
DOTAP/DOPE formulations exhibited the most significant increase in toxicity (p < 0.0001),
followed by 80:20 DOTAP/DOPE (p < 0.001) and 80:20 DOTAP/GMO (p < 0.01).

Concerning multivalent CL-DNA complexes (Figure 3f), the same trend was observed.
All multivalent CL-DNA complexes at CR (+/−) 3 were demonstrated to be safe enough
for gene delivery since no obvious cytotoxic impact was observed on HEK 293T transfected
cells. The average cell viability of CR (+/−) 3 formulations (86%) was significantly superior
to those prepared at CR (+/−) 10 (57%). Moreover, both monovalent and multivalent
cationic systems at CR (+/−) 3 exhibited less cytotoxicity than the commercial transfection
reagent Lipofectamine 3000. These results suggest that the CR (+/−) influences the viability
of the transfected cells. This is not surprising since for a fixed DNA concentration, increasing
the CR (+/−) results in an increase in the lipid concentration used, and therefore, in an
increase in cytotoxicity.

Overall, the observed interdependence between the DNA concentration and CR (+/−)
on the TE (Figure 3b,c) suggests that by careful tuning of these two parameters, the TE and
cytotoxicity can be adjusted to an effective and safe CRISPR/Cas9 delivery system.

3.4. Cellular Uptake and Intracellular Distribution of Monovalent and Multivalent
CL-DNA Complexes

To understand the TE differences exhibited by monovalent and multivalent CL-DNA
complexes, cellular uptake and intracellular distribution studies of these lipoplexes were
performed. The TE of lipoplexes greatly depends on their ability to overcome intracel-
lular barriers to deliver exogenous DNA into the cell nucleus of the host cell and enable
its expression. The cellular uptake mechanism and trafficking to lysosomes are critical
for efficient delivery since the rearrangement of lipoplexes structure during those stages
influences the DNA escape process and release into the cytoplasm [70]. Therefore, colocal-
ization analysis of fluorescence signals from labeled lipoplexes (red, Texas-Red-DHPE) and
lysosomes (green, LysoSensor Green DND-189) was performed to evaluate the intracellular
fate of lipoplexes. Despite both monovalent and multivalent lipoplexes being uptaken by
HEK 293T cells, DOTAP-based lipoplexes were predominantly found in the lysosomes
originating a yellowish signal derived from the colocalization of lipoplexes and lysosomes
(Figure 4). This observation suggests that DOTAP-based lipoplexes have a poor endosomal
release capacity in HEK 293T cells, eventually undergoing lysosomal degradation, which
results in low TE. In contrast, the absence of colocalization of the MVL5-based lipoplexes
with LysoSensor suggests that these formulations can elude metabolic degradation and
escape from lysosomal entrapment. This remark might explain the superior TE of MVL5-
based lipoplexes over monovalent lipoplexes, highlighting the potential of MVL5 to boost
the TE of lipid-DNA complexes. Interestingly, no differences were obvious between using
DOPC or GMO as the helper lipid, which as pointed out above, hints that fusion of the
lipoplex membranes with the endosomes and subsequent endosomal escape is dominated
by the high membrane charge density imposed by MVL5.

3.5. GFP Disruption Mediated by Multivalent CL-DNA Complexes

To evaluate the potential of MVL5-lipoplexes to deliver Cas9/sgRNA plasmids and
induce gene disruption in vitro, HEK 293T-GFP cells were used, and a plasmid encoding
the Cas9 protein and sgRNA targeting the GFP gene (PX459-sgRNA-GFP) was designed
(Figure 1b). The GFP gene disruption efficiency was quantitatively determined with flow
cytometry by measuring the decrease in the number of green fluorescence positive cells.
The PX459 empty vector was used as a negative control to assess any non-specific effect of
the vector/backbone itself on GFP gene expression in HEK293T-GFP cells. The loss of GFP
signal resulting from the PX459-sgRNA-GFP and PX459 plasmid transfection are plotted as
total knockout (KT) and non-specific gene knockout (KNS), respectively (Figures 5 and S2).
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Figure 4. Colocalization of DOTAP and MVL5 lipoplexes signal (red) with LysoSensor (lysosome
marker, green) after 4 h of transfection. HEK 293T cells were transfected with Texas-Red-DHPE
labeled lipoplexes for 4 h at 37 ◦C, and then stained with LysoSensor to track the lysosomes’ location.
Merged files are representative of the colocalization of CL-DNA complexes with lysosomes. Images
were obtained by fluorescence microscopy using a 60× and 100× immersion oil objective. Scales bar
corresponds to 10 and 20 µm.
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efficiency of MVL5-based lipoplexes at a CR (+/−) of 3 and 10, respectively. The percentage of
GFP-negative cells was measured by flow cytometry. The data are expressed as the mean± SD (n = 2).
KT is measured with the PX459-sgRNA-GFP and KNS is measured with the PX459 empty vector.
(c) Fluorescence microscopy images of HEK 293T-GFP cells transfected with MVL5-lipoplexes at a
CR (+/−) of 10. Scales bars correspond to 100 µm.

As shown in Figure 5a, for CR (+/−) of 3, the KT of MVL5 lipoplexes is relatively low
when compared to that of lipofectamine, but it increases substantially when the CR (+/−)
is increased to 10 (Figure 5b). However, the non-specific gene knockout (KNS) is also more
pronounced in those formulations. These expressive values of KNS could be explained by
the toxic effects caused by these formulations at CR (+/−) 10, which are particularly high
for the MVL5/DOPE 75:25 and MVL5/GMO 50:50 as previously demonstrated (Figure 3f).
The discrepancy between transfection and knockout results from MVL5-based complexes
when compared to lipofectamine could be associated with the higher toxicity observed for
the former, that is, cells incubated with MVL5-lipoplexes are still able to express Cas9, but
the subsequent gene knockout processes are hampered by the formulations cytotoxicity.
Yet, all MVL5-based formulations at CR (+/−) 10 show a total KT superior to 35%.

GFP expression was also observed by fluorescence microscopy (Figure 5c). Analyzing
the images, it is possible to observe that the GFP signal is weaker in cells transfected with
Lipofectamine 3000 in comparison to MVL5-based lipoplexes, which is in agreement with
the flow cytometry results.

Overall, these results show that MVL5-based lipoplexes enabled the delivery of
Cas9/sgRNA plasmids to human epithelial kidney cells and mediated GFP knockout
via the CRISPR/Cas9 system at levels comparable with the commercial transfection reagent
Lipofectamine 3000®. The knockout efficiency was especially high for CR (+/−) 10, al-
though cytotoxicity from the formulations was also significant and may have contributed
to a significant level of non-specific gene silencing. Nevertheless, these MVL5-based formu-
lations can still be optimized by further adjusting the CR (+/−) and DNA concentration,
which can lead to a better cytotoxic profile while keeping a suitable TE and gene knockout
efficiency. They can also be modified to include additional lipids (e.g., cholesterol) or
surface modifications (e.g., PEGylation and targeting ligands) to improve transfection and
knockout efficiencies in vitro and in vivo even further, which is difficult to achieve with
the available commercial transfection reagents.

4. Conclusions

In this work, we investigated the suitability of simple multivalent cationic-DNA
complexes to deliver a Cas9/sgRNA expressing plasmid for genome editing. The liposomes
used are composed of two lipids, one cationic and one helper lipid. Whereas all the
monovalent DOTAP-based formulations resulted in extremely inefficient transfection,
MVL5-based formulations exhibited both high transfection efficiency as well as gene
knockout ability for all the helper lipids used. In addition, MVL5-based lipoplexes were also
found to have lower colocalization with lysosomes, which suggests enhanced endosomal
release when compared with DOTAP formulations. Overall, this suggests that the higher
membrane charge density imposed by MVL5 is the main factor contributing to fusion with
the endosomal membrane and consequent enhancement of transfection efficiency. Despite
the transfection efficiency rates being comparable to lipofectamine 3000® commercial
reagent, the GFP gene knockout was demonstrated to be slightly inferior. One drawback is
that the MVL5-based formulations also showed considerable non-specific gene knockout,
probably resulting from their higher cytotoxicity. Nevertheless, the versatility of these
formulations provides significant opportunities for further optimization, either by tuning
the cationic-to-anionic CR (+/−) to lower cytotoxicity or by including additional lipids
or surface functionalization, which is important for in vivo applications. These results
show that multivalent lipid-based lipoplexes are promising CRISPR/Cas9 plasmid delivery
systems, and by further optimization and functionalization may constitute an alternative
to viral-delivery methods and to ionizable lipid mRNA-based delivery lipid nanoparticles.
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cells transfected with the Cas9/sgRNA-GFP plasmid (PX458); Figure S2: Flow cytometry histograms
illustrating the GFP signal in HEK 293T-GFP cells.
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AAV Adeno-associated virus (AAV)
Cas9 CRISPR-associated nuclease 9
CLs Cationic liposomes
CR Charge ratio
CRISPR Clustered regularly interspaced short palindromic repeats
DAPI 4′,6-diamidino-2-phenylindole
DLS Dynamic light scattering
DMSO Dimethyl sulfoxide
DOPC Dioleoylphosphocholine
DOPE Dioleoylphosphatidylethanolamine
DOTAP 2,3-Dioleyloxypropyltrimethylammonium chloride
DNA Deoxyribonucleic acid
GFP Green fluorescence protein
GMO Glycerol-monooleate
HDR Homology directed repair
HEK Human embryonic kidney
KNS Non-specific knockout
KT Total knockout
mRNA messenger RNA
MTT 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
NJEH Nonhomologous end-joining
Puro Puromycin
PCR Polymerase chain reaction
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RNA Ribonucleic acid
SD Standard deviation
sgRNA Single-guide RNA
siRNA Small interfering RNA
TE Transfection efficiency
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