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Abstract: Given the global economic and societal importance of the polymer industry, the continuous
search for improvements in the various processing techniques is of practical primordial importance.
This review evaluates the application of optimization methodologies to the main polymer processing
operations. The most important characteristics related to the usage of optimization techniques, such
as the nature of the objective function, the type of optimization algorithm, the modelling approach
used to evaluate the solutions, and the parameters to optimize, are discussed. The aim is to identify
the most important features of an optimization system for polymer processing problems and define
the best procedure for each particular practical situation. For this purpose, the state of the art of the
optimization methodologies usually employed is first presented, followed by an extensive review
of the literature dealing with the major processing techniques, the discussion being completed by
considering both the characteristics identified and the available optimization methodologies. This
first part of the review focuses on extrusion, namely single and twin-screw extruders, extrusion
dies, and calibrators. It is concluded that there is a set of methodologies that can be confidently
applied in polymer processing with a very good performance and without the need of demanding
computation requirements.

Keywords: polymer processing; single screw; twin screw; injection moulding; blow moulding;
thermoforming; optimization; artificial intelligence

1. Introduction

Polymer processing is an important industrial activity that converts raw materials,
such as polymers, polymer compounds, polymer blends, composites, and nanocom-
posites, into useful products mostly for applications in packaging, building and con-
struction, mobility, electrical and electronics, medical, agriculture, household, leisure,
and sports. For example, in 2019, more than 55,000 European companies (plastics raw
materials producers, plastics converters, recyclers and machinery manufacturers in the
EU28 Member States) employed over 1.5 million people, and converted 50.7 Mt of plas-
tics [1]. A progressively more sustainable and better performing range of polymer sys-
tems, together with increasingly more efficient and intelligent extrusion, injection mould-
ing, blow moulding, and thermoforming—the most important processing techniques
for thermoplastics–are paramount to create or improve products with more advanced
performances and functionalities.

Thermoplastics processing typically involves three functional steps: plasticization of a
solid polymer (usually supplied in pellet form), flow and shaping of the melt, and cooling.
Thus, an understanding of polymer processing requires a good knowledge of heat transfer,
melt rheology, fluid mechanics, and morphology development, among others. In the case
of reactive extrusion, plasticization is combined with chemical reactions (polymer synthesis
and/or modification) into a single process. In their seminal book on polymer processing,
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Tadmor and Gogos [2] proposed a structural breakdown of polymer processing into ele-
mentary steps, based on the principles of transport phenomena, fluid mechanics, heat and
mass transfer, polymer melt rheology, solid mechanics, physics and chemistry of polymers
and mixing, which provide the basic tools for quantitatively analysing polymer processing.

It is well recognized that the geometry of the processing equipment, the operating
conditions selected, and the properties of the polymer system being processed determine
the resulting morphology of the part and hence its practical performance. This has fostered
extensive experimental investigation with the aim of obtaining a good understanding of
the physical, thermal, rheological, and chemical processes developing during polymer
processing. Historically, the screw extraction experiments carried out by Maddock [3]
were particularly relevant to shed light on plasticating extrusion. Once physical models
of the underlying phenomena were available, they were translated into mathematical
descriptions, either analytical or numerical, depending on the assumptions and simpli-
fications made. Currently, modelling of polymer processing is well developed [2,4–6],
with simulation software devoted to various processing techniques being commercially
available. These programs solve the governing equations that describe the phenomena
developing along the various individual process stages, coupled to the relevant boundary
conditions (operating conditions and equipment geometry) and constitutive equations
for the polymer properties. The resulting predictions provide a description of how the
process will perform under the conditions defined, which is obviously very useful to both
processors and equipment/tool manufacturers. In some cases, the morphology of the part
(macromolecular/fibre orientation, crystallization rate, size of the spherulites, etc.) can be
predicted from the knowledge of the thermomechanical process parameters, but the link
to the end-use engineering properties entails multi-scale modelling [7], which is still very
costly computationally.

The direct use of these simulations for practical process troubleshooting, setting the
operating conditions, defining a screw profile, designing an extrusion die, an injection
mould, or a plastic bottle, would require tackling the inverse problem, i.e., to solve the set
of governing equations of the process in order to the geometrical and operational variables,
while prescribing the required performance as boundary condition(s). This is complex and
usually mathematically ill-posed, as there is no unique relationship between cause and
effect. Thus, in practice, four alternative methodologies can be adopted:

1. Use the simulation tools on a trial-and-error basis. This is obviously expensive and in-
efficient and relies on the capability of the user to input progressively more appropriate
boundary conditions.

2. Develop specific design approaches, i.e., using the modelling equations in a pre-
arranged sequence. Examples include methods to design extruder screws [8] or
extrusion dies [9].

3. Adopt an optimization procedure, whereby the process modelling package is used ju-
diciously by an optimization algorithm, in order to define a “best” solution, or a Pareto
optimal solution (see below). Practical polymer processing problems generally involve
multiple, often conflicting, criteria (for example, maximizing output while minimizing
viscous dissipation and mechanical energy consumption in plasticating single-screw
extrusion); hence this approach is usually labelled as multi-objective optimization.

4. Perform data-driven optimization, which consists in the use of Artificial Intelligence
(AI) techniques to explore the search space based on experimental or computational
data [10,11].

Some of these methodologies were already presented in several reviews analysing the
application of optimization techniques in polymer processing. Kasat et al. [12] discussed
the application of Genetic Algorithms (GAs) in polymer science and engineering, stressing
the existence of multiple objectives and constraints that must be dealt with simultaneously.
Particularly in the area of chemical reactions during polymerization, obtaining a polymer
with a desired molecular weight requires satisfying simultaneously various objectives, such
as minimizing the reaction time as it implies lower cost and minimizing the concentration
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of side products, as they decrease the product properties. Oduguwa et al. [13] extended
the idea of applying Evolutionary Algorithms (EA) to the manufacturing industry, which
includes polymer processing. The main justification given for the use of this type of al-
gorithms comes from the fact that the traditional methods frequently employed to solve
complex real-world problems tend to miss a more efficient exploration of the search space,
becoming trapped in sub-optimal regions, while simultaneously they are often computa-
tionally expensive. Methodologies based on the use of a population of points (solutions),
such as EAs, can overcome this situation, as these points can evolve simultaneously towards
the Pareto optimal front and thus access the global optimal solutions. Oduguwa et al. [13]
also refer to the difficulties that optimization approaches face in being accepted in industry.
Recently, Nastaj and Wilczyński [14] addressed the optimization and scale-up of single-
and twin-screw extrusion. However, they focused on methodologies developed by specific
authors, and the optimization concepts discussed were somewhat limited. Thus, in general,
previous reviews on the optimization of polymer processing excluded several important
technological or optimization aspects, are very limited in terms of the analysis performed,
and even ignore several important published contributions.

After introducing some important concepts of multi-objective optimization, the present
review covers the application of optimization methods to solve real problems in polymer
processing, encompassing extrusion, injection moulding, blow moulding, and thermoform-
ing. Due to the extension of the analysis, the work is divided into two parts. The present
part 1 focuses on extrusion, namely single and twin-screw extruders, extrusion dies, and
calibrators. The most important contributions to the field are identified and future trends
are discussed.

Some relevant databases were used to explore the open literature, namely Science
Direct, Google Scholar, Scientific.net, and publishers’ databases such as Springer, Wiley,
MDPI, etc. The following topics/keywords were used in the search: optimization of
polymer extrusion, optimization of single-screw extrusion, optimization of twin-screw
extrusion, optimization of extrusion dies, optimization of extrusion calibrators, design of
polymer extruders, and design of extrusion calibrators. The references cited in many papers
were also an important source of information. The contributions found were either selected
or excluded based on the effective use of consistent optimization methodologies applied
to the polymer processes under consideration. Papers by the same authors that added
nothing new were discarded. The present review is addressed to those process engineers,
researchers, and experts in polymer processing who wish to gain knowledge in optimizing
these technologies.

2. Need for Optimization in Polymer Processing

The practical need for optimization, namely in what concerns the process, the design
variables, the modelling requirements, and the objectives to be attained, will be illustrated
with an example dealing with Injection Stretch Blow-Moulding, a technique widely used
for the manufacture of bottles for plain and carbonated drinks (and dealt with in greater
detail in Part 2 of this review). Figure 1 illustrates the main production steps (Figure 1A–F,
following the open arrows). An injection unit (A) fills the cavity of an injection mould (B) to
produce a pre-form. This is then transferred to a blow-mould (C) where it is stretched and
blown (D) against the contours of the mould cavity. Once the container is sufficiently cold,
the mould opens (E), the part is removed and a new production cycle is initiated. Modelling
this process in order to predict the performance of the part for a given set of input conditions
(bottle design, operating conditions, equipment geometry, material properties) typically
entails the numerical modelling of each of its individual steps, followed by coupling them
through appropriate boundary conditions. Depending on the physical process models
considered and consequent ability of the numerical routines, the thickness profile of the
product, its morphology, and the mechanical performance could be predicted.
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Figure 1. Optimization of Injection Stretch Blow-Moulding. (A–F) illustrate the process steps. Open
arrows follow the process sequence; curved arrows follow the optimization sequence.

Such a sophisticated tool would be used quite inefficiently if conventional means
were adopted. For example, if the aim is to produce a bottle with a minimum weight and
a maximum thickness uniformity, the computer model will be used on a trial-and-error
basis, with the operator progressively fine tuning the operating conditions and/or bottle
design until attaining a satisfactory result. A much more efficient strategy would be to
consider again the modelling sequence and solve the inverse problem, whereby the bottle
characteristics are imposed as boundary conditions and the equations are solved in order of
the operating conditions. This would imply approaching the process backwards, from step
F to step A, as indicated by the curved arrows in Figure 1. However, this is mathematically
ill-posed, as there are no unique relationships between cause and effect.

Alternatively, an optimization problem can be defined, consisting of two objectives
(minimize bottle weight and maximize its thickness uniformity) and a restriction (the
minimum thickness must be higher than a pre-defined value). The decision variable is
the 3D thickness distribution of the part that results from all prior process steps, which
constitutes a huge decision variable space. Either the optimization can proceed following
steps (i) to (v) in Figure 1, or the system can be considered as a whole and all steps can be
optimized simultaneously.

Figure 2 shows results obtained for the optimization of steps (i) and (ii). In step (i), the
aim is to define the thickness profile of the bottle that minimizes its weight, the maximum
strain under a given load, and the thickness uniformity in terms of a parameter RMSE.
Using EAs, an initial population of solutions is generated randomly, evolving until the
100th generation. From the analysis of the Pareto front, solution S3-i was selected. The
following optimization problem concerns the blowing phase (here considered to take place
after stretching the pre-form), i.e., the optimization of the thickness profile of the preform
that produces the optimal bottle thickness profile found in the first step. For that purpose,
the mean (f 1) and the maximum (f 2) errors between the optimal thickness distribution
and the thickness distribution of the parison must be minimized. More details on this
optimization can be found elsewhere [15,16].
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Figure 2. Typical results for a blow-moulding optimization: (i) optimization of bottle thickness profile;
(ii) optimization of pre-form thickness profile before blowing. For example: solution S3-i is selected
for step (ii), from which a new Pareto set is obtained.

3. Multi-Objective Optimization

The aim of optimization is to find the best set of decision variables, i.e., a solution that
optimizes an objective function on a given search space, often in the presence of equality
and/or inequality constraints, with the main purpose of approaching that solution to a
global optimum [17]. Without loss of generality, in the case of a maximization problem, the
mathematical formulation is the following:

maximise f (xi) i = 1, . . . , N
subject to gj(xi) ≥ 0 j = 1, . . . , J

hk(xi) = 0 k = 1, . . . , K
(1)

where f is the objective function of the N parameters xi, gj are the J (J ≥ 0) inequality
constraints, and hk are the K (K ≥ 0) equality constraints.

In the absence of a systematic procedure, a traditional way of finding the best possible
solution consists of performing a statistical and/or regression analysis based on experi-
mental or computational results. From a set of data, it is possible to deduce a mathematical
model relating the objective function (f ) with the decision variables (xi). From this model,
an approximation to the optimal solution can be found both graphically and mathemati-
cally. This simple approach relates linearly the objectives with the decision variables. The
quality of the solution depends strongly on the number of solutions available to construct
the model. Consequently, more elaborated models can be deduced if more solutions are
available. This type of regression method has different forms of being identified in the
literature: design of experiments, response surface, statistical analysis, data fitting, etc.

Another kind of methodology uses some type of information to perform the search.
In most classical algorithms, the problem is solved starting with a solution generated
randomly in the search space and, by means of a moving rule in a unidirectional direction
based on the use of local information, the algorithm progresses point-by-point to find the
best solution (Figure 3A). This new, optimized solution will be the starting point for the
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next step, where the same procedure is repeated a number of pre-defined times. If more
than one objective exists, they must be aggregated into a single objective. The differences
between the available algorithms rely on the way this search direction is defined. Two
types of such methods exist: direct and gradient-based. In the first case, the search is only
guided based on the values of the objective function and constraints, e.g., simplex search,
pattern search, and conjugate direction methods. These methods are usually slow, requiring
a high number of function evaluations. The second type involves the use of information
concerning the first and/or second derivative of the objective function’s values and/or
constraints, e.g., steepest descent and conjugate gradient methods. The use of derivatives
hastens convergence, but these methods are unable to deal with non-differentiable and
discontinuous problems. The calculation of the derivatives must be possible, which does
not often happen in real problems [17]. These methods face other difficulties: (i) the
convergence is strongly dependent on the initial solution chosen, (ii) the solution found is
often stuck in a local sub-optimum, and (iii) the algorithm is unable to deal with a discrete
problem and cannot take properly into account its multi-objective nature. In fact, real-world
optimization problems (such as polymer processing) can comprise linear and/or non-linear
objective functions and constraints, discrete and/or continuous variables, stochastic or
deterministic inputs, and single or multiple objectives. Thus, the choice of the algorithm to
use will depend strongly on the problem features [17].

Figure 3. (A) Single-objective optimization versus (B) multi-objective optimization.

Most (if not all) real optimization problems are multi-objective, i.e., it is necessary to
satisfy simultaneously several performance measures (objectives), which are often conflict-
ing. Additionally, their relative importance to the process may be subjective and can be
dealt with in different ways. Mathematically, a multi-objective optimization problem can
be defined as [18,19]:
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maximise fm(xi) i = 1, . . . , N; m = 1, . . . , M
subject to gj(xi) = 0 j = 1, . . . , J

hk(xi) ≥ 0 k = 1, . . . , K
(2)

where M is the number of objectives.
The various objectives can be taken into account a priori, a posteriori, or iteratively. In

the first case, the optimization takes place after the decision maker (DM) defines the relative
importance of the objectives using, for example, weights or goals. The performance of the
solutions can be obtained through the use of aggregation functions, e.g., weighted sum,
weighted product, or weighted Tchebycheff metric [20]. Then, a traditional single-objective
methodology can be used to find the optimum, as illustrated in Figure 3A. A weighted
sum is simple, but not only is it difficult to set the weight vectors to obtain a Pareto-
optimal solution in a desired region of the objective space, it does not allow one to find
certain Pareto-optimal solutions in a nonconvex and/or discontinuous objective space. The
weighted Tchebycheff metric guarantees finding all Pareto-optimal solutions, assuming that
the ideal solution in this multidimensional space (z*) is known. However, some weaknesses
also exist: (i) the minimum and maximum values of the objectives and of z* must be known;
(ii) for a small number of objectives, not all Pareto-optimal solutions are obtained; and
(iii) as the number of objectives increases, the problem becomes non-differentiable [18,19].
The second alternative consists in optimizing simultaneously all the objectives without
considering beforehand the preferences of the DM. The results will be a set of solutions
denoted as Pareto set where two spaces of interest exist, instead of a single one as before,
i.e., the decision variables and the objectives domain, as depicted in Figure 3B. Thus,
the aim of multi-objective optimization is to find feasible solutions where all objective
functions are optimized. These solutions are incomparable to each other, since it is not
possible to state that one is better than another in all objectives simultaneously. The Pareto
solutions are the set of non-dominated solutions (the full circles in Figure 3B). In the figure,
Solution 2 is better than Solution 3 in both objectives; thus, Solution 3 is dominated by
Solution 1. The same does not happen when comparing Solutions 1 and 2, as none of
these solutions dominates the other. In this case, the selection of a solution can only be
made using additional preference information that must be provided a posteriori by the
DM [20]. Finally, the optimization and choice of solutions steps can be made iteratively and
interleaved, i.e., the optimization algorithm provides alternative solutions to the decision
maker, who indicates his/her preferences, and the optimization algorithm runs again
taking into account this information. The process is repeated until a satisfactory solution
(or solutions) is/are found. The decision making can be performed by humans and/or by
computer algorithms [21].

The better known and more widely used multi-objective optimization algorithms are
based on Evolutionary Algorithms (EA). These are meta-heuristics that mimic the process
of natural evolution of a population of individuals, i.e., the solutions, along successive
generations. They comprise Genetic Algorithms (GA), Evolutionary Programming (EP),
Evolution Strategies (ES), and Genetic Programming (GP). Figure 4 illustrates schemati-
cally how this type of algorithms works. The individuals with higher performance in the
environment will have more capacity to survive, which implies that they also have more
capacity to be reproduced in the next generations. As in natural evolution, the offspring
(new solutions) are generated by genetic operators such as crossover and mutation, in-
heriting most of the parent characteristics. The population of individuals, which are the
potential solutions to the problem under study, evolves using the mechanisms of selection
and variation. The selection operators enable the best individuals to have higher probability
of being selected for generating offspring, and the variation operators allow the generation
of new individuals [18,19,22]. Selection is based on the quality of each individual, which is
given by a fitness function that is associated with the objective or objective functions for
single or multi-objective optimization, respectively.



Materials 2022, 15, 384 8 of 31

Figure 4. The evolutionary cycle.

Based on the advantage of working with a population of solutions, multi-objective
procedures were developed whereby the solutions evolve towards the optimal Pareto
front in a single run. They are usually known as Multi-Objective Evolutionary Algorithms
(MOEAs). In order to spread the population of solutions along the entire Pareto front, an
additional operator measuring diversity is considered. The performance of the algorithm
will depend on the balance between convergence, given by the value of the objective
functions, and diversity, a measure of the distance between the solutions on the search space.
Convergence and diversity are combined into a single fitness operator that is responsible
for the selection of the solutions to be reproduced for the subsequent generations. This
can be done in three ways: (i) based on Pareto dominance [22,23], (ii) scalarizing [24], and
(iii) using indicator algorithms [25–27]. The research on MOEAs allowed the development
of other types of multi-objective algorithms, such as Ant Colony Optimization (ACO) [28],
Particle Swarm Optimization (PSO) [29], Simulated Annealing (SA) [30], and Differential
Evolution (DE) [31].

Another important optimization topic concerns the robustness of the solutions ob-
tained, i.e., the capacity of the solutions found of being robust against, for example, changes
in the design variables. This may signify that the best solutions are not the ones selected,
but, instead, other solutions that perform well for different ranges of the design variables.
Robustness can be taken into account through expectation measures, which quantify simul-
taneously fitness and robustness, or by variance measures, which assess the deviation of the
original fitness in the neighbourhood of the solution. Several combinations of expectation
and variance measures have been linked to an MOEA, and applied to a few multi-objective
problems, in order to select the most performing approach [32]. Gaspar-Cunha et al. [33]
developed a set of benchmark problems to account for diverse types of robustness circum-
stances. The methodology was also assessed through application to some real problems.
Figure 5 explains the concept in a multi-objective environment: solution 1 is more robust
than Solution 2, as the same variation in the decision variables domain produces less
variation in the objectives’ domain.

Since the result of a MOEA is a set of solutions, the decision maker is always challenged
with the need to select the best (single) solution from this Pareto set. For this purpose, it is
necessary to introduce, at some point of the optimization process, the preferences of one
(or more) decision maker(s). A methodology based on a weighted stress function method
was used for fitness assignment in MOEA [34]. This approach provides a fast convergence
and a better final approximation performance, as measured by the usual quality indicators,
when compared with traditional methods, such as aggregation functions.
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Figure 5. Concept of robustness in multi-objective environment. Solution 1 is more robust than
Solution 2, as the same variation in the decision variables domain (x1,x2) produces less variation in
the objectives’ domain (f 1,f 2).

4. Optimization Algorithms in Polymer Processing
4.1. Methodology

Figure 6 displays the polymer processing sequences targeted by the present review, as
they can entail optimization problems. They include single-screw (Figure 6A) and twin-
screw (Figure 6B) extrusion, injection moulding (Figure 6C), blow moulding (either based
on extrusion (Figure 6A3) or on injection moulding (Figure 6C2)), and thermoforming
(Figure 6A2), which produces 3D shapes from previously extruded sheets. Typically, these
processes involve a plasticization step (carried out by the plasticating unit—which is an
extruder in the case of Figures 6A and 6B), encompassing material feed, melting, mixing,
pressure generation, and pumping, followed by shaping and cooling. All these stages can
be approached as optimization problems. In the case of the plasticating unit, it may be
necessary to define the screw profile or set the operating conditions for a given polymer
system/product combination. When extruding profiles (Figure 6A1), the design of the
extrusion die and calibrator can be approached as optimization problems. Indeed, die
design aims at defining the geometry of the flow channel that assures uniform melt velocity
(and, if possible, also equal residence time) across the entire extrudate cross-section at the
die exit. Similarly, the extrusion of flat film/sheet (Figure 6A2) with uniform thickness
(or a pre-defined thickness variation) along its width requires a proper design of the die.
Intermeshing co-rotating twin-screw extruders are extensively used in compounding and
reactive extrusion operations (Figure 6B), the outcome of the process consisting of a new
material in pellet form, to be subsequently converted into a final product by one of the
available processing techniques. Since the geometry of these machines must be adapted to
the requirements of each production, which may vary significantly, the screws and barrel
are often built as assemblies of individual elements (which are supplied with different
conveying, distributive and dispersive mixing abilities). Thus, screw design consists in
selecting a given number of screw elements from a larger set of possibilities, and positioning
them in the right sequence. This constitutes an interesting, albeit complex, optimization
problem. In injection moulding (Figure 6C), mould design (Figure 6C1), screw design, and
setting the operating conditions are well-recognized optimization problems. Finally, blow
moulding also entails optimization challenges, as discussed in Section 2.

The discussion of the efforts reported in the open literature to solve the above opti-
mization problems will be performed, whenever possible, using the following type of data
(and respective acronyms):

1. Objective function. It can be Single Objective (SO), Aggregated Product (AP), Aggre-
gated Sum (AS), or Multi-Objective (MO).

2. Optimization algorithm, e.g., Empirical, Regression, Direct, Gradient, Augmented
Lagrangian (AL), Pattern Search (PS), Expert System (ES), Evolutionary Algorithm
(EA), Differential Evolution (DE), Ant Colony Optimization (ACO), Stochastic Local
Search (SLS), or Two-Phase Local Search (TPLS).
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3. Modelling approach: unidimensional (1D), two-dimensional (2D) and three-dimensional
(3D), using Analytical (A), Finite Differences (FD), Finite Volumes (FV) or Finite Elements
(FE) approaches; whenever relevant, the actual software used is identified.

4. Decision variables, i.e., parameters to optimize. The aim can be to define the Operating
Conditions (OC), Screw Design (SD), Screw Configuration (SC) (the last two will be
explained below), or Die Geometry (DG). The number of variables considered in the
problem is indicated between brackets in the tables below.

5. Other characteristics, related with the process/modelling, the optimization, or others.

Figure 6. Polymer processing sequences targeted by the present review. (A) Single-screw extrusion of
profiles (A1), flat film/sheet for thermoforming; (A2), extrusion blow moulding (A3); (B) co-rotating
twin-screw compounding and pelletizing (B1); (C) injection moulding: (C1) mould (C2); injection
blow moulding. Left: plasticating units; Right: shaping and cooling.
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4.2. Single-Screw Extrusion

This section reviews the previous optimization studies of the plasticating unit of
single-screw extruders (SSE). The decision variables that have been considered are related
to the optimization of the operating conditions (screw speed and barrel temperature profile)
and/or of the screw geometry. Conventional and barrier screws, as well as units with a
grooved barrel in the feed zone have been studied. Table 1 summarizes the features of the
various publications found in the literature.

The earliest attempts to optimize single-screw extrusion used statistics, regression, and
response surface analyses based on experimental data [35] and computer modelling [36–38].
Helmy and Parnaby [38] applied a steady-state hill-climbing optimization method, together
with an analytical modelling routine, to design screws, making this a good example of the
application of traditional optimization methods (see Figure 3A). They implemented an
iterative procedure where the required pressure and flow rate at the die, and the constraints
(e.g., machine dimensions, screw strength and product quality), are initially defined. The
search is made considering a single objective (screw power efficiency). Potente et al. [39]
used an 1D analytical modelling software to optimize a screw for a grooved barrel extruder,
using a trial-and-error procedure. Wortberg et al. [40] employed the same modelling
software to develop an expert system to optimize extrusion but recognized the necessary
intense interaction between process simulation and expert system, in order to create a
database with an adequate dimension, capable of working with variations in operating
conditions, material properties and system geometry.

Some authors claimed to design screws “scientifically”. Chung [8,41] proposed de-
signing the entire screw through a sequence of steps aiming to match a given output. From
a balance between heat conducted and heat generated by viscous dissipation, the depths of
the metering and feed sections were defined. Then, some adjustments were made taking
into account practical/empirical rules. Rauwendaal [42] defined the screw geometry by
solving the analytical equations pertaining to each functional screw zone in order to meet
the relevant objectives, such as power consumption and output.

Traditional (and inefficient) methods are still being used to optimize SSE. For example,
Altinkaynak [43] developed a full 3D finite element code for melting and metering zones,
which was used to optimize the screw pitch and depth of the metering zone. However,
since the Augmented Lagrangian method (an algorithm for solving constrained optimiza-
tion problems) was adopted to maximize output, together with a constraint (the melt
temperature at the extruder outlet could not exceed a pre-defined limit), the relevance
of the results obtained was very limited. Hence, this work illustrates the need to find a
good balance between the use of computationally demanding modelling codes and the
optimization method.

Potente et al. [44–48] reported one of the first systematic attempts to consider multiple
objectives by means of a simple scalar objective function, together with a 1D analytical
modelling program. For instance, Potente et al. [44–46] assumed the M-square root (M
is the number of objectives) of the product of the individual objectives (such as output
and length of screw required for melting) to avoid any of them assuming a zero value.
However, an empirical procedure was employed to optimize the process. Potente and
Zelleröhr [47] optimized the process with a statistical method and a regression analysis,
obtaining contour plots for the quality function from a regression analysis to the results
generated by the modelling software. Potente and Krell [48] proposed a methodology
for screw design involving a DOE (Design of Experiments) and multiple regression. A
similar strategy using the STATISTICA software and a 1D analytical process description
was adopted by Wilczyński et al. [49,50]. The barrel temperature, screw speed and screw
channel depth in the metering zone were optimized (using a M-square root of the product
of the normalized objectives) in order to maximize mass flow rate and minimize power
consumption and melt temperature at the die outlet. Subsequently [51], these results were
compared with those obtained using Artificial Neural Networks (ANN) instead of the
statistical analysis. It was concluded that the statistical strategy produced better results.
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Thibodeau and Lafleur [52,53] adopted a five-level central composite statistical model to
design screws that maximize mixing and minimize melt temperature in the feed zone
through a desirability function. The optimum was found on a response surface determined
by a 1D analytical modelling program.

Table 1. Previous publications on the optimization of single-screw extruders.

Objective
Function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Other
Characteristics Authors (Year) Reference

SO Direct 1D-A SD Step-by-step Helmy and Parnaby (1976) [38]

SO Empirical 1D-A SD Grooves Potente et al. (1992) [39]

SO ES 1D-A OC + SD Worteberg et al. (1994) [40]

SO Empirical 1D-A SD Step-by-step Chung (1998, 2016) [8,41]

SO Empirical 1D-A SD Zone-by-zone Rauwendaal (1986) [42]

SO AL 3D-N SD Altinkaynak (2010) [43]

AP Empirical 1D-A OC Potente et al.
(1993, 1994, 1996) [44–46]

AP Regression 1D-A SD Statistical Potente and Zelleröhr
(1997) [47]

AP Regression 1D-A SD DOE Potent and Krell (1997) [48]

AP(3) Regression 1D-A OC(2) + SD(1) Wilczyński et al.
(2001, 2003) [49,50]

AP(3) Regression 1D-A OC(2) + SD(1) Wilczyński et al. (2004) [51]

AS(3) Regression 1D-A SD Thibodeau and Lafleur
(2000) [52,53]

AS(2) EA 1D-A OC(2) + SD(1) Nastaj and Wilczyński
(2018) [54]

AS(2) EA 1D-A OC(2) + SD(1) Starve-feed Nastaj and Wilczyński
(2020) [55]

AS(2) DE + PS Experimental OC(1) Various techniques Abeykoon et al. (2011) [56]

AS(4) EA 2D-N OC(4) Gaspar-Cunha et al. (1998) [57]

AS(4) + MO(4) EA 2D-N OC(4) Covas et al. (1999) [58]

MO(7) EA 2D-N SD(6) Gaspar-Cunha et al. (2001) [59]

MO(5) EA 2D-N SD(5) Barrier screws Covas et al. (2004) [60]

MO(2) EA 2D-N OC(4) + SD(6) Mixing Domingues at al. (2012) [61]

MO(5) EA 2D-N SD(4) Barrier screws Gaspar-Cunha et al. (2006) [62]

MO(19) EA 2D-N OC(3) Scale-up Covas and Gaspar-Cunha
(2009) [63]

MO(9) EA 2D-N SD(4) Scale-up Gaspar-Cunha and Covas
(2014) [64]

MO(3) EA 2D-N SD(4) Robustness + DM Denysiuk et al. (2018) [65]

MO(5) EA 2D-N OC(4) + SD86) Innovization Deb et al. (2014) [66]
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Nastaj and Wilczyński [54] applied EAs to optimize the screw speed and the length of
the metering zone that maximized output and minimized mechanical power consumption,
with a weighted sum as global objective function. Similarly, the same authors [55] optimized
starve-fed/flood-fed single-screw extruders in terms of screw speed, barrel temperature,
and length of the metering zone, for the same two objectives. They concluded that starve-
fed extrusion performed better.

Abeykoon et al. [56] compared the performance of differential evolution and particle
swarm algorithms, both based on the use of a population of solutions. The aim was
to find the barrel set temperatures that minimized the difference between the average
melt temperature at the die and the temperature required by the process, as well as the
temperature variance at the die. These two objectives were aggregated in a single objective
function through a weighted sum. The melt temperature was evaluated using a static
nonlinear polynomial model whose parameters were obtained from experimental data.
Data analysis allowed them to build a model for evaluating the objectives, while the
population-based algorithms were used for the optimization.

Gaspar-Cunha et al. [57] analysed the advantages and shortcomings of implementing
an optimization methodology based on the interplay between a modelling package, an
objective function, and an EA to solve single-screw extrusion problems. The various
objectives were taken into account through an aggregation function (the weighted sum) to
define the operating conditions (screw speed and barrel temperature profile) that produced
the desired output and/or product characteristics. Although the approach was able to find
solutions with physical meaning, changing the weights of the aggregation function did not
allow to access most of the solutions along the Pareto front, as the algorithm converged
to the extremes of the search space. Therefore, multi-objective algorithms seemed a better
alternative. Indeed, upon applying an MO approach based on EAs to the same SSE
problem, the trade-off between four different objectives was established, providing a better
understanding of the features of the extrusion system under study [58]. Figure 7 shows the
two-dimensional Pareto fronts after optimizing the operating conditions of an SSE in order
to maximize output and mixing, and minimize the length of screw required for material
melting. The aim was to approach the edges, as indicated by the arrows. The best points
are those near the lines in each graph. Nevertheless, during the optimization process, it
was found that when more than two objectives were considered, most of the solutions were
non-dominated. Thus, a new MOEA based on a clustering strategy was developed to select
the solutions while maintaining the diversity along the Pareto front. The same MOEA
was used to optimize the screw geometry (described by six parameters) for the same SSE
problem [59], the methodology being sensitive to changes in the design parameters but
obviously dependent on the ability of the modelling routine to provide precise predictions.
The approach was extended to the design of Maillefer barrier screws, assuming five design
screw parameters and five objectives [60]. Domingues et al. [61] modelled the evolution
of the morphology of immiscible liquid–liquid and solid–liquid systems in SSE and used
these data to compute distributive and dispersive mixing indices. These were added as
new objective functions to optimize the operating conditions and screw geometry using
the same MOEA. Subsequently, a modified strategy was adopted to optimize altogether
conventional and Maillefer barrier screws [62]. A structured chromosome representation
was adopted, in which various parts of the chromosome represented the same variables and
the genotype representation was based on a hierarchy (i.e., one of the decision variables is
a flag indicating the type of screw). The results showed that different regions of the Pareto
front were attained by the two screw types.
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Figure 7. Pareto curves after optimization of the operating conditions of an SSE in order to maximize
output and mixing, and minimize the length of screw required for melting.

Scale-up in SSE often consists in finding the geometry and/or the operating conditions
of a target extruder (in general, of industrial production size) in order to obtain materials
or products with the same characteristics of those developed with existing equipment
(commonly, a laboratory extruder). This should require that flow and heat transfer at
the two scales are similar, but the problem is difficult to solve as changes in scale affect
differently the various process parameters. Covas and Gaspar-Cunha [63] approached
scale-up as a multi-objective optimization problem, where the aim was to minimize the
differences in performance between extruders of different sizes while simultaneously
satisfying several objectives. Screw speed and barrel temperatures in three zones were
initially assumed as decision variables. Subsequently, the same methodology was applied
to screw design, considering four-screw geometrical parameters and nine objectives [64].

Robustness and decision-making strategies have also been included in the solution to
SSE problems [65]. In this way, it becomes possible to focus the search on solutions that
converge to regions where the preference was defined either by the relative importance
of the objectives or by considering the robustness of solutions against perturbations in
the design variables. Deb et al. [66] proposed an “innovization” methodology to capture
relationships between the relevant process parameters (i.e., the decision variables) and the
objectives from the final results of a multi-objective optimization algorithm. After applying
a MOEA, the optimal trade-off solutions are analysed and the interactions between the
parameters are obtained automatically. The procedure was applied to an SSE problem, a
set of rules relating the relevant decision variables with the objectives for each case studied
being established.

4.3. Twin-Screw Extrusion

As illustrated in Figure 8, optimization of twin-screw extruders (TSE) may involve:
(i) the definition of the operating conditions (N-screw speed, Q-feed-rate, and Tb-barrel
temperature profile); (ii) the determination of the geometry of individual screw elements;
and/or (iii) the determination of the screw configuration, (i.e., finding the best location
along the screw axis of existing screw elements). These problems arise within the context
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of compounding, reactive extrusion, extrusion, or scale-up and can involve co-rotating or
counter-rotating intermeshing twin-screw extruders. Table 2 summarizes the features of
the previous studies on these topics.

Figure 8. Optimization of co-rotating twin-screw extruders (TSE): (a) operating conditions—screw
speed (N), feed rate (Q) and barrel and die set temperatures (Tb); (b) geometry of individual screw
elements; (c) position of a set of individual screw elements (5 conveying elements, 3 kneading blocks,
and 1 left-handed element) along the screw shaft.

As with SSE, co-rotating twin-screw extruders were initially optimized using empirical
approaches based on experimental and computational data. Potente et al. [67,68] developed
SIGMA, a 1D modelling software, but details on the optimization method, including design
variables and objectives, were not given. The results achieved seem to have been based on
a trial-and-error procedure. Vainio et al. [69] investigated experimentally different screw
profiles for the preparation of an uncompatibilized immiscible PA6/PP blend with the
aim of optimizing the screw configuration. Although the process parameters influencing
mixing were identified, no systematic optimization method was offered. Berzin et al. [70]
graphically optimized the cationization of wheat starch in a laboratory extruder in terms
of screw configuration and operating conditions, taking into account geometrical and
process constraints, with the aim of scaling-up the results to a larger industrial extruder.
Five different screw configurations were analysed, assuming the minimization of the
specific mechanical energy and the maximization of the reaction efficiency. The scale-up
procedure used the same type of data for screws geometrically similar to those studied for
the smaller extruder.



Materials 2022, 15, 384 16 of 31

Various authors adopted statistical methods for TSE optimization. The analysis applied
by Maridass and Gupta [71] was based on experimental data on the recycling of natural
rubber vulcanizates in a counter-rotating twin-screw extruder. The aim was to find the
barrel temperature and screw speed that maximized the properties of the material obtained.
For that purpose, the contour plots obtained were analysed visually. Ulitzsch et al. [72]
selected a response surface methodology to optimize the synthesis of vinyltrimethoxysilane-
grafted ethylene–octene–copolymer using experimental data. Five process parameters and
their interactions were optimized, in order to maximize both the grafting degree and
efficiency. Second-order interaction effects existed, making this process difficult to control
with such a simple optimization methodology. Fukuda et al. [73] used a DOE to analyse
separately two different scale-up rules, one based on the volumetric flow rate, the other
related to dispersive mixing, with the aim of optimizing the operating conditions of the
target extruder.

Potente and Thümen [74] applied a gradient method to optimize the radial and flight
clearances of conveying screw elements in order to maximize the pressure gradient and
minimize the temperature gradient and power consumption.

Zhang et al. [75] employed a single-objective EA to optimize free radical bulk poly-
merization, with the aim of defining the barrel temperature and screw length that maxi-
mized both monomer conversion and monomer conversion per unit energy consumption.
A weighted sum took into account the two objectives. A weighted sum and a MOEA were
adopted to set the operating conditions of three extruders with different screw configura-
tions [76] while using the Ludovic software [77] to evaluate the objective functions.

When optimizing operating conditions, or the geometry of individual screw elements,
the characteristics of these tasks are identical to those of equivalent SSE problems, since the
decision variables to optimize vary continuously in the search space. However, defining
the best location of screw elements along the screw shaft is a discrete and combinatory
problem. Gaspar-Cunha et al. [78] used a modified MOEA to define the most adequate
location of a pre-selected set of screw elements (denoted as screw configuration problem,
SC). An analogy was made with the travelling salesman problem, or sequencing problem
in operations research, with the cities being the screw elements that must be covered
sequentially by the traveling salesman in order to maximize a prescribed performance.
Within the obvious limitations of the exercise, the results were validated experimentally, and
the methodology was also applied to ∑-caprolactam polymerization via reactive extrusion.
Later, the robustness of the solutions, considering changes in the value of the decision
variables, was also taken into account [60]. An alternative approach using Stochastic Local
Search (SLS) algorithms to tackle the SC problem was also attempted [79]. An efficient
single-objective iterative improvement strategy, based on various neighbourhood structures,
neighbourhood search strategies, and neighbourhood restrictions, was proposed, whereby
the algorithms were embedded into a variation of a bi-objective two-phase local search
(TPLS) framework. The results were compared to those obtained by the previous MOEA,
evidencing a higher-quality approximation to the Pareto front, with a faster convergence.
Process modelling consisted of a global plasticating treatment of co-rotating twin-screw
extrusion [80]. Given the good results obtained, Teixeira et al. [81] solved the SC problem
through the hybridization of different local search procedures, including Pareto local search
and TPLS algorithms, with two different population-based algorithms, a MOEA and a
Multi-Objective Ant Colony (MOACO). This approach outperformed the other algorithms
studied and their combinations. With the aim of exploring the full potential of the hybrid
algorithm, the influence of the MOACO algorithm parameters was investigated, and the
results obtained were compared with those of MOEA and TPLS algorithms [82]. It was
concluded that the hybridization of the MOACO algorithm has a significant potential for
solving the SC problem.

Teixeira et al. [83] adopted a MOEA algorithm to solve the SC problem for starch
cationization by reactive extrusion, aiming at the minimization of the specific mechanical
energy and the maximization of output and reaction conversion. As far as scale-up in TSE is
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concerned, Gaspar-Cunha and Covas [84] employed a multi-objective optimization strategy
to define the geometry (location of eight screw elements) and operating conditions of the
target extruder that minimized the differences in viscous dissipation, specific mechanical
energy, and average strain between the target and reference machines.

Table 2. Previous publications on the optimization of twin-screw extruders.

Objective
Function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Other
Characteristics

Authors (Year)
Reference

Not defined Empirical 1D-A Not defined Potente et al.
(1994, 1999) [67,68]

SO Empirical Experimental Not-defined Mixing Vainio et al. (1995) [69]

SO(2) Regression 1D-Ludovic OC(3) + SD(1) Reactive Extrusion Berzin et al. (2007) [70]

SO Regression Experimental OC(2) Counter-rotating Maridass and Gupta
(2004) [71]

SO(2) Regression Experimental OC Reactive Extrusion Ulitzsh et al. (2020) [72]

SO(2) Regression Experimental OC(2) Scale-up Fukuda et al. (2015) [73]

AP(3) Gradient 1D-A SD(2) Conv. elements Potente and Thümen
(2006) [74]

AS(2) EA 2D-numerical OC(1) + SD(1) Reactive Extrusion Zhang et al. (2015) [75]

AS+MO(6) EA 1D-Ludovic OC(4) Gaspar-Cunha et al.
(2002) [76]

MO(7+2) EA 1D-Ludovic OC(4) + SC(10) Reactive Extrusion Gaspar-Cunha et al.
(2005) [78]

MO(5)(7) EA 1D-Ludovic SD(4) + SC(10) Robustness Covas et al. (2004) [60]

MO(3) SLS 2D-FD SC(14) Teixeira et al. (2011) [79]

MO(3) EA + ACO + SLS
+ TPLS 2D-FD SC(14) Teixeira et al. (2012) [81]

MO(3) ACO + TPLS 2D-FD SC(14) Teixeira et al. (2014) [82]

MO(3) EA 1D-Ludovic OC(1) + SC(14) Reactive Extrusion Teixeira et al. (2011) [83]

MO(3) EA 2D-FD SD(1) + SC(8) Scale-up Gaspar-Cunha and
Covas (2011) [84]

4.4. Dies and Calibrators

Extrusion dies aim at converting the circular flow at the outlet of the extruder into a
flow with a specific cross-section (to produce film/sheet, pipes, profiles, etc). The latter may
not correspond to the actual product cross-section/dimensions, as the die geometry must
compensate for all the shape/dimensional changes of the extrudate along the extrusion
line. As a matter of fact, due to its viscoelastic nature, the extrudate will swell progressively
as it leaves the die, but this might be partially/totally offset by the draw down created by
the haul-off. During cooling, thickness differences may arise in the cross-section due to
gravity flow, and the extrudate will shrink and might distort due to buoyancy forces in
a water tank. Thus, not only are extrusion dies built in such a way that they attempt to
anticipate subsequent changes in the shape of the extrudate, but they also allow for some
local adjustments in the channel geometry. In addition, whenever possible, the external
contour of the extrudate is corrected prior to cooling by means of a calibrator.

Extrusion dies usually comprise an adapter, which converts the circular flow from
the extruder into the required channel shape for extrusion, and a parallel zone with con-
stant cross-section, which allows for some macromolecular relaxation. The ensemble
adapter/parallel zone should be designed in such a way that the velocity and residence
time of all the individual melt streams in the cross-section are uniform. To ensure this, and



Materials 2022, 15, 384 18 of 31

despite of the wide variety of extruded shapes, there are generally three approaches to
designing the adapter:

(i) Using a manifold, i.e., use a larger channel upstream to distribute the flow transver-
sally, prior to its progress downstream. The die geometry is such that a central flow
stream has a shorter path in the manifold and a longer path in the shallower parallel
zone, while the reverse occurs for a flow stream near to the edges. This approach is
frequently adopted for the production of cast film and sheet, wire insulation, and in
extrusion blow moulding.

(ii) Using a cylindrical mandrel to convert the circular flow from the extruder into an
annular flow. Since the classical torpedo-type solution with its supports (known
as spider legs) creates unbalanced flow and strong weld lines, it was progressively
replaced by basket-type dies and spiral mandrel dies. The mandrels of the latter are
designed in such a way that the flow from the extruder is divided into individual melts
that feed helical channels with decreasing depth along their length in the mandrel.
Thus, the helical flow is gradually converted into an axial annular flow.

(iii) Change gradually from the inlet circular channel into the desired cross-section. The
design of dies for hollow profiles, or for profiles containing thickness differences in
their cross-section is particularly challenging.

Rakos and Sebastian [85] proposed an empirical optimization procedure to define the
geometry of different types of dies using a numerical modelling code, but no details were
given concerning the objectives and design variables. In the following sections, each type
of die is studied separately.

4.4.1. Manifold Dies

Matsubara [86,87] solved the analytical flow modelling equations in order to deter-
mine a major design variable (the variation along the length of the manifold radius) of a
coat hanger die that assured uniform flow rate and residence time across the width, and
extended the methodology to T-dies [88,89]. Table 3 shows that the design of manifold
dies as an optimization problem was carried out using a single objective function and
that optimization procedures included empirical methods, regression analyses, sequential
quadratic programming, gradient techniques, or evolutionary algorithms.

Winter and Fritz [90] recommended the use of a specific design procedure for a coat
hanger die, taking into account uniformity of the exit velocity and average residence time,
regardless of flow rate or polymer viscosity, and considering flow separation. The geometry
of dies with a square and circular manifold and constant thickness of the parallel section
was defined, in which the design variables were the width or the diameter of the manifold
as a function of its length and the height of the parallel section.

Liu et al. [91] developed a method to optimize coat hanger dies with non-circular
manifold, to avoid dead spots in the transition to the parallel zone. The aim was to define
the geometries of the manifold and parallel zone that delivered uniform flow, while keeping
identical residential time distribution for different polymers and operating conditions. A
numerical modelling program was used to evaluate the solutions. The same empirical
strategy was used by Lee and Liu [92] to design a coat-hanger die with a linearly tapered
inner cavity and a straight outer cavity, but taking into account inertial, gravitational, and
viscous effects. Later, Liu et al. [93] and Yu and Liu [94] proposed a unified lubrication
approximation to model the polymer flow inside the die with the aim of designing the
same coat-hanger die [93] and a tapered coat-hanger die [94].

Na and Kim [95] applied an empirical approach to design linearly tapered coat-hanger
dies with circular manifold (in terms of slot thickness, manifold angle, and land length)
with the aim of obtaining uniform flow rate distribution at the die exit in the transverse
direction, using a 3D finite element modelling code. Even recently, a simple empirical
approach was used by Huang et al. [96] to design coat hanger dies that maximize the
uniformity of the velocity distribution at the die exit, defining as decision variables the
manifold radius and angle and the slit height.
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Table 3. Previous publications on the optimization of manifold dies (manifold type: CH-Coat Hanger,
TCH-Tapered Coat Hanger, Blow–blow moulding).

Objective
Function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Other
Characteristics Authors (Year) Reference

Not defined Empirical 1D-A DG Various dies Rakos and Sebastian (1990) [85]

SO Empirical 1D-A DG(1) CH Matsubara (1979, 1980) [86,87]

SO Empirical 1D-A DG(1) T-die Matsubara (1980, 1988) [88,89]

SO Empirical 1D-A DG(3) CH Winter and Fritz (1986) [90]

SO Empirical 3D-N DG(3) CH Liu et al. (1988, 1994) [91]

SO Empirical 3D-N DG(4) TCH, 2 cavities Lee and Liu (1989) [92]

SO Empirical 3D-N DG(3) CH Liu et al. (1988, 1994) [93]

SO Empirical 3D-N DG(4) TCH Yu and Liu (1998) [94]

SO Empirical 3D-N DG(3) CH Na and Kim (1995) [95]

SO Empirical 2D-N DG(2) CH Huang et al. (2004) [96]

SO Regression 1D-A OC(1) + DG(3) CH Chen et al. (1997) [97]

SO Regression 3D-N DG(5) CH Razeghiyadaki et al.
(2020, 2021) [98,99]

SO SQP + Regression 3D-N DG(1) CH Lebaal et al. (2006) [100]

SO SQP + Regression 3D-N DG(4) CH Lebaal et al. (2009) [101]

SO SQP + Regression 3D-N OC(3) + DG(1) CH Lebaal et al. (2010) [102]

SO SQP + Regression 3D-N DG(4) CH (wire) Lebaal et al. (2012) [103]

SO Gradient 3D-N DG(2) CH Smith et al. (1998, 1998) [104,105]

SO Gradient 3D-N OC(1) + DG(2) CH Smith (2003) [106]

SO Gradient 3D-N DG(811) CH, Robustness Smith (2003) [107]

SO Gradient 3D-N DG(9) CH Sun and Gupta (2004) [108]

SO Gradient 3D-N DG(5) CH, Restrictor Bates et al. (2003) [109]

SO Regression +
Gradient + EA 3D-N DG(5) CH, Restrictor Siens et al. (2006) [110]

SO EA 3D-N DG(n) CH Michaeli and Kaul (2004) [111]

SO EA 3D-N DG(2) CH Meng and Zhao (2011) [112]

SO EA 3D-N DG(4) Slot die Sun and Wang (2010) [113]

SO EA 3D-N DG(2) Blow: 2-CH Meng et al. (2009, 2012) [114,115]

AS(2) Regression 3D-N DG(3) CH Han and Wang (2012) [116]

AS(n) Gradient 3D-N OC(1) + DG(2) CH, Robustness Smith and Wang (2004) [117]

AS(n) Gradient 3D-N OC(1) + DG(2) CH Smith and Wang (2005) [118]

AS(n) SQP 3D-N OC(1) + DG(2) CH Wang and Smith (2006) [119,120]

AS(3) EA 3D-N OC() + DG() CH Zhang et al. (2020) [121]

MO(2) DOE, RSM, EA 3D-N DG(3/8/12) CH Lee et al. (2015) [122]

MO(2) EA 3D-N DG(3) CH Han and Wang (2012) [123]

AS(2) & MO(2) Regression + EA 3D-N DG(1) Blow: 2-CH Han and Wang (2014) [124]

The application of regression techniques based, for example, on Taguchi methods,
enabled the development of more systematic optimization approaches. This is the case for
Chen et al. [97], who investigated the effect of material rheology, gap thickness, manifold
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angle, and flow rate on the thickness uniformity of coat hanger dies. The Taguchi method
was used to optimize the geometry of dies with different widths, the solutions being
evaluated with an analytical model, and flow rate was also appended as design variable.
Recently, Razeghiyadaki et al. [98,99] used a response surface method to optimize the
geometry of a coat hanger die in order to obtain uniform velocity at the die lips. The
response surface was generated from computations using a commercial package, and
a central composite DOE defined the conditions for the calculations. A spline curve
was used to outline the geometry using five variables (depth and the width of the die
and three nodes of the spline). The optimization involved minimizing the quadratic
function obtained. Lebaal et al. [100] determined the geometry of a coat-hanger die using
a global response surface method with Kriging interpolation (a regression technique),
and Sequential Quadratic Programming (SQP) to minimize the global difference between
the local velocities at the die exit and the average value, assuming as a decision variable
the depth of the distribution channel and as a restriction the pressure required by the
flow. Later, four decision variables were considered, namely the depth and the opening
of the channel repartition, the gap, and the height of the relaxation zone [101]. The same
methodology was applied to define the depth of the distribution channel and the operating
conditions [102], as well as to design a wire coat hanger based on the same flow balance
principle [103]. It is important to note that SQP requires that the objective function and the
constraints are twice differentiable, which was possible in this case because the objective
function and the constraints were defined by regression prior to the application of SQP.

Smith et al. [104] proposed a systematic optimization methodology combining process
modelling, a design sensitivity analysis (using both direct and adjoint methods), and
optimization based on a gradient technique. The aim was to keep the non-uniformity of
the velocity profile across the die exit below a certain level and to minimize pressure drop,
i.e., to achieve product homogeneity with minimal processing cost. The design variables
were the length of the parallel zone and the cross section of the flow channel. The residence
time in the die was considered subsequently [105]. Then, with the aim of minimizing the
die length and satisfying constraints related to uniform residence time and exit velocity,
the inlet pressure, the manifold height, and the shape of the parallel zone were taken as
variables [106]. Furthermore, to determine the geometry of a sheet die that would best
accommodate a range of operating conditions, Smith [107] optimized 811 half-height design
variables that described the die cavity thickness distribution for an example where the inlet
and outlet die half-heights were fixed. Sun and Gupta [108] applied a gradient quadratic
penalty method to define the geometry of a coat hanger die (using nine decision variables)
that minimized the velocity variation across the die exit without excessively increasing the
pressure drop. The penalty method consisted in adding a burden to the objective function
for surpassing a pressure drop threshold. Bates et al. [109] applied a gradient optimization
method to determine the optimum geometrical profiles of a restrictor (choker bar) necessary
to obtain a uniform flow distribution of a slit die to be used in a range of applications
involving three materials with varying degrees of shear thinning, each at a high and a low
flow rate. The restrictor was optimized considering the height of five points along half the
width of the die. Later, this study was extended to include regression and EA optimization
algorithms [110].

A single objective EA was used by Michaeli and Kaul [111] to optimize a T-shaped
manifold in order to minimize the standard deviation of the local velocities at the die exit,
the decision variables being a few points in the mesh that defined the flow path. The same
optimization strategy was applied to define the geometry of a coat hanger die, taking as
design variables two parameters related with the radius of the manifold and the height
of the parallel zone [112]. While also using a single objective EA, Sun and Wang [113]
optimized four geometrical parameters of the manifold. The aim was to minimize the
stagnation temperature (a combination of static and kinetic temperatures), and the solutions
were evaluated using a 3D numerical commercial modelling code. Meng et al. [114,115]
designed a double coat hanger die with a manifold of quadratic geometry in order to
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distribute uniformly the melt across a large width. A single-objective EA was selected to
define the gap and the manifold angle.

Several authors recognized the need to take in several objectives, hence using aggrega-
tion functions (e.g., weighted sum) together with single objective optimization algorithms.
Han and Wang [116] applied a regression technique (based on an orthogonal array design)
to determine the manifold angle and gap height of a coat-hanger die that minimized the
variation of the outlet velocity and the residence time, using a 3D numerical modelling
code. The same optimization methodology (see also [104]) was used to include the effect of
the variability of the set temperature or of material properties, i.e., a robustness analysis.
In this case, the objective function was the weight sum of the inlet pressures for each flow
condition that are induced by changes in temperature and/or material properties [117,118].
An arbitrary gap height distribution in the manifold and different polymer rheological
models were also added [118]. Wang and Smith [119,120] solved the same problem us-
ing SQP. Zhang et al. [121] optimized the geometry and operating conditions of a coat
hanger die using a single objective EA consisting of the weighted sum of three objectives
(minimization of the mechanical deformation of the die, of the pressure drop, and of the
variation of the outlet velocity). The solutions to be evaluated were obtained through the
application of a DOE, from which a regression model was obtained to be used by the EA.

Only recently have MO optimization methods been applied to the definition of the die
geometry. Lee et al. [122] evaluated the performance of different optimization strategies
(comprising a design of experiments, the response surface model and two different MOEAs)
for the delineation of the geometry of a coat hanger die. The latter was divided into sectors
that resulted in three case studies involving the definition of three, eight, and twelve
design variables, respectively. In parallel, two objectives were selected— minimization of
the total pressure drop and maximization of a flow uniformity parameter—which were
evaluated using a commercial 3D modelling software. Considering these two objectives
simultaneously, Han and Wang [123] used an MOEA to optimize the same geometrical
parameters, taking as starting point the geometry of a previously optimized die [116]. Later,
the same authors [124] optimized a double coat-hanger die with a quadratic geometry
manifold using identical optimization techniques (regression and MOEA).

4.4.2. Mandrel Dies

Table 4 identifies the previous studies concerning the optimization of mandrel dies.
Huang [125] proposed a strategy with two steps to optimize the geometry of a spiral
mandrel die (that can be utilized for the extrusion of pipes and blown films). The Taguchi
method was used to define a set of geometries able to assess the flow balance principle;
then this set of geometries was evaluated iteratively taking into account total pressure drop,
degree of mixing, and residence time distribution. It was concluded that the best solution
to use in real practice results from a balance between the different objectives, and hence a
multi-objective strategy must be pursued. Mu et al. [126] adopted a MOEA to optimize
the geometry of an annular die, aiming at minimizing local differences in outlet velocity
and minimizing the swell ratio while restricting the shear stress to a critical value that
guaranteed steady extrusion. An ANN, trained with 3D numerical modelling results, was
used to evaluate the solutions, while the decision variables were the channel contraction
angle, the flow gap, and the relative length of the parallel zone.

Table 4. Previous publications on the optimization of mandrel.

Objective
Function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Other
Characteristics

Authors (Year)
Reference

SO Regression 2D-N DG(4) - Huang (1998) [125]

MO(2) EA 3D-N + ANN DG(3) - Mu et al. (2010) [126]
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4.4.3. Profile Dies

Two main approaches (not necessarily exclusive) have been generally adopted for
the design of profile dies (see Table 5 for a summary of the previous studies published):
optimization of the flow balance at the die exit and correction of the shape/dimensions
of the die exit for the effect of post-extrusion extrudate-swell (this is sometimes denoted
as the Inverse Extrusion Problem (IEP) [127]. According to Pittman [128], the design
of profile dies should include the following aspects: (i) consider as much as possible
the thermomechanical phenomena, such as an appropriate rheological description and
kinematics, eventual wall slip conditions, extrusion instabilities, material residence time
and degradation, extrudate swell, and draw-down and thermal effects; (ii) select the
best strategy, e.g., flow balancing, streamlined channels, avoiding-cross-flow, using flow
separators, and designing for extrudate-swell; (iii) formulate clearly the optimization in
terms of objective function, constraints, decision variables, algorithms, and optimization
strategies; and (iv) perform a clear geometry and mesh parameterization.

Legat and Marchal [127] designed a square die by solving the IEP for the die channel
shape given the extrudate geometry, based on an implicit formulation. Tran-Cong and
Phan-Thien [129] proposed an empirical optimization method to take into account the effect
of extrudate-swell on die design. Flow modelling used the boundary element method, and
the free surface was modelled based on particle path lines that were optimized at every
iteration. Also through a trial-and-error empirical approach, Hurez et al. [130] optimized
the lengths of the die land channels using analytical flow modelling. Three empirical
strategies based on cross flow minimization were utilized by Švábík et al. [131] to achieve
flow balancing by varying the die land length. However, these methods are only able
to deal with simple dies. With the aim of solving the IEP, Gifford [132] discussed the
concept of target profile, i.e., the final profile to be obtained after the extrudate-swell, and
how to deal with the free surface using surface particles that must fit the target profile.
Rezaei et al. [133] optimized the length of the die lands of a profile die using an empirical
scheme based on a sensitivity analysis in order to balance the flow at the die exit.

One of the first systematic optimization approaches was made by Coupez et al. [134],
who adopted the simplex method to optimize the geometrical parameters of a profile die
in terms of flow balancing, based on 3D numerical modelling but with unclear decision
variables. Ready and Schaub [135] used of a regression optimization method based on
a response surface methodology with the results obtained by an adaptive 3D numerical
method and defining as decision variables the corner positions of macro-blocks located in the
numerical mesh. An optimization approach based on the gradient-free method (specifically,
bound optimization by quadratic approximation) was applied to manifold and profile
dies [136]. The method uses a regression approach based on a quadratic response surface
obtained from the modelling calculations. Spline lines approximate the domain boundary,
with design variables corresponding to the weights and locations of the 22 control points
that define the splines. The objective function was the variance of the local maximal velocity
as compared to the average maximal velocity over all die sections. Based on the same
optimization framework, Pauli et al. [137] considered that a good die design must also attain
a homogeneous extrudate-swell across the die exit and thus applied the two objectives
simultaneously to a U-shape profile using 19 × 9 control points.

Sienz et al. [138,139] applied a gradient optimization method based on a sensitivity
analysis to design a flow balanced profile die. The same method was used to maximize
the velocity at the die exit of another die using as design variable the land height for
the inner branches, the solutions being evaluated by a 3D numerical commercial code,
and the optimized results being assessed experimentally [140]. An expert-system-driven
optimization was also employed [141]. Ettinger et al. [142] and Ettinger [143] proposed
a methodology to design profile extrusion dies for Poly(vinyl chloride) (PVC) involving
modelling, parameterization techniques, optimization strategies, and the determination of
material parameters. Parametrization was based on key-points (KP) with two coordinates
(x,y) and a radius (i.e., the design variables), while flow modelling was carried out with FE
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performed on 2D die cross-section slices. The optimization problem was solved employing a
gradient optimization algorithm, but other strategies were also tested (global and sequential
optimization schemes, height approximation method and parallel decoupled scheme), with
a view to flow balancing. Later, the authors designed several complex window profiles with
the aim of guaranteeing that the right quantity of material was delivered to all parts of the
die exit. They fixed between 2 and 46 design variables and used the gradient optimization
method based on the calculation of the sensitivities obtained from the rates of change of
the objective function with respect to the decision variables [144]. Figure 9 illustrates the
application of this methodology to design complex die geometries. Figure 9B compares the
evolution of the objective function between manual and automatic optimization. As can be
seen, the convergence of automatic optimization is attained after 10 function calls and that
automatic optimization performs better than manual optimization.
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Figure 9. Optimization of a die for the production of a hollow profile: (A) required fixed-window
profile cross section and (B) evolution of the objective function versus function call for automatic and
manual optimization (adapted with permission from [144]).

Yilmaz et al. [145] determined the height of the thick channel and the length of the
narrow channel of an L-shape profile die that would balance the flow, using simulated
annealing together with a kriging meta-model to estimate the modelling results based on
3D numerical computations. Very recently, Spanjaards et al. [146] proposed solving the
IEP using the theory of feedback control, which in practice corresponds to evaluating new
solutions (obtained from a parameter found through trial-and-error) by the modelling
program. The methodology was applied to a rectangular channel geometry, with the aim
of defining the curved sides of the adapter by minimizing the effects of extrudate swell.

Finally, some authors considered the use of multiple objectives during the optimization.
Nóbrega et al. [147–149] and Carneiro et al. [150] proposed an optimization methodology
based on the simplex method to design a rectilinear profile die. In the example studied,
the flow channel comprises a parallel zone, a pre-parallel zone, a transition zone, and
an adapter, but only the first two were considered in the design. Two decision variables
were used, the length and thickness of the parallel zone, and the objective function corre-
sponds to the weighted sum of the flow balance and of the length/thickness ratio of the
zones to be optimized. The authors compared the performance of the non-linear Simplex
method with a trial-and-error procedure, but no conclusion about the best method was
clearly reported [151]. The optimization results were assessed experimentally [152,153].
Zhang et al. [154] applied a gradient method based on a sensitivity analysis of a response
surface obtained from 3D numerical modelling relating the objective function with the de-
sign variables, to optimize an L-shape profile die. The design variables were the parameters
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of spline curves based on eight control points, and the objective function was the weighted
sum of maximization of flow balance and extrudate-swell homogeneity and minimization
of points displacement and dimensional tolerance.

Table 5. Previous publications on the optimization of profile dies (KP—key points (see text);
MP—mesh parameterization; GP—geometry parameterization).

Objective
Function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Other
Characteristics Authors (Year) Reference

SO Empirical 3D-N GP IEP Legat and Marchal (1993) [127]

SO Empirical 3D-N GP IEP Tran-Cong and Phan-Thien (1988) [129]

SO Empirical A GP Hurez et al. (1996) [130]

SO Empirical 3D-N GP Švábík et al. (1999) [131]

SO Empirical 3D-N GP IEP Gifford (2003) [132]

SO Empirical 3D-N GP(3) Rezaei Shahreza et al. (2010) [133]

SO Simplex 3D-N GP Coupez et al. (1999) [134]

SO Regression 3D-N MP Ready and Schaub (1999) [135]

SO Regression 3D-N GP(22) Elgeti et al. (2012) [136]

SO Regression 3D-N GP(171) IEP Pauli et al. (2013) [137]

SO Gradient 3D-N MP Sienz et al. (1998, 2010) [138,139]

SO Gradient 3D-N GP Szarvasy et al. (2000) [140]

SO ES 3D-N MP Sienz et al. (1999) [141]

SO Gradient 2D-N KP Ettinger et al. (2004, 2004) [142,143]

SO Gradient 2D-N KP(2-46] Sienz et al. (2012) [144]

SO SA 3D-N GP(3) Yilmaz et al. (2014) [145]

SO Feedback Control 3D-N GP IEP Spanjaards et al. (2021) [146]

WS(2) Simplex 3D-N GP Nóbrega et al. (2002, 2003) [147–149]

WS(2) Simplex 3D-N GP Carneiro et al. (2004) [150]

WS(4) Gradient 3D-N GP(8) Zhang et al. (2019) [154]

4.4.4. Calibrators

The design of calibrators is linked to that of profile dies, as they must assure that the
cross-section of the extrudate stands within the defined tolerances. For that purpose, the
calibrator should cool the extrudate contour uniformly until an outer layer of polymer has
solidified and so its geometry is preserved. Thus, the design of calibrators involves the
definition of the number and length of the units to be used, and for each, the number, loca-
tion, and diameter(s) of the cooling channels. Table 6 identifies the previous optimization
studies on this topic.

Fradette et al. [155] seems to have pioneered the scientific design of calibrators for
profile extrusion. The strategy included a modelling routine (3D numerical modelling),
an objective function (the weighted sum of minimizing the cooling time and maximizing
the cooling uniformity), decision variables (48 variables defining locations and diameter of
16 cooling channels), and optimization algorithm (gradient optimization).

Nóbrega and Carneiro [156] used the simplex method to optimize a calibration system
comprising three units separated by two annealing zones, with the results being obtained
by a 3D numerical modelling code. The system was defined by eight geometry-related
decision variables (length of calibrators and of the annealing zones, temperature of the
cooling fluid in each calibrator). Subsequently [157], the number of calibrators was taken
as additional decision variable and a MOEA with two objectives (minimization of the final



Materials 2022, 15, 384 25 of 31

extrudate average temperature and of the corresponding standard deviation). Duan and
Zhang [158] optimized the location and diameter of the cooling channels, considering the
weighted sum of two objectives (maximizing the cooling uniformity and of efficiency), but
little detail was given on the optimization procedure. Finally, Ren et al. [159] applied EA to
optimize a calibrator based on 3D numerical simulations, assuming the weighted sum of
two objectives (maximization cooling uniformity and efficiency), with the aim to define the
location and diameter of a variable number of cooling channels.

Table 6. Previous publications on the optimization of calibrators for extruded profiles.

Objective
function

Optimization
Algorithm

Modelling
Approach

Decision
Variables

Other
Characteristics Authors (Year) Reference

SO Simplex 3D-N GP(5) - Nóbrega and Carneiro (2005) [156]

AS(2) Empirical 3D-N GP(n) - Duan and Zhang (2014) [158]

AS(2) Gradient 3D-N GP(48) - Fradette et al. (1996) [155]

AS(2) EA 3D-N GP(n) - Ren et al. (2010) [159]

MO EA 3D-N GP(8) - Nóbrega et al. (2008) [157]

5. Conclusions

This review discussed the application of optimization methods to solve real problems
in extrusion, namely for single- and twin-screw extruders, extrusion dies, and calibrators.
It was shown that equating processing challenges as optimization problems is much more
efficient than relying on empirical knowledge, or in the use of simulation tools on a trial-
and-error basis.

Regardless of the specific processing routine being analysed, it is evident that there
is a strong interdependence between the objective function (i.e., the system performance),
the optimization algorithm, and data collecting (i.e., experimental or computational data).
Selecting a specific optimization algorithm depends on the features of the problem and
whether the goal is to optimize one or several objectives. Aspects such as the scarcity of
data, the possibility of generating data during the optimization, as well as the time required
to obtain such data must be taken into consideration as well.

The second part of this review will focus on the application of optimization approaches
to moulding processes (injection and blow moulding, thermoforming). Trends in process
optimization will be also discussed.
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Sieci Neuronowych. Mechanik 2004, 7, 470.
52. Thibodeau, C.A.; Lafleur, P.G. Computer Design and Screw Optimization. In Proceedings of the 58th Annual Technical Conference

of the Society of Plastics Engineers (ANTEC 2000), Orlando, FL, USA, 7–11 May 2000; pp. 276–282.
53. Thibodeau, C.A.; Lafleur, P.G. Computer Design and Screw Optimization. In Proceedings of the Polymer Processing Society 16th

Annual Meeting (PPS-16), Shanghai, China, 18–23 June 2000; p. 15.
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